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ABSTRACT 

The Department of Arequipa, in Peru, is a region with limited water resources making 

freshwater management critical and requiring the development of water-demand models, which 

can be valuable tools for policymakers. This study developed a monthly agricultural water-demand 

mapping algorithm for the agricultural districts surrounding the city of Arequipa. It was 

accomplished by: (1) developing a ground-reference data collection method; (2) creating a crop 

mapping algorithm, which incorporates supervised classification methods, as well as spatial- and 

temporal-consistency correction methods to create crop maps out of high resolution (~3 m) 

PlanetScope satellite images; (3) integrating a crop growth-stage prediction algorithm for the crop 

maps and; (4) applying an algorithm for the estimation of the agricultural-water-demand maps 

using the results of steps 2 and 3, local climate data, and an irrigation demand estimation tool. The 

crop mapping algorithm was shown to create maps with acceptable accuracy, with 5 out of 6 

months with available data having mean monthly classification accuracies of 69% to 77% for those 

classes which had available data. Growth stage predictions had mean absolute prediction errors of 

0.55 to 0.69 months in 5 out of 6 months.  The 6th month (the first with ground reference data 

collection) had a mean absolute prediction error of 0.90 months because it lacked prior month 

information to correctly identify planting month. Water demand maps were produced with high 

spatial (3.0 m) and temporal (monthly) resolution, allowing for a detailed look at local agricultural 

water demands. This study provides a framework for future large-scale agricultural-water demand 

mapping for the Department of Arequipa and similar regions around the world. 

  



 

 

12 

 INTRODUCTION 

Freshwater management in the Department of Arequipa, Peru is critical, with limited 

freshwater resources from the Andean Altiplano being highly managed (Stensrud, 2016) and used 

for the competing needs of over 1.4 million people living in the region (INEI, 2018), a substantial 

mining industry, and over 700 km2 of irrigated agriculture (Salmoral et al., 2020), mostly in a 

desert climate (Moraes et al., 2020). The Department of Arequipa’s highly managed and complex 

water system operates close to its limits and has been challenged by increased climate variability 

(Moraes et al., 2020) and growing water demands (Salmoral et al., 2020). As in many parts of the 

world, agriculture represents a large share of the water demand in the region, and, thus, 

understanding its quantity and variability throughout the year is crucial for local stakeholders, 

especially water managers and policymakers. However, agriculture in this region is spatially and 

temporally complicated compared to many other regions of the world. Factors such as a lack of a 

defined growing season (the region is near the equator), small fields (often less than 0.1 ha), 

heterogeneity of crop fields (different crops are grown near each other and sometimes in the same 

fields), and highly variable land management practices all complicate analysis of the region’s 

agriculture and thus agricultural water use. 

Crop maps show where crops are being grown and what type of crops are being grown in 

an area. Crop maps can be used for yield estimation, crop acreage assessments, land use monitoring, 

and are thus important tools for farmers, land managers, and policymakers (Howard et al., 2012). 

Moreover, when analyzed with other information, such as weather and climate data and irrigation 

demand models, crop maps are an important source of information for estimating regional 

agricultural water demands. Water demand estimates would be valuable for the farmers and 

policymakers of the region of Arequipa, e.g., to help predict irrigation demand, guide planting 

patterns, and help manage agricultural land. For example, local stakeholders in the Department of 

Arequipa have expressed concern about the availability and distribution of irrigation water, as well 

as a desire for governmental institutions to help more with irrigation water distribution due to the 

lack of resources and personnel needed for traditional community-based institutions to perform 

this task (Popovici et al., 2021). Water demand estimates could help by providing near real-time 

data that would lead to better decision-making at both the local and governmental level. 
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Crop maps have historically been made through agricultural surveys and traditional 

cartographic methods but with the advent of remote sensing technology, they are now commonly 

made by classifying satellite images.  The theory of image classification has been around for 

decades, and many different methods have been developed and applied (Lu and Weng, 2007; 

Wilkinson, 2005). Many studies on the creation of crop maps have been focused on regions with 

agriculture management practices that are relatively simple compared to that of Arequipa, such as 

the United States (Shao et al., 2010; Dahal et al., 2018; Loveland, et al., 2000, Zhong, 2012). For 

example, the Cropland Data Layer (CDL) project has provided annual crop maps of the contiguous 

United States since the year 2008 (United States Department of Agriculture, n.d.). As field sizes 

are typically larger in the U.S. and often planted with a single crop, it is possible for the USDA to 

rely on fairly coarse spatial resolution satellite images, ranging from about 30 m up to 1 km, that 

have spectral bands in the visible and near infrared parts of the spectrum.  Having a single dominant 

growing season also means that the USDA can utilize multiple images in a limited time window 

to capture crop phenological changes.  

Recent advances in remote sensing technology, in particular the advent of constellations of 

satellites with very high spatial resolutions (5 meters or less) that can image every part of the Earth 

every day, have expanded classification possibilities to include agriculturally complex regions like 

the Department of Arequipa. However, there is still a lack of case studies and general methods for 

the classification of such regions. While there exist some recent examples of methods employed 

to map crops in agriculturally complex regions such as parts of China and Turkey (Zhang et al., 

2016; Ozdarici-Ok et al., 2015), these regions do not have all the particularities of the Arequipa 

region. Most notably, these regions have significant variability in weather that causes there to be 

defined growing seasons. Zhang et al. (2016) utilized phenological time series of 100-meter 

resolution PROBA-V data with a 5-day repeat cycle to perform classification of crops in two 

agricultural regions in China that are similar in size to the agricultural area in and around the City 

of Arequipa, but that have a dominant growing season and larger, more uniform fields. They found 

that the higher resolution PROBA-V imagery resulted in more accuracy crop maps compared to 

MODIS data, especially in the site with more distinct fields.  Meanwhile, Ozdarici-Ok et al. (2015) 

demonstrated that a single very-high-resolution image with only blue, green, red, and NIR spectral 

bands can be sufficient for mapping up to six different crops using a field site in northwest Turkey.  

Accuracy was best if the image was taken after the crops had reached an appropriate growth stage, 
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indicating that the timing of imagery relative to crop growth stage is critical for classification. 

Given the results of these and other studies, it is hypothesized that it will be possible to map crops 

in the Department of Arequipa with sufficient accuracy, although it is expected that there will be 

additional complications in this process due to the specific complexities in agricultural 

management local to the region.  

The goal of this study is to develop a system for creating monthly maps of crop type, crop 

age and crop water demand for the Department of Arequipa, Peru, with the intent of later turning 

this system into an operational tool to be used by local stakeholders. This goal can be accomplished 

in three major steps, which are represented by the following objectives. 

 

1. Develop a crop mapping algorithm (CMA), which uses supervised classification 

methods, along with high-resolution satellite images and ground reference data, to 

create monthly crop maps of the Department of Arequipa with acceptable accuracy, 

despite its agricultural complexities. 

2. Develop an age estimation algorithm (AEA), which estimates the ages of crops with 

acceptable accuracy based on crop progression derived from the crop maps. 

3. Create a water demand mapping algorithm (WDMA) for the agriculture in the 

region of Arequipa by using the data from steps 1 and 2, auxiliary climate data, and 

an appropriate irrigation demand estimation tool. 

 

Accomplishing these objectives will provide the materials necessary for regular 

agricultural water demand estimates for the region of Arequipa, Peru. Objective 1 will result in a 

structure to regularly create and validate crop maps for the region. Time series of the crop maps 

will be used in objective 2 to estimate crop age, which in turn will be used to estimate crop water 

demand in objective 3. These water demand maps could then be integrated over crop types or sub-

regions to create water demand estimates which provide useful information to policymakers and 

farmers. While this study focuses on the region of Arequipa, Peru, the methodologies presented 

should be applicable for regions with a need to map crop water demand but with similarly sparse 

information on crop types, locations, and ages. Moreover, while the focus of this study is on water 

demand, the crop maps themselves represent valuable tools that could be used for additional 

analyses. 
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 MATERIALS AND METHODS 

2.1 Study Area 

The study area is within the Department of Arequipa, in southwestern Peru (Figure 1). The 

agricultural area to be classified is in and around the city of Arequipa. The region has significant 

topographic variability, which necessitates the use of small fields, terraces, and less-mechanized 

agriculture. In addition, much of the agriculture is done in close proximity to urban infrastructure 

such as buildings and road systems, and many crops are commonly grown in the same immediate 

area. Small crop field sizes of approximately 0.1 ha or 1000 m2 are not uncommon in this region, 

which is much smaller than the 19.3 ha average size of crop fields in the United States (Yan and 

Roy, 2016). The city of Arequipa is located in an arid region; annual average precipitation in the 

agricultural areas in and around the city is approximately 123 mm/year, with most of that occurring 

from December to March (Moraes et al., 2019). Due to its aridity, the agriculture in the city is 

irrigated and dependent on the highly managed water supply that comes from the higher elevation 

Andean region (Stensrud, 2016). Due to the low latitude of the region, crops are grown year-round 

without a defined planting or harvesting season, although there are preferences for growing 

particular crops during different times of the year. 

 

Figure 1. Region of classification for the study (right) and its location relative to the country of 

Peru and the department of Arequipa (left).  
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2.2 Satellite Data Acquisition  

Satellite images from September 2019 to February 2020 were obtained courtesy of Planet 

Labs, Inc. The PlanetScope images used in this study have an approximately 3 m spatial resolution, 

daily repeat cycle, and four spectral bands: blue (455 - 515 nm), green (500 - 590 nm), red (590 - 

670 nm), and near infrared (780 - 860 nm) (Planet Labs, Inc., 2018). The images were already 

converted to surface reflectance values by Planet Labs, Inc. PlanetScope images were chosen due 

to their high spatial and temporal resolutions, which make the classification process more feasible 

for the region, given the small field sizes and the lack of a defined crop growing season. To 

compose a monthly mosaic image that covered the entire region of classification, hereafter referred 

as a "monthly satellite image", cloud-free images that were nearest to the ground reference data 

sampling dates were selected (Figure 2). Approximately eight to twelve cloud-free images, taken 

on one or two days, were used to create each monthly image.  

 

2.3 Ground Reference Data Acquisition 

Supervised classification methods work by using features extracted from reference data of 

known groups, or classes, to “train” an algorithm, or classifier, and then using the classifier to 

predict the classes of objects of interest based on the same features of those objects. In this study, 

the classes are different types of crops, the features of the data are the spectral data in the satellite 

images, and the objects to be classified are the cells (pixels) of the satellite images. Therefore, to 

use supervised classification methods to classify different crops in satellite images, ground 

Figure 2. Dates of ground reference sampling and satellite image acquisition for each month of 

the study period (September 2019 to February 2020).  Multiple satellite images may be acquired 

per day to fully cover the study area. 
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reference data are needed. Since it is difficult or impossible to know the class of an object by 

looking at the satellite image, it is most common to sample reference data in-situ and then locate 

the areas in geographic information system (GIS) software and extract the desired features from 

the satellite image once the class is known. When sampling ground reference data for satellite 

image classification, entire areas (such as agricultural fields or forests) are sampled, and the data 

of the cells of those areas are extracted. For this study, one sampled field area is considered a single 

ground reference location regardless of how many cells (image pixels) are contained in it. To 

extract spectral data from ground reference locations, fields were delineated with polygons in GIS 

software and R was used to extract the spectral data from the cells contained within or overlapping 

with the polygons. To avoid edge effects, which is mixing of the spectral signal of nearby cells 

and which occurs near the edges of fields, generally only the central area of a field was delineated. 

The distance from the edge of the field to the delineated central region was determined by visual 

inspection and examination of the spectral data of the pixels to remove those with clear signs of 

spectral mixing. 

