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GLOSSARY 

Chapter 1 

State: The remembered information in the system that affects how it responds to different 

conditions, and what it is capable of 

Input: The external conditions that could alter system state 

Path: The transition between states due to a provided input 

Parameter: A measurable system characteristic that defines system state 

Control: A measurable user action that can affect system state 

Trace: A record of parameters and controls taken during system operations 

Microstate: A list of parameters recorded at the same time, a specific instantiation of a state 

Microinput: A list of controls recorded at the same time, a specific instantiation of an input 

Reading: A list of parameters and controls taken at the same time 

Factor: A system feature that defines how it can be modeled 

Continuity: The number of continuous parameters and controls a system has relative to its discrete 

metrics 

Parallelism: The number of controls a user can provide at once 

Temporality: The degree to which the system expects users to provide inputs between state updates 

Boundedness: The degree an analyst understands the relevant parameters and controls for the 

system 

Chapter 2 

Substate: A state that appears to exist in the path between two other states 

Chapter 3 

True Positive Rate: The rate at which a classifier correctly identifies data 

Positive Predictive Value: The rate at which the reported classifications of a classifier are correct 
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ABSTRACT 

Safety in human in the loop systems, systems that change behavior with human input, is 

difficult to achieve. This difficulty can cost lives. As desired system capability grows, so too does 

the requisite complexity of the system. This complexity can result in designers not accounting for 

every use case of the system and unintentionally designing in unsafe behavior. Furthermore, 

complexity of operation and control can result in operators becoming confused during use or 

receiving insufficient training in the first place. All these cases can result in unsafe operations. One 

method of improving safety is implementing the use of formal models during the design process. 

These formal models can be analyzed mathematically to detect dangerous conditions, but can be 

difficult to produce without time, money, and expertise. 

This document details the study of potential methods for constructing formal models 

autonomously from recorded observations of system use, minimizing the need for system expertise, 

saving time, money, and personnel in this safety critical process. I first discuss how different 

system characteristics affect system modeling, isolating specific traits that most clearly affect the 

modeling process Then, I develop a technique for modeling a simple, digital, menu-based system 

based on a record of user inputs. This technique attempts to measure the availability of different 

inputs for the user, and then distinguishes states by comparing input availabilities. From there, I 

compare paths between states and check for shared behaviors. I then expand the general procedure 

to capture the behavior of a flight simulator. This system more closely resembles real-world safety 

critical systems and can therefore be used to approximate a real use case of the method outlined. I 

use machine learning tools for statistical analysis, comparing patterns in system behavior and user 

behaviors. Last, I discuss general conclusions on how the modeling approaches outlined in this 

document can be improved and expanded upon. 

For simple systems, we find that inputs alone can produce state machines, but without 

corresponding system information, they are less helpful for determining relative safety of different 

use cases than is needed. Through machine learning, we find that records of complex system use 

can be decomposed into sets of nominal and anomalous states but determining the causal link 

between user inputs and transitions between these conditions is not simple and requires further 

research. 
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 INTRODUCTION 

Robust, complex systems that interact with humans are difficult to design (Solar-Lezama, 

Rabbah, Bodik, & Ebicioglu, 2005). Complex systems are typically sensitive to user inputs, and 

this sensitivity lends itself to more complex interactions between a system’s conditions and its 

inputs. This behavior can result in systems becoming difficult to understand as either a designer 

or operator, masking how they respond to changing inputs and environmental shock, and making 

them less safe to use. Current methods of improving the safety of these HITL systems use model 

checking techniques to analyze behavior under different conditions 

These techniques are often bottlenecked behind the need for a system model, which can be 

difficult to obtain. This research focuses on studying potential methods for autonomously 

constructing these system models using logical, statistical, and machine learning methods, without 

expert input. 

1.1 Motivation 

Many systems can accidentally reach failure modes without any component failures 

occurring. In the case of Asiana Flight 214, during final approach to the runway, unbeknownst to 

the pilots, the glide slope was too steep and airspeed too low. Pilots noticed the engines were set 

to idle, despite the auto-throttle system being in the armed position, and attempted to regain speed, 

but were unable to avoid a crash into the runway, during which the plane broke apart and claimed 

three lives. 

The NTSB investigation found that the auto-throttle system did not automatically switch 

on as expected because it required neither or both flight director computers to be on, but only one 

computer was on during approach. This confusing priority system is credited in the report as being 

one of the major contributors to the pilots’ “faulty mental model”, which resulted in the crash 

(National Transportation Safety Board, 2013). If such a confusing aspect could be caught before 

the system went into production and use, it could prevent accidents. 
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1.2 Current Approaches 

Formal methods of model checking use mathematical tools to determine whether different 

conditions allow the system in the model to reach an uncontrolled system state, or whether an 

anomalous state can be returned to user control (NASA Langley, 2016). Such methods rely on 

specific types of system models, called formal models. Building these models by hand requires a 

near exhaustive understanding of the system to achieve a level of detail that is useful for 

determining specific safety improvements. This expertise is time-consuming to achieve, and comes 

with great monetary expense, so often the models checked are of a reduced complexity, or of only 

a specific component of the main system, making them less useful for examining overall safety 

(Aalto, Husberg, & Varpaaniemi, 2003). 

Much of current work focuses on techniques for autonomously identifying and labelling 

anomalous data (Puranik & Mavris, 2018), while other work focuses on improving autonomous 

model construction on digital subsystems. Emphasis is placed on mapping the decision-making 

space for autonomous systems as well, with some demonstration of autonomous model 

construction for MATLAB models of lane-change decision making systems (Selvaraj, Farooqui, 

Panahandeh, & Fabian, 2020). Most of this effort is dedicated to learning discrete models or 

distinguishing two phases of system behaviors in known systems. This work focuses on 

minimizing the required system knowledge and expanding the modeling process to capture 

system-wide phenomena. 

1.3 Background and Definitions 

This work predominantly uses the terminology of formal models that we expand upon to 

capture complex behavior. To begin our investigation, we define the most basic terms and provide 

some background on how they are used in industry. 

1.3.1 Formal Models 

Formal models are precise definitions of system operations. One of the most common and 

recognizable formal models is the state machine. There are many variants, but most simply, state 

machines are composed of three parts: 
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1. States: The remembered information in the system that affects how it responds to different 

conditions, and what it is capable of. For example, a light switch has states “On” and “Off” 

2. Inputs: The external conditions that could alter system state. To continue with the previous 

example, a switch could be flipped to “On” or to “Off”. Note that some inputs may not 

always be available or may not always alter system states. 

3. Paths: The transition between states due to a provided input. Using the same example, a 

light switch in “On” could be flipped to “Off”, after which it would be in “Off.” 

 

State machines used for safety applications, like those used in formal safety checks, often 

label states as nominal or anomalous (Jung, et al., 2021). Nominal states are considered acceptable 

and part of standard operations. Anomalous states are abnormal, and perhaps hazardous. With 

these labels, a system designer can examine their system state machine and use formal methods to 

examine nominal states’ proximity and relation to anomalous states, which can be further used to 

compare the relative safety of each state, and so on. 

The relevant states, inputs, and paths of a system may be unknown. It is not always clear 

when a state transition has occurred, or if a small change is relevant to system operations. Modelers 

then need to establish definitions for these components that capture various expected nominal 

behaviors, and how they might transition between themselves and anomalous behaviors; with 

enough depth that actionable change can be made where needed. This is difficult to do without 

exact knowledge of the system, and so this document focuses on how to construct such system 

models with only a recording of system use. 

1.3.2 System Records 

System records are a collection of measurements of the system and the user during 

operation. In this document, we will refer to each system characteristic measured as a parameter. 

For example, altitude is a parameter in a flight recording. We refer to a user characteristic measured 

in a recording as a control. One such control in a flight recording is the pilot throttle setting. 

We will also use the term trace when referring to the system recording itself (IBM, 2017). 

Most simply, a trace can be represented with a matrix, where columns indicate each unique 

parameter/control and rows indicate simultaneous measurements. 
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1.3.3 Combined Definitions 

Combining the two sets of terminology then provides some insight into how we may begin 

to examine systems. Parameters, being measurements of the system characteristics, are indicative 

of the current system state. For example, altitude, attitude, and velocity, are useful parameters for 

determining if an aircraft is in a stalled state. We can then view each reading of parameters taken 

at the same time as merely a specific instantiation of their state classification, which we call a 

microstate. 

Similarly, controls are measurements of user characteristics that could be diagnostic of 

wider input categories. For example, a yoke deflection right and up with left pedal pressure might 

generally correspond to a bank right input. Control measurements recorded at the same time make 

up a specific instantiation of their input classification, which we call a microinput. 

With these concepts in mind, each row in the trace should be useful for predicting the next. 

I will refer to each row of measurements taken at the same time as a reading. 

1.4 System Factors 

Systems come in a variety of forms and with variety comes different assumptions on 

system operations. Different assumptions affect how we must collect and extract information and 

need to be carefully considered. We consider four main aspects of how systems operate: 

1. Continuity: Are important performance metrics discrete, continuous, or a mixture thereof? 

2. Parallelism: Does the system accept multiple controls at once? 

3. Temporality: Does the system continuously update its state without human intervention? 

4. Boundedness: Are relevant inputs and parameters visible to the user upon use? 

 

In this document, we refer to each of these considerations as the system factors. Each of 

these factors affect how we can effectively collect a trace and how we can detect states and paths, 

as discussed in further detail in each section below. 

1.4.1 Factor: Continuity 

Systems with discrete characteristics have clear delineations between different states, with 

little ambiguity between them. For example, a menu-based digital system has clear distinctions 
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between states, and inputs are categorical or Boolean. This type of system can be analyzed using 

logical techniques, checking whether exact inputs are provided, and so on. 

By contrast, continuous systems have no clear delineations between states or parameters, 

making exactitude difficult and any purely logical deductions obscured. For example, flight uses 

many distinct continuous parameters, so without system knowledge, it is difficult to make exact 

logical conclusions. Instead, we can analyze this type of system with statistical methods, 

examining the probability of changes occurring based on a range of values. 

In general, we can assume that a system with purely discrete characteristics is simpler to 

analyze than a system with continuous variables. The most complex of cases being a mix of 

discrete and continuous variables, which would require a mix of logical and statistical methods to 

analyze. Most real-world, safety critical systems would be considered part of this last category. 

1.4.2 Factor Parallelism 

Serial systems accept a singular control as input at any given time. For example, menu-

based digital systems will often only accept one input at a time. Parallel systems can accept 

multiple simultaneous controls. For example, each axis of the control yoke of an airplane could be 

considered a separate control, making flight a parallel system. 

In general, serial systems are simpler to analyze than parallel systems for two main reasons. 

First, the added variability of possible inputs in parallel systems makes it much more difficult to 

use logical methods to analyze them, because complex microinputs are less likely to be exactly 

replicated, making it more difficult to determine when the system behaves in the same way in 

multiple points in the trace. Second, parallel systems can simultaneously accept discrete and 

continuous controls, requiring more specialized applications of each statistical/logical tool than if 

only one type were usable at a time. However, most real-world complex systems would be parallel 

systems. 

1.4.3 Factor: Temporality 

Atemporal systems do not change their system state without user input. For example, a 

menu-based digital system might not change state until the user presses a button. Temporal systems 

update their state without user input, and in some cases, constantly. Many safety critical systems 
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that rely extensively on physical phenomena, like flight, would fall into this category, as vehicle 

physics are constantly operating on the system. 

Modeling temporal systems is much more complicated than the atemporal type. Atemporal 

systems can record readings in the trace after every input is provided and that is enough, but 

temporal systems require that a modeler estimate how quickly they need to be able to detect state 

transitions and record readings at the corresponding frequency. Different frequencies may not 

capture all behavior and need to be studied to find consistent system behavior. 

1.4.4 Factor: Boundedness 

Bounded systems have clear and obvious boundaries for what is a relevant parameter 

control and what is not. For example, it is clear in a menu-based digital system that the controls 

used to interact with the system are the button selections made in the menu, and it is clear that the 

system state has changed when the display updates to a new menu screen. Unbounded systems 

have non-obvious boundaries. In flight, it is unclear which parameters are meaningful for 

determining state, and how meaningful they are. For instance, consider that while it is evidently 

useful to know the aircraft velocity, it is unclear what that velocity needs to be relative to when 

determining states. 

In general, we consider bounded systems to be simpler to analyze, as they require fewer 

steps to determine state definitions. Unbounded systems require greater system knowledge and 

still require model comparisons to determine which parameters are relevant for safety. 

1.5 Basic Approach 

With these terms and characteristics in mind, we can outline a general process for 

constructing a state machine from a trace: 

1. Determine system factors 

2. Record a trace of system operations 

3. Produce definitions for system states from the trace 

4. Produce definitions for system paths from the trace 
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1.5.1 Collecting System Traces 

Once we classify with the four factors, we can collect the trace. Each factor presents unique 

implications for how we need to collect and manipulate a meaningful trace. Continuous systems 

for instance are less likely to have exact repetitions of readings than discrete counterparts, making 

it less clear where state boundaries lie. For example, in flight it is unlikely than any two recorded 

flights will pass through the same point with the same velocity, but the distinction between the 

start of a stall and nominal flight is subtle. To counteract this effect, we introduced some artificial 

discretization into continuous data to make microstates more distinct (see Section Implications of 

the System3.1.2). This process requires some system knowledge, with educated guesses for what 

is likely to be a meaningful change in parameter and control values. 

To record serial systems, we only need a single data channel for tracking performance, with 

an associated time channel if the system is temporal. Parallel systems by contrast require multiple 

channels, which can add complexity and time to the trace construction process depending on the 

measuring techniques used. 

When we record atemporal systems, parameters and controls need to be measured after 

each input. Temporal systems then have multiple options for how they can be recorded, which 

have different behaviors. First, if the system continuously accepts user inputs, like in flight, where 

the user is continuously supplying a yoke input, it is efficient to record behavior at a fixed sampling 

rate to capture behavior. This sampling rate needs to be determined with some degree of system 

expertise, based on the rate at which states can change. Alternatively, if the system is designed to 

idle between inputs, like in a digital system such as a computer, readings should be taken when 

inputs are made, otherwise inputs and timings can be lost in the recording process. 

Lastly, recording bounded system traces only requires recording the obvious metrics of the 

system, whereas unbounded systems require requires any metric that might be relevant, even 

indirectly. It should also be recognized that many parameters used in unbounded systems may not 

be used for state identification in their raw state. 

After factors are considered, we need to ensure that the trace data captured is enough to 

determine a system model. This means that the trace should include a variety of typical operating 

behaviors, capturing mostly nominal behavior with known anomalous behaviors labeled. In 

general, we assume that deviation from the behavior seen in most of the trace should be considered 

anomalous. This ideation is used in many similar works for anomaly detection (Puranik & Mavris, 
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2018), which can be used in conjunction with the methods specified in this document to label states 

generated in the state machine. 

Traces also need to be as close to exhaustive as feasible, including multiple repetitions of 

all typical procedures that are to be considered part of the system. This reduces the likelihood that 

any typical procedures are considered anomalous and provides information on how slight 

variations in execution of procedures can affect the outcome. 

1.5.2 Isolating System States 

To identify states from the trace, we need to identify common trends in the behavior of 

microstates. Some questions we might ask are: 

1. Are specific configurations of parameters distinct from other configurations? For example, 

a plane transitioning from climb to cruise will, relative to the time scale of the flight, 

quickly transition from a high pitch, to a neutral one, making the delineation from high to 

neutral pitch distinct. 

2. Do specific configurations of parameters occur more frequently than others? For example, 

high throttle is most often paired with high speed because an aircraft operating at a high 

throttle tends to accelerate to its top speed. 

3. Do specific configurations of parameters often result in known anomalous parameters? For 

example, a rapid descent might commonly correlate with a stall indicator. 

4. How frequently are specific configurations of parameters paired with each configuration 

of controls? For example, in menu-based navigation, some inputs are not available always, 

making them potentially diagnostic of state. 

 

We can use logical and statistical measures to attempt to answer each of these questions 

for each potential state. Each system may need a different tool to assess these and determine the 

definition of its relevant states. 

1.5.3 Isolating System Paths 

Once we have established definitions for states, we can begin to connect them together 

with paths and inputs, which are conceptually linked together. In a state machine, every path is the 
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result of an input, including paths that return to the initial state. We can therefore extract classes 

of inputs by first examining the paths observed in the trace. 

To identify paths then, we need to identify common trends in the transitions between 

microstates. As with identifying states, there are several questions we can ask: 

1. How frequently do states transition between one another? 

2. In any given state, do specific configurations of controls result in specific state transitions? 

Do they always result in the same state transitions? 

3. In any given state, do specific changes in microstate result in specific state transitions? Are 

these changes associated with specific configurations of controls? 

 

As with state identification, these questions can be answered with logical and statistical 

tools to identify possible inputs from known paths. 

1.6 Probing Potential Methods 

To further explore the process we have outlined, the rest of this research extrapolates on 

the application of theory to two systems. The first system is a simple case, an automatic coffee 

machine with a menu-based, digital interface. This system exhibits discrete, serial inputs, 

atemporal states, and bounded parameters and controls, allowing for testing of basic theory and 

logical analysis techniques. 

The second system a complex case, a flight simulator in cruise. This case allows for the 

extension of theory into more “real-world” data with mixed discrete/continuous parameters and 

controls, temporal states, and unbounded parameters. To analyze it, we need to utilize more 

complex, statistical methods, making it a good comparison of methods with the logical, simple 

case. 

1.6.1 Application of Theory to a Simple System 

In the case of the coffee machine, the trace was recorded prior to our research, and only 

includes the controls provided. This complicates the process, requiring that states be extracted 

from inputs alone, but because of its menu-base architecture, this should still be possible if we 

distinguish states by comparing where inputs are seen in the trace relative to one another. 
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The system exhibits one of the simplest configurations of factors. Discrete, serial, bounded 

controls allow us to consider each unique control to be its own input, recorded in sequence. With 

some basic simplifications, we can consider the system atemporal as well, further simplifying 

analysis. This allows us to further consider many individual recordings as functionally identical, 

simplifying the logical processes and increasing our assurance that all common paths are navigated 

in the trace. 

In general, we decompose the trace by first partitioning the trace with states based on how 

similar each input sequence is to other sequences in the trace. With basic state definitions, we then 

compare paths between them and ensure that they are mutually consistent to refine the model 

which concludes model construction. 

Overall, this process demonstrates that a simple, menu-based system can be logically 

decomposed into a state machine model from an input trace using our methodology. 

1.6.2 Application of Theory to Complex System 

In our flight simulator case, the system factors suggest specific methods of analysis that 

differ from the simpler case. Mixed discrete/continuous parameters and controls cannot be simply 

analyzed by logical tools, so we instead reduce the system to its continuous metrics and use 

statistical tools, as the continuous metrics are likely to be the most informative. Additionally, 

parallel parameters and controls do not repeat in the trace frequently enough for microstates and 

microinputs to be directly considered states and inputs in a useful state machine. Here, we use 

statistical tools to measure similarity in behaviors for different microstate and micropath 

configurations. 

This system is also a continuously updating temporal system, so we explore techniques for 

finding state and path definitions at different sampling frequencies. The parameters used during 

this process are also unbounded, so we demonstrate methods for producing new parameters and 

down-select to a useful set as well. 

In general, this exploration begins with state definitions we find by comparing parameter 

distributions in varying sampling frequencies and parameter configurations. With these state 

definitions, we explore input identification techniques from the paths now visible in the trace, 

emphasizing statistical methods. This process demonstrates the complexities of applying 
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statistical techniques without system knowledge. We suggest future exploration into improving 

methods.  
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 APPLICATION OF THEORY TO SIMPLE SYSTEM 

This chapter goes into detail on the methods used for constructing a state machine for a 

simple system, an automatic coffee machine. Discussion will begin with a system overview, where 

I will describe the system and its basic characteristics. Next, I will cover how we collected and 

organized the system trace, which will lead into how we isolated preliminary states from the trace 

and organized them into final state definitions. Last, we will discuss the effectiveness of our 

methodology for constructing a state machine for the system. 

2.1 System Overview 

To begin, we sought to study a test case with known, deterministic behavior to simplify 

analysis and check modeling results, as well as a test case that would be simple to collect trace 

data for. Here, we elected to test methods on an automatic coffee machine, as existing experimental 

trace data was available for use, and its functionality is well known. 

2.1.1 Defining the System 

The coffee machine used in the pre-recorded trace was a unit placed in an office lounge 

that could be periodically bulk loaded with drink materials, so that any user interactions were 

limited to loading cups and following a digital menu on the machine face, like digital soda 

machines. The menu options themselves were available for study in the system manual itself. 

We can imagine system states for this case as the steps in the drink setup process, and any 

unique selections of the user. For instance, one system state might be “Empty cup in tray, coffee 

drink selected” while another might be “No cup in tray, hot drink selected, hot chocolate selected”. 

System inputs would then be the menu selections from the user and any cup manipulation 

2.1.2 Implications of System Factors 

Because this system has a limited set of button selections for controls, we can describe the 

system as having discrete controls. This feature means that each control is distinct and categorical, 

lending system analysis towards logical methods over statistical. Controls are also input serially, 
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as the system does not accept multiple menu inputs at once. This further simplifies any logical 

analysis performed by connecting state changes to a single control input instead of multiple. 

This system largely operates without any regard for time between inputs, making system 

states atemporal. We can then assume that all system state changes are directly related to user 

inputs, simplifying our analysis to data directly recorded in the initial trace. Two exceptions to this 

rule exist however, the first being that the user manipulation of their drink cup would not affect 

whether the machine would pour drinks. As such, a user could potentially place a cup in the tray, 

and then remove it before the drink was poured, which would not be captured in the trace without 

timing information on when the cup was moved and when the drink poured. Drink pour times were 

not recorded, so to simplify analysis, I assumed that this event did not happen in any recorded 

trace. 

The second exception to atemporal states in the system involves the system’s internal 

“timeout condition. If a user didn’t make an input in a certain amount of time, the system would 

reset to the start state (excluding cup positions). This feature was not engaged for most cases, so 

to simplify analysis, I cut and labeled the trace instance where timeouts occurred as if no future 

behavior was known. 

Lastly, this system is clearly bounded, the only state changes occur directly from the user 

inputs recorded in the original trace. Most inputs could be found as programmable options in the 

manual, and the others used in the trace, like “move cup to tray” are obvious. This bounding 

simplifies analysis, ensuring that everything recorded is relevant for determining states and nothing 

is missed. 

2.2 System Trace 

The trace used for this case was originally collected as part of an unrelated study on human-

device interactions and captured interactions with video. The video footage was then transcribed 

in a spreadsheet with the user behaviors at the video time stamp, with behaviors such as “Grab 

cup”, “Press Coffee Drink 1”, and “Think”. This transcript included two camera failure incidents 

labeled as user actions, at which point it was inherited by the current project. Only the spreadsheet 

transcript was used and available for our demonstration. 

To begin processing the transcript into a usable trace, I cleaned the data set of typos, 

duplicate labels, and “non-interactions”. Duplicate labels in this case refer to different input labels 
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for the same input. For instance, “Grab cup”, “Move cup”, and “Release cup” were used in some 

cases and “Place cup in Tray” in others. For this study, I used as few input labels as possible to 

simplify the analysis. The original trace also included “non-interaction” inputs, such as “Think”. 

These actions were not relevant for our study, as they do not change the system state, and I removed 

them from the transcript. 

To normalize user interactions around performing a task, I considered a user making a 

single drink as a single interaction. Any user making multiple drinks in a row would then simply 

have multiple interactions recorded in the final trace. To finish turning the transcript into a usable 

trace, I inserted input labels for “Start” and “End” into the transcript to demarcate the bounds for 

each interaction. This process provided a total of 102 separate interactions recorded over the course 

of two afternoons. This dataset sufficiently maps the system space, as it is not expected that the 

drinks made day to significantly change, so system use will not vary largely beyond what was seen 

in the original recording. 

With these changes made to the transcript, we now have a usable trace, seen as a series of 

user inputs to the system, with some inputs marking the beginning and end of a drink being made. 

To condense this trace, I converted each unique label into a unique numerical ID, so the entire 

trace can be represented as a column vector. Table 1 shows some of the sample inputs and their 

corresponding ID values. 

 

Table 1: Sample Inputs, IIDS, and Number of Uses in Data Set 

Inputs IID Number of uses in set 

Start 1  102  

End 3  102  

Place Cup in Tray  4  102  

Select Coffee 2 16  24  

Select Coffee Drink 19  159  

Select Large 25  35  

Select Milk 29  2  

2.3 Isolating System States 

With this system understanding, we can assume that two systems in identical states 

receiving different inputs should arrive at different states. An extremely simple model of this 

behavior could use a flowchart that perfectly copies the recorded behavior, splitting any time a 

new sequence is recognized. This model would be inadequate though, because it cannot replicate 
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behaviors that do not exactly follow a use instance in the trace. For example, if users are presented 

with the option to select between three drink sizes, but users in the trace only select the largest size 

for a specific drink variant, the simple model would not recognize that there was an option to select 

other sizes. If we consider all interactions not represented in our model as anomalous, this could 

result in otherwise nominal behavior appear to be anomalous as interactions grow longer and more 

complex. Even a simple use case like the “Select Cancel” would appear as a completely unique 

branch in the simple model, with all subsequent inputs appearing as anomalous. 

To begin addressing these issues, we needed to develop a more robust method for 

identifying changing states rather than differences in user behavior. In a menu-based system, the 

clearest indicator of states differing is a difference in input availability to the user. Because this 

system has diverse inputs correlated the menu states, input availability can be observed with two 

methods or contexts: the local and global contexts. When the trace is then examined under both 

contexts at once, we can generate lists of available inputs for each step in the trace. When available 

inputs change, a new state is reached. 

2.3.1 The Local Context 

The local context focuses on examining what inputs in the trace immediately follow all the 

other inputs. This context assumes that inputs are only available if they have been seen to 

immediately follow the previous input in the trace. For example, if “Select Coffee Drink” is only 

ever followed by “Select Coffee 1”, “Select Coffee 2”, “Select Coffee 3”, and “Select Cancel”, no 

other inputs are considered available following a “Select Coffee Drink” input. This context works 

well for menu-based systems with a diverse input set that is strongly correlated with previous 

inputs because it can directly identify those correlations.  

However, it struggles to operate on systems with low-diversity inputs because they can be 

highly repetitive. The frequency of each input in the trace will result in each input being seen to 

follow each other input and so provide no new information. For example, a menu-based system 

might operate off yes/no inputs and provide a targeted question following each input. Analysis 

would suggest that yes/no is always available, but this provides no information on whether yes and 

no responses were both in the trace for the specific question asked. This can be avoided by carefully 

labelling inputs to increase input diversity: in the sample case, convert “Yes/No” into “Yes for Q1/ 

No for Q1”. Such conversions would need to be done with some degree of system knowledge and 
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may not be possible in all cases. Luckily, such low-diversity input systems do not frequently occur 

in safety critical systems because fewer input options necessitate longer input sequences to transfer 

the same amount of information to a system. This inefficiency extends the time required to 

complete any task, making them less capable of resolving time-critical hazards. 

The local context will also struggle on systems that do not have a strong correlation 

between their inputs and their precursor inputs. It would instead favor exactly copying the trace 

behavior. For example, a menu-based questionnaire system emulating a multiple-choice quiz may 

not have relations between individual responses, regardless of how diverse the potential inputs are. 

Lastly, this context is limited in that it does not meaningfully constrain the number of 

available inputs for inputs that have diverse following inputs. For example, “Select Cancel” reverts 

the system to the previous state and can be input to the system in a variety of states. As such, many 

different inputs immediately follow it, none of which are only available after “Select Cancel” is 

input to the system. 

2.3.2 The Global Context 

The global context focuses on examining what inputs always occur before other inputs in 

the trace. This context assumes that inputs that always occur before other inputs are mandatory for 

the second input to occur. For example, “Select Cappuccino” is only seen in traces where “Select 

Gourmet Drink” has already been input to the system, so “Select Cappuccino” is never listed as an 

available input until at least “Select Gourmet Drink” has been input by the user. This global context 

complements the local context weakness for inputs with diverse following inputs. In the same 

example given before, when “Select Cancel” is input to the system, only inputs that have had their 

mandatory precursors are considered available in the global context, so the field of available inputs 

in narrowed. 

