
DIGITAL IMAGING AND HALFTONING ALGORITHMS
DESIGN: PARALLEL PROCESSING, PRINTED IMAGE

ARTIFACTS MODELING, AND LEARNING-BASED IMAGE
ANALYSIS

by

Yafei Mao

A Dissertation

Submitted to the Faculty of Purdue University

In Partial Fulfillment of the Requirements for the degree of

Doctor of Philosophy

School of Electrical and Computer Engineering

West Lafayette, Indiana

December 2021

THE PURDUE UNIVERSITY GRADUATE SCHOOL
STATEMENT OF COMMITTEE APPROVAL

Prof. Jan P. Allebach, Chair

School of Electrical and Computer Engineering

Prof. Amy R. Reibman

School of Electrical and Computer Engineering

Prof. George T. Chiu

School of Mechanical Engineering

Prof. Mary L. Comer

School of Electrical and Computer Engineering

Approved by:

Dr. Dimitrios Peroulis

2

To my parents Yongdong Mao and Minqi Han,

for their love, support, and encouragement.

3

ACKNOWLEDGMENTS

I am very grateful to many people without whom this thesis could not have been fruitful.

The most important among them is my advisor Professor Jan P. Allebach. Pursuing a Ph.D.

is a long journey. Without Professor Allebach’s faith and investment in me, his broad vision

and wise ideas, his patient and kind way of cultivating both my technical and soft skills, this

journey could have been bumpy. For having this opportunity, input, and guidance, I feel

extremely fortunate.

I would like to express my sincere thanks to my advisory committee Professor Amy R.

Reibman, Professor George T. Chiu, and Professor Mary L. Comer. Over the years, I have

received help and instructions from my committee in various ways. From lectures to research

projects collaborations, I am grateful for every piece of the precious advice that they gave

me.

I also owe many thanks to my schoolmates and friends. My EISL lab mates participated in

the psychophysical experiment in this work. Yifei Xue, Ruotong Ji, and Yu Hong helped with

testing the graphical user interface of the experiment. Zhuangzi Li shared his fun insights

on neural networks with me. Jing Guo provided useful technical writing tips. Tianyu Li

recommended helpful math and computer vision courses for me to take.

Moreover, I am blessed with family. Aunt Minyi Han and uncle Ji Wang listened to me

and cheered me up when I was down. Aunt Minxin Han and uncle Jiangfan Li inspired

me with their fun stories. Grandma Jinghua Zhao encouraged me to strive for my goals.

Grandpa Xingtang Han enlightened my interest in math and science when I was little. I

want to express my heartfelt thankfulness to them.

Lastly, I give my greatest gratitude to my parents Yongdong Mao and Minqi Han. They

are the ones who empowered me to fly up high. No matter ordinary or outstanding, I am

just their little girl. Thank them for always being supportive and giving me all the best

things in the world that they can give.

4

TABLE OF CONTENTS

 LIST OF FIGURES . 9

 ABBREVIATIONS . 13

 ABSTRACT . 14

 1 INTRODUCTION . 15

 2 4-ROW SERPENTINE TONE DEPENDENT FAST ERROR DIFFUSION 18

 2.1 Introduction . 18

 2.2 4-Row Serpentine Tone Dependent Error Defussion 20

 2.2.1 Overview of Tone Dependent Fast Error Diffusion 20

 2.2.2 4-Row Serpentine Scan Path . 21

 2.2.3 Error Weight Location Matrix . 23

 2.2.4 Training System for TDFED Parameters 24

 2.3 Experimental Results . 28

 2.4 Conclusion . 28

 3 DOT PROFILE MODEL-BASED DIRECT BINARY SEARCH 29

 3.1 Introduction . 29

 3.2 Preliminaries . 30

 3.2.1 Notation . 30

 3.2.2 Printer Characterization . 31

 3.2.3 Overview of DBS . 33

5

 3.3 Dot Profile Model . 33

 3.4 Dot Profile Model-Based DBS . 36

 3.5 Experimental Results . 37

 3.6 Conclusion . 39

 4 INK DROP DISPLACEMENT MODEL-BASED DIRECT BINARY SEARCH . . 41

 4.1 Introduction . 41

 4.2 Printer Modeling . 44

 4.2.1 Background . 44

 4.2.2 Print Characterization . 47

 4.3 Printer Model-Based DBS . 54

 4.3.1 Overview of DBS . 54

 4.3.2 IDD Model-Based DBS . 56

 4.3.3 Computation and Memory Complexity 61

 4.4 Experimental Results . 64

 4.4.1 Simulated Printers . 65

 Pagewide Printhead . 65

 Never-Centered Printer [36] . 65

 4.4.2 Tone Correction . 65

 4.4.3 Simulated Results . 67

 4.5 Psychophysical Image Quality Assessment 69

6

 4.6 Conclusion . 70

 5 HIGHLIGHTED DOCUMENT IMAGE CLASSIFICATION 74

 5.1 Introduction . 74

 5.2 Feature Extraction . 77

 5.2.1 Color Space . 77

 5.2.2 Printer Gamut-Based Features . 78

 5.2.3 Low-Level Color Features . 83

 5.3 Classification Model . 85

 5.4 Experimental Results . 86

 5.5 Conclusion . 88

 6 A COLOR IMAGE ANALYSIS TOOL TO HELP USERS CHOOSE A MAKEUP

FOUNDATION COLOR . 89

 6.1 Introduction . 89

 6.2 Data Collection . 90

 6.3 Image Calibration . 91

 6.3.1 Skin Detection . 92

 6.3.2 Gray Balancing and Polynomial Transformation 93

 6.3.3 Calibration Performance . 98

 6.4 Experimental Results . 99

 6.5 Conclusion . 103

7

 7 SUMMARY AND CONTRIBUTIONS . 104

 REFERENCES . 106

8

LIST OF FIGURES

 2.1 Tone dependent fast error diffusion system. 19

 2.2 Scan path of 4-row serpentine scan with 4 pixel delay 22

 2.3 Halftones of a folded ramp image generated by: (a) 4-row serpentine TDFED
with 2 pixel delay, (b) 4-row serpentine TDFED with 4 pixel delay, (c) 4-
row serpentine TDFED with 7 pixel delay, (d) the original 1-row serpentine
TDFED. The weights and thresholds are trained using the proposed scheme
described in Section 2.2.4 . It is recommended to zoom in on the figure so that
individual pixels are clearly displayed and to view from a sufficient distance
at which these individual pixels are not visually resolved. Note that (d)
contains some vertical veining patterns in the region marked by the dotted
box. However, all three 4-row halftones are very smooth and homogeneous in
that area. This implies that the proposed 4-row algorithm outperforms the
original TDFED. 25

 2.4 Optimal tone dependent weights and thresholds for 4-row serpentine scan
with 4 pixel delay . 27

 3.1 (a) A digital test patch. (b) The printed test patch captured at 7336.4 dpi
and converted to 7200 dpi. (c) The binary segmentation mask of the test patch. 32

 3.2 (a) The mean dot profile and (b) standard deviation profile in the units of
absorptance. 32

 3.3 Development of the SD and HD EQGS images. The black lines denote the
printer lattice, and the gray lines denote the HD lattice. (a) Original digital
halftone image sent to the simulated printer. (b) Rendered image at 7200
dpi. (c) SD EQGS image at 1200 dpi. (d) HD EQGS image at 3600 dpi. . . 36

 3.4 (a) Tone reproduction curves and (b) tone error curves of DBS with no printer
model, DBS with the SD model, and DBS with the HD model. Note that
the output absorptance is calculated based on the simulated output of the
halftones of constant-tone patches, and the tonal error is obtained by sub-
tracting the input absorptance from the output absorptance. 38

 3.5 Simulated results printed at 7200 dpi. The halftone images are generated by
DBS with (a) no printer model, (b) the SD model, and (c) the HD model. It
is recommended to set the zoom level to 150% and to view these images at
about 12 inches. Note from the call-outs that the HD model shows the most
detail in the landing gear. 40

 4.1 Illustration of two different inkjet printer architectures: (a) conventional mov-
ing carriage inkjet printer and (b) pagewide printhead inkjet printer. X de-
notes the printer resolution. 45

9

 4.2 (a) The test page, consisting of a 5×3 array of identical blocks; (b) A sample
block, consisting of a 7 × 7 array of non-identical cells; (c) A sample cell,
consisting of a 10× 17 array of individual printer dots. 47

 4.3 (a) Captured image and (b) segmentation mask of Cell 88. (c) Captured
image and (d) segmentation mask of Cell 55. 48

 4.4 Centroids and reference lines for an example cell. The red dots denote the
actual locations of the ink drop centroids. The green lines denote the vertical
reference lines. The blue lines denote the horizontal reference lines. 50

 4.5 Measurement data for the pagewide printhead. Dot profiles: (a) Mean dot
profile and (b) standard deviation of dot profiles. Histograms of the dot
displacements: (c) Horizontal displacement. (d) Vertical displacement. . . . 51

 4.6 Distribution across all columns of (a) mean and (b) standard deviation of
the vertical displacements, computed as the mean and standard deviation of
the individual dot displacements within each column. (c) Distributions for
vertical dot displacements in three different nozzles (dot columns). The red
line is the probability density function of the normal distribution, i.e. the null
hypothesis. The evidence against the null hypothesis decreases as we go from
left to right, i.e. the P value increases. 52

 4.7 Memory consumption of the IDD model and the EQGS model. The neigh-
borhood size is equal to H ×W pixels. Note that neighborhood size = 9 (i.e.
3 × 3) is the cross-over point. . 64

 4.8 Tone curves of DBS with no printer model and DBS with the IDD model
when used with the simulated pagewide printhead. (a) Uncompensated tone
reproduction and (b) tone correction curves. 66

 4.9 Simulated pagewide printhead results. Halftone images generated by (a) DBS
without printer model and (b) DBS with the IDD model at 1200 dpi for the
pagewide printhead, and both rendered with the simulated page printhead at
12000 dpi, with 10× upscaling. The resolution of the continuous-tone input
image is 300×700 pixels. The resolution of the simulated prints is 3000×7000
pixels. 68

 4.10 Simulated never-centered printer results. Halftone images generated by (a)
DBS without printer model, (b) DBS with the EQGS model for the never-
centered printer, and (c) DBS with the IDD model for the never-centered
printer at 1200 dpi, and all rendered with the simulated never-centered printer
at 2400 dpi, with 2× upscaling. The resolution of the continuous-tone input
image is 300×700 pixels. The resolution of the simulated prints is 600×1400
pixels. 72

10

 4.11 Psychophysical experiment results. Part 1: Simulated printer with pagewide
printhead. (a) Mean score across images. (b) Mean score across subjects.
Part 2: Simulated never-centered printer. (c) Mean score across images. (d)
Mean score across subjects. The whiskers indicate the standard deviation
associated with each data point. 73

 5.1 Example scanned document images: (a) text, (b) photo, (c) highlight, and (d)
mixed. Note that in highlight documents, the highlighter marks are drawn
manually by the user using a highlighter pen after the page is printed. 76

 5.2 The gamma uncorrection conversion from gamma-corrected RGB to linear
RGB. 78

 5.3 (a) The printed and scanned test page used to estimate the gamut. (b) The
estimated gamut in CIE L∗a∗b∗ space. Each dot corresponds to the mean
L∗a∗b∗ values of a patch. 79

 5.4 Lightness and chroma 2D histogram plots of a (a) text image and a (b) photo
image. The original images are Fig. 1 (a) and (b). 81

 5.5 Visual aid for Equation (3). . 82

 5.6 Visual aid for Equation (4). The three cases left to right correspond to the
equations from top to bottom in Equation (4), respectively. 83

 5.7 Four highlighter patches with their corresponding gamut hue sectors. The
black convex hull indicates the gamut hue sector within the hue range. The
green dots are the (C∗, L∗) coordinates of the highlight pixels within the hue
range. . 84

 5.8 Illustration of the tree structure of the DAGSVM model. M = mixed, T=
text, P = photo, and H = highlight. 86

 6.1 Data collection experiment (a) lab settings and (b) the makeup foundation
bottles. . 91

 6.2 X-rite digital SG 140 color checker. Patches that are used in the color cor-
rection stage are numbered from 1 to 35. 92

 6.3 Sample original images. Subject No.1 (a light-skinned subject): (a) skin
with no foundation, (b) skin with foundation shade No. 130, (c) skin with
foundation shade No. 150, and (d) skin with foundation shade No. 200.
Subject No. 2 (a dark-skinned subject): (a) skin with no foundation, (b) skin
with foundation shade No. 450, (c) skin with foundation shade No. 500, and
(d) skin with foundation shade No. 520. . 93

 6.4 Skin detection output of the skin with no foundation images of (a) subject
No.1 (light-skinned), (b) subject No. 2 (dark-skinned), and (c) subject No. 3
(tan-skinned). 94

11

 6.5 The gray balancing curves of the skin with no foundation image of subject
No. 1. (a) The R channel. (b) The G channel. (c) The B channel. Note that
the gray balancing is based only on the color checker patches, and does not
utilize the skin pixels. 95

 6.6 Block diagram of the calibration procedure. 96

 6.7 (a) The histogram of the calibration ∆E76 across all 35 patches for the skin
with no foundation image of subject No. 1 and (b) subject No. 2. The mean
calibration ∆E76 values over all 35 patches for subject No. 1 and subject No.
2 are 0.75 and 0.91, respectively. (c) The histogram of the mean calibration
∆E76 values across all images of all subjects. The mean calibration ∆E76
value across all images is 1.82; and the standard deviation is 3.50. Note that
there are only five images with mean ∆E76 > 3. These were eliminated from
the subsequent analysis as outliers. . 97

 6.8 Illustration of the input and output of the prediction model. 99

 6.9 The original foundation swatches image. From top to bottom and from left
to right, the shades are No. 100, 110, 120, 130, 140, 150, No. 200, 210, 220,
230, 240, 250, 300, 310,, 540, 550. . 100

12

ABBREVIATIONS

TDFED Tone-Dependent Error Diffusion

HVS Human Visual System

SD Standard Definition

HD High Definition

UHD Ultra High Definition

DBS Direct Binary Search

LUT Lookup Table

EQGS Equivalent Grayscale

HCD Hard Circular Dot

IDD Ink Drop Displacement

MFP Multi-Functional Printer

SFFS Sequential Forward Floating Selection

DAGSVM Directed Acyclic Graph Support Vector Machine

SVR Support Vector Regression

13

ABSTRACT

This thesis explores four topics in designing imaging processing algorithms. The first one

is enhancing computation efficiency and implementation flexibility. We propose a parallel

processing architecture for the error diffusion algorithm, allowing it to process multiple rows

of image pixels simultaneously. We also develop a new loss function in the training system to

minimize the weighted mean squared error in the power spectra. With this new algorithm,

better halftone reproductions and higher hardware efficiency can be achieved. The second

topic is improving the image quality of printed images. Two novel printer models for the

direct binary search (DBS) algorithm are proposed. One is called the dot profile model.

It is used to compensate dot shape irregularity errors of inkjet printers. The other one

is called the ink drop displacement model. It is intended primarily to compensate for the

stochastic ink drop displacement error in the prints. For both models, we first characterize

the statistical properties of the printed dots and then integrate this prior knowledge in the

fidelity metric which directs the image reproduction of DBS. In so doing, the image quality

is greatly enhanced. The third topic is supervised learning algorithms applied to document

image analysis. In this application, we develop a set of features to use with a support vector

machine model to discriminate document images based on the color information and contents.

The last topic is learning-based makeup shade matching. We train machine learning models

to predict the best matching foundation shade based on the selfie images of a customer.

Besides, a novel color correction algorithm is designed to minimize color inconsistency.

14

1. INTRODUCTION

The goodness of an image processing algorithm can be affected by various factors, including

output image quality, computation and memory complexity, and applicability to real-world

problems. When designing such algorithms, taking multiple factors into account at the same

time is a challenging task.

This work contributes to the design of effective and efficient halftoning and learning-

based computer vision algorithms. Implementations following this work resolved problems

posed by the current resource limitations, at minimal cost.

More specifically, each chapter of this thesis looks at a different image processing task.

In Chapter 1, a novel serpentine based error diffusion algorithm that uses tone dependent

error weights and thresholds is proposed to increase the efficiency and flexibility of hardware

implementations. We also propose an expanded error weight location matrix to improve the

halftone quality in the extreme tones. With this new algorithm, we achieve better halftones

compared to the original tone dependent fast error diffusion, especially in the quarter tones.

In Chapter 2, a dot profile model to compensate dot shape irregularity errors of inkjet

printers is proposed. Previous tabular approaches for parameterizing the printer model rely

on the measurements of the gray level of various printed halftone patterns. However, lots of

patterns need to be printed and scanned if the printer generates large drops of colorant. To

solve this problem, we propose to simulate the appearance of the rendered patterns so that

the model parameters can be computed analytically. The simulation uses the mean dot as

the printer dot profile and saturated addition to resolve dot overlap. Besides, we incorporate

a standard definition (SD) and a high definition (HD) equivalent gray-scale representation

of the printed halftone image produced by the dot profile model into the direct binary

search (DBS) algorithm. Experimental results show great improvement in the mid-tone and

shadow regions over the printed image halftoned by the original DBS. The HD model further

enhances details in the shadows.

In Chapter 3, a novel ink drop displacement (IDD) printer model for the direct binary

search (DBS) is proposed. It is intended primarily for pagewide inkjet printers that exhibit

dot displacement errors. The tabular approach in the literature predicts the gray value of a

15

printed pixel based on the halftone pattern in some neighborhood of that pixel. However,

memory retrieval time and the complexity of memory requirements hamper its feasibility

in printers that have a very large number of nozzles and produce ink drops that affect a

large neighborhood. To avoid this problem, our IDD model embodies dot displacements by

moving each perceived ink drop in the image from its nominal location to its actual location,

rather than manipulating the average gray values. This enables DBS to directly compute the

appearance of the final print without retrieving values from a table. In so doing, the memory

issue is eliminated and the computation efficiency is enhanced. Experimental results show

significant improvement in the quality of the printed image over the original DBS. Besides,

the image quality obtained by the proposed approach appears to be slightly better than that

obtained by the tabular approach for a specific deterministic and idealized printer model.

In Chapter 4, to enable printers to better discriminate highlighted documents, we de-

signed a set of features in CIE Lch(a∗b∗) space to use along with the support vector machine.

The features include two gamut-based features and six low-level color features. By first iden-

tifying the highlight pixels, and then computing the distance from the highlight pixels to the

boundary of the printer gamut, the gamut-based features can be obtained. The low-level

color features are built upon the color distribution information of the image blocks. The

best feature subset of the existing and new features is constructed by sequential forward

floating selection (SFFS) feature selection. Leave-one-out cross-validation is performed on a

dataset with 400 document images to evaluate the effectiveness of the classification model.

The cross-validation results indicate significant improvements over the baseline highlighted

document classification model.

Finally, Chapter 5 presents an approach to predict the color of skin-with-foundation based

on a no makeup selfie image and a foundation shade image. Our approach first calibrates the

image with the help of a color checker target, and then trains a supervised-learning model

to predict the skin color. In the calibration stage, we propose to use three different trans-

formation matrices to map the device dependent RGB response to the reference CIE XY Z

space. In so doing, color correction error can be minimized. We then compute the average

value of the region of interest in the calibrated images, and feed them to the prediction

16

model. Cross-validation results show that the proposed approach can accurately make the

prediction.

Overall, this work develops halftoning and learning-based algorithms toward compactness

and better performance, with practical benefits.

17

2. 4-ROW SERPENTINE TONE DEPENDENT FAST ERROR

DIFFUSION

2.1 Introduction

Digital halftoning is a method of creating the illusion of continuous-tone output through

the use of a series of dots arranged differently in size or in spacing. Halftoning allows one

to simulate various shades of color with one colorant, so it is an widely used technique in

rendering devices that are only capable of producing a limited number of tone levels, for

example printers and some displays.

According to the level of computational complexity, halftoning algorithms can be classi-

fied into three general categories: screening, error diffusion, and search-based methods. Since

error diffusion renders better detail than screening while maintaining lower cost than search-

based methods, it is the most popular algorithm for marking engine technologies that can

stably render isolated dots, such as inkjet. In this chapter, we will focus on error diffusion.

As originally proposed by Floyd and Steinberg [1], error diffusion is a neighborhood oper-

ation that moves through the input image in a raster order, quantizing each pixel in the scan

line, and feeding the error ahead to the neighboring pixels that have not yet been binarized.

