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ABSTRACT

Cyber-Physical Systems (CPSs) consist of physical and computational components usu-

ally interconnected through the internet. This type of systems have found applications in

robotic surgery, smart medical services, driverless cars, smart power grids as well as in mod-

ern homes and offices. For a CPS to function properly, a reliable and secure communications

between the system physical and cyber elements is of utmost importance. Malicious attacks

during control signals and output measurements transmission between the physical plant

and the control center must be addressed, which is the main research problem studied in

this thesis.

A novel robust observer was proposed to synthesize a combined controller-observer com-

pensator for a class of CPSs with sparse malicious attacks and arbitrary disturbances. The

compensator consists of a controller, a norm approximator, and an unknown input observer

(UIO). The proposed observer was compared with a norm-based observer given in the litera-

ture to show its advantage. To further enhance the proposed observer’s performance against

arbitrary disturbances, design methods were given that use fictitious output measurements

and error correcting code (ECC) approach. The design of the UIO was extended to a bank

of UIOs in order to improve the observer’s performance against sparse malicious attacks.

The proposed observer can be used in the design of UIO-based fault detection and iso-

lation (FDI) algorithms as well as in the distributed fault-tolerant control of large-scale

interconnected systems. The results of this thesis can be applied to the design of controller-

observer compensators for CPSs with modeling uncertainties.
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1. INTRODUCTION

1.1 Motivation and Literature Overview

The term “cyber-physical system” (CPS) was first proposed in 2006 by Helen Gill of

the US National Science Foundation [1 ]. A CPS consists of two or more processing and

physical subsystems linked by communication networks. The simplest CPS consists of a pro-

cessing/controlling subsystem and a physical subsystem of sensors, actuators and a physical

plant. Sensors at the physical plant collect measurements that are sent to the processor/con-

troller and control signals from the controller are sent to the actuators. Typical examples

of CPSs include Internet of Things (IoT) [2 ], industrial internet [3 ], smart grids [4 ], and

self-driving vehicles [5 ].

Since the CPSs are interconnected by communication networks that are not necessarily

secure, the issue of reliable data communication must be addressed in the design of CPSs.

In particular, sparse malicious attacks in the communication networks need to be addressed.

Overcoming sparse malicious attacks issue in CPSs has been researched by many groups

around the world. For example, the authors of [6 ] present constraint optimization methods

for evaluating the impacts of sparse undetectable sensor attacks against CPSs. In [7 ], secure

Luenberger-like observers are proposed for CPSs under sparse actuator and sensor attacks.

In [8 ], methods were reported for solving security issues in remote state estimation of CPS

and sensor measurements being corrupted by external sparse malicious packet drop attacks

in communication networks. Other methods of overcoming sparse malicious packet drops

were reported in [9 ]–[12 ].

A useful tool to solve the problem of sparse malicious attacks in CPSs is the sparse

vector recovery method [13 ]–[17 ]. This is because the analysis of vulnerabilities due to the

unknown disturbance of the communication network such as noise, delay and packet drops

can be formulated as a sparse vector recovery problem. The sparse vector recovery problem

can be formulated as estimating an unknown sparse vector e in the linear system, b = Ax+e,

when the vector b and the matrix A are known. Here by sparse, we mean there are more

zero entries than non-zero entries in the vector e. It is reported in [18 ] that this problem can

be transformed into a 0-norm minimization problem with equality constraints and solved
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using norm approximation, that is, using 1-norm to approximate the 0-norm solution of

the minimization problem. We know that certain algorithms for solving minimum norm

problems can be applied to solve sparse vector recovery problems. Two such algorthims are

given in [19 ], [20 ]. These algorithms are based on the projected steepest descent method

for constrained optimization problems for obtaining minimum 1-norm solutions. In [20 ], an

algorithm using a penalty function approach and the gradient method to solve minimum

norm problems is given. In [21 ], a linear programming is used to solve such problems. One

disadvantage of using the norm approximation method for sparse malicious attacks recovery

in CPS is that it creates one sampling period time delay [22 ], [23 ]. Therefore, a robust

control strategy needs to take this issue into account. A notion of robustness for cyber

systems inspired by existing notions of input-output stability is introduced in [24 ]. Different

robust control strategies have been proposed in the literature. For example, authors in [25 ]

propose a fault-tolerant controller to compensate for actuator faults in CPS.

Since the state or a good estimate of it must be available for the efficient control the CPS

subjected to disturbances, a state estimator is an essential component of a CPS. A common

way to estimate the state of a system subjected to disturbances is to use an unknown input

observer (UIO); see for example [26 ]–[28 ]. The problem of designing observers for a linear

system with both known and unknown inputs has been studied since at least 1969 [29 ].

See [30 ] for an overview of early UIO developments and [31 ] for a comparative study of

some UIO architectures. Our motivation incorporating the UIO approach to the control

and state estimation of CPSs is that in practice sparse communication errors and arbitrary

disturbances can be modeled as unknown inputs.

In computing as well as in telecommunication, error correcting code (ECC) approach is

used to control errors in data transmitted through unreliable or noisy communication chan-

nels. The main idea is to add redundant information to the message sent. The redundancy

enables the receiver to detect errors that may occur in the transmitted message [32 , p. 355].

To illustrate this approach, suppose we send the same signal three or more times. Let P be

18



the probability that the sparse error is not zero. Then the probability having two or more

errors, using the binomial formula, when three copies are sent is

Probability (# error ≥ 2) = 3(1 − P)P2 + P3.

When P = 0.05, this error is 0.0073. When there are fewer than two errors, then at least two

copies have the correct value. So the probability of correct decoding is 99.27%. In general,

if n copies are sent, then we can be sure of correct decoding if we have no more than n− 2

errors because we would have two identical copies. We assume a continuous probability

density and so the probability of having two errors leading to the same value is zero. The

probability of having n− 1 or n errors is

Probability (# error ≥ n− 1) = n(1 − P)Pn−1 + Pn.

When P = 0.05 and n = 4, this probability is 4.8125 × 10−4 and the probability of correct

decoding is 99.95%. When n = 5, the probability of correct decoding is 99.997%. Another

advantage of sending multiple copies is that even when the error is not sparse, the copies can

be averaged to reduce the effective noise variance by a factor of n when n copies are sent.

However, the above approach may not work when the communication errors are injected

maliciously. For example, suppose we have a system under malicious attacks. Let em[k]

be the maliciously injected communication error to the transmitted signal y[k] at sample k.

Then no matter how many copies of the output signal y[k] have been transmitted, all these

copies will be corrupted by the same injected error em[k] during the signal transmission at

sample k. There is then no difference between the signals transmitted and therefore correct

signal cannot be recovered.

1.2 Organization of the Thesis

A novel robust observer is proposed to synthesize a combined controller-observer com-

pensator for a class of CPSs with sparse malicious attacks and arbitrary disturbances. The

compensator consists of a controller, a norm approximator, and an unknown input observer
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(UIO). The proposed observer is compared with a norm-based observer given in the litera-

ture to show its advantage. To further enhance the presented observer’s performance against

arbitrary disturbances, novel design methods are proposed that use fictitious output mea-

surements and error correcting code (ECC) approach. The design of the UIO is extended

to a bank of UIOs in order to improve the observer’s performance against sparse malicious

attacks. The thesis is organized as follows.

In Chapter 2, a method for recovering an unknown sparse error e in the overdetermined

system b = Ax + e is proposed. The Q-R decomposition [33 ] is first used to find a left

annihilator Q>
2 of the matrix A. The original overdetermined system is then transformed

into an underdetermined system of the form Q>
2 b = Q>

2 e. Next, a Gaussian random matrix

G is premultiplied to both sides of Q>
2 b = Q>

2 e to obtain z = F e, where z = GQ>
2 b and

F = GQ>
2 . The sparse error vector e is then recovered by solving a convex optimization

problem min ‖e‖1, subject to z = F e. Two methods for solving such optimization problems

are presented and compared. The proposed 1-norm regularization method is then applied to

the secure state estimation of a CPS. A simple case with the output measurements corrupted

by sparse malicious packet drops and a secure control signal transmission of the CPS, is

considered in this chapter.

In Chapter 3, a novel discrete-time (DT) observer architecture is proposed for DT CPSs

corrupted by unknown sparse errors between the controller and the sensors and between

the actuators and the controller. The sparse error between the controller and the sensors is

recovered using the method described in Chapter 2. The linear programming optimization is

used to solve the 1-norm optimization problem. The sparse error between the actuators and

the controller can be estimated using two proposed unknown input estimators. A combined

approximator and the UIO architecture forms the observer to estimate the state of the plant

corrupted by unknown sparse errors simultaneously at the plant’s inputs and outputs. The

observer design is formulated in terms of linear matrix inequalities (LMIs).

In Chapter 4, the proposed DT observer is used to synthesize a combined controller-

observer compensator for continuous-time (CT) network systems. Necessary and sufficient

conditions for the existence of the proposed UIO are given. Linearized and discretized plant

parameters are used in the compensator design. The advantage of the compensator synthesis
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in the DT domain over the CT domain is that in many cases the condition for the existence

of an UIO fails for a CT plant while it holds for a discretized plant. A class of systems for

which the existence condition for the UIO fails in the CT domain while holds in the DT

domain is given.

In Chapter 5, two types of estimators for CPSs with unsecured communication channels

and subject to disturbances are presented and their performance compared. The communica-

tion errors are assumed to be sparse while the disturbances are arbitrary. The first proposed

estimator uses the 1-norm approximation of the 0-norm minimization problem which is the

basis of this estimator. The second estimator combines the norm-based estimator with the

UIO architecture. It is demonstrated through analytic considerations and simulations that

the combined norm-UIO based estimator is superior to the norm-based estimator. To further

enhance the presented estimators’ performance, a novel design method is proposed that uses

fictitious output measurements.