To collect the reference data needed in this study, it was necessary to design a reference 

data collection method. This method needed to allow for accurate identification of ground 

reference areas (agricultural fields) in GIS software along with the ability to record supplementary 

crop-related information such as crop age, crop density, and crop height. To serve as an error check 

and field identification aide, it was also important to be able to associate a picture with the field. 

Finally, the method needed to be free or low cost and simple to use. To accomplish these goals, a 

smartphone-based method was developed, based on the smartphone-based application Epicollect5 

(Epicollect5, n.d.). Using Epicollect5, it was possible to record a point position with an average 

accuracy of 3 m (using smartphones built after about 2014) and associate with it a picture of a 

targeted crop field, the direction in which the picture was taken, and many crop features such as: 

crop type, age (measured in months, at a resolution of 0.5 months), height (integer inches), and 

population density (plants/m2). Epicollect5 is free for research purposes, customizable, has a 

friendly interface, and perfectly matched the needs of this study. Using a smartphone-based 

method was beneficial due to the near-ubiquity of smartphones in the region. 

To collect data for this study, four undergraduate agronomy students from the Universidad 

Nacional de San Agustín (UNSA) were selected and trained to use the ground reference data 

collection method. It was planned to collect ground reference data throughout the region of 
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classification on the first week of every month for at least a year to develop and evaluate the crop 

mapping algorithm. Data collection began in September 2019; however, due to the COVID-19 

pandemic, field work was interrupted after the February 2020 campaign, yielding only 6 months 

of ground reference data. Moreover, due to logistical difficulties, the start of the field campaigns 

in November 2019 and January 2020 were delayed, resulting in longer than optimal gaps in the 

ground reference data (Figure 2). This is less than ideal, but it did not affect the classification 

process for those months beyond needing to verify that fields were not harvested between the time 

of ground reference data and satellite image acquisition. 

The region of classification was roughly split into three agricultural areas (Cerro Colorado, 

Characato-Paucarpata, and the Chili River Valley) based on the advice of collaborator and UNSA 

Agronomist Jose Pinto (personal communication, 2019) who indicated that farmers in each of 

these regions preferred different crops.  Cerro Colorado and Characato-Paucarpata are higher in 

altitude and separated by the Chili River Valley (Figure 3).  Ground reference data were collected 

from each of these areas in each month. Due to logistical difficulties and the highly-variable 

topography in the region, it was difficult to get a spatially-randomized sample of agriculture within 

each of the three areas.  It was, therefore, assumed that the mixture of crops being grown in each 

of these areas for each month was fairly similar, with the most variability in regional agriculture 

occurring between these areas.  This allowed the ground reference sampling teams to focus on 

capturing a similar, maximal number of samples within a constrained spatial subset of each area 

instead of on obtaining a spatially-representative sample across each area. Ground reference 

sampling teams were trained to sample different fields along the route in each month that would 

capture a spatially-representative sample from the area in which they were sampling. With this 

sampling plan, it is assumed that the monthly sample is spatially representative of the entire region. 
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Figure 3. A map of the region of classification with all ground reference data points, color coded by 

agricultural area within the city. There are three agricultural areas defined: Cerro Colorado, 

Characato-Paucarpata, and the Chili River Valley. The first two are roughly outlined by black 

polygons and are identified by the color of the points within them. The Chili River area is identified 

by the blue points that run along it and includes the agricultural areas (identified by their greenness) 

surrounding the points. The background of the map is a Google Satellite map (Google, 2016). 
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2.4 Ground Reference Data Pre-Processing 

2.4.1 Assessment of Ground Reference Data 

Six months of ground reference data were collected by trained undergraduate volunteers in 

Arequipa.  During this period some crop types were found over a substantial portion of the study 

domain in all six months (Table 1); these include alfalfa, peas, broccoli, celery, and lettuce. For 

other crops, there appeared to be a “season” in which they were dominant. For example, garlic, 

quinoa, and onion were dominant in September and October, then became less abundant in 

November, and were largely gone from the region by December. Meanwhile, corn was minimal in 

September, but started to appear in November, and became a dominant crop in the region in 

December. Fava beans were sampled from a significant number of fields only in September, which 

suggests that they may have been more dominant in the months prior to the start of ground-

reference sampling. 

A total of 32 cover types were sampled (Table 1). Monthly sample sizes started at 148 total 

fields in September and generally declined over time, ending at 103 total fields sampled in 

February. The ten most commonly sampled cover types had total sample sizes (across all months) 

ranging from 43 (onion) to 94 (alfalfa). Many cover types were less common in the ground 

reference database and did not have a sufficient number of samples to classify them well. Indeed, 

20 of the cover types had 10 or fewer total samples, usually spread out over several months. 

Assuming the sample frequencies represent the actual distribution of the crops, then these crops 

represent a small proportion of the regional crops (often <1%). Based on this analysis, the 

subsequent generation of crop maps was restricted to the cover types that had more than 10 total 

samples, which includes the following cover types: alfalfa, peas, garlic, broccoli, green beans, corn, 

bare soil, celery, onion, lettuce, quinoa, and oats. Representation of the other crops is limited in 

the ground reference database and assumed to be a small overall fraction of crops planted based 

on the ground reference sampling strategy. Therefore, these crops were not included in the 

development of regional crop maps as there is an insufficient number of samples to classsify their 

spectral signature and including them could cause spectral overlap with more representative crops 

that would detract from the overall classification accuracy.  
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Table 1. Sampled cover types and corresponding number of ground reference samples 

for each month of the study. Cover types are sorted by the total number of times they 

were sampled in the 6-month preliminary study period. Bolded cover types have more 

than 10 total samples and are included in the crop mapping process. 
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2.4.2 Quantifying the Visibility Threshold of Crops 

Crops in early development stages can easily be classified as soil due to the amount of soil 

exposed between the limited canopy of the small plants. A data filtering strategy was created to 

remove young crop samples from the ground reference dataset so that those fields were not used 

in the development of monthly crop classifications.  For this process, the reported age or height 

(for alfalfa) of the crop in the field (from the ground reference dataset) was evaluated against the 

mean Normalized Difference Vegetation Index (NDVI) (Rouse et al., 1974) values for the ground 

reference field, as calculated from the corresponding remote sensing imagery.  

The extent of canopy closure for each crop can be inferred from the change in average field 

NDVI over time (Figure 4).  The NDVI is highly sensitive to the presence of chlorophyll, resulting 

in higher values for healthy plants than for soils.  Soil NDVI values for the study area range from 

0.10 to 0.27.  Young crops with little canopy cover will have NDVI values indistinguishable from 

soil because the PlanetScope pixels will reflect more soil than canopy.  As the crops age and their 

canopies become fuller, the field average NDVI increases, and it becomes possible for the image 

classification algorithm to differentiate between fields with crops and fields without crops.   

The relationship between NDVI and crop height for alfalfa (Figure 4a) and crop age for 

corn (Figure 4b) are typical for the majority of crops analyzed.  They illustrate that for most crops, 

NDVI has a logarithmic relationship with crop height or age, with a sharp increase in NDVI soon 

after planting (or cutting for alfalfa), followed by a stable phase once full canopy cover is reached. 

If crops were sampled after senescence or harvest, then a declining NDVI phase is also observed, 

such as the slight declining phase observed for corn (Figure 4b).  The relationships found for oats 

(Figure 4c) and quinoa (Figure 4d) are different from the rest of the crops, likely due to the small 

number of samples or the fact that both crops change color as they near harvest.  

The proportion of green canopy cover has been found to have a very strong linear 

relationship with the NDVI of crops,, often with a slope of nearly 1 (Tenreiro et al., 2021), which 

signifies that NDVI is a good representation of canopy cover for many crops. Several studies have 

found a double-logistic relationship between NDVI and crop age (represented as day of the year), 

i.e., a constant relation followed by a sharp increase, a stable relation, a sharp decrease, and then 

another constant relation (Doraiswamy et al., 2007; Li et al., 2007; Huang et al., 2019). However, 

in these studies, NDVI was measured for the days of the year before the crops were planted and 

after the crops were harvested. In this study, NDVI was only measured when crops were planted 
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and usually before they were harvested, and so, in most cases, only the sharp increase and stable 

relation phases were captured, leading to the apparently logarithmic relationship observed in 

Figure 4. 

Even when full canopy cover is reached, there is a variation in NDVI with age or height 

(Figure 4a,b). There are multiple potential sources for this variance, including sampling error (i.e., 

misinterpreting the age or height of the plant), different planting conditions (e.g., variable plant 

density, different breeds or varieties), and different growing conditions (variable water content, 

microclimates or pest pressure) (Shanmugapriya et al., 2019). Large variance in spectral data could 

cause low classification accuracies due to class overlap and reduce the ability to fully represent 

classes with a limited number of samples. For this reason, it was decided to use NDVI thresholds 

to "filter" samples. The NDVI thresholds were chosen to remove samples that had not reached a 

state of canopy closure, thereby ensuring that crops were distinguishable from soil and reducing 

the variance of the data. By using a fixed NDVI threshold for each crop, crops that are too young 

to be classified can easily be removed, as can substantial NDVI outliers that could be due to 

diseased crops, partially-harvested fields, and other factors.  Ground reference fields where the 

average NDVI does not exceed the threshold are excluded from the classification process  

Lower bounds for ages (heights) and NDVI thresholds used in the filtering process were 

determined using NDVI vs. age (height) graphs, a selection of which are presented in Figure 4. 

NDVI thresholds were determined by visually approximating the NDVI value above which the 

within-group (age or height) NDVI means began to vary minimally with age (height); lower 

bounds for ages (heights) were found by visually approximating the age (height) value that 

corresponded to the chosen NDVI value. In general, NDVI values were chosen conservatively to 

retain as many samples as possible while ensuring the remaining samples had the desired qualities. 

NDVI thresholds used for filtering ground reference data for each crop type are provided in 

Appendix A (Table A-1).  This process was difficult for oats and quinoa due to their small sample 

sizes and decreasing NDVI with height and age. The lowest NDVI threshold was 0.35 for lettuce 

and onion, two small plants that even when densely planted will not completely close their canopy 

between rows.  Alfalfa, a dense perennial grass, had the highest NDVI threshold of 0.60. Based on 

the observed NDVI ranges, cells with an NDVI value of 0.30 or less were assumed to be soil and 

pre-classified as such to decrease algorithm runtimes. The number of ground reference fields 

available after filtering for minimum NDVI are listed in Table 2. 
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Figure 4. NDVI vs. age (height) plots for: (a) alfalfa, (b) corn, (c) oats, and (d) quinoa. Black 

points represent means of cell NDVI values for sample fields and red points represent means of 

black points at different age (height) levels. The blue, cross-hatched interval represents the range 

of means of cell NDVI values for sample fields which had the bare soil cover type. 
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2.4.3 Identification of Additional Ground Reference Data 

The number of fields that can be sampled each month as ground reference data is low 

relative to the number of different crops being grown and the number of small fields being 

cultivated.  Fortunately, crops are persistent developing from seeds to mature plants over several 

months, so a field observed in one month can be used in the classification process for every month 

from planting to harvest.  For example, recently planted crops that failed the NDVI threshold 

filtering process in the month they were observed as part of the ground reference survey due to 

their small size, might be large enough a month later to be used for image classification in that 

month. For a field from one month to be used for extracting spectral data from a different sampling 

month, the field had to meet the following conditions: (1) it could not overlap spatially with any 

other fields in the given sampling month (i.e. we cannot reuse the same field); (2) the reference 

age of the crop associated with the field must be between zero (just planted) and the maximum 

observed reference age for that crop, after the reference age is adjusted to account for the change 

in month (e.g., if a field in November had a crop of age 2 months, then its adjusted age in December 

would be 3 months); and (3) the field passes the NDVI threshold filter in the given sampling month. 