Despite excellent detail rendition, error diffusion sometimes creates worm-like patterns and

visible structures. To solve these problems, a number of derivations and modifications of

error diffusion were developed in previous research, including use of alternative scan paths

[2]–[4], threshold modulation [5]–[8], variable weights [4], [9]–[11], and tone dependent pa-

rameters [12], [13]. Reference [14] is of particular note, as it provides an excellent summary

of recent methods based on directly training the weights to match a desired blue noise spec-

tral characteristic, and proposes an improvement to this approach. It also incorporates the

training of the thresholds to eliminate edge sharpening.

Aside from generating visually unpleasant textures, another disadvantage of error diffu-

sion is lack of locality. This means that when either a conventional raster or serpentine scan

path [4] is used, we are not allowed to process a pixel until all pixels in its preceding scan

line have been quantized. As a consequence, hardware must store the information associated

with the states of the pixels that are spatially far away, which is inefficient. With the Peano

18

t[m, n; a]

w[k, l; a]

f [m, n] + u[m, n] g[m, n]

− +

e[m, n]

−

Figure 2.1. Tone dependent fast error diffusion system.

scan [2], the pioneer of parallel scan paths, however, the output quality of error diffusion

is not satisfactory. In fact, customers in the printing market base their judgment on both

print quality and implementation efficiency. Therefore, it is extremely beneficial to enable

the hardware to decide the binary output locally without losing quality. In this regard,

we design a novel 4-row serpentine scan path. The novelty of our approach lies in using

a combination of conventional raster and serpentine scan patterns, which greatly enhances

hardware efficiency. Other prior works that incorporated the concept of a serpentine raster

with a novel error diffusion architecture include [15], [16].

In this chapter, we apply the 4-row serpentine scan path with the tone dependent fast

error diffusion (TDFED) [17] algorithm. To reduce worm-like textures, a tone-dependent

4-weight location matrix that diffuses errors further back along the next line is designed.

To further refine the halftone outputs, the weights and thresholds values for each gray level

are optimized in an offline training process based on a visual cost function developed in

[18]. However, the primary focus of this chapter is the development of a new error diffusion

architecture that is suitable for efficient hardware implementation, rather than methods and

cost functions for optimization of the weights and thresholds, which is the primary focus of

[14]. In fact, the concepts introduced in this chapter could also be deployed with weights and

thresholds optimized according to the methods introduced in [14]. The rest of the chapter

is organized as follows: Section 2.2 demonstrates the 4-row serpentine TDFED algorithm.

Section 2.3 discusses the experimental results. Section 2.4 draws the conclusions.

19

2.2 4-Row Serpentine Tone Dependent Error Defussion

We will start by providing an overview of TDFED in Sec. 2.2.1 and then present the

details of the scan path. Section 2.2.3 will illustrate the expanded error location matrix.

Lastly, Sec. 2.2.4 will discuss the training process.

2.2.1 Overview of Tone Dependent Fast Error Diffusion

Since we are presenting an error diffusion algorithm that is designed for monochrome

printing devices, the pixel value is represented in units of absorptance 0 ≤ a ≤ 1 , where 0

corresponds to white, and 1 corresponds to black.

Figure 2.1 illustrates the block diagram of the TDFED system. In this figure, f [m, n] = a

is the pixel absorptance of the continuous-tone image, u[m, n] is the updated pixel value, and

g[m, n] is the binary output. Unlike Floyd Steinberg error diffusion, the thresholds t[m, n; a]

and error weights w[k, l; a] of TDFED depend on the input absorptance, where k, l are the

relative position indices indicating the location of the neighboring pixels of f [m, n]. The

neighboring pixels of f [m, n] are defined by Floyd and Steinberg to be on its right, lower

right, below, and lower left, assuming the image is scanned from left to right in a raster

order. Since TDFED moves through the input image in a serpentine raster order, a mirror

image of the weight location is adopted when scanning from right to left.

The binary output of the system is determined by thresholding the updated pixel value:

g[m, n] =


1, if u[m, n] ≥ t[m, n; a],

0, otherwise.
(2.1)

The updated continuous-tone pixel value u[m, n] is computed as:

u[m + k, n + l]← u[m + k, n + l]− w[k, l; a] · e[m, n], (2.2)

where e[m, n] is the quantization error. It is computed as:

e[m, n] = g[m, n]− u[m, n], (2.3)

20

and the weights w[k, l; a] satisfy ∑k,l w[k, l; a] = 1 to preserve the average local tone. To

eliminate the checkboard patterns in the midtone, the threshold matrix t[m, n; a] of TDFED

is defined based on a halftone pattern p[m, n; 0.5] generated by DBS with period 128× 128

for absorptance 0.5 as:

t[m, n; a] =


tu(a), if p[m, n; 0.5] = 0,

tl(a), otherwise.
(2.4)

where tu(a) and tl(a) are tone dependent parameters that serve as upper and lower thresholds

satisfying tl(a) ≤ tu(a). Substituting (2.4) into (2.1) yields:

g[m, n] =



1, if u[m, n] ≥ tu(a),

0, if u[m, n] ≤ tl(a),

p[m, n; 0.5], otherwise.

(2.5)

In order to reduce the computational complexity, Li and Allebach chose the optimal filters for

tone levels higher than 127/256 according to tu(a) = tu(1− a) and w[k, l; a] = w[k, l; 1− a].

The same strategy is used for all experiments in this chapter.

2.2.2 4-Row Serpentine Scan Path

It has been shown in [4] that implementing error diffusion in serpentine order effectively

reduces the worm artifacts in the extreme gray levels. However, serpentine error diffusion is

intrinsically a serial process, we must finish an entire scan line before moving on to the next

one. This limits the parallelism and locality required by hardware implementations. Thus,

it is necessary to mix the serpentine and raster scan together to solve the problem.

In 4-row serpentine TDFED, every 4 rows of an input image are grouped as a swath. As

depicted by the arrows in Fig. 2.2 , four scan lines in the same swath are processed in one

direction and the consecutive four lines are processed in the opposite direction. By doing so,

the serpentine property is preserved between adjacent swaths.

21

Figure 2.2. Scan path of 4-row serpentine scan with 4 pixel delay

22

To be more specific, inside each swath, error diffusion starts from the first pixel of the

first row, and then it advances rightward along the first row in raster scan order until the

next row is activated. The activation condition is that the binarization of d pixels in the

preceding row has been finished, where d is defined as the delay between the processing of

sequential lines in the 4-row swath. It can be adapted according to the need of the actual

hardware architecture. Error diffusion travels back and forth across the activated scan lines.

After the last pixel of the fourth row has been visited, the scan path then traverses leftward

to process the next swath in the same manner described above. Figure 2.2 is an instance

of the 4-row serpentine scan pattern in which d equals 4 pixels. Each entry of the matrix

represents a pixel of the continuous-tone input image, and the number indicates the order

in which the pixel at that location is processed.

2.2.3 Error Weight Location Matrix

To reduce worm-like patterns with a conventional raster scan error diffusion, randomized

weights [4] and a low frequency modulated threshold matrix [6] have been proposed. Un-

fortunately, these approaches introduce noise to the halftone image. Jarvis et al and Stucki

[19] proposed a larger set of error weights with 24 terms, which requires heavy computation.

Shiau and Fan [20] moved the 1/16 term in Floyd Steinberg weights from location (1,1) to

(-2,1). Li and Allebach [17] developed a set of wider matrices that diffuse the errors further

back. Our approach is based on [17].

As it can be seen from Fig. ?? (a), the 4-row serpentine scan pattern does not produce

long diagonal structures but generates lots of short diagonal worms in the highlights and

shadows. Therefore, we need to spread the quantization error over a wider region in the

problematic gray levels to disperse the worms. In 4-row serpentine TDFED, diffusing the

errors to a further location requires an increase in the delay. We explored delays of 2, 3,

and 6 pixels, which allow an increasingly larger spatial spread in the tone-dependent weight

location matrix. To ensure minimum computations, we chose to use 4 non-zero weights

as originally described in Floyd and Steinberg error diffusion. The matrix set designed

for 3-pixel delay is presented in Table 2.1 . The weights allocation and input partition are

23

Table 2.1. Expanded error weight location matrices designed for 4-row ser-
pentine TDFED with 4 pixel delay. The asterisk sign denotes the current
pixel.

* w1
w4 w3 w2
1

255 ≤ a ≤ 63
255 , 192

255 ≤ a ≤ 254
255

* w1
w4 w3 w2

64
255 ≤ a ≤ 191

255

*
w2

a = 0, a = 1

determined empirically. The values of the weights and thresholds are obtained using a

search-based method, which we will discuss in the following section.

2.2.4 Training System for TDFED Parameters

Although the expanded weight location matrix reduces worm artifacts, if the weights and

thresholds are not properly designed, there will be correlated patterns and non-homogeneous

textures in the output image. Thus, they must be optimized to achieve the best visual quality.

We propose to use four non-zero error weights and two thresholds. There are only 4 degrees

of freedom due to the constraints ∑k,l w[k, l; a] = 1 and tu(a) + tl(a) = 1. We choose to

optimize w[0, 1; a], w[1, 0; a], w[1, 1; a], and tu(a). Generally speaking, the TDFED training

system searches for the optimal parameters by minimizing a cost function ε.

Li and Allebach [17] used two different cost functions depending on the tone level. For

the extreme gray levels, the perceived mean squared error between the constant valued

continuous-tone patch and a TDFED halftone is minimized based on Nasanen’s HVS model

[21]. For the midtones, the total squared error between the power spectra of the halftone

patch generated by TDFED and by DBS is minimized, which is given by:

εLi =
∑

u

∑
v

(ḠDBS[u, v; a]− ḠT DF ED[u, v; a])2, (2.6)

24

(a)

(b)

Figure 2.3. Halftones of a folded ramp image generated by: (a) 4-row ser-
pentine TDFED with 2 pixel delay, (b) 4-row serpentine TDFED with 4 pixel
delay, (c) 4-row serpentine TDFED with 7 pixel delay, (d) the original 1-row
serpentine TDFED. The weights and thresholds are trained using the proposed
scheme described in Section 2.2.4 . It is recommended to zoom in on the figure
so that individual pixels are clearly displayed and to view from a sufficient
distance at which these individual pixels are not visually resolved. Note that
(d) contains some vertical veining patterns in the region marked by the dotted
box. However, all three 4-row halftones are very smooth and homogeneous in
that area. This implies that the proposed 4-row algorithm outperforms the
original TDFED.

25

Figure 2.3. continued.

(c)

(d)

26

Figure 2.4. Optimal tone dependent weights and thresholds for 4-row ser-
pentine scan with 4 pixel delay

where ḠT DF ED[u, v; a] and ḠDBS[u, v; a] represent the average magnitude of the 2D Fourier

amplitude spectra obtained from TDFED and DBS halftone patches, respectively.

Chang and Allebach [15] presented a cost function with a normalization as:

εChang =
∑

u

∑
v(ḠDBS[u, v; a]− ḠT DF ED[u, v; a])2

ḠDBS[u, v; a]2
. (2.7)

Han and Allebach [18] further modified the cost function by adding the power spectra of

TDFED to the denominator:

εHan =
∑

u

∑
v(ḠDBS[u, v; a]− ḠT DF ED[u, v; a])2

(ḠDBS[u, v; a] + ḠT DF ED[u, v; a])2
. (2.8)

We concluded from our experiments that Han and Allebach’s cost function yields the

most reliable results for all levels. Thus, their cost function is adopted as the error metric.

As for the search strategy, we compared the performance of pattern search [22] with the

downhill search [17], and established that downhill search is better suited to our application.

27

The optimized weights and thresholds of 4-row serpentine TDFED with 4 pixel delay are

shown in Fig. 2.4 .

2.3 Experimental Results

Figures ?? (a)-(c) show the result of 4-row serpentine TDFED with 2 pixel, 4 pixel, and

7 pixel delay, respectively. Figure ?? (d) is the original 1-row serpentine TDFED result.

It can be observed that in the highlights and shadows, both 4-pixel and 7-pixel delay 4-

row serpentine TDFED significantly reduce the short diagonal structures seen in (a) and

are comparable to 1 row serpentine TDFED. Moreover, Fig. ?? (d) contains some vertical

veining patterns in the region marked by the dotted square box. However, all three 4-row

halftones are very smooth and homogeneous in that area.

2.4 Conclusion

With a modest delay value, 4-row serpentine TDFED can achieve essentially the same

or better image quality than that provided by the original 1-row serpentine TDFED, except

perhaps in the extreme gray levels. Besides, it will also boost efficiency and reduce memory

cost in some hardware implementations.

28

3. DOT PROFILE MODEL-BASED DIRECT BINARY SEARCH

3.1 Introduction

Digital halftoning, an essential technique for printers, is the process of rendering a

continuous-tone image with a limited number of tone levels. The direct binary search (DBS)

algorithm as an iterative method, yields the best halftone reproductions [23]; so we are

particularly interested in it.

Elementary halftoning algorithms assume that the ideal shape for the printed dots would

be an X ×X square, where X is the dot spacing in inches; so 1/X is the printer resolution

in dpi (dots per inch). However, real-world printers typically produce dots that are larger

and more irregular than that. If the algorithm does not account for such printer distortions,

the resulting print may contain annoying textures and distorted gray levels.

Several studies have focused on model-based techniques to mitigate printer effects. The

main idea is to establish a model to predict the actual gray value of each pixel in the

printed image. A popular model is the hard circular dot (HCD) model proposed in [24] and

formalized in [25] and [26]. In this model, each printed pixel is assumed to be a circular spot

with constant absorptance, and multiple dot overlap is resolved as a logical OR [27]–[32].

The HCD model can be used in DBS to enhance tonal reproduction and detail rendition [33]

[34]. Pappas et al [35] proposed a tabular model based on the macroscopic measurements of

a set of printed binary patterns in a neighborhood. Baqai et al [34] simplified the approach

by using the microscopic measurement of the center pixel of all possible patterns in the

neighborhood. A similar idea based on the tabular model was presented in [36].

Though these models have achieved successful results, there still are some limitations

in their applicability. To be specific, the HCD model might be incompatible with printers

that do not produce perfectly round and uniformly dark dots [26]. Moreover, tabular models

require extensive measurements for devices that render large dots of colorant. This is because

the number of possible dot configurations grows exponentially as the neighborhood size

increases.

Most of the aforementioned researches were oriented to laser electrophotographic (EP)

printers where the dots are very sensitive to the EP process, such that the printer cannot

29

reliably print isolated pixels [34]. Accordingly, estimating the pixel absorptance has to rely

on the interaction between adjacent pixels. In contrast, inkjet printers generally produce

dots that are reasonably consistent and much more stable relative to those produced by EP

printers [36]. Nevertheless, the ink dots may be irregularly shaped [37], much larger than the

minimal size [38], and misaligned [36]. This suggests the use of an analytical model rather

than a completely measurement-based model for inkjet printers.

To address these issues, we propose an analytical dot profile model in which arbitrarily

shaped non-flat dots are studied. To parametrize the model, we first compute the dot

statistics, such as the mean and standard deviation profiles, based on the data collected

from individual dots. By using saturated addition to describe the effect of dot overlap,

the model parameters can be computed analytically as a function of the mean dot profile

and the values of the adjacent pixels. This simplifies the printer characterization process

considerably because we only need to measure a limited number of isolated dots. We also

assume that the ink dots are centered on their nominal locations with no misplacement.

Our goal is to incorporate the dot profile model in DBS to suppress the print artifacts

caused by dot shape irregularity errors. Additionally, motivated by [39], we present both a

standard definition (SD) and a high definition (HD) model. These models enable DBS to

examine the visual fidelity of the rendered halftone at the printer resolution and a 3-times

higher resolution, respectively. Experimental results demonstrate that by using these dot

profile models, DBS can effectively improve the quality of the printed image. In particular,

the HD model further refines the appearance of the shadow regions.

3.2 Preliminaries

3.2.1 Notation

An SD printer pixel [m, n] is an X × X square centered at the point (xm, yn) with

{(xm, yn) : xm = mX + X
2 , yn = nX + X

2 }. An HD pixel [u, v] is a X
3 ×

X
3 square centered at

(xu, yv) with {(xu, yv) : xu = uX
3 + X

6 , yv = v X
3 + X

6 }.

30

3.2.2 Printer Characterization

The first step towards printer modeling is to characterize the printer. We design a test

page to directly capture the profile of each isolated dot. The idea is similar to [36]. Whereas

the main concern of [36] is the dot displacement, our focus is the dot profile. Fig. 3.1 (a)

shows a digital test patch. It contains a binary bitmap where only every 7-th column and

7-th row contains 1’s. There are 15 such patches on the test page.

The test page is first printed at 1200 dpi by a prototype pagewide printhead manufactured

by HP Inc.. Then, the printout is captured with a QEA PIAS-II camera at 7663.4 dpi. Each

test patch fits entirely in the field of view of the camera, so 15 captures are needed for a

printed page. Each printer pixel corresponds to 7663.4
1200 ×

7663.4
1200 ≈ 6.39×6.39 camera pixels. To

facilitate the subsequent analysis, we convert this ratio to an integer, i.e. 6× 6. We exploit

the approach presented in [39] to transform the camera pixels into ultra high definition

(UHD) pixels of size 1
7200 ×

1
7200 in2 via

c[i, j] =
∑

[i,j]∈Ωi,j

αi,j[i, j]c[i, j], (3.1)

where c[i, j] is the absorptance of the estimated UHD pixel, Ωi,j denotes a set of camera

pixels c[i, j] intersecting with the UHD pixel c[i, j], and αi,j[i, j] is the intersection ratio. The

validity of this transformation lies with the assumption that by definition, the UHD lattice is

aligned with the printer lattice, and the camera lattice is not rotated or skewed with respect

to the printer lattice. Horizontal or vertical displacement of the camera lattice with respect

to the printer lattice can be estimated from the L-shaped patterns located on both sides of

the bottom of the test patch shown in Fig. 3.1 . Next, the segmentation mask is computed

according to Otsu’s method [40]. Shown in Figs. 3.1 (b) and (c) are the transformed image

of the test patch and its corresponding segmentation mask. Finally, the sample mean and

standard deviation profiles of all the 3300 dots on the printed test page are computed. The

contour plots are presented in Fig. 3.2 .

As can be seen from Fig. 3.2 (a), the mean dot is limited to a 5× 3 printer-pixel region,

being slightly elongated in the vertical direction. Besides, the shade is relatively dark in the

31

(a) (b) (c)

Figure 3.1. (a) A digital test patch. (b) The printed test patch captured at
7336.4 dpi and converted to 7200 dpi. (c) The binary segmentation mask of
the test patch.

0.1

0.
1

0.1

0
.1

0.1
0.3

0
.3

0.3

0.3

0.5

0.
5

0.5

0.
5 0.7

0.7

0.
7

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5

n (printer pixels)

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

m
 (

p
ri

n
te

r
p

ix
el

s)

(a)

0.001

0
.0

0
1

0
.0

0
1

0.001

0
.0

0
1

0.001

0.001

0.001

0.001

0.001

0.001

0.003

0.003

0.
00

3

0.003

0.003

0.003

0
.0

0
3

0.003

0.003

0.007

0.007

0.009

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5

n (Printer Pixels)

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

m
 (

P
ri

n
te

r
P

ix
e
ls

)

(b)

Figure 3.2. (a) The mean dot profile and (b) standard deviation profile in
the units of absorptance.

center and becomes lighter towards the edge. Looking at Fig. 3.2 (b), we note that the

standard deviation is the greatest around the shoulder of the dot, i.e. where the absorptance

is changing most rapidly from 0.7 to 0.1 as we go from the center of the dot to the periphery.

Nevertheless, the maximum standard deviation is just 0.009. Therefore, it is reasonable to

assume that the dots produced by the print bar are constant in shape, and equal to the mean

profile.

32

3.2.3 Overview of DBS

DBS is a search-based algorithm that uses a human visual system (HVS) model [41]

h(x, y) to find a halftone image g(x, y) that minimizes the visual error between the perceived

halftone image g̃(x, y) and the perceived continuous-tone image f̃(x, y). The error metric is

E =
∫

x,y

∣∣∣g̃(x, y)− f̃(x, y)
∣∣∣2 dx dy. (3.2)

To achieve the local minimum, DBS iteratively toggles a pixel or swaps it with a neighboring

pixel that has a different value.