However, this strength makes this context useful only for high-diversity, high-correlation 

systems. If no inputs have mandatory precursors, this context does not help narrow the inputs 

available. Additionally, if the system allows itself to return to previous states, the global context 

becomes less useful for identifying input availability. For instance, a use instance where a user 

inputs “Select Cancel” after every input until each menu-option is exhausted, would see every 

mandatory precursor having been input, so the global context would not be useful for narrowing 

available inputs. 
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2.3.3 The Combination Model 

These contexts focus primarily on input availability, which can be indications that the 

system is in a different state but is not the sole determining factor for state differentiation. For 

example, the menu display for selecting drink size presents the same options regardless of what 

drink is being made. Input availability alone would suggest that all instances of this menu are the 

same, even though “Select Cancel” would direct to different menus depending on prior inputs. To 

maintain consistency in paths, we define initial states iteratively using the following process: 

1. Starting at the Start state for each instance, we can navigate through the trace input by 

input. 

2. If our dual context method suggests that multiple inputs are available, a state has been 

reached. 

3. If the same input sequence is used to reach a state as in a prior instance, the same state is 

reached. 

4. Once a state is reached, navigate to the next instance, until all instances have been 

examined. 

5. This process is repeated, navigating from each of the new states as if they were the start 

state, until the full trace has been examined and no new states can be detected. 

 

This process creates an initial branching tree model, with all instances represented as a 

sequence of state-to-state paths, reconvening in the end state as shown in Figure 1: Simplified 

branching tree model. 
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Figure 1: Simplified branching tree model 

2.4 Refining Known States 

The state definitions generated in this manner are incomplete, often being redundant or 

inconsistent. Some states are functionally identical, sharing paths, which suggests that some 

preliminary state definitions are duplicated. Some paths are inconsistent and share some behavior 

with other behavior that suggests that some states are not being detected in the initial identification 

pass. Additionally, some true states are likely missing from the model. As shown in Figure 2: 

Instance dilution with inputs, the total number of people on each path decreases with each input. If 

paths are selected randomly from a current state, the probability that all paths out of a given system 

state are seen in the trace is dependent on the number of users that arrive at said state. 

 

 

Figure 2: Instance dilution with inputs 
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These issues can be addressed in three ways: 

1. Create a second model operating in the reverse order to the trace. This concentrates 

instances at the end state instead of the start state, making it more likely to catch missing 

states than the forward order model. 

2. Create logical rules for identifying when states are functionally similar. This would allow 

for some state definitions to be combined, simplifying the model. 

3. Create logical rules for identifying when paths can be broken into segments passing 

through additional states. This would ensure that inputs and paths are consistent. 

2.4.1 Parallel Models 

To construct a reverse order model, we ran the same model construction process with the 

entire trace inverted, starting with the end states, and running to the initial states. This concentrated 

instances into the end paths as intended. Figure 3: Simplified reverse branching tree model, shown below, 

demonstrates how a reverse model using the same simplified trace might appear. Now, both a 

forward and reverse model can be run together to identify states and paths. 

 

 

Figure 3: Simplified reverse branching tree model 

2.4.2 Correcting State Redundancy 

When preliminary states share behavior to operate logically similarly, they can be 

describing the same state. As such, they should be combined, considering that if we combine states 
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that are not actually identical, we will add false information to the model. To avoid doing this, we 

acknowledge that states are largely determined by their paths in this method, so any preliminary 

states that share paths are functionally identical. 

In forward iteration, two preliminary states sharing all their outward paths are functionally 

identical. Combining said states would not any additional information, making them safe to 

combine and simplify the model. For example, Error! Reference source not found. shows how t

he states “Strong brew selected”, “Hot chocolate selected”, and “Tea selected” can be combined 

to form the new state “Final drink (Not light brew) selected”. Note that “Light brew selected” is 

not considered functionally identical because it has an additional path that is not seen in the other 

states. 
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Figure 4: Forward model with redundant behavior merged. Green states in the first diagram are merged into the 

single green state in the second 
 

Reverse iteration operates in the reverse direction from forward, and so states that can be 

considered functionally identical are instead those that share inward paths. This direction makes 

sense, as the same sequence of inputs should always lead to the same state. This fact also implies 

that states only need to share one inward to be considered the same, whereas forward iteration 

requires the sharing of all outwards paths to be considered identical. Figure 5 shows how this 

concept can be applied to a simple case. 
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Figure 5: Reverse model with redundant behavior merged. Green states in the first diagram are merged into the 

single green state in the second 

2.4.3 Path Intersection 

Some paths may pass through known states without being labeled as such, making the paths 

and state definitions inconsistent and not match the true performance. For example: 

 

Path 1) Coffee ready to brew  Input: Go  Input: Remove cup  Ready for new drink 

Path 2) Coffee in cup  Input: Remove cup  Ready for new drink 

 

Both paths appear to share behavior. From only this information, we would conclude that 

path 2 is a subset of path 1, such that it would be more efficient and potentially more accurate to 

rewrite these paths as follows: 

 

Path 1) Coffee ready to brew  Input: Go  Coffee in cup 

Path 2) Coffee in cup  Input: Remove cup  Ready for new drink 
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We formalize this process of intersecting paths with two different methods, one for forward 

iteration and one for the reverse. Each direction places different logical demands on how we can 

conclude that states are passed through. Both iteration directions however share the concept of a 

sub-state to indicate the state inserted into a path between an initial and end state. 

In forward iteration, we use the following set of rules to determine the presence of sub-

states: 

 

Rule 1.1) All the potential end states of a sub-state must also be potential end states of the 

initial state. This rule ensures that no additional connections are made beyond initial to sub. 

Rule 1.2) All the sub-state to end state paths must be included exactly as part of the existing 

initial to end state paths. This rule ensures that the component paths from the initial and 

the sub-states into the end states are shared. 

 

Figure 6 shows how these rules operate. There is a path from “Light brew selected” 

decomposed to pass through the sub-state “Final drink selected (Not light brew)”. For Rule 1.1, 

both states share end states, namely the “End state” state. Rule 1.2 is then satisfied when the sub-

state path “Select go” → “Take drink” is included exactly in an initial state path. It is included in 

both paths, satisfying the rule.  
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Figure 6: Forward model with path intersection. The orange path is subset to the green in the first diagram, so the 

green is redirected in the second diagram 

 

This process is modified for reverse iteration: 

 

Rule 2.1) The sub-state must be an existing end state of the initial state. This rule prevents 

excess connections being made. 

Rule 2.2) The existing path from initial to sub-state is the beginning of another path from 

initial to end state. This enforces path determinism. 
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Figure 7 and Figure 8 show how these rules can be applied twice over, simplifying the model 

twice. First, “Coffee drinks selected” is made subset to a path from “Initial state” to “Final drink 

selected”. Rule 2.1 is observed, as a path from “Initial state” to “Coffee drinks selected” exists, 

and this path is also the beginning of the larger path from “Initial state” to “Final drink selected”, 

satisfying Rule 2.2 for path intersection. This process is then repeated, making “Coffee drinks 

selected” subset to its own path to “Final drink selected”. Both applications introduce recursion 

into the model, which would not be possible without path intersection. While the final reverse 

iteration model alone does not represent reality completely (Selecting cancel after ordering tea 

would not allow the user to selected coffee drinks) the model is more accurate in cases where 

recursion does occur. Additionally, this model is not to be used in isolation, and can be paired with 

the forward iteration model to better understand the system. 
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Figure 7: Reverse iteration model with path intersection. Orange is subset to green paths in the first case, so green 

paths are redirected 
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Figure 8: Reverse iteration model with path intersection applied once more. Orange is subset to green in the first 

case, so green is redirected
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2.5 Final State Machines 

The steps of state combination and path decomposition can be run iteratively, alternating 

between steps. Once no further simplifications can be made, the two state machines are complete. 

Figure 9 and Figure 11Figure 10 show the final state machines we constructed for the coffee maker, 

shown in forward and reverse iteration respectively. The forward iteration model exactly replicates 

trace behaviors, such that all paths shown are valid paths through the menu, but it is not exhaustive 

of all possible paths. The reverse iteration model, by contrast, includes both valid and invalid paths 

not seen in the trace. For example, one valid path included allowed a user to place a cup in the 

machine, remove the cup, and then end the interaction. Other paths included allow for recursion, 

which is a possibility the forward model is not capable of replicating. 

 

 

Figure 9: Final cofee maker state machine in forward iteration 
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Figure 10: Final cofee maker state machine in reverse iteration 

 

The models can also be analyzed in parallel. Note that in other simple cases, the state 

machines generated with the method may be very similar, but they will diverge with increased 

system complexity. While it may be possible to combine these machines together, it may not be 

efficient to do so. Parallel state machines are used for simplicity in many cases, particularly those 

with two disjointed tasks being performed at once. For example, we could imagine that it might 

be efficient to decompose the cup/coffee machine system into two subsystems (cup and coffee 

machine) with their own state machines, allowing us to avoid considering how the cup might affect 

the machine in ways beyond catching the drink at the end. 

In general, we can see how the basic methodology outlined here can apply to a real system 

and produce a functional state machine that replicates trace behavior. Further demonstrations could 

also work to capture more behavior, expanding beyond simply replicating the trace, despite the 

lack of parameter information. 
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 APPLICATION OF THEORY TO COMPLEX SYSTEM 

This chapter goes into detail on the methods explored for constructing a state machine for 

a complex system: a flight simulator. We elected to use such a system for a demonstration of 

complex systems for its similarity to “real-world” safety critical systems, and for its convenience. 

Flight simulators provide a safe way to explore a variety of scenarios and are relatively simple to 

learn to operate, making them excellent candidates for study. Discussion begins with an overview 

of the simulator’s characteristics, and then moves into how we collected and organized our trace 

of use. The next section centers on how we developed state detection methods with machine 

learning techniques, and the final section covers how these techniques fare with path and input 

classification. 

3.1 System Overview 

3.1.1 Defining the System 

To begin, I selected the flight simulator YSFlight for study (Yamakawa, 2021). YSFlight 

presents a wide variety of benefits, first being that it is free and has low CPU and GPU 

requirements, making it simple to collect on any computers used, including home computers. 

Much of this recording needed to be performed at home due to social distancing guidelines, so this 

was a strong quality to have. The simulator also offers a built-in recording tool for collecting a 

trace. The recording tool was originally developed for replaying gameplay footage, and outputs a 

selection of flight data to a text file at the end of each flight. Given that this file is specialized for 

video replay, it unfortunately features some compression in the form of an irregular recording 

frequency of approximately 20 Hz that varies depending on accelerations to make video playback 

smooth. Nevertheless, having a built-in recorder made trace collection convenient. Table 2: YS-

Flight recorded flight parametersshows the flight parameters the tool records. 
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Table 2: YS-Flight recorded flight parameters 

Parameter Description Format 

Time The time after simulation start when 

parameters are recorded 

Continuous, recorded in [s] 

Inertial position (X/Y/Z) Aircraft position vector in the simulation 

map, with the y parameter corresponding to 

altitude 

Continuous vector, recorded 

in [m] 

Attitude Compass heading, pitch, and yaw Continuous vector, recorded 

in [rad] 

G-load Unknown loading parameter Unknown 

Flight status Categorical parameter indicating if aircraft 

is in flight, rolling, stalled, on fire, broken, 

etc. 

Discrete, ranging from 1–6 

Variable wing geometry Deflection of any variable wing geometry 

features 

Discrete, ranging from 0–255 

Airbrake status Deflection of any airbrakes Discrete, ranging from 0–255 

Landing gear position Deflection of landing gear Discrete, ranging from 0–255 

Flap position Deflection of flaps  Discrete, ranging from 0–255 

Brake strength Strength of brake application Discrete, ranging from 0–255 

Smoke trail status Features of controllable smoke trail Unknown 

Vapor trail status Features of controllable vapor trail Unknown 

Vehicle strength Vehicle health (Used for military 

simulations) 

Discrete, ranging from 0–4 

Throttle strength Throttle setting Discrete, ranging from 0–99 

Control surface deflections Deflection vector of three main control 

surfaces 

Discrete, ranging from –255–

255 

Thrust vector deflection Deflection vector for thrust vectoring 

systems 

Discrete, ranging from –255–

255 

Thrust reverser deflection Deflection of thrust reverser surfaces Discrete, ranging from 0–255 

Bomb bay deflection Deflection of bomb bay doors Discrete, ranging from 0–255 

Turret positions Rotation position of aircraft mounted turrets Discrete, ranging from 0–255 

 

YS-Flight also has many features that allow it to better simulate real-world behaviors, first 

being a built-in air traffic control system that can provide live directions to a target airport and 

runway, following typical flight paths. Such directions included target bearing, altitude, and 

airspeed, making instructions intuitive to follow, and updates the pilot regularly as legs of the flight 

change or if major deviations occur. This system generally helps pilots fly more consistently and 

closer to realistic scenarios for safe flight. 

This realism is further enabled with the YS-Flight selection aircraft and airports available. 

Real GA, commercial, and military vehicles are all available for flight in the simulation, as well 

as many airports, most of which are in Japan, the home of the game developers. Real airports allow 

our simulated system to mimic real flight paths, making our pilot behavior more like a real, safety-

critical system operator’s than hypothetical cases. The environment can also be controlled as 
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weather, time, and visibility conditions are all controllable in the simulation, giving additional 

options for testing in hazardous conditions. 

Once we had settled on YS-Flight, we needed to ensure that any trace we recorded would 

explore the use of a single system in multiple ways, and span as much of the system space as 

feasible. To span the space, we decided to fix as much of the physical system as possible, beginning 

with the aircraft itself. I elected to record traces with a Cessna 172-R exclusively, because it is a 

common GA aircraft, is intuitive to learn, and has little variable geometry that might affect flight 

behavior, making the trace more consistent. We also elected to fix our system study to cruising 

flight, allowing our study to avoid the use of flaps and taxiing entirely, simplifying the space we 

needed to model. 

The physical space we navigated could also be constrained to reduce variability in system 

behavior and make flights shorter and therefore easier to record. I selected two runways near to 

each other: Misawa airport and Hachinohe airbase in the Aomori prefecture, Japan, with a total 

flight time of about 15 minutes between the two. This short flight time also had the additional 

benefit of keeping the vehicle mass from changing significantly during the flight, which would 

result in aerodynamic forces acting differently on the aircraft with time, making it more difficult 

to approximate behavior. We reduced this issue further by fixing the initial vehicle fuel load to 

75%, making each flight more consistent than a varying starting mass. To constrain the flight path 

between the two airports to a safe approach, we engaged the automatic ATC system and followed 

its directions as best as possible during trace recording. These flights were always conducted in 

full sun and with no wind to ensure that air velocities and inertial velocities matched, simplifying 

any needed approximations of physics. 

To then ensure that our trace captured significant variation in system use, we recorded 

flights to and from each airport, using both runways in either direction. This method of capturing 

the system space provided numerous flight paths to examine how behavior in each path differs, as 

well as how total system behavior operates. We also decided that some abnormal behavior was 

necessary in the trace to include such behaviors in a final model. Such behavior could be included 

by recording the trace with an inexperienced pilot, or by altering the visibility conditions or 

disabling flight instruments. I had little prior piloting experience, so my unmodified flights seemed 

sufficient for adding variation. Our attempts to record with disabled instruments resulted in flight 
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conditions that were so abnormal that they were difficult to interpret into a distinct cruise phase, 

making them too difficult to integrate into the trace to be usable in analysis. 

3.1.2 Implications of the System 

Flight is defined by a variety of parameters and controls, both discrete and continuous. For 

instance, flap deflections are set positions, making them discrete, but altitude is a continuous 

parameter. Controls like the brake toggle are discrete, but yoke deflections are continuous. While 

the simulator itself is a digital tool, all the measurements taken for the trace are technically discrete 

but are taken with enough precision to be treated as continuous variables. Truly discrete variables 

are in the minority here, and we assumed that they had a minimal effect on flight, as we restricted 

the system to cruising flight only, where brakes and flaps are not in use. The stall indicator remains 

as a discrete parameter for study, but it is exclusively used for signaling to the pilot and does not 

affect the system otherwise, so we excluded it from analysis to simplify the study to continuous 

variables only and reserved it for validation tests. Continuous variables however result in 

measurements that are difficult to distinguish, and thus should be rounded to a minimum precision 

that is expected to be relevant. This rounding requires some knowledge from the analyst, and 

results in a system where purely logical definitions of states and inputs like that seen in Chapter 2 

are non-achievable. 

Flight is defined by many parameters and controls at once, making it a parallel system. 

With many continuous variables in use at once, each microstate and microinput will likely see little 

to exact replication in the trace, removing the possibility of simple logical model. Instead, 

statistical definitions for states and inputs need to be generated to classify behavior. 

These states are also time-dependent, as the system state constantly updates based on 

physics. This means that an effective system frequency needs to be determined and used as a 

sampling rate for trace. Different sampling rates might result in different classifications because 

the difference between consecutive readings decreases at higher sampling rates. So, model 

construction will require sampling at multiple frequencies and selecting the most effective state 

definitions that are consistently identify similar states despite varying sampling frequencies and 

parameters provided. 

Lastly, it is unclear what parameters are meaningful for determining the system state. For 

example, is proximity to a runway meaningful? This question cannot be answered without analysis, 
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so we can describe the system as being unbounded. Flight is bound by physics, so we can surmise 

that parameter vectors like position and velocity will be relevant, but reference frames and attitudes 

are also important to consider. Multiple variations of parameters in different references frames 

need to be studied and optimized to select the most effective classifiers. 

3.2 System Trace 

With a system defined, the system space needs to be traversed and recorded into a trace. 

This process begins with data collection and synchronizing microstates and microinputs. Once 

they are synced, we can add parameters that could not be initially recorded in the trace and perform 

any reference frame manipulations we might need to explore to expand the trace. Once an initial 

trace is completed, we can compute alternate traces with differing sampling frequencies to examine 

system frequency and begin analyzing the trace. 

3.2.1 Data Collection 

The system space can be spanned by recording multiple instances of each flight path to 

explore variations in execution of each path. As previously mentioned, the airports selected 

(Misawa airport and Hachinohe airbase) each have a single runway, which could be taken off from 

and landed on in either direction. Table 3: Flight paths recorded in trace shows the configurations of 

flights used in the final trace, and Figure 11 shows the complete record of flight from engine start 

to shut down. 

Table 3: Flight paths recorded in trace 

Takeoff runway Landing runway Instances recorded 

Misawa RW28 Hachinohe RW25 4 

Misawa RW28 Hachinohe RW07 2 

Misawa RW10 Hachinohe RW25 3 

Misawa RW10 Hachinohe RW07 3 

Hachinohe RW25 Misawa RW10 3 

Hachinohe RW25 Misawa RW28 3 
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Figure 11: Top down view of flight paths recorded 

 

I piloted the trace myself, using a Logitech Extreme 3D Pro Joystick controller, which I 

connected to a Simulink recording tool outputting inputs at 40 Hz. We assumed this frequency to 

be sufficient to capture all but the most aggressive stick inputs, which were not performed in this 

experiment. Given the sampling frequencies and duration of each flight, many thousands of 

microstate/microinput conditions were recorded, and while there are only a few instances of each 

flight path and no exact repetitions of microstates, similarities between each reading are likely to 

be high, making further repetitions likely to reinforce existing similarities. This behavior also 

implies that the trace approximately spans the nominal system space. Any additional flights do not 

seem as if they would add more information on the validity of different flights, beyond the missing 

flight paths. 

To further expand on this trace collection, we could begin by recording more instances of 

each flight path, which would provide more information about behavior exclusive to the flight path 

but was not deemed necessary for the system wide study for the aforenoted reasons. We could also 
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capture all runway-to-runway configurations instead of the six in the set used here. Doing so would 

provide an exhaustive set of flight paths, which would more likely capture the total breadth of 

anticipated behaviors, but was not expected to significantly improve models, as the flight paths 

themselves would overlap with much of the existing set. Lastly, the order in which flights were 

recorded could be better managed, as is, each flight path was recorded with each of its repetitions 

all in a row, such that the first paths recorded saw the least experience with the system. This could 

have biased analysis towards finding more hazardous conditions in the vicinity of the early 

recorded flight paths, but I did not see this bias as a significant enough factor for further study. 

While the initial flight recorded were slightly more anomalous than the others, the total proportion 

of stalls decreased only gradually with more practice. Additionally, flight paths often passed 

through the same flight corridors, demonstrating less that any anomalous flight was due to the 

physical location. 

3.2.2 Synchronizing Microstates with Microinputs 

Time between readings needs to be constant and consistent to effectively compare changes 

in microstate and state. In other words, parameter and control sampling rates should be equivalent 

to measure the effect of inputs on states. Unfortunately, YS-Flight records at a non-constant 

sampling frequency close to 20 Hz, which needs to be matched to a constant 40 Hz control 

sampling frequency. YS-Flight records parameters to approximate the real behavior in as few 

frames as possible while maintaining smooth transitions between frames. This trait implies that 

the true behavior can be approximated with linear interpolations between frames, further implying 

that the final data set can then be up sampled to a fixed 40 Hz frequency without overly distorting 

system behavior. 

We began synchronization by finding an initial reading for both parameters and controls. 

YS-Flight sims start by selecting conditions and then loads to a starting window that begins 

recording with any further inputs. As such, recording can then proceed through the following steps: 

1. Prepare flight weather/vehicle/starting location conditions 

2. Start control recording 

3. Set YS-Flight to the simulation start screen 

4. Input a single, Boolean command via the control stick 

5. Set up ATC 
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6. Fly normally 

The step four Boolean command was issued through an unused control input on the stick, 

the trigger. Thus, the first trigger reading in the control recording is simultaneous with the first 

recorded parameter reading. This establishes a uniform time zero. Once the two data sets had a 

synchronized start, we linearly interpolated each parameter value to match the control reading 

time, producing a synchronized 40 Hz record of parameters and controls. 

3.2.3 Additional Parameters and Transformations 

Each system state may be defined by parameters that are not directly recordable, suggesting 

that known parameters that fit this description should be added to the trace when possible. In this 

case, YS-Flight does not record velocities, which presumably affect state, so velocities need to be 

calculated from the existing trace if possible. Failing to include all the system relevant parameters 

will result in the system state being undetermined. 

In this case, velocity can be extracted from the existing record using position and sampling 

frequency to calculate a distance moved per unit time. For this analysis, we conceptualized velocity 

as being determined from the current position and position in the immediately preceding frame. 

This concept matches with the rest of data presented in the trace as being an instantaneous 

measurement. 

However, frame-by-frame analysis can result in “jitter” due to precision loss in the 

parameters. For example, a slow-moving aircraft in our system could see zero velocity for several 

readings and then a sudden spike in velocity for one reading, followed by zero velocity. This cannot 

be completely corrected, as the true behavior is not recorded in YS-Flight. The best option then to 

reduce jitter is to smooth velocity, using the average calculated velocity for a given time frame. In 

this case, we opted for a 0.125 s smoothing window, centered on the reading being updated, that 

averaged the five readings within the window. Longer smoothing windows would result in a loss 

of high-frequency velocity changes, which are largely correlated with anomalous behavior because 

most of the nominal flight is conducted through with low accelerations for safety. Shorter 

smoothing windows do not meaningfully reduce velocity jitter, making this window size effective 

for this application. Additionally, because system is in cruise, high speeds will balance out most 

precision issues in position data, making smoothing less necessary that low-speed applications, 

but still required to improve performance. 
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Other parameters may need to be added to the set with reference frame transformations. 

When applied well, reference frames can be used to produce alternative parameter sets with less 

variation between flight paths, making them more effective for characterizing overall system 

behavior. In our existing trace, inertial position alone provides an incomplete view of the system, 

mostly emphasizing information on system-wide valid flight paths, but it does not provide 

information on valid flight paths for specific runway configurations, and obscures information on 

the mechanics of flight itself. 

To combat this issue, we transformed the inertial coordinates to runway-relative reference 

frames. This added two reference frames to the trace, one for takeoff and one for landing, providing 

a total of five positional parameters. Each frame was centered on the runway of interest, ran one 

axis in the direction of use, preserved the vertical altitude axis, and ran the third axis in the 

transverse direction of the runway.  

We transformed velocities similarly to match the positional frame, with the additional 

information that the physics of flight are largely defined by aircraft relative velocities, suggesting 

that a third frame be used. We then placed this third frame in the aircraft relative orientation, with 

one axis point along the forward axis of the vehicle, one on the vertical, and one on the horizontal 

axis. With the three velocity reference frames, two sharing a vertical axis, we brought the total 

number of velocity parameters up to eight. 

Other parameters, like compass heading, similarly lack consistent meaning from one flight 

path to another. North is held consistent with inertial coordinates and could help with identifying 

valid flight paths, but in the runway-relative frames, North is not consistent. Instead, I used a target-

relative heading, using the direction to center of the landing runway as “North”. This alternative 

helps enforce cruising generally towards the landing runway. 

Attitude in general presents some issues for analysis because it is a vector of angular 

parameters. Angular parameters that can rotate fully skip from 359 degrees to zero degrees which 

statistical modeling techniques will have difficulty modeling. Instead, we took the sine and cosine 

of angular parameters and split compass heading into two parameters, removing the discontinuity. 

Some system behaviors may have time-delayed effects, which could require additional 

parameters to capture. For example, aircraft flaps have several set positions in YS-Flight and can 

be controlled by pressing a corresponding button to initiate extension or retraction. This change in 

position does not occur immediately, so a parameter and control set that only captures the current 
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flap position and current flap control input would be unable to determine what the next flap 

position would be. This issue would not be corrected with the inclusion of a flap velocity parameter 

either, because no information on how many times the extend/retract command has been input is 

stored. Potential fixes would be to use a dedicated parameter for tracking commanded flap 

position, or in the case of system behaviors that execute after a passage of time, a “time since input 

x” parameter. Because we are operating exclusively in cruise, where flaps are not in use, such time-

delayed effects are not a concern, but the issue could be relevant in other systems. 

Once we had selected all the parameters, I encoded each parameter to condense discussion 

Table 4 shows the final parameter set, including the parameter encodings. Note that the stall 

indicator parameter is a Boolean variable, and therefore cannot be used in conjunction with the 

other continuous variables using statistical methods. As previously discussed, its inclusion in the 

trace was useful for validation of analysis. 

When discussing the parameters in this analysis, it is useful to also develop a concept of 

parameter frequency. Here, I will use this term to qualitatively refer to how quickly a parameter is 

likely to change its value in a meaningful way. For example, we could consider most position 

parameters as being low-frequency parameters, because they change their value very little between 

readings in most cases. On the other end, control surface deflections and throttle strength could be 

considered high frequency, because even in non-hazardous conditions, they may change their 

value significantly relative to the recording frequency. 
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Table 4: Total parameter set used in trace 

Parameter Code Description Freq. Unit 

SIN(Compass heading or Target 

heading) 

SINCH/ 

SINTH 

Sine of the corresponding bearing variable High  

COS(Compass heading or 

Target heading) 

COSCH/SI

NTH 

Cosine of the corresponding bearing 

variable 

High  

Pitch angle PA Angle between the aircraft longitudinal axis 

and level flight 

High rad 

Bank angle BA Angle between the aircraft wing and level 

flight 

High rad 

X-position (Takeoff) XPT Distance between the aircraft and the center 

of the takeoff runway in the direction of 

takeoff 

Low m 

Y-position (Inertial) YPI Aircraft altitude relative to sea-level Low m 

Z-position (Takeoff) ZPT Distance between the aircraft and the center 

of the takeoff runway in the direction of the 

runway transverse 

Low   

X-position (Landing) XPL Distance between the aircraft and the center 

of the takeoff landing in the direction of 

landing 

Low m 

Z-position (Landing) ZPL Distance between the aircraft and the center 

of the landing runway in the direction of the 

runway transverse 

Low m 

X-velocity (Takeoff) XVT Aircraft velocity in the direction of takeoff Low m/s 

Y-velocity (Inertial) YVI Aircraft climb velocity Low m/s 

Z-velocity (Takeoff) ZVT Aircraft velocity in the direction of takeoff 

transverse 

Low m/s 

X-velocity (Landing) XVL Aircraft velocity in the direction of landing Low m/s 

Z-velocity (Landing) ZVL Aircraft velocity in the direction of landing 

transverse 

Low m/s 

Forward velocity (Plane) FVP Aircraft forward velocity Low m/s 

Vertical velocity (Plane) VVP Aircraft vertical velocity Low m/s 

Horizontal velocity (Plane) HVP Aircraft horizontal velocity Low m/s 

Throttle strength T Throttle setting on a scale of 0-100 High  

Elevator deflection CSE Elevator deflection from -256-256 High  

Aileron deflection CSA Aileron deflection from -256-256 High  

Rudder deflection CSR Rudder deflection from -256-256 High  

Stall indicator S Truncation of the original “Flight status” 

parameter, showing one if stall has occurred 

and zero otherwise 

N/A  

3.2.4 Examining System State Frequency 

The rate at which the system changes state is unknown and needs to be explored. Low 

sampling rates will not capture fast changes in state and will instead overemphasize the effect of 

high frequency parameters. For example, instantaneous control surface deflections would 

generally do little to affect the system state, but sustained deflection would. A trace with a low 

sampling rate recording a pilot rapidly oscillating the elevators would not be effective for matching 

the elevator deflection to aircraft motion. However, this effect would have the positive outcome of 
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making microstates behave like random, independent samples, which is necessary for performing 

statistical analysis. 