In Chapter 6, a controller-observer compensator is proposed for CPSs with sensor and

actuator faults and unsecured communication networks. The observer combines a norm

approximator for sparse malicious attacks recovery with a bank of UIOs to estimate the CPS

state. Convergence analysis of the state estimation error of the proposed UIO architecture is

given. To enhance the proposed observer’s performance, a sensor and actuator fault filters are

proposed that use error correcting code (ECC) approach. A model reference controller with

a performance level that can be calculated is given. The controller-observer compensator is

applied to a self-driving ground vehicle to show its effectiveness.

In Chapter 7, the results obtained so far are summarized and open problems for further

research are presented.
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2. VECTOR RECOVERY FOR A LINEAR SYSTEM

CORRUPTED BY UNKNOWN SPARSE ERRORS WITH

APPLICATIONS TO SECURE STATE ESTIMATION

2.1 Problem Statement

Let m > n and let A ∈ Rm×n have full column rank. We consider the case where the

measurement vector Ax is corrupted by an unknown error e. This is modeled as b = Ax+ e.

The problem we consider is whether it is possible to recover x exactly from the given data

A and the measurement b. In our discussion, we use the following definition.

Definition 1 (0-norm). [34 ] The 0-norm of a finite dimensional vector x, denoted ‖x‖0, is

the number of nonzero entries in x.

Candes and Tao [21 ] observe that in order to be able to recover a solution vector x

to b = Ax + e, it is necessary to assume that only a small number of entries of b has been

corrupted. They further observe that since we have full knowledge of the vector b and the full

rank matrix A, then to reconstruct x, it is sufficient to reconstruct e. In [21 ], they propose

an approach that allows one to reconstruct the error e. Their idea is to first find a matrix

F ∈ R(m−n)×m such that FA = 0, then premultiply both sides of b = Ax+ e by F to obtain,

Fb = FAx + F e. Let z = Fb. Then since FAx = 0, we obtain F e = z. Thus the original

problem has been reduced to reconstructing the sparse error vector e. In our analysis, we

use standard vector p-norms defined by ‖x‖p = (|x1|p + · · · + |xn|p)1/p, 1 ≤ p < ∞.

The problem of finding a sparse approximation to the solution of F e = z is formulated

in [21 ] as
min ‖e‖0, e ∈ Rm

subject to F e = z.

 (2.1)

To find a sparse approximation of such an underdetermined system, one needs to perform

exhaustive searches over all subsets of columns of F , which is technically NP-hard [35 ]. We

instead look for an alternative optimization method for minimizing ‖e‖0 without performing

exhaustive searches. One possibility is to replace the minimization of ‖e‖0 with the min-
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imization of ‖e‖p for some p ≥ 1. For example, if p = 2, then we would be solving the

following constrained optimization problem,

min ‖e‖2 subject to F e = z. (2.2)

However, the solutions for this case are almost never sparse. We illustrate this with a well-

known simple example from [36 ].

Example 1. Suppose f ∈ R1×2 and e ∈ R2. Consider the optimization problem

min ‖e‖p subject to fe = z, p = 1, 2.

The optimization problem in 2-D plane is solved graphically in Figure 2.1 .

Figure 2.1. Comparison between 1-norm minimization and 2-norm minimization

In the left subplot, the line represents the equality constraint fe = z. The solution

is e∗. We can see that both entries of e∗ are nonzero. This example illustrates the fact

that the solution to the optimization problem of minimizing the 2-norm subject to equality

constraints is almost never sparse [37 ].

We choose to use an optimization scheme where we minimize the 1-norm of a solution

subject to fe = z. As illustrated in Figure 2.1 , the solution for the 1-norm minimization is

sparse.
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Therefore, instead of minimizing ‖e‖0, we consider an optimization problem where we

minimize the 1-norm of a solution subject to the constraint, F e = z. This optimization

problem is known as Basis Pursuit [38 ]. It is usually applied in cases where there is an

underdetermined system of linear equations that must be exactly satisfied. Since ‖e‖1 =
m∑

i=1
|ei| is a convex function [21 ], [38 ], we have a convex optimization problem,

min ‖e‖1, e ∈ Rm

subject to F e = z.

 (2.3)

Our objective is to find the unique solution e to (2.3 ). Once we find e, we can then recover

x.

2.2 Conditions for Unique Sparse Vector Recovery

2.2.1 Existence of the unique sparse solution

We use the following definitions in our analysis.

Definition 2 (i-sparse vector). [21 ] A vector e is i-sparse if it has at most i non-zero com-

ponents, that is, ‖e‖0 ≤ i.

Definition 3 (Spark of a matrix). [39 ] The spark of the matrix F is the smallest number

of linearly dependent columns in F .

Let Σi = {e : ‖e‖0 ≤ i} be the set of all i-sparse vectors and let N (F ) denote the null

space of the matrix F . We have the following lemma.

Lemma 1. If Σ2i ∩ N (F ) = {0}, then any i-sparse solution to the underdetermined system

F e = z is unique.

Proof. Suppose e(1) and e(2) are i-sparse solutions to the under-determined system F e = z.

Then F (e(1) − e(2)) = 0 and thus e(1) − e(2) ∈ N (F ). Since e(1) and e(2) are in Σi, we also

have e(1) − e(2) ∈ Σ2i and therefore e(1) − e(2) ∈ Σ2i ∩ N (F ) = {0}. It follows that e(1) = e(2)

and thus any i-sparse solution to the underdetermined system F e = z is unique.
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Remark 1. Note that spark(F ) > 2i is equivalent to Σ2i ∩ N (F ) = {0}. Therefore, by

Lemma 1 , spark(F ) > 2i implies that the i-sparse solution to F e = z is unique.

The above observation appears in [40 ] as Corollary 1.

2.2.2 Conditions for sparse vector recovery

We present the following theorem from Zhang [41 ] that we use in our subsequent discus-

sion.

Theorem 1. Let A ∈ Rm×n be independent and identically distributed (i.i.d.) normal or

be a full (column) rank matrix such that FA = 0 for an i.i.d. normal F ∈ R(m−n)×m.

Then there exist absolute positive constants c0 and c1 (independent of m and n) such that if

‖e‖0 <
c2

1
4

n
1+log(m/n) , then the 1-norm minimization recovers the sparse vector e with probability

at least 1 − exp(−c0(m− n)).

Remark 2. It is worth noting that Zhang’s Theorem says that if we perform an experiment

by generating an m×n matrix A with random independent normal entries, or if we generate

an (m− n) ×m matrix F with random independent normal entries and A satisfies FA = 0,

and take e to satisfy the norm inequality ‖e‖0 <
c2

1
4

n
1+log(m/n) , then the 1-norm minimization

recovers the sparse vector e with probability at least 1 − exp(−c0(m− n)). In the frequentist

interpretation, this says that if we repeat the experiment a large number of times, then the

rate of successful 1-norm minimization recovery should be at least 1 − exp(−c0(m−n)). The

theorem says nothing whatsoever if we had started with a fixed matrix A, or if the entries of

A or F are not generated by i.i.d. normal random variables.

Remark 3. Zhang [41 , p. 91] discusses the issue of calculating the constants c0 and c1. An

in-depth treatment of this problem is provided by Donoho and Tanner [42 ].

Next, we present a method of recovering a sparse vector. We first take the QR decom-

position of A to obtain:

A = QR =
[

Q1 Q2

] R1

0

, (2.4)
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where Q ∈ Rm×m is orthogonal, Q1 ∈ Rm×n, Q2 ∈ Rm×(m−n), and R1 ∈ Rn×n is a full rank

upper triangular matrix.

Lemma 2. Let Q2 be defined as above. Then Q>
2 is a left annihilator of A, that is, Q>

2 A = 0.

Proof. Since Q =
[
Q1 Q2

]
is orthogonal, we have

Q>Q =

 Q>
1 Q1 Q>

1 Q2

Q>
2 Q1 Q>

2 Q2

 =

 In 0

0 Im−n

.
Then

Q>
2 A = Q>

2 QR =
[
Q>

2 Q1 Q>
2 Q2

] R1

0

,
which implies

Q>
2 A =

[
0 Im−n

] R1

0

 = 0(m−n)×n,

which completes the proof.

Remark 4. Another possible method to obtain a left annihilator of the matrix A is to use

the singular value decomposition (SVD). Let

A = UΣV > =
[
U1 U2

] Σ+ 0

0 0

[ V1 V2

]
>,

where U ∈ Rm×m is an orthogonal matrix, U1 ∈ Rm×n, U2 ∈ Rm×(m−n). It is easy to see that

U>
2 is a left annihilator of A.

Premultiply b = Ax+ e by Q>
2 to obtain

Q>
2 b = Q>

2 e. (2.5)

To proceed, we need the following lemmas.

Lemma 3. [43 , p. 690]. A real random square matrix with i.i.d normal entries is nonsingular

with probability 1.
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Lemma 4. [44 , p. 257]. The random variables x1, . . . , xn are jointly normal if and only if

for all a1, . . . , an, not all zero, the sum a1x1 + · · · + anxn is a normal random variable.

Premultiplying both sides of (2.5 ) by a randomly generated normal square matrix G

whose elements are i.i.d. gives GQ>
2 e = GQ>

2 b, where Q>
2 ∈ R(m−n)×m. Let F = GQ>

2 and

z = GQ>
2 b, then we obtain F e = z. Applying Sylvester’s inequalities (see, for example,

[45 , p. 655]), Lemma 3 , and Lemma 4 , we conclude that F ∈ R(m−n)×m is a full row rank

matrix with probability 1 whose entries are i.i.d. normal. By Theorem 1 , we conclude

that with the probability at least 1 − exp{−c0(m − n)}, the sparse vector e, where ‖e‖0 <

(c2
1/4)n/ (1 + log(m/n)), can be recovered by solving problem (2.3 ) with the matrix F =

GQ>
2 . For a further discussion of this method, see [46 ].