This process resulted in additional ground reference fields being available for the classification 

process (Table 2).  Note that older crops in fields included in the ground reference database can be 

used to increase the number of ground reference locations in earlier months if they meet the same 

criteria.
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Table 2. Number of ground reference fields by crop type that passed the NDVI threshold filtering 

(TF) and after the identification of additional ground reference fields that meet the selection 

criteria (IA).  Values indicate the total number of ground reference fields by crop type after each 

pre-processing step. The number of fields listed under IA is the number actually used in the 

classification process. 
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2.5 Creating A Map Of Agricultural Areas 

Agricultural production in and around the city of Arequipa is often done in close proximity 

to infrastructure, including roads, building, bridges and terrace walls. Near the river, the agriculture 

is intermingled with native vegetation including riparian woodlands and pastures. The city also 

has sports fields and parks, although lawns are uncommon. To avoid the classification of non-

agricultural vegetation as agriculture and to reduce computational time when classifying images 

for crop production, a map of agricultural areas (or mask of non-agricultural areas) was developed.  

Supervised classification (maximum likelihood) was used to map five different cover 

classes: barren, urban/built-up (infrastructure), turf grass, trees, and agriculture. These classes were 

chosen because they broadly represent land cover in the region. Note that the barren class includes 

non-agricultural soil but not agricultural soil. Twenty-five ground reference samples of each non-

agriculture class were obtained by visual identification in Google Satellite images, while field-

sampled ground reference data were used to represent the agriculture class. Agricultural samples 

were used only if the field was sampled in only a single month (to avoid duplicate samples in the 

training and validation data pool) and they were not bare soil at the time of sampling (to ensure 

the field had vegetation in at least one month and therefore represented typical agriculture).  

Application of these constraints resulted in a total of 202 reference samples for agricultural fields. 

Thirty percent of the reference samples of each class were used for validation and the remaining 

data were used for training of the classifier. Each sample (agricultural field or non-agricultural 

area) defines a region of interest (ROI) containing several image pixels corresponding to the 

monthly raster image. For each sample cell, the mean, standard deviation, and range (maximum 

minus minimum) of the time series of monthly NDVI values were calculated and used as features 

to construct a new multi-layer raster file. The features of mean, standard deviation, and range of 

monthly NDVI values were used because they capture both the central tendencies of all classes 

and the greater variability in NDVI present in the agriculture classes as fields are harvested and 

replanted.  The non-agricultural classes should have fairly-stable NDVI values over time, even the 

non-agricultural vegetative classes because of the low latitude and constant climate of the region. 

Probability histograms were then computed for each feature of each training data class. Then, to 

classify each cell, the features of the cell were computed, and the probabilities of belonging to each 

class’s feature histogram were computed; the cell was then assigned to the class with the largest 
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sum of probabilities across the features. After classification, the non-agricultural classes were 

aggregated into a single non-agricultural class. 

The accuracy assessment (Table 3) shows that the classification was generally successful 

in differentiating agricultural and non-agricultural classes, but there was substantial confusion 

between the non-agricultural classes. As the focus of this classification process is to separate 

agricultural from non-agricultural areas, the confusion between classes within the two major 

classifications can be neglected.  At the end of the classification process, the raster was reduced to 

a binary mask of agricultural and non-agricultural pixels. 

 

 

On inspection, the masking raster was found to have spatial consistency issues. Visually, 

these appear as scattered, isolated classified cells (a “salt-and-pepper" effect) and poorly-mapped 

class boundary regions due to the per-pixel approach used for classification.  Additionally, several 

areas were found with substantial classification errors. To fix the issues with the masking raster, 

the raster was first "sieved" using the sieving algorithm from the Geospatial Data Abstraction 

Library (GDAL) (Warmerdam, n.d.).  The sieving process removes small groups of cells that are 

isolated within larger groups of cells of a different class. The end result is to produce larger, 

contiguous groupings of similar classes. The raster was then converted to polygons for comparison 

with high-resolution satellite images of the region. Polygons of the sieved mask were overlain on 

raw PlanetScope images, and a Google Satellite map (Google, 2016) and final corrections were 

made to the classification using manual digitization techniques. During this manual-correction 

process, field boundaries were fixed, and the Chili River was mapped as non-agricultural. The 

process was deemed completed when visual inspection found no additional errors of significance. 

The polygon file was converted back to a raster image of the same domain and resolution as the 

Table 3. Validation results for the non-agriculture mask raster classification. Rows represent the 

actual class from the validation samples, whereas columns represent the classified class. 
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original mask, and the validation accuracy of the new map was found to be perfect for each of the 

five classes (note that the manual-correction process was performed without knowledge of the 

exact location of the reference data). While this process was time-consuming, it is expected that 

this masking raster will be useful for future research in the region. Most of the terraced fields have 

been used for agricultural production for centuries, while expansion of the city has generally 

occurred along the margins of the agricultural areas or in the hills far from irrigation water. 

Identifying these changes should be much easier than creating an entirely new masking raster and 

can be done infrequently or in response to known development. The resulting raster mask (Figure 

6) reduces runtimes for the crop mapping algorithm by allowing it to skip non-agricultural cells. 

This also results in the production of higher quality maps. 

 

 

 

Figure 5. Left: Map of the agricultural area in and around the city of Arequipa, Peru. Right: Sub-

region of the map of agriculture with opacity turned down to see underlying land cover.   

Classified map was adjusted manually to improve accuracy and is used to mask non-agricultural 

areas out of imagery as part of the crop mapping process.  The background of the map is a Google 

Satellite map (Google, 2016). 
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2.6 Classification Methods And Validation 

Generally speaking, classification methods can be considered as either supervised or 

unsupervised classifiers; they may also be grouped as per-pixel, sub-pixel, object-oriented, and 

field-oriented classifiers (Lu and Weng, 2007). The classifiers in this study were applied as 

supervised per-pixel classifiers, meaning that they were trained using one set of data (training data) 

and validated using another, independent set of data.  Both the training and the evaluation datasets 

must identify areas in the imagery of known cover classes. Supervised classification was used 

because there were many classes (crop types) to be identified that likely have significant overlap 

between their spectral signatures, making unsupervised methods unsuitable (Song et al., 2005) and 

increasing the need for an accuracy assessment of the final product.  The per-pixel nature of the 

classification scheme means that each pixel in the remote sensing image is assigned to a cover 

class. The per-pixel method was selected due to the high variability in shape and size of the 

agricultural fields in the region and lack of field parcel data. 

Three supervised classification methods were used in this study: K-nearest-neighbor 

(KNN), maximum likelihood with multivariate normal distribution assumption (MaxL), and 

RandomForest (RF) (Breiman, 2001). The KNN and MaxL classifiers are discussed in detail in 

most books on pattern classification (e.g. Stork et al., 2000), whereas the RandomForest method 

is described in detail by Breiman (2001), so only a brief explanation of each classifier is included 

here. The KNN and MaxL methods were coded in the R language, whereas the RF method was 

used through the randomForest package of RStudio (R Core Team, 2020). 

 

1. The K-nearest-neighbor (KNN) method is a generalization of the nearest neighbor 

search technique (Fix and Hodges, 1951). It works by, for each data point to be 

classified, computing the distance in feature space from the data point to each training 

point ("neighbor" in the feature space), and assigning the data point to the class that 

occurred the most often among the K training points with least distance from the data 

point ("K nearest neighbors"). The KNN method is easy to implement and when K is 

small has short runtimes compared to many other classification methods due to its 

computational simplicity. Is it also worth noting that, under certain conditions and with 

the limit of infinite training data, the K-nearest-neighbor method has the optimal 
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behavior of a classifier (Gyorfi and Gyorfi, 1978), i.e. its error rate converges to the 

irreducible error rate. 

2. The maximum likelihood (MaxL) method used in feature classification is a particular 

case of maximum likelihood estimation and a description of it can be found in many 

textbooks on remote sensing and pattern classification (e.g., Richards, 1999, p. 240). It 

works by assuming a family of distributions for the spectral data of the classes (e.g. 

multivariate normal), obtaining estimates for the parameters of the class distributions 

using the training data, and then assigning data points to the class that maximizes a 

likelihood function. The history of maximum likelihood estimation itself goes back 

hundreds of years to famous historical figures such as Bernoulli, Lambert, Lagrange, 

and Laplace, but its use was not widespread until Fisher popularized it in the early 20th 

century (Edwards, 1974).  The MaxL method has several attractive features, such as 

ease of implementation, ease of interpretation, and good convergence properties with 

increasing sample sizes (Stork et al., 2000, pp. 85 and 101). The MaxL method has 

been shown to be competitive with other, more complicated methods in several studies 

(e.g. Ozdarici-Ok et al., 2015). 

3. RandomForest (RF) is a relatively recent addition to image classification, being first 

described by Breiman in 2001. It works by using a large number of decision trees. The 

decision trees are grown using randomly chosen samples from the training data; nodes 

are split using the best split (most distinguishable features) on a subset of the input 

variables (in this case, spectral bands of the data); the trees are grown as large as 

possible and are not pruned (Breiman, 2001). In this study, the RandomForest method 

was used through the randomForest package of RStudio (The R Foundation, 2020). 

The order of the subset used for node splitting was determined by minimizing the out 

of bag error resulting from each possible subset order. The number of trees used was 

2000, as no improvement in the classification accuracies was observed beyond this 

number.  The Random Forest (RF) method has outperformed many other classification 

methods in studies using satellite image classification (Lawrence et al., 2006; Heung et 

al., 2016; Meier et al., 2018), making it an appealing choice for this study. 
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Classifier skill was judged using per-class validation accuracies (or simply accuracies), 

calculated as the number of correctly classified cells of a given class divided by the total number 

of reference cells of that class; this accuracy is sometimes called the "producer's accuracy". Overall 

accuracy and the kappa coefficient were not used because of the highly variable sizes of 

agricultural fields and variable number of samples for each class, which could cause these error 

metrics to be unrepresentative of all classes. Accuracies are always expressed as percentages. 

Ground reference data for each month are split into training and validation datasets, which further 

limits the availability of data for both processes.    

In general, there is no inherently superior classification method, with the most suitable 

classifier depending on the characteristics of the available data (Stork et al., 2000, p. 456). The 

KNN, MaxL, and RF classifiers were chosen for this study because each one offers a unique 

approach to classification: KNN is a non-parametric geometry-based classifier; MaxL is a 

parametric likelihood-based classifier; and RF is a non-parametric decision tree classifier. Using a 

wide range of classifier types is useful as an exploratory tool and may help determine which type 

of classifier is best suited for the data and would thus be appropriate to use in the future when the 

tool is deployed. In this study, for each month, all three classification methods were applied to the 

reference data to examine the performance of the different methods. The classifier with the highest 

accuracy within a given month was chosen as the classifier for that month, to be used throughout 

the entire crop mapping process (Section 2.7). However, this is not recommended as a permanent 

part of the process when viewed as an operational tool. Using the same classifier in every month 

would be simpler for users, so that exploratory data analysis is not necessary to choose a classifier 

in every month. Choosing one classifier that is robust enough to perform well on most data 

encountered by the tool is something that ought to be done before the tool is deployed.  

In addition to being useful as an exploratory tool, using multiple classifiers for this study 

was deemed acceptable due to the following reasons. Firstly, because the dataset characteristics in 

each month are different: crop types and distributions generally differ in each month; certain crops 

undergo general trends in age (Table 1); and spectral data differ for each crop type and for its 

growth stage. These differences in spectral data could cause different classifiers to be best suited 

to the monthly data.  Secondly, although the use of a different classifier in each month may reduce 

inter-month consistency, the use of the temporal-correction algorithm should remove most 

inconsistencies between the different classification methods (Section 2.7.3). Nevertheless, when 
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establishing this process as a long-term operational tool, it is recommended that a single algorithm 

is identified as most suited for the data typically encountered by the tool. This will make the tool 

simpler for users. However, this may require the collection of a larger ground reference dataset 

and significant exploratory analysis. 