Suppose there exists an ideal printer whose dot profile p(x, y) = rect(x
X

, y
X

). Let g[m, n]

denote the digital halftone image. Then, the perceived halftone rendered by the printer is

g̃(x, y) =
∑
m,n

g[m, n] · p̃(x−mX, y − nX), (3.3)

where p̃(x, y) = h(x, y) ∗ p(x, y) ≈ h(x, y) [34] denotes the cascade of the dot profile with

the HVS. The closed-form expression of h(x, y) can be found in [42]. Similarly, f̃(x, y) can

be represented in terms of f [m, n]. Define e[m, n] = g[m, n] − f [m, n]. Then, (4.4) can be

written as

E =
∑
m,n

∑
k,l

e[m, n]e[k, l]cp̃p̃[m− k, n− l], (3.4)

where cp̃p̃(x, y) =
∫

ξ,η p̃(ξ, η) · p̃(ξ + x, η + y) dξ dη is the auto-correlation function of p̃(x, y),

and cp̃p̃[m, n] = cp̃p̃(mX, nX) is the sampled version of it.

3.3 Dot Profile Model

Based on the dot statistics in Sec. 3.2.2 , a dot profile model is developed to summarize

the characteristics of the target printer. It is assumed that the printer is capable of ejecting

consistent ink drops at designated locations. The size, shape, and the absorption uniformity

of the drops are the same as those of the mean dot. The effect of dot overlap is modeled as

addition with saturation to 1 (full black). Under this model, the rendered halftone image

produced by the target printer can be simulated as a function of the mean dot profile and

33

the digital halftone. We build a 7200 dpi simulated printer based upon this model with the

UHD mean dot profile.

To embed the printer model in DBS, [34] and [36] create an equivalent gray-scale (EQGS)

image. It is computed as

ḡSD[m, n] = 1
X2

∫
ΩSD[m,n]

g(x, y) dx dy, (3.5)

where ΩSD[m, n] is a printer cell of size 1
1200×

1
1200 in2. We refer to ḡSD[m, n] as the SD EQGS

image. Following the lead of these earlier works, we too use the EQGS image to measure

the visual fidelity of the printed halftone to the original image.

Before incorporating the SD EQGS image in DBS, we use the simulated printer to exam-

ine its validity. Shown in Fig. 3.3 (a)-(c) are a bitmap, its simulated print, and the SD EQGS

image. It can be observed that the SD EQGS image provides a reasonable approximation to

dot overlap; but it is not good at depicting the edges and details. Therefore, it is necessary

to refine the estimation. We develop an HD EQGS image by partitioning each printer pixel

into 3× 3 sub-pixels. The HD EQGS value is then computed within each X
3 ×

X
3 cell. This

process raises the resolution of the EQGS image to 3600 dpi. The resulting HD EQGS image

is shown in Fig. 3.3 (d).

Along the lines of the tabular approaches [34]–[36], an EQGS LUT will be precomputed.

With our target printer, the EQGS value of a pixel can be determined in a 5× 3 region, so

there will be 215 possible binary patterns. In this case, the approach in [34] is intractable,

because one would need to manually capture lots of patterns. This necessitates the use of an

analytical printer model. To minimize the measurements, we simulate the printed image of

all these patterns using the simulated printer, and then compute the EQGS values digitally.

In so doing, the LUT can easily be obtained. The algorithm for generating the LUT is

summarized below. It is worth mentioning that each entry of the SD LUT is a single value,

whereas that of the HD LUT is a 9-element array.

34

Algorithm 1: Computation of the LUT
Initialize the UHD image ḡUHD ← 0;
Initialize the table LUT← 0;
for i← 0 to 215 − 1 do

Convert i to a 5× 3 binary bitmap B;
for b ∈ B do

if b == 1 then
Add the UHD dot profile to ḡUHD on the corresponding location;

if ḡUHD[:, :] > 1 then
ḡUHD[:, :]← 1;

LUT[i, :]←average value of the UHD pixels within the center pixel on the SD or
HD lattice;

return LUT;

35

(a) (b) (c) (d)

Figure 3.3. Development of the SD and HD EQGS images. The black lines
denote the printer lattice, and the gray lines denote the HD lattice. (a) Original
digital halftone image sent to the simulated printer. (b) Rendered image at
7200 dpi. (c) SD EQGS image at 1200 dpi. (d) HD EQGS image at 3600 dpi.

3.4 Dot Profile Model-Based DBS

In this section, we show a detailed formulation of DBS with the HD dot profile model.

The SD case can be easily derived from the HD case; so it is omitted here. Let S denote the

upsampling factor. i.e. S = 1 for SD and S = 3 for HD. The perceived HD EQGS image is

given by

ḡHD(x, y) =
∑
u,v

ḡHD[u, v] · p̃HD

(
x− u

X

S
, y − v

X

S

)
. (3.6)

Define the discretized and truncated version of the perceived dot profile p̃HD[u, v] = p̃HD
(
x− uX

S
, y − v X

S

)
.

Then,

E =
∑
u,v

∑
s,t

ēHD[u, v]ēHD[s, t]cp̃HDp̃HD [u− s, v − t], (3.7)

where ēHD[u, v] = ḡHD[u, v]− fHD[u, v].

Let us consider the effect of changing the state of halftone pixels on the cost value. Let

NHD[u, v] denote the pixels in the 5×3 neighborhood of [u, v]. Toggling [m0, n0] or swapping

[m0, n0] and [m1, n1] in the halftone will affect the EQGS values of pixels in NHD
accepted ,

NHD[u0, v0] ∪ NHD[u1, v1]. Given the fact that the input image fHD[u, v] does not change,

the new error image will be

ēHD[u, v] =


ēHD[u, v] + ∆ḡHD[u, v], for [u, v] ∈ NHD

accepted,

ēHD[u, v], otherwise.
(3.8)

36

Thus, the new cost is

E =
∑
u,v

∑
s,t

ēHD[u, v]ēHD[s, t]cp̃HDp̃HD [u− s, v − t]

= E +
∑

[u,v]∈N HD
accepted

∑
[s,t]∈N HD

accepted

∆ḡHD[u, v]∆ḡHD[s, t]

× cp̃HDp̃HD [u− s, v − t]

+ 2
∑

[u,v]∈N HD
accepted

∑
s,t

∆ḡHD[u, v]ēHD[s, t]

× cp̃HDp̃HD [u− s, v − t].

(3.9)

We further define cp̃HDēHD [u, v] = ∑
s,t ēHD[u, v]cp̃HDp̃HD [u− s, v − t]. Therefore, the change in

the cost due to a trial toggle/swap can be written as

∆E =
∑

[u,v]∈N HD
accepted

∑
[s,t]∈N HD

accepted

(∆ḡHD[u, v]∆ḡHD[s, t])

× cp̃HDp̃HD [u− s, v − t]

+ 2
∑

[u,v]∈N HD
accepted

∆ḡHD[u, v]cp̃HDēHD [u, v].

(3.10)

This error metric will guide the search of DBS. Note that cp̃HDp̃HD [u, v] is independent of the

change, but if a change is accepted, cp̃HDēHD [u, v] needs to be updated by

cp̃HDēHD [u, v]

=cp̃HDēHD [u, v] +
∑

[s,t]∈N HD
accepted

∆ḡHD[s, t]cp̃HDp̃HD [u− s, v − t]. (3.11)

3.5 Experimental Results

In this section, the effect of incorporating the printer models in DBS is evaluated. Tone

curves calculated according to [43] are shown in Fig. 3.4 . As can be seen, the reproduction

curve of DBS with no model, indicated by a red line, is severely distorted. It can be also seen

that after embedding the printer models, the bias becomes negligibly small. This suggests

37

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Input Absorptance

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

O
u

tp
u

t
A

b
so

rp
ta

n
ce

DBS with no printer model

DBS with the SD model

DBS with the HD model

Ideal response

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Input Absorptance

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

E
rr

o
r

A
b

so
rp

ta
n

ce

DBS with no printer model

DBS with the SD model

DBS with the HD model

(b)

Figure 3.4. (a) Tone reproduction curves and (b) tone error curves of DBS
with no printer model, DBS with the SD model, and DBS with the HD model.
Note that the output absorptance is calculated based on the simulated output
of the halftones of constant-tone patches, and the tonal error is obtained by
subtracting the input absorptance from the output absorptance.

that both models can produce a correct average tone at most levels. It is noteworthy that the

tone reproduction curves for both models contain a small flat region in the very highlights.

This will result in a decrease in absorptance that can merely be rectified by applying the

inverse mapping of the tone reproduction curve, namely tone correction.

Fig. 3.5 shows the comparison of the simulated prints of a halftone generated by DBS

with no model, with the SD model, and with the HD model. To present a fair comparison,

tone correction was applied in all three cases before halftoning. These images were all printed

at 7200 dpi using the simulated dot profile printer. It can be observed that the graininess

in the mid-tone and shadow regions in (a) becomes less noticeable in both (b) and (c). This

implies that the irregularly shaped dots were properly controlled by the models. Looking at

the highlights, i.e. the sky area, we note that the improvement is less significant. We believe

the reason is that there are fewer overlapping dots, and thus tone compensation should suffice

to reduce the bias. Comparing (b) and (c), we note that the HD model performs better than

the SD model in the shadow regions, i.e. the lower part of the aircraft and the lawn. The

38

halftone structures are less visible and more homogeneous, making the overall appearance

more visually pleasing. There is also more detail in the landing gear with the HD model.

3.6 Conclusion

We characterized a printer by measuring and analyzing the dot profiles. Based on the

dot statistics, we built a simulated printer to simulate the appearance of the rendered images

produced by this printer. The model parameters were computed analytically, so the number

of measurements was greatly reduced. We incorporated both the SD and HD printer models

in DBS. With the two models, DBS effectively ameliorated the noisiness, and yields nearly

linear tone reproduction without tone correction. The HD model outperformed the SD model

in the shadows.

39

(a)

(b)

(c)

Figure 3.5. Simulated results printed at 7200 dpi. The halftone images are
generated by DBS with (a) no printer model, (b) the SD model, and (c) the
HD model. It is recommended to set the zoom level to 150% and to view these
images at about 12 inches. Note from the call-outs that the HD model shows
the most detail in the landing gear.

40

4. INK DROP DISPLACEMENT MODEL-BASED DIRECT

BINARY SEARCH

4.1 Introduction

Digital halftoning is the process of transforming a continuous-tone image to a set of

binary patterns so that the image can be rendered by bilevel devices such as printers and

some displays. Relying on the fact that the human visual system (HVS) acts as a low pass

filter, these binary patterns can be perceived as gray levels by the human eye.

According to the computational complexity, halftoning algorithms can be classified into

three categories. They are point algorithms (screening or dithering), neighborhood algo-

rithms (error diffusion), and iterative algorithms (least squares and direct binary search

(DBS)). Screening involves a pixel-by-pixel comparison with a threshold matrix. Error dif-

fusion consists of a feed-forward loop where the error between the binarization decision and

the continuous-tone pixel value is fed to a set of pixels that have not yet binarized. The

iterative methods search for the optimal binary image in multiple iterations, where the op-

timal halftone is the one that minimizes the visual error. We are particularly interested in

the iterative methods as they offer the best reproduction with minimal quality degradation

[23].

All the aforementioned algorithms can include customized printer models. The most

elementary halftoning algorithms assume that printers can precisely place square pixels on

predetermined locations. Unfortunately, this assumption does not hold for most real-world

printers. Without an accurate model summarizing the non-ideal characteristics of the printer,

there will be plenty of uncertainties in the halftone reproduction. These uncertainties will

result in image artifacts and print-to-print image quality instability. To address these issues,

researchers developed a number of printer models to correct for a variety of system errors in

the printing process. Ultimately, these models will be embedded in the elementary algorithms

in order to produce high-quality prints.

Printer models can be categorized into process characterization models or print charac-

terization models according to the approach taken to parameterize the model. The process

characterization models are derived from a physical understanding of the printing mecha-

41

nism, and the print characterization models are obtained from measurements and analysis

of the printed pages. The earliest work on the process characterization was presented by

Ruckdeschel and Hauser [44]. They analyzed the Yule-Nielsen effect [45] by empirically

modeling the nonlinear relationship between halftone absorptance and individual colorant

absorptance. Loce et al. [46] examined the halftone banding induced by the vibratory mo-

tion of the photoconductor in an electrophotographic laser printer. Kacker and Allebach [47]

developed an analytical characterization of the electrophotographic (EP) process.

Although fewer measurements are needed, analyzing the physical printing process is

complex. Print characterization models are generally more popular. These include the

widely-used hard circular dot (HCD) model [24], which assumes that the laser printer ejects

circularly shaped black dots. Allebach [27] modified the HCD model to take into account of

the effect of spot overlap. Stucki [28] extended error diffusion with an HCD model. Pappas

et al. [25][26] popularized the HCD model to a parametric approach. Baqai and Allebach

[34] embedded the HCD model into DBS.

The HCD model works well for many printers; but the circular dot assumptions are

limiting for some printers. To meet the needs of these printers, Pappas et al. [35] proposed

a tabular approach for modeling printers. They used the macroscopic measurements of a

set of printed test patches to solve a constrained optimization problem to obtain the table

parameters. Baqai and Allebach [34] simplified the approach by using a high resolution drum

scanner to measure the absorptance of the center pixel for all possible binary patterns in the

3× 3 neighborhood.

The basis of the above print characterization models is the relationship between the gray

level of a pixel in the resulting print and the values of its surrounding halftone pixels. This

relationship can be represented a formula, as in the HCD model or by a gray-level lookup

table (LUT) compiled from the measurements in a small neighborhood, as in the tabular

models. In fact, these models all implicitly rely on an essential tool, which is the equivalent

gray-scale (EQGS) image. The EQGS image is developed to summarize the microstructure

of the colorant within a printer pixel by the average absorptance over that pixel. It assumes

that the human eye cannot resolve the halftone microstructure, and only perceives it as an

42

average. Algorithms, such as [34] [36], compare the EQGS image with the input continuous-

tone image to measure the reproduction fidelity of DBS.

Despite its success in creating high quality printed images, the EQGS tabular model

has two fundamental limitations. One is the complexity of the memory requirements. The

size of the EQGS LUT grows dramatically as the neighborhood expands. This is especially

troublesome for some inkjet printers that feature an extra-wide printhead. In the inkjet

world, nozzles play an important role in controlling the weight, speed, and trajectory of

the ink drops. While every nozzle serves this purpose, not all nozzles can function in the

same way. Taking into account the variations across the nozzles would greatly increase

storage requirement. For example, with a 5× 5 neighborhood and 1000 nozzles, the EQGS

LUT will have 225 × 1000 = 3.4 · 1010 entries. The other limitation is the computation

time. Tabular models predict the EQGS value of each target pixel by converting the bit

pattern in its neighborhood to an index, and then retrieving the corresponding entry from the

LUT. Although effective, function calls and memory accesses can still increase the processing

time relative to what would be consumed by straight formula computation. For iterative

algorithms like DBS, the computation is already heavy. Adding a number of lookups in

every iteration would further slow the program down. This makes the EQGS LUT model

an infeasible solution to real-time applications of DBS, i.e. direct halftoning of images.

To overcome these limitations, we propose a novel printer model that creates the predicted

print by directly modifying pixel locations in the halftone image, while preserving gray values.

This model is independent of any neighborhood and the EQGS concept, hence it eliminates

the need for an EQGS LUT. We refer to it as the ink drop displacement (IDD) model.

Specifically, we use a set of specially designed test-page geometries to measure dot dis-

placements produced by individual nozzles. By moving each ink drop from the intended

position to its actual new position by means of the HVS impulse response, the predicted

print can be generated right away. The amount of the movement is determined by the noz-

zle through which the ink is ejected. Then, the continuous-tone original is subtracted from

the resulting predicted image to construct a visual fidelity metric that guides the search of

DBS. The change in this fidelity metric due to a trial change in the halftone image, can be

easily computed with just a few basic arithmetic operations. With the proposed model, one

43

can effectively improve the printed halftone quality with little increase in computation and

memory cost.

The remainder of this chapter is organized as follows. In Sec. 4.2 , we describe the printing

process of inkjet printers followed by test page design and printed page analysis. In Sec. 4.3 ,

we briefly review the DBS algorithm and derive an error metric for IDD model-based DBS.

We also compare the computation and memory costs for the proposed approach with that

of the existing EQGS approach. Sec. 4.4 presents the experiment procedure and the results.

In Sec 4.5 we design psychophysical tests to quantify the performance of the two printer

models. Finally, conclusions are presented in Sec. 4.6 .

4.2 Printer Modeling

Even though most of the printer modeling work in the literature has been focussed on

EP laser printers, inkjet technologies can generate artifacts that limit print quality, as well.

We will give an introduction to the printing process of inkjet printers, and then talk about

the steps for modeling these printers.

4.2.1 Background

Fig. 4.1 (a) shows the architecture of a typical moving carriage inkjet printer. Inkjet

devices work by launching tiny ink drops onto the media surface. This can be accomplished

by heating the ink, causing ejection of the drop (thermal inkjet), or by applying pressure

to force a drop to be ejected by the nozzle (piezo-electric inkjet). For a moving carriage

printer, each color ink is typically printed by two staggered columns of nozzles, as shown in

Fig. 4.1 (a). Within either column, the nozzles are separated by twice the printer resolution

2X. The two columns are shifted relative to each other by the printer resolution X. This

arrangement increases the distance between adjacent nozzle holes, and thereby strengthens

the nozzle plate. By using both columns and coordinating the movement of the printhead

in the horizontal direction with the timing of the firing of the nozzles, we can achieve a

resolution of X in both the vertical (process) direction and the horizontal (scan) direction.

44

(a)

(b)

Figure 4.1. Illustration of two different inkjet printer architectures: (a) con-
ventional moving carriage inkjet printer and (b) pagewide printhead inkjet
printer. X denotes the printer resolution.

Moving carriage printers can support a number of different print modes. First, we have

the option to only print when the printhead is moving from left-to-right, and not during

the retrace movement from right-to-left (uni-directional printing), or we can print when the

cartridge is moving in both directions (bi-directional printing). Next, we have the option,

between each pass of the cartridge over the media, to advance the media by the height of the

cartridge (1-pass printing), or by the height of the cartridge divided by an integer K (K-pass

printing). Here it is assumed that the columns of nozzles span the height of the printhead.

The advantage of K-pass printing is that we can print any given printer-addressable pixel

45

during any one of K different passes, using one of K different nozzles. This enables us to

minimize the effect of any missing nozzles on the resulting print quality. However, it increases

the time to print a page by a factor of K. Printer drivers typically offer the option of 1- to

6-pass printing, where the higher number of passes are chosen when better image quality is

desired. The print mask, which is a 2-D array of integers that is periodically tiled over the

image to be printed, determines the pass during which any given printer-addressable pixel

is printed. Design of the print mask is a challenging problem in its own right [48]–[51].

With pagewide printhead inkjet printers, the situation is quite different, as is shown

in Fig. 4.1 (b). Here the printhead is replaced by a print bar that consists of multiple

overlapping dies arranged in the scan direction along the length of the print bar [52]. The

print bar is referred to as a pagewide printhead [52]. Each die consists of four pairs of rows of

nozzles corresponding to the four different colorants CMYK, as shown in Fig. 4.1 (b). Where

the dies do not overlap, a single nozzle is used to print an entire column of dots of a given

color. Where the dies overlap, there is a choice of two different nozzles to print each dot of

a given color within a given column of printer-addressable pixels. This flexibility is used to

maintain consistency in the scan direction across the boundary between adjacent dies [52].

With a pagewide printhead inkjet printer, the only motion during printing is that of the

media under the stationary printhead. So there is no possibility of multipass printing. And

no print mask can be used. Thus, each column of pixels in the print will have been printed

by the same nozzle or pair of nozzles where the printhead dies overlap. With respect to the

contribution in this chapter, one must then rely on model-based halftoning to ameliorate the

effects of non-ideal printer behavior.

Due to the complexity of the printing process, there are many uncertainties that can

negatively impact the print quality. For inkjet printers, the source of print defects can be

typically traced to drop shape irregularity and drop misplacement. Unstable ejection speed

and inconsistent ink volumes lead to drop shape errors. Mispositioned nozzles and uncon-

trolled paper movement translate to drop placement errors. Other factors that influence print

quality include air turbulence, ink and substrate properties, and printhead-to-paper spacing.

Ultimately, it is the nozzles that transfer the ink from the printhead to paper. Therefore, to

46

(a)

(b)

(c)

Figure 4.2. (a) The test page, consisting of a 5× 3 array of identical blocks;
(b) A sample block, consisting of a 7 × 7 array of non-identical cells; (c) A
sample cell, consisting of a 10× 17 array of individual printer dots.

accurately control the final printout, nozzles that fail to perform within specification need

to be detected and carefully modeled.