It follows from the above discussion that when m − n increases, then we have higher

probability of recovering the vector e. However, in order to recover the unique k-sparse

vector, it follows from Lemma 1 that we first need to ensure that spark(F ) > 2k. This

means we need to have a sufficiently large n for a fixed m. We next introduce the methods

for solving (2.3 ).

2.3 Methods For Sparse Vector Recovery

2.3.1 Steepest descent method for sparse vector recovery

Consider the optimization problem (2.3 ), where F ∈ R(m−n)×m, spark(F ) > 2i, and e is a

i-sparse vector. The first method for solving (2.3 ) is based on the steepest descent algorithm

for constrained optimization [19 ]. Before presenting the method, we recall the following

definition:

Definition 4 (Orthogonal Projection). [47 ] Let V be a subspace of Rn and v ∈ V . Then

the orthogonal complement of V , denoted V⊥, consists of all vectors that are orthogonal to

every vector in V , that is, V⊥ = {x : v>x = 0 for all v ∈ V}. As V and V⊥ span Rn,

every vector x ∈ Rn can be uniquely represented as x = x1 + x2, where x1 ∈ V and x2 ∈ V⊥.

The orthogonal projection of x on V and V⊥ are x1 and x2, respectively.
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The algorithm for solving (2.3 ) can be described as follows. Let e(1) be an initial point

satisfying the constraint in (2.3 ). Then to find the next iteration e(2), we first calculate the

sub-gradient g(1), where

g(1) = ∇‖e(1)‖1 =
[

−sign(e(1))1 · · · −sign(e(1))m

]
>. (2.6)

We project g(1) onto the null-space N (F ) of the matrix F and then minimize e in the direction

of the projected gradient. More explicitly, we decompose g(1) as

g(1) = gN
(1) + gN⊥

(1), (2.7)

where gN
(1) ∈ N (F ) and gN⊥

(1) ∈ N ⊥(F ). It is shown in Kolev [19 ] that for a full row rank

matrix F , gN⊥
(1) = F>(FF>)−1Fg(1). From (2.7 ), we see that the orthogonal projection

of g(1) on N (F ) is p(1) = [I − F>(FF>)−1F ]g(1). The initial point e(1) can be taken as

e(1) = F>(FF>)−1z. For the (k + 1)th iteration (k = 1, 2, . . .), e(k+1) = e(k) + αkp
(k), and

p(k) = [I − F>(FF>)−1F ]g(k). (2.8)

To determine αk, we minimize

f(e(k+1)) = ‖e(k) + αkp
(k)‖1 =

m∑
i=1

|ei
(k) + αkpi

(k)|.

Let φ = {i : sign(ei
(k)) 6= sign(pi

(k)), i = 1, 2, · · · ,m}. Using the method in [19 ], we

calculate αk as αk
i = − ei(k)

pi(k) > 0. Let fk = min
i∈φ

fk
i. Then, αk is chosen to be equal to αk

i for

which fk
i = fk. The algorithm terminates when fk+1 ≥ fk.

2.3.2 The 1-norm minimization for sparse vector recovery

The second method for solving (2.3 ) presented in [20 ] uses a class of penalty functions to

transform constrained optimization minimum norm problems into unconstrained optimiza-

tion problems.

Let r = −F>(FF>)−1z ∈ Rm. Then Fr = −z. Let x = e + r. Then the constrained

problem (2.3 ) takes the form

min ‖x− r‖1, x ∈ Rm
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subject to Fx = 0.

It is shown in [20 ] that the above constrained optimization problem is equivalent to an

unconstrained problem of the form, min(‖x− r‖1 + c‖Fx‖s), where s ≥ 1 is an integer and

the value of c is given in [20 ] as c = K√
λmin(F F >)

, where

K =


n(1/2) for s < 2

n(1/2)m(1/2)−(1/s) for s ≥ 2.

Here λmin(FF>) denotes the minimal eigenvalue of the positive definite matrix FF>.

We can use the MATLAB optimization toolbox function fminunc to solve the above

unconstrained optimization problem.

2.3.3 Comparison of the methods

We use an example from Kolev [19 ] to test our methods for sparse vector recovery, which

is equivalent to solving optimization problem (2.3 ), where

F =


2 −1 4 0 3 1

5 1 −3 1 2 0

1 −2 1 −5 −1 4


and z =

[
2 1 −4

]
>.

We first use the projected steepest descent algorithm to solve the above optimization

problem. Performing manipulations described in the algorithm we obtain e(1) of the form[
0.08825 0.1083 0.2733 0.5047 0.3828 −0.3097

]
>.

Then we obtain e(2),[
0.0502 0.0000 0.2207 0.5564 0.4274 −0.2654

]
>.

At this point, we have αk < 10−7 for k ≥ 2. The convergence of the iterative process,

e(k+1) = e(k) +α(k)p(k), becomes very slow. In order to accelerate the algorithm convergence,

we proceed as follows. If for each i, we have |e(k+1)
i − e(k)

i | > 10−5, then we resume the
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iterative process. We let e(2)
2 = 0 and delete from the matrix F the column corresponding to

e(2)
2 = 0. We obtain

F1 =


2 4 0 3 1

5 −3 1 2 0

1 1 −5 −1 4


and the initial point

e(2)0 =
[

0.0502 0.2207 0.5564 0.4274 −0.2654
]

>.

After one iteration, we face the same situation as before, where

e(2)1 =
[

0.0000 0.1851 0.5914 0.4820 −0.1866
]

>.

Using the same strategy, the optimal solution is found to be
[

0.1923 0.7564 0.4103 0
]

>.

The optimal solution to the original problem is

e∗ =
[

0 0 0.1923 0.7564 0.4103 0
]

>. (2.9)

We next use the 1-norm minimization method to solve the same problem. We first

construct the unconstrained optimization problem, that is, min(‖x − r‖1 + c‖Fx‖s). We

compute c and r for s = 2, where c = 0.4907 with λmin(FF>) = 24.945 and K =
√

6. The

vector r is [
0.08825 0.1083 0.2733 0.5047 0.3828 −0.3097

]
>.

We use the MATLAB toolbox function fminunc to solve the above unconstrained problem.

After 28 iterations, we obtain the same optimal solution given by (2.9 ) to four decimal places.

The original projected steepest descent method had to be modified to accelerate its con-

vergence. The 1-norm minimization method, on the other hand, does not require line search

in each iteration. In addition, this algorithm can easily be implemented using MATLAB

fminunc function. After comparing the two methods, we decided to use the 1-norm mini-

mization method in our further simulations.

In summary, to reconstruct the unknown sparse error vector e in a corrupted linear

system b = Ax+ e, we perform the following steps:
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• Use Lemma 2 to find the left annihilator, Q>
2 , of the matrix A

• Construct optimization problem (2.3 ).

• Solve optimization problem (2.3 ) for e using the method from Subsection 2.3.2 .

2.3.4 An example illustrating finding the unique sparse solution

We begin by generating a random matrix F ∈ Rl×m, where l = m − n. The entries of

F are i.i.d. normal. In our simulations, we used the following parameters: m = 18, k = 1,

and ‖e‖1 = 1. For different values of l = 2, 3, . . . , 12, we perform 500 iterations, where

in each iteration, the vector e is randomly generated. The objective of this exercise is to

find a matrix F with l rows and m = 18 columns that satisfies conditions of Lemma 1 and

Theorem 1 .

In Figure 2.2 and 2.3 , we show simulation results for l = 2 and 12, respectively. In

each figure, the first subfigure shows the true sparse vector, the middle subfigure shows the

estimated sparse vector, a blue square indicates that an error occurring at a given sample.

For each figure, the bottom subfigure shows the estimation error. Note that for l = 12, in

Figure 2.3 , there is no estimation error. The estimation errors decrease when l is increased

form 2 to 12.

From this study, we conclude that for the normal random matrix F ∈ Rl×m, when

m = 18 and l = 12, conditions of Lemma 1 and Theorem 1 hold. We will use this result in

the following section.
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Figure 2.2. Case l = 2. Top subfigure shows true sparse error, the middle
subfigure shows estimated sparse error, the bottom subfigure shows estimation
error. A blue square indicates an error occurring at a given sample.

Figure 2.3. Case l = 12. Top subfigure shows true sparse error, the middle
subfigure shows estimated sparse error, the bottom subfigure shows estimation
error. A blue square indicates an error occurring at a given sample.
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2.4 An Application to Secure State Estimation

We apply the method for the vector recovery for a linear system corrupted by unknown

sparse error to obtain state estimation of a CPS with sparse malicious packet drops.

The system under consideration is a linear discrete-time dynamical control system mod-

eled as:
x[k + 1] = Adx[k] +Bdu

a[k]

ys[k] = Cdx[k]

 (2.10)

where Ad ∈ Rn×n, Bd ∈ Rn×m, Cd ∈ Rp×n, ys[k] ∈ Rp is the output measured by sensors,

ua[k] ∈ Rm is the input received by the actuators, yc[k] ∈ Rp is the controller output, and

uc[k] ∈ Rm is the controller signal. A block diagram of the control system under consideration

is shown in Figure 2.4 , which is adapted from [10 ].

Figure 2.4. Block diagram of a wireless control system.