2.7 The Crop Mapping Algorithm (Cma) 

The Crop Mapping Algorithm (CMA) was designed to have filtered ground reference data 

and monthly satellite images as inputs and to output crop maps, map accuracies, and crop statistics 

(areas and percentages of agricultural cover for each cover type). Prior to image classification, the 

CMA determines the classification method for each month by running each classification model 

with a large number of sets of training and validation ground reference data subset at random from 

the full ground reference dataset, and comparing the mean validation accuracies from the runs.  

Each time the classification process is performed, 60% of the ground reference data are selected 

at random for training, and the remaining 40% are used for validation. Small sample sizes cause 

significant differences in classification outcomes depending on how the training and validation 

datasets are sampled, and so multiple runs are performed to capture the variability in outcome and 

obtain an estimate of the average model performance. The monthly classification  method is 

determined prior to image classification by classifying reference data because classifying high-

resolution images has a large computational cost. Since the chosen method will later be used to 

classify images, which are then subject to post-processing, it is assumed here that the method with 

the larger mean accuracies prior to post-processing would have the larger mean accuracies after 

post-processing.  

Due to spatial and temporal inconsistencies in the classified maps, the CMA was designed 

to incorporate spatial- and temporal-consistency correction algorithms during post-processing. The 

CMA performs image classification, post-processing, and validation assessment using randomly-

sampled training and validation datasets for a user-defined number of runs. Each training set 

consists of 60% of the full ground reference dataset, selected at random, with the remaining 40% 

used as the validation set. The validation accuracies and crop statistics from each run are used to 

form mean confidence intervals for these results, which gives an estimate of the average 

performance of the model. The number of runs used is user-defined so that users can select a 

number that fits the scope of their data and allows for flexibility in the widths of the confidence 
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intervals.  For this study, the number of runs used was set to 108, as it was deemed sufficient to 

develop sufficiently narrow confidence intervals and is divisible by the number of classification 

processes that could be run in parallel, which is 36 (3 machines were available, with each machine 

having enough memory to run 12 classification processes in parallel). Since there were 6 months 

in the study, this resulted in a total of 648 crop maps, 108 for each month.   The output crop maps 

are based on the ensemble of crop maps created in the multiple runs, with each cell value 

representing the most common class for that cell among all crop maps (for a given month). 

There are some specific criteria and limitations related to the use of the CMA: (1) The 

CMA does not classify crops with 2 or fewer ground reference samples (including samples that 

are gained from the identification of additional ground reference fields detailed in Section 2.3.3) 

as these cases were determined to have an inadequate number of samples for accurately 

representing a crop class. (2) Celery and oats were not classified, despite having a sufficient 

number of samples in many months, because these crops almost always had low validation 

accuracies (less than 50%) and including these crops in the overall classification process led to 

significant decreases in validation accuracies (greater than 10%) for crops that represented a large 

fraction of planted area (e.g., alfalfa, corn, and onion). This means that those fields will be 

misclassified in the resulting crop maps, but as they are fairly minor crops in the region, this 

misclassification is assumed to result in minimal additional error in estimation of water demand. 

(3) Since accuracies and crop statistics are considered on a monthly basis, the accuracy and crop 

statistic confidence intervals output from the CMA were designed to be joint (by month) 

confidence intervals; the method used for creating joint confidence intervals was the Bonferroni 

method (NIST/SEMATECH e-Handbook of Statistical Methods, 2003). 

The remainder of this section will explain details of the CMA related to the choice of the 

monthly classification methods, the development of the Spatial Consistency Correction Algorithm 

(SCCA) and the Temporal Consistency Correction Algorithm (TCCA), and the ensemble crop 

maps. 

2.7.1 Determination of Monthly Classification Methods 

To quickly determine the classification method for each month, 400 randomized training 

and validation datasets were generated, and each algorithm was trained and validated on the 

randomized datasets to obtain 400 sets of accuracies for each method and month combination (e.g. 
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MaxL had 400 sets of accuracies in September, as well in each of the other months). Only 

validation data were classified at this stage due to the much faster runtime of classifying validation 

data compared to classifying entire images and performing post-processing (a few seconds versus 

a few hours), allowing for better estimation of mean accuracy. Four values of K (1, 2, 3 and 4) 

were used in the KNN algorithm (denoted as KNN (K=x), where x is the value of k). The 

Bonferroni method was used to establish joint 90% (or greater) confidence intervals (CIs) for the 

monthly means of the accuracies. The large number of classifications resulted in narrow 

confidence intervals, and so boxplots of mean accuracy distributions were used to visually 

determine the classification methods in each month. 

2.7.2 The Spatial Consistency Correction Algorithm (SCCA) 

The process of spatial-consistency correction, sometimes called "sieving", is a process 

whereby groups of cells of a certain class are assigned to another class (e.g., by using the class of 

the largest neighboring group) if the number of cells in the group is less than a threshold. Sieving 

is often performed when using per-pixel classifiers due to the presence of scattered, isolated 

classified cells (a “salt-and-pepper" effect) that occurs due to per-pixel differences in spectral data. 

These per-pixel differences could be due to noise, spectral blending of nearby pixels, or natural 

within-class variability.  There are many types of spatial consistency correction algorithms 

(SCCAs) available, but most of these require the setting of a minimum threshold area, below which 

small patches are deemed too small to remain independent.  In the case of the CMA, the SCCA 

was developed to reduce the misclassification of pixels within or along the edges of the small, 

terraced fields found in and around the city of Arequipa.  

In order to determine an appropriate sieving threshold, the 148 ground reference fields from 

September (Table 1), were delineated with polygons, excluding cells with edge effects, using the 

unclassified PlanetScope image from September and a Google Satellite map (Google, 2016) as 

visual aides. The ground reference fields in September were used due to the fairly large sample 

size and the broad spatial distribution of the samples in this month. The polygons were used to 

calculate field sizes using an approximate PlanetScope image cell size of 3 m by 3 m (giving a cell 

area of 9 m2). The field median size was 1755 m2, the mean was 2254 m2, the standard deviation 

was 1474 m2, and the range was 423 to 8127 m2. The distribution of field area had a strong right 

skew (Figure 6). 
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A classified image was then sieved using GDAL at various sieving thresholds between the 

lower end of the range of field sizes (423 m2) and the median of field sizes (1755 m2). The sieved 

images were visually examined to determine an appropriate sieving threshold. Positive factors that 

were looked for were the ability to remove noise (random clusters of erroneously classified cells, 

including those within larger fields) and the ability to retain small fields. Based on visual 

examination, a sieving threshold of 900 m2 was chosen, meaning, when subjected to an SCCA, 

groups of cells with less than 100 contiguous cells of the same class would be assigned to another 

class based on the decision rule of the SCCA, for example by using the class of the largest 

neighboring group.  

This threshold was chosen as a compromise; smaller sieving thresholds left much noise, 

whereas larger sieving thresholds sieved many small fields. While 11% of the fields examined in 

September had area less than this threshold, this would not be the case for many of these fields if 

cells with edge effects were included in the area calculation. Since cells with edge effects may be 

classified correctly, and, since the SCCA in this study was designed to correct edge effects around 

fields, the actual percentage of fields sieved at this threshold should be less than 11%, which is 

supported by the sieving results in Section 3.1.2. Given these considerations, the importance of 

removing noise from the classified image, and the large variation in field size in this region which 

makes any sieving threshold a compromise between removing noise and sieving small fields, the 

chosen threshold was deemed appropriate. 
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While the GDAL sieving algorithm (henceforth called the GDAL-SCCA) was available 

for use in the QGIS software, the authors made the decision to write their own sieving algorithm 

in the R language. This decision was made for several reasons: (1) the GDAL-SCCA does not 

consider shapes of fields and fails to account for edge effects of fields, and so fields often end up 

with long, winding, and spatially inconsistent field boundaries that are physically unreasonable; 

(2) the GDAL-SCCA sieves agricultural cells into non-agricultural cells, which should not be done; 

(3) having all calculations done in R would be preferable, to make the system less complex for 

future users. Edge effects, in particular, were a significant issue in this region due to the small 

fields and proximity of different crops to each other, to urban areas and to terrace walls, which 

often resulted in spectral blending around fields.   

The spatial-consistency correction algorithm designed in this study, henceforth to be called 

the Author-Written SCCA (AW-SCCA), was designed to account for these issues while still 

achieving the goal of an SCCA (removal of scattered groups of isolated, mis-classified cells). The 

AW-SCCA uses a pixel-based approach that, given  a pixel, grows a region around that pixel and 

Figure 6. Distribution of field area for 148 ground reference fields sampled in the 

region of the study in September 2019. 
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groups the classes of the same type as the given pixel and considers that group for sieving based 

on its size and geometry. This makes the AW-SCCA slower than the GDAL-SCCA. However, it 

aims to minimize the occurrence of edge effects by using the modal value of the agricultural cells 

in a region constructed around the centroid of the group of cells being considered for sieving, 

instead of using the largest contiguous neighbor to determine the replacement cell values. The 

constructed region is rectangular and has an area approximately twice as large as the sieving size 

to capture the nearby distribution of classes. To further minimize the occurrence of edge effects 

and physically unreasonable field shapes, the region-growing algorithm in the SCCA avoids 

multiple 90-degree branches, so that long, winding fields are more often sieved. 

In order to quantify the performance of the AW-SCCA, sample means of the classification 

accuracies for each sieving case (GDAL-SCCA sieved, AW-SCCA sieved, and unsieved) were 

visually compared. Additionally, the statistical significances of the pair-wise differences of the 

accuracies were evaluated using large sample t-tests. Visual inspection of maps produced by each 

sieving case was also done to compare the methods. 

2.7.3 The Temporal Consistency Correction Algorithm (TCCA) 

The goal of the temporal consistency correction algorithm (TCCA) was to make the 

sequence of crop maps physically reasonable with respect to time (temporally consistent). This 

was necessary due to the differences in crop distributions and ages, the filtering of young crops 

(Section 2.4.2),  and the potential use of different classification methods (Section 2.6). For example, 

it is temporally inconsistent to have a different type of crop at the same spatial location in each 

month because it is highly unlikely for crops to change that quickly or consistently. 

The TCCA considers the time series of monthly cells (each cell being at the same spatial 

location) and establishes a new crop growth sequence based on when cells are classified as soil, 

based on the assumption that soil values represent the transitions between crops. The crop class 

within each crop growth sequence is forced to be identical in value. To do so, the TCCA first 

checks each crop growth sequence to identify all crop classes that occur two or more times (i.e., 

have multiplicity two or greater), assuming that this means the value correctly represents the crop 

planted in the field during the crop growth sequence. If more than one crop has a multiplicity 

greater than two in the same crop sequence, ties are broken by choosing the crop with the highest 

average validation accuracy amongst the crops with multiplicity two or greater. If a crop class is 
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determined in this way, all crop values in the crop growth sequence are made identical to this value. 

This method was used to avoid favoring classes with higher-accuracy or that are more common as 

could occur in a probabilistic approach that makes replacement decisions based on accuracy.   If 

there are no such crops, then the discriminant function, d, defined below, is used to choose the 

replacement cell value. 