In the opposite case, high sampling rates can bias state classification methods towards low 

frequency parameters. At these rates, parameters that change with low frequency will have values 

that are closer together than those that change at high frequencies because they change value 

slowly. This makes the trace readings more visibly dependent on each other and less useful for 

statistical methods of analysis. Additionally, this effect biases classification methods based on 

group densities, which are common and generally effective tools, towards using the high density 

and low-frequency parameters, obscuring the true system behavior. Microstates that are close in 

value are more difficult to separate into mutually exclusive states, making the final classifications 

less meaningful. 

Overall, these effects suggest that multiple sampling frequency traces need to be 

constructed and examined to determine whether there is consistent behavior across multiple 

frequencies. This consistent behavior would then indicate a true system frequency. To do this, we 

elected to test 40 Hz and 4 Hz traces. 40 Hz was the highest possible frequency we could reliably 

capture data with the recording controls, and 4 Hz is much lower, but not so low as to not catch 

high-frequency transitions like a dive due to stall. No recovery attempt post stall would result in 

normal flight parameters at this sampling frequency, so it would still be able to catch basic 

behavior. 

There are two basic methods for converting the baseline 40 Hz to 4 Hz. The first option is 

to down-sample the set by picking every tenth point of the 40 Hz set, which would result in 

measurements as if the system had been originally sampled at 4 Hz. The second is to arithmetically 

average each 10-reading segment of the trace into a single reading. This process would lower the 

apparent frequency of all parameters by averaging values but would affect high frequency 

parameters the most. Overall, this would bring parameter frequencies closer together, reducing the 

high-frequency bias, and making it the preferable choice for downsampling. 

3.3 State Detection through Unsupervised Machine Learning 

With a complete trace, we can analyze microstates to produce state descriptions. Several 

methods already exist to classify vector data into classes, which we can use to approximate state 
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descriptions. Methods that seek to produce the ground truth we are seeking are called 

“unsupervised” methods. 

Most simple classifiers treat the microstate as spatial coordinates for points in the state 

space (Boonchoo, et al., 2019). Such coordinates would have n dimensions, with n being the 

number of parameters. The raw parameters in the trace have dramatically different magnitudes and 

need to be normalized to ensure that each parameter is weighted evenly in our statistical methods. 

With a normalized trace, the classifier can then examine the distribution of points and use different 

methods to partition the space into states. 

In general, classifiers require some tuning to produce meaningful results, so they often 

require several attempts at classification before a final model is achieved (IBM, 2020). For this 

case, we will not only need to tune the classifier variables to our system, but we also need to 

determine which parameters are useful for describing states. I constructed an optimizer tool 

described in the next section to tune these settings and produce the most reasonable state 

descriptions possible. Once we had state descriptions, I validated them against known conditions 

like stall and other clear transitions in behavior, variations in trace reference frames, and variations 

in sampling frequency. 

3.3.1 Classifier Selection 

We considered three classifiers that are commonly used for generating states: DBSCAN, 

K-means, and Gaussian-Mixed-Models (IBM, 2020).  

DBSCAN (Density-based spatial clustering of applications with noise) operates by 

clustering microstates by proximity, using two metrics: minPts and search radius (Mathworks, 

2021). We can describe it as following this set of rules to determine states: 

 

1. Each parameter is normalized to weight changes in magnitude as equivalently as possible 

2. All microstates within the search radius of each other are neighbors 

3. Each microstate counts the number of neighbors 

4. Microstates with at least minPts neighbors become core points, starting a new state 

5. If a microstate is neighbors with a microstate in a state, it can also be said to be in a state 

6. Microstates with no neighbors are considered to be outliers 
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Figure 12 shows these rules graphically, where red indicates core points, yellow indicates 

non-core points in the same state as red, and blue indicates outlier points that not classified. 

 

 

Figure 12: DBSCAN visualization 

 

DBSCAN offers two main advantages (Boonchoo, et al., 2019). First, unlike other 

classifiers, DBSCAN does not require an analyst to specify the number of states to classify data 

into. This reduces the amount of system knowledge required to optimize, and the two tuning 

variables have established techniques for estimation. Second, DBSCAN can classify states that 

have arbitrarily shaped perimeters. Many classification methods struggle with state definitions that 

create concave shapes, especially when they leave the centroid of the structure outside the 

perimeter. Figure 13 shows a potential real-world case of this concavity in data sets, where 

coordinates are being using to classify flight into a safe zone and an unsafe mountainous zone. If 

a classification method that cannot handle concavity is used, it might generate state boundaries 

like the ellipsoids marking the map. Such definitions can lead to ambiguity over whether the 

intersection is a safe flight zone, and in this case, the centroid of the safe flight state definition is 

completely outside the true border. 
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Figure 13: Demonstration of how concavity can affect classification. Here, the green and orange filled areas are 

being defined using a technique based around ellipsoids (GMM) 

 

On the other hand, DBSCAN is less effective than other methods with higher-dimensional 

data sets, finding more arbitrary definitions than other methods in high dimensions (Boonchoo, et 

al., 2019). This is due to an effect referred to as the curse of dimensionality, where adding a new 

dimension to data exponentially increases the hyperspace of the set (Köppen, 2000). This increases 

the random odds that any point is within a given distance of any other, increasing the likelihood 

of random “order” appearing in data defined by proximity. Some alternative measures of distance, 

like city-block, can help with the issue, but in general DBSCAN handles this perceived order worse 

than other classifiers. Additionally, each parameter is weighted the same for each point in each 

state, which has the side effect of making each state tend towards having the same minimum 

density. In general, despite the established techniques for tuning, finding optimized values for the 

tuning metrics can be difficult to approach, given that they affect each state uniformly. 

For our specific application, DBSCAN is also unsuited for our task because it requires all 

points to be independent samples. Any dependence leads to separate readings being very 

geometrically close, and hence difficult to distinguish. Random sampling readings from the trace 

can combat this but given that we expect traces to sample states unevenly, this can lead to 

complications. Lastly, DBSCAN only classifies specific sets of points together into states, and 

requires further analysis to produce state definitions, while other classifiers do not. 

The K-means classifier works to define k states, with new microstates being classified into 

states based on which states they are closest to the mean value of all its constituent points. This is 

done by assuming that microstates can be separated partitioning the hyperspace with hyperplanes, 
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drawing a clear boundary between states (IBM, 2020). To place these planes, first the analyst must 

provide one tuning metric: the number of states to establish. Then, they place hyperplanes in the 

state space, attempting to maximize the density of each state, by minimizing the total variance of 

the microstates in each state. Figure 14: K-means visualizationFigure 14 shows how a K-means 

classifier might separate 12 microstates into three states, with each color indicating the final state 

of classification. 

 

 

Figure 14: K-means visualization 

 

This classifier offers several advantages over DBSCAN, first and most obviously, that only 

a single tuning metric is needed. K-means can also interpret dependent data better than DBSCAN, 

because it does not classify all similar states as identical, reducing the effect of the curse of 

dimensionality. This method also establishes clear, geometric definitions of states, allowing new 

readings to be classified easily without additional interpretation. 

However, DBSCAN is slightly preferable in some regards. Placing the hyper-planes is 

computationally difficult and requires many iterations. K-means state definitions tend to trend 

towards spherical states that are roughly equal in size, as hyperspheres generally have the lowest 

variance. This geometry is not necessarily how states are structured and distributed however, we 

can expect that a trace will exhibit states at different rates and shapes. 

The last method we considered was the Gaussian-Mixed-Model (GMM) classifier. It is 

often considered as a direct improvement on K-means classification, as they both used iterative 
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methods to minimize variance in classifications, but they approach the problem differently 

(McGonagle, Pilling, & Dobre, 2021). As with K-means, GMM uses state count as its sole tuning 

variable. GMM then follows the following set of rules: 

 

1. Each parameter is normalized to weight changes in magnitude as equivalently as 

possible. 

2. Within each state, each parameter is assumed to follow a normal distribution. 

3. Each state can then be described with a set of mean, variance, and covariance values 

for each parameter. 

4. Statistical tools can estimate reasonable values for each metric from the trace. 

5. Microstates can then be assumed to be randomly produced by each state model, with a 

probability of generation provided. 

6. Each microstate in the trace can be classified to the highest probability state. 

 

Figure 15 then shows how we could visualize probability curves for different states and 

how those curves could plausibly generate corresponding microstates. 

 

 

Figure 15: Gaussian Mixed Model visualization 

 

This final method is preferable for our application, because it can manipulate dependent 

data sets well, like K-means, but has more flexible geometric constraints for states. While it still 

cannot produce concave state perimeters, it lacks some of the major downsides of K-means, 

namely its restrictions on size and shape. Additionally, GMM provides confidence ratings for each 
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classification, providing another value for an analyst to compare states and microstates on the 

periphery of each state. 

3.3.2 Classifier Optimization 

While Gaussian Mixed Modeling can classify microstates into states, it still requires tuning, 

with the additional need to compare importance for determining states with different parameters. 

I considered tuning the GMM to be an optimization problem, where differently tuned models could 

be compared to maximize the quality of classifications produced. 

We can think of classification quality as being composed primarily of two metrics: distance 

between states, and density of states. Classifications that produce states that are generally well-

separated show that their states are well-defined and distinct. Classifications that then produce 

states that are dense, show that their states show many readings with similar behavior, and are well 

represented in the data set. 

Classification methods then use at least one of three criteria to measure the combined 

effects of distance and density: silhouette, Davies-Bouldin, and Calinski-Harabasz (MathWorks, 

2021). The silhouette criterion is defined with mean distances between microstates in a state 

compared to the mean distances of microstates in the next closest state. This method produces a 

metric that is bounded, making it easy to interpret, but it is computationally complex, because it 

requires distance calculations between each point in the set. 

The Davies-Bouldin index is akin to the average similarity between states, primarily 

relying on the state centroids. This process is less computationally expensive than silhouette but 

restricts analysis to Euclidean space. This can be an issue if classifiers use non-Euclidean distances 

to determine classifications. This is not the case here, but it can be restrictive for some classifiers. 

The Calinski-Harabasz index by comparison, uses matrix comparisons of microstate dispersions 

inside states and between states, avoiding using the centroid and distance, making it preferable to 

both other options. 

To then optimize models compared with the Calinski-Harabasz index, I used genetic 

optimization. In general, we can think of this method as using different optimization variables as 

genes for many separate model tunings. In this case, these variables would be our state count, since 

we are using GMM, and Booleans indicating which parameters should be considered relevant for 

determining state, each encoded as a gray binary number. The optimizer then generates many 
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random configurations of genes and evaluates them with a fitness criterion (in our case, the 

Calinski-Harabasz index). Individual configurations that performed worse in the bottom 50% are 

culled from the population, and the surviving configurations are randomly paired to swap gene 

values, with some degree of random mutation. Each pairing produces four “child” configurations, 

establishing a new population for a second iteration. In this way, we produce an artificially 

evolving system, with genes for configurations that perform well being retained in the population. 

Once 90% of the genes in the population are identical, the optimization finishes, and the best 

performing configuration is output as the optimized solution. 

This optimization scheme works well in our case, as many optimization techniques are 

restricted to continuous variables, whereas our variables are all discrete or categorical. It also 

works well if even if there are multiple local minimums in the optimization space. We can assume 

multiple local minimums exist in this set, as it is plausible that certain parameter inclusions will 

have different optimized state counts, especially with the high dimensionality of the trace, so this 

is a trait that is desirable for our optimization. 

To set up this optimization, each variable used must be bounded and encoded into binary. 

I bounded the state count from 3 to 18, deeming that fewer than three states would provide no more 

information than existing anomalous state identification techniques, and more than 18 states would 

result in definitions so fine-grained that they may not be intuitive to distinguish, and therefore 

difficult to validate. This range then holds 16 possible values, keeping the number of binary digits 

required to represent the data as small as possible to reduce the volume of data needed to optimize, 

improving turn-around rates for diagnostics. 

Parameter inclusion was represented as a gene by assigning each parameter a gene of value 

zero or one, indicating its inclusion in the GMM model. However, allowing all parameters to be 

enabled and disabled in the optimization could result in well-defined states that had little to do 

with the safety critical performance. For example, we would imagine that a state classifier that 

does not consider the rate of climb/descent for the aircraft would not be meaningfully considering 

the system safety and could instead be classifying irrelevant parameters. This issue is a direct result 

of the system being unbounded. 

To adapt to this problem, we assumed that some parameters are relevant for determining 

states, so they are not included as genes in the optimization but are always used in the classifier. 
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These parameters, Y-velocity (Inertial), plane relative velocity, and the throttle setting, are strongly 

correlated with the physics of flight and flight safety. 

With these pieces in place, we began optimization. Our initial test case used 4 Hz sampled 

data and compass heading as the bearing variable and provided three coherent states. Table 5 lists 

the means for each normalized parameter included in the optimization. Most parameters show a 

clear separation of means for one state, providing some simple information on what distinguishes 

each state from the others. For example, none of the mean parameter values of the first state are 

outliers, suggesting that this is close to a baseline, and can be primarily defined by its contrast with 

the other states. The second state has high SINCH, ZVL, FVP, VVP, and T means, and a low ZPL 

mean. With many high velocity parameter means as well as a high throttle setting, we can assume 

that this state will largely be characterized by its high speed. The third and final state can then be 

contrasted with low YVI and HVP means, suggesting that this is a dive state, and likely an 

uncontrolled dive given the HVP value. Overall, we can now view each state as the low-speed, 

high-speed, and hazard state respectively. 

Table 5: Compass heading 4 Hz normalized parameter means 

Name SINCH COSCH ZPL YVI ZVT ZVL FVP VVP HVP T 

Low-

speed 

–0.10 0.14 0.13 0.03 –0.01 –0.12 –0.38 –0.37 0.02 –0.36 

High-

speed 

0.28 –0.35 –0.40 0.02 0.03 0.34 1.04 1.05 0.02 1.02 

Hazard –0.17 –0.15 0.31 –0.74 0.07 –0.23 –0.16 –0.40 –0.41 –0.38 

3.3.3 State Validation against Known Behaviors 

With a state model in place, we can classify microstates in the trace and examine their 

behavior to see if the state definitions result in coherent behavior. Figure 16 shows the top-down 

view of the recorded flights in the landing-runway relative frame. There is a clear delineation of 

the low-speed and high-speed flight states as the aircraft transitions from flying towards the 

runway to lining up for approach. Figure 17 then shows the recorded altitudes in order of instance, 

with the hazard state showing up disproportionately in areas of rapid descent. Both inspections 

suggest that our definitions are coherent. 



 

 

62 

 

Figure 16: Top-down view of initial classification using landing runway relative coordinates 

 

 

Figure 17: Altitude readings of initial classification in order of appearance in trace with state indication 

 

As an additional check, we compared the distribution of hazard states to the distribution of 

stalled microstates. 75% of stalled microstates appeared in the hazard state, with the remaining 

25% appearing exclusively immediately before state transitions into the hazard state, with about a 

half second lag time. This makes sense, as short periods of stall will not dramatically affect flight 
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parameters, but sustained stall will. Overall, checking the initial data set against the perceived 

behavior and the stall characteristics supports that our states have some grounding in reality. 

3.3.4 State Validation through Parameter Variation 

To provide further grounding, we assume that true system states will have definitions that 

can be found with this optimization process even when the initial parameters available are changed. 

To then test if our initial definitions exhibit this property, we altered the initial parameter set and 

reoptimized the system in two separate ways. 

First, we altered the reference frame of the compass heading. As is, the compass heading 

variable is somewhat arbitrary outside the inertial reference frame. In a runway relative frame, 

North is inconsistent from flight to flight, so instead, we rotated the compass reference frame to 

always point North towards the center of the target landing runway, producing the target heading 

parameter, which is converted with sine and cosine as before into SINTH and COSTH 

respectively. 

With compass heading replaced, I optimized the model again, and produced a second set 

of state definitions. When comparing the states generated, we can look at the parameters shared in 

both definitions, and their extreme means. Table 6 shows the normalized parameter means as before, 

and we can see similar trends in behavior, with the shared extrema highlighted, green 

corresponding to shared high values and red corresponding to shared low values. No extrema 

disagree, suggesting that these definitions are defining the same states, like we would expect of a 

true system state. 

 

Table 6: Target heading 4 Hz normalized parameter means 

Name SINTH XPT XPL YVI XVL ZVL FVP VVP HVP T 

Low-

speed 

–0.15 0.01 –0.58 0.06 0.21 –0.05 –0.61 –0.58 0.02 –0.59 

High-

speed 

0.25 0.01 0.80 –0.01 –0.31 0.09 0.87 0.85 0.02 0.85 

Hazard –0.16 0.17 0.00 –0.68 0.21 –0.15 –0.13 –0.38 –0.68 –0.32 

 

When we examine the states by comparing them to known behaviors as before, we see 

similar performance to the compass heading case. Figure 18 shows the top-down view, where we 

can see a similar transition from a mix of all three states to exclusively low-speed and hazard once 
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we transition into approach. Interestingly, some flight paths appear to have been completely 

reclassified from low-speed to high-speed, while others have been reclassified in the opposite 

manner. In Figure 19, target heading shows similar behavior to the compass heading for altitude 

plots, and when we compared stall inclusion, we saw the same 75% in hazardous split, suggesting 

that these state definitions are describing similar phenomena in the system. 

 

 

Figure 18: Top-down view of target heading optimization using landing runway relative coordinates 

 

 

Figure 19: Altitude readings of target heading optimization in order of appearance in trace with state indication 
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The evidence in both cases suggests however that the parameters included may be masking 

the true system behavior. Both optimizations included parameters in their definitions that have no 

clear connections to behavior. For instance, XPL and ZPL are both position parameters indicating 

proximity to the landing runway. Proximity might affect when a pilot might alter their speed or 

course, but it would not physically alter the vehicle state, suggesting correlation with state, but not 

causation. This masking issue is further reinforced when entire flight paths appear to change state 

from compass to target heading optimizations, but the actual speeds flown remain the same. To 

then develop a more consistent definition, we excluded position and runway-relative velocities 

from the optimization and produced a third set of definitions. 

As before, the normalized mean values retain their extrema in the parameters used in all 

three definitions, as seen in Table 7, where green and red once again indicate conserved extrema. 

Interestingly, without the position parameters, the optimization instead includes pitch angle, bank 

angle, and elevator deflection to define states. This is technically a less optimized definition, as 

the Calinski-Harabasz index of the positionless optimization is the lowest of the three performed 

so far, but these new parameters have much more obvious causal connections to states. For 

example, the low-speed state has a high pitch angle mean relative to the other states, suggesting 

that flying at low speeds requires flying at a higher angle of attack to stay in level flight, as we 

would expect. 

 

Table 7: Positionless 4 Hz normalized parameter means 

Name PA BA YVI FVP VVP HVP T CSE 

Low-

speed 

0.31 0.00 0.04 -0.41 -0.39 0.02 -0.39 0.36 

High-

speed 

-0.74 0.02 0.01 1.06 1.05 0.02 1.03 -0.96 

Hazard -0.09 -0.19 -0.64 -0.29 -0.51 -0.33 -0.52 0.52 

 

The top-down plot in Figure 20 shows that like the other optimizations, the same general 

regions each state occupies are preserved, with slightly more transitions from low to high-speed 

states. Overall, we can conclude that despite the new parameters, the state definitions we have 

reached are consistent in roughly which microstates belong to which state, and how those states 

look and behave.  
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Figure 20: Top-down view of 4 Hz positionless optimization using landing runway relative coordinates 

 

3.3.5 State Validation through Sampling Frequency Variation 

We can also assume that true system states will share behavior in multiple sampling 

frequencies. State definitions that do not have this property are more likely to be artifacts of the 

recording process or of the specific parameters provided. As such, we performed the same 

optimization process on a 40 Hz trace to compare results to the 4 Hz optimizations performed 

previously. 

To begin this comparison, we first consider that while the 4 Hz trace has parameter 

smoothing implemented to reduce the effect of high-frequency parameters, the individual 

microstates still resemble the original microstates taken from the 40 Hz. As such, a 4 Hz classifier 

should be able to classify 40 Hz microstates, and vice-versa, but the more visibly dependent 
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microstates in the 40 Hz trace may affect the tuning of a 40 Hz classifier. When optimizing a GMM 

classifier to the 40 Hz trace as before, we see varying state definitions because of this dependency. 

Compass and target heading state definitions appear like each other, but nothing like their 

4 Hz counterparts, as shown in Table 8 and Table 9. Completely different extrema are shared, 

highlighted in red and green as usual. This issue is likely due to the inclusion of low-frequency, 

position parameters, as the higher 40 Hz frequency is more biased to low-frequency parameters. 

We can see this bias by examining the top-down plot in Figure 21, where each state appears to be 

constrained to specific regions of the map. Overall, it is difficult to extract meaning from these 

state definitions beyond the local state, which contains all points of stall in the trace, but is also so 

present in the rest of the trace that it is unhelpful to label it as exclusively a hazard state. 

 

Table 8: Compass heading 40 Hz normalized parameter means 

Name SINCH COSCH XPT YVI ZVT ZVL FVP VVP HVP T 

North 

cruise 

–0.63 0.12 –0.49 0.00 –1.01 –0.69 0.67 0.66 –0.01 0.67 

South 

cruise 

0.84 –0.49 0.71 –0.02 0.74 0.84 0.85 0.82 –0.01 0.85 

Local –0.03 0.18 –0.05 0.01 0.26 0.01 –0.85 –0.83 0.01 –0.85 

 

Table 9: Target heading 40 Hz normalized parameter means 

Name SINTH COSTH XPL YVI ZVL FVP VVP HVP T 

North 

cruise 

–1.01 0.63 0.00 –0.05 –1.14 0.18 0.14 –0.02 0.17 

South 

cruise 

0.98 –0.26 0.62 0.05 0.88 0.42 0.40 0.02 0.43 

Local –0.03 –0.47 –0.87 –0.00 0.28 –0.83 –0.76 –0.00 -0.83 
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Figure 21: Top-down view of 40 Hz optimizations using landing runway relative coordinates 

 

It follows then that a positionless optimization then would likely have fewer problems with 

states being fixed in position. Table 10: Positionless 40 Hz normalized parameter meansTable 10 shows the 

normalized means for such an optimization, which now shares the 4 Hz definitions for states, with 

one exception, the horizontal plane-relative velocity extrema. In the 40 Hz case, the hazard case is 

characterized with a high HVP mean, where in 4 Hz, hazard is characterized with a low HVP 

mean, suggesting that these state definitions may be describing different phenomena. However, 

consider that the sign of HVP may not be relevant for determining the state of the system. The 

aircraft system is symmetric, such that any effects recorded for positive HVP would also be 

possible if the situation was mirrored so the HVP were negative. That would imply that the mean 

value of HVP in each state should be near zero. This makes the extreme mean HVP values in all 

hazardous state definitions likely to be more a result of the specific data in the trace, and less 

meaningful as a description of hazard. If we instead inspect the standard deviation of HVP in both 

positionless models however, we can see that it is much higher in the hazard definition than those 

for other states, as we would expect. This shows consistency in definition beyond just the 
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normalized means, suggesting that the state definitions proposed here are describing real system 

states. 

 

Table 10: Positionless 40 Hz normalized parameter means 

Name PA YVI FVP VVP HVP T CSE 

Low-speed 0.32 0.02 –0.41 –0.40 –0.01 –0.40 0.37 

High-speed –0.65 –0.00 0.84 0.83 –0.01 0.84 –0.78 

Hazard 0.42 –0.12 –0.60 –0.61 0.10 –0.66 0.61 

 

To confirm that the position-fixated states are no longer present, consider the top-down 

view in Figure 22, where we see a distribution much more akin to the 4 Hz states. 

 

 

Figure 22: Top-down view of 40 Hz positionless optimization using landing runway relative coordinates 
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3.4 Difficulties with Applying Basic Machine Learning in Path Determination 

With state definitions determined, the trace can now be analyzed for paths. If the states 

determined are to be considered the ground truth for system behavior, we can generate a ground 

truth for paths from them by looking at the current and then the next state for each microstate. In 

the system’s operations, these paths are determined by the combination of the microstate and the 

microinput, so the task becomes determining a method for producing a path from the readings. 

Unfortunately, our analysis suggests that basic machine learning techniques are not 

sufficient to determine path from current microstate and microinput. This could be a result of any 

of three factors: 

1. Paths do not necessarily have distinguishable characteristics in readings 

2. Inverse time scaling of the trace makes paths difficult to observe 

3. Parameter connections are complex, making the true prediction of the system complex  

3.4.1 Path Detection with Basic Machine Learning 

In theory, we could train a simple machine learning (ML) classifier to distinguish paths in 

a similar way to how we determined states. This would be slightly different however, as we would 

have a ground truth, making any classifier we developed able to use supervised learning 

techniques. These classifiers tend to be simpler, because they can check their accuracy against the 

ground truth to determine success rather than optimizing against an abstract classification index 

like the Calinski-Harabasz index. To do this, we must: 

1. Use the known states to generate path IDs for each reading in the trace. For example, a 

reading starting from S1 and followed by S1 would be path 1, a reading in S1 and followed 

by S2 would be path 2, and so on. 

2. Train a supervised ML classifier to interpret readings into path IDs, using the generated 

path IDs as ground truth. 

3. Decompose the most effective ML classifier to determine characteristics of each path. 

 

This process can be further improved by training a ML classifier for each initial state, 

instead of a general classifier for distinguishing paths. This reduces the number of paths that need 

to be distinguished by a single classifier from n2 to n, where n is the number of states, and would 
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take advantage of the existing state classifier we have already developed. It would also have the 

additional benefit of narrowing the data which the classifier needs to account for to only that in its 

initial state, making it theoretically simpler to distinguish. 

MATLAB natively supports many ML classifiers but given the many successive classifiers 

I needed to construct, I opted to only train classifiers from the list that could produce a result 

quickly in parallel to other training. With this option, I was able to train many different variations 

of classifiers at once and select the result that produced the greatest accuracy for classifying paths 

when using a five-fold cross validation, with one-fifth of the training data is reserved for checking 

accuracy. The classifiers then considered in this approach were variations on decision trees and K-

Nearest Neighbors (KNN). 

Decision trees classify readings by sequentially passing them through Boolean checks, for 

instance, checking if pitch angle is above a given threshold to determine if the aircraft if going to 

stall and transition into the hazardous state. They can be trained to have a varying degree of fidelity, 

measured in the number and specificity of checks, but were most frequently selected in high 

fidelity variants, suggesting that the paths between states are difficult to distinguish. 

KNN classifies readings by instead comparing new readings directly to the training set, 

placing the readings in a hyperspace as done before with the classifiers used for state definition. 