We assume that the pair (Ad, Cd) is observable and that the connection between the

actuator and the controller is secure, which implies that ua[k] = uc[k]. Following [10 ], we

model the malicious packet drops in the communication flow from the sensor to the controller

by means of the matrix Γ[k] = diag{γ1[k], γ2[k], · · · , γp[k]} ∈ Rp×p, where γi[k], i = 1, . . . , p,

are Boolean variables, where γi[k] = 1 if the packet is correctly received by the controller,
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and γi[k] = 0 if the packet is dropped. Therefore, the system under consideration can be

modeled as
x[k + 1] = Adx[k] +Bdu

c[k]

yc[k] = Γ[k]Cdx[k].

 (2.11)

Let Γ[k] = Γ[k] − Ip. Because the control output yc[k] is known at all time instants k, we

have τ observations for the above system, which can be represented as

yc|[k−τ+1,k] =



Cd

CdAd

...

CdAτ−1
d

x[k − τ + 1]

+



Γ[k − τ + 1]Cdx[k − τ + 1]

Γ[k − τ + 2]Cdx[k − τ + 2]
...

Γ[k]Cdx[k]

+



0

CdBduc[k − τ + 1]
...

Στ−1
i=1 CdAτ−1−i

d Bduc[k − τ + i]

.

Let v = [0 · · · Στ−1
i=1 CdA

τ−1−i
d Bdu

c[k − τ + i]]> denote the last term in the above expression.

Note that v is known for all k and τ and can thus be removed from the observation vector

yc. Let ŷc|[k−τ+1,k] = yc|[k−τ+1,k] − v and let

Yk ,



ŷc[k]

ŷc[k − 1]
...

ŷc[k − τ + 1]



=



CdA
τ−1
d

CdA
τ−2
d

...

Cd


x[k − τ + 1] + Iτp



Γ[k]Cdx[k]

Γ[k − 1]Cdx[k − 1]
...

Γ[k] − τ + 1]Cdx[k − τ + 1]


, Oτ−1x[k − τ + 1] + IτpEs[k], (2.12)
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where Yk ∈ Rτp, Es[k] ∈ Rτp and Oτ−1 ∈ Rτp×n is the τ -step observation matrix with full

column rank.

We assume that τp > n. We now apply Lemma 2 . We first perform the QR decomposition

of Oτ−1 to obtain

Oτ−1 = QR =
[
Q1 Q2

] R1

0

, (2.13)

where Q ∈ Rτp×τp is orthogonal, Q1 ∈ Rτp×n, Q2 ∈ Rτp×(τp−n), and R1 ∈ Rn×n is an upper

triangular matrix with full rank. Pre-multiplying (2.12 ) by Q>
2 , we obtain

Q>
2 Yk = Q>

2 Es[k]. (2.14)

Next, we construct the matrix F as F = GQ>
2 , where Q>

2 ∈ R(τp−n)×τp, G ∈ R(τp−n)×(τp−n)

whose entries are i.i.d normal. By Lemma 3 and Lemma 4 , the matrix F ∈ R(τp−n)×τp is

a full row rank matrix with probability 1 whose entries are i.i.d. normal. Pre-multiplying

both sides of (2.14 ) by G, we obtain

z[k] = Ỹk = GQ>
2 Yk = FEs[k]. (2.15)

We assume that the number of packet drops over the time interval [t − τ + 1, t] is bounded

by is with spark(F ) > 2is. Applying Lemma 1 , we conclude that the sparse vector Es[k]

satisfying (2.15 ) is unique. We then search for the unique sparse solution to (2.15 ) by solving

the optimization problem,

Ês[k] = min ‖Es[k]‖1, Es[k] ∈ Rτp

subject to FEs[k] = z[k].

 (2.16)

Then, the state estimate of x[k − τ + 1] is obtained as

x̂[k − τ + 1] = O†(Yk − IτpÊs[k]), (2.17)
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where O† = (O>O)−1O> is the pseudo-inverse of Oτ−1. Pre-multiplying both sides of (2.12 )

by O†, we obtain x[k − τ + 1] = O†(Yk − IτpEs[k]). Let x̃[k] be the estimation error of the

state, then we have x̃[k− τ + 1] = O†(Es[k] − Ês[k]). If Es[k] = Ês[k], then x̃[k− τ + 1] = 0.

From the previous discussion, we know that if the hypothesis of Lemma 1 and Theorem 1 

are satisfied, then the unique sparse vector Es[k] in (2.15 ) can be successfully recovered with

probability at least 1 − exp(−c0(m−n)), which means Es[k] = Ês[k] is true with probability

at least 1 − exp(−c0(m − n)). Thus, we can correctly estimate the state x[k − τ + 1] from

the measurements Yk with probability at least 1 − exp(−c0(m − n)). We then estimate the

state x[k] of the system (2.11 ) as follows:

x̂[k] = Aτ−1x̂[k − τ + 1] + [Aτ−2B · · · B]


u[k − τ + 1]

...

u[k − 1]

. (2.18)

To illustrate the performance of our proposed state estimation method, we use a remotely

controlled UAV as a CPS given in [48 ] and illustrated in Figure 2.4 . The state vector is

x = [θx, θ̇x, θy, θ̇y, θz, θ̇z], where θx, θy and θz are the pitch, roll, and yaw angles, respectively,

and θ̇x, θ̇y and θ̇z are their corresponding angular velocities. The output yc = [θx, θy, θz]

represents the corresponding angular measurements corrupted by unknown sparse malicious

packet drops. We perform a simulation over 50 samples with the step size Ts = 0.01 second.

We assume that there are is malicious packet drops in each sampling interval [k, k + τ − 1],

where k = 0, 1, · · · , 44. The initial state x[0] is randomly selected. Without loss of generality,

we assume ua[k] = 0.

We first choose τ = 6 and is = 1 in order to satisfy the condition of the sparse error

recovery as discussed in Section 2.3.4 .

Figure 2.5 shows the estimation errors. The red, blue and black crosses represent the

estimation errors for θx, θy and θz respectively. In our simulation, we assume y[ − 5] =

y[ − 4] = · · · = y[ − 1] = 0. This explains the initial observation errors.

We then choose τ = 6 and is = 6 in order to show that when the malicious packet

drops are more severe, we will have difficulties with correct state estimation. In Figure 2.6 ,

incorrectly estimated states are observed when k ≥ 5.
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Figure 2.5. Estimation errors for θx, θy and θz. One packet drop in each
sampling interval [k, k + 5].

Figure 2.6. Estimation errors for θx, θy and θz. Six packet drops in each
sampling interval [k, k + 5].
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Let ηe = ‖Es[k]‖0/(τp) be the percentage of malicious packet drops. We conclude that

when τ = 6, malicious packet drops are recovered with 100%, 98.7%, and 86.9% accuracy

rates when ηe = 5.6%, 11.1%, and 33.3%, respectively.

2.5 Conclusions

We propose a method for the recovery of the unknown sparse vector in an overdetermined

linear system by converting the original linear system into an equivalent convex optimization

problem with equality constraints. The proposed method is applied to the secure state

estimation of a CPS in the presence of malicious packet drops for the output measurements.

In the next Chapter, we extend the method for the case when there are sparse malicious

packet drops between the controller and the actuator.
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3. NORM-UIO BASED OBSERVERS FOR CYBER-PHYSICAL

SYSTEMS CORRUPTED BY UNKNOWN INPUT AND

OUTPUT SPARSE ERRORS

3.1 Introduction

In this chapter, we consider the problem of designing observers for plants for which the

sensor measurements and actuator inputs are corrupted by sparse errors. This could be

a case of a CPS experiencing malicious packet drops between the controller and the plant

actuators and malicious packet drops between the plant sensors and the controller, see for

example [9 ], [10 ], [12 ], [49 ], [50 ]. State estimation for systems with packet drops during output

transmission is considered in [51 ], where the state estimator is designed using a projection

method and minimum mean square error estimation with the estimator gain designed using

the Riccati equation. State estimators for nonlinear systems are proposed in [52 ] with output

packet drops whose design is based on extended Kalman filter and moving horizon estimation.

Different CT observers for plants with unknown inputs have been proposed in [31 ], [53 ]–[59 ].

Discrete-time unknown input observers were proposed in [26 ], [28 ], [60 ].

Our objective is first to use the sparse vector recovery method to recover the unknown

sparse error corrupting the plant output measurements and the input to the plant actuators.

Then, an unknown input observer (UIO) is designed to estimate the state of the plant. We

propose a novel state observer architecture that combines an output sensor error approxima-

tor with an unknown input observer (UIO) structure. The attractive feature of the proposed

novel state observer architecture is that it can be used in CPSs whose inputs and outputs

are simultaneously corrupted by sparse malicious packet drops. The approximator recovers

the unknown sparse error vector es corrupting the output measurements yc, see Figure 3.1 .

40



Figure 3.1. A block diagram of a CPS with unknown input and output sparse errors.

3.2 Problem Statement

We consider a linear DT plant model,

x[k + 1] = Adx[k] +Bdu
a[k]

ys[k] = Cdx[k]

 (3.1)

where Ad ∈ Rn×n, Bd ∈ Rn×m has full column rank, Cd ∈ Rp×n. ua[k] ∈ Rm is the input

received by actuators, ys[k] ∈ Rp is the output measured by sensors. We assume the plant

model (3.1 ) is controllable and observable–see, for example [61 , Subsection 1.1.2 and Chapter

2] or [62 ] for a discussion on modeling of DT systems.