In this chapter, we are primarily interested in modeling pagewide inkjet devices, as

there is literally no existing model that is oriented to such printers. We use a prototype

pagewide printhead manufactured by HP Inc. with 1200 dpi resolution as our test vehicle.

Nevertheless, the discussion and methods are intended to be adaptable to any inkjet printer

that suffers from dot displacement errors.

4.2.2 Print Characterization

A common practice for characterizing a printer is to use image analysis tools to analyze

a printed diagnostic test page [34] [36]. The test page that we designed for this purpose

is shown in Fig. 4.2 (a). We define the following terms. Dot rows are arranged in the

47

(a) (b)

(c) (d)

Figure 4.3. (a) Captured image and (b) segmentation mask of Cell 88. (c)
Captured image and (d) segmentation mask of Cell 55.

vertical direction. Dot columns are arranged across the page, and are associated with nozzle

positions on the pagewide printhead. We refer to the geometrical structures in Figs. 4.2 (b)

and (c) as a block and a cell, respectively.

The blocks are placed at different locations to provide information about different nozzles.

Each block consists of a 7 × 7 array of cells. A cell is composed of three main parts. The

bottom part is a label AB indicating the cell type, where A ∈ [2, 8] represents the row

spacing between dots and B ∈ [2, 8] represents the column spacing between dots. The center

part of cell AB is a bitmap where only every A-th column and B-th row contains 1’s (black

pixels). The lower left and right corners have two L-shaped brackets that are used to help

align the camera when capturing an image of the printed cell. All types of cells are included

in each block.

Now that we have a test page, the next step is to print and analyze it. The test page is first

printed with the target pagewide printhead using black ink. Each printed cell is captured as

48

a separate 768×1024 pixel image at 7663.4 dpi resolution with a QEA PIAS-II camera. Each

captured image is then binarized using Otsu’s method [53] to obtain segmentation masks

for dot clusters. Shown in Fig. 4.3 are two captured cell images and their corresponding

segmentation masks. We note from our experiment that the printhead cannot robustly

reproduce isolated pixels when the dot spacing is less than 5 pixels. This phenomena is

a consequence of dot gain. For our target pagewide printhead, the relation between nozzle

spacing and dot size is intentionally chosen to allow two nozzles that are immediately adjacent

on the left and right sides of a missing nozzle to hide that missing nozzle [52]. With that

being the case, the gap between adjacent dots is too small for the dots to be effectively

separated by Otsu’s method. Thus, we will discard these cells. The remaining 80 cells on

the test page form 250 dot rows and 261 dot columns.

We perform gray balancing, as described in [54], to obtain the luminance (CIE Y) of the

QEA camera pixels. The gray value is then computed by normalizing the luminance to the

range of 0 to 1. Finally, this value is subtracted from 1 to convert to units of absorptance.

The row and column coordinates of the centroid of the i-th dot are calculated according to

Crow,i =
∑

[m,n]∈Ωi m · q[m, n]∑
[m,n]∈Ωi q[m, n]

Ccol,i =
∑

[m,n]∈Ωi n · q[m, n]∑
[m,n]∈Ωi q[m, n]

,

(4.1)

where Ωi denotes the binary mask of the i-th dot and q[m, n] represents the absoprtance of

the camera pixels. Note that the satellites, i.e. tiny spots that are not attached to the main

drop, are ignored in our analysis.

After locating the centroids, we measure dot statistics such as profiles and displacements.

The dot profiles are calculated according to the spatial distribution of ink within the seg-

mentation mask. The displacements are computed as the perpendicular distance from the

centroid to a reference line. This reference line is the vertical/horizontal least squares fit line

to all dots in each column/row within a cell. Figure 4.4 shows an example illustrating the

estimation of the centroids and their misalignment.

49

Figure 4.4. Centroids and reference lines for an example cell. The red dots
denote the actual locations of the ink drop centroids. The green lines denote
the vertical reference lines. The blue lines denote the horizontal reference lines.

Figure 4.5 depicts the measurement data from all 65250 dots. As can be seen from Fig.

 4.5 (a), the mean dot has a size of roughly 3 × 2.5 pixels. We can also see from Fig. 4.5

(b) that the standard deviation is relatively low throughout the entire profile. This implies

that the dots produced by the target pagewide printhead have good consistency in shape

and absorptance with the mean dot profile. Thus, for simplicity, we will use the mean dot as

the printer dot profile in later simulations. From the histograms shown in Figs. 4.5 (c) and

(d), it can be seen that both the horizontal and vertical dot displacements are quite random,

especially the vertical displacements. It is also clear that there is considerably more vertical

than horizontal displacement. These characteristics can be ascertained by visual inspection

of Fig. 4.4 . Based on these observations and in the interest of simplicity, we choose to

incorporate only vertical displacements in our printer model, as discussed later.

To gain more insight on the behavior of the vertical dot displacements, we calculate

average statistics within each column, and then examine the distribution of these statistics

across all columns, as shown in Figs. 4.6 (a) and (b). We see that the mean vertical

displacement for each column varies a lot across all the columns with a mean of 0.00 pixels

and a standard deviation of 0.44 pixels. The standard deviation of the vertical displacements

is also random with a mean of 0.20 pixels and a standard deviation of 0.02 pixels.

50

0.1

0
.1

0.1

0
.1

0.1
0.3

0.
3

0.3

0.
3

0
.5

0.5

0.
5

0.7

0.7

0.7

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5

n (Printer Pixels)

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

m
 (

P
ri

n
te

r
P

ix
e
ls

)

(a)

0.001

0
.0

0
1

0
.0

0
1

0.001

0
.0

0
1

0.001

0.001

0.001

0.001

0.001

0.001

0.
00

5

0.005

0.005

0.005

0.005

0.009

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5

n (Printer Pixels)

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

m
 (

P
ri

n
te

r
P

ix
e
ls

)

(b)

(c) (d)

Figure 4.5. Measurement data for the pagewide printhead. Dot profiles: (a)
Mean dot profile and (b) standard deviation of dot profiles. Histograms of the
dot displacements: (c) Horizontal displacement. (d) Vertical displacement.

For each column, i.e. nozzle, it is our goal is to model the vertical displacement of each

dot in that column as being drawn from a normal distribution with mean and standard

deviation that is in turn drawn from two normal distributions based on Figs. 4.6 (a) and

(b). That is, for all the dots in that column, the mean is drawn from a normal distribution

with mean 0.00 and standard deviation 0.44 pixels (Fig. 6 (a)), and the standard deviation

is drawn from a normal distribution with mean 0.20 and standard deviation 0.02 pixels. To

assess the validity of the assumptions of normality, we apply the Anderson-Darling (A-D)

test [55] to both the distribution of the statistics of the mean and variance across all nozzles,

and to the distribution of the vertical displacements within each column (nozzle). It has been

51

(a) (b)

(c)

Figure 4.6. Distribution across all columns of (a) mean and (b) standard
deviation of the vertical displacements, computed as the mean and standard
deviation of the individual dot displacements within each column. (c) Distri-
butions for vertical dot displacements in three different nozzles (dot columns).
The red line is the probability density function of the normal distribution, i.e.
the null hypothesis. The evidence against the null hypothesis decreases as we
go from left to right, i.e. the P value increases.

reported in the literature that the A-D test is among the best for assessing normality of an

unknown distribution [56]. To compute these tests, we use the adtest function in MATLAB.

Here, the null hypothesis is that the underlying distribution is normal. We choose a P

value of 0.01 for rejection of the null hypothesis, corresponding to a 99% confidence level.

According to this criterion, the assumption of normality for the distribution of the mean

displacement for 261 columns (Fig. 4.6 (a)) cannot be rejected. However, the assumption of

52

normality for the distribution of the standard deviation of the displacements for 261 columns

(Fig. 4.6 (b)) is rejected. For this population, the null hypothesis (distribution is normal)

was rejected for 16% of the nozzles, and was not rejected for 84% of the nozzles.

Figures 4.6 (c), (d), and (e) show the distributions and best fit Gaussian distributions

for the lowest P value (null hypothesis rejected), the median P value (null hypothesis not

rejected), and the highest P value across the ensemble of 261 nozzles (null hypothesis not

rejected). Note that even for the worst case P = 0.00, where the null hypothesis is rejected,

visually, the displacement distribution does not appear to deviate too much from the best

fitting normal distribution. Despite the fact that the A-D test does not completely justify

the assumption of a normal distribution for the dot displacement statistics, we proceed with

this assumption in the interest of simplicity.

Noting the stochastic nature of the vertical dot displacements, we develop a probabilistic

displacement model to capture the statistical properties of the displacements. It will lay the

groundwork for an accurate printer model. To be specific, the vertical displacement for the

l-th column or nozzle at row k is generated by drawing samples from a normal distribution

that has fixed mean µl and standard deviation σl for a given nozzle l,

dk,l ∼ N (µl, σ2
l). (4.2)

Here, the mean and the standard deviation of the nominal displacement for the l-th column

or nozzle have been generated by drawing samples from two normal distributions that are

the same over all the columns or nozzles on the entire page.

µl ∼ N (µµ, σ2
µ), σl ∼ N (µσ, σ2

σ). (4.3)

Based on the statistics shown in Figs. 4.6 (a) and (b), we choose µµ = 0.00, σµ = 0.44, µσ =

0.20, and σσ = 0.02.

To summarize, based on this probabilistic displacement model, we define a stochastic

printer model such that

• There only exist vertical dot displacements.

53

• For each nozzle or column at a given row, the size of the vertical dot displacement is

a continuous random variable.

• Vertical dot displacements are identically distributed within any given column, and

are mutually independent from row-to-row and from column-to-column.

4.3 Printer Model-Based DBS

So far we have shown the steps to catch and parameterize failures in a pagewide inkjet

printhead, our next goal is to embed the model in DBS to automatically correct for these

failures. Before diving into the details of model-based DBS, an overview of regular DBS will

be provided.

4.3.1 Overview of DBS

DBS is an iterative algorithm that seeks an optimal halftone g(x, y) by minimizing the

total squared error between the perceived halftone g̃(x, y) and the perceived continuous-tone

image f̃(x, y), based on a visual model and a printer model. In the context of regular DBS,

the low-pass characteristic of the HVS is modeled as a two-dimensional, linear, shift-invariant

filtering operation. Let f(x, y) denote a continuous-tone image. Then, the perceptually

filtered outputs from the HVS filter can be computed as g̃(x, y) = g(x, y) ∗ h(x, y) and

f̃(x, y) = f(x, y) ∗ h(x, y). Here ∗ indicates convolution and h(x, y) represents the point

spread function (PSF) of the HVS filter. Hence, the squared error can be expressed as

E =
∫

x,y

∣∣∣g̃(x, y)− f̃(x, y)
∣∣∣2 dx dy. (4.4)

Kim and Allebach [57] found Näsänen’s HVS model [41] to be good when incorporated

in DBS. Its frequency response is given by:

H̄(ū, v̄) = b0Γb1exp
(
−
√

ū2 + v̄2

b2ln(Γ) + b3

)
, (4.5)

54

where b0 = 131.6, b1 = 0.3188, b2 = 0.525, b3 = 3.91, Γ is the average luminance of the light

in cd/m2, and (ū, v̄) are the frequency coordinates in cycles/degree subtended at the retina.

The impulse response of the HVS, namely the PSF, is given by

h(x, y) = b0Γb1
2πk(

k2 + 4π2(x2 + y2)
)3/2 , (4.6)

where k = (πV)/180
b2ln(Γ)+b3

[42]. Here V is the viewing distance in inches.

As mentioned in the introduction, an ideal printer model is capable of producing perfect

square X × X dots with each dot aligned to a given position on the printer-addressable

lattice. We envision the array of printer-addressable points as a lattice with spacing of 1
R

inches, where 1
R

= X. For notational convenience, we will switch from X to 1
R
throughout the

rest of this chapter. Let g[m, n] denote a digital halftone image, i.e., the sampled version of

g(x, y) rendered by a printer. Then, g(x, y) can be written as a superposition over weighted

PSFs, such that

g(x, y) =
∑
m,n

g[m, n]p
(

x− m

R
, y − n

R

)
, (4.7)

where p(x, y) = rect(xR, yR) denotes the PSF of the printing device. The perceived version

of g(x, y) is then

g̃(x, y) =
∑
m,n

g[m, n]p̃
(

x− m

R
, y − n

R

)
, (4.8)

where p̃(x, y) = h(x, y)∗p(x, y) represents the superposition of the printer and visual models.

With an ideal high resolution printer, the PSF p(x, y) is so narrow compared to the extent

of the HVS PSF that it is valid to make the approximation

p̃(x, y) ≈ h(x, y). (4.9)

Additionally, f̃(x, y) and its sampled image f [m, n] are assumed to have the same relationship

as that between g̃(x, y) and g̃[m, n],which is described in (4.8). Thus, we define the perceived

difference as

ẽ(x, y) = g̃(x, y)− f̃(x, y). (4.10)

55

The visual fidelity metric in (4.4) can now be written as the energy in the perceived error

image in terms of its samples e[m, n] = g[m, n]− f [m, n], such that:

E =〈ẽ(x, y), ẽ(x, y)〉

=
∫

x,y

∣∣∣∣∣∑
m,n

e[m, n]p̃
(

x− m

R
, y − n

R

)∣∣∣∣∣
2

dxdy

=
∑
m,n

∑
k,l

e[m, n]e[k, l]cp̃p̃[m− k, n− l],

(4.11)

where cp̃p̃[m, n] = cp̃p̃(m
R

, n
R

), and cp̃p̃(x, y) =
∫

ξ

∫
η p̃(ξ, η)p̃(ξ + x, η + y) dξdη is the auto-

correlation function of the perceived PSF p̃(x, y).

Starting from an initial estimate of the halftone image, DBS visits the halftone image

pixel by pixel from left to right and from top to bottom. For the visit to each pixel, DBS will

consider to either switch the binary state of the pixel from 0 to 1 or from 1 to 0 (toggle); or

interchange the state of the current pixel with that of any one of its immediate neighbors that

differs in state from that of the current pixel (swap). Among all candidate swaps and the

toggle, DBS accepts the change, if any, that reduces the cost the most. Each pass through

the image is called an iteration. In the end, the algorithm converges to a local minimum of

the cost when no changes are kept in an iteration.

4.3.2 IDD Model-Based DBS

All printer models aim to purposely distort the halftone image to imitate the printer

effects. Furthermore, the printer model should take a form that is easy to be applied in

the architecture of the target halftoning algorithm. For example, EQGS models may be

implemented within DBS by replacing the g[m, n] term in (4.7) by an EQGS image [34] [36].

Now we will look at a detailed formulation of our IDD model-based DBS.

The ink drops produced by our target printhead, having variations in both shape and

location, require an analysis that looks at both aspects. Looking first at the drop shape, we

find that the size of the mean dot is much larger than the size of an ideal printer-addressable

pixel (1
R
× 1

R
), as shown in Fig. 4.5 (a). So the locally rendered absorptance will be a

lot greater than the local ratio of the number of black to the number of white pixels in

56

the halftone image. To correct for this disparity in gray level, a gray-level transformation,

namely tone correction, will be applied to the image before halftoning. We will talk in detail

later about the steps to estimate such a transformation.

With vertical dot displacements, the visually filtered halftone rendered by the printer

becomes

g̃r(x, y) =
∑
m,n

g[m, n]p̃
(

x− m + dm,n

R
, y − n

R

)
, (4.12)

where dm,n = dx,y ·R pixels. By integrating the displacements into the HVS model, the posi-

tional errors can be compensated without any additional assumptions about the absorptance

of the pixels, i.e. we do not need to use an EQGS model. And we again are assuming that

the dot profile has support that is much less than that of the HVS; so (4.9) still holds. How-

ever, it should be noted that the validity of (4.7), (4.8), and (4.12) rests on an assumption of

additivity of the printing process. This is not strictly correct. In fact, our simulated printers,

to be discussed later, are not based on this assumption. But, we use the assumption here

to assure tractability of the analysis of the IDD-DBS halftoning algorithm. The perceived

error image under this model is

ẽr(x, y) = g̃r(x, y)− f̃(x, y). (4.13)

Thus, the cost function is now

E =
〈
ẽr(x, y), ẽr(x, y)

〉
=
〈

g̃r(x, y), g̃r(x, y)
〉
− 2

〈
g̃r(x, y), f̃(x, y)

〉
+
〈

f̃(x, y), f̃(x, y)
〉

.

(4.14)

This cost function will direct the search for changes to the halftone in order to improve

the fidelity and quality of the printed image. However, the cost value in (4.14) should not

be calculated from scratch for each trial change, because the computation is too extensive

to be permitted. In this regard, we present a method that will facilitate the computations.

This method is built upon the framework of the efficient DBS presented in [23].

57

Let us consider the influence of changing the binary state of a halftone pixel on the cost

value. Either a toggle at pixel [m0, n0] or a swap between pixel [m0, n0] and [m1, n1] in the

digital halftone g[m, n] can be represented as

g[m, n] = g[m, n] + a0δ(m−m0, n− n0)

+ a1δ(m−m1, n− n1),
(4.15)

where a0 = ±1, depending on the polarity of the toggle, and a1 = 0 for a toggle and a1 = −a0

for a swap. Suppose the change is a trial toggle at pixel [m0, n0]. Substituting g[m, n] into

(4.12), we obtain

g̃r(x, y) = g̃r(x, y) + a0p̃
(

x− m0 + dm0,n0

R
, y − n0

R

)
. (4.16)

Then, the new cost value after a trial toggle is

E ′ =〈
g̃r(x, y) + a0p̃

(
x− m0 + dm0,n0

R
, y − n0

R

)
− f̃(x, y),

g̃r(x, y) + a0p̃
(

x− m0 + dm0,n0

R
, y − n0

R

)
− f̃(x, y)

〉
= E + 2a0

〈
(g̃r(x, y)− f̃(x, y),

p̃
(

x− m0 + dm0,n0

R
, y − n0

R

)〉
+ a2

0cp̃p̃(0, 0).

(4.17)

Thus, the influence of toggling the pixel can be computed as the change in the cost value,

such that
∆E = E ′ − E

= 2a0
∑
m,n

g[m, n]

× cp̃p̃

((m−m0) + (dm,n − dm0,n0)
R

,
n− n0

R

)
− 2a0

∑
m,n

f [m, n]cp̃p̃

(
m−m0 − dm0,n0

R
,
n− n0

R

)

+ a2
0cp̃p̃(0, 0).

(4.18)

58

As we have seen, due to all the variations in the printing process, dot displacements errors

in a real world printer are usually random. Thus, we extend the derivation to the stochastic

case by taking the expectation of the cost function with respect to the dot displacement.

The new cost function will be

φ = E{E}. (4.19)

With this new error metric, DBS minimizes the statistical average of the visually weighted

error over the ensemble of all possible dot displacement sets for a given halftone image.

By treating the dot displacement in j-th column as a continuous random variable Dj with

probability density function ρj, the change in the cost in (4.18) can be expressed as

∆φ

= 2a0
∑
m,n

g[m, n]

× E
{

cp̃p̃

((m−m0) + (Dn −Dn0)
R

,
n− n0

R

)}
− 2a0

∑
m,n

f [m, n]E
{

cp̃p̃

(
m−m0 −Dn0

R
,
n− n0

R

)}

+ a2
0cp̃p̃(0, 0)

(4.20)

Let i = m−m0. We define

¯̄cp̃p̃[i; n, n0]

≡ E
{

cp̃p̃

(i + (Dn −Dn0)
R

,
n− n0

R

)}
=
∫

α,β cp̃p̃

(
i+(α−β)

R
, n−n0

R

)
ρn,n0(α, β) dα dβ, if n 6= n0

cp̃p̃

(
i
R

, 0
R

)
, if n = n0

(4.21)

59

and

c̄p̃p̃[i; n, n0]

≡ E
{

cp̃p̃

(i−Dn0

R
,
n− n0

R

)}
=
∫

α
cp̃p̃

(i− α

R
,
n− n0

R

)
ρn0(α) dα,

(4.22)

where ρn,n0 is the joint probability density function of Dn and Dn0 , and ρn0 is the univariate

probability density function of Dn0 .