Then, it determines the k nearest readings to the unknown reading and determines which path ID 

has the highest count in the k selected. If the same number of points are randomly sampled from 

each state to train the classifier, it is probable that this path ID is also the ID for the new reading, 

so KNN outputs this path ID as its classification. For instance, Figure 23 shows how a varying k 

value might change the classification of the central point, with each successive circle enclosing a 

corresponding k nearest neighbors. Further variations on this method include altering the distance 

metric, which can improve KNN performance on higher dimensional data, and enabling distance-

based weighting, where classification is biased towards readings that are closer to the unknown 

point, which can improve performance but requires further training to tune. 
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Figure 23: K-Nearest Neighbors visualization 

 

KNN highly values density of points. This in itself is not a problem, as an indicator of a 

clear distinction between definitions is the density of readings matching each description in the 

state space—higher densities suggest consistent behavior. This emphasis however results in KNN 

being heavily biased in training towards paths with the highest number of readings in the training 

set. Given that we expect that most paths are stable paths (paths that return to the current state) a 

training set that includes all the paths out of our state of interest will be biased towards identifying 

stable paths if KNN classifiers are selected. To reduce this bias, we randomly selected the same 

number of readings for each path when training classifiers. We compared both training methods 

to determine whether any consistent gaps persist despite random sampling. 

Unfortunately, this technique of using simple ML classifiers is not sufficient for finding 

definitions for path behaviors. No classifier was able to successfully parse paths from the coherent 

state definitions, with consistent issues regardless of the parameters included. In general, paths that 

return to their original state, which we will call stable paths, are the most consistently identified, 

but other path identifiability varies state to state. 

We used confusion matrices, like the example shown in Figure 24, to visualize the 

effectiveness of each classifier clearly. Once paths are classified, we compare the ground truth 

path we generated by the state definitions, and the predicted path from the trained classifier. 

Starting with the central matrix, rows indicate the ground truth path ID, and columns indicate 
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predicted path ID, and the value in the corresponding element indicates the total number paths 

found in the trace with those IDs. For example, element (1,2) in our example matrix has a value of 

83, telling us that 83 paths were labeled as paths to high-speed cruise, but were actually paths to 

low-speed cruise. Ideally this, main matrix would be a diagonal matrix, as this would indicate that 

all paths were classified correctly. Elements that are closer to this ideal number are color-coded in 

darker blues, while elements that are farther away are colored in orange. 

 

 

Figure 24: Example confusion matrix 

 

The submatrices correspond to measurements of the true positive rate (TPR) and positive 

predictive value (PPV) respectively. TPR, measured in the left column of the right matrix, indicates 

the rates at which each path was correctly identified, mathematically measured as what percentage 

of the row is in the diagonal. PPV is then measured in the top row of the bottom matrix, and 

indicates the rates at which prediction is correct, mathematically measured as the percentage of 

each column that is in the diagonal. Higher percentages in the diagonal indicate a more effective 

classifier, so higher TPR and PPV also indicate better performance. Each submatrix is color-coded 

to match the main matrix, with blue indicating higher performance, and orange suggesting lower.  
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Classification of Paths out of Low-Speed Cruise 

In general, both methods of classifying paths out of low-speed cruise showed bias towards 

predicting stable paths, and paths into the hazard state were generally the most difficult to correctly 

identify. Even accounting for bias, paths to hazard are disproportionately classified as stable paths, 

suggesting that the path to hazard and the stable path are very similar, more so than paths to high-

speed, which has fewer misclassifications, despite occurring more frequently. As shown in Figure 

25 and Figure 26, the standard sampling method of providing all paths as training data appears to 

have resulted in classifiers with a higher PPV, while random sampling resulted in a higher TPR. 

 

 

Figure 25: Low-speed cruise, direct prediction with standard sampling confusion matrices 
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Figure 26: Low-speed cruise, direct prediction with random sampling confusion matrices 

 

40 Hz random data shows the largest amount of misclassifications of the stable path as the 

hazard path, suggesting that this high frequency shows the most similarity between the two paths. 

 

Classification of Paths out of High-Speed Cruise 

Similar trends to those seen in the paths out of low-speed cruise are visible in high-speed 

cruise. Standard sampling shows biasing towards the stable path, has a higher PPV, and lower TPR 

as shown in  Figure 27 and Figure 28. Note that paths from high-speed to hazard and low-speed 

are not being confused in the same way that paths to hazard and low-speed were when they 

originate in low-speed. This suggests that these paths look more different than they did in low-

speed, but the relative infrequency of paths to hazard from high-speed mask behavior. 

Additionally, note that the total number of paths to hazard is smaller in the 40 Hz model 

than in all others. If this were a true path, this value would likely be conserved, or at least remain 

a similar magnitude. Instead, it seems plausible that the increased sampling rate captured low-

speed readings between high-speed to hazard readings in 4 Hz, suggesting that to navigate from 

high-speed to hazard, the aircraft quickly passes through low-speed in our trace data. 
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Figure 27: High-speed cruise, direct prediction with standard sampling confusion matrices 

 

 

 

Figure 28: High-speed cruise, direct prediction with random sampling confusion matrices 
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Classification of Paths out of Hazard 

Of the paths from the three initial states, paths out of hazard are the most consistently 

identifiable. In all three 4 Hz classifiers, regardless of training method, the lowest TPR and PPV 

is 73.6%. Figure 29 and Figure 30 once again show that paths to hazard and low-speed are often 

misclassified as the other, but in lower rates than in other states. Paths to low-speed are more 

frequently misclassified as paths to high-speed than paths to hazard are to high-speed, suggesting 

that paths to low-speed are more similar to high-speed than the stable path is. As in the previous 

case, 40 Hz sees dramatically fewer paths to high-speed than the other models, suggesting a similar 

path to low-speed is necessary first in all but the most specific cases. Otherwise, the 40 Hz data 

performs much worse than the other models however, with many more misclassifications.  

 

 

Figure 29: Hazard, direct prediction with standard sampling confusion matrices 
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Figure 30: Hazard, direct prediction with random sampling confusion matrices 

3.4.2 Path Detection with a Multi-Classifier Model 

In theory, all the classifiers created in this exercise have been attempting to capture the 

same behavior, just defined slightly differently. This includes the descriptions of state we have 

generated. With this concept in mind, it seems plausible that a joint definition can be reached, 

where multiple classifiers can be applied at once and results compared. 

To do this, we first constructed a combined state model using all three consistent 4 Hz 

models. Each model classified the trace as before, and classifications were weighted by their 

probability of being generated in their respective GMM function. This resulted in an equally biased 

classifier, generating as close to all three models as possible. Then, we passed each trace reading 

through the standard, direct path classifiers based on their combined state. We weighted these paths 

predictions by the confusion matrix PPV values, including the other terms in the matrix column as 

other weighted towards other path IDs. 

This approach did not result in any improvement over other methods. Figures Figure 31–

Figure 33 shows how the bias towards the stable path was consistent as in other cases, and how 
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paths out of hazard remained the most consistently simple to identify, with the caveat that this 

method proved the least effective at locating these paths. 

 

 

Figure 31: Merged path model for paths out of low-speed cruise 

 

 

 

Figure 32: Merged path mdoel for paths outs of high-speed cruise 
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Figure 33: Merged path model for paths out of hazard 

 

3.4.3 Path Reading Comparisons 

Generally, we expect that ML classifiers will fail when each path has similar values in each 

parameter and control. To visualize where classifiers may see this issue, we normalize parameter 

and control means for path and compare them, similarly to how we compared state definitions. 

Paths that show similar metric means and standard deviations will be more difficult to distinguish, 

with more metrics sharing behavior being more difficult to distinguish. 

Figure 34 shows each of these comparisons of paths out of low-speed cruise, examining 

each of the four consistent models found. As expected from the classifier performances in the 

confusion matrices, paths to high-speed cruise are consistently showing different metrics, 

particularly FVP, VVP, T, elevators, and throttle. Each of these metrics have a clear mean outside 

the standard deviations of the other paths and have a generally smaller standard deviation. The 

stable path and hazard path then show little differentiation at all, explaining why path to hazard is 

difficult to identify. 
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Figure 34: Normalized metrics in paths out of low-speed cruise 

 

Paths out of high-speed cruise, shown in Figure 35, are much more difficult to distinguish 

based on mean and standard deviation. Mean values are generally much more tightly packed, and 

almost exclusively within one standard deviation of one another. Note that the wide standard 

deviation of 4 Hz positionless hazard decreases in 40 Hz, while low-speed increases. This suggests 

that paths seen as high-speed to hazard in 4 Hz are indeed high-speed to low-speed to hazard paths 

at higher sampling rates, confirming behavior in the confusion matrices. 
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Figure 35: Normalized metrics in paths out of  high-speed cruise 

 

Interestingly, paths out of hazard much more distinct than those from low-speed. In Figure 

36, we can see the same trend of high-speed paths being isolated and easily identifiable, while low-

speed and stable paths are more tightly packed. However, the mean values of these two paths are 

slightly more distinct than those seen in low-speed, which is apparently enough to consistently 

distinguish paths as shown in the confusion matrices. 
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Figure 36: Normalized metrics in paths out of  hazard 

 

Overall, we can consider many of the issues visible in the confusion matrices as being 

direct results of system metrics behaving similarly. Under the right conditions, these paths can be 

distinguished, even when mean metric values are closer, but without consistency in difference, a 

classifier examining a single reading and direct predicting behavior will not be able to differentiate 

paths. 

3.4.4 Path Detection with Microstate Prediction and Complex Interactions 

An alternative to predicting path directly from readings is to predict the next microstate, 

classify the result into a state, and use the predicted state and the initial state to label the path. In 

this way, we could predict path without having to rely on direct classifiers, avoiding the issues 

with metrics appearing similar. 

To predict microstate, we elected to construct linear regression models for each parameter. 

To ensure that the regressions were trained to predict any behavior unique to the state, we produced 
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unique regression sets for each initial state. Thus, path labeling from readings follows the 

following procedure: 

1. Normalize the readings parameters and controls against the entire trace. 

2. Classify the normalized readings into a state. 

3. Normalize the original readings parameters and controls against the readings with the same 

state in the trace. 

4. Predict the value of each parameter in the next microstate using the linear regression 

models specific to the current state. 

5. Normalize the resultant microstate parameters against the entire trace. 

6. Classify the normalized predicted microstate into a state. 

7. Classify the original readings with the corresponding path ID for the current and predicted 

subsequent state. 

 

Once again however, this method was no more accurate at producing correct path 

identifications than the last. Although, the confusion matrices are different in behavior, showing 

faults for different paths. In Figures Figure 37–Figure 39, we can see that performance has declined 

relative to the previous method. Paths from hazard still appear the simplest to identify, but both 

TPR and PPV are affected negatively in all cases. 
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Figure 37: Low-speed cruise, microstate prediction confusion matrices 

 

 

 

Figure 38: High-speed cruise, microstate prediction confusion matrices 
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Figure 39: Hazard, microstate prediction confusion matrices 

 

These issues are likely due to difficulties with extracting effective parameter predictors, as 

the metrics in the data set showed little correlation to one another. RMSE in these models could 

often exceed one, making many metrics poor predictors of parameters. Such behavior is likely due 

to unknown, or complex linkages between these metrics. Linear regressions alone appear not to be 

capable of predicting parameters with enough precision unless extensive tuning is done. 

To then improve on this method, we could develop more sophisticated prediction tools, 

relying on neural networks or other ML methods to automate the process. Alternatively, a designer 

could manually include known physics models for different parameters, for example, calculating 

next position from position and velocity, but this requires knowledge of the metrics which may 

not always be available. It is also plausible that parameter prediction cannot be done from the 

microstate used to identify state alone, and other information from the complete set in the trace is 

necessary. However, the larger number of dimensions included in a model expand the n-

dimensional space, making it more difficult to ensure that enough data is collected to verify 

behaviors (Köppen, 2000). Careful inclusion and exclusion testing would need to be performed to 

avoid implying false connections between metrics. 
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3.4.5 Inverse Time Scaling 

As noted previously, it is apparent that some paths occur to quickly to be correctly labeled 

in the 4 Hz model and are likely more visible in 40 Hz. This suggests that detecting these paths 

requires high sampling rates, despite their worse performance in path identification. 

High sampling rates alone increase the proportion of paths taken up by stable paths, as 

unstable paths then take up a smaller proportion of the total time. This first biases classifiers 

towards the largest represented sets in the training data, the stable path, which can be difficult to 

correct for as seen in the random sampled tests. It also forces state transitions to occur over a 

shorter period of time as path lengths decrease. This makes readings more similar by giving less 

time to change, which makes them more difficult to distinguish. It also expands state definitions 

by shortening time spent on an unstable path “between states”. This makes state boundaries less 

distinct, and less differentiable for most applications. 

Multiple potential solutions exist. First, 40 Hz behavior could potentially be integrated into 

4 Hz traces by adjusting metric smoothing windows, preventing metric values from being over 

smoothed by wide windows. Alternatively, the window could be applied non-uniformly to 

emphasize current value or deemphasize future values to draw a harsher line between one reading 

and the next. Another option would be to include the standard deviation of measurements in the 

smoothing window as new metrics. This could take into account how variable the true reading is 

at any given point in the trace but would double the number of metrics in the trace, causing 

performance and dimensionality issues as previously discussed. 

Another method for distinguishing behavior would be to compare where different 

classifiers succeed at making predictions, and selectively applying classifiers only when they have 

a higher degree of accuracy. This transition between classifiers could also consider the standard 

deviations of metrics in the smoothing window as a method of measuring imminent variability. 

Overall, this would be difficult to implement without bias as seen in the multi-classifier model 

attempted here but could be effective. 

An extreme option would be to modify the trace to allow for multi-frequency sampling, 

but this seems to be the most complex to implement correctly. 
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 DISCUSSION AND CONCLUSION 

Overall, this document demonstrates that a basic approach for constructing state machines 

from a trace can be extrapolated across multiple systems and capture their respective behaviors 

with some success. For systems with simple system factors, entirely autonomous methods can 

construct basic state machines from a trace, but some work is still needed to expand on the method. 

The basic methodology functions adequately for constructing complex factor state 

machines. With it, we can find state definitions which appear consistently in the trace, but we 

cannot determine how users can alter state enough to construct useful path definitions. 

4.1 Conclusions on the Use of System Factors 

System factors remain a useful tool for separating and understanding system behaviors, if 

only qualitatively. Each factor of continuity, parallelism, temporality, and boundedness has strong 

implications on what needs to be done to decompose the system trace into a state machine. In 

general, we can expect that systems with more continuity, parallelism, and temporality will be 

more difficult to study, and those with less boundedness to be less so. 

Continuity implies a lack of distinction between system conditions, and therefore system 

states. Parallelism increases the total number of ways the system can be interacted with, and 

obscures operations. Temporality behaves similarly to continuity, by blending obscuring state 

definitions in continuous time. Boundedness decreases the number of unknown characteristics that 

need to be defined and checked in the process. 

These definitions provide a basis for beginning to model a system and force the analyst to 

consider system behavior before recording a trace. 

4.2 Conclusions on the Use of Logical Tools for Simple Systems 

Logical tools operate well on simple factor systems but can result in state machines that 

make no implications beyond replicating exact behavior in the trace. The exception to this is the 

state machine constructed in reverse order, which, because of its looser path combination rules, 

can introduce recursion into the model. However, it can also result in paths that are not traversable 

in all cases, making it less effective as a tool for analysis. 
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4.3 Conclusions on the Use of Machine Learning for Complex Systems 

Complex factors result in many additional complexities in the analysis procedure. Using 

statistical tools, we were able to isolate state definitions that were consistent in several different 

parameter schemes and sampling rates and matched up with perceived real-world behavior, as well 

as known anomalous behaviors. Overall, these states are helpful for demonstrating that we can 

extract trends in trace data, but the states themselves are not particularly sophisticated. Given the 

curse of dimensionality, it seems plausible that the only method for developing more informative 

states with this technique is to reduce the total number of parameters used in the state generation 

process. In doing so, an analyst could iterate through many parameters sets and tune many separate 

classifiers, comparing results between them to find classifications consistent despite extremely 

different parameters provided. 

Path description is even less developed, as some paths were unable to be defined by the 

classification methods attempted. Direct path classification attempts failed to identify meaningful 

distinguishing behaviors in parameters and controls due to the similarity of these values between 

paths. More sophisticated supervised ML tools may be able to distinguish paths, but given the 

metric similarities, it seems unlikely that such tools will be more effective. Alternatively, 

microstate prediction could be improved using more advanced prediction techniques given the 

wealth of ML tools available. This approach seems the most plausible area for improvement. 

4.4 Closing Thoughts 

Overall, the methods examined in this document for constructing a state machine from a 

trace proved to be sufficient for generating simple state definitions in multiple systems with 

dramatically different qualities, but more work is needed to expand on these methods. 
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APPENDIX A. CHAPTER 2 SCRIPTS 

Setup 

 To construct system state machines for the simple test case, first compile each of the scripts 

in this appendix into separate files, named exactly as their heading.  

CoffeeMiner.mat 

Next, run CoffeeMiner.mat with all of the other scripts in this appendix in the same 

folder. This will extract trends in the matrix stored in CoffeeMachine_03.dat. The user 

should define string and integer labels for this file in CoffeeActLabels_s.dat and 

CoffeeActLabels_i.dat respectively. 

 To interpret forward iteration results, open the paths_pre variable, which stores a path 

in the state machine in each index. Each path is stored as a sequence of integers, led by the initial 

state ID and concluded by the final state ID. For example, [1;4;30] corresponds to a path starting 

in state 1, accepting input 4, and ending in state 30. Intermediate values indicate user inputs 

provided during the state transition, with each integer corresponding to the input of the same index 

in the labeling file. Similar formatting for reverse iteration results can be found in paths_pos. 

Note that inputs and states use the same labeling set, so the first new states beyond “Start”, “Data 

Fault”, and “End”, will index to values greater than the number of inputs plus three. 

 This script also includes some additional functionalities not used in the final research, 

tracking the frequency of use of different paths, only tracking instances of use that include specific 

inputs, and so on. To track frequency of use, set toggle_ana to one. Variables 

concen_state_pre and concen_path_pre provide the percentage of use instances that 

included said state or path in forward iteration respectively. Variables probs_state_pre and 

probs_path_pre contain the respective probability of navigating to a given state or path 

respectively given an initial state. Rows in the cell array correspond to initial state and contain a 

two-column matrix. The first column of this matrix includes the corresponding end state or path 

ID, and the second column then includes the probability of navigation given the initial state. These 
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variables also have corresponding variables storing the reverse iteration information but utilize the 

_pos suffix instead of the _pre. 

 To force the entire model to include a given input, set targ_node_AID to have a value 

corresponding to the mandatory input ID. 

 

%% Coffee Model Miner Version 19 
%  Constructs path-based model of coffee machine operation based on trace 
%  data collected from video. 
%  Requires: 
%       - CoffeeMachine_03.dat 
%       - CoffeeActLabels_s.dat 
%       - CoffeeActLabels_i.dat 
%       - globalPathPre 
%       - globalPathPos 
%       - localPath (02) 
%       - terminalSeek (02) 
%       - stateIterator 
%       - stateEnforce 
%       - stateJoin (09) 
%       - stateSubset 
%       - pathAnalyze (02) 
%  Changes from 18: 
%       - Utilizes split stateJoin/stateSubset 
%       - Removes validate 

  
clc 
clear 

  
%% Input target data 
toggle_plot_pre = 1;        % Plot previous path 
toggle_plot_pos = 1;        % Plot following path 
toggle_txt_labels = 1;      % Use text labels in plots 
toggle_mand = 0;            % Utilize mandatory action plotting 
toggle_ana = 1;             % Collect concentration, timing, and probability 

data 
targ_node_AID = 0;          % Designate mandatory action in path 

  

  
%% Instance Data 
threshold = 0;                                        % Threshold for data 

exclusion 
data_master = load('CoffeeMachine_03.dat');           % Data set 
start_AID = 1;                                        % Action ID for Start 

action 
dataF_AID = 2;                                        % Action ID for Data 

Failure action 
end_AID = 3;                                          % Action ID for End 

action 
act_num_master = max(data_master(:, 2));              % Number of individual 

actions 
if toggle_txt_labels                                  % Action Labels 
    labelFID = fopen('CoffeeActLabels_s.dat'); 
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    stateLabel = 'State'; 
else 
    labelFID = fopen('CoffeeActLabels_i.dat'); 
    stateLabel = 'S'; 
end 
labels = textscan(labelFID, '%s', 'Delimiter', '\n'); 
labels_master = labels{1}; 
fclose(labelFID); 
fprintf('Begin analysis:\n'); 

  

  
%% Iterate from sample start 
fprintf('    Forward iteration commencing...\n'); 
% Iterate 
data_pre = stateIterator(start_AID, targ_node_AID, dataF_AID, end_AID, 

data_master, act_num_master, threshold, 1); 

  

  
% Join and subset states 
[data_pre, paths_pre] = stateEnforce(start_AID, dataF_AID, end_AID, data_pre, 

act_num_master, 1); 
act_num_pre = max(data_pre(:, 2)); 

  
% Calculate state paths 
state_paths_store = []; 
for path1_ID = 1:length(paths_pre) 
    path1 = paths_pre{path1_ID}; 
    state_strt = path1(1); 
    state_end = path1(end); 

     
    % Append state path to set 
    if isempty(state_paths_store) 
        state_paths_store = [state_strt, state_end]; 
        path_map_store = [path1_ID, 1]; 
    else 
        path2_ID = 1; 
        while path2_ID <= size(state_paths_store, 1) 
            path2 = state_paths_store(path2_ID, :); 
            if isequal([state_strt, state_end], path2) 
                break 
            end 
            path2_ID = path2_ID + 1; 
        end 
        if path2_ID > size(state_paths_store, 1) 
            state_paths_store = [state_paths_store; state_strt, state_end]; 
        end 
        path_map_store = [path_map_store; path1_ID, path2_ID]; 
    end 
end 
state_paths_pre = sortrows(state_paths_store); 
path_map_pre = path_map_store; 

  
for path1_ID = 1:size(state_paths_pre, 1) 
    path1 = state_paths_pre(path1_ID, :); 
    path2_ID = 1; 
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    while path2_ID <= size(state_paths_store, 1) 
        path2 = state_paths_store(path2_ID, :); 
        if isequal(path1, path2) 
            break 
        end 
        path2_ID = path2_ID + 1; 
    end 

     
    for path3_ID = 1:size(path_map_store) 
        if path_map_store(path3_ID, 2) == path2_ID 
            path_map_pre(path3_ID, 2) = path1_ID; 
        end 
    end 
end 

  
fprintf('    Forward iteration complete\n'); 

  
% Update labels 
act_num = act_num_pre; 
for state1 = 1:(act_num - act_num_master) 
    NLabel = stateLabel; 
    NLabel = strcat(NLabel, num2str(state1)); 
    labels_master = [labels_master{:}, {NLabel}]'; 
end 

  

  
%% Visualize Pre Iteration 
if toggle_plot_pre 
    %% Reset data 
    % Instance storage 
    strt_node_AID = start_AID; 
    end_node_AID = end_AID; 
    strt_seq_IDs = [];                               % Sequence ID for start 

nodes 
    end_seq_IDs = [];                                % Sequence ID for end 

nodes 
    act_cnt = zeros(act_num, 1); 

  
    % Remove actions 
    data_store = data_pre; 
    seq1_ID = 1; 
    while seq1_ID <= size(data_pre, 1) 
        if ismember(data_pre(seq1_ID, 2), [dataF_AID, (end_AID + 

1):act_num_master]) 
            data_pre(seq1_ID, :) = []; 
        else 
            seq1_ID =seq1_ID + 1; 
        end 
    end 

  
    % Scan for sample terminals 
    [strt_seq_IDs, end_seq_IDs, act_cnt] = terminalSeek(data_pre, 

strt_node_AID, targ_node_AID, end_node_AID, end_AID, act_num); 

     
    % Determine actions with low measurable behavior 
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    skip_AIDs = []; 
    for act1 = (act_num_master + 1):act_num 
        if (act_cnt(act1) <= threshold) && not(ismember(act1, skip_AIDs)) && 

not(act1 == dataF_AID) 
            skip_AIDs = [skip_AIDs, act1]; 
        end 
    end 
    skip_AIDs = sort(skip_AIDs); 

     
    % Add states to labels 
    labels = {}; 
    for act1 = 1:act_num_pre 
        if not(ismember(act1, [skip_AIDs, dataF_AID, (end_AID + 

1):act_num_master])) 
            labels = [labels(:)', labels_master(act1)]; 
        end 
    end 
    labels = labels'; 

     
    figure(1) 
    if toggle_mand 
        title1 = 'Mandatory Previous States'; 
        % Set edges 
        act_path_pre = globalPathPre(data_pre, act_num, strt_seq_IDs, 

end_seq_IDs, dataF_AID, skip_AIDs); 
        act_mand_pre = act_path_pre(:, 2); 

  
        % Mandatory previous action model 
        disp_path1 = []; % Construct edges 
        for act1 = 1:act_num_pre 
            for act2 = act_mand_pre{act1} 
                disp_path1 = [disp_path1; act1, act2]; 
            end 
        end 
    else 
        title1 = 'State Diagram as Determined by Forward Iteration'; 
        % Set edges 
        disp_path1 = []; 
        for seq1_ID = 1:(size(data_pre, 1) - 1) 
            state1 = data_pre(seq1_ID, 2); 
            if not(state1 == end_AID) 
                state2 = data_pre((seq1_ID + 1), 2); 
                if isempty(disp_path1) 
                     disp_path1 = [state1, state2]; 
                else 
                    match = 0; 
                    edge_ID = 1; 
                    while (edge_ID <= size(disp_path1, 1)) && not(match) 
                        if isequal(disp_path1(edge_ID, :), [state1, state2]) 
                            match = 1; 
                        end 
                        edge_ID = edge_ID + 1; 
                    end 
                    if not(match) 
                        disp_path1 = [disp_path1; state1, state2]; 
                    end 
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                end 
            end 
        end 
        disp_path1 = sortrows(disp_path1); 
    end 

  
    diagram1 = digraph(disp_path1(:, 1), disp_path1(:, 2)); 
    diagram1 = rmnode(diagram1, [skip_AIDs, dataF_AID, (end_AID + 

1):act_num_master]); 
    NLabels = labels; 
    plot(diagram1, 'Layout', 'layered', 'NodeLabel', NLabels); 
    title(title1); 

     
    % Reset 
    data_pre = data_store; 
end 

  

  
%% Iterate from sample end 
fprintf('    Reverse iteration commencing...\n'); 
% Iterate 
data_pos = stateIterator(start_AID, targ_node_AID, dataF_AID, end_AID, 

data_master, act_num_master, threshold, -1); 

  
% Join and subset states 
[data_pos, paths_pos] = stateEnforce(start_AID, dataF_AID, end_AID, data_pos, 

act_num_master, -1); 
act_num_pos = max(data_pos(:, 2)); 

  
% Calculate state paths 
state_paths_store = []; 
for path1_ID = 1:length(paths_pos) 
    path1 = paths_pos{path1_ID}; 
    state_strt = path1(1); 
    state_end = path1(end); 

     
    % Append state path to set 
    if isempty(state_paths_store) 
        state_paths_store = [state_strt, state_end]; 
        path_map_store = [path1_ID, 1]; 
    else 
        path2_ID = 1; 
        while path2_ID <= size(state_paths_store, 1) 
            path2 = state_paths_store(path2_ID, :); 
            if isequal([state_strt, state_end], path2) 
                break 
            end 
            path2_ID = path2_ID + 1; 
        end 
        if path2_ID > size(state_paths_store, 1) 
            state_paths_store = [state_paths_store; state_strt, state_end]; 
        end 
        path_map_store = [path_map_store; path1_ID, path2_ID]; 
    end 
end 
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state_paths_pos = sortrows(state_paths_store); 
path_map_pos = path_map_store; 

  
for path1_ID = 1:size(state_paths_pos, 1) 
    path1 = state_paths_pos(path1_ID, :); 
    path2_ID = 1; 
    while path2_ID <= size(state_paths_store, 1) 
        path2 = state_paths_store(path2_ID, :); 
        if isequal(path1, path2) 
            break 
        end 
        path2_ID = path2_ID + 1; 
    end 

     
    for path3_ID = 1:size(path_map_store) 
        if path_map_store(path3_ID, 2) == path2_ID 
            path_map_pos(path3_ID, 2) = path1_ID; 
        end 
    end 
end 

  
fprintf('    Reverse iteration complete\n'); 