We consider a scenario in which sensor measurements, ys[k], are being sent to the con-

troller through a communication network. We assume the presence of malicious attacker

that causes packet drops in the communication network. As in Chapter 2, we model this

malicious packet drops by means of the matrix Γ(k) = diag{γ1(k), γ2(k), · · · , γp(k)}, where

γi(k), i = 1, . . . , p are Boolean variables, where γi(k) = 1 if the packet is correctly received;

γi(k) = 0 if the packet is dropped by the controller. Therefore, the signal received by the

controller is yc[k] = Γ(k)ys[k]. Similarly, the control signal is being sent to the plant through

a communication network, where we also assume malicious packet drops modeled by the ma-
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trix Λ(k) = diag{λ1(k), λ2(k), · · · , λm(k)}, where λi(k), i = 1, . . . ,m are Boolean variables,

where λi(k) = 1 if the packet is correctly received; λi(k) = 0 if the packet is dropped by

the actuator. Therefore, the signal received by the actuator is ua[k] = Λ(k)uc[k]. A block

diagram of the CPS under consideration is shown in Figure 3.1 .

The network communication errors in the communication flow from the sensor to the

controller and from the controller to the actuator are presented as es[k] and ea[k], respectively.

More specifically, we have es[k] = yc[k] − ys[k] ∈ Rp and ea[k] = ua[k] − uc[k] ∈ Rm. We

model es[k] and ea[k] as the malicious packet drops by means of the matrices Γ(k) and Λ(k).

Let Γ(k) = Γ(k) − Ip ∈ Rp×p and Λ(k) = Λ(k) − Im ∈ Rm×m. Then we have,

es[k] = Γ(k)ys[k], ea[k] = Λ(k)uc[k]. (3.2)

We assume the malicious packet drop is sparse. Here by sparse, we mean most of the entries

of es[k] and ea[k] are zeros.

The system under consideration now can be modeled as

x[k + 1] = Adx[k] +Bd(uc[k] + ea[k])

yc[k] = Cdx[k] + es[k].

 (3.3)

Our objective is to correctly estimate the state x[k] of the CPS (3.3 ) in the presence of

the malicious packet drops modeled by es[k] and ea[k].

3.3 Vector Recovery Strategy

In this section, we describe a method for recovering error vector es[k] in the network

system (3.3 ) under existence conditions.
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3.3.1 Vector recovery method

Substituting ua[k] = Λ(k)uc[k] and yc[k] = Γ(k)ys[k] into (3.1 ), we obtain

x[k + 1] = Adx[k] +BdΛ(k)uc[k]

yc[k] = Γ(k)Cdx[k].

 (3.4)

Since the control output yc[k] and the control input uc[k] are known at all time instant k,

following the discussion form Section 2.4 , we collect τ observations for the above system,

which can be represented as

yc|[k−τ+1,k] =



Cd

CdAd

...

CdAτ−1
d

x[k − τ + 1]

+



Γ(k − τ + 1)Cdx[k − τ + 1]

Γ(k − τ + 2)Cdx[k − τ + 2]
...

Γ(k)Cdx[k]

+



0

CdBdΛ(k − τ + 1)uc[k − τ + 1]
...

Στ−1
i=1 CdAτ−1−i

d BdΛ(k − τ + i)uc[k − τ + i]

.

Let now U c[k] ∈ Rm×m represents a diagonal matrix whose components consist of uc[k], and

vec(Λ(k)) ∈ Rm represents the vectorization of diagonal components of Λ(k). Then we have
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Λ(k)uc[k] = U c[k]vec(Λ(k)). Let v[k] = [0 · · · Στ−1
i=1 (CdA

τ−1−i
d Bdu

c[k− τ + i])>]>. Note that

v[k] is known for all k and τ . Let ŷc|[k−τ+1,k] = yc|[k−τ+1,k] − v[k] and define Y [k] as

Y [k] ,



ŷc[k]

ŷc[k − 1]
...

ŷc[k − τ + 1]

 =



CdAτ−1
d

CdAτ−2
d

...

Cd

x[k − τ + 1]

+ Iτp



Γ(k)Cdx[k]

Γ(k − 1)Cdx[k − 1]
...

Γ(k − τ + 1)Cdx[k − τ + 1]

+ F [k]



vec(Λ(k − 1))

vec(Λ(k − 2))
...

vec(Λ(k − τ + 1))


, Oτ−1x[k − τ + 1] + IτpEs[k] + F [k]V [k], (3.5)

where Oτ−1 ∈ Rτp×n , Y [k] ∈ Rτp, F [k] ∈ Rτp×(τ−1)m and

F [k] =



CdBdU
c[k − 1] · · · CdA

τ−2
d BdU

c[k − τ + 1]
... . . . ...

0p×m · · · CdBdU
c[k − τ + 1]

0p×m · · · 0p×m


.

Let Ω[k] = [Iτp F [k]] and E[k] = [E>
s [k] V>[k]]>, then

Y [k] = Oτ−1x[k − τ + 1] + Ω[k]E[k], (3.6)

where Ω ∈ Rτp×[τp+(τ−1)m] and E ∈ Rτp+(τ−1)m.

To proceed, we take the QR decomposition of Oτ−1 to obtain

Oτ−1 = QR =
[

Q1 Q2

] R1

0

, (3.7)

where Q ∈ Rτp×τp is orthogonal, Q1 ∈ Rτp×n, Q2 ∈ Rτp×(τp−n), and R1 ∈ Rn×n is a full

rank upper triangular matrix.
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Premultiplying (3.6 ) by Q>
2 , we obtain Q>

2 Y [k] = Q>
2 Ω[k]E[k]. Let Z[k] = Q>

2 Y [k] and

W [k] = Q>
2 Ω[k], then we have

Z[k] = W [k]E[k], (3.8)

where Z[k] ∈ Rτp−n and W [k] ∈ R(τp−n)×[τp+(τ−1)m]. Note that W [k] is full row rank, that

is rank(W [k]) = τp − n. This is because rank(Q>
2 ) = τp − n, rank(Ω[k]) = τp, then

rank(W [k]) = rank(Q>
2 Ω[k]) = rank(Q>

2 ).

It is shown in [21 ] that if E[k] is an i-sparse vector, the solution to (3.8 ) can be obtained

by solving the following optimization problem,

min ‖E[k]‖0 subject to Z[k] = W [k]E[k]. (3.9)

We assume that over the time interval [k − τ + 1, k], there are at most is malicious

packet drops from the sensor to the controller and at most ia malicious packet drops from

the controller to the actuator. We assume that E[k] is i-sparse. Hence,

i = ‖E[k]‖0 = ‖Es[k]‖0 + ‖Ea[k]‖0 = is + iEa[k] ≤ is + ia. (3.10)

We present the following lemma.

Lemma 5. [10 ], [49 ] If the solution E[k] to (3.8 ) is i-sparse and (τp− n) ≥ 2(is + ia) and

all subsets of 2(is + ia) columns of W [k] are full rank, then E[k] is unique.

Proof. See [10 ].

Since finding the solution to (3.9 ) is technically NP-hard [35 ], following [21 ], we approx-

imate (3.9 ) by solving the following 1-norm minimization problem,

Ẽ[k] = min ‖E[k]‖1 subject to Z[k] = W [k]E[k]. (3.11)

Let ẽs[k] be an estimate of es[k], that is,

ẽs[k] =
[
Ẽ1[k] · · · Ẽp[k]

]
>. (3.12)
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Remark 5. Let ẽa[k] be an approximation of ea[k]. We have,

ẽa[k − 1] = diag{Ẽτp+1[k] · · · Ẽτp+m[k]}uc[k − 1]. (3.13)

This means that the unknown input ea[k] can only be estimated with one sampling period

time delay using the 1-norm minimization method given by (3.11 ). Therefore, this estimate

cannot be applied to (3.3 ) to cancel ea[k] as we will do with es[k] later in the paper. This is

the reason we use an unknown input observer (UIO) to estimate the state x[k] in the presence

of malicious packet drops modeled by ea[k]. We discuss the UIO design in the next section.

3.3.2 Solving 1-norm minimization problem

The 1-norm minimization problem (3.11 ) can be represented as an equivalent linear

programming problem using a well-known scheme (see, for example [47 ]).

Let E+
i , E

−
i be such that |Ei| = E+

i + E−
i , Ei = E+

i − E−
i and E+

i E
−
i = 0. Then we

obtain
min (E+

1 + E−
1 ) + (E+

2 + E−
2 ) + · · · + (E+

q + E−
q )

subject to W (E+ − E−) = Z

E+, E− ≥ 0,

where E+ = [E+
1 · · · E+

q ]>, E− = [E−
1 · · · E−

q ]>, and q = τp+ (τ − 1)m. Rewriting,

we get:
min c>xlp

subject to Alpxlp = Z

xlp ≥ 0,


(3.14)

where c = [1 · · · 1]> ∈ R2q, Alp = [W − W ], and xlp = [E+>
E−>]>. Note that

(3.14 ) is a linear programming problem that can be solved using standard methods.

3.3.3 Algorithm for sparse vector approximation

In summary, we use the following algorithm to recover the unknown sparse error vector

es[k] corrupting the networked control system (3.3 ).

46



Algorithm for the output sensor error recovery

1. Choose τ such that (τp− n) ≥ 2(is + ia)

2. Use (3.6 ) to construct vector Y [k] and matrices Oτ−1 and Ω[k]

3. Use Lemma 2 to find the left annihilator, Q>
2 , of the matrix Oτ−1

4. Construct optimization problem (3.11 ), where Z[k] = Q>
2 Y [k], W [k] = Q>

2 Ω[k]

5. Solve optimization problem (3.11 ) for E[k] using the method from Subsection 3.3.2 

6. Compute ẽs[k] that approximates es[k] using (3.12 ).

3.4 Combined Approximator and UIO Design

In this section, we present a novel state observer architecture that combines an out-

put sparse error approximator with an unknown input observer (UIO) structure. We give

existence conditions for the proposed UIO.