Given a set of assigned cell values (classes), say 𝑆 = {𝜔1, 𝜔2, . . . , 𝜔𝑛}, where 𝑖 = 1, 2, … , 𝑛 

are months and there are at least two distinct classes, then a decision rule needs to be defined to 

choose a single class to be mapped to all elements in 𝑆. An obvious choice for this decision rule is 

to choose the class that maximizes the probability of all replacements being correct. To 

approximate this probability, define the function 𝑑(𝜔𝑖) = ∑ 𝑃(𝜑𝑖,𝑗)𝑛
𝑗=1 , where 𝑃(𝜑𝑖,𝑗)  is the 

probability that the cell in month 𝑗 should have been assigned the value 𝜔𝑖 and was mistakenly 

assigned the value 𝜔𝑗, where 𝜔𝑖 and 𝜔𝑗 are the assigned class values in months 𝑖 and 𝑗 in 𝑆 so 𝑗 

indexes both S (assigned classes) and months. In other words, for a fixed month 𝑖, the probability 

in each month 𝑗 that the assigned value in month 𝑗 was wrong and should instead be the value 

assigned in month 𝑖 is calculated, and the probabilities are summed to give an approximation for 

the total likelihood that the assigned value in month 𝑖 should be chosen to replace the assigned 

values in all other months in order to make 𝑆 homogeneous. 𝑃(𝜑𝑖,𝑗) was approximated by the 

proportion of reference data in month 𝑗 of class 𝜔𝑖 times the proportion of cells of class 𝜔𝑖 that 

were classified as cells of class 𝜔𝑗  in month 𝑗  (obtained from error matrices). Note that this 

approximation follows from the definition of conditional probability. With d so defined, 𝑑(𝜔𝑖) is 

calculated for all 𝑖 = 1, 2, … , 𝑛 , and the potential for error is minimized by the following 

assignment of cell values: Choose 𝜔𝑖  and replace 𝑆  by 𝑆′ =  𝜔𝑖, 𝜔𝑖, … , 𝜔𝑖 , where |𝑆′| = n, if 

𝑑(𝜔𝑖) > 𝑑(𝜔𝑗) for all 𝑗 ≠ 𝑖. In the case of ties, the choice was made arbitrarily.  

Finally, the TCCA regressively corrects the classification of crops onto earlier-in-time soil 

values for a location based on the crop age, so that fields that might have been misclassified as soil 

are updated to reflect the mature crops classified in later imagery. The number of months for which 

this regressive reclassification takes place is crop-dependent and based on the age at which the 

crop becomes distinguishable, determined from visual analysis of NDVI vs. age graphs, examples 

of which are shown in Figure 4. In the case of alfalfa, there was no age value to use for this part 

of the algorithm, since height, not age, was used as a predictor for NDVI. Alfalfa can reach the 
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harvesting stage in as little as 40 days (Anderson, 2015) and is often cut in 28–40-day intervals, 

especially during warmer weather (Undersander, et al., 2000). Since the temporal resolution of the 

images is monthly (with some discrepancies), this makes it difficult to regressively assign values 

accurately, as alfalfa could possibly be harvested again between two images. Moreover, while 

alfalfa is often grown continuously, it is sometimes grown as a cover crop, so one cannot simply 

assume it was present in multiple months because it was present in a single month. As a result of 

these considerations, it was decided that no regressive correction would be applied to alfalfa. 

To quantify the performance of the algorithm, sample means of the temporally and non-

temporally corrected accuracies were visually compared. Additionally, the statistical significances 

of the pair-wise differences of the accuracies were evaluated using large sample t-tests.  It is worth 

noting that, if the crop mapping process is continued in the future, the sequence of maps could 

become very large, which could make applying the TCCA to the entire sequence infeasible, 

although this was not an issue in this study because the sequence was only six months long. Since 

most crops in this region grow to a maximum age of four to five months (Table A-1), application 

of the TCCA should be limited to the previous six to seven months to allow it to capture the before 

and after soil values and the crop growth sequence for all crop classes. As the multiplicity of two 

or more months for a crop type should be established in three to four months' time, the expectation 

is that updates to crop maps from the TCCA will be limited to three months total, so that the current 

month’s map will be a first draft without future knowledge of what is being planted, the previous 

month’s map will have improved accuracy as more recently planted fields can be identified, and 

the map from the month before that will be run through a final round of TCCA adjustments.  Thus 

maps from four or more months prior to the current month will no longer need to be adjusted. 

2.7.4 Ensemble Crop Maps 

For visual interpretation of the results, monthly ensemble crop maps were created. The 

cells of the ensemble maps have values representing the most common class among the 

corresponding cells of all (108 for this study) crop maps generated using 60-40 splits of the ground 

reference data for that month. The ensemble process is done on a per cell basis, meaning, for a 

given month and spatial location, the ensemble cell at that location is assigned the most common 

class among all cells at that location in the crop maps of the given month. This method was chosen 

because it was felt to be most indicative of all classified maps, made the most of the limited ground 
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reference data, and allowed for the calculation of confidence intervals based on the distribution of 

crop classes for each pixel from the ensemble of crop maps.  

2.8 The Age Estimation Algorithm (Aea) 

The Age Estimation Algorithm (AEA) is applied to each of the crop maps produced by the 

CMA and predicts the age, in months, of all relevant cells in each crop map to produce crop age 

maps. Following the application of the TCCA, the AEA assumes that the length of a sequence of 

crop values that are equal in value and contiguous in time represents the maximum age of this crop, 

and then determines the age in a given month by finding the position of the month in this sequence. 

The AEA counts crop age in terms of integer months, since imagery and ground reference data are 

collected on a monthly basis.  Because of this, a crop planted since the previous map is identified 

as being 1 month old, and crop ages are reported based on the age they will reach between the 

current map and the next map. The only complication is when the crop sequence within a field 

does not include a clear starting point, which can happen when previous images are not available 

from which to identify a soil value marking the change between one crop and the next.  In this 

case, a correction factor, equal to the maximum age of the crop under consideration, as found in 

the reference data, minus the length of the sequence is added to each predicted age in the sequence. 

Since crops are classified at a monthly resolution, average monthly water demand at all 

potential growth stage intervals were used to estimate monthly crop water demand (see Section 

2.9.). However, since alfalfa goes through the same water demand cycle approximately every 

month using the average monthly water demand value for alfalfa should give a good approximation 

for its monthly water demand, regardless of its growth stage. Based on these considerations, it was 

considered unnecessary to predict the growth stage of alfalfa using the AEA. This also 

conveniently bypasses the need to build a more complicated growth stage prediction model 

specifically for alfalfa, since the prediction method used for other crops would not work for a crop 

that can be harvested multiple times. 

The AEA was validated on all reference data cells for the crops of interest (including the 

unfiltered data cells but excluding alfalfa, the growth stage of which was not estimated) by 

comparing the reference ("observed") ages to the predicted ages using various error metrics. Only 

cells that were correctly classified by the CMA were used for validation. The error metrics used 

were  mean prediction error or MPE, calculated as 𝑚𝑒𝑎𝑛(𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 − 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑) , mean 
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absolute prediction error or MAPE, and root mean square error or RMSE.  The average number of 

cells used for validation or Sample Size was also calculated. The z-statistic was used to construct 

90% confidence intervals for the means of these error metrics. 

2.9 The Water Demand Mapping Algorithm (Wdma) 

 For each month, crop type, and crop age group (where ages were broken into monthly 

intervals), average monthly water demand per unit area were estimated from CROPWAT, a 

decision support tool developed by the Land and Water Development Division of the Food and 

Agriculture Organization of the United Nations (FAO; FAO, 1992). To use as inputs to 

CROPWAT, contemporary daily weather data from Moraes et al. (2021) were used, as were long-

term monthly average reference evapotranspiration values derived from climate data from 1988-

2014, cleaned and filled by Moraes et al., (2021). Additionally, four representative soil profiles for 

the agricultural area were obtained from Barriga (2016) and used in CROPWAT simulations. Little 

variation was observed in the simulations with respect to soil profiles and so results were averaged 

over the four soil profiles. Planting dates in the simulations were varied to obtain monthly average 

water demand data for each month, crop type, and crop age group combination. Monthly water 

demand by crop growth stage was used to match the monthly crop map product and to account for 

the small changes in regional weather through the year.  

 Each cell of each crop map was matched with the corresponding cell of the crop age map 

to obtain crop age data, and then matched with CROPWAT average monthly crop water demand, 

depending on month, crop type, and crop age group. The associated average monthly crop water 

demand value was then multiplied by cell area to create a cell of a water demand map. In this way, 

a corresponding water demand map was created for each crop map. Since the growth stage of 

alfalfa was not predicted (see Section 2.8.), the average monthly water demand per unit area over 

the entire growth cycle was used. Regional water demand for each classified crop are obtained 

monthly via integration of the water demand maps over area planted in each crop. The Bonferroni 

method and the z-statistic were then used to construct 90% joint (by month) confidence intervals 

for the regional crop water demands. 
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 RESULTS 

3.1 Crop Mapping Algorithm (Cma) Evaluation 

3.1.1 Choice of Monthly Classification Methods 

The RF and MaxL methods generally produced higher accuracy results than the KNN 

method, likely because of the small sample sizes in many of the classes, which result in only small 

values of K being viable (Figure 7). When considering all six months of data, the MaxL method 

generally produced the highest accuracies, with the largest medians and (generally) 1st and 3rd 

quartiles in October, November, December, and January. However RF had a larger median in 

February, and a slightly larger median and 1st quartile in September. Based on these results, it was 

decided to use the RF method in September and February, and the MaxL method for the other four 

months of the study period. When viewed in the context of choosing a single classification method 

to use for the tool the future, the results in Figure 7 imply that the MaxL method might be the best 

choice of those tested, given that it had higher median accuracy in four of six months. However, 

the MaxL method is parametric and therefore less robust than the other methods; although it 

resulted in higher median accuracy on the study data, it may not generalize as well to other months, 

wherein spectral data may be different due to different crop types and crop ages. Therefore, it may 

be better to investigate additional non-parametric methods that may be better suited to the data 

encountered by the tool. 
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After performing the image classification process with the chosen algorithms, the mean 

accuracies were generally high (greater than 70%) for alfalfa, broccoli, and garlic, whereas they 

were generally low (60% or less) for corn, green beans, lettuce, peas, and quinoa. Onion was 

classified well in October and November but poorly in September and December. The joint 90% 

(or greater) CIs for the monthly mean accuracies of the chosen monthly classification methods are 

presented in Figure 8. Note that bare soil was perfectly classified; this is because bare soil was 

overclassified due to the data-filtration process; however, the over-classification will be corrected 

using the TCCA, which will result in increased error for the classification of bare soil. 

Comparing Figure 8 with Table 2 indicates that small sample sizes might lead to low 

accuracies, e.g., onion was classified poorly in September and December (with sample sizes of 4 

and 7) but classified well in October and November (with sample sizes of 16 and 14). Lettuce was 

Figure 7. Boxplots of sample means of monthly accuracies for each classification method. 

N=400 for each month and classification method combination.  Box is defined by the 25th 

percentile (top) and 75 percentile (bottom) of the data, with the median (50th percentile) marked 

as the line in the box.  Bottom whisker is 1st quartile minus the inter-quartile range, and top 

whisker is 3rd quartile plus the inter-quartile range. Values outside of the whiskers are outliers 

and marked with circles. Accuracy cannot be higher than 100% or less than 0%. All 90% joint 

CIs were within ±5.5% of the sample mean, with 98% of the CIs being within ±4% of the sample 

mean. 
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generally classified poorly, possibly due to its small number of ground reference samples (5 to 8). 