  
% Correct State IDs 
act_num = act_num_pos + act_num_pre - act_num_master; 
for seq1_ID = find(data_pos(:, 2) > act_num_master)' 
    data_pos(seq1_ID, 2) = data_pos(seq1_ID, 2) - act_num_master + 

act_num_pre; 
end 
for path_ID = 1:size(paths_pos, 1) 
    path = paths_pos{path_ID}; 
    if not(path(1) == start_AID) 
        path(1) = path(1) - act_num_master + act_num_pre; 
    end   
    if not(path(end) == end_AID) 
        path(end) = path(end) - act_num_master + act_num_pre; 
    end 
    paths_pos{path_ID} = path; 
end 

  
% Update labels 
for state1 = 1:(act_num_pos - act_num_master) 
    NLabel = stateLabel; 
    NLabel = strcat(NLabel, num2str(state1 + act_num_pre - act_num_master)); 
    labels_master = [labels_master{:}, {NLabel}]'; 
end 

  

  
%% Visualize Post Iteration 
if toggle_plot_pos 
    %% Reset data 
    % Instance storage 
    strt_node_AID = start_AID; 
    end_node_AID = end_AID; 
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    strt_seq_IDs = [];                               % Sequence ID for start 

nodes 
    end_seq_IDs = [];                                % Sequence ID for end 

nodes 
    act_cnt = zeros(act_num, 1); 

  
    % Remove actions 
    data_store = data_pos; 
    seq1_ID = 1; 
    while seq1_ID <= size(data_pos, 1) 
        if ismember(data_pos(seq1_ID, 2), [dataF_AID, (end_AID + 

1):act_num_master]) 
            data_pos(seq1_ID, :) = []; 
        else 
            seq1_ID =seq1_ID + 1; 
        end 
    end 

  
    % Scan for sample terminals 
    [strt_seq_IDs, end_seq_IDs, act_cnt] = terminalSeek(data_pos, 

strt_node_AID, targ_node_AID, end_node_AID, end_AID, act_num); 

     
    % Determine actions with low measurable behavior 
    skip_AIDs = []; 
    for act1 = (act_num_master + 1):act_num 
        if (act_cnt(act1) <= threshold) && not(ismember(act1, skip_AIDs)) && 

not(act1 == dataF_AID) 
            skip_AIDs = [skip_AIDs, act1]; 
        end 
    end 
    skip_AIDs = sort(skip_AIDs); 

     
    % Add states to labels 
    labels = {}; 
    for act1 = 1:act_num 
        if not(ismember(act1, [skip_AIDs, dataF_AID, (end_AID + 

1):act_num_pre])) 
            labels = [labels(:)', labels_master(act1)]; 
        end 
    end 
    labels = labels'; 

     
    figure(2) 
    if toggle_mand 
        title2 = 'Mandatory Post States'; 
        % Set edges 
        act_path_pos = globalPathPos(data_pos, act_num, strt_seq_IDs, 

end_seq_IDs, dataF_AID, skip_AIDs); 
        act_mand_pos = act_path_pos(:, 2); 

  
        % Mandatory post action model 
        disp_path2 = []; % Construct edges 
        for act1 = 1:act_num 
            for act2 = act_mand_pos{act1} 
                disp_path2 = [disp_path2; act1, act2]; 
            end 
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        end 
    else 
        title2 = 'State Diagram as Determined by Reverse Iteration'; 
        % Set edges 
        disp_path2 = []; 
        for seq1_ID = 1:(size(data_pos, 1) - 1) 
            state1 = data_pos(seq1_ID, 2); 
            if not(state1 == end_AID) 
                state2 = data_pos((seq1_ID + 1), 2); 
                if not(isequal([state1, state2], [start_AID, end_AID])) 
                    if isempty(disp_path2) 
                        disp_path2 = [state1, state2]; 
                    else 
                        match = 0; 
                        edge_ID = 1; 
                        while (edge_ID <= size(disp_path2, 1)) && not(match) 
                            if isequal(disp_path2(edge_ID, :), [state1, 

state2]) 
                                match = 1; 
                            end 
                            edge_ID = edge_ID + 1; 
                        end 
                        if not(match) 
                            disp_path2 = [disp_path2; state1, state2]; 
                        end 
                    end 
                end 
            end 
        end 
        disp_path2 = sortrows(disp_path2); 
    end 

     
    diagram2 = digraph(disp_path2(:, 1), disp_path2(:, 2)); 
    diagram2 = rmnode(diagram2, [skip_AIDs, dataF_AID, (end_AID + 

1):act_num_pre]); 
    NLabels = labels; 
    plot(diagram2, 'Layout', 'layered', 'NodeLabel', NLabels); 
    title(title2); 

     
    % Reset 
    data_pos = data_store; 
end 

  
if toggle_ana 
    %% Analyze path user behavior 
    for direction = [-1, 1] 
        switch direction 
            case -1 
                paths_dir = paths_pos; 
                data_dir = data_pos; 
                state_list = [start_AID, end_AID, (act_num_pre + 

1):act_num_pos]; 
                path_map_dir = path_map_pos; 
            case 1 
                paths_dir = paths_pre; 
                data_dir = data_pre; 
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                state_list = [start_AID, end_AID, (act_num_master + 

1):act_num_pre]; 
                path_map_dir = path_map_pre; 
        end 

         
        % Analyze data 
        [concen_p_dir, time_p_dir, prob_p_dir, concen_s_dir, time_s_dir, 

prob_s_dir] = pathAnalyze(data_dir, paths_dir, path_map_dir, start_AID, 

dataF_AID, end_AID, act_num_master); 

         
        switch direction 
            case -1 
                concen_paths_pos = concen_p_dir; 
                time_paths_pos = time_p_dir; 
                prob_paths_pos = prob_p_dir; 
                concen_state_pos = concen_s_dir; 
                time_state_pos = time_s_dir; 
                prob_state_pos = prob_s_dir; 
            case 1 
                concen_paths_pre = concen_p_dir; 
                time_paths_pre = time_p_dir; 
                prob_paths_pre = prob_p_dir; 
                concen_state_pre = concen_s_dir; 
                time_state_pre = time_s_dir; 
                prob_state_pre = prob_s_dir; 
        end 
    end 
    fprintf('    User data collection complete\n'); 
end 
fprintf('Analysis complete\n'); 

collectPaths.mat 

This function collects a list of all the path seen in the data set, outputting a cell array 

containing all the paths as described in the CoffeeMiner.mat section. 

 

function paths = collectPaths(dataF_AID, end_AID, act_num_master, data) 
    %% collectPaths 01 
    %  Collects list of paths in data set 

     
    %% Prep storage 
    paths = {}; 

     
    %% Iterate through data 
    seq1_ID = 1; 
    while seq1_ID < size(data, 1) 
        state1 = data(seq1_ID, 2); 
        if state1 == end_AID 
            seq1_ID = seq1_ID + 1; 
        end 

         
        % Find end of path 
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        seq2_ID = seq1_ID + 1; 
        state2 = 0; 
        while not(state2) && (seq2_ID <= size(data, 1)) 
            state2 = data(seq2_ID, 2); 
            if not(state2 == end_AID) && not(state2 > act_num_master) 
                state2 = 0; 
                seq2_ID  = seq2_ID + 1; 
            end 
        end 
        path = data(seq1_ID:seq2_ID, 2); 

         
        if not(ismember(dataF_AID, path)) 
            % Store path 
            if isempty(paths) 
                paths = {path}; 
            else 
                % Check inclusion in paths 
                match = 0; 
                path1_ID = 1; 
                while not(match) && (path1_ID <= length(paths)) 
                    path1 = paths{path1_ID}; 
                    if isequal(path, path1) 
                        match = 1; 
                    else 
                        path1_ID = path1_ID + 1; 
                    end 
                end 

  
                if not(match) 
                    paths = sortPaths([paths; {path}]); 
                end 
            end 
        end 

         
        seq1_ID = seq2_ID; 
    end 

     
end 

globalPathPre.mat 

This script collects the inputs and states that are mandatory for other inputs. The output, 

act_mand_pre, is a cell array with each row index corresponding to an input ID. The first 

column includes a list of inputs and states that occur prior to the row ID input in every use instance, 

and the second indicates those that always occur after the row ID input. 

 

function act_mand_pre = globalPathPre(data, act_num, smpl_strt_IDs, 

smpl_end_IDs, dataF_AID, skip_AIDs) 
    %% Analyze global mandatory path    
    %  Outputs complete paths as well as reduced paths 
    % Instance storage 
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    act_cnt = zeros(act_num, 1); 
    path_glob_pre = zeros(act_num) + 1;       % Switches for mandatory 

inclusion in previous path 
    absent = zeros(act_num, 1); 

  
    % Scan path 
    for smpl_ID = 1:length(smpl_strt_IDs) 
        start_ID = smpl_strt_IDs(smpl_ID); 
        end_ID = smpl_end_IDs(smpl_ID); 
        smpl = data(start_ID:end_ID, :); 

         
        for act1 = 1:act_num 
            if not(ismember(act1, smpl))% Mark if not present 
                absent(act1) = absent(act1) + 1; 
            end 
        end 

  
        for act1_ID = 1:size(smpl, 1) 
            act1 = smpl(act1_ID, 2); 
            if (act1 == dataF_AID) || ismember(act1, skip_AIDs) 
                continue 
            end 
            path_prev = smpl(1:(act1_ID - 1), 2); 
            if not(ismember(dataF_AID, path_prev)) 
                for act2 = 1:act_num 
                    if not(ismember(act2, path_prev)) || ismember(act2, 

skip_AIDs) 
                        path_glob_pre(act1, act2) = 0; 
                    end 
                end 
            end 
        end 
    end 
    for act1 = 1:act_num % Convert absent to boolean 
        if absent(act1) == length(smpl_strt_IDs) 
             absent(act1) = 1; 
        else  
            absent(act1) = 0; 
        end 
    end 

  
    %% Collect mandatory actions 
    % Instance storage 
    act_mand_pre = {}; 

  
    % Begin iteration 
    for act1 = 1:act_num 
        act_mand_pre = [act_mand_pre(:)', {[]}]; 
        if not(absent(act1)) 
            for act2 = 1:act_num 
                if path_glob_pre(act1, act2) == 1 
                    act_mand_pre{act1} = [act_mand_pre{act1}, act2]; 
                end 
            end 
        end 
    end 
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    act_mand_pre = act_mand_pre'; 

     

  
    %% Reduce Routes 
    % Prep cells 
    act_pre = cell(act_num, 2); 
    for act1 = 1:act_num 
        act_pre{act1, 1} = act_mand_pre{act1}; 
    end 
    act_mand_pre = act_pre; 

     
    % Reduce mandatory actions (Previous) 
    for act1 = 1:act_num % Collect actions which act1 is a component of 
        state1_pre = [act_mand_pre{act1}, act1]; 
        for act2 = 1:act_num 
            state2_pre = [act_mand_pre{act2}, act2]; 
            if all(ismember(state1_pre, state2_pre)) && not(act2 == act1) 
                act_mand_pre{act1, 2} = [act_mand_pre{act1, 2}, act2]; 
            end 
        end 
    end 

  
    for act1 = 1:act_num % Reduce component actions to direct routes 
        comp1 = act_mand_pre{act1, 2}; 
        remove = zeros(1, length(comp1)); 
        for act2_ID = 1:length(comp1) % Seek through component actions 
            act2 = comp1(act2_ID); 
            comp2 = act_mand_pre{act2, 2}; 
            act2_ID_store = act2_ID; 

  
            for act3 = comp2 % Seek through component actions component 

actions 
                for act2_ID = 1:length(comp1) % Seek matching component 

actions 
                    act2 = comp1(act2_ID); 
                    if act3 == act2 
                        remove(act2_ID) = 1; 
                    end 
                end 
            end 
            act2_ID = act2_ID_store; 
            act2 = comp1(act2_ID); 
        end 

  
        comp1_store = comp1; 
        comp1 = []; % Remove redudant actions 
        for act2_ID = 1:length(remove) 
            if not(remove(act2_ID)) 
               comp1 = [comp1, comp1_store(act2_ID)];  
            end 
        end 
        act_mand_pre{act1, 3} = comp1; 
    end 

     
    act_mand_pre = act_mand_pre(:, [1, 3]); 
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end 

 

globalPathPos.mat 

This script functions identically to globalPathPre.mat but operates on data sets in 

reverse iteration. 

 

function act_mand_pos = globalPathPos(data, act_num, smpl_strt_IDs, 

smpl_end_IDs, dataF_AID, skip_AIDs) 

    %% globalPathPos 01 
    %      Combines paths at sample end 

     
    act_cnt = zeros(act_num, 1); 
    path_glob_pos = zeros(act_num) + 1;       % Switches for mandatory 

inclusion in following path 
    absent = zeros(act_num, 1); 

  
    % Scan path 
    for smpl_ID = 1:length(smpl_strt_IDs) 
        start_ID = smpl_strt_IDs(smpl_ID); 
        end_ID = smpl_end_IDs(smpl_ID); 
        smpl = data(start_ID:end_ID, :); 

         
        for act1 = 1:act_num 
            if not(ismember(act1, smpl))% Mark if not present 
                absent(act1) = absent(act1) + 1; 
            end 
        end 

  
        for act1_ID = 1:size(smpl, 1) 
            act1 = smpl(act1_ID, 2); 
            if (act1 == dataF_AID) || ismember(act1, skip_AIDs) 
                continue 
            end 
            path_pos = smpl((act1_ID + 1):size(smpl, 1), 2); 
            if not(ismember(dataF_AID, path_pos)) 
                for act2 = 1:act_num 
                    if not(ismember(act2, path_pos)) || ismember(act2, 

skip_AIDs) 
                        path_glob_pos(act1, act2) = 0; 
                    end 
                end 
            end 
        end 
    end 
    for act1 = 1:act_num % Convert absent to boolean 
        if absent(act1) == length(smpl_strt_IDs) 
             absent(act1) = 1; 
        else  
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            absent(act1) = 0; 
        end 
    end 

  
    %% Collect mandatory actions 
    % Instance storage 
    act_mand_pos = {}; 

  
    % Begin iteration 
    for act1 = 1:act_num 
        act_mand_pos = [act_mand_pos(:)', {[]}]; 
        if not(absent(act1)) 
            for act2 = 1:act_num 
                if path_glob_pos(act1,act2) == 1 
                    act_mand_pos{act1} = [act_mand_pos{act1}, act2]; 
                end 
            end 
        end 
    end 
    act_mand_pos = act_mand_pos'; 

     

  
    %% Reduce Routes 
    % Prep cells 
    act_pos = cell(act_num, 2); 
    for act1 = 1:act_num 
        act_pos{act1, 1} = act_mand_pos{act1}; 
    end 
    act_mand_pos = act_pos; 

     
    % Reduce mandatory actions (Post) 
    for act1 = 1:act_num % Collect actions which act1 is a component of 
        state1_pos = [act_mand_pos{act1}, act1]; 
        for act2 = 1:act_num 
            state2_pos = [act_mand_pos{act2}, act2]; 
            if all(ismember(state1_pos, state2_pos)) && not(act2 == act1) 
                act_mand_pos{act1, 2} = [act_mand_pos{act1, 2}, act2]; 
            end 
        end 
    end 

  
    for act1 = 1:act_num % Reduce component actions to direct routes 
        comp1 = act_mand_pos{act1, 2}; 
        remove = zeros(1, length(comp1)); 
        for act2_ID = 1:length(comp1) % Seek through component actions 
            act2 = comp1(act2_ID); 
            comp2 = act_mand_pos{act2, 2}; 
            act2_ID_store = act2_ID; 

  
            for act3 = comp2 % Seek through component actions component 

actions 
                for act2_ID = 1:length(comp1) % Seek matching component 

actions 
                    act2 = comp1(act2_ID); 
                    if act3 == act2 
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                        remove(act2_ID) = 1; 
                    end 
                end 
            end 
            act2_ID = act2_ID_store; 
            act2 = comp1(act2_ID); 
        end 

  
        comp1_store = comp1; 
        comp1 = []; % Remove redudant actions 
        for act2_ID = 1:length(remove) 
            if not(remove(act2_ID)) 
               comp1 = [comp1, comp1_store(act2_ID)];  
            end 
        end 
        act_mand_pos{act1, 3} = comp1; 
    end 

  
    act_mand_pos = act_mand_pos(:, [1, 3]); 
end 

localPath.mat 

This function produces simple Markov chain analysis of the trace behavior. Variable 

path_T1_pos stores the probabilities of an input being made given the previous input. This 

information is stored in a matrix, with each potential sequence of inputs stored in a separate row, 

such that the first index in the row stores the probability, the second index stores the second input, 

and the third index stores the initial input. 

Variable path_T2_pos stores information similarly, only calculating probabilities given 

two known inputs instead of one. Each row of the matrix is the probability, final input, initial input, 

and second input. 

 

function [path_T1_pos, path_T2_pos] = localPath(data, strt_seq_IDs, 

end_seq_IDs, dataF_AID, skip_AIDs) 
    %% Analyze Local Path 
    %  Iterates through local path in specified sample data 
    % Instance storage 
    path_T1_pos = [];   % Probability (3) of action (2) following given 

actions (1) 
    path_T2_pos = [];   % Probability (4) of action (3) following given 

actions (1-2) 

  
    %% Scan path 
    % Iterate through samples 
    for smpl_ID = 1:length(strt_seq_IDs) 
        strt_seq_ID = strt_seq_IDs(smpl_ID); 
        end_seq_ID = end_seq_IDs(smpl_ID); 
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        for seq_ID = strt_seq_ID:end_seq_ID 
            act1 = data(seq_ID, 2); 
            if (seq_ID == end_seq_ID) || (act1 == dataF_AID) || 

ismember(act1, skip_AIDs) 
                continue 
            elseif seq_ID == (end_seq_ID - 1) 
                act2 = data((seq_ID + 1), 2); 
                if (act2 == dataF_AID) || ismember(act2, skip_AIDs) 
                    act2 = 0; 
                end 
                act3 = 0; 
            else 
                act2 = data(seq_ID + 1, 2); 
                if (act2 == dataF_AID) || ismember(act2, skip_AIDs) 
                    act2 = 0; 
                end 
                act3 = data(seq_ID + 2, 2); 
                if (act3 == dataF_AID) || ismember(act3, skip_AIDs) 
                    act3 = 0; 
                end 
            end 

             
            % Append to first order path 
            if act2 
                if not(isempty(path_T1_pos)) 
                    match = 0; 
                    for check_index = 1:size(path_T1_pos, 1) 
                        path = path_T1_pos(check_index, :); 
                        if (path(1) == act1) && (path(2) == act2) 
                            path_T1_pos(check_index, 3) = 

path_T1_pos(check_index, 3) + 1; 
                            match = 1; 
                            break 
                        end 
                    end 
                    if not(match) 
                        path_T1_pos = [path_T1_pos; [act1, act2 , 1]]; 
                    end 
                else 
                    path_T1_pos = [act1, act2, 1]; 
                end 
            end 

             
            % Append to second order path 
            if act3 
                if not(isempty(path_T2_pos)) 
                    match = 0; 
                    for check_index = 1:size(path_T2_pos, 1) 
                        path = path_T2_pos(check_index, :); 
                        if (path(1) == act1) && (path(2) == act2) && (path(3) 

== act3) 
                            path_T2_pos(check_index, 4) = 

path_T2_pos(check_index, 4) + 1; 
                            match = 1; 
                            break 
                        end 
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                    end 
                    if not(match) 
                        path_T2_pos = [path_T2_pos; [act1, act2 ,act3 ,1]]; 
                    end 
                else 
                    path_T2_pos = [act1, act2, act3, 1]; 
                end 
            end 
        end 
    end 

  
    %% Sort and convert to probability 
    path_T1_pos = sortrows(path_T1_pos); 
    path_T2_pos = sortrows(path_T2_pos); 

  
    path_ID = 1; 
    while path_ID <= size(path_T1_pos, 1) 
        path = path_T1_pos(path_ID, :); 
        sum = 0; 
        match_path_ID = path_ID; 
        match_path = path_T1_pos(match_path_ID, :); 
        while path(1) == match_path(1) 
            sum = sum + match_path(3); 
            match_path_ID = match_path_ID + 1; 
            if match_path_ID > size(path_T1_pos, 1) 
                break 
            end 
            match_path = path_T1_pos(match_path_ID, :); 
        end 
        path_T1_pos(path_ID:(match_path_ID - 1), 3) = 

path_T1_pos(path_ID:(match_path_ID - 1), 3) / sum; 
        path_ID = match_path_ID; 
    end 

  
    path_ID = 1; 
    while path_ID <= size(path_T2_pos, 1) 
        path = path_T2_pos(path_ID, :); 
        sum = 0; 
        match_path_ID = path_ID; 
        match_path = path_T2_pos(match_path_ID, :); 
        while path(1:2) == match_path(1:2) 
            sum = sum + match_path(4); 
            match_path_ID = match_path_ID + 1; 
            if match_path_ID > size(path_T2_pos, 1) 
                break 
            end 
            match_path = path_T2_pos(match_path_ID, :); 
        end 
        path_T2_pos(path_ID:(match_path_ID - 1), 4) = 

path_T2_pos(path_ID:(match_path_ID - 1), 4) / sum; 
        path_ID = match_path_ID; 
    end 
end 
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stateSubset.mat 

This function reads the trace, determines if paths subset each other, modifies path 

definitions to remove subsetting, and then outputs a trace with the updated state palcements. 

 

function data = stateSubset(start_AID, dataF_AID, end_AID, data, paths, 

act_num_master, direction) 
    %% stateSubset 01 
    % Detects when paths between states overlap 

     
    %% Prep data 
    % Find sample terminals 
    strt_smpl_seq_IDs = find(data(:, 2) == start_AID); 
    end_smpl_seq_IDs = find(data(:, 2) == end_AID); 

     
    if direction  == 1 
        %% Find new paths for forward iterated states 
        % Collect paths by state 
        paths_by_state = {}; 
        strt_states = []; 
        end_states = {}; 
        path1_ID = 1; 
        while path1_ID <= length(paths) 
            path1 = paths{path1_ID}; 
            strt_state1 = path1(1); 
            path2_ID = path1_ID + 1; 
            state_match = 1; 
            while state_match && (path2_ID < length(paths)) 
                path2 = paths{path2_ID}; 
                strt_state2 = path2(1); 
                if not(strt_state1 == strt_state2) 
                    state_match = 0; 
                else 
                    path2_ID = path2_ID + 1; 
                end 
            end 

             
            % Isolate paths 
            paths_out = paths(path1_ID:(path2_ID - 1)); 
            end_states_sub = []; 
            for path3_ID = 1:length(paths_out) 
                path3 = paths_out{path3_ID}; 
                end_state3 = path3(end); 
                if not(ismember(end_state3, end_states_sub)) 
                    end_states_sub = [end_states_sub; end_state3]; 
                end 
            end 

             
            % Store paths 
            strt_states = [strt_states; strt_state1]; 
            end_states = [end_states; {end_states_sub}]; 
            paths_by_state = [paths_by_state; {paths_out}]; 
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            path1_ID = path2_ID; 
        end 

         
        % Compare paths between states 
        rem_paths = {}; 
        for state_sub_ID = 1:length(strt_states) 
            state_sub = strt_states(state_sub_ID); 
            end_states_sub = end_states{state_sub_ID}; 
            paths_sub = paths_by_state{state_sub_ID}; 
            for state_sup_ID = 1:length(strt_states) 
                if not(state_sub_ID == state_sup_ID) % Skip self subsetting 
                    state_sup = strt_states(state_sup_ID); 
                    end_states_sup = end_states{state_sup_ID}; 
                    paths_sup = paths_by_state{state_sup_ID}; 
                    if all(ismember(end_states_sub, end_states_sup)) && 

(length(paths_sup) >= length(paths_sub)) % Check possibility of inclusion 
                        % Collect remainder paths 
                        rem_paths1 = {}; 
                        rem_reach_sub = {}; 
                        for path_sub_ID = 1:length(paths_sub) 
                            path_sub = paths_sub{path_sub_ID}; 
                            len_sub = length(path_sub); 
                            for path_sup_ID = 1:length(paths_sup) 
                                path_sup = paths_sup{path_sup_ID}; 
                                len_sup = length(path_sup); 
                                if len_sup > len_sub 
                                    path_comp = path_sup((end - len_sub + 

2):end); 
                                    if isequal(path_comp, path_sub(2:end)) 
                                        rem_path1 = path_sup(1:(end - len_sub 

+ 1)); 

                                         
                                        rem_path_ID = 1; 
                                        while rem_path_ID <= 

length(rem_paths1) 
                                            rem_path = 

rem_paths1{rem_path_ID}; 
                                            if isequal(rem_path, rem_path1) 
                                                break 
                                            end 
                                            rem_path_ID = rem_path_ID + 1; 
                                        end 

                                         
                                        if rem_path_ID > length(rem_paths1) 
                                            rem_paths1 = [rem_paths1; 

{rem_path1}]; 
                                            rem_reach_sub = [rem_reach_sub; 

{[]}]; 
                                        end 

                                         
                                        rem_reach_sub{rem_path_ID} = 

[rem_reach_sub{rem_path_ID}; path_sub_ID]; 
                                    end 
                                end 
                            end 
                        end 
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                        % Determine remainder path utility 
                        rem_paths1_store = rem_paths1; 
                        rem_paths1 = {}; 
                        for rem_path1_ID = 1:length(rem_paths1_store) 
                            rem_path1 = rem_paths1_store{rem_path1_ID}; 
                            rem_reach_sub1 = rem_reach_sub{rem_path1_ID}; 
                            if all(ismember(1:length(paths_sub), 

rem_reach_sub1)) % Check if remainder path reaches all sub paths 
                                in_path_sups = []; 
                                for path_sup_ID = 1:length(paths_sup) 
                                    path_sup = paths_sup{path_sup_ID}; 
                                    if length(path_sup) > length(rem_path1) 
                                        if isequal(rem_path1, 

path_sup(1:length(rem_path1))) 
                                            in_path_sups = [in_path_sups; 

path_sup_ID]; 
                                        end 
                                    end 
                                end 

                                 
                                if length(in_path_sups) == 

length(paths_sub) % Check if remainder path does not lead to non-sub paths 
                                    rem_paths1 = [rem_paths1; {rem_path1}]; 
                                end 
                            end 
                        end 

                         
                        % Store results 
                        for rem_path1_ID = 1:length(rem_paths1) 
                            rem_path1 = [rem_paths1{rem_path1_ID}; 

state_sub]; 
                            rem_paths = [rem_paths; {rem_path1}]; 
                        end 
                    end 
                end 
            end 
        end 

         
        %% Merge with paths 
        paths_store = sortPaths([paths; rem_paths]); 
        paths = {}; 
        path1_ID = 1; 
        while path1_ID < length(paths_store) 
            path1 = paths_store{path1_ID}; 
            state1 = path1(1); 
            path2_ID = path1_ID + 1; 
            while path2_ID <= length(paths_store) 
                path2 = paths_store{path2_ID}; 
                state2 = path2(1); 
                if not(state1 == state2) 
                    break 
                else 
                    path2_ID = path2_ID + 1; 
                end 
            end 
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            bound1 = path1_ID; 
            bound2 = path2_ID - 1; 

             

             
            for path1_ID = bound1:bound2 
                do_not_inc = 0; 
                path1 = paths_store{path1_ID}; 
                for path3_ID = bound1:bound2 
                    path3 = paths_store{path3_ID}; 
                    len3 = length(path3); 
                    if len3 < length(path1) 
                        path_comp = path1(1:(len3 - 1)); 
                        if isequal(path_comp, path3(1:(end - 1))) 
                            do_not_inc = 1; 
                            break 
                        end 
                    end 
                end 

                 
                if not(do_not_inc) 
                    paths = [paths; {path1}]; 
                end 
            end 

             
            path1_ID = path2_ID; 
        end 
    end 

     
    % Collect paths by state 
    paths_by_state = {}; 
    strt_states = []; 
    end_states = {}; 
    path1_ID = 1; 
    while path1_ID <= length(paths) 
        path1 = paths{path1_ID}; 
        strt_state1 = path1(1); 
        path2_ID = path1_ID + 1; 
        state_match = 1; 
        while state_match && (path2_ID < length(paths)) 
            path2 = paths{path2_ID}; 
            strt_state2 = path2(1); 
            if not(strt_state1 == strt_state2) 
                state_match = 0; 
            else 
                path2_ID = path2_ID + 1; 
            end 
        end 

  
        % Isolate paths 
        paths_out = paths(path1_ID:(path2_ID - 1)); 
        end_states_out = []; 
        for path3_ID = 1:length(paths_out) 
            path3 = paths_out{path3_ID}; 
            end_state3 = path3(end); 
            if not(ismember(end_state3, end_states_out)) 
                end_states_out = [end_states_out; end_state3]; 
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            end 
        end 

  
        % Store paths 
        strt_states = [strt_states; strt_state1]; 
        end_states = [end_states; {end_states_out}]; 
        paths_by_state = [paths_by_state; {paths_out}]; 

  
        path1_ID = path2_ID; 
    end 

     
    %% Store data 
    % Iterate through samples 
    data_store = data; 
    data = []; 
    for smpl_ID = 1:length(strt_smpl_seq_IDs) 
        strt_smpl_seq_ID = strt_smpl_seq_IDs(smpl_ID); 
        end_smpl_seq_ID = end_smpl_seq_IDs(smpl_ID); 
        smpl_data = data_store(strt_smpl_seq_ID:end_smpl_seq_ID, :); 
        smpl = smpl_data(:, 2); 

         
        % Iterate through single sample 
        path_strt_ID = 1; 
        smpl_end_ID = length(smpl); 
        while path_strt_ID < smpl_end_ID 
            path_strt_AID = smpl(path_strt_ID); 

             
            % Collect current path 
            path_end_ID = path_strt_ID + 1; 
            path_end_AID = smpl(path_end_ID); 
            while not(path_end_AID == end_AID) && not(path_end_AID > 

act_num_master) 
                path_end_ID = path_end_ID + 1; 
                path_end_AID = smpl(path_end_ID); 
            end 
            path_curr = smpl(path_strt_ID:path_end_ID); 

  
            % Collect known paths from start state 
            if path_strt_AID == start_AID 
                path_set = paths_by_state{1}; 
            else 
                path_set = paths_by_state{path_strt_AID - act_num_master + 

1}; 
            end 

             
            % Iterate through current path 
            match = 0; 
            seq1_ID = 1; 
            while (seq1_ID < length(path_curr)) && not(match) 
                path_seg = path_curr(1:seq1_ID); 
                % Match current path segment against known paths 
                path_kno_ID = 1; 
                while (path_kno_ID <= length(path_set)) && not(match) 
                    path_kno = path_set{path_kno_ID}; 
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                    if (isequal(path_seg, path_kno(1:(end - 1)))) && 

not(length(path_kno) ==  length(path_curr)) 
                        match = 1; 
                    else 
                        path_kno_ID = path_kno_ID + 1; 
                    end 
                end 
                if not(match) 
                    seq1_ID = seq1_ID + 1; 
                end 
            end 

             
            % Update sample 
            if match 
                path_strt_ID = path_strt_ID + seq1_ID; 
                smpl_data_store = smpl_data; 
                smpl_data = smpl_data_store(1:(path_strt_ID - 1), :); 
                smpl_data = [smpl_data; smpl_data(end, :)]; 
                smpl_data(end, 2) = path_kno(end); 
                smpl_data = [smpl_data; 

smpl_data_store(path_strt_ID:end, :)]; 
                smpl = smpl_data(:, 2); 
                smpl_end_ID = length(smpl); 
                capture = 1; 
            else 
                path_strt_ID = path_end_ID; 
            end 
        end 

         
        % Store data 
        if isempty(data) 
            data = smpl_data; 
        else 
            data = [data; smpl_data]; 
        end 
    end 
end 

 

stateEnforce.mat 

This function merges preliminary states and subsets paths iteratively until paths are 

consistent and no further simplifications can be made to the state machine. Output data1 is the 

updated trace with new state definitions, and paths1 is the new path set extracted from the trace. 