Figure 3.2. Closed-loop system with a state observer consisting of an UIO
and the output sparse error approximator.
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The proposed state observer architecture is depicted in Figure 3.2 . We first use the

algorithm from Subsection 3.3.3 to design an approximator of es[k] denoted as ẽs[k]. We

then subtract ẽs[k] from yc[k] to obtain

ỹc[k] = yc[k] − ẽs[k]

= ys[k] + es[k] − ẽs[k]. (3.15)

It is shown in Section 2.3.4 that for sufficiently large τ , it is possible to have 100% recovery

rate of vector es[k] using the proposed estimator. We will illustrate this with simulations in

the next section.

To proceed, we assume ỹc[k] = ys[k]. Substituting ỹc[k] into (3.3 ) and taking into account

the conclusion of the discussion above, we obtain

x[k + 1] = Adx[k] +Bd(uc[k] + ea[k])

ỹc[k] = Cdx[k].

 (3.16)

We next introduce the UIO design for the network control system (3.16 ).

3.4.1 UIO design

Recall that ea[k] models unknown inputs originating from sparse malicious packet drops

in (3.16 ). Similarly as in [31 ], we use the UIO to estimate the states of (3.16 ).

We first decompose the state x[k] as

x[k] = x[k] −MCdx[k] +MCdx[k]

= (I −MCd)x[k] +Mỹc[k], (3.17)
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where M ∈ Rn×p. Let z[k] = (I −MC)x[k], we then have

z[k + 1] = (I − MCd)x[k + 1]

= (I − MCd)(Adx[k] + Bduc[k] + Bdea[k])

= (I − MCd)(Adx[k] + Bduc[k]) + (I − MCd)Bdea[k]. (3.18)

Substituting x[k] = z[k] +Mỹc[k] into (3.18 ), we obtain

z[k + 1] = (I −MCd)(Adz[k] + AdMỹc[k] +Bdu
c[k])

+(I −MCd)Bdea[k]. (3.19)

Following [31 ], to improve the convergence rate, we add an extra term to the right-hand side

of (3.19 ) to obtain

z[k + 1] = (I −MCd)
(
Adz[k] + AdMỹc[k] +Bdu

c[k]

+L(ỹc[k] − Cdz[k] − CdMỹc[k])
)

+(I −MCd)Bdea[k], (3.20)

where L ∈ Rn×p. The state estimate is

x̂[k] = z[k] +Mỹc[k]. (3.21)

Let

e[k] = x[k] − x̂[k] (3.22)

be the state estimation error. Using (3.16 ) , (3.20 ), and (3.21 ), we obtain

e[k + 1] = x[k + 1] − x̂[k + 1]

= (I −MCd)(Ad − LCd)e[k]

+(I −MCd)Bdea[k]. (3.23)
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If the condition (I −MCd)Bd = 0 is satisfied, then

e[k + 1] = (I −MCd)(Ad − LCd)e[k]. (3.24)

Because rank(MCdBd) ≤ rank(CdBd) ≤ rank(Bd), if we want (I − MCd)Bd = 0 to be

satisfied, it is necessary to have

rank(CdBd) = rankBd. (3.25)

Combining (3.20 ), (3.21 ) with (I −MCd)Bd = 0, we obtain

z[k + 1] = (I − MCd) (Adz[k] + AdMỹc[k] + Bduc[k])

+L1(ỹc[k] − Cdz[k] − CdMỹc[k])

x̂[k] = z[k] + Mỹc[k],

 (3.26)

where z[k] ∈ Rn, x̂[k] ∈ Rn are the state of (3.26 ), and the state estimation of (3.16 ),

respectively, M ∈ Rn×p, and L1 = (I−MCd)L ∈ Rn×p. It is shown in [26 ], [28 ] that (3.26 ) is

defined as an UIO for the system (3.16 ) if the matrix (I −MCd)(Ad −LCd) is Schur stable.

We now present and prove the following theorem.

Theorem 2. Let A1 = (I −MCd)Ad and T = PL1. Suppose

1. (I −MCd)Bd = 0,

2. there exists P = P> � 0 such that

 −P A>
1 P − C>

d T
>

PA1 − TCd −P

 ≺ 0. (3.27)

Then the UIO given by (3.26 ) exists.
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Proof. Substituting (I−MCd)Bd = 0 into (3.23 ), we obtain e[k+1] = (A1−L1Cd)e[k], where

L1 = (I − MCd)L. We need the matrix A1 − L1Cd to be Schur stable, which is equivalent

to the existence of P = P> � 0 such that

(A1 − L1Cd)>P (A1 − L1Cd) − P ≺ 0.

Substituting P = PP−1P into the Lyapunov matrix inequality above, we obtain

(A1 − L1Cd)>PP−1P (A1 − L1Cd) − P ≺ 0,

which is equivalent to (3.27 ) by taking the Schur complement.

Remark 6. The first condition in Theorem 2 is a linear matrix equality in M , while the

second condition is a linear matrix inequality in P and T . We solve the above matrix equality

and matrix inequality using the cvx toolbox.

3.4.2 Algorithm for combined approximator and UIO design

We summarize our discussion in the form of the algorithm for state observer design,

depicted in Figure 3.2 , in the presence of malicious packet drops between the plant output

and controller input and between the controller output and the actuator input.

Observer design algorithm

1. Design an approximator ẽs[k] of es[k] and use (3.15 ) to obtain (3.16 )

2. Design the UIO given by (3.26 ) performing the following steps:

• Check if rank(CdBd) = rankBd is satisfied. If not, STOP

• Solve (I −MCd)Bd = 0 to obtain

M = Bd

(
(CdBd)† +M0(Ip − (CdBd)(CdBd)†)

)

, where the superscript † denotes the Moore-Penrose pseudo-inverse and M0 is a

design parameter matrix (see, for example [31 ])
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• Solve (3.27 ) for matrices P and T

• If P = P> � 0, the UIO exists

• Calculate L1 = P−1T .

3.5 An Alternative Approach to Reconstruct Malicious Packet Drops During
the Control Signal Transmission

In this section, we propose an alternative estimator of ea[k]. To proceed, we need the

following lemma.

Lemma 6. If rank(CdBd) = rankBd = m, then there exists a matrix (CdBd)† ∈ Rm×p such

that (CdBd)†CdBd = Im.

Proof. Since CdBd is p×m and rank(CdBd) = rankBd = m, CdBd has full column rank. It

follows that (CdBd)>CdBd is nonsingular. Then it is immediate that

(CdBd)† =
(
(CdBd)>CdBd

)−1
(CdBd)>.

We assume that condition (3.25 ) holds. We let Tr = (CdBd)† for notational convenience.

Premultiplying both sides of

x[k + 1] = Adx[k] +Bd(uc[k] + ea[k])

by the matrix TrCd, we obtain

TrCdx[k + 1] = TrCdAdx[k] + TrCdBdu
c[k] + TrCdBdea[k]. (3.28)

By Lemma 6 , TrCdBd = Im. We can thus rewrite (3.28 ) as

ea[k] = Try[k + 1] − TrCdAdx[k] − uc[k]. (3.29)
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Using the above equation, we propose the following estimator of ea[k],

ẽa[k] = Try[k + 1] − TrCdAdx̂[k] − uc[k]. (3.30)

Since the above estimate of ea[k] depends on y[k + 1], we can estimate the unknown input

with one sampling period time-delay as,

ẽa[k − 1] = Try[k] − TrCdAdx̂[k − 1] − uc[k − 1]. (3.31)

3.6 The Robustness of the Alternative Unknown Input Estimator

The alternative unknown input estimator design can also be used to observe different

types of unknown inputs ea[k] with one sampling period time delay. We illustrate this on a

linear DT plant model,

x[k + 1] = Adx[k] +B1du1[k] +B2du2[k]

y[k] = Cdx[k]

 (3.32)

where Ad ∈ Rn×n, B1d ∈ Rn×m1 , B2d ∈ Rn×m2 has full column rank, and Cd ∈ Rp×n. u1[k]

is the control signal, u2[k] is the unknown input. We assume the plant model (3.32 ) is

controllable and observable. We also assume rank(CdB2d) = rankB1d.

Using the algorithm in Section 3.4.2 , we design the UIO for (3.32 ) as

z[k + 1] =(I −MCd)(Adz[k] + AdMy[k] +B1du1[k])

+ L1(y[k] − Cdz[k] − CdMy[k]) (3.33a)

x̂[k] =z[k] +My[k]. (3.33b)

We then apply the unknown input estimator design in Section 3.5 to obtain

û2[k − 1] = Try[k] − TrCdAdx̂[k − 1] − TrCdB1du1[k − 1]. (3.34)
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The robustness of the proposed unknown input estimator is tested with the following

numerical example.

Let

Ad = 10−2 ×



99.0423 1.9495 0.9564 0.0064

−94.9625 94.6692 94.7146 0.9564

−0.3862 −0.0025 99.6125 1.9974

−38.5357 −0.3805 −38.7837 99.6125


,

B1d = 10−2 ×



0.4253

42.1505

−0.0003

−0.0551


, B2d = 10−2 ×



66.2418

−31.8204

−0.0856

−12.8333


, Cd =

1 0 0 0

0 1 0 0

 .

Note that Cd is full row rank and the rank condition of our DT plant model is satisfied, that

is, rank(CdB2d) = rankB2d = 1. By solving the DT algerbraic Riccati equation, we obtain

the feedback controller as

u1[k] = −
[
2.2263 0.4538 2.6579 −0.5152

]
x̂[k].

To proceed with our observer design (3.33 ), first, by solving for M so that (I−MCd)B2d = 0,

we obtain,

M =



0.8125 −0.3903

−0.3903 0.1875

−0.0011 0.0005

−0.1574 0.0756


.
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We then solve the matrices P and L1 by using the algorithm in Section 3.4.2 , we obtain

P =



94.33051 18.0754 −36.0293 0.1537

18.0754 96.8613 −61.7687 0.2902

−36.0293 −61.7687 54.7671 −0.3795

0.1537 0.2902 −0.3795 0.0050


, L1 =



0.4317 1.3569

1.0290 2.7607

2.2369 3.5281

63.3664 85.5940


.