There were, however, cases where crops were classified poorly even when sample sizes were not 

very small. For example, corn was classified poorly in December, January, and February (with 

sample sizes of 13, 11, and 12), yet these sample sizes are generally comparable to those of alfalfa, 

which was classified well by comparison. This variation in classification accuracy with moderate 

ground reference sample sizes could be due to difficulty in establishing certain classes due to their 

high spectral variability or spectral overlap with other classes.  For example, corn changes color 

in its later growth stages and without a defined growing season corn can be present simultaneously 

in the study area at every growth stage.  Future work should focus on quantifying spectral overlap 

and establishing a lower threshold for the number of ground reference samples that must be 

collected to maintain sufficient classification accuracy for the mapping tool. It is also worth noting 

that spectral overlap is more likely when there are fewer spectral bands, since less information 

about the complete spectral signature is available. Classification errors due to spectral overlap 

could possibly be alleviated by using satellite images with more bands in the future. Planet Labs, 

Inc. is currently testing a replacement for the existing PlanetScope 4-band sensor that has 8-bands 

and might improve the results from this analysis. 
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3.1.2 Spatial Consistency Correction Algorithm (SCCA) 

Spatially, there are three goals that the AW-SCCA was designed to achieve: to remove 

small clusters of incorrectly-classified cells, to prevent the sieving of agricultural cells into non-

agricultural cells, and to create more physically reasonable fields than the GDAL-SCCA. The first 

point should be a goal of any SCCA, and its success can be measured by comparing SCCA results 

with unsieved results, whereas the latter two points are more specific to this study, and their success 

can be measured by comparing the AW-SCCA to the GDAL-SCCA. Figure 9 provides a 

comparison of unsieved, GDAL-SCCA-sieved, and AW-SCCA-sieved cases and highlights  cases 

where the GDAL-SCCA sieved agricultural cells into non-agricultural cells and cases where the 

GDAL-SCCA resulted in physically unreasonable field shapes (shown as black ellipses and 

rectangles overlain on the GDAL-SCCA image subset).  

Both the GDAL-SCCA and the AW-SCCA did a good job of removing most small clusters 

of incorrectly-classified cells (Figure 9). Cases where the GDAL-SCCA sieved agricultural cells 

into non-agricultural cells are easily seen in Figure 9b and occurred when small fields were 

Figure 8. Sample means (letter centroid) and 90% joint (by month) CIs (whiskers) for 

classification accuracies of crop maps with no post-processing performed on them. 

Letters represent each month; months with no data are represented by the X letter. 

Sample means and confidence intervals were calculated with 108 samples in each case. 
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contiguous to non-agricultural areas. Most cases where the GDAL-SCCA resulted in physically 

unreasonable field shapes were due to edge effects at field boundaries, i.e., the blending of cell 

spectral values at the edges of fields, where crops or bare soil transition into other classes. When 

crop cells blended with bare soil cells, the blended cells were often classified as garlic or onion, 

likely due to the sparse canopy of these crops, resulting in a border of erroneously classified garlic 

or onion around fields. Moreover, when two types of crops were in neighboring fields, edge effects 

sometimes resulted in a sort of salt-and-pepper mixture of the two classes at the boundary. These 

edge effect issues were mostly corrected by application of the AW-SCCA (Figure 9c).  

 

 

Figure 9. Image subset comparison for the three sieving cases: (a) raw unsieved classified image, 

(b) sieved using the GDAL-SCCA, and (c) sieved using the AW-SCCA . Black ellipses on the 

GDAL-SCCA image subset represent cases where the GDAL-SCCA sieved agricultural cells 

into non-agricultural cells and black rectangles represent cases where the GDAL-SCCA had 

physically unreasonable field shapes. 
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It should be noted that the AW-SCCA does not always reclassify groups of cells that are 

slightly smaller than the sieving threshold because the decision rule for choosing a replacement 

cell value uses the modal value of the cells contained in a region around the centroid of the group 

of cells being considered for sieving. This makes it possible for the algorithm to choose the same 

class as the replacement value if the same class is present nearby or if there is no dominant class 

surrounding the group of cells. While this may result in some errors, this feature was left in the 

AW-SCCA since it is may be beneficial in the presence of the very small fields in this region 

(Figure 6). 

The AW-SCCA generally produces higher validation accuracies than does the GDAL-

SCCA (Figure 10), though the mean differences are generally small in magnitude, usually ≤ 5%. 

Using paired t-tests to check the statistical significance of accuracy differences shows that, of the 

45 crop and month accuracy combinations shown in Figure 10, there was no statistical difference 

(at a type I error rate of 10%) between the AW-SCCA and GDAL-SCCA accuracies in 40% of 

cases. However, the AW-SCCA produced significantly larger accuracies than the GDAL-SCCA 

in 47% of cases and significantly smaller accuracies in only 13% of cases, and so the AW-SCCA 

was determined to perform with higher accuracy than the GDAL-SCCA. Performing the same 

process but comparing the AW-SCCA and unsieved accuracies shows that the AW-SCCA 

accuracies were not significantly different than the unsieved accuracies in 36% of cases, 

significantly larger in 36% of cases, and significantly less in 29% of cases. Therefore, the AW-

SSCCA was determined to improve the accuracies of the crop maps in the majority of cases. Note 

that t-tests were appropriate because the distributions of accuracy differences were highly normal 

due to the underlying random sampling procedure leading to these accuracies. .  

Although there were many statistically significant changes in accuracy, there are five cases 

that stand out wherein the accuracy largely decreases with sieving using both the AW-SCCA and 

the GDAL-SCCA: alfalfa and broccoli in September, corn in November, green beans in December 

and lettuce in October (Figure 10).  These large decreases in accuracies likely mean that entire 

fields were sieved into the wrong class. However, one can see that the AW-SCCA had a much 

smaller decrease than did the GDAL-SCCA for alfalfa in September, corn in November, and 

lettuce in October. Additionally, with the exception of alfalfa in September, these cases had low 

classification accuracies prior to sieving (less than 50%) and small sample sizes (5 to 8; see Table 

2), which indicates that the raw unsieved fields were poorly classified and were therefore difficult 
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to correct via sieving alone.  Based on visual inspection and the validation accuracy results, the 

AW-SCCA was considered a better choice for use in the CMA than the GDAL-SCCA. 

 

 

 

3.1.3 Temporal Consistency Correction Algorithm (TCCA) 

Application of the TCCA improves classification accuracies for most cover types and 

months (Figure 11). In many cases, the improvement in accuracy is as large as 10-20% or more. 

Using paired t-tests to check the statistical significance of the temporally-corrected and non-

temporally-corrected accuracy differences shows that, of the 45 crop and month accuracy 

combinations shown in Figure 11, 13% of cases had no significant differences, whereas the 

temporally corrected accuracies were significantly larger in 58% of cases and significantly less in 

Figure 10. Samples means (letter centroid) of classification accuracies for the three 

sieving cases (unsieved, GDAL-SCCA sieved, and AW-SCCA-sieved). Letters 

represent each month; months with no data are represented by the x letter.  Each sample 

mean was computed with 108 samples. 
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29% of cases. Crops that benefited greatly from application of the TCCA include alfalfa, corn, and 

onion, all of which had 10-20% or greater increases in accuracy in almost every month they were 

classified. Classes which generally did not benefit from application of the TCCA are (1) bare soil 

(the accuracy decreased in 4 of 6 cases) and (2) peas (the accuracy decreased in 3 of 5 cases). In 

case the case of bare soil, the loss of classification accuracy for bare soil is expected because the 

TCCA regressively reclassifies bare soil cells in some past months based on what was growing 

there in later months, and the number of months for which this reclassification takes place for each 

crop is only approximate (Section 2.7.3.). In the case of peas, the loss of classification accuracy is 

likely because peas had generally low validation accuracies in the original classification (see 

Figure 8) and so were unlikely to be classified correctly in two or more months and were not 

favored by the discriminant function. Perhaps a greater number of samples and higher temporal 

resolution of images could address the issue in case (1) by allowing for the determination and 

application of more accurate regression values. Despite these issues, the TCCA was considered a 

success based on its beneficial effect for most crops. 

 

Figure 11. Sample means (letter centroids) of the accuracies of non-temporally-

corrected images and temporally-corrected images. Letters represent each month; 

months with no data are represented by the x letter. Each sample mean was computed 

with 108 samples. 
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3.1.4 Crop Mapping Algorithm (CMA) Outputs 

Of the 45 classification accuracies available after all post-processing, 22 have "high” 

means of 80% or greater, 10 have “acceptable” means between 60% and 79%, and 13 have “low” 

means below 60%, meaning that 71% of cases had acceptable or high accuracies (Table 4). The 

classes with the best accuracies were alfalfa (6/6 high accuracies), bare soil (5/6), broccoli (4/6), 

garlic (3/3), and onion (3/4). Of the 13 low accuracies, 7 of these came from peas and green beans, 

which were classified with low accuracy in every case except for green beans in February, which 

had 60% accuracy. The remainder of the classes, including corn, lettuce, and quinoa, had a mixture 

of low, acceptable, and high accuracies depending on the month. The monthly average of all class 

accuracy means was always acceptable and ranged from 61% in December to 77% in November 

(Table 4). However, these monthly averages are often heavily influenced by very low classification 

accuracies; for example, if not for the accuracies of lettuce and peas in October (27% and 14%), 

the monthly average of all accuracies would have been 92% rather than 74%. 

Peas and green beans were the most difficult classes to classify well. This could be because 

they are usually planted sparsely to allow room for branching and vine growth, which limits the 

density of the canopy early in the growing season and because their growth patterns are similar. 

Difficulty in classifying quinoa and lettuce was likely due in part to the small sample sizes for 

these classes (5-8 for lettuce and 3-6 for quinoa; Table 2). Corn was difficult to classify well even 

in cases where its sample size was comparable to well-classified crops like alfalfa and broccoli; 

this could be because corn changes its spectral signature over time, which could make it hard to 

represent as a single class with such a limited sample.  
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The temporal (Figure 12) and spatial (Figure 13) trends in planted area for mapped crops 

can be extracted from the final ensemble crop maps. Some crops have fairly consistent coverage 

for five to six months, including alfalfa (averaging 9% of the agricultural area), broccoli (4%), 

lettuce (9%), and peas (4%) (Figure 12).  Other crops experience substantial changes in planted 

area (Figure 12). Some, such as garlic (23% to 0%) and onion (21% to 0%) were clearly dominant 

in the region at the start of the 6-month study period, while other crops replaced those once 

harvested, including green beans (0% to 26%), and corn (0% to 11%).  Some of these crops, such 

as alfalfa, may be grown year-round as they are economic staples, whereas other crops may be 

grown at particular times of the year due to regional changes in weather, water or demand that 

Table 4. Joint (by month) 90% CIs for means of map accuracies (%) after all post-

processing. The first and second numbers in the parentheses are the lower and upper 

bounds of the CIs. Sample means are shown above the confidence intervals. The 

monthly average row denotes the monthly average of all sample means in that month. 

Green entries have mean accuracies 80% or greater; yellow entries have mean 

accuracies between 60% and 79%; and red entries have mean accuracies less than 60%. 
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restrict or promote their planting. It is difficult to make any general claims about the cycles of 

crops in the region due to having only six months of reference data and a minimal seasonal cycle.  

Transitions from one crop to another can be seen clearly from the spatial maps (Figure 13).  

For example, garlic was a dominant crop in the center of the city in September and October, but is 

largely harvested by December and left fallow or replaced with corn and green beans by January 

and February. Onion dominates to the northwest of the city center in October, November and 

December before being harvested.  Farther to the west, the area is dominated by lettuce and alfalfa, 

while dominance in the far east switches from onions to green beans and corn. The presence of 

spatial trends suggests the existence of hyper-local preferences in crops, perhaps due to 

microclimates, variable sources of irrigation water, or social networks. 