 

function [data1, paths1] = stateEnforce(start_AID, dataF_AID, end_AID, 

data_master, act_num_master, direction) 
    %% stateEnforce 01 
    % Forces state definitions and determinism to apply uniformly 
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    %% Iterate 
    fprintf('        State enforcement commencing...\n'); 
    % Prep iterators 
    complete = 0; 
    data1 = data_master; 
    paths1 = collectPaths(dataF_AID, end_AID, act_num_master, data1); 

     
    % Begin enforcement 
    while not(complete) 
        [data2, paths2] = stateJoin(start_AID, dataF_AID, end_AID, data1, 

act_num_master, direction); 
        data3 = stateSubset(start_AID, dataF_AID, end_AID, data2, paths2, 

act_num_master, direction); 
        paths3 = collectPaths(dataF_AID, end_AID, act_num_master, data3); 

         
        if direction == -1 
            capture = 1; 
        end 

         
        if isequal(data3, data1) 
            complete = 1; 
        else 
            data1 = data3; 
            paths1 = paths3; 
        end 
    end 
    fprintf('        State enforcement complete\n'); 
end 

 

stateIterator.mat 

This function examines the trace and detects states with the global and local contexts and 

appends detected states to the trace. This trace is then the output. 

 

function data = stateIterator(start_AID, targ_node_AID, dataF_AID, end_AID, 

data_master, act_num_master, threshold, direction) 
    %% Prep Path Iterator 
    %  Detect states iteratively and add to data set 
    %  Changes from 01 
    %      - Changed how states were stored to require matching paths in 
    %      - Requires that next node not be start node when creating states 

     
    % Start conditions 
    act_num = act_num_master; 
    complete = [0]; 
    switch direction 
        case 1 
            end_node_AID = end_AID; 
            data = data_master; 
            new_state_AIDs = [start_AID]; 
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        case -1 
            end_node_AID = start_AID; 
            data = flipud(data_master); 
            new_state_AIDs = [end_AID]; 
    end 

     

  
    %% Iterate 
    while not(all(complete)) 
%         fprintf('    New States %d\n', length(new_state_AIDs)); 
        strt_node_list = new_state_AIDs; 
        end_node_list = end_node_AID; 
        new_state_AIDs = []; 
        path_list = []; 
        for strt_node_AID = strt_node_list 
            for end_node_AID = end_node_list 
                path_list = [path_list; strt_node_AID, end_node_AID]; 
            end 
        end 
        complete = zeros(size(path_list, 1), 1); 

  
        path_ID = 1; 
        while path_ID <= length(complete) 
            %% Initial Scan 
            % Instance action IDs 
            strt_node_AID = path_list(path_ID, 1); 
            end_node_AID = path_list(path_ID, 2); 
            state_AIDs = (act_num_master + 1):act_num; 

  
            % Scan for sample terminals 
            switch direction 
                case 1 
                    [strt_seq_IDs, end_seq_IDs, act_cnt] = terminalSeek(data, 

strt_node_AID, targ_node_AID, end_node_AID, end_AID, act_num); 
                case -1 
                    [strt_seq_IDs, end_seq_IDs, act_cnt] = terminalSeek(data, 

strt_node_AID, targ_node_AID, end_node_AID, start_AID, act_num); 
            end 

  
            % Determine actions with low measurable behavior 
            skip_AIDs = []; 
            for act1 = 1:act_num 
                if (act_cnt(act1) <= threshold) && not(ismember(act1, 

skip_AIDs)) && not(act1 == dataF_AID) 
                    skip_AIDs = [skip_AIDs, act1]; 
                end 
            end 
            skip_AIDs = sort(skip_AIDs); 
            if isempty(strt_seq_IDs) 
    %             fprintf('        ERROR: Path %s does not exist\n', 

labels_master{strt_node_AID}); 
            elseif length(skip_AIDs) > (act_num - 2) 
    %             fprintf('        ERROR: Not enough data to characterize 

behavior on %s\n', labels_master{strt_node_AID}); 
            else 
                %% Analyze global mandatory path 
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    %             fprintf('        Path %s\n', labels_master{strt_node_AID}); 
                % Determine mandatory preceding actions and find states 
                act_path_pre = globalPathPre(data, act_num, strt_seq_IDs, 

end_seq_IDs, dataF_AID, skip_AIDs); 
                act_mand_pre = act_path_pre(:, 2); 
                act_num_pre = size(act_mand_pre, 1); 
                act_mand_pre_root = cell(act_num_pre, 1); 
                for act1 = 1:act_num_pre 
                    branch1 = act_mand_pre{act1}; 
                    for act2 = branch1 
                        root1 = act_mand_pre_root{act2, 1}; 
                        if not(ismember(act1, root1)) 
                            act_mand_pre_root{act2, 1} = [root1, act1]; 
                        end 
                    end 
                end 

  
                %% Analyze local mandatory path 
                [act_avail_pos_T1, ~] = localPath(data, strt_seq_IDs, 

end_seq_IDs, dataF_AID, skip_AIDs); 

  
                %% Update data set 
                data_store = data; 
                data = []; 
                seq1_ID = 1; 
                states = {}; 
                while seq1_ID <= size(data_store, 1) 
                    data = [data; data_store(seq1_ID, :)]; 
                    if ismember(seq1_ID, strt_seq_IDs) 
                        end_seq_ID = end_seq_IDs(strt_seq_IDs == seq1_ID); 
                        while seq1_ID <= end_seq_ID 
                            if ismember(seq1_ID, strt_seq_IDs) 
                                smpl = []; 
                            else 
                                data = [data; data_store(seq1_ID, :)]; 
                            end 
                            smpl = [smpl; data_store(seq1_ID, :)]; 

  
                            if size(smpl, 1) > 1 % Only add states after 

first action 
                                act_avail_IDs = act_avail_pos_T1(:, 1) == 

data(end, 2); 
                                act_out_local = 

act_avail_pos_T1(act_avail_IDs, 2)'; 
                                act_out = []; 
                                for act1 = act_out_local 
                                    if all(ismember(act_path_pre{act1, 1}, 

smpl)) 
                                        act_out = [act_out, act1]; 
                                    end 
                                end 

                                 
                                switch direction 
                                    case 1 
                                        end_exclude = not(ismember(end_AID, 

smpl(:, 2))); 
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                                    case -1 
                                        end_exclude = not(ismember(start_AID, 

smpl(:, 2))); 
                                end 

                                 
                                if not(ismember(dataF_AID, smpl(:, 2))) && 

end_exclude && (length(act_out) > 1) && not(ismember(data_store((seq1_ID + 

1), 2), [start_AID, end_AID])) 
                                    state1_ID = 1; 
                                    while state1_ID <= length(states) 
                                        if isequal(smpl(:, 2), 

states{state1_ID}) 
                                            break 
                                        end 
                                        state1_ID = state1_ID + 1; 
                                    end 
                                    if state1_ID > length(states) 
                                        states = [states(:)', smpl(:, 2)]; 
                                        act_num_pre = act_num_pre + 1; 
                                        state1_AID = act_num_pre; 
                                    else 
                                        state1_AID = state1_ID + act_num; 
                                    end 
                                    data = [data; data_store(seq1_ID, 1), 

state1_AID, data_store(seq1_ID, 3)]; 
                                    data = [data; data_store((seq1_ID + 

1):end_seq_ID, :)]; 
                                    seq1_ID = end_seq_ID + 1; 
                                else 
                                    seq1_ID = seq1_ID + 1; 
                                end 

  
                            else 
                                seq1_ID = seq1_ID + 1; 
                            end 
                        end 
                    else 
                        seq1_ID = seq1_ID + 1; 
                    end 
                end 
                new_state_num = act_num_pre - act_num; 

  
                % Update states 
                if new_state_num 
                    for state1 = 1:new_state_num 
                        new_state_AIDs = [new_state_AIDs, (act_num + 

state1)]; 
                    end 
                end 
                act_num = max(data(:, 2)); 
            end 

  

  
            %% Iterate 
            if (length(skip_AIDs) > (act_num - 1)) || isempty(strt_seq_IDs) 

|| (new_state_num == 0) 
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                complete(path_ID) = 1; 
            end 
            path_ID = path_ID + 1; 
        end 
    end 

     
    if direction < 0 
        data = flipud(data); 
    end 
end 

 

stateJoin.mat 

This function detects when states share identical paths, and relabels them to the same state 

ID. This updated trace is then output data and the updated path set is output paths. 

 

function [data, paths] = stateJoin(start_AID, dataF_AID, end_AID, data, 

act_num_master, direction) 
    %% stateJoin 09 
    %  Detects when states share identical action paths to future state 
    %  and relabels them as the same state 
    %  Requires: 
    %      - sortPaths 
    %  Changes from 08 
    %      - Removes subsetting 

     
    %% Prep data 
    act_num = max(data(:, 2)); 
    switch direction 
        case 1 
            strt_node_AID = start_AID; 
            end_node_AID = end_AID; 
        case -1 
            strt_node_AID = end_AID; 
            end_node_AID = start_AID; 
            data = flipud(data); 
    end 

     
    %% Find state to state paths 
    % Iterate until all possible states merged 
    reduce_states = 1; 
    while reduce_states 
        % Instance storage 
        branches = cell(act_num - act_num_master + 2, 1); 
        paths = cell(act_num - act_num_master + 2); 

  
        % Iterate through start states 
        states = [start_AID, end_AID, (act_num_master + 1):act_num]; 
        for state1 = states 
            branches1 = []; 
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            paths1 = cell(act_num - act_num_master + 2, 1); 
            if not(state1 == end_node_AID) 
                for state1_seq_ID = find(data(:, 2) == state1)' 
                    state2_seq_ID = state1_seq_ID + 1; 
                    state2 = data(state2_seq_ID, 2); 
                    while not(ismember(state2, states)) 
                        state2_seq_ID = state2_seq_ID + 1; 
                        state2 = data(state2_seq_ID, 2); 
                    end 
                    path = data((state1_seq_ID + 1):state2_seq_ID, 2); 

  
                    if not(ismember(dataF_AID, path)) 
                        if not(ismember(state2, branches1)) 
                            branches1 = [branches1, state2]; 
                        end 

  
                        % Check if path recorded 
                        include = 0; 
                        path_ID = 1; 
                        if state2 > act_num_master 
                            paths1_2 = paths1{state2 - act_num_master + 2}; 
                        elseif state2 == start_AID 
                            paths1_2 = paths1{1}; 
                        else 
                            paths1_2 = paths1{2}; 
                        end 
                        if isempty(paths1_2) 
                            paths1_2 = {path}; 
                        else 
                            while path_ID <= length(paths1_2) 
                                if isequal(path, paths1_2{path_ID}) 
                                    include = 1; 
                                    break 
                                end 
                                path_ID = path_ID + 1; 
                            end 
                            if not(include) 
                                paths1_2 = [paths1_2(:)', path]; 
                            end 
                        end 

  
                        if state2 > act_num_master 
                            paths1{state2 - act_num_master + 2} = paths1_2; 
                        elseif state2 == start_AID 
                            paths1{1} = paths1_2; 
                        else 
                            paths1{2} = paths1_2; 
                        end 
                    end 
                end 
            end 
            branches1 = sort(branches1); 

  
            % Store data 
            state1_ID = find(states == state1); 
            branches{state1_ID} = branches1; 
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            for state2_ID = 1:length(states) 
                paths_list = paths1{state2_ID}; 
                % Sort paths 
                if not(isempty(paths_list)) 
                    paths_list = sortPaths(paths_list')'; 
                end 
                paths(state1_ID, state2_ID) = {paths_list}; 
            end 
        end 

         
        %% Detect shared paths 
        % Prep iteration 
        checked = zeros(act_num - act_num_master + 2, 1); 
        convert_sink = []; 
        convert_source = {}; 

  
        % Iterate through states 
        for state1_ID = 1:length(states) 
            state1 = states(state1_ID); 
            branches1 = branches{state1_ID}; 

  
            % Find matching future states 
            match_states = []; 
            state2_ID = state1_ID + 1; 
            while state2_ID <= length(states) 
                if not(checked(state2_ID)) 
                    branches2 = branches{state2_ID}; 
                    if (isequal(branches1, branches2) && (direction == 1)) || 

(any(ismember(branches1, branches2)) && (direction == -1)) 
                        match_states = [match_states, states(state2_ID)]; 
                    end 
                end 
                state2_ID = state2_ID + 1; 
            end 

  
            % Check if paths match 
            if not(isempty(match_states)) 
                paths1 = paths(state1_ID, :); 
                match_states_store = match_states; 
                match_states = []; 

  
                if direction == -1 
                    % Compile ongoing list of paths in possible super state 
                    match_paths = {}; 
                    for state3_ID = 1:length(states) 
                        paths1_3 = paths1{state3_ID}; 
                        for path_ID = 1:length(paths1_3) 
                            match_paths = [match_paths, {paths1_3{path_ID}}]; 
                        end 
                    end 
                end 

  
                % Iterate through states 
                d_len = 1; 
                while d_len > 0     % Iterate until no change is match_states 
                    curr_len = length(match_states); 
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                    for state2 = match_states_store 
                        if ismember(state2, match_states) 
                            continue 
                        elseif state2 > act_num_master 
                            state2_ID = state2 - act_num_master + 2; 
                        elseif state2 == start_AID 
                            state2_ID = 1; 
                        else 
                            state2_ID = 2; 
                        end 
                        paths2 = paths(state2_ID, :); 
                        if isequal(paths1, paths2) && (direction == 1) 
                            match_states = [match_states, state2]; 
                            checked(state2_ID) = 1; 
                        elseif direction == -1 
                            for state3_ID = 1:length(states) 
                                paths2_3 = paths2{state3_ID}; 
                                path1_ID = 1; 
                                match_check = 0; 

  
                                % Find match 
                                while (path1_ID <= length(match_paths)) && 

not(match_check) 
                                    path2_ID = 1; 
                                    while path2_ID <= length(paths2_3) && 

not(match_check) 
                                        if isequal(match_paths{path1_ID}, 

paths2_3{path2_ID}) 
                                            match_check = 1; 
                                        end 
                                        path2_ID = path2_ID + 1; 
                                    end 
                                    path1_ID = path1_ID + 1; 
                                end 

  
                                if match_check 
                                    match_states = [match_states, state2]; 
                                    for path3_ID = 1:length(paths2_3) 
                                        path2_3 = paths2_3{path3_ID}; 
                                        path_include = 0; 
                                        for path1_ID = 1:length(match_paths) 
                                            path1 = match_paths{path1_ID}; 
                                            if isequal(path1, path2_3) 
                                                path_include = 1; 
                                                break 
                                            end 
                                        end 
                                        if not(path_include) 
                                            match_paths = [match_paths, 

path2_3]; 
                                        end 
                                    end 
                                    checked(state2_ID) = 1; 
                                end 
                            end 
                        end 
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                    end 
                    match_states = sort(match_states); 
                    d_len = length(match_states) - curr_len; 
                end 
            end 

  
            % Update match data 
            checked(state1_ID) = 1; 
            if not(isempty(match_states)) 
                convert_sink = [convert_sink, state1]; 
                convert_source = [convert_source(:)', match_states]; 
            end 
        end 
        convert_source = convert_source'; 

  

  
        %% Join states 
        % Prep convert detection 
        convert_sources = []; 
        for state1_ID = 1:length(convert_source) 
            convert_sources = [convert_sources, convert_source{state1_ID}]; 
        end 
        convert_sources = sort(convert_sources); 

  
        % Convert 
        for seq1_ID = find(ismember(data(:, 2), convert_sources))' 
            state1 = data(seq1_ID, 2); 
            state2_ID = 1; 
            while state2_ID <= length(convert_source) 
                if ismember(state1, convert_source{state2_ID}) 
                    data(seq1_ID, 2) = convert_sink(state2_ID); 
                    break 
                end 
                state2_ID = state2_ID + 1; 
            end 
        end 

  

  
        %% Reduce states 
        if not(isempty(convert_sources)) 
            % Reduce 
            for seq1_ID = find(data(:, 2) > convert_sources(1))' 
                state1 = data(seq1_ID, 2); 
                reduce = nnz((convert_sources - state1) < 0); % Count number 

of states removed 
                data(seq1_ID, 2) = state1 - reduce; 
            end 

  
            % Reset trackers 
            act_num = max(data(:, 2)); 
        else 
            reduce_states = 0; 
        end 
    end 
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    %% Correct output 
    % Reverse data 
    if direction == -1 
        data = flipud(data); 
        paths = paths'; 
    end 

     
    % Reorganize paths 
    paths_store = paths; 
    paths = {}; 
    for state1_ID = 1:size(paths_store, 1) 
        for state2_ID = 1:size(paths_store, 2) 
            paths1_2 = paths_store{state1_ID, state2_ID}; 
            if not(isempty(paths1_2)) 
                for path_ID = 1:length(paths1_2) 
                    path = paths1_2{path_ID}; 
                    if not(ismember(dataF_AID, path)) 
                        if direction == -1 
                            path = flipud(path); 
                            % Append end action ID 
                            if state2_ID == 2 
                                path = [path; end_AID]; 
                            else 
                                path = [path; (act_num_master + state2_ID - 

2)]; 
                            end 
                        else 
                            % Append start action ID 
                            if state1_ID == 1 
                                path = [start_AID; path]; 
                            else 
                                path = [(act_num_master + state1_ID - 2); 

path]; 
                            end 
                        end 

  
                        % Store 
                        paths = [paths; path]; 
                    end 
                end 

                 
            end 
        end 
    end 

     
    % Sort paths 
    paths = sortPaths(paths); 
end 
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pathAnalyze.mat 

This function provides the concentration analysis data for CoffeeMiner.mat. Variables 

concen_state_pre and concen_path_pre provide the percentage of use instances that 

included said state or path in forward iteration respectively. Variables probs_state_pre and 

probs_path_pre contain the respective probability of navigating to a given state or path 

respectively given an initial state. Rows in the cell array correspond to initial state and contain a 

two-column matrix. The first column of this matrix includes the corresponding end state or path 

ID, and the second column then includes the probability of navigation given the initial state. These 

variables also have corresponding variables storing the reverse iteration information but utilize the 

_pos suffix instead of the _pre. 

 

function [concens_p, timings_p, probs_p, concens_s, timings_s, probs_s] = 

pathAnalyze(data, paths, path_map, start_AID, dataF_AID, end_AID, 

act_num_master) 
    %% pathAnalyze 02 
    % Collects concentration, timing, and probability data 
    % Changes from 01 
    %     - Computes data from states to state as well as path specifically 
    %     - State based probability calculation 

     
    %% Prep storage 
    state_cnt = zeros(max(data(:, 2)), 1); 
    smpl_cnt = 0; 
    state_path_cnt = max(path_map(:, 2)); 

     
    concens_p = zeros(length(paths), 1); 
    timings_p = cell(length(paths), 1); 
    probs_p = cell(max(data(:, 2)), 1); 

     
    concens_s = zeros(state_path_cnt, 1); 
    timings_s = cell(state_path_cnt, 1); 
    probs_s = cell(max(data(:, 2)), 1); 

     

     
    %% Iterate through data 
    % Find sample terminals 
    strt_seq_IDs = find(data(:, 2) == start_AID); 
    end_seq_IDs = find(data(:, 2) == end_AID); 

     
    % Iterate through samples 
    for smpl_ID = 1:length(strt_seq_IDs) 
        strt_seq_ID = strt_seq_IDs(smpl_ID); 
        end_seq_ID = end_seq_IDs(smpl_ID); 
        smpl_data = data((strt_seq_ID:end_seq_ID), :); 
        smpl_path = smpl_data(:, 2); 
        if not(ismember(dataF_AID, smpl_path)) 
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            smpl_cnt = smpl_cnt + 1; 
            concen_p_smpl = zeros(length(paths), 1); 
            concen_s_smpl = zeros(state_path_cnt, 1); 
            % Isolate paths in sample 
            path_strt_IDs = [1; find(smpl_path(:) > act_num_master)]; 
            for path1_ID = 1:length(path_strt_IDs) 
                if path1_ID == 1 && smpl_ID == 7 
                    gotcha = 1; 
                end 
                path1_strt_ID = path_strt_IDs(path1_ID); 
                if path1_ID == length(path_strt_IDs) 
                    path1_end_ID = length(smpl_path); 
                else 
                    path1_end_ID = path_strt_IDs(path1_ID + 1); 
                end 
                path1 = smpl_path(path1_strt_ID:path1_end_ID); 
                strt_state = path1(1); 
                state_cnt(strt_state) = state_cnt(strt_state) + 1; 
                end_state = path1(end); 

                 
                % Match sub path to listed paths 
                path2_ID = 1; 
                while path2_ID <= length(paths)  
                    path2 = paths{path2_ID}; 
                    if isequal(path1, path2) 
                        break 
                    end 
                    path2_ID = path2_ID + 1; 
                end 
                path_ID_s = path_map(path2_ID, 2); 

                 
                % Store path data 
                concen_p_smpl(path2_ID) = concen_p_smpl(path2_ID) + 1; 
                timings_p{path2_ID} = [timings_p{path2_ID}, 

(smpl_data(path1_end_ID, 3) - smpl_data(path1_strt_ID, 3))]; 
                path_probs = probs_p{strt_state}; 
                if isempty(path_probs) 
                    path_probs = [path2_ID, 1]; 
                else 
                    row_ID = find(path_probs(:, 1) == path2_ID); 
                    if isempty(row_ID) 
                        path_probs = sortrows([path_probs; path2_ID, 1]); 
                    else 
                        path_probs(row_ID, 2) = path_probs(row_ID, 2) + 1; 
                    end 
                end 
                probs_p{strt_state} = path_probs; 

                 
                % Store state path data 
                concen_s_smpl(path_ID_s) = concen_s_smpl(path_ID_s) + 1; 
                timings_s{path_ID_s} = [timings_s{path_ID_s}, 

(smpl_data(path1_end_ID, 3) - smpl_data(path1_strt_ID, 3))]; 
                state_probs = probs_s{strt_state}; 
                if isempty(state_probs) 
                    state_probs = [end_state, 1]; 
                else 
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                    row_ID = find(state_probs(:, 1) == end_state); 
                    if isempty(row_ID) 
                        state_probs = sortrows([state_probs; end_state, 1]); 
                    else 
                        state_probs(row_ID, 2) = state_probs(row_ID, 2) + 1; 
                    end 
                end 
                probs_s{strt_state} = state_probs; 
            end 

             
            % Store concentration data 
            concens_p = concens_p + (concen_p_smpl > 0); 
            concens_s = concens_s + (concen_s_smpl > 0); 
        end 
    end 

     
    %% Adjust values 
    % Concentrations 
    concens_p = concens_p / smpl_cnt; 
    concens_s = concens_s / smpl_cnt; 

     
    % Timings 
    timings_store_p = timings_p; 
    timings_p = []; 
    for path1_ID = 1:length(paths) 
        path_timings = timings_store_p{path1_ID}; 
        timings_p = [timings_p; mean(path_timings), std(path_timings, 1)]; 
    end 

     
    timings_store_s = timings_s; 
    timings_s = []; 
    for state_AID = 1:state_path_cnt 
        path_timings = timings_store_s{state_AID}; 
        timings_s = [timings_s; mean(path_timings), std(path_timings, 1)]; 
    end 

     
    % Probabilities 
    for state_AID = 1:max(data(:, 2)) 
        if not(isempty(probs_p{state_AID})) 
            probs_p{state_AID}(:, 2) = probs_p{state_AID}(:, 2) / 

state_cnt(state_AID); 
        end 
        if not(isempty(probs_s{state_AID})) 
            probs_s{state_AID}(:, 2) = probs_s{state_AID}(:, 2) / 

state_cnt(state_AID); 
        end 
    end 
end 
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pathClimber.mat 

This is a supplementary script which simulates state machine navigation in both machines 

at once. Available inputs are provided to the user in sequence, who is then presented with the 

option to select between said inputs, which is then entered to the state machine. 