Assuming that Dn and Dn0 are independent, their joint density function can be written

as

ρn,n0(α, β) = ρn(α)ρn0(β), for all n 6= n0. (4.23)

To further simplify the equation, we define

¯̄z[k, l] =
∑
m,n

g[m, n]¯̄cp̃p̃(m− k; n, l),

s̄[k, l] =
∑
m,n

f [m, n]c̄p̃p̃(m− k; n, l).
(4.24)

Finally, when a trial toggle is accepted, the change in the error metric is

∆φ = 2a0(¯̄z[m0, n0]− s̄[m0, n0]) + a2
0cp̃p̃(0, 0). (4.25)

For a trial swap, ∆φ can be similarly derived. It is

∆φ = 2a0(¯̄z[m0, n0]− s̄[m0, n0])

+ 2a1(¯̄z[m1, n1]− s̄[m1, n1])

+ (a2
0 + a2

1)cp̃p̃(0, 0) + 2a0a1¯̄cp̃p̃(m0 −m1; n0, n1).

(4.26)

60

Both ¯̄z[k, l] and s̄[k, l] can be precomputed and stored in a LUT. Whereas s̄[k, l] is fixed

and independent of the halftone, ¯̄z[k, l] should be updated every time when a trial change is

accepted according to

¯̄z[k, l] =



¯̄z[k, l]

+ a0¯̄cp̃p̃(m−m0; n, n0)
, if accept a toggle,

¯̄z[k, l]

+ a0¯̄cp̃p̃(m−m0; n, n0)

+ a1¯̄cp̃p̃(m−m1; n, n1)

, if accept a swap.

(4.27)

We now have a complete scheme for performing DBS with the new model. Next, we will

assess the computation and memory costs of our algorithm and make a comparison to the

EQGS tabular model.

4.3.3 Computation and Memory Complexity

Low computation and memory complexity are desirable characteristics to all halftoning

algorithms. They are especially crucial to iterative methods, such as DBS, where efficiency

is necessary for the algorithm to be feasible.

We will use the following notations and assumptions for the analysis in this section.

• The region of support for p̃ is Q × Q. A typical value of Q is 47 pixels, which covers

99% of the HVS filter for a printer with resolution R = 1200 dpi and a scale factor

R · V = 3500.

• The size of image is M ×N .

• The size of the neighborhood in the EQGS image that is affected by toggling a pixel

is H ×W .

• Entries in LUT tables are double precision floating point.

61

For the IDD model, it is required to store z, s, ¯̄cp̃p̃, and c̄p̃p̃, where z and s both have the

size of M ×N , and ¯̄cp̃p̃ and c̄p̃p̃ both have the size of (2Q− 1)× (2Q− 1)×N . Hence, the

IDD model-based DBS consumes

SIDD(Q, M, N) = 2
[
MN + (2Q− 1)2N

]
(4.28)

memory units.

For the EQGS tabular model, cp̃p̃ and cp̃ẽ should be stored. The former will be of size

(2Q − 1) × (2Q − 1), whereas the later is of the same size as the input image. Apart from

cp̃p̃ and cp̃ẽ, an EQGS LUT is needed. Each entry of the LUT consists of the expected value,

variance of the EQGS value of the subject pixel, and the pairwise covariance of the EQGS

values of the neighboring pixels [36], so the LUT has size 2H×W ×
[
2 +

(
H×W

2

)]
×N . In total,

the EQGS model consumes

SEQGS(Q, M, N, H, W) = (2Q− 1)2 + MN

+ 2HW

[
2 +

(
HW

2

)]
N

(4.29)

memory units.

Let us now calculate the memory cost of the two models when used with the target

printhead. As can be seen in Fig. 4.5 (d), each dot may be displaced from roughly -1.6

pixels to 1.7 pixels in the vertical direction. For the EQGS model, changing the state of

a single pixel in the digital halftone could affect a 5 × 1 window in the EQGS image, i.e.,

H = 5, and W = 1. Suppose the image width and height of the input image are both 512

pixels. Then, the memory usage of the EQGS model is SEQGS(47, 512, 512, 5, 1) = 0.0037 GB,

and that of the IDD model is SIDD(47, 512, 512) = 0.075 GB. For this particular pagewide

printhead, there would not be any advantage in terms of memory efficiency to using the

IDD model over the EQGS model, but there might be with another printer that has more

substantial dot displacement errors in both the horizontal and vertical directions.

Figure 4.7 compares the amount of memory required by the IDD model and the EQGS

model when the neighborhood size ranges from 3 to 20 pixels. Units are measured in GB. It

62

is clear that the memory cost of the IDD remains steady at 0.075, while that of the EQGS

model sees a remarkable climb from almost 0 to 825. The 9-pixel neighborhood marks the

point at which the memory cost of the EQGS model overtakes that of the IDD model.

Thereafter, as the neighborhood broadens to 20 pixels, the EQGS model consumes 2.7 to

1.1 · 104 times more memory than what is consumed by the IDD model.

In brief, from the memory cost point of view, when there are just minor dot displacements

(around 1 pixel in both directions), the EQGS model might be a better choice than the IDD

model. Otherwise, the IDD model would be the only practical solution.

Next, we turn to the details of computational complexity. Both the IDD and EQGS

approaches are built upon the same search framework as that of the efficient DBS. In this

framework, the error is computed locally within the support of the HVS filter and only the

terms that are related to the trial changes need to be updated [23]. Since evaluating the

error metric for trial changes takes the majority of the processing time in each iteration of

DBS [23], we will focus on analyzing the complexity of it. In the EQGS approach, toggling

a pixel can affect the gray value of all pixels within the H ×W neighborhood around the

subject pixel, and swapping will affect two overlapping neighborhoods around the swapped

pixels. Thus, it costs O(H ×W) arithmetic operations to compute the EQGS terms in the

error metric. By contrast, in the IDD approach, only the subject pixel or the swapped pixels

need to be considered, independent of H or W . With the use of the IDD model, a dramatic

saving in the cost from O(H ×W) to O(1) arithmetic operations can be attained.

Regarding the processing time of the complete halftoning program, we executed DBS

with no printer model, DBS with the IDD model, and DBS with the EQGS tabular model

on a 2 GHz Dual-Core Intel Core i5 processor. The printer model is the simulated never-

centered model to be described in Sec. 4.4 , which has H = 1 and W = 3. For an image

of size 512 × 512 pixels, efficient DBS took 2.5 - 3 minutes depending on the particular

image, the EQGS model-based DBS took 35 - 45 minutes. On the other hand, the IDD

model-based DBS took about 3 - 4 minutes, achieving a speedup factor of approximately

11× relative to the EQGS model-based DBS. If DBS is involved indirectly, for instance, in

screen design or in tone dependent error diffusion [58], then the computation time is not a

63

3 5 7 9 11 13 15 17 19

Neighborhood Size (Printer Pixels)

0

100

200

300

400

500

600

700

800

900

M
em

o
ry

 U
sa

g
e

(G
B

)

EQGS model

IDD model

3 5 7 9 11

0.2

0.4

0.6

0.8

1

Figure 4.7. Memory consumption of the IDD model and the EQGS model.
The neighborhood size is equal to H ×W pixels. Note that neighborhood size
= 9 (i.e. 3 × 3) is the cross-over point.

big issue. However, when it is used in direct halftoning applications, the IDD approach will

significantly outperform the EQGS approach.

In summary, the IDD model has low space and computation costs due to the fact that it

does not rely on an EQGS model. Thus, it is advantageous for use in real-time applications

with printers that have significant dot displacement errors.

4.4 Experimental Results

To effectively show how well DBS exploits the model, we built two simulated printers.

The first one is a stochastic printer that closely matches the target printhead. We use it to

examine the effects of integrating the IDD model in DBS. The second one is a deterministic

printer. It is created to compare the print quality produced by DBS with no printer model,

DBS with the IDD model, and DBS with the EQGS model. The cost function of the

deterministic IDD model is still based on (4.18). But the expectation operator is no longer

needed, due to the fact that there is no randomness in the deterministic model.

64

4.4.1 Simulated Printers

Pagewide Printhead

This synthetic printer is built upon the statistics that we measured from the target

prototype pagewide printhead. We assume that the printer has the following characteristics

• Every time the printer processes an image, it will draw a sample function that de-

termines the vertical displacement at each pixel location based on the probabilistic

displacement model described in Sec. 4.2 . Note that the specific sample function is

unknown to the halftoning algorithm.

• The ink dots produced by the printer are constant in shape and equal to the mean dot

profile.

Never-Centered Printer [36]

The dots delivered by this printer are misplaced by a fixed amount horizontally. We

assume that the printer has the following characteristics

• Dots printed in even-numbered rows are always displaced to the right with a bias of

0.5 pixels, whereas those printed in odd-numbered rows are always displaced to the

left by 0.5 pixels.

• The ink dots have an ideal square shape of size 1
R
× 1

R
.

Both printer models are nonlinear in that they incorporate saturation. Absorptance

values resulting from dot overlap that are greater than 1 are clipped to 1. This is an

approximation to how a real printer would behave.

4.4.2 Tone Correction

Our experimental results indicate that tone correction [43] is an effective method to com-

pensate for tone distortions with printers that exhibit significant amounts of dot overlap.

Even with an ideal printer, the halftoning algorithm itself may not yield perfect tone repro-

duction, as is the case with DBS [43]. Tone correction can also compensate for this issue. In

65

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Input Absorptance

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
O

u
tp

u
t

A
b
so

rp
ta

n
ce

DBS with no printer model

DBS with the IDD model

Ideal response

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Input Absorptance

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

O
u
tp

u
t

A
b
so

rp
ta

n
ce

DBS with no printer model

DBS with the IDD model

(b)

Figure 4.8. Tone curves of DBS with no printer model and DBS with the IDD
model when used with the simulated pagewide printhead. (a) Uncompensated
tone reproduction and (b) tone correction curves.

this method, we first create a step wedge image that consists of 256 constant continuous-tone

patches spanning all 8-bit gray levels. The step wedge image is then halftoned with the given

halftoning algorithm, and printed by the given simulated printer. The mean absorptance of

each printed patch is then computed. The mean output absorptances computed from the

halftone patches printed by the simulated printer are plotted against the input absorptance

to constitute a tone reproduction curve. Then, the inverse mapping is taken to form a tone

correction curve. Finally, tone correction can be applied to the continuous-tone image prior

to its being halftoned.

The tone reproduction curves and tone correction curves of the IDD model-based DBS

algorithm and DBS with no printer model when used with the simulated pagewide printhead

are shown in Fig. 4.8 (a). As is observed, both algorithms tend to darken the absorptance.

The ideal curve is an identity function through the origin, as indicated by the dashed line

shown in Fig. 4.8 (a). After tone correction, the RMS tone reproduction error in units

of absorptance is 0.013 for DBS with no printer model and 0.0094 for DBS with the IDD

model. So for this printer model, tone correction is quite effective in both cases. Note that

the never-centered printer uses an ideal dot profile. So the only tone reproduction error is

66

due to DBS itself [43], which is relatively small. Thus, we do not perform tone correction

with it.

4.4.3 Simulated Results

For the simulations of the prototype pagewide printhead, the sample images were first

tone corrected and then halftoned at 1200 dpi. The scale factor R · V for Näsänen’s HVS

model was set to be 3500, since it gives the best visual quality [43], [59]. Next, the halftoned

images were rendered with the simulated printer at 12000 dpi, which was realized by replacing

each halftone pixel with a displaced 10 × 10 pixel cluster. The absorptance profile of each

pixel cluster was computed based on the mean dot profile, assuming additive combination

of the individual dot profiles with a saturation limit of 1.0, as discussed previously. The

amount of displacement was obtained from the probabilistic displacement model. As for

printing with the never-centered printer, the procedure was similar, except that the tone

correction step was skipped. Besides, each printer pixel in the halftone image corresponds

to a 2× 2 block of simulated pixels [36].

Figures 4.9 (a) and (b) show the pagewide printhead simulations of the “mustang” image

halftoned by the original DBS and IDD model-based DBS, respectively. These simulated

images should be held at a distance of about 20 inches when viewed, assuming that the

displayed page is 8.5 in wide. From visual inspection of Fig. 4.9 (a), one sees objectionable

white streaks, the result of vertical dot displacements, throughout the mid-tone and shadow

areas. Besides, the texture of the image is patchy and noisy. In contrast, no streaks can be

seen in Fig. 4.9 (b). The dots are also placed more uniformly, making the overall appear-

ance more visually pleasing. These improvements suggest that the IDD model successfully

incorporated dot displacement information for the pagewide printhead in DBS so that high

quality prints can be achieved.

Shown in Fig. 4.10 are the simulated prints of the “mustang” image halftoned by DBS

with no printer model, DBS with the EQGS model, and DBS with the IDD model for

the never-centered printer, all rendered by the never-centered printer. They should also

be viewed from a distance of around 20 inches, assuming that the displayed image of the

67

(a)

(b)

Figure 4.9. Simulated pagewide printhead results. Halftone images generated
by (a) DBS without printer model and (b) DBS with the IDD model at 1200
dpi for the pagewide printhead, and both rendered with the simulated page
printhead at 12000 dpi, with 10× upscaling. The resolution of the continuous-
tone input image is 300× 700 pixels. The resolution of the simulated prints is
3000× 7000 pixels.

page has width 8.5 in. From visual inspection, it is clear that the image in Fig. 4.10 (a)

suffers from veining artifacts near the mid-tones. On the other hand, both the IDD and

EQGS model show a remarkable improvement over the artifacts found in the printed image

halftoned by the original DBS algorithm. They produce very homogenous dot distributions.

In addition, the “SIX SHOOTER” phrase and the image of the Yosemite Sam are rendered

more clearly by using the printer models. Our overall conclusion is that the IDD approach

is comparable to the EQGS approach in terms of resisting dot displacement distortions.

68

4.5 Psychophysical Image Quality Assessment

The ultimate goal of model-based halftoning is to deliver a satisfying end-user experience.

Therefore, a psychophysical image quality assessment experiment is designed as a quantita-

tive metric to judge and compare the performance of the printer models when embedded in

DBS.

This experiment consists of two parts. In Part 1, a double-stimulus study was conducted

to compare the quality of images that were halftoned using DBS with no printer model

and DBS with the IDD model for the pagewide printhead, when rendered by the simulated

printer with a pagewide printhead. In Part 2, a tri-stimulus study was designed to compare

the quality of images that were haftoned using DBS with no printer model, DBS with the

EQGS model, and DBS with the IDD model for the never-centered printer, when rendered

by the simulated never-centered printer. Eighteen unique images from Set5 [60] and Set14

[61] (a duplicate is removed), ranging from size 256× 256 to 576× 720 pixels, were used as

the test images. The image contents include natural scenes, portraits, animals, and a book

cover. These color images were first converted to grayscale using the function rgb2gray from

the Python toolkit Scikit-image. They were then processed using the above techniques, and

the resulting simulated prints were displayed on a computer screen through a graphical user

interface (GUI) written in Python.

A total of 26 subjects with normal or corrected to normal vision participated in the

experiment. Fifteen of them were experts in the field of halftoning. The other eleven were

graduate students with image processing background, but no prior experience with halftoning

research. The subjects were asked to rate each simulated print according to its smoothness,

texture, and detail rendition at a viewing distance of 20 inches. Nevertheless, they were

allowed to make small adjustments to their position if they felt it was necessary. As for the

rating scale, we adopted the commonly-used mean opinion score (MOS). This score is set on

a five-point scale where 1 means bad and 5 means excellent. To avoid possible ambiguities,

we provided detailed descriptions of each of the five scales.

The simulated prints were presented to the subjects in a random order. Half of the images

were repeated 1-2 times for the purpose of consistency checking. In total, each subject rated

69

around 50 instances (2 versions of 18 images plus repetitions) in Part 1 and around 80

instances (3 versions of 18 images plus repetitions) in Part 2.

Before analyzing the raw scores, we detected outliers. The j-th subject was considered

to be an outlier if the scores that he/she assigned satisfied all of the following criteria:

• Smax(i, j)−Smin(i, j) > 1, where Smax/min(i, j) represents the maximum/minimum score

assigned to the i-th image by the j-th subject.

• σ{S̄(i, j)} > 0.5, where S̄(i, j) is the mean score over multiple observations of the i-th

image by the j-th subject.

• 1
L

∑L
i=1 |S̄(i, j) − Ŝ(i)| > 0.4, where Ŝ(i) is the mean score of the i-th image over all

subjects, and L = 18.

Nine subjects in Part 1 were identified as outliers, and eight subjects in Part 2 were

identified as outliers. The experimental results with the outliers taken out are shown in Fig.

 4.11 . It is clear from Figs. 4.11 (a) and (b) that all subjects preferred IDD model-based

DBS rather than the original DBS with no printer model when the image is printed by

the simulated pagewide printhead. Figure 4.11 (c) shows that the IDD model was rated

best (4.0) with EQGS model slightly behind (3.9), while the algorithm with no printer

model received the lowest score (2.6). It is revealed from the plots that the incorporation

of information about the printing device can significantly improve the performance of DBS,

but the difference between the two printer models is not very large. This matches our

observations from Fig. 4.10 . As is observed from Fig. 4.11 (d), 15 out of 18 subjects thought

that the IDD model was no worse than the EQGS model, adding credence to our claim that

the IDD model-based DBS produces high quality simulated prints.

4.6 Conclusion

We have developed an IDD printer model within the framework of DBS to deal with dot

displacement errors. The dot displacements produced by individual nozzles on a pagewide

printhead were characterized and integrated in the printer model. We used tone correction

to rectify the gray level distortion caused by the large ink drops. This makes it possible to

70

predict the locally averaged printed halftone absorptance accurately without using an EQGS

model. Based on a stochastic model for the dot displacements, we derived a simple formula

for IDD model-based DBS to evaluate the visual cost of applying candidate toggles and

swaps in a computationally efficient manner. Not only does the proposed model allow DBS

to handle dot-positional errors in a large neighborhood, but it also substantially reduces the

execution time relative to that required for the EQGS model. An important aspect of our

IDD model is that it does not depend on a detailed knowledge of the sample function of the

dot displacement errors, but rather only the statistics of those errors. This is particularly

important for prints made using a pagewide inkjet printhead, since the alignment between

the printed page and the nozzles will be unknown prior to the generation of a halftone version

of that printed page.

Experimental results show that the IDD model greatly improves the appearance of the

simulated print over the original DBS algorithm. In order to quantitatively assess and

compare the quality of printed images that were halftoned using DBS with no model, DBS

with the IDD model, and DBS with the EQGS model, MOS tests were conducted. The

MOS results demonstrated that IDD model-based DBS yields the highest quality and the

original DBS with no printer model yields the lowest quality among the three algorithms.

Furthermore, the IDD model was ranked slightly more favorably than the EQGS model by

the human viewers.

71

(a)

(b)

(c)

Figure 4.10. Simulated never-centered printer results. Halftone images gen-
erated by (a) DBS without printer model, (b) DBS with the EQGS model
for the never-centered printer, and (c) DBS with the IDD model for the
never-centered printer at 1200 dpi, and all rendered with the simulated never-
centered printer at 2400 dpi, with 2× upscaling. The resolution of the
continuous-tone input image is 300 × 700 pixels. The resolution of the simu-
lated prints is 600× 1400 pixels.

72

(a) (b)

(c) (d)

Figure 4.11. Psychophysical experiment results. Part 1: Simulated printer
with pagewide printhead. (a) Mean score across images. (b) Mean score across
subjects. Part 2: Simulated never-centered printer. (c) Mean score across
images. (d) Mean score across subjects. The whiskers indicate the standard
deviation associated with each data point.

73

5. HIGHLIGHTED DOCUMENT IMAGE CLASSIFICATION

5.1 Introduction

Multifunction printers (MFPs) are popular in home and small office. This is because

they offer multiple functions, such as print, copy, and scan, for the price and size of a single

device. Apart from the cost and efficiency, the most important factor that the customers

care about is image quality. In this regard, different configurations of the scan/copy pipeline

are embedded in the device to optimize the image quality of a particular kind of image

type, such as text documents, highlighted pages, or photos. For example, the configuration

designed for the text mode may increase the contrast and sharpen the edges to get clear text;

and the configuration designed for the photo mode may impose a smoothing effect to reduce

the noise. A common method to change image quality settings is through manual selection

[62]. Users can choose the most appropriate mode from a list of predefined modes according

to the content of the document, or adjust each attribute from the submenu. Such a method

often requires trained users, which may not always be desirable. Therefore, it is necessary

to integrate an automatic document image classification model into the printer firmware.

There are many research papers on document image classification [63]–[67]. However,

they are not all suited for use in entry-level printers due to the memory and computational

complexity restrictions of the printer firmware. To avoid such problems, Lu et al [68] de-

veloped a low-complexity algorithm using SVMs and several features to classify text, photo,

and mixed documents. Xu et al [69] extended the approach by adding more features and

two additional classes highlight and faded document. The features in [69] are

• Luminance and chroma flatness scores describing the spread of the histograms.