In our simulation, we let x[0] = [3 2 3 − 2]>, zero initial condition for the state observer,

x̂[ − 1] = [0 0 0 0]>, and u1[ − 1] = 0. A plot of the unknown input u2 is shown on the top

part of Figure 3.3 . The unknown input estimate is shown on the bottom part of Figure 3.3 .
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Figure 3.3. A plot of the unknown input signal and its estimate.
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3.7 Numerical Example

In this section, we validate the proposed state observer design method on a numerical

example. We consider a discrete-time state-space model of a coupled mass-spring-damper

system, where

A =



0.9907 0.0047 0.0903 0.0002

0.0047 0.9907 0.0002 0.0903

−0.1805 0.0900 0.8100 0.0044

0.0900 −0.1805 0.0044 0.8100


, B =



0

0.0047

0.0002

0.0903


, C =

 1 0 0 0

0 1 0 0

.

See [63 , p. 148] for modeling equations of such a system. We assume that the plant model

is remotely controlled as a networked control system as shown in Figure 3.1 . Using the

algorithm in Subsection 3.4.2 , we first compute matrices M and L to obtain

M =



0 0

0 0

0 0.0033

0.0017 199.66


, L1 =



0.9936 0.0039

−0.0008 −0.0000

−0.1551 0.0581

−0.0159 −19.3226


.

We next compute the matrix P and find that P = P> � 0, which means that the necessary

and sufficient conditions for the existence of the UIO are satisfied.

In our simulation, we let τ = 10 so that the condition of Lemma 5 is satisfied, that is,

(τp− n) ≥ 2(is + ia). The control uc[k] = −Kdx̂[k], where

Kd =
[
0.1381 0.2677 0.0651 0.3401

]

is the feedback gain calculated using the discrete-time LQR. We assume zero initial conditions

on the plant input and its output, that is, uc[ − 1] = · · · = uc[1 − τ ] = 0 and yc[ − 1] = · · · =

yc[1 − τ ] = 0. This explains the initial observation errors.

We simulated the case with 15% output transmission drops and 5% input transmission

drops. From Figure 3.4 , we see that the observer correctly estimates the plant’s states. Fig-
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Figure 3.4. State estimates with 15% output transmission packet drops and
5% input transmission packet drops.

ure 3.5 shows the effectiveness of the proposed output transmission packet drops estimation.

In Figure 3.6 , the top plot shows the plots of the control signal and this signal corrupted by

the malicious packet drops during the control signal transmission. The middle plot shows

the plots of the malicious packet drops and their estimates using (3.13 ). The bottom plot

shows the plots of the malicious packet drops and their estimates using the alternative ea[k]

estimator given by (3.31 ). Note that both estimates of ea[k] are delayed by one sampling

period.
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Figure 3.5. Plots of the output recovery and the output recovery errors
with 15% output transmission packet drops and 5% input transmission packet
drops.

Figure 3.6. Top subfigure shows plots of the control signal generated by the
controller and the control signal received by the plant. Middle plot shows
the malicious packet drops ea[k] and their estimates using the unknown input
estimator given by (3.13 ). Bottom plot shows the malicious packet drops and
their estimates using the alternative ea[k] estimator given by (3.31 ).
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3.8 Conclusions

A novel observer architecture for discrete-time systems subjected to sparse errors between

the sensors and the controller and between the controller and the actuators is proposed.

This novel observer consists of an approximator that recovers the unknown sparse errors

between the sensors and the controller. This approximation is used to cancel the sparse error

resulting in the plant output to the controller approximately equal to the actual plant output.

Then the plant state estimate is obtained using a novel unknown input observer (UIO). The

proposed observer can be used to construct a combined controller-observer compensator for

a given networked system.
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4. UNKNOWN INPUT OBSERVERS FOR DISCRETIZED

SYSTEMS WITH APPLICATION TO CYBER-PHYSICAL

SYSTEMS CORRUPTED BY SPARSE MALICIOUS PACKET

DROPS

4.1 Introduction

The problem of designing observers for linear systems with both known and unknown

inputs can be formulated as an UIO design problem. This problem was already studied

by Basile and Marro [29 ] in 1969. Since then, different UIO structures have been reported

in the literature, see for example [26 ], [31 ]. For example, UIOs for switched discrete-time

(DT) systems for fault detection are reported in [60 ]. UIO designs for continuous-time (CT)

systems are presented, for example, in [56 ], [57 ], [64 ]. UIO architectures for DT systems are

given in [26 ], [65 ].

As it is discussed in Chapter 3 , one of the conditions for the existence of a CT UIO is

the matrix rank condition, rank(CcB2c) = rank(B2c), where B2c is the input matrix cor-

responding to the unknown input and the matrix Cc is the output measurement matrix

of the plant modeled as, ẋ = Acx + B1cu1 + B2cu2, y = Ccx. Our proposed UIO archi-

tectures use discretized plant parameters to design the UIO in the DT domain. We use

the exact discretization method. The matrix rank condition for the discretized system is

rank(CdB2d) = rank(B2d), where Cd = Cc, and B2d =
∫ Ts

0 eAcηB2cdη. In many cases, while

the original CT plant does not satisfy the matrix rank condition for the existence of an UIO,

its discretized model satisfies the matrix rank condition for the existence of a DT UIO. In this

chapter, we characterize a class of systems showing this continuous-discrete UIO existence

dichotomy.
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4.2 Problem Statement

We consider a CT linear time-invariant (LTI) plant,

ẋ(t) = Acx(t) +Bcu(t)

y(t) = Ccx(t),

 (4.1)

where Ac ∈ Rn×n, Bc ∈ Rn×m, Cc ∈ Rp×n.

We consider the case when the CT plant is remotely controlled by a digital compen-

sator. The CT plant and the digital compensator are interconnected through unsecured

communication networks. A block diagram of a remotely controlled CT plant is depicted in

Figure 4.1 . The output measurement y(t) of the plant is sampled and the sampled signal

Figure 4.1. CPS considered in this chapter.

ys[k] is transmitted to the digital compensator. During the signal transmission, the unse-

cured network introduces unknown error es[k] to the sampled output measurement. The

corrupted measurement yc[k] is received by the digital compensator. The compensator gen-
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erates the control signal uc[k], which is then transmitted to the plant. During the control

signal transmission, the unsecured network introduces unknown error ea[k] to the control

signal. The corrupted control signal ua[k] is passed through the Zero-Order-Hold (ZOH)

element and then received by the actuators of the plant. Note that r[k] in Figure 4.1 is the

reference signal. When we consider the stabilization problem, we set r[k] = 0.

In this chapter, we employ the digital compensator that was developed in Section 3.4 .

The compensator contains two components: a digital estimator and a controller. The digital

estimator, on the other hand, comprises the approximator of the sensor errors and the UIO

that estimates the plant state. The recovered sensor error is used to cancel the sensor error

introduced by the unsecured network during the transmission of the plant output signal to

the compensator. In this paper, we focus our attention on the matrix rank condition for the

existence of UIOs in the DT domain.

The design of the digital compensator is performed in the DT domain using the discretized

plant model. A critical condition for the existence of an UIO is the matrix rank condition,

rank(CdBd) = rank(Bd). For many CT plants, the matrix rank condition fails in the CT

domain while it is satisfied in the DT domain. Our objective is to study the matrix rank

condition after exact discretization.

4.3 The Estimator Architecture Overview

In this section, we review the estimator architecture proposed in Section 3.4 and compare

it with the one given in the literature [10 ], [15 ] to show the advantage of our proposed

estimator.

The estimator design is performed using the discretized plant model. We use the exact

discretization to obtain the following DT plant model,

x[k + 1] = Adx[k] +Bdu
a[k]

ys[k] = Cdx[k],

 (4.2)

where Ts is a sampling period, Ad = eAcTs , Bd =
∫ Ts

0 eAcηBcdη, and Cd = Cc. See, for exam-

ple [61 , Subsection 1.1.2 and Chapter 2] or [62 , Subsection 4.2.1] for discussions on modeling
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and the properties of DT systems. The DT plant with corrupted output measurements and

corrupted control signals is modeled as

x[k + 1] = Adx[k] +Bd

(
uc[k] + ea[k]

)
yc[k] = Cdx[k] + es[k],

 (4.3)

where ea[k] and es[k] are sparse malicious packet drops of the form es[k] = yc[k] − ys[k] =

(Γ[k]−Ip)ys[k], ea[k] = ua[k]−uc[k] = (Λ[k]−Im)uc[k], where Γ[k] = diag{γ1[k], γ2[k], . . . , γp[k]},

and Λ[k] = diag{λ1[k], λ2[k], . . . , λm[k]}, where γi[k], i = 1, . . . , p, and λi[k], i = 1, . . . ,m, are

Boolean variables, with 1 for packet received and 0 for packet dropped. For more detail on

the above model, see [10 ], [15 ], [66 ]. To proceed, we collect τ output measurements and

represent them in the form,

Y [k] = Oτ−1x[k − τ + 1] + IτpEs[k] + F [k]V [k], (4.4)

where Y [k] ∈ Rτp, Oτ−1 ∈ Rτp×n, Iτp ∈ Rτp×τp, and F [k] ∈ Rτp×(τ−1)m are known matrices;

where Es[k] ∈ Rτp, and V [k] ∈ R(τ−1)m are unknown vectors. Let Ω[k] = [Iτp F [k]] and

E[k] = [E>
s [k] V>[k]]>, then

Y [k] = Oτ−1x[k − τ + 1] + Ω[k]E[k]. (4.5)

To proceed, we find the left annihilator Q>
2 . We then premultiply both sides of (4.5 ) by Q>

2

to obtain Z[k] = W [k]E[k], where Z[k] = Q>
2 Y [k], and W [k] = Q>

2 Ω[k]. We recover E[k] as

a solution of the 1-norm minimization problem,

Ẽ[k] = min ‖E[k]‖1 subject to Z[k] = W [k]E[k], (4.6)
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where ‖ · ‖1 denotes the 1-norm. Let ẽs[k] and ẽa[k] be the estimates of es[k] and ea[k],

respectively. We then have

ẽs[k] =
[
Ẽ1[k] · · · Ẽp[k]

]
> (4.7a)

ẽa[k − 1] = diag{Ẽτp+1[k] · · · Ẽτp+m[k]}uc[k − 1]. (4.7b)

Let fs[k] = es[k] − ẽs[k]. The recovered output measurement is ỹs[k] = yc[k] − ẽs[k]. Then

the DT plant model takes the form

x[k + 1] = Adx[k] +Bd(uc[k] + ea[k])

ỹs[k] = Cdx[k] + fs[k].