 

%% Path Climber 01 
%  Climbs the path tree for a system and provides available actions 
%  Requires: 

  
clc 
clear 

  
%% Set toggles 
toggle_txt_labels = 1; 

  
%% Instance data 
data_master = load('CoffeeMachine_03.dat');           % Data set 
start_AID = 1;                                        % Action ID for Start 

action 
dataF_AID = 2;                                        % Action ID for Data 

Failure action 
end_AID = 3;                                          % Action ID for End 

action 
act_num_master = max(data_master(:, 2));              % Number of individual 

actions 
load('paths_pre.mat');                                % Paths in forward 

iteration 
load('paths_pos.mat');                                % Paths in reverse 

iteration 
if toggle_txt_labels                                  % Action Labels 
    labelFID = fopen('CoffeeActLabels_s.dat'); 
    stateLabel = 'State'; 
else 
    labelFID = fopen('CoffeeActLabels_i.dat'); 
    stateLabel = 'S'; 
end 
labels = textscan(labelFID, '%s', 'Delimiter', '\n'); 
labels_master = labels{1}; 
fclose(labelFID); 

  
%% Climb tree 
% Instance iteration variables 
state_pre = 1; 
state_pos = state_pre; 
act_path_pre = [state_pre]; 
act_path_pos = [state_pos]; 

  
% Iterate through complete path 
fprintf('Start:\n'); 
while not(state_pre == end_AID) && not(state_pos == end_AID) 
    % Check if new paths needed 
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    for dir = [-1, 1] 
        switch dir 
            case -1 
                act_path_dir = act_path_pos; 
                paths_dir = paths_pos; 
                state_dir = state_pos; 
            case 1 
                act_path_dir = act_path_pre; 
                paths_dir = paths_pre; 
                state_dir = state_pre; 
        end 
        if (act_path_dir(end) > act_num_master) || (act_path_dir(end) == 

start_AID) 
            % Seek paths with current start state 
            start_path_ID = 0; 
            end_path_ID = 0; 
            path_ID = 1; 
            while path_ID <= length(paths_dir) 
                curr_path = paths_dir{path_ID}; 
                if (curr_path(1) == state_dir) && not(start_path_ID) 
                    start_path_ID = path_ID; 
                elseif start_path_ID && not(curr_path(1) == state_dir) 
                    end_path_ID = path_ID - 1; 
                    break 
                end 
                path_ID = path_ID + 1; 
            end 
            if not(end_path_ID) % If no end detected 
                end_path_ID = length(paths_dir); 
            end 

  
            % Store paths 
            paths_avail = cell(end_path_ID - start_path_ID + 1, 1); 
            for path_ID = start_path_ID:end_path_ID 
                paths_avail{path_ID - start_path_ID + 1} = 

paths_dir{path_ID}; 
            end 

  
            switch dir 
                case -1 
                    paths_avail_pos = paths_avail; 
                    curr_path_pos = [state_pos]; 
                    seq_ID_pos = 2; 
                case 1 
                    paths_avail_pre = paths_avail; 
                    curr_path_pre = [state_pre]; 
                    seq_ID_pre = 2; 
            end 
        end 
    end 

     
    % Determine available actions 
    for dir = [-1, 1] 
        switch dir 
            case -1 
                seq_ID_dir = seq_ID_pos; 
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                paths_avail_dir = paths_avail_pos; 
            case 1 
                seq_ID_dir = seq_ID_pre; 
                paths_avail_dir = paths_avail_pre; 
        end 

         
        act_avail_dir = []; 
        for path_ID = 1:length(paths_avail_dir) 
            act_AID = paths_avail_dir{path_ID}(seq_ID_dir); 
            if not(ismember(act_AID, act_avail_dir)) 
                act_avail_dir = [act_avail_dir; act_AID]; 
            end 
        end 
        act_avail_dir = sort(act_avail_dir); 

         
        switch dir 
            case -1 
                act_avail_pos = act_avail_dir; 
            case 1 
                act_avail_pre = act_avail_dir; 
        end 
    end 

     
    act_avail = []; 
    for act_AID = act_avail_pos' 
        if ismember(act_AID, act_avail_pre') 
            act_avail = [act_avail; act_AID]; 
        end 
    end 

     
    % Display actions 
    fprintf('    Available actions: '); 
    if toggle_txt_labels 
        fprintf('\n'); 
    end 
    for act_ID = 1:length(act_avail) 
        act_AID = act_avail(act_ID); 
        if toggle_txt_labels 
            act_label = labels_master{act_AID}; 
            fprintf('        %d) %s\n', act_ID, act_label); 
        else 
            fprintf('%d, ', act_AID); 
        end 
    end 
    if toggle_txt_labels 
        fprintf('        %d) %s\n', (act_ID + 1), 'Other'); 
    else 
        fprintf('%d\n', (act_AID + 1)); 
    end 

     
    % Select action 
    act_sel = input('        Select input: '); 
    if not(act_sel) 
        fprintf('Devitation from model\n'); 
        break 
    end 
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    if toggle_txt_labels 
        act_AID_sel = act_avail(act_sel); 
    else 
        act_AID_sel = act_sel; 
    end 

     
    % Append data 
    act_path_pre = [act_path_pre; act_AID_sel]; 
    curr_path_pre = [curr_path_pre; act_AID_sel]; 
    act_path_pos = [act_path_pos; act_AID_sel]; 
    curr_path_pos = [curr_path_pos; act_AID_sel]; 

     
    % Update paths available 
    for dir = [-1, 1] 
        switch dir 
            case -1 
                paths_avail = paths_avail_pos; 
                curr_path = curr_path_pos; 
            case 1 
                paths_avail = paths_avail_pre; 
                curr_path = curr_path_pre; 
        end 

         
        % Check paths against current path 
        paths_avail_store = paths_avail; 
        paths_avail = {}; 
        for path_ID = 1:length(paths_avail_store) 
            path_comp = paths_avail_store{path_ID}(1:length(curr_path)); 
            if all(isequal(path_comp, curr_path)) 
                paths_avail = [paths_avail; paths_avail_store{path_ID}]; 
            end 
        end 

         
        switch dir 
            case -1 
                paths_avail_pos = paths_avail; 
                if (length(paths_avail) == 1) && (length(paths_avail{1}) == 

length(curr_path) + 1) 
                    state_pos = paths_avail{1}(end); 
                    act_path_pos = [act_path_pos; state_pos]; 
                else 
                    seq_ID_pos = seq_ID_pos + 1; 
                end 
            case 1 
                paths_avail_pre = paths_avail; 
                if (length(paths_avail) == 1) && (length(paths_avail{1}) == 

length(curr_path) + 1) 
                    state_pre = paths_avail{1}(end); 
                    act_path_pre = [act_path_pre; state_pre]; 
                else 
                    seq_ID_pre = seq_ID_pre + 1; 
                end 
        end 
    end 
end 
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if act_sel 
    fprintf('Drink complete\n'); 
end  
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APPENDIX B. CHAPTER 3 STATE ID SCRIPTS 

Setup 

 To extract states with genetic optimization, first compile each of the scripts in this appendix 

into separate files, named exactly as their heading. 

ClassMicro.mat 

To define optimized state descriptions, run ClassMicro.mat. This can take some time. 

Running this script will prompt a user input of “Run type” which determines which suffix of trace 

file will be used to produce state definitions. This should be done in parallel to updating 

para_inc to label the specific parameters which should be included as consideration for the state 

definition. Note that para_fixed will require the optimization to include the specific parameters 

listed. 

To interpret results, x_star outputs the optimized configuration, model_GMM outputs 

the corresponding optimized model, classes_GMM, the corresponding labels for each microstate, 

and spred includes the relative inclusion rates of each gene during optimization. For diagnostics, 

stats includes information on generational behaviors, GA550.mat includes the specific 

information. 

 

%% classMicro_04 
% This script classifies microstates using the targeted eps method 
% Changes from 03 
%     - Added channel filtering 
%     - Updated x_star to output channel IDs 

  
clc 
clear 

  
%% Program settings 
run_type = input('Input run type: ', 's'); 
para_inc = [3; 4; 11; [15:21]']; 

  
% Load data 
data_master = load(strcat('trainingStates_trimmed_', run_type, '.mat')); 
data_master = data_master.trainingStates_trimmed(:, para_inc); 
[micro_cnt, chan_cnt] = size(data_master); 
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% Prep settings 
class_cnt_bounds = [3, 18]; 
para_fixed = [11; [15:18]']; % Must be included in para_inc 
[~, para_fixed] = ismember(para_fixed, para_inc); 
chan_var_cnt = chan_cnt - length(para_fixed); 
para_bounds = zeros(chan_var_cnt, 2); 
para_bounds(:, 2) = 1; 
bounds = [class_cnt_bounds; para_bounds]; 

  
bits = zeros((1 + chan_var_cnt), 1); 
bits(1) = 4; 
bits(2:end) = 1; 

  
% Optimization settings 
gen_para = sum(bits); 
pop_size = 4 * gen_para; 
cross_freq = 0.5; 
mut_freq = (gen_para + 1) / (2 * pop_size * gen_para); 
options = goptions([]); 
options(11) = pop_size; 
options(12) = cross_freq; 
options(13) = mut_freq; 
options(14) = 300; 

  

  
%% Normalize data 
% Prep storage 
data_norm = data_master; 
stdDev_vals = zeros(chan_cnt, 1); 
mean_vals = stdDev_vals; 

  
% Iterate through channels 
for chan_ID = 1:chan_cnt 
    stdDev_vals(chan_ID) = std(data_master(:, chan_ID)); 
    mean_vals(chan_ID) = mean(data_master(:, chan_ID)); 
end 

  
% Iterate through dataset 
for chan_ID = 1:chan_cnt 
    stdDev_val = stdDev_vals(chan_ID); 
    mean_val = mean_vals(chan_ID); 
    if stdDev_val == 0 
        data_norm(:, chan_ID) = mean_val; 
    else 
        for micro_ID = 1:micro_cnt 
            data_norm(micro_ID, chan_ID) = (data_norm(micro_ID, chan_ID) - 

mean_val) / stdDev_val; 
        end 
    end 
end 

  

  
%% Classify data 
fprintf('Initializing GMM...\n'); 
% Construct modeling function 
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opt_func = @(opt_vars) calc_obj(opt_vars, data_norm, para_fixed); 

  
% Optimize 
[x_star, f_star, stats, nfit, fgen, lgen, lfit, spred] = GA550(opt_func, [], 

options, bounds(:, 1)', bounds(:, 2)', bits'); 
class_cnt = round(x_star(1), 0); 
para_bool = x_star(2:end); 

  
para_include = para_fixed; 
para_bool_ID = 1; 
for para_ID = 1:(chan_cnt - 2) 
    if not(ismember(para_ID, para_include)) 
        if para_bool(para_bool_ID) 
            para_include = [para_include; para_ID]; 
        end 
        para_bool_ID = para_bool_ID + 1; 
    end 
end 
para_include = sort(para_include); 
data_train = data_norm(:, para_include); 
x_star = [class_cnt; para_inc(para_include)]; 

  
model_GMM = fitgmdist(data_train, class_cnt, 'RegularizationValue', 0.0001, 

'Options', statset('Display', 'off', 'MaxIter', 500)); 
classes_GMM = cluster(model_GMM, data_train); 

  
% Save data 
save(strcat('lgen_', run_type, '.mat'), 'lgen'); 
save(strcat('stats_', run_type, '.mat'), 'stats'); 
save(strcat('x_star_', run_type, '.mat'), 'x_star'); 
save(strcat('model_GMM_', run_type, '.mat'), 'model_GMM'); 
save(strcat('classes_GMM_', run_type, '.mat'), 'classes_GMM'); 
save(strcat('spred_', run_type, '.mat'), 'spred'); 
fprintf('Done!\n'); 

GA550.mat 

This is a modified variant of Dr. Crossley’s genetic optimization function as presented in 

Purdue University’s “Multidisciplinary Design Optimization in Aerospace Engineering” course 

(Crossley, 2020). It outputs the variables defined in ClassMicro.mat. The modifications to 

the original script allow the system to store and output statistics on the relative presence of different 

genes with each generation, allowing for some further verification of success and study of how 

different genes may be related to success. 

 

function [xopt,fopt,stats,nfit,fgen,lgen,lfit] = GA550(fun, ... 
    x0,options,vlb,vub,bits,P1,P2,P3,P4,P5,P6,P7P,P8,P9,P10) 
%GA550 minimizes a fitness function using a simple genetic algorithm. 
% 
%   X=GA550('FUN',X0,OPTIONS,VLB,VUB) uses a simple   
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%       genetic algorithm to find a minimum of the fitness function  
%       FUN.  FUN can be a user-defined M-file: FUN.M, or it can be a  
%   string containing the function itself.  The user may define all 
%       or part of an initial population X0. Any undefined individuals  
%   will be randomly generated between the lower and upper bounds 
%   (VLB and VUB).  If X0 is an empty matrix, the entire initial 
%   population will be randomly generated.  Use OPTIONS to specify  
%   flags, tolerances, and input parameters.  Type HELP GOPTIONS 
%       for more information and default values. 
% 
%   X=GA550('FUN',X0,OPTIONS,VLB,VUB,BITS) allows the user to  
%   define the number of BITS used to code non-binary parameters 
%   as binary strings.  Note: length(BITS) must equal length(VLB) 
%   and length(VUB).  If BITS is not specified, as in the previous  
%   call, the algorithm assumes that the fitness function is  
%   operating on a binary population. 
% 
%   X=GA550('FUN',X0,OPTIONS,VLB,VUB,BITS,P1,P2,...) allows up  
%   to ten arguments, P1,P2,... to be passed directly to FUN. 
%   F=FUN(X,P1,P2,...). If P1,P2,... are not defined, F=FUN(X). 
% 
%   [X,FOPT,STATS,NFIT,FGEN,LGEN,LFIT]=GA550(<ARGS>) 
%          X       - design variables of best ever individual 
%          FOPT    - fitness value of best ever individual 
%          STATS   - [min mean max stopping_criterion] fitness values  
%                    for each generation 
%          NFIT  - number of fitness function evalations 
%          FGEN    - first generation population 
%          LGEN    - last generation population 
%          LFIT    - last generation fitness 
% 
%       The algorithm implemented here is based on the book: Genetic 
%       Algorithms in Search, Optimization, and Machine Learning, 
%       David E. Goldberg, Addison-Wiley Publishing Company, Inc., 
%       1989. 
% 
%   Originally created on 1/10/93 by Andrew Potvin, Mathworks, Inc.  
%   Modified on 2/3/96 by Joel Grasmeyer. 
%   Modified on 11/12/02 by Bill Crossley. 
%   Modified on 7/20/04 by Bill Crossley. 

  
% Make best_feas global for stopping criteria (4/13/96) 
global best_feas 
global gen 
global fit_hist 
% Load input arguments and check for errors 
if nargin<4, 
    error('No population bounds given.') 
elseif (size(vlb,1)~=1) | (size(vub,1)~=1), 
    % Remark: this will change if algorithm accomodates matrix variables 
    error('VLB and VUB must be row vectors') 
elseif (size(vlb,2)~=size(vub,2)), 
    error('VLB and VUB must have the same number of columns.') 
elseif (size(vub,2)~=size(x0,2)) & (size(x0,1)>0), 
    error('X0 must all have the same number of columns as VLB and VUB.') 
elseif any(vlb>vub), 
    error('Some lower bounds greater than upper bounds') 
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else 
    x0_row = size(x0,1); 
    for i=1:x0_row, 
        if any(x0(x0_row,:)<vlb) | any(x0(x0_row,:)>vub), 
            error('Some initial population not within bounds.') 
        end % if initial pop not within bounds 
    end % for initial pop 
end % if nargin<4    

  
if nargin<6, 
    bits = []; 
elseif (size(bits,1)~=1) | (size(bits,2)~=size(vlb,2)), 
    % Remark: this will change if algorithm accomodates matrix variables 
    error('BITS must have one row and length(VLB) columns') 
elseif any(bits~=round(bits)) | any(bits<1), 
    error('BITS must be a vector of integers >0') 
end % if nargin<6 

  
% Form string to call for function evaluation 
if ~( any(fun<48) | any(fun>122) | any((fun>90) & (fun<97)) | ... 
        any((fun>57) & (fun<65)) ),  
    % Only alphanumeric characters implies that 'fun' is a separate m-file 
    evalstr = [fun '(x']; 
    for i=1:nargin-6, 
        evalstr = [evalstr,',P',int2str(i)]; 
    end 
else 
    % Non-alphanumeric characters implies that the function is contained  
    % within the single quotes 
    evalstr = ['(',fun]; 
end 

  
% Determine all options 
% Remark: add another options index for type of termination criterion 
if size(options,1)>1, 
    error('OPTIONS must be a row vector') 
else 
    % Use default options for those that were not passed in 
    options = goptions(options); 
end 
PRINTING = options(1); 
BSA = options(2); 
fit_tol = options(3); 
nsame = options(4)-1; 
elite = options(5); 

  
% Since operators are tournament selection and uniform crossover and 
% default coding is Gray / binary, set crossover rate to 0.50 and use 
% population size and mutation rate based on Williams, E. A., and Crossley, 
% W. A., "Empirically-derived population size and mutation rate guidelines 
% for a genetic algorithm with uniform crossover," Soft Computing in 
% Engineering Design and Manufacturing, 1998.  If user has entered values 
% for these options, then user input values are used. 
if options(11) == 0, 
    pop_size = sum(bits) * 4; 
else 
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    pop_size = options(11); 
end 
if options(12) == 0, 
    Pc = 0.5; 
else 
    Pc = options(12); 
end 
if options(13) == 0, 
    Pm = (sum(bits) + 1) / (2 * pop_size * sum(bits)); 
else 
    Pm = options(13); 
end 
max_gen = options(14); 
% Ensure valid options: e.q. Pc,Pm,pop_size,max_gen>0, Pc,Pm<1 
if any([Pc Pm pop_size max_gen]<0) | any([Pc Pm]>1), 
    error('Some Pc,Pm,pop_size,max_gen<0 or Pc,Pm>1') 
end 

  
% Encode fitness (cost) function if necessary 
ENCODED = any(any(([vlb; vub; x0]~=0) & ([vlb; vub; x0]~=1))) |  .... 
    ~isempty(bits); 
if ENCODED, 
    [fgen,lchrom] = encode(x0,vlb,vub,bits); 
else 
    fgen = x0; 
    lchrom = size(vlb,2); 
end 

  
% Display warning if initial population size is odd 
if rem(pop_size,2)==1, 
    disp('Warning: Population size should be even.  Adding 1 to population.') 
    pop_size = pop_size +1; 
end 

  
% Form random initial population if not enough supplied by user 
if size(fgen,1)<pop_size, 
    fgen = [fgen; (rand(pop_size-size(fgen,1),lchrom)<0.5)]; 
end 
xopt = vlb; 
nfit = 0; 
new_gen = fgen; 
isame = 0; 
bitlocavg = mean(fgen,1);  % initial bit string affinity 
BSA_pop = 2 * mean(abs(bitlocavg - 0.5)); 
fopt = Inf; 
stats = []; 

  
% Header display 
if PRINTING>=1, 
    if ENCODED, 
        disp('Variable coding as binary chromosomes successful.') 
        disp('') 
        fgen = decode(fgen,vlb,vub,bits); 
    end 
    disp('                   Fitness statistics') 
    if nsame > 0 



 

 

138 

        disp('Generation Minimum      Mean         Maximum       isame') 
    elseif BSA > 0 
        disp('Generation Minimum      Mean         Maximum       BSA') 
    else 
        disp('Generation Minimum      Mean         Maximum       not used') 
    end 
end 

  
% Set up main loop 
STOP_FLAG = 0; 
for generation = 1:max_gen+1, 
    old_gen = new_gen; 

     
    % Decode binary strings if necessary 
    if ENCODED, 
        x_pop = decode(old_gen,vlb,vub,bits); 
    else 
        x_pop = old_gen; 
    end 

     
    % Get fitness of each string in population 
    for i = 1:pop_size, 
        x = x_pop(i,:); 
        fitness(i) = eval([evalstr,')']); 
        nfit = nfit + 1; 
    end 

     
    % Store minimum fitness value from previous generation (except for 
    % initial generation) 
    if generation > 1, 
        min_fit_prev = min_fit; 
        min_gen_prev = min_gen; 
        min_x_prev = min_x; 
    end 

     
    % identify worst (maximum) fitness individual in current generation 
    [max_fit,max_index] = max(fitness); 

     
    % impose elitism - currently only one individual; this replaces worst 
    % individual of current generation with best of previous generation 
    if (generation > 1 & elite > 0),    
        old_gen(max_index,:) = min_gen_prev; 
        x_pop(max_index,:) = min_x_prev; 
        fitness(max_index) = min_fit_prev; 
    end 

      
    % identify best (minimum) fitness individual in current generation and 
    % store bit string and x values 
    [min_fit,min_index] = min(fitness); 
    min_gen = old_gen(min_index,:); 
    min_x = x_pop(min_index,:); 

     
    % Store best fitness and x values 
    if min_fit < fopt, 
        fopt = min_fit; 
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        xopt = min_x; 
    end 

     
    % Compute values for isame or BSA_pop stopping criteria 
    if nsame > 0 
        if generation > 1 
            if min_fit_prev == min_fit 
                isame = isame + 1; 
            else 
                isame = 0; 
            end 
        end 
    elseif BSA > 0 
        bitlocavg = mean(old_gen,1); 
        BSA_pop = 2 * mean(abs(bitlocavg - 0.5)); 
    end 

     

     
    % Calculate generation statistics 
    if nsame > 0 
        stats = [stats; generation-1,min(fitness),mean(fitness), ... 
            max(fitness), isame]; 
    elseif BSA > 0 
        stats = [stats; generation-1,min(fitness),mean(fitness), ... 
            max(fitness), BSA_pop]; 
    else 
        stats = [stats; generation-1,min(fitness),mean(fitness), ... 
            max(fitness), 0]; 
    end 

     
    % Display if necessary 
    if PRINTING>=1, 
        disp([sprintf('%5.0f %12.6g %12.6g %12.6g %12.6g', 

stats(generation,1), ... 
                stats(generation,2),stats(generation,3), 

stats(generation,4),... 
                stats(generation,5))]); 
    end 

     
    % Check for termination 
    % The default termination criterion is bit string affinity.  Also 
    % available are fitness tolerance across five generations and number of 
    % consecutive generations with same best fitness.  These can be used 
    % concurrently. 
    if fit_tol>0,    % if fit_tol > 0, then fitness tolerance criterion used 
        if generation>5, 
            % Check for normalized difference in fitness minimums 
            if stats(generation,1) ~= 0, 
                if abs(stats(generation-5,1)-stats(generation,1))/ ... 
                        stats(generation,1) < fit_tol 
                    if PRINTING >= 1 
                        fprintf('\n') 
                        disp('GA converged based on difference in fitness 

minimums.') 
                    end 
                    lfit = fitness; 
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                    if ENCODED, 
                        lgen = x_pop; 
                    else 
                        lgen = old_gen; 
                    end 
                    return 
                end 
            else 
                if abs(stats(generation-5,1)-stats(generation,1)) < fit_tol 
                    if PRINTING >= 1 
                        fprintf('\n') 
                        disp('GA converged based on difference in fitness 

minimums.') 
                    end 
                    lfit = fitness; 
                    if ENCODED, 
                        lgen = x_pop; 
                    else 
                        lgen = old_gen; 
                    end 
                    return 
                end 
            end 
        end 
    elseif nsame > 0,    % consecutive minimum fitness value criterion 
            if isame == nsame 
                if PRINTING >= 1 
                    fprintf('\n') 
                    disp('GA stopped based on consecutive minimum fitness 

values.') 
                end 
                lfit = fitness; 
                if ENCODED, 
                    lgen = x_pop; 
                else 
                    lgen = old_gen; 
                end 
                return 
            end 
    elseif BSA > 0,  % bit string affinity criterion 
        if BSA_pop >= BSA, 
            if PRINTING >=1 
                fprintf('\n') 
                disp('GA stopped based on bit string affinity value.') 
            end 
            lfit = fitness; 
            if ENCODED, 
                lgen = x_pop; 
            else 
                lgen = old_gen; 
            end 
            return 
        end 
    end 

     
    % Tournament selection 
    new_gen = tourney(old_gen,fitness); 
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    % Crossover 
    new_gen = uniformx(new_gen,Pc); 

     
    % Mutation 
    new_gen = mutate(new_gen,Pm); 

     
    % Always save last generation.  This allows user to cancel and 
    % restart with x0 = lgen 
    if ENCODED, 
        lgen = x_pop; 
    else 
        lgen = old_gen; 
    end 

     

     
end % for max_gen 

  
% Maximum number of generations reached without termination 
lfit = fitness; 
if PRINTING>=1, 
    fprintf('\n') 
    disp('Maximum number of generations reached without termination') 
    disp('criterion met.  Either increase maximum generations') 
    disp('or ease termination criterion.') 
end 

  

  
% end genetic 

  
function [gen,lchrom,coarse,nround] = encode(x,vlb,vub,bits) 
%ENCODE Converts from variable to binary representation. 
%   [GEN,LCHROM,COARSE,nround] = ENCODE(X,VLB,VUB,BITS) 
%       encodes non-binary variables of X to binary.  The variables 
%       in the i'th column of X will be encoded by BITS(i) bits.  VLB 
%       and VUB are the lower and upper bounds on X.  GEN is the binary 
%       representation of these X.  LCHROM=SUM(BITS) is the length of 
%       the binary chromosome.  COARSE(i) is the coarseness of the 
%       i'th variable as determined by the variable ranges and 
%       BITS(i).  ROUND contains the absolute indices of the 
%       X which where rounded due to finite BIT length. 
% 
%   Copyright (c) 1993 by the MathWorks, Inc. 
%   Andrew Potvin 1-10-93. 

  
% Remark: what about handling case where length(bits)~=length(vlb)? 