• Color variability score indicating color consistency by measuring the height of the

histogram bins.

• Text edge count based on counting the number of pixels that differ by 100 in gray value

on a scale of 0 to 255 from their adjacent pixels.

• Chroma around text indicating the distribution of chroma around text edges.

74

• Color block ratio based on counting the number of 32×32 non-overlapping blocks with

at least 10% chromatic pixels.

• White block count based on counting the number of 32 × 32 non-overlapping white

blocks.

However, [69] is not accurate enough; many highlighted documents are misclassified into

the text category and vice versa. Note that highlighter marks on the highlighted documents

are made using a highlighter pen after the document has been printed, as shown in Fig.

 5.1 (c). Misclassifying these highlighted documents is especially problematic for printers.

Most highlighter pens have bright and fluorescent colors [70], so they reflect more light

than conventional colors. This reflection will result in unreliable color reproduction by the

printer. For example, the scanned or copied highlighters may appear lighter or darker than

expected or even change colors, i.e. yellow becomes green. The highlighting may even

disappear completely when the scanned document is printed. For these reasons, the need

still exists for an improved method for differentiating highlighted documents from other types

of documents.

In this paper, we propose two novel gamut-based features and six low-level color features

to capture the color specifics of the highlighted regions in the image. These new features are

concatenated to the seven features in [69]. The sequential forward floating selection (SFFS)

feature selection algorithm [71] is applied to find the best feature subset for our application.

The optimum set of features is then used to train a directed acyclic graph support vector

machine (DAGSVM) [72] to classify the documents. We work with a specific model of MFP

and a specific image processing pipeline equipped with four classes of documents. They are

text, photo, highlight, and mixed. Some example images are in Fig. 5.1 . Nevertheless,

our work can be easily applied to any MFP by re-measuring the printer gamut. Our cross-

validation results show that the new feature subset significantly improved the precision and

recall for all document types.

75

(a) (b)

(c) (d)

Figure 5.1. Example scanned document images: (a) text, (b) photo, (c)
highlight, and (d) mixed. Note that in highlight documents, the highlighter
marks are drawn manually by the user using a highlighter pen after the page
is printed.

76

5.2 Feature Extraction

In this section, we will describe the detailed procedure for extracting the new features.

Sec. Color Space presents the color space conversion. Sec. Printer Gamut-Based Features

demonstrates how to retrieve and characterize the highlighter pixels based on the estimated

gamut. Finally, the steps to obtain our new low-level color features are presented in Sec.

 Low-Level Color Features .

5.2.1 Color Space

The choice of the color space is essential for color image analysis [73]. RGB is a widely

used device-dependent space in imaging devices. However, it is not perceptually uniform.

That is to say, the distance between the RGB coordinates of two colors is not proportional to

the human perception of such a difference [74]. For this reason, several perceptually uniform

spaces have been developed, such as CIE L∗a∗b∗ and CIE Lch(a∗b∗). In this paper, we will

extract color features in the CIE Lch(a∗b∗) color space.

We first convert gamma-corrected RGB to linear RGB using a 1D gamma uncorrection

lookup table (LUT) provided by the organization sponsoring this research. This LUT is

applied separately to each of the R, G, and B channels of the MFP scanner output. The

conversion is plotted in Fig. 5.2 . Then a 3 × 3 matrix transformation is applied to the

linearized RGB values

X

Y

Z

 =


0.5313 0.3519 0.1168

0.2742 0.7673 −0.0415

0.0051 0.0510 0.9438




RL

GL

BL

 . (5.1)

This matrix describes the transformation from the device-dependent scanner RGB of a

particular MFP product to the device-independent CIE XY Z color space. It was also

provided by the organization sponsoring the research. Then, we convert to CIE L∗a∗b∗

77

Figure 5.2. The gamma uncorrection conversion from gamma-corrected RGB
to linear RGB.

through the equations provided in [54]. Finally, the color attributes lightness (L∗), chroma

(C∗), and hue (h) can be computed as

L∗ = L∗,

C∗(a∗, b∗) =
√

a∗2 + b∗2,

h(a∗, b∗) = arctan
(

b∗

a∗

)
.

(5.2)

Here, L∗ corresponds to how light or dark a color is, C∗ represents the color intensity, and

h describes the appearance of color – color in its pure form, as in red, green, or blue.

5.2.2 Printer Gamut-Based Features

In our discussion here, a gamut is the range of colors that can be reproduced by the

printer. In this paper, we only work with printed colors as sensed by a scanner, which has its

own gamut of colors that can be uniquely sensed. However, generally, the scanner gamut is

78

(a)

(b)

Figure 5.3. (a) The printed and scanned test page used to estimate the
gamut. (b) The estimated gamut in CIE L∗a∗b∗ space. Each dot corresponds
to the mean L∗a∗b∗ values of a patch.

79

larger than that of the printer. So we assume here that the printer gamut is strictly contained

within the scanner gamut, and that the scanner gamut contains all highlighter colors.

Given the fact that most colors painted by highlighter pens cannot be accurately repro-

duced by the printer, we will look at chromatic pixels in the scanned image lying outside of

the printer gamut. We follow the procedure described in [54] to estimate the gamut using

the test page shown in Fig. 5.3 (a), which has been printed with our target printer, and then

scanned with our target scanner. The resulting gamut is shown in Fig. 5.3 (b). Inspired by

[75], we segment the CIE Lch(a∗b∗) space into 18 non-overlapping 20-degree hue slices. Then

the gamut boundary of each hue slice is computed as the convex hull [76] that encompasses

all points within the hue slice [77]. We refer to such a convex hull as a gamut hue sector. The

vertices of the gamut sectors (convex hulls) are stored in counterclockwise order to facilitate

later computations. We will soon compare each image and the gamut at every 20-degree hue

slice.

Furthermore, by visual inspection, we note that some highlighter colors, such as yellow

and orange, are softer than others, while others, such as magenta and purple, are more

visible. From the plots of the four example highlighter patches in Fig. 5.7 , one can see

that the range of chroma and lightness varies from one hue slice to another. Thus, we

propose to use hue-slice dependent chroma and lightness thresholds to improve the accuracy

of highlighter pixel characterization. The thresholds are measured based on a scanned sheet

of paper containing assorted colors of highlighter pen marks. It can also be seen from Fig.

 5.7 that many highlight pixels are out of the printer gamut, adding credence to our claim that

the highlighted regions often cannot be reliably reproduced. We assume that the chroma

and lightness values of a highlight pixel should each fall between two thresholds. From the

lightness and chroma 2D histogram in Fig. 5.4 , we note that high chroma/low lightness

values could be solid colors that are from a photo or some graphics, and low chroma/high

lightness values could be the color of the media. Therefore, to speed up the subsequent

computations, such colors can be excluded.

Now, we are going to compare each scanned image and the printer gamut at each hue

slice. Specifically, we use the following procedure to extract the highlight pixels of interest.

For each 20-degree hue slice s, we first compute a set of image pixels Ss = {(C∗, L∗) |

80

(a)

(b)

Figure 5.4. Lightness and chroma 2D histogram plots of a (a) text image
and a (b) photo image. The original images are Fig. 1 (a) and (b).

C∗ ∈ [C∗s
LB, C∗s

UB], L∗ ∈ [L∗s
LB, L∗s

UB]}, where C∗s
LB, C∗s

UB, L∗s
LB, and L∗s

UB are the lower and upper

bounds of the chroma and lightness, respectively, of hue slice s. Note that the set Ss depends

on a specific image and we will repeat this process for each image in the dataset to compute

their own feature values. Then, we check if each pixel in Ss is inside the gamut hue sector

or not. Given an edge of the s-th gamut hue sector defined by the vertices Vs
i (C∗s

i , L∗s
i)

81

and Vs
i+1(C∗s

i+1, L∗s
i+1), 0 ≤ i ≤ N − 2, and a pixel Ps

j (C∗s
j , L∗s

j) ∈ Ss, if that pixel lies in the

exterior of the gamut hue sector as shown in Fig. 5.5 , then based on [78], ∃i ∈ {0,, N −2}

such that

(V s
i+1 − V s

i)× (P s
j − V s

i) < 0, (5.3)

where × denotes cross product. Here N is the total number of vertices of the gamut hue sec-

tor. Note that the sector is closed since we require that Vs
N−1(C∗s

N−1, L∗s
N−1) = Vs

0(C∗s
0 , L∗s

0),

and again the vertices are labeled in the counterclockwise orientation.

Now that the highlight pixels of interest are recognized, we can design some features to

describe them. We propose to use highlight hue count and maximum highlight strength. The

first feature is designed to count the number of highlight colors marked on the document

image. The second feature is designed to compute the average distance from each highlight

color to the printer gamut boundary for each hue sector. Then, we take as our feature value,

the maximum over all the hue sectors of this average distance.

To compute the first feature, we iterate through all hue slices, and count the number

of highlight pixels in each slice. If there are a sufficient number of highlight pixels, i.e. at

least 1% of the image pixels in the hue slice are highlight pixels, then the hue slice will be

counted towards the total number of highlight hues. As for the second feature, we first need

to calculate the distance from each highlight pixel to its corresponding gamut hue sector.

Figure 5.5. Visual aid for Equation (3).

82

For the hue sector s, let Ps
k be the k-th highlight pixel in the gamut sector s. As illustrated

in Fig 5.6 , there are three cases depending on the relative location of the pixel with respect

to the gamut sector on the lightness-chroma plane. Let rs
i,k = (Vs

i+1−Vs
i)·(Ps

k−Vs
i)

‖Vs
i+1−Vs

i ‖2 , and Ps
k be

the projection of Ps
k to the edge Vs

i+1 −Vs
i of the hue sector s. Then, the distance from Ps

k

to the edge [79] is

ds
i,k =



‖Ps
k −Vs

i ‖, if rs
i,k ≤ 0

‖Ps
k −Vs

i+1‖, if rs
i,k ≥ 1

‖Ps
k −Ps

k‖, otherwise.

(5.4)

Thus, the shortest distance from the highlight pixel to the periphery of the gamut sector s is

ds
min,k = min

i=0,...,N−2
ds

i,k. Next, we compute the average distance d̄s over all Ks outlier pixels for

the gamut hue sector s according to d̄s = 1
Ks

∑Ks−1
k=0 ds

min,k. Finally, the second gamut-based

feature can be computed as

d̄max = max
s=0,...,17

d̄s. (5.5)

Figure 5.6. Visual aid for Equation (4). The three cases left to right corre-
spond to the equations from top to bottom in Equation (4), respectively.

5.2.3 Low-Level Color Features

We use two properties of the highlighted regions in order to design the low-level color

features. First, highlighter marks are typically bright and relatively translucent colorants

drawn on a light-colored background [70]. So the average value of the lightness and chroma

83

Figure 5.7. Four highlighter patches with their corresponding gamut hue
sectors. The black convex hull indicates the gamut hue sector within the hue
range. The green dots are the (C∗, L∗) coordinates of the highlight pixels
within the hue range.

in a highlighted image block should be higher than those of a non-highlighted block. Second,

within a small region, i.e. 32×32 pixels in a document scanned at 75 dpi or 0.427 in × 0.427

in, there is usually a single highlighter color, and the fluctuations in chroma and lightness

should therefore be smaller than those in the mixed and photo images that contain various

colors. On the basis of these two properties, we developed six color-moment features [80],

namely minimum block mean, maximum block standard deviation, and the minimum block

unnormalized skewness of the lightness and chroma channels to describe the characteristics

of the color distribution of the highlighted image blocks.

To be specific, we partition the query image into 32 × 32 non-overlapping blocks, and

compute the color moments for both the L∗ and C∗ channels within each block. Let the

pixel value (L∗ or C∗) of the i-th channel at the j-th image pixel in block l be Ii,j and the

84

number of image pixels in the block be Q, then the block color moments of channel i are

defined as:

Ei,l = 1
Q

Q−1∑
j=0

Ii,j

σi,l =

√√√√√ 1
Q

Q−1∑
j=0

(Ii,j − Ei,l)2

si,l = 3

√√√√√ 1
Q

Q−1∑
j=0

(Ii,j − Ei,l)3

(5.6)

Finally, we compute the minimum and maximum color moment values across all blocks.

These features are simple, yet effective. Intuitively, they summarize the chroma and lightness

characteristics of the most prominent block in the image, which will be the highlighted block,

if there is any.

5.3 Classification Model

Along the lines of [69], we use a DAGSVMmodel [72] to solve the multi-class classification

problem. The DAGSVM model that we use has a tree structure, as shown in Fig. ?? . It

consists six 1-vs.-1 SVMs, one for each pair of the four classes. At the root level, the classifier

decides if the image is in the mixed or highlight class. If it does not belong to the highlight

class, then we go to the left child. If it does not belong to the mixed class, then we go to the

right child. This procedure is repeated until the final decision is reached. The radial basis

function (RBF) kernel is used for all the SVMs.

In our application, different misclassifications are weighted differently. For example, it

is more problematic to misclassify text as photo than to misclassify text as highlight. If

the text image is processed through the photo mode configuration, which has a smoothing

effect, the text strokes will look too blurry. However, if the text image is processed using

the highlight mode configuration, which will move the colors inside the printer gamut, the

85

Figure 5.8. Illustration of the tree structure of the DAGSVM model. M =
mixed, T= text, P = photo, and H = highlight.

reproduction will not be negatively impacted. Therefore, in the training process for the

DAGSVM model, our goal is to minimize the weighted error

E =
∑
i,j

Wi,jUi,j, (5.7)

where Wi,j is the weight of classifying the i-th class as the j-th class and Ui,j is the number of

images in the i-th class being classified as the j-th class. The matrix W is presented in Table

 5.1 (a). The weights were chosen by engineers working for the organization sponsoring this

research.

5.4 Experimental Results

Our dataset consists of the images in [69]. The images were labelled by engineers working

for the organization sponsoring this research. There are in total 400 images, including 129

images in the mixed class, 84 images in the text class, 100 images in the photo class, and 87

images in the highlight class. The image contents include book and magazine pages, posters,

portrait and natural pictures, handwritten notes, lecture slides, and application forms. Each

image has a size of 825× 638 pixels and a resolution of 75 dpi.

86

Table 5.1. (a) The error weight matrix W . It shows how different classifi-
cation results weight differently towards the total cost. (b) The leave-one-out
confusion matrix U . It summarizes the performance of our classification model.
In both tables, M = mixed, T= text, P = photo, and H = highlight.

Classifier Output

M T P H

G
ro
un

d
Tr

ut
h M 0 3 5 4

T 3 0 10 2

P 3 10 0 15

H 10 10 10 0
(a)

Classifier Output

M T P H

G
ro
un

d
Tr

ut
h M 114 4 6 5

T 1 80 0 3

P 4 0 96 0

H 5 1 0 81
(b)

We evaluate the performance of the model using leave-one-out cross-validation (LOOCV).

LOOCV repeatedly splits the data points into a training set containing all but one sample

point, and a validation set containing only that remaining sample point. It provides a

confusion matrix that we can use to compute the weighted error based on Equation (5.7).

We employ SFFS [71] to select the best feature subset which has the minimal LOOCV

weighted error. In the SFFS process, we start from an empty feature set and add one of the

non-used features to the set to train the model. Then the cost function is evaluated on the

validation dataset. The one feature that gives us the lowest cost will be included. After each

inclusion, a number of exclusions will be performed to the current feature set if the cost can

be further decreased. This process is iterated a number of times until there is no further

decrease in the cost. Our final feature subset, selected by SFFS, contains 12 features, with

87

6 from [69] (all but the color variability score) and 6 new ones (2 gamut-based features and

the first 4 color-moment features). The optimal LOOCV confusion matrix is shown in Table

 5.1 (b).

Table 5.2 summarizes the results according to different document image types in terms

of precision and recall, as well as the overall accuracy and weighted error. Here, precision

and recall are defined [81] as

Precision = TP
TP + FP

Recall = TP
TP + FN

, (5.8)

where TP, FP, and FN represent true positive, false positive, and false negative, respectively.

It can be computed that the decrease in the weighted error is 61% and the increase in the

accuracy is 10.8%. For the highlight class, the precision rises 11.5% and the recall rises 13%.

These new results are relative to those reported in [69].

Table 5.2. Precision and recall (Equation (5.8)) for different document types
and the overall accuracy and weighted error (Equation (5.7)). M = mixed,
T= text, P = photo, and H = highlight.

Precision (%) Recall (%) Accur-
acy(%) EM T P H M T P H

[69] 80.6 76.2 89.0 81.6 83.9 81.0 84.0 78.0 82.0 3.6
Ours 88.4 95.2 96.0 93.1 91.9 94.1 94.1 91.0 92.8 1.4

5.5 Conclusion

A set of highlighter features is proposed. We utilize the characteristics of the highlighter

colors and their distribution to describe the highlighted document images. The identification

performance of the highlight class was evaluated by means of precision and recall. The overall

performance of the model was measured by accuracy and the weighted cost. The newly added

features significantly enhance the performance and substantially decrease the cost.

88

6. A COLOR IMAGE ANALYSIS TOOL TO HELP USERS

CHOOSE A MAKEUP FOUNDATION COLOR

6.1 Introduction

With the rapid evolution of mobile phone technologies, people can do more and more

things on their phones. Virtual makeup try-on is one of the popular mobile applications

nowadays. It allows users to test out makeup shades via images or live camera, which

makes cosmetic shopping a lot more convenient and fun. Many researches have focused

on this field. Bhatti et al [82] developed a mobile image-based application to give women

personalized cosmetic recommendations. Tong et al [83] extracted makeup information from

before-and-after image pairs and transferred the makeup to a new face. Work in [84] is

based on the similar idea. There are also some papers using deep neural networks [85], [86]

to analyze makeup styles. Most of these papers are targeting the facial attribute analysis

and style transfer. In this chapter, we will study the color change of the skin before-and-after

the makeup is applied. We will focus on a specific line of foundation products.

Taking images with a mobile phone can be easy, but extracting reliable colors from the

images remains a problem. Because of imperfect lighting conditions, different camera sensors

sensitivity, and various post-processing in the image processing pipeline of the camera, the

same product can look different on different images.

To address this color disparity issue, researchers have developed various color correction

algorithms. These algorithms can be generally classified into two-fold: color constancy and

image calibration. Color constancy is done by estimating and removing the influence of illu-

minations. Some popular color constancy algorithms include Gray World and Max RGB. A

major limitation of these two algorithms is that they strongly rely on particular assumptions.

If some of the assumptions do not hold, then the estimation can be inaccurate. Some more

recent neural network algorithms [87]–[89] can achieve high accuracy but also require lots

of computer resources, compared to some traditional methods. On the other hand, image

calibration approaches are simple and effective. They directly map the device-dependent

RGB color values to some standard color values with the help of a calibration target. This

mapping can be applied to any camera and makes very few assumptions about the character-

89

istics of the images taken by the camera. The mapping includes three-dimensional look-up

tables combined with interpolation and extrapolation [90], machine learning models [91], and

neural networks [92], [93]. Despite the fact that a wide variety of calibration methods are

available, researchers have favored regression-based approaches [54], [94], [95] due to their

simplicity and feasibility.

In this chapter, we propose an image analysis tool that can predict the skin-with-

foundation color based on the color information retrieved from calibrated selfie and founda-

tion swatch images. To avoid illuminance inconsistency across multiple images of the same

subject, we use a protocol to collect image data under controlled lighting conditions. To

minimize the color correction errors, we group the color patches on the color checker into

three sets and compute the mapping from the camera-dependent RGB space to the standard

CIE XY Z for these three sets separately. Next, the CIE L∗a∗b∗ color coordinates of the skin

pixels, foundation pixels, and the skin with foundation pixels are extracted. Finally, a linear

regression model and a support vector regression (SVR) [96] model are trained using these

color coordinates.

6.2 Data Collection

The image calibration method proposed in this chapter relies on a standard calibration

target. We used the X-rite ColorChecker digital SG 140, which is shown in Fig. 6.2 . The

target foundation products are shown in Fig. 6.1 (b). The detailed procedure is as the

following:

• Take a selfie photo with no foundation applied.

• Choose 3 or 4 foundation shades that are close to the actual skin tone by testing each

possible match on the skin.

• Evenly apply the foundation on the skin using a new and clean sponge.

• Wait about three minutes for the foundation to dry, and then take a selfie photo.

• Remove the foundation completely using makeup removal wipes.

90

(a) (b)

Figure 6.1. Data collection experiment (a) lab settings and (b) the makeup
foundation bottles.

• Wait about three minutes for the skin to calm down, and apply the next shade.

• Repeat the process until all chosen shades are applied and photographed.