Some potential issues that appear in these results are that (1) the bare soil percentages are 

much higher in September and February than in the other months and (2) there is no lettuce 

classified in February despite the crop existing in that month (Table 1). Issue (1) is easy to explain, 

in the case of February, because the TCCA could not regressively assign crop values to the soil 

values in this month, as it was the last month in the set of images. In September, it could perhaps 

be explained by September being a transitional month between growing periods of certain crops, 

although this cannot be verified due to the lack of reference data prior to September.  As for issue 

(2), this is because most of the sampled lettuce in this month was too young to classify so those 

ground reference samples were filtered before classification and therefore do not appear in the 

resulting maps. If the mapping process had not been interrupted by COVID-19 this issue would 

have been fixed by temporal correction using data from the next 1 to 2 months. Issues (1) and (2) 

highlight the importance of the TCCA and its regressive assignment of crop values. Crops less 

than about 2 months of age were not classified but were regressively corrected by the TCCA using 

classification results from later months, which implies that 1 to 2 follow-up months are needed.
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Figure 12. Sample means (letter centroid) and 90% joint (by month) CIs (error bars) 

for percentage of agricultural area covered by each crop based on the final ensemble 

crop map.  Letters indicate the first letter of each month. Sample means and 

confidence intervals are based on 108 samples in each case. 
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Figure 13. Ensemble crop maps with cell classes representing the modal values of 108 crop 

maps. The background of the crop maps is a Google Satellite map (Google, 2016). 
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3.2 Age Estimation Algorithm (AEA) 

The MPE, MAPE, and RMSE validation metrics (Table 5) show that the AEA is generally 

a better predictor for the months nearer to the middle of the sequence (such as November and 

December) than those at the edges of the sequence (September and February). In particular, 

September has an MAPE of 0.90 months, which is about 1.5 times the average of the other months. 

Both September February have an RMSE greater than 1 month, whereas the other months have an 

average RMSE of 0.87 months and all have an RMSE of below 1 month. Moreover, September 

has an MPE of 0.33 months, and February has an MPE of –0.36 months, whereas the other months 

(excluding October) have MPEs closer to 0 (ranging from –0.06 to 0.17 months). Therefore, ages 

in September tend to be overpredicted, and ages in February tend to be underpredicted, whereas 

the prediction error in other months tends to be nearly random.   

These results are expected, given the way the TCCA works. In September, there is no 

knowledge of previous months and a correction factor has to be applied when estimating ages in 

certain cases, leading to errors and a tendency to overpredict ages since the correction factor 

assumes crops will always be harvested at their maximal age as seen in the reference data (Section 

2.8.). In February, there is no knowledge of future months and the regressive reassignment of crop 

values to bare soil cannot be performed, leading to much smaller sample sizes (Table 5) and a 

tendency for the observed ages used for validation to be higher and thus underpredicted. While 

these issues can also affect other months, they are most likely to affect the months at the ends of 

the sequence, and the results are therefore most pronounced in these months. These considerations 

imply that adding more months to the process can be expected to lead to higher-quality results, 

like those seen in October, November, December, and January.  

Since the resolution of the predicted values is 1 month, and the resolution of the observed 

values is 0.5 months, there are both “resolution error” and prediction error in the AEA. The ideal 

MPE value is still 0, which would indicate a tendency for random error. However, the ideal MAPE 

and RMSE are not 0. Assuming each observed age is at least 0.5 months and has an equal chance 

of being a multiple of 0.5 months or being an integer, then a predictor with no prediction error 

would have an expected MAPE of 0.25 months and an expected RMSE of √1/8 or about 0.35 

months (this is easily verified from the formulas or numerical simulation). Similarly, in this 

situation a predictor that has an equal chance of –1, 0, and 1 months of prediction error would have 

an expected MAPE of 0.75 months and an expected RMSE of √19/24 or about 0.90 months. 
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Comparison of these theoretical results with the results in Table 5 shows that the MAPE and RMSE 

are less than or equal to 0.75 and 0.90 months in October, November, and January (with MAPE 

values of 0.59, 0.61, and 0.55 months and RMSE values of 0.83, 0.90, and 0.79 months), 

suggesting reasonable prediction error given the resolution of the data and that most crops grow to 

be about 4.5 to 5 months of age (Table A-1). The MAPE and RMSE values in December are 0.69 

and 0.96 months, while its MPE is only 0.17 months, suggesting that this month has about 1 month 

of nearly random prediction error. The predictive power of the model suffers in September and 

February, shown by the RMSE values of 1.10 and 1.02 months in September and February and the 

MAPE value of 0.90 months in September. This is due to a lack of knowledge of past and future 

months, as discussed previously. However, collecting more sequential monthly data in the future 

could greatly lower the percentage of maps with poorer predictions.  

 

 

3.3 Water Demand Mapping Algorithm (WDMA) 

As water demand is a function of crop and crop stage, the monthly water demand by 

volume for each crop type (Figure 14) roughly follows the planted area for each crop type (Figure 

12).  Differences in the temporal trends of water demand volume and crop area are due to the 

variation in water demand based on crop type and age. For example, corn area increases fairly 

Table 5. 90% confidence intervals for Age Estimation Algorithm (AEA) validation metrics. 

Metrics are mean prediction error (MPE), mean absolute prediction error (MAPE), root mean 

square error (RMSE), and sample size. MPE, MAPE, and RMSE have units of months, and 

sample size has units of pixels. The first and second numbers in the parentheses are the lower and 

upper bounds of the confidence interval, and the number above the confidence interval is the 

sample mean. 
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linearly from September to February (Figure 12), but water demand increases almost exponentially 

from September to December, is relatively constant in January, and decreases substantially in 

February. Corn water demand does increase exponentially in the first two months after planting, 

and stays high from about 2 to 3.5 months after planting.  After that, the crop senesces, and water 

demand drops before harvest.  Peak water demand for green beans is on the order of 1.5 to 2 

months after planting, thus green bean water demand peaks in December, even though planted area 

does not peak until January.  Crop water demand falls off quickly as beans are typically harvested 

at about 2 months.  The biggest water demand in September and October is from garlic, followed 

by onion.  In November, garlic, onion, and lettuce water demand is similar as garlic and onion are 

being harvested, and lettuce is reaching maximum extent.  In December, green beans, lettuce, and 

corn dominate. Green beans and corn continue to be the big users of water in January. February 

water demand estimates are low as many fields were transitioning and no follow-up data were 

collected to confirm what was planted in many of the fields that were left classified as bare soil 

with no water demand (Figure 12). 

Spatial correlation between crop type and water demand is observed as well (Figures 13 

and 15), with the highest demand occurring in September and October in the central part of the 

city where garlic is the dominant crop. The impact of onion on water demand in those months is 

more difficult to see as it is more distributed across the entire area, but it does contribute to higher 

water demand in the north-central and eastern parts of the agricultural area.  Water demand in the 

central part of the city decreases in November and December as crops, especially garlic, are 

harvested.  Higher water demand appears outside the city center, to the northwest and southeast, 

as crops planted in September and October in those regions mature and require additional water.  

Primary water demand in January comes from green beans, lettuce, and corn, and most of these 

crops reached peak water demand in the previous month resulting in lower water demand across 

the map.  Water demand maps for January and February also suffered from lack of information on 

what crops were planted in later months.  For January, this is most clear in the central part of the 

city, but the problem affects much of the region for February as many of the fields classified in the 

January image were harvested resulting in classification as bare soil.  Many crops planted in 

January and February would have reached the NDVI threshold for classification in March, so the 

TCCA would have allowed them to be classified in the earlier imagery, and their water demand 

could have been included in the analysis, providing more accurate estimates for regional water 
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needs. Since spatial trends are present, it could be useful for future studies to partition the region 

of classification and to calculate water demand for each subregion. When combined with data 

about local sources of irrigation water, such an analysis would allow for water management at a 

very fine level. 

 

 

  

Figure 14. Sample means and 90% joint (by month) CIs for water demands of crop 

maps after all post-processing. Letters represent each month. Sample means and 

confidence intervals are based on 108 samples in each case. 
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Figure 15. Water demand maps corresponding to ensemble crop maps in Figure 13. The 

background of the water demand maps is a Google Satellite map (Google, 2016). 
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 DISCUSSION 

4.1 Ground Reference Data Collection 

Perhaps the most well-known crop mapping service is the Cropland Data Layer (CDL) 

(United States Department of Agriculture, n.d.), which has been providing annual crop maps of 

the continental United States since 2008. As the CDL has a long history in the field of remote 

sensing, it is worthwhile to compare the methodologies and results in this project with those of the 

CDL. 

Although the developed data collection method served the purpose of this paper, as evidenced 

by the CMA and AEA results, there were issues with the method. The biggest issue was that, even 

with a team of local agronomists, it was difficult to collect sufficient data for crop mapping on a 

monthly basis. This difficulty is highlighted in the temporal spread of the ground reference samples 

(Figure 2) and the fairly small monthly sample sizes given the number of crops and classification 

features (Table 1). Difficulties in collecting reference data in the region include the distances 

between primary agricultural areas, negotiating urban traffic, the reliance on taxis and public 

transportation to reach sample sites, and the dominance of thousands of small, terraced fields 

cultivated independently by families and small landowners.  This makes it especially challenging 

to implement a randomized, spatially-representative sampling scheme. Plans to conduct a 

preliminary sampling blitz, organizing a larger number of volunteer observers to canvas a larger 

number of fields to produce a pool of data large enough to test the effect of ground reference 

sample size on classification accuracy, were put on hold due to the COVID-19 pandemic. Ground 

reference sampling was restarted in September 2021 with a small team, but the pandemic continues 

to be a major issue. 

Another challenge was estimating crop age by visual inspection. This was done with good 

accuracy in this study by using a volunteer team of agronomy students led by an experienced 

agronomist. However, the need for accurate ground reference data ages limits the pool of people 

who can volunteer or be hired to perform the data collection, and this ought to be considered when 

planning future data collection. This issue could perhaps be circumvented in the future by 

developing a guide to help users estimate crop age by relating age to other variables such as general 

appearance, height, or number of leaves.   
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There are, of course, alternatives to manually collecting reference data. For example, the CDL 

creators directly obtain agricultural ground reference data polygons from the Farm Service Agency 

(FSA) and obtain non-agricultural ground reference data from the National Land Cover Database 

(NLCD) (Johnson and Mueller, 2010). The FSA and NLCD provide a large and fairly up-to-date 

(in the case of the NLCD) or contemporary (in the case of the FSA) source of ground reference 

data for the CDL. The NLCD is itself a classified map and is therefore subject to its own 

inaccuracies, which may be propagated by the CDL. Unfortunately, there are no known similar 

programs in place in Peru. Moreover, working with farmers to produce a Peruvian analogue of the 

FSA data may prove challenging due to the different socioeconomic, educational, and technical 

status of farmers in Peru as compared with those in the United States. Nevertheless, developing 

infrastructure and governmental programs in Peru may lead to better sources of ground reference 

data in the future, although the method used in this project may be the best option at the present. 

4.2 The Crop Mapping Algorithm (Cma) 

The CDL generally has area-weighted average crop accuracies around 90% (Lark et al., 

2021). However, these accuracies are heavily weighted towards the most representative crops in 

the United States (wheat, soybeans, and corn), which tend to have among the highest classification 

accuracies in the CDL (Lark et al., 2021; Boryan et al., 2011). In fact, in the 2009 CDL, many less-

representative crops had producer’s accuracies of 40% or less, despite the nearly-ideal reference 

data collection method used in the CDL and the large size and homogeneity of the fields in the 

United States. These results clearly show the theoretical limitations of classification: there are only 

so many classes that one can classify before the spectral overlap reduces class accuracies to 

unacceptable levels. Given the scope of this study and the fact that this is the first iteration of the 

CMA, whereas the CDL has undergone many improvements since its creation in 1997 (Boryan et 

al., 2011), the CMA results seem acceptable. Indeed, the accuracies for several major crops (alfalfa, 

broccoli, garlic, and onion) are generally comparable to the accuracies of the major crops in the 

CDL (Table 4), whereas the other crops suffered from lower accuracies, as did the minor crops in 

the CDL.  