  

  
lchrom = sum(bits); 
coarse = (vub-vlb)./((2.^bits)-1); 
[x_row,x_col] = size(x); 

  
gen = []; 
if ~isempty(x), 
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   temp = (x-ones(x_row,1)*vlb)./ ... 
          (ones(x_row,1)*coarse); 
   b10 = round(temp); 
   % Since temp and b10 should contain integers 1e-4 is close enough 
   nround = find(b10-temp>1e-4); 
   gen = b10to2(b10,bits); 
end 

  
% end encode 

  

  
function [x,coarse] = decode(gen,vlb,vub,bits) 
%DECODE Converts from binary Gray code to variable representation. 
%   [X,COARSE] = DECODE(GEN,VLB,VUB,BITS) converts the binary  
%       population GEN to variable representation.  Each individual  
%       of GEN should have SUM(BITS).  Each individual binary string 
%       encodes LENGTH(VLB)=LENGTH(VUB)=LENGTH(BITS) variables. 
%       COARSE is the coarseness of the binary mapping and is also 
%       of length LENGTH(VUB). 
% 
%  this *.m file created by combining "decode.m" from the MathWorks, Inc. 
%  originally created by Andrew Potvin in 1993, with "GDECODE.FOR" written  
%  by William A. Crossley in 1996. 
%    
%   William A. Crossley, Assoc. Prof. School of Aero. & Astro. 
%  Purdue University, 2001 
% 
%  gen is an array [population size , string length], each row is one 

individual's chromosome 
%  vlb is a row vector [number of parameters], each entry is the lower bound 

for a variable 
%  vub is a row vector [number of parameters], each entry is the upper bound 

for a variable 
%  bits is a row vector [number of parameters], each entry is number of bits 

used for a variable 
%   

  
no_para = length(bits); % extract number of parameters using number of rows 

in bits vector 
npop = size(gen,1);     % extract population size using number of rows in gen 

array 
x = zeros(npop, no_para);  % sets up x as an array [population size, number 

of parameters] 
coarse = zeros(1,no_para); % sets up coarse as a row vector [number of 

parameters] 

  
for J = 1:no_para,  % extract the resolution of the parameters 
    coarse(J) = (vub(J)-vlb(J))/(2^bits(J)-1);  % resolution of parameter J 
end 

  
for K = 1:npop,     % outer loop through each individual (there may be a more 

efficient way to operate on the 
                  % gen array) BC 10/10/01 
    sbit = 1;       % initialize starting bit location for a parameter 
    ebit = 0;       % initialize ending bit location 
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   for J = 1:no_para,   % loop through each parameter in the problem 
    ebit = bits(J) + ebit;  % pick the end bit for parameter J 
        accum = 0.0;                % initialize the running sum for 

parameter J 
      ADD = 1;                      % add / subtract flag for Gray code; add 

if(ADD), subtract otherwise 
      for I = sbit:ebit,            % loop through each bit in parameter J 
         pbit = I + 1 - sbit;       % pbit determines value to be added or 

subtracted for Gray code 
         if (gen(K,I))                  % if "1" is at current location 
            if (ADD)                        % add if appropriate 
               accum = accum + (2.0^(bits(J)-pbit+1) - 1.0); 
               ADD = 0;                 % next time subtract 
            else 
               accum = accum - (2.0^(bits(J)-pbit+1) - 1.0); 
               ADD = 1;                 % next time add 
            end 
         end 
      end                               % end of I loop through each bit 
      x(K,J) = accum * coarse(J) + vlb(J);          % decoded parameter J for 

individual K 
      sbit = ebit + 1;                                      % next parameter 

starting bit location 
   end                      % end of J loop through each parameter 
end                     % end of K loop through each individual 

  
%end gdecode 

  

  
function [new_gen,mutated] = mutate(old_gen,Pm) 
%MUTATE Changes a gene of the OLD_GEN with probability Pm. 
%   [NEW_GEN,MUTATED] = MUTATE(OLD_GEN,Pm) performs random 
%       mutation on the population OLD_POP.  Each gene of each 
%       individual of the population can mutate independently 
%       with probability Pm.  Genes are assumed possess boolean 
%       alleles.  MUTATED contains the indices of the mutated genes. 
% 
%   Copyright (c) 1993 by the MathWorks, Inc. 
%   Andrew Potvin 1-10-93. 

  
mutated = find(rand(size(old_gen))<Pm); 
new_gen = old_gen; 
new_gen(mutated) = 1-old_gen(mutated); 

  
% end mutate 

  

  
function [new_gen,nselected] = tourney(old_gen,fitness) 
%TOURNEY Creates NEW_GEN from OLD_GEN, based on tournament selection. 
%    [NEW_GEN,NSELECTED] = TOURNEY(OLD_GEN,FITNESS) selects 
%        individuals from OLD_GEN by competing consecutive individuals 
%    after random shuffling.  NEW_GEN will have the same number of 
%    individuals as OLD_GEN. 
%        NSELECTED contains the number of copies of each individual 
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%    that survived.  This vector corresponds to the original order 
%    of OLD_GEN. 
% 
%    Created on 1/21/96 by Joel Grasmeyer 

  
% Initialize nselected vector and indices of old_gen 
new_gen = []; 
nselected = zeros(size(old_gen,1),1); 
i_old_gen = 1:size(old_gen,1); 

  
% Perform two "tournaments" to generate size(old_gen,1) new individuals 
for j = 1:2, 

  
  % Shuffle the old generation and the corresponding fitness values 
  [old_gen,i_shuffled] = shuffle(old_gen); 
  fitness = fitness(i_shuffled); 
  i_old_gen = i_old_gen(i_shuffled); 

  
  % Keep the best of each pair of individuals 
  index = 1:2:(size(old_gen,1)-1); 
  [min_fit,i_min] = min([fitness(index);fitness(index+1)]); 
  selected = i_min + [0:2:size(old_gen,1)-2]; 
  new_gen = [new_gen; old_gen(selected,:)]; 

  
  % Increment counters in nselected for each individual that survived 
  temp = zeros(size(old_gen,1),1); 
  temp(i_old_gen(selected)) = ones(length(selected),1); 
  nselected = nselected + temp; 

  
end 

  
% end tourney 

  

  
function [new_gen,index] = shuffle(old_gen) 
%SHUFFLE Randomly reorders OLD_GEN into NEW_GEN. 
%    [NEW_GEN,INDEX] = MATE(OLD_GEN) performs random reordering 
%        on the indices of OLD_GEN to create NEW_GEN. 
%    INDEX is a vector containing the shuffled row indices of OLD_GEN. 
% 
%    Created on 1/21/96 by Joel Grasmeyer 

  
[junk,index] = sort(rand(size(old_gen,1),1)); 
new_gen = old_gen(index,:); 

  
% end shuffle 

  

  
function [new_gen,sites] = uniformx(old_gen,Pc) 
%UNIFORMX Creates a NEW_GEN from OLD_GEN using uniform crossover. 
%     [NEW_GEN,SITES] = UNIFORMX(OLD_GEN,Pc) performs uniform crossover 
%         on consecutive pairs of OLD_GEN with probability Pc. 
%     SITES shows which bits experienced crossover.  1 indicates 
%     allele exchange, 0 indicates no allele exchange.  SITES has 
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%     size(old_gen,1)/2 rows. 
% 
%     Created 1/20/96 by Joel Grasmeyer 

  
new_gen = old_gen; 
sites = rand(size(old_gen,1)/2,size(old_gen,2)) < Pc; 
for i = 1:size(sites,1), 
  new_gen([2*i-1 2*i],find(sites(i,:))) = old_gen([2*i  
2*i-1],find(sites(i,:))); 
end 

  
% end uniformx  

goptions.mat 

This function is an unmodified subfunction related to GA550.mat (Crossley, 2020). 

This function defines the constraints of operation for genetic optimization. 

 

function OPTIONS=goptions(parain); 
%GOPTIONS Default parameters used by the genetic algorithm GENETIC. 
% 
% Note that since the original version was written, the Matlab Optimization 
% Toolbox now uses "optimset" to set generic optimization parameters, so 
% this format is somewhat outdated. 
%  
% The genetic algorithm parameters used for this implementation are: 
% 
%   OPTIONS(1)-Display flag:  0 = none, 1 = some, 2 = all  (Default: 1). 
%   OPTIONS(2)-Termination bit string affinity value (Default: 0.90; set to 

zero to turn off) 
%   OPTIONS(3)-Termination tolerance for fitness (Default: 0; not normally 

used). 
%   OPTIONS(4)-Termination number of consecutive generations with same best 
%   fitness (Default: 0; to use, set number, be sure OPTIONS(2) and 

OPTIONS(3) = 0). 
%   OPTIONS(5)-Number of elite individuals (Default: 0; no elitism). 
%   OPTIONS(6)- 
%   OPTIONS(7)- 
%   OPTIONS(8)- 
%   OPTIONS(9)- 
%   OPTIONS(10)- 
% Genetic Algorithm-specific inputs 
%   OPTIONS(11)-Population size (fixed) 
%   OPTIONS(12)-Probability of crossover 
%   OPTIONS(13)-Probability of mutation 
%   OPTIONS(14)-Maximum number of generations, always used as safeguard 
%   (Default: 200). 
%    
% 
% Explanation of defaults: 
%   The default algorithm displays statistical information for each 
%   generation by setting OPTIONS(1) = 1.  Plots are produced when 
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%   OPTIONS(1) = 2.   
%   The OPTIONS(2) flag is originally set for termination criterion based 
%   on X; here it is used if bit string affinity is selected. 
%   The default fitness function termination tolerance, 
%   OPTIONS(3), is set to 0, which terminates the optimization when 5 
%   consecutive best generation fitness values are the same.  A positive 
%   value terminates the optimization when the normalized difference 
%   between the previous fitness and current generation fitness is less 
%   than the tolerance.  See the code for details. 
%  OPTIONS(4) has a default value of 5; this means if the best fitness 
%   value in the population is unchanged for 5 consecutive generations 
%  the GA is terminated. 
%       The default algorithm uses a fixed population size, OPTIONS(11), 
%       and no generational overlap.  The default population size is 30. 
%   Three genetic operations:  selection, crossover, and mutation are 
%   used for procreation. 
%   The default selection scheme is tournament selection. 
%       Crossover occurs with probability Pc=OPTIONS(12).  The default 
%   crossover scheme is uniform crossover with Pc = 0.5. 
%   Each allele of the offspring mutates independently with probability 
%       Pm=OPTIONS(13); here the default is 0.01. 
%       The default number of maximum generations, OPTIONS(14) is 200. 
% 
%   Last modified by Bill Crossley 07/20/04 

  
% The following lines have been commented out by Steven Lamberson. 
% They have been changed to what is seen below them. (06/30/06). 
% This change was made in order to fix the following problems: 
%   1 - code changed user supplied options(1)=0 to options(1)=1 
%   2 - code changed user supplied options(2)=0 to options(2)=0.9 

  
%if nargin<1; parain = []; end 
%sizep=length(parain); 
%OPTIONS=zeros(1,14); 
%OPTIONS(1:sizep)=parain(1:sizep); 
%default_options=[1,0.9,0,0,0,0,0,0,0,0,0,0,0,200]; 
%OPTIONS=OPTIONS+(OPTIONS==0).*default_options 

  
if nargin<1; parain = []; end 
sizep=length(parain); 
OPTIONS=zeros(1,14)-1; 
OPTIONS(1:sizep)=parain(1:sizep); 
default_options=[1,0.9,0,0,0,0,0,0,0,0,0,0,0,200]; 
for i = 1:length(OPTIONS) 
    if OPTIONS(i) == -1 
        OPTIONS(i) = default_options(i); 
    end 
end 
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calc_obj.mat 

This function measures the fitness of each classification tuning as generated by 

GA550.mat using the Calinski-Harabasz criterion. Note that fitness is optimized at low objective 

values, so the output is inverted. Additionally, some residual random sampling test cases are 

included, but are nonfunctional and do not affect operation. 

 

%% calc_obj 
% This script measures the efficacy of flight clustering for a given data set 

  

  
function obj = calc_obj(opt_vars, data_set, para_include) 
    perc_thresh = 0.75; 

  
    %% Extract data 
    % Extract base level data 
    [micro_cnt, chan_cnt] = size(data_set); 
    class_cnt = round(opt_vars(1), 0); 
    para_include_bool = opt_vars(2:end); 
    para_bool_ID = 1; 
    for para_ID = 1:chan_cnt 
        if not(ismember(para_ID, para_include)) 
            if para_include_bool(para_bool_ID) 
                para_include = [para_include; para_ID]; 
            end 
            para_bool_ID = para_bool_ID + 1; 
        end 
    end 
    para_include = sort(para_include); 

     
    % Refine data 
    chan_cnt = length(para_include); 
    data_set = data_set(:, para_include); 

     

  
    %% Compute objective 
%     [model_GMM, rand_perc] = flight_clust(data_set, class_cnt, [0.25, 0.75, 

3]); 
    rand_perc = 1; 
    model_GMM = fitgmdist(data_set, class_cnt, 'RegularizationValue', 0.0001, 

'Options', statset('Display', 'off', 'MaxIter', 500)); 
    classes_GMM = cluster(model_GMM, data_set); 
    obs_cnts = zeros(class_cnt, 1); 
    obs_store = cell(class_cnt, 1); 
    centroids = zeros(class_cnt, chan_cnt); 
    for class_ID = 1:class_cnt 
        obs_IDs = find(classes_GMM == class_ID); 
        obs_list = data_set(obs_IDs, :); 
        obs_cnts(class_ID) = size(obs_list, 1); 
        obs_store{class_ID} = obs_list; 
        for chan_ID = 1:chan_cnt 
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            centroids(class_ID, chan_ID) = mean(obs_list(:, chan_ID)); 
        end 
    end 

     
    centroid_abs = mean(data_set, 1); 
    SSb = 0; 
    SSw = 0; 
    for class_ID = 1:class_cnt 
        obs_cnt = obs_cnts(class_ID); 
        obs_list = obs_store{class_ID}; 
        centroid_class = centroids(class_ID); 
        SSb = SSb + (obs_cnt * (norm(centroid_class - centroid_abs)^2)); 

         
        for obs_ID = 1:obs_cnt 
            SSw = SSw + (norm(obs_list(obs_ID, :) - centroid_class)^2); 
        end 
    end 

     
    % Compute Criterion 
    VRC = (SSb / SSw) * (micro_cnt - class_cnt) / (class_cnt - 1); 
    obj = -1 * VRC / 1000; 

     
    % Adjust bounds 
    obj = obj + 50 * max([0, ((rand_perc / perc_thresh) - 1)]); 
end 
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APPENDIX C. CHAPTER 3 PATH ID SCRIPTS 

Setup 

 To determine paths using a specific model, pretrained model, place the following script in 

a file titled path_finder.mat. Files will use one label to indicate sampling frequency, freq, 

which is either “04” or “40” respectively. Files will use another label, type, to indicate the 

specific constraints placed on the state definition. Use type “c” to indicate compass, type “t” to 

indicate target heading, and type “p” to indicate positionless. 

In the same directory as this file, place the parameter trace data stored as a variable in the 

file trainingStates_trimmed_freqtype.mat. Place the corresponding control trace 

data in a file trainingInputs_trimmed_freqtype.mat. Replace “freqtype” in both file 

names with the corresponding strings for freq and type used. A third file, storing a matrix 

containing the indices of the end of each use instance in the trace for the sampling frequency, 

should be placed in the same directory and titled end_IDs_freq.mat. Replace “freq” with the 

corresponding freq string. 

State models should be placed in directories inside the current, following the file path 

“Classifications/Optimized run freqtype/model_GMM.mat”, replacing “freqtype” as before. 

Path models should be place in separates directories, labeled “Path Models/freqtype”. Mean 

parameter and control values for each state should be stored in the corresponding directory in the 

file mean_vals.mat. These values should be stored in a matrix, with each row corresponding 

to a state, and each column to a metric. Similarly, standard deviations should be stored in the file 

stdDev_vals.mat in the same directory. 

For microstate prediction, metric prediction models should be stored in internal directories 

to the previous freqtype path model directory. Each state should have a corresponding directory, 

title S#, where # corresponds to the state ID. Each model needs to be named 

metric_model.mat, with metric replaced by the corresponding metric ID code. 

Direct prediction models can then be stored in this same directory using the filename 

direct_samp_model.mat, where samp is replaced by the sampling method, either “rand” or 

“stan”. 
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path_finder.mat 

This script compares a path prediction method to the ground truth using the path prediction 

models from requisite folders and labels from the provided trace. Note that freq and type define 

the trace used, as well as which parameters are relevant for path definition. These parameters are 

based on state definitions. The variable predictor will determine which type of model will be 

used for prediction, and samp will determine the sampling method used for training the original 

model. Samp only affects which model is loaded. 

In general, this script is highly specialized to the exact case tested in this thesis and could 

be more efficiently adapted if written from scratch. Path models were individually generated from 

MATLAB’s regression learner and classification learner apps and have not been automated in a 

script. I highly recommend storing normalization means and standard deviations in files and 

retrieving them in every scrip over recalculating and normalizing. This also goes for state and path 

labels, as relabeling all of the trace every run can lead to inconsistencies if scripts change 

accidentally. 

 

%% path_finder03 
% This script uses indivudal channel models to predict path 
% Changes from 02 
%     - Enabled  

  
clc 
clear 

  
%% Program settings 
% Primary settings 
freq = '40'; 
type = 'p'; 
state_init = 3; 
predictor = 'direct'; % micro / direct 
samp = 'Stan'; % Rand / Stan 

  
% Secondary settings 
class_labels = {'Low-speed'; 'High-speed'; 'Hazard'}; 
state_order = load(strcat('state_order_', freq, '.mat')); 
state_order = state_order.state_order; 
class_cnt = size(state_order, 2); 

  
if strcmp(freq, '04') 
    if strcmp(type, 'c') 
        chan_GMM = [1; 2; 9; 11; 12; [14:18]'; 23]; 
        label_names = {'SINCH'; 'COSCH'; 'ZPL'; 'YVI'; 'ZVT'; 'ZVL'; 'FVP'; 

'VVP'; 'HVP'; 'T'; 'B'}; 
        state_order = state_order(1, :); 
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        plot_title = strcat('4 Hz, compass, ', {' '}, predictor, ' prediction 

confusion'); 
    elseif strcmp(type, 't') 
        chan_GMM = [1; 5; 8; 11; [13:18]']; 
        label_names = {'SINTH'; 'XPT'; 'XPL'; 'YVI'; 'XVL'; 'ZVL'; 'FVP'; 

'VVP'; 'HVP'; 'T'}; 
        state_order = state_order(2, :); 
        plot_title = strcat('4 Hz, target, ', {' '}, predictor, ' prediction 

confusion'); 
    elseif strcmp(type, 'p') 
        chan_GMM = [3; 4; 11; [15:19]']; 
        label_names = {'PA'; 'BA'; 'YVI'; 'FVP'; 'VVP'; 'HVP'; 'T'; 'CSE'}; 
        state_order = state_order(3, :); 
        plot_title = strcat('4 Hz, positionless, ', {' '}, predictor, ' 

prediction confusion'); 
    elseif strcmp(type, 'm') 
        chan_GMM = [1; [3:7]'; 10; 11; [13:21]']; 
        label_names = {'SIN(TH)'; 'SIN(CH)'; 'COS(CH)'; 'PA'; 'BA'; 'XPT'; 

'XPL'; 'ZPL'; 'YVI'; 'ZVT'; 'XVL'; 'ZVL'; 'FVP'; 'VVP'; 'HVP'; 'T'; 'CSE'}; 
        state_order = 1:class_cnt; 
        plot_title = strcat('4 Hz, merged, ', {' '}, predictor, ' prediction 

confusion'); 
    end 
elseif strcmp(freq, '40') 
    if strcmp(type, 'c') 
        chan_GMM = [1; 2; 7; 11; 12; [14:18]']; 
        label_names = {'SINCH'; 'COSCH'; 'XPT'; 'YVI'; 'ZVT'; 'ZVL'; 'FVP'; 

'VVP'; 'HVP'; 'T'}; 
    elseif strcmp(type, 't') 
        chan_GMM = [1; 2; 8; 11; [14:18]']; 
        label_names = {'SINTH'; 'COSTH'; 'XPL'; 'YVI'; 'ZVL'; 'FVP'; 'VVP'; 

'HVP'; 'T'}; 
    elseif strcmp(type, 'p') 
        chan_GMM = [3; 11; [15:19]']; 
        label_names = {'PA'; 'YVI'; 'FVP'; 'VVP'; 'HVP'; 'T'; 'CSE'}; 
        state_order = state_order(3, :); 
        plot_title = strcat('40 Hz, positionless, ', {' '}, predictor, ' 

prediction confusion'); 
    end 
end 

  
% Load main data 
state_master = load(strcat('trainingStates_trimmed_', freq, type, '.mat')); 
state_master = state_master.trainingStates_trimmed(:, chan_GMM); 
[micro_cnt, state_chan_cnt] = size(state_master); 

  
input_master = load(strcat('trainingInputs_trimmed_', freq, '.mat')); 
input_master = input_master.trainingInputs_trimmed; 
[~, input_chan_cnt] = size(input_master); 
chan_cnt = state_chan_cnt + input_chan_cnt; 

  
end_IDs = load(strcat('end_IDs_', freq, '.mat')); 
end_IDs = end_IDs.end_IDs; 

  
% Load class model data 
directory = strcat('Classifications/Optimized run', {' '}, freq, type); 
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directory = directory{1}; 
state_model = load(strcat(directory, '/model_GMM_', freq, type, '.mat')); 
state_model = state_model.model_GMM; 
path_cnt = class_cnt^2; 

  
% Set class correction 
class_convert = state_order; 
for class_ID = 1:class_cnt 
    class_convert(class_ID) = find(state_order == class_ID); 
end 

  
% Load trend data 
directory = strcat('Path Models/', freq, type); 
normalization_means = load(strcat(directory, '/mean_vals.mat')); 
normalization_means = normalization_means.mean_vals; 
normalization_stdDevs = load(strcat(directory, '/stdDev_vals.mat')); 
normalization_stdDevs = normalization_stdDevs.stdDev_vals; 
directory = strcat('Path Models/', freq, type, '/'); 

  
mean_vals = normalization_means; 
stdDev_vals = normalization_stdDevs; 
for class_ID = 1:class_cnt 
    store_ID = class_convert(class_ID); 
    normalization_means(store_ID, :) = mean_vals(class_ID, :); 
    normalization_stdDevs(store_ID, :) = stdDev_vals(class_ID, :); 
end 

  
if isequal(predictor, 'micro') 
    % Load channel model data 
    path_model_set = cell(class_cnt, state_chan_cnt); 
    for class_ID = 1:class_cnt 
        store_ID = class_convert(class_ID); 
        for model_ID = 1:state_chan_cnt 
            model_name = strcat(label_names{model_ID}, '_model'); 
            model = load(strcat(directory, 'S', num2str(class_ID), '/', 

model_name, '.mat')); 
            path_model_set{store_ID, model_ID} = model.(model_name); 
        end 
    end 
end 

  

  
%% Establish ground truth 
% Prep storage 
state_norm = state_master; 
state_stdDev_vals = zeros(state_chan_cnt, 1); 
state_mean_vals = state_stdDev_vals; 

  
% Iterate through channels 
for chan_ID = 1:state_chan_cnt 
    state_stdDev_vals(chan_ID) = std(state_master(:, chan_ID)); 
    state_mean_vals(chan_ID) = mean(state_master(:, chan_ID)); 
end 

  
% Iterate through dataset 
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for chan_ID = 1:state_chan_cnt 
    stdDev_val = state_stdDev_vals(chan_ID); 
    mean_val = state_mean_vals(chan_ID); 
    if stdDev_val == 0 
        state_norm(:, chan_ID) = mean_val; 
    else 
        for micro_ID = 1:micro_cnt 
            state_norm(micro_ID, chan_ID) = (state_norm(micro_ID, chan_ID) - 

mean_val) / stdDev_val; 
        end 
    end 
end 

  
% Prep storage 
input_norm = input_master; 
input_stdDev_vals = zeros(input_chan_cnt, 1); 
input_mean_vals = state_stdDev_vals; 

  
% Iterate through channels 
for chan_ID = 1:input_chan_cnt 
    input_stdDev_vals(chan_ID) = std(input_master(:, chan_ID)); 
    input_mean_vals(chan_ID) = mean(input_master(:, chan_ID)); 
end 

  
% Iterate through dataset 
for chan_ID = 1:input_chan_cnt 
    stdDev_val = input_stdDev_vals(chan_ID); 
    mean_val = input_mean_vals(chan_ID); 
    if stdDev_val == 0 
        input_norm(:, chan_ID) = mean_val; 
    else 
        for micro_ID = 1:micro_cnt 
            input_norm(micro_ID, chan_ID) = (input_norm(micro_ID, chan_ID) - 

mean_val) / stdDev_val; 
        end 
    end 
end 

  
% Cluster data 
if type == 'm' 
    class_list = state_model.predictFcn(state_norm); 
else 
    [class_list, ~, probs] = cluster(state_model, state_norm); 
    for micro_ID = 1:micro_cnt 
        class_list(micro_ID) = class_convert(class_list(micro_ID)); 
    end 
end 

  
% Path data 
path_true_list = zeros(micro_cnt, 1); 
for micro_ID = 1:(micro_cnt - 1) 
    if not(ismember(micro_ID, end_IDs)) 
        path_true_list(micro_ID) = ((class_list(micro_ID) - 1) * class_cnt) + 

class_list(micro_ID + 1); 
    end 
end 
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% Trim all data to remove instance ends 
micro_cnt = (micro_cnt - length(end_IDs)); 
state_master(end_IDs, :) = []; 
input_master(end_IDs, :) = []; 
class_list(end_IDs) = []; 
path_true_list(end_IDs) = []; 

  
% Determine relevant micro IDs 
keep_list = find(class_list == state_init); 

  

  
%% Model paths 
if isequal(predictor, 'micro') 
    % Prep storage 
    state_pred_list = state_master; 

  
    % Predict behavior 
    microdata_master = [state_master, input_master]; 
    for class_ID = 1:class_cnt 
        % Isolate microstates in class 
        micro_ID_list = find(class_list == class_ID); 

  
        % Normalize in class 
        microdata_norm = microdata_master; 
        for chan_ID = 1:chan_cnt 
            stdDev_val = normalization_stdDevs(class_ID, chan_ID); 
            if stdDev_val 
                microdata_norm(micro_ID_list, chan_ID) = 

(microdata_norm(micro_ID_list, chan_ID) - normalization_means(class_ID, 

chan_ID)) / stdDev_val; 
            else 
                microdata_norm(micro_ID_list, chan_ID) = 

microdata_norm(micro_ID_list, chan_ID) - normalization_means(class_ID, 

chan_ID); 
            end 
        end 

  
        % Predict for class 
        for chan_ID = 1:state_chan_cnt 
            channel_model = path_model_set{class_ID, chan_ID}; 
            state_pred_list(micro_ID_list, chan_ID) = 

(channel_model.predictFcn(microdata_norm(micro_ID_list, :)) * 

normalization_stdDevs(class_ID, chan_ID)) + normalization_means(class_ID, 

chan_ID); 
        end 
    end 
    micro_ID_list = find(class_list == state_init); 
    % micro_cnt = length(micro_ID_list); 
    % ML_comm = state_pred_list(micro_ID_list, :); 
    % ML_resp = path_true_list(micro_ID_list, :); 
    %  
    % stdDev_vals = zeros(state_chan_cnt, 1); 
    % mean_vals = state_stdDev_vals; 
    %  
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    % % Iterate through channels 
    % for chan_ID = 1:state_chan_cnt 
    %     stdDev_vals(chan_ID) = std(ML_comm(:, chan_ID)); 
    %     mean_vals(chan_ID) = mean(ML_comm(:, chan_ID)); 
    % end 
    %  
    % % Iterate through dataset 
    % for chan_ID = 1:state_chan_cnt 
    %     stdDev_val = stdDev_vals(chan_ID); 
    %     mean_val = mean_vals(chan_ID); 
    %     if stdDev_val == 0 
    %         ML_comm(:, chan_ID) = mean_val; 
    %     else 
    %         for micro_ID = 1:micro_cnt 
    %             ML_comm(micro_ID, chan_ID) = (ML_comm(micro_ID, chan_ID) - 

mean_val) / stdDev_val; 
    %         end 
    %     end 
    % end 

  
    % Convert to class 
    for chan_ID = 1:state_chan_cnt 
        stdDev_val = state_stdDev_vals(chan_ID); 
        mean_val = state_mean_vals(chan_ID); 
        if stdDev_val == 0 
            state_pred_list(:, chan_ID) = mean_val; 
        else 
            for micro_ID = 1:micro_cnt 
                state_pred_list(micro_ID, chan_ID) = 

(state_pred_list(micro_ID, chan_ID) - mean_val) / stdDev_val; 
            end 
        end 
    end 
    class_pred_list = cluster(state_model, state_pred_list); 
    for micro_ID = 1:micro_cnt 
        class_pred_list(micro_ID) = class_convert(class_pred_list(micro_ID)); 
    end 

  
    path_pred_list = ((class_list - 1) * class_cnt) + class_pred_list; 
    path_pred_list = path_pred_list(keep_list); 

     
elseif isequal(predictor, 'direct')   
    % Load path model 
    path_model = load(strcat(directory, 'S', num2str(state_init), '/direct', 

samp, '_model.mat')); 
    path_model = path_model.direct_model; 

     
    % Normalize metrics in state of interest 
    microdata_norm = [state_master, input_master]; 
    microdata_norm = microdata_norm(keep_list, :); 
    for chan_ID = 1:chan_cnt 
        stdDev_val = stdDev_vals(state_init, chan_ID); 
        if stdDev_val 
            microdata_norm(:, chan_ID) = (microdata_norm(:, chan_ID) - 

mean_vals(state_init, chan_ID)) / stdDev_val; 
        else 
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            microdata_norm(:, chan_ID) = microdata_norm(:, chan_ID) - 

mean_vals(state_init, chan_ID); 
        end 
    end 
    if type == 'c' 
        microdata_norm(:, state_chan_cnt) = []; 
    end 

     
    % Predict path IDs 
    path_pred_list = path_model.predictFcn(microdata_norm); 
end 

  
% Plot results 
path_true_list = path_true_list(keep_list, :); 
cm = confusionchart(confusionmat(path_true_list, path_pred_list), 

class_labels); 
cm.RowSummary = 'row-normalized'; 
cm.ColumnSummary = 'column-normalized'; 
cm.Title = plot_title; 
sortClasses(cm, class_labels); 
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