The experiment was conducted under controlled lighting in a lab. The lab setting is

shown in Fig. 6.1 (a). The light sources are three 4700K LED light bulbs. We installed

diffuser panels to make the light as well-diffused as possible. The color checker and the

mobile phone are mounted on tripods. The subject uses a Bluetooth remote button to take

selfie photos. Each subject is instructed to sit at a fixed distance from the camera, so that

the amount of the light reflected from his or her face is about the same for all images. The

images in Fig. 6.3 are sample original photos that we collected from this experiment.

6.3 Image Calibration

In this section, we will present the details of the image calibration procedure, which

will lay the groundwork for an accurate prediction model. We will start by introducing the

skin pixel detection algorithm. And then we describe the two major steps in the proposed

calibration framework. Finally, the calibration performance is evaluated by means of the

color differences in CIE L∗a∗b∗ space.

91

Figure 6.2. X-rite digital SG 140 color checker. Patches that are used in the
color correction stage are numbered from 1 to 35.

6.3.1 Skin Detection

Since we mainly interested in analyzing and predicting skin colors, the facial skin is

first segmented. A fast and efficient RGB-H-CbCr model [97] for this purpose is adopted.

Under a uniform illumination condition, a skin pixel, defined by [97], should satisfy all of

the following three criteria.

Criterion 1:
R > 95 ∧ G > 40 ∧ B > 20

max(R, G, B)−min(R, G, B) > 15

|R−G| > 15 ∧ R > G ∧ R > B

(6.1)

Criterion 2:
Cr ≤ 1.5862 · Cb + 20 ∧

Cr ≥ 0.3448 · Cb + 76.2069 ∧

Cr ≥ −4.5652 · Cb + 234.5652 ∧

Cr ≤ −1.15 · Cb + 301.75 ∧

Cr ≤ −2.2857 · Cb + 432.85 ∧

(6.2)

Criterion 3:

H < 25 ∨ H > 230 (6.3)

Here, ∧ denotes the logical AND operation, and ∨ denotes the logical OR operation. An

example output of this skin detection algorithm is shown in Fig. 6.4 . It can be seen from

92

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 6.3. Sample original images. Subject No.1 (a light-skinned subject):
(a) skin with no foundation, (b) skin with foundation shade No. 130, (c) skin
with foundation shade No. 150, and (d) skin with foundation shade No. 200.
Subject No. 2 (a dark-skinned subject): (a) skin with no foundation, (b) skin
with foundation shade No. 450, (c) skin with foundation shade No. 500, and
(d) skin with foundation shade No. 520.

Fig. 6.4 , although some non-skin pixels are picked up by the segmentation mask, most of

the skin pixels are correctly identified. Note that we will find the average value within the

skin region, as discussed later, so a few non-skin pixels will not significantly degrade the

estimation. It can also be seen from Fig. 6.4 that the algorithm can effectively handle

various skin complexions across different ethnicities.

6.3.2 Gray Balancing and Polynomial Transformation

Image calibration is a process that converts device-dependent RGB values into CIE

XY Z values. So we need to obtain the RGB values of the target color patches in the

93

(a) (b) (c)

Figure 6.4. Skin detection output of the skin with no foundation images of
(a) subject No.1 (light-skinned), (b) subject No. 2 (dark-skinned), and (c)
subject No. 3 (tan-skinned).

original image as well as their corresponding CIE XY Z values. The patches of interest are

labelled 1 through 35 in Fig. 6.2 . The CIE XY Z values are measured with an X-Rite

spectrophotometer under D50 illuminant, and the RGB values are extracted by averaging

over the center region of each patch for each color channel.

Now that we have the (RGB,CIE XY Z) pairs, we can estimate the color mapping

between them. We will utilize a two-step process [54], namely gray balancing and polynomial

regression. Gray balancing aims to remove the color cast and avoid having one particular

dominant hue in the image. The methodology is based on [54]. We assume that the linear

RGB values of each patch and the CIE Y (Luminance) value of the neutral gray patches are

related by

Rl = Gl = Bl = Y. (6.4)

94

(a) (b)

(c)

Figure 6.5. The gray balancing curves of the skin with no foundation image
of subject No. 1. (a) The R channel. (b) The G channel. (c) The B channel.
Note that the gray balancing is based only on the color checker patches, and
does not utilize the skin pixels.

Twelve neutral gray patches (patches No. 6 to No. 17 in Fig. 6.2) on the color checker

are used in this step. This gives us twelve pairs of (Rγ, Rl), (Gγ, Gl), and (Bγ, Bl) for each

image. We then fit a Gain-Gamma-Offset model [54] to them, such that

Rl = αR

(
Rγ

255

)γR

+ oR,

Gl = αG

(
Gγ

255

)γG

+ oG,

Bl = αB

(
Bγ

255

)γB

+ oB,

(6.5)

where αi, γi, and oi (i = R, G, B) are the gain, gamma, and offset. The gray balancing curves

of a sample image are shown in Fig. 6.5 . The gamma and offsets values for this particular

image are summarized in Table. ?? .

After obtaining the linearized RGB values, we can continue to the regression step. To

maximize calibration accuracy, the target patches are classified into three sets, and the

calibration mapping is trained separately on each set. We refer to these three training sets

as Set 1, Set 2, and Set 3, respectively. We use the following procedure for patch grouping. To

95

Table 6.1. Gain, gamma, and offset values for each of the R, G, and B
channels for a sample image in the dataset.

Channel Gain Gamma Offset
R 95.69 2.00 3.48
G 97.34 1.93 3.05
B 99.99 1.98 3.37

Figure 6.6. Block diagram of the calibration procedure.

form Set 1, we first compute the mean RGB values of the pixels within the skin segmentation

mask described in the previous section. We refer to this mean as the centroid of Set 1. Then,

we find the patches from which the Euclidean distance is less than 80 to the centroid of Set

1. Similarly, the patches in Sets 2 and 3 are grouped based on the centroids determined

by the K-means algorithm. The centroids of these three training sets will be used again

when classifying image pixels for the entire image, as discussed later. Finally, we compute

three different transformation matrices Ti using the polynomial regression. Let Q denote the

Ni×11 matrix consisting of the polynomial terms of the linearized RGB values of the target

patches.

Qi = [Ri,l Gi,l Bi,l R2
i,l G2

i,l B2
i,l

Ri,lGi,l Gi,lBi,l Ri,lBi,l Ri,lGi,lBi,l 1],
(6.6)

where Ni indicates the number of patches in the i-th set. Let P denote the Ni × 3 matrix

consisting of the measured CIE XY Z values of the patches.

Pi = [Xi Yi Zi]. (6.7)

96

(a) (b)

(c)

Figure 6.7. (a) The histogram of the calibration ∆E76 across all 35 patches
for the skin with no foundation image of subject No. 1 and (b) subject No.
2. The mean calibration ∆E76 values over all 35 patches for subject No. 1
and subject No. 2 are 0.75 and 0.91, respectively. (c) The histogram of the
mean calibration ∆E76 values across all images of all subjects. The mean
calibration ∆E76 value across all images is 1.82; and the standard deviation is
3.50. Note that there are only five images with mean ∆E76 > 3. These were
eliminated from the subsequent analysis as outliers.

Then, the optimal 3× 11 transformation matrix can be computed as

Ti = (QT
i Qi)−1QT

i Pi. (6.8)

Now, we are ready to apply the transformation matrices to the entire image. As illus-

trated by Fig. 6.6 , the image pixels will be classified into three sets based on their distance

to the three pre-computed centroids, and then the linearized RGB values will be converted

to CIE XY Z using the corresponding matrices.

97

6.3.3 Calibration Performance

The color correction stage is now completed, and we can evaluate the accuracy of it. In

order to make the calibration more perceptually relevant, the color coordinates are converted

from CIE XY Z to CIE L∗a∗b∗ space. The conversion is defined as

L∗ = 116 · f
(

Y

Yn

)
− 16

a∗ = 500 ·
(

f
(

X

Xn

)
− f

(
Y

Yn

))
b∗ = 200 ·

(
f
(

Y

Yn

)
− f

(
Z

Zn

))
,

(6.9)

where

f(t) =


1
3

(
116
24

)2
+ 16

116 , if x ≤ 24
116 ,

x
1
3 , if x > 24

116 .

(6.10)

Here, (Xn, Yn, Zn) are the CIE XY Z tristimulus values of the white point. With CIE stan-

dard D50 illumination, Xn = 96.42, Yn = 100 and Zn = 82.52.

Then, the color difference between the ground truth and the calibrated CIE L∗a∗b∗ coor-

dinates of each of the patches are computed. The color difference is defined as the Euclidean

distance between the color coordinates (L∗
1, a∗

1, b∗
1) and (L∗

2, a∗
2, b∗

2), such that

∆E76 =
√

(L∗
1 − L∗

2)2 + (a∗
1 − a∗

2)2 + (b∗
1 − b∗

2)2. (6.11)

The resulting histograms for two sample images are shown in Figs. 6.7 (a) and (b). As can

be seen from Figs. 6.7 (a) and (b), out of 35 patches, 33 patches have an ∆E76 value less

than 3 for both cases. So for these two images, color correction is quite effective. Figure

 6.7 (c) shows the histogram of the mean ∆E76 value over 35 patches for all images. It can

be seen that the mean calibration error for the majority of the images is too small to be

noticed, i.e. ∆E76 ≤ 1. This suggests that the proposed calibration algorithm works well

on the dataset. The five images with a mean ∆E76 value greater than 3 are considered to

be outliers, and are therefore excluded from the subsequent analysis.

98

Figure 6.8. Illustration of the input and output of the prediction model.

6.4 Experimental Results

With the outliers taken out, the remaining images consist of 63 skin images with and

without foundation pairs. These images are taken by 19 subjects. The distribution of the

skin tone types is summarized in Table 6.2 . After color correcting all the images using our

Table 6.2. Number of subjects and number of images in each skin tone category.
Skin Tone Type Fair Light Medium Tan Dark

Number of Subjects 4 4 4 3 3
Number of Image Pairs 14 13 14 12 10

proposed method, we obtain 63 pairs of CIE L∗a∗b∗ coordinates. Apart from the selfie photos

of the subjects, we also collected an image that contains the swatches of all the foundation

shades. The foundation shades are applied on a white cardboard using makeup sponges.

The original foundation swatches image is shown in Fig. 6.9 . The same color correction

procedure is performed on the image, except that the three sets are now all determined by

K-means. The mean calibration ∆E76 of this foundation swatches image is 0.34.

Now, we can develop a model to predict the CIE L∗a∗b∗ coordinates of the skin-with-

foundation color, given the CIE L∗a∗b∗ coordinates of a skin-with-no-foundation color and

the CIE L∗a∗b∗ coordinates of a foundation color, as illustrated in Fig. 6.8 . We explored two

common machine learning models. They are linear regression and SVR [96] with a linear

kernel.

We denote the 6-dimensional input vector (i.e., the CIE L∗a∗b∗ coordinates of a skin-

with-no-foundation color and the CIE L∗a∗b∗ coordinates of a foundation color) of the i-th

99

Figure 6.9. The original foundation swatches image. From top to bottom
and from left to right, the shades are No. 100, 110, 120, 130, 140, 150, No.
200, 210, 220, 230, 240, 250, 300, 310,, 540, 550.

sample as xi and the corresponding 3-dimensional ground truth label (i.e., the CIE L∗a∗b∗

coordinates of the skin-with-foundation color) as yi. Then, the linear regression problem can

be formulated as

J(θ) =
N∑

i=1
L(θT xi, yi) = ||θT xi − yi||2, (6.12)

100

where θ = [w, b]T , θT xi is the prediction made by the model, and N is the number of samples

in the dataset. We further define a N × 7 matrix

A =



xT
1 1

xT
2 1

... ...

xT
N 1


, (6.13)

and a N × 3 matrix

Y =



yT
1

yT
2

...

yT
N


. (6.14)

Then, (6.12) can be converted to the vector form such that J(θ) = ||Aθ − Y ||2. Thus, the

optimized solution can be expressed as

θ̂ = argmin
θ

J(θ) = (AT A)−1AT Y. (6.15)

The SVR algorithm is based on the same concept as the support vector machine, except that

it uses the support vectors for soft margins in the regression process rather than classification.

The regression problem with a SVR model is defined as

argmin
w,b

1
2 ||w||

2 + C
N∑
i

(ξi + ξ∗
i), (6.16)

subject to
yi − wxi − b ≤ ε + ξi

wxi + b− yi ≤ ε + ξ∗
i

ξi, ξ∗
i > 0,

(6.17)

where w and b are model parameters, C is the box constraint, ε is the margin around the

decision boundary, and ξi, ξ∗
i are the slack variables. The Python package Scikit-learn is used

to implement linear regression and SVR.

101

A common way to evaluate the performance of a regression model is to use K-fold cross-

validation. In K-fold cross-validation, the dataset is randomly split into K equal-sized folds.

We train the model on the data in K−1 of the folds and evaluate the model on the remaining

one fold, namely, the validation fold. We then repeat this process K times. Given the fact

that we have limited data in the dataset, we choose K = N , where N is the number of

all data points. This method is referred to as the leave-one-out cross-validation (LOOCV)

method. That is to say, in each trial, the predictor is trained on all but one data point, and

the prediction is made for that retained point. Then the performance can be computed as

the average over the N trials. The advantage of using LOOCV is that each data point gets

the chance to be allocated into both the testing set and N − 1 of the training sets. The

selection bias is therefore decreased.

To determine the goodness of model fit, the coefficient of determination, denoted by R2,

is computed. In the context of regression, it is a measure of the proportion of the prediction

error that can be attributed to the variance in the independent input variables. It is defined

as:

R2 = 1−
∑N

i=1(yi − ŷi)2∑N
i=1(yi − ȳ)2 , (6.18)

where yi− ŷi is the error from the prediction ŷi to the ground truth yi of the i-th data point,

and ȳ is the mean of the ground truth y values. The R2 score is in the range of [0, 1]. A

score of 0 means that the dependent variable cannot be predicted from the independent

variable, and a score of 1 means the dependent variable can be predicted with no error from

the independent variable.

Besides, the mean squared error (MSE) and mean absolute error (MAE) are also used to

evaluate the accuracy of prediction results. The MSE can be expressed as

MSE =
∑N

i=1(pi − gi)2

N
, (6.19)

where pi and gi are the predicted value and the ground truth value of the i-th sample point,

respectively. Similarly,

MAE =
∑N

i=1 |pi − gi|
N

. (6.20)

102

Table 6.3 summarizes the LOOCV results of the linear regression model and the SVR

model in terms of R2, average MSE, and average MAE. It can be seen that the average MSE

and MAE values are less than 1.5 ∆E and the R2 value is high for both of the models. This

implies that the prediction models can accurately predict the skin with foundation color on

the dataset.

Table 6.3. LOOCV R2, MSE, and MAE results.
Model R2 Average MSE Average MAE

Linear Regression 0.83 1.50 0.91
SVR with a Linear Kernel 0.82 1.49 0.87

6.5 Conclusion

The selfie images are calibrated using a subset of color checker patches. The pixels are

classified into three sets according to the Euclidean distance from the RGB values of the

pixel to the three designated centroids. Three different transformation matrices are com-

puted separately and then applied to the corresponding pixels in the image. The calibration

accuracy is measured by the color difference ∆E between the reference value and the cali-

brated value in CIE L∗a∗b∗ space. The ∆E results indicate that the error produced by the

proposed method is almost not distinguishable for most of the images. A prediction model is

then built upon the calibrated selfie images. The prediction performance is measured by R2,

MSE, and MEA. LOOCV results show that the prediction made by both linear regression

and SVR with a linear kernel is reliable.

103

7. SUMMARY AND CONTRIBUTIONS

Let us review the contributions of this work.

In this thesis, we designed five image processing and/or learning-based vision algorithms

that give better image quality, low complexity, and high accuracy.

In Chapter 1, we proposed a new parallel image processing path to accommodate the

hardware architecture of a printer. Chapter 2 proposed an ink dot profile model to eliminate

detail loss and noisiness in the print generated by the printers that exhibit irregular drop

shape errors. Chapter 3 proposed an ink drop displacement model to reduce severe image

quality degradation caused by ink drop misalignment and random displacement of the ink

drops by the printer. Chapter 4 proposed a set of features to use along with a multi-class

SVM so that highlighted documents can be more accurately classified. Chapter 5 designed

a new color calibration method to better study the color change in skin complexion before-

and-after applying makeup foundation products.

To sum up, the main contributions of this thesis are:

4-Row Serpentine Tone Dependent Error Diffusion

• Designed a novel multi-row serpentine scan path for the tone dependent fast error

diffusion algorithm that realizes parallel processing of the original algorithm.

• Designed a set of new error weighting matrices so that the worm-like artifacts can be

dispersed.

• Adopted a new loss function in the training system which results in more reliable and

smoother renderings.

Dot Profile Model-Based Direct Binary Search

• Designed a test page to capture the ink drop shape of the target printer.

• Developed an analytical dot profile model that characterizes dot shape irregularity

errors of the printer.

• Explored the printer model at two different resolutions, i.e. SD (printer resolution),

HD (3×printer resolution).

104

• Embedded both the SD and HD dot profile models into the direct binary search algo-

rithm and achieved better output quality.

Ink Drop Displacement Model-Based Direct Binary Search

• Designed a test page to capture the ink drop displacement of the target printer.

• Analyzed the stochastic behaviors of printer ink drops using image processing tech-

niques.

• Developed a statistical model to predict ink drop displacements, and embedded the

prior knowledge of the statistics of the printer defects into the halftoning algorithm.

• Designed a Python GUI and conducted mean opinion score experiments to quantify

the perceived image quality.

Highlighted Document Image Classification

• Designed features to characterize the content, color distribution and highlighter marks

on the document images.

• Developed machine learning models to classify scanned document images according to

the content of the document. The proposed method achieved significant improvement

in document classification accuracy compared to previous method.

• Translated Python code to C for use in the embedded system.

A Color Image Analysis Tool to Help Users Choose a Makeup Foundation Color

• Designed and fully implemented a laboratory and protocol for capturing ground truth

selfie images of subjects with and without makeup and an image of the makeup foun-

dations applied to a white board.

• Developed a color correction algorithm to reduce color distortion in mobile phone

images.

• Implemented machine learning models to predict makeup foundation color with given

mobile phone images.

105

REFERENCES

[1] R. W. Floyd and L. Steinberg, “An adaptive algorithm for spatial gray-scale,” in Proc.
of the Society for Information Display, vol. 17, 1976, pp. 75–77.

[2] I. H. Witten and R. M. Neal, “Using peano curves for bilevel display of continuous-tone
images,” IEEE Computer Graphics and Applications, vol. 2, no. 3, pp. 47–52, 1982.

[3] D. E. Knuth, “Digital halftones by dot diffusion,” ACM Trans. on Graphics, vol. 6,
no. 4, pp. 245–273, 1987.

[4] R. Ulichney, Digital Halftoning. MIT press, 1987.

[5] C. Billotet-Hoffmann and O. Bryngdahl, “On the error diffusion technique for electronic
halftoning,” Proc. of the Society for Information Display, vol. 24, no. 3, pp. 253–258,
1983.

[6] R. L. Miller and C. M. Smith, Image processor with error diffusion modulated threshold
matrix, US Patent 5,150,429, Sep. 1992.

[7] J. Sullivan, R. Miller, and G. Pios, “Image halftoning using a visual model in error
diffusion,” J. Opt. Soc. Amer. A, vol. 10, no. 8, pp. 1714–1724, 1993.

[8] R. Eschbach, “Error diffusion algorithm with homogenous response in highlight and
shadow areas,” J. of Electron. Imaging, vol. 6, no. 3, pp. 348–356, 1997.

[9] P. W. Wong, “Adaptive error diffusion and its application in multiresolution render-
ing,” IEEE Trans. Image Processing, vol. 5, no. 7, pp. 1184–1196, 1996.

[10] B. W. Kolpatzik and C. A. Bouman, “Optimized error diffusion for image display,” J.
of Electron. Imaging, vol. 1, no. 3, pp. 277–293, 1992.

[11] P. W. Wong and J. P. Allebach, “Optimum error-diffusion kernel design.,” in Proc.
SPIE Color Imaging: Device-Independent Color, Color Hard Copy, and Graphic Arts,
1997, pp. 236–242.

[12] R. Eschbach, “Reduction of artifacts in error diffusion by means of input-dependent
weights,” J. of Electron. Imaging, vol. 2, no. 4, pp. 352–359, 1993.