While one of the goals of this study was to create water demand estimates, the crop maps 

themselves represent valuable tools. The many uses of the CDL have been enumerated by Mueller 

and Harris (2013) and include applications to agricultural economics, food security, land 
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conversion and transition, and crop rotations. It is possible that, in the future, the CMA will play 

a similar role in Peru as the CDL has historically played in the United States. Certainly, if the 

CMA is continued and more months of crops are mapped, other researchers could use the crop 

maps in ways similar to how the results of the CDL have been used historically. For example, a 

long-term set of CMA crop maps would enable one to look for common crop rotations in the region 

by examining the agricultural cover of different crops over time. If the crop rotations in the region 

are less than ideal, it could be beneficial for the region to help educate farmers on the importance 

of proper crop rotations, for example, the benefits that they bring to soil and environmental health. 

Another example is that a long-term set of CMA crop maps could be used to determine what, if 

any, dominant crop cycles occur in the region. For example, one might find that garlic and onion 

are often dominant from July to November and are generally followed by corn and green beans 

from December to March. This knowledge could help plan for market fluctuations in crop 

availability. 

4.3 The Age Estimation Algorithm (Aea) 

A review of current literature suggests that it is rather uncommon to estimate crop age 

using remote sensing methods. There are likely several reasons for this, including: (1) in most 

regions there is a fairly consistent and widespread planting pattern for crops; for example, in the 

Midwestern United States, crops are generally planted in the early summer and nearly all farmers 

subscribe to the chosen planting date for a given year. Therefore, many authors interested in 

predicting water demand already have a good idea of the crop ages in their region of interest. Those 

interested in mapping water demand can therefore obtain crop evapotranspiration (ET) coefficients 

from tables after a review of planting patterns for the season (this was done, for example, by Casa 

et al., 2007). However, this is not the case in this region. (2) for those interested in mapping water 

demand, it is possible to use remote sensing data to predict crop ET coefficients by regressing the 

crop ET coefficients on variables such as vegetation indices (Kamble et al., 2013; El-Shiberny et 

al., 2014; Reyes-Gonzalez, 2018). However, creating such a regression model for this region 

would require ground reference data for crop ET coefficients, which the authors of this study did 

not have. Additionally, the small field size limits the availability of remote sensing products useful 

for the area.   



 

 

64 

The most similar methodology found in literature is that of Di et al. (2015) who developed 

a remote sensing-based crop growth stage model for nine different crops in the U.S. They used a 

double-sigmoid model, the CDL, and a crop model to predict phenological state with RMSE errors 

ranging from 8% to 14% with an average RMSE of 11%. The study did not directly predict crop 

age, but instead predicted phenological stage in an environment where there is a dominant growing 

season.  Additionally, as RMSE is scale-dependent, comparisons to the AEA in this study cannot 

be made. Although the results in this study could not be compared to those in other studies, the 

results of the AEA were deemed acceptable based on the external validation metrics. 

4.4 The Water Demand Mapping Algorithm (Wdma) 

Remote sensing is commonly used to find crop water demand estimates, often in regions 

with limited freshwater resources where management is crucial (Casa et al., 2007; El-Shirbeny et 

al., 2014; Reyes-Gonzalez et al., 2018; El-Magd et al., 2005). The most common method of doing 

so is by using crop maps along with the equation: 𝐸𝑇𝐶 = 𝐾𝐶 ∙ 𝐸𝑇𝑅 , where 𝐾𝐶  is the crop ET 

coefficient, 𝐸𝑇𝑅 is a reference crop evapotranspiration, and 𝐸𝑇𝐶 is the evapotranspiration for the 

crop. 𝐾𝐶 values are typically found by using tabulated values derived from field experiments along 

with knowledge of crop ages but can also be derived by regressing locally-relevant  𝐾𝐶 on some 

remote-sensing-based values such as NDVI (Kamble et al., 2013; El-Shiberny et al., 2014; Reyes-

Gonzalez, 2018). The reference crop ET values are generally found by using the FAO Penman-

Monteith equation (Allen et al., 1998), with remote sensing or in-situ meteorological data as inputs. 

This was fundamentally the same process used in this study. The key difference was that 

CROPWAT was used to obtain monthly average 𝐸𝑇𝐶 values for crops at monthly age intervals, 

and these values were combined with crop maps and crop age maps to create the water demand 

maps.  

Crop water demand estimates can help manage freshwater resources, for example by 

predicting water demand and its spatial distribution. Estimates can help users, such as farmers and 

policymakers, plan planting cycles, plan and design infrastructure, and allocate water resources. 

However, caution should be used when interpreting the water demand values given in this study, 

due to the propagation and introduction of errors at the various steps in the water demand mapping 

process. It is recommended that the water demand values in this study be used as supplementary 

or exploratory only, and not as a sole basis for decision making. Indeed, prior to their use in 



 

 

65 

decision-making, it would be beneficial to perform validation on the final water demand results. 

This could be done by obtaining in-situ ET measurements at various fields, integrating them to 

obtain water demands for fields, and comparing them to the predicted values; however, this was 

beyond the scope of the study. For an overview of in-situ ET measurement techniques, see Allen 

et al. (2011). Another option is to monitor the irrigation distribution system in the region and make 

comparisons to the predicted water demand. 
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 CONCLUSIONS 

The goal of this study was to develop a monthly agricultural crop and water-demand 

mapping algorithm for the agriculture around the city of Arequipa, Peru. This goal was 

accomplished in three steps. For the first step, a crop mapping algorithm was created, which 

incorporates supervised classification methods, as well as spatial- and temporal-consistency 

correction algorithms. Secondly, a crop growth-stage prediction algorithm for the crop maps was 

created. Finally, an algorithm for creating agricultural-water-demand maps using the results of the 

steps 1 and 2 and auxiliary data was made.  

The developed algorithms were tested on 6 months of reference data, which were collected 

monthly from September 2019 to February 2020. The crop mapping algorithm was shown to create 

maps with acceptable accuracy, with 5 maps having mean monthly classification accuracies of 69% 

or greater, with the 6th month having a mean monthly accuracy of 61%. The growth-stage 

prediction algorithm was found to be an acceptable predictor of age, mean absolute prediction 

errors being between 0.55 and 0.69 months in 5 out of 6 months, with the 6th month having an 

MAPE of 0.90 months while being inherently difficult to predict due to the lack of maps prior to 

it. Water demand maps were produced with high spatial (3.0 m) and temporal (monthly) resolution, 

allowing for a detailed look at the agricultural water demands of the region, as well as easy 

integration of areas of interest. 

This study produced methods to create useful information for policymakers and land 

managers in the Arequipa region. The water demand estimates of crops at different growth stages 

can be used to help guide planting patterns, manage water resources, and manage agricultural land, 

which activities are crucial in this region. This study also laid the foundation for future crop water 

demand mapping in the region by creating a functional methodology that can be used to create 

more water demand maps on a monthly basis and is easily improved upon. The method is expected 

to become more robust as more months of ground reference data are collected, due to an improved 

temporal consistency correction algorithm. Moreover, this study is proof that it is possible to 

successfully map crops in this region and it serves as a unique case study for a novel area of remote-

sensing research. 



 

 

67 

 FUTURE WORK 

This research was conducted as part of the Arequipa Nexus Institute (Arequipa Nexus 

Institute - Purdue University/UNSA), which is a partnership between the Universidad Nacional de 

San Agustín (UNSA) in the city of Arequipa, Peru and Purdue University in the city of West 

Lafayette, Indiana.  One goal of the Institute is to increase the capacity of UNSA faculty to conduct 

independent research.  Because of this, all GIS work was done in QGIS (QGIS Development Team, 

2018) and all algorithm development was done in RStudio (R Core Team, 2019). These are free 

software packages and were chosen to reduce the costs as much as possible for the future users of 

the system and to simplify the map creation process.  Additionally, a prototype web tool was 

developed to make the information of this study accessible to stakeholders. The “Cultivista” (link 

embedded) web tool freely provides crop maps, mapping accuracies, crop areas, and crop water 

demand results for the city of Arequipa and its surrounding agriculture. Planning for continued 

monitoring of agriculture and water demand for the region is in place, as well as expansion of the 

tool to other agricultural areas of the department. 

If the results produced in this study are to be created on a monthly basis, it would be 

beneficial to reduce repetitive, time-consuming processes. Moreover, the results ought to be 

reproducible by users with less technical experience and with less powerful computing hardware. 

There are many possibilities to streamline the process used in this paper. One major way of 

reducing labor input to the process would be to try to get farmers involved in the ground reference 

data collection process. Perhaps farmers would be willing to report what they are growing in their 

field in return for agronomic advice or help accessing and utilizing the results of the study, to 

which their data would contribute. A second major way of reducing labor input would be to use 

code to automate many of the steps. For example, in this study, ground reference data had to be 

plotted in GIS software and the fields corresponding to the points delineated manually, which was  

time consuming and would only become more so if more data are collected. During this process, 

the spectral data were also examined to check for outlying measurements (e.g. dead or diseased 

fields). This process could be automated by manually creating a vector layer of all the fields in the 

region (which would be a significant upfront cost but not infeasible due to the size of the region), 

then using the GPS coordinates and direction of the field data to automatically select the field. 

Spectral data could then be subject to various quality control checks to remove outlying 

https://www.purdue.edu/discoverypark/arequipa-nexus/en/index.php
https://www.purdue.edu/discoverypark/arequipa-nexus/en/index.php
https://swatshare.rcac.purdue.edu/cmtool/
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measurements automatically. Additionally, graphical analysis checks could likely be replaced by 

code to reduce user input and required technical knowledge. If the end users of the product are 

typically less technically experienced, it may not be worthwhile to present confidence intervals 

and instead simply present sample means. A lower number of runs may also be acceptable to 

largely reduce computational demand, although it would be useful to first establish how much 

confidence in the results is needed. 

There are also ways in which the results of this study could possibly be improved. One 

possibility would be to use satellite images with comparable spatial resolution yet more spectral 

bands, which would provide more details on the spectral signatures of crops and could result in 

higher accuracies. The classification method generally most suited for the data encountered by the 

tool should also be determined. It is recommended that the same method is used for every month 

to make the tool simpler to use and more robust. Determining the most suitable method may require 

a larger ground reference dataset and significant exploratory analysis. The results in this study 

suggested that the MaxL classifier was well-suited for the data. However, this is a parametric 

method and may not be suitable for this tool because significant changes in monthly data may 

occur. Additional non-parametric methods that may be more suitable for the tool and can produce 

accuracies comparable to the MaxL method should be investigated. Preliminary investigations 

suggest that the support vector machine method may be a good choice.  

Finally, it is worth considering when the newest month of results should be released. End 

users may want the results within the same month, but these results are highly inaccurate due to 

the inability to map young crops and the need for data from later months for use in the temporal 

consistency correction algorithm. These inaccuracies were seen in the highly-underestimated water 

demand in the month of February, which was the last month of the study.  
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APPENDIX A 

  

Table A-1. NDVI thresholds, approximate age (height) thresholds corresponding to the NDVI 

thresholds, and maximum observed ages (heights) for select crops. Sample fields with means 

of cell NDVI values less than the NDVI threshold associated with the crop growing in the 

field were not used in the classification process. NDVI thresholds were defined by, for each 

crop, plotting NDVI vs. growth stage and identifying the NDVI value above which NDVI 

varied minimally with respect to growth stage, which approximately represents when full 

canopy structure has been developed and the crop is fully distinguishable from soil. 
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