[13] J. Shu, “Adaptive filtering for error-diffusion quality improvement,” in Symposium
Digest of Technical Papers, vol. 26, 1995, pp. 833–836.

[14] Y.-H. Fung and Y.-H. Chan, “Tone-dependent error diffusion based on an updated
blue-noise model,” J. of Electron. Imaging, vol. 25, no. 1, p. 013 013, 2016.

106

[15] T.-C. Chang and J. P. Allebach, “Memory efficient error diffusion,” IEEE Trans. Image
Processing, vol. 12, no. 11, pp. 1352–1366, 2003.

[16] P. Li and J. P. Allebach, “Block interlaced pinwheel error diffusion,” J. of Electron.
Imaging, vol. 14, no. 2, p. 023 007, 2005.

[17] P. Li and J. P. Allebach, “Tone-dependent error diffusion,” IEEE Trans. Image Pro-
cessing, vol. 13, no. 2, pp. 201–215, 2004.

[18] S. W. Han, “Training based error diffusion and halftone quality quantification,” Ph.D.
dissertation, Dept. Elect. Comput. Eng., Purdue Univ., West Lafayette, IN, USA, 2009.

[19] J. F. Jarvis, C. N. Judice, and W. Ninke, “A survey of techniques for the display of con-
tinuous tone pictures on bilevel displays,” Computer Graphics and Image Processing,
vol. 5, no. 1, pp. 13–40, 1976.

[20] J.-N. Shiau and Z. Fan, “Set of easily implementable coefficients in error diffusion with
reduced worm artifacts,” in Proc. SPIE Color Imaging: Device-Independent Color,
Color Hard Copy, and Graphic Arts, International Society for Optics and Photonics,
vol. 2658, 1996, pp. 222–226.

[21] R. Nasanen, “Visibility of halftone dot textures,” IEEE Trans. Syst. Man and Cybern.
Syst., vol. 14, no. 6, pp. 920–924, 1984.

[22] V. Torczon, “On the convergence of pattern search algorithms,” SIAM J. optimization,
vol. 7, no. 1, pp. 1–25, 1997.

[23] J. P. Allebach, “DBS: retrospective and future directions,” in Proc. SPIE Color Imag-
ing: Device-Independent Color, Color Hardcopy, and Graphic Arts VI, vol. 4300, 2001,
pp. 358–376.

[24] P. G. Roetling and T. M. Holladay, “Tone reproduction and screen design for pictorial
electrophotographic printing,” J. Appl. Photo. Eng., vol. 15, no. 4, pp. 179–182, Sep.
1979.

[25] T. N. Pappas and D. L. Neuhoff, “Model-based halftoning,” in Proc. SPIE Human
Vision, Visual Processing, and Digital Display II, vol. 1453, 1991, pp. 244–255.

[26] T. N. Pappas and D. L. Neuhoff, “Printer models and error diffusion,” IEEE Trans.
Image Processing, vol. 4, no. 1, pp. 66–80, 1995.

[27] J. P. Allebach, “Binary display of images when spot size exceeds step size,” J. Appl.
Opt., vol. 19, no. 15, pp. 2513–2519, 1980.

107

[28] P. Stucki, “MECCA–A multiple-error correcting computation algorithm for bilevel
image hardcopy reproduction,” IBM Research Laboratory, Zurich, Switzerland, Res.
Rep. RZ1060, 1981.

[29] P. Stucki, “Advances in digital image processing for document reproduction,” in VLSI
Engineering: Beyond Software Engineering, T. L. Kunii, Ed., vol. 163, 1984, pp. 256–
302.

[30] R. L. Stevenson and G. R. Arce, “Binary display of hexagonally sampled continuous-
tone images,” J. Opt. Soc. Amer. A, vol. 2, no. 7, pp. 1009–1013, July 1985.

[31] T. N. Pappas and D. L. Neuhoff, “Least-squares model-based halftoning,” in Proc.
SPIE Human Vision, Visual Processing, and Digital Display III, vol. 1666, 1992,
pp. 165–176.

[32] T. N. Pappas and D. L. Neuhoff, “Least-squares model-based halftoning,” IEEE Trans.
Image Processing, vol. 8, no. 8, pp. 1102–1116, 1999.

[33] M. Analoui and J. P. Allebach, “Model-based halftoning using direct binary search,”
in Proc. SPIE Human Vision, Visual Processing, and Digital Display III, vol. 1666,
1992, pp. 96–108.

[34] F. A. Baqai and J. P. Allebach, “Halftoning via direct binary search using analytical
and stochastic printer models,” IEEE Trans. Image Processing, vol. 12, no. 1, pp. 1–15,
2003.

[35] T. N. Pappas, C.-K. Dong, and D. L. Neuhoff, “Measurement of printer parameters
for model-based halftoning,” J. Electron. Imaging, vol. 2, no. 3, pp. 193–204, 1993.

[36] J.-H. Lee and J. P. Allebach, “Inkjet printer model-based halftoning,” IEEE Trans.
Image Processing, vol. 14, no. 5, pp. 674–689, 2005.

[37] S. Wang, “Aerodynamic effect on inkjet main drop and satellite dot placement,” in
Proc. Int. Conf. Digit. Printing Technol., 1998, pp. 5–8.

[38] P. D. Fleming, J. E. Cawthorne, F. Mehta, S. Halwawala, and M. K. Joyce, “Interpre-
tation of dot fidelity of ink jet dots based on image analysis,” J. Imaging Sci. Technol.,
vol. 47, no. 5, pp. 394–399, 2003.

[39] Y. Ju, T. Kashti, T. Frank, D. Kella, D. Shaked, M. Fischer, R. Ulichney, and J. P.
Allebach, “Black-box models for laser electrophotographic printers– Recent progress,”
in Proc. 29th Int. Conf. Digit. Printing Technol., 2013, pp. 66–71.

108

[40] N. Otsu, “A threshold selection method from gray-level histograms,” IEEE Trans. Syst.
Man Cybern. Syst., vol. 9, no. 1, pp. 62–66, Jan. 1979.

[41] R. Näsänen, “Visibility of halftone dot textures,” IEEE Trans. Syst. Man Cybern.
Syst., vol. 14, no. 6, pp. 920–924, 1984.

[42] C. Lee, “Hybrid screen design and automatic portrait image enhancement,” Ph.D.
dissertation, Dept. Elect. Comput. Eng., Purdue Univ., West Lafayette, IN, USA,
Dec. 2008.

[43] D. J. Lieberman and J. P. Allebach, “A dual interpretation for direct binary search
and its implications for tone reproduction and texture quality,” IEEE Trans. Image
Processing, vol. 9, no. 11, pp. 1950–1963, 2000.

[44] F. Ruckdeschel and O. Hauser, “Yule-Nielsen effect in printing: A physical analysis,”
Applied Optics, vol. 17, no. 21, pp. 3376–3383, 1978.

[45] J. Yule and W. Nielsen, “The penetration of light into paper and its effect on halftone
reproduction,” in Proc. TAGA, vol. 3, 1951, pp. 65–76.

[46] R. P. Loce, W. L. Lama, and M. S. Maltz, “Modeling vibration-induced halftone band-
ing in a xerographic laser printer,” J. Electron. Imaging, vol. 4, no. 1, pp. 48–62, 1995.

[47] D. Kacker, T. Camis, and J. P. Allebach, “Electrophotographic process embedded in
direct binary search,” IEEE Trans. Image Processing, vol. 11, no. 3, pp. 243–257, 2002.

[48] P. A. Torpey, “Multipass printing in an ink-jet device,” in Proc. SPIE Color Imag-
ing: Device-Independent Color, Color Hardcopy, and Graphic Arts II, vol. 3018, 1997,
pp. 344–347.

[49] A. D. Parkhurst, R. Padmanabhan, S. D. Mueller, and K. A. Winter, “Connectivity of
the hp deskjet 1200c printer,” Hewlett Packard Journal, vol. 45, pp. 85–85, Feb. 1994.

[50] J. Yen, M. Carlsson, M. Chang, J. M. Garcia, and H. Nguyen, “Constraint solving for
inkjet print mask design,” J. Imaging Sci. Technol., vol. 44, no. 5, pp. 391–397, 2000.

[51] J. W. Boley, J. P. Allebach, and G. T.-C. Chiu, “Direct binary search for print mask
design in inkjet printing,” in Proc. Int. Conf. Digit. Printing Technol., vol. 2011, 2011,
pp. 616–619.

[52] “Technical white paper HP PageWide Technology,” HP Inc. USA, 4AA4-4292ENUS,
2012. [Online]. Available: http://www.hp.com/hpinfo/newsroom/press_kits/2012/
FallBizPrinting/HPPageWideTechnologyWhitePaper.pdf .

109

http://www.hp.com/hpinfo/newsroom/press_kits/2012/FallBizPrinting/HPPageWideTechnologyWhitePaper.pdf
http://www.hp.com/hpinfo/newsroom/press_kits/2012/FallBizPrinting/HPPageWideTechnologyWhitePaper.pdf

[53] N. Otsu, “A threshold selection method from gray-level histograms,” IEEE Trans. Syst.
Man Cybern. Syst., vol. 9, no. 1, pp. 62–66, 1979.

[54] S. A. Gindi, “Color characterization and modeling of a scanner,” Masters thesis, Dept.
Elect. Comput. Eng., Purdue Univ., West Lafayette, IN, USA, July 2008.

[55] M. A. Stephens, “EDF statistics for goodness of fit and some comparisons,” J. Opt.
Soc. Amer. A, vol. 69, no. 347, pp. 730–737, 1974.

[56] N. M. Razali and B. W. Yap, “Power comparisons of Shapiro-Wilk, Kolmogorov-
Smirnov, Lilliefors and Anderson-Darling tests,” J. Stat. Model. Analytics, vol. 2,
pp. 21–33, 2011.

[57] S. H. Kim and J. P. Allebach, “Impact of HVS models on model-based halftoning,”
IEEE Trans. Image Processing, vol. 11, no. 3, pp. 258–269, 2002.

[58] Y. Mao, L. Abello, U. Sarkar, R. Ulichney, and J. Allebach, “4-row serpentine tone
dependent fast error diffusion,” in Proc. of 2018 25th IEEE International Conference
on Image Processing, 2018, pp. 3973–3977.

[59] W. Jiang, “Color halftoning based on Neugebauer primary area coverage and novel
color halftoning algorithm for ink savings,” Ph.D. dissertation, Dept. Elect. Comput.
Eng., Purdue Univ., West Lafayette, IN, USA, May 2019.

[60] M. Bevilacqua, A. Roumy, C. Guillemot, and M. L. Alberi-Morel, “Low-complexity
single-image super-resolution based on nonnegative neighbor embedding,” Proc. British
Machine Vision Conference, 2012.

[61] R. Zeyde, M. Elad, and M. Protter, “On single image scale-up using sparse-representations,”
in Proc. Springer International Conference on Curves and Surfaces, 2010, pp. 711–730.

[62] X. Dong, K.-L. Hua, P. Majewicz, G. McNutt, C. A. Bouman, J. P. Allebach, and
I. Pollak, “Document page classification algorithms in low-end copy pipeline,” J. of
Electron. Imaging, vol. 17, no. 4, p. 043 011, 2008.

[63] H. Cheng and C. A. Bouman, “Document compression using rate-distortion optimized
segmentation,” J. of Electron. Imaging, vol. 10, no. 2, pp. 460–475, 2001.

[64] R. L. de Queiroz, “Compression of compound documents,” in Proc. 1999 International
Conference on Image Processing, vol. 1, 1999, pp. 209–213.

[65] S. J. Simske and S. C. Baggs, “Digital capture for automated scanner workflows,” in
Proc. of the 2004 ACM Symposium on Document Engineering, 2004, pp. 171–177.

110

[66] W. Wang, I. Pollak, T.-S. Wong, C. A. Bouman, M. P. Harper, and J. M. Siskind,
“Hierarchical stochastic image grammars for classification and segmentation,” IEEE
Trans. Image Processing, vol. 15, no. 10, pp. 3033–3052, 2006.

[67] A. Das, S. Roy, U. Bhattacharya, and S. K. Parui, “Document image classification with
intra-domain transfer learning and stacked generalization of deep convolutional neural
networks,” in Proc. of 2018 24th International Conference on Pattern Recognition
(ICPR), 2018, pp. 3180–3185.

[68] C. Lu, J. Wagner, B. Pitta, D. Larson, and J. P. Allebach, “SVM-based automatic
scanned image classification with quick decision capability,” in Proc. SPIE Color Imag-
ing XIX: Displaying, Processing, Hardcopy, and Applications, vol. 9015, 2014, 90150G.

[69] S. Xu, C. Lu, M. Shaw, P. Bauer, and J. P. Allebach, “Page classification for print imag-
ing pipeline,” in Proc. SPIE Color Imaging XXII: Displaying, Processing, Hardcopy,
and Applications, vol. 2017, 2017, pp. 137–142.

[70] C. Schmid, J. L. Stoffel, and B. Sperry, Ink compositions for use in highlighter markers
and associated methods, US Patent 8,007,096, Aug. 2011.

[71] P. Pudil, J. Novovičová, and J. Kittler, “Floating search methods in feature selection,”
Pattern Recognition Letters, vol. 15, no. 11, pp. 1119–1125, 1994.

[72] J. C. Platt, N. Cristianini, and J. Shawe-Taylor, “Large margin DAGs for multiclass
classification,” in Proc. of the 12th International Conference on Neural Information
Processing Systems, MIT Press, 1999, pp. 547–553.

[73] G. Paschos, “Perceptually uniform color spaces for color texture analysis: An empirical
evaluation,” IEEE Trans. Image Processing, vol. 10, no. 6, pp. 932–937, 2001.

[74] G. Wyszecki and W. Stiles, Color Science: Concepts and Methods, Quantitative Data
and Formulae. New York, USA: Wiley, 1982.

[75] M. Shaw, “Gamut estimation using 2D surface splines,” in Proc. SPIE Color Imaging
XI: Processing, Hardcopy, and Applications, vol. 6058, 2006, p. 605 807.

[76] R. L. Graham, “An efficient algorithm for determining the convex hull of a finite planar
set,” Info. Pro. Lett., vol. 1, pp. 132–133, 1972.

[77] W. Kress and M. Stevens, “Derivation of 3-dimensional gamut descriptors for graphic
arts output devices,” in Proc. of the Technical Association of the Graphic Arts, 1994,
pp. 199–199.

111

[78] J. F. Whitney and H. M. Whitney, “The right-hand rule,” in A Handbook of Mathe-
matical Methods and Problem-Solving Tools for Introductory Physics, ser. 2053-2571,
Morgan & Claypool Publishers, 2016, 7-1 to 7–3.

[79] B. Kolman and D. Hill, Elementary Linear Algebra with Applications. Boston MA:
Pearson, 2007.

[80] M. A. Stricker and M. Orengo, “Similarity of color images,” in Storage and Retrieval
for Image and Video Databases III, vol. 2420, 1995, pp. 381–392.

[81] D. L. Olson and D. Delen, Advanced Data Mining Techniques. Berlin Heidelberg:
Springer, 2008.

[82] N. Bhatti, H. Baker, H. Chao, S. Clearwater, M. Harville, J. Jain, N. Lyons, J. Mar-
guier, J. Schettino, and S. Süsstrunk, “Mobile cosmetics advisor: An imaging based
mobile service,” in Proc. SPIE Multimedia on Mobile Devices 2010, vol. 7542, 2010.

[83] W.-S. Tong, C.-K. Tang, M. S. Brown, and Y.-Q. Xu, “Example-based cosmetic trans-
fer,” in 15th Pacific Conference on Computer Graphics and Applications (PG’07),
2007, pp. 211–218.

[84] T. V. Nguyen and L. Liu, “Smart mirror: Intelligent makeup recommendation and
synthesis,” in Proc. of the 25th ACM International Conference on Multimedia, 2017,
pp. 1253–1254.

[85] T. Alashkar, S. Jiang, S. Wang, and Y. Fu, “Examples-rules guided deep neural net-
work for makeup recommendation,” in Proc. of the AAAI Conference on Artificial
Intelligence, vol. 31, 2017.

[86] J. Li, C. Xiong, L. Liu, X. Shu, and S. Yan, “Deep face beautification,” in Proc. of the
23rd ACM International Conference on Multimedia, 2015, pp. 793–794.

[87] D. Cheng, D. K. Prasad, and M. S. Brown, “Illuminant estimation for color constancy:
Why spatial-domain methods work and the role of the color distribution,” J. Opt. Soc.
Amer. A, vol. 31, no. 5, pp. 1049–1058, 2014.

[88] J. T. Barron and Y.-T. Tsai, “Fast fourier color constancy,” in Proc. of the IEEE
Conference on Computer Vision and Pattern Recognition, 2017, pp. 886–894.

[89] Y. Hu, B. Wang, and S. Lin, “FC4: Fully convolutional color constancy with confidence-
weighted pooling,” in Proc. of the IEEE Conference on Computer Vision and Pattern
Recognition, 2017, pp. 4085–4094.

112

[90] P.-C. Hung, “Colorimetric calibration in electronic imaging devices using a look-up-
table model and interpolations,” J. of Electron. Imaging, vol. 2, no. 1, pp. 53–62, 1993.

[91] C. Zhao, J. Niu, G. Li, H. Wang, and C. He, “Facial color management for mobile
health in the wild,” IEEE Trans. NanoBioscience, vol. 15, no. 4, pp. 316–327, 2016.

[92] V. Cheung and S. Westland, “Color camera characterisation using artificial neural
networks,” in Proc. of 10th Color Imaging Conference: Color Science and Engineering
Systems, Technologies, Applications, vol. 2002, 2002, pp. 117–120.

[93] H. R. Kang and P. G. Anderson, “Neural network applications to the color scanner
and printer calibrations,” J. of Electron. Imaging, vol. 1, no. 2, pp. 125–136, 1992.

[94] R. S. Berns and M. J. Shyu, “Colorimetric characterization of a desktop drum scanner
using a spectral model,” J. of Electron. Imaging, vol. 4, no. 4, pp. 360–373, 1995.

[95] G. D. Finlayson and M. S. Drew, “Constrained least-squares regression in color spaces,”
J. of Electron. Imaging, vol. 6, no. 4, pp. 484–494, 1997.

[96] H. Drucker, C. J. Burges, L. Kaufman, A. Smola, and V. Vapnik, “Support vector
regression machines,” Advances in Neural Information Processing Systems, vol. 9,
pp. 155–161, 1996.

[97] N. A. A. Rahman, K. C. Wei, and J. See, “RGB-H-CbCr skin colour model for human
face detection,” Proc. of Mulitimedia University International Symposium on Informa-
tion & Communications Technologies, 2006.

113

	TITLE PAGE
	COMMITTEE APPROVAL
	DEDICATION
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF FIGURES
	ABBREVIATIONS
	ABSTRACT
	INTRODUCTION
	4-ROW SERPENTINE TONE DEPENDENT FAST ERROR DIFFUSION
	Introduction
	4-Row Serpentine Tone Dependent Error Defussion
	Overview of Tone Dependent Fast Error Diffusion
	4-Row Serpentine Scan Path
	Error Weight Location Matrix
	Training System for TDFED Parameters

	Experimental Results
	Conclusion

	DOT PROFILE MODEL-BASED DIRECT BINARY SEARCH
	Introduction
	Preliminaries
	Notation
	Printer Characterization
	Overview of DBS

	Dot Profile Model
	Dot Profile Model-Based DBS
	Experimental Results
	Conclusion

	INK DROP DISPLACEMENT MODEL-BASED DIRECT BINARY SEARCH
	Introduction
	Printer Modeling
	Background
	Print Characterization

	Printer Model-Based DBS
	Overview of DBS
	IDD Model-Based DBS
	Computation and Memory Complexity

	Experimental Results
	Simulated Printers
	Pagewide Printhead
	Never-Centered Printer lee2005inkjet

	Tone Correction
	Simulated Results

	Psychophysical Image Quality Assessment
	Conclusion

	HIGHLIGHTED DOCUMENT IMAGE CLASSIFICATION
	Introduction
	Feature Extraction
	Color Space
	Printer Gamut-Based Features
	Low-Level Color Features

	Classification Model
	Experimental Results
	Conclusion

	A COLOR IMAGE ANALYSIS TOOL TO HELP USERS CHOOSE A MAKEUP FOUNDATION COLOR
	Introduction
	Data Collection
	Image Calibration
	Skin Detection
	Gray Balancing and Polynomial Transformation
	Calibration Performance

	Experimental Results
	Conclusion

	SUMMARY AND CONTRIBUTIONS
	REFERENCES