 (4.8)

It is shown in [12 ], [22 ], [66 ] that sparse errors es[k] and ea[k] can be almost correctly

recovered. Based on this, we assume for our purposes that fs[k] = 0. Then, the output

of (4.8 ) takes the form ỹs[k] = Cdx[k], and the resulting system can be considered as a

system with unknown input only, for which we construct the UIO given by (3.26 ).

4.4 Analysis of the Matrix Rank Condition

In this section, we analyze the case when the matrix rank condition is satisfied by a

discretized model, that is, we study the conditions under which the following equality holds:

rank
(∫ Ts

0
CceAcηBcdη

)
= rank

(∫ Ts

0
eAcηBcdη

)
.

This question arises naturally in the study of the rank condition for the existence of an UIO

in the DT domain. Our main results show that discretization does not negatively impact

the construction of an UIO (Section 4.4.1 ) and in fact can help in some cases (Section 4.4.2 

and Section 4.4.3 ).
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4.4.1 The Discretization Theorem

In this subsection, we show that if the continuous system satisfies the matrix rank con-

dition rank(CcBc) = rank(Bc) = m, then the matrix rank condition is guaranteed to be

satisfied by the discretized system given by (4.2 ) for almost all sampling periods Ts > 0 (see

Theorem 3 for the exact statement). The proof is a little long and, to help the reader see

the overall outline of the proof, it is presented as a series of lemmas.

In our analysis, we use standard Euclidean vector norm and the induced matrix operator

norm.

Lemma 7. Let G ∈ Rn×m be a full column rank matrix. Then there exist δ > 0 and ‖x0‖ = 1

such that,

δ = ‖Gx0‖ = min
‖x‖=1

‖Gx‖.

Proof. The results follows from the continuity of the vector norm and the theorem of Weier-

strass.

Remark 7. Note that if G ∈ Rn×n is a full column rank matrix, then all its singular values

are positive and we can take δ = σm(G), where σm(G) is the smallest singular value of G.

Thus, for all ‖x‖ = 1, we have δ ≤ ‖Gx‖.

Lemma 8. Let G ∈ Rn×m be a full column rank matrix and let δ = σm(G) > 0. If H ∈ Rn×m

is such that ‖H −G‖ < δ, then H has full column rank.

Proof. By Lemma 7 , we have δ = σm(G) > 0. For any x ∈ Rm such that ‖x‖ = 1, if

‖H −G‖ < δ, then by the triangle inequality,

‖Hx‖ = ‖Gx+ (H −G)x‖

≥ ‖Gx‖ − ‖(H −G)x‖

> δ − δ = 0,

for all ‖x‖ = 1. Therefore the columns of H are linearly independent and so rank(H) =

m.
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To proceed, we define for Ts ≥ 0, Q(Ts) =
∫ Ts

0 CceAcηBc dη.

Lemma 9. The entries in the matrix function Q(Ts) are analytic functions of Ts on R.

Proof. We have eAcη = ∑∞
k=0

ηk

k!A
k
c and therefore each entry of the matrix eAcη is a power

series that converges for each η ∈ R. It follows that each entry of the matrix eAcη is analytic

on R. Since the entries of CceAcηBc are linear combinations of the entries of eAcη, they are

also analytic. The claim now follows from the fact that an integral of an analytic function

is analytic.

Lemma 10. If CcBc has full rank, then there exists ε > 0 such that Q(Ts) has full rank for

all 0 < Ts < ε.

Proof. We have

Q(Ts) =
∫ Ts

0
CceAcηBc dη

= Cc

(∫ Ts

0

(
I + ηAc + η2

2! A2
c + · · ·

)
dη

)
Bc

= Cc

(
TsI + T 2

s R(Ts)
)

Bc,

where R(Ts) =
∫ Ts

0

(
ηAc + η2

2!A
2
c + · · ·

)
dη. By Lemma 9 , R(Ts) ∈ Rn×n is a matrix with

analytic entries. It follows that R(Ts) is bounded on bounded subsets of R. So there exists

µ > 0 such that ‖R(Ts)‖ < µ for 0 ≤ Ts ≤ 1. It follows that for 0 < Ts < 1, we have∥∥∥Q(Ts)
Ts

− CcBc

∥∥∥ = ‖TsCcR(Ts)Bc‖ ≤ Ts‖Cc‖‖R(Ts)‖‖Bc‖ < Tsµ‖Cc‖‖Bc‖. By hypothesis, the

product CcBc ∈ Rp×m is full column rank, that is, rank(CcBc) = m. Let δ = σm(CcBc) > 0.

By Lemma 8 , if Q(Ts)/Ts is such that ‖Q(Ts)/Ts − CcBc‖ < δ, then rank(Q(Ts)/Ts) = m.

If we let ε = min{1, δ/(µ‖Cc‖‖Bc‖)}, then Q(Ts)/Ts has full column rank for 0 < Ts < ε.

To complete the proof, we only need to note that Q(Ts)/Ts and Q(Ts) have the same rank

for Ts > 0.

Lemma 11. Suppose Q(t0) has full column rank for some fixed t0 > 0. Then for all Ts > 0,

Q(Ts) has full column rank except for possibly countably many isolated Ts.

Proof. First observe that det(Q(Ts)>Q(Ts)) is an analytic function of Ts and therefore it is

either identically zero or its zeros are isolated. Now suppose Q(t0) has full column rank.
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Then Q(t0)u 6= 0 for all nonzero u ∈ Rm. It follows that Q(t0)>Q(t0) is nonsingular and

therefore det(Q(t0)>Q(t0)) 6= 0. The zeros of det(Q(Ts)>Q(Ts)) are isolated, which is clearly

equivalent to the fact that Q(Ts) has full column rank except for isolated points.

Theorem 3. If CcBc has full rank, then Q(Ts) has full rank for all Ts > 0 except for countably

many isolated Ts. That is, if rank(CcBc) = rank(Bc) = m, then the matrix rank condition

is satisfied by the discretized system given by (4.2 ) for all Ts > 0 except for countably many

isolated Ts.

Proof. This is an immediate consequence of Lemma 10 and Lemma 11 .

Corollary 1. If Bc is full column rank, then
∫ Ts

0 eAcηBc dη is full column rank for all Ts > 0

except for countably many isolated Ts.

4.4.2 Single-input systems

In this subsection, we show that if a nontrivial CT single-input system is controllable,

then its exact discretization almost always satisfies the matrix rank condition. More precisely,

we consider the case when Bc is a column vector b and we show that if the pair (Ac, b) is

controllable, then
∫ Ts

0 CceAcηb dη is not identically zero for all nonzero Cc except for countably

many isolated Ts.

Lemma 12. Let the pair (Ac, Bc) be controllable. Suppose 0 ≤ t1 < t2 < ∞. Then

Span
{∫ Ts

0
eAcηBc dη : Ts ∈ (t1, t2)

}
= Rn.

Here “Span” denotes the span of the collection of columns.

Proof. Let

S = Span
{∫ Ts

0
eAcηBc dη : Ts ∈ (t1, t2)

}
.

For each column bi, i = 1, . . . ,m, of the matrix Bc and for each Ts ∈ (t0, t1), let qbi(Ts) =∫ Ts
0 eAcηbi dη. Since finite dimensional subspaces are always closed and Rn is complete,

therefore S is complete. Hence, the derivatives qbi(Ts), qbi(Ts), . . . are in S for each fixed
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Ts ∈ (t1, t2). Then for k = 1, 2, . . ., we have q(k)
bi

(Ts) = eAcTsAk−1
c bi. Since eAcTs is nonsingu-

lar for each Ts, we conclude that

S ⊃ Span
{

q
(k)
bi

(Ts) : k = 1, . . . , n
}

= Span
{

bi, . . . , An−1
c bi

}

for each column bi of Bc. It follows that

S ⊃ Span
{
Bc, AcBc, . . . , A

n−1
c Bc

}
.

Since (Ac, Bc) is controllable, we must have S = Rn.

Lemma 13. Let (Ac, b) be controllable and let 0 ≤ t1 < t2 < ∞. Then there exists Ts ∈

(t1, t2) such that
∫ Ts

0 CceAcηb dη 6= 0 for nonzero Cc. In particular, rank(
∫ Ts

0 CceAcηb dη) =

rank(
∫ Ts

0 eAcηb dη).

Proof. We have by Lemma 12 that Span
{∫ Ts

0 eAcηb dη : Ts ∈ (t1, t2)
}

= Rn. Therefore, if∫ Ts
0 CceAcηb dη = 0 for all Ts ∈ (t1, t2), then Ccv = 0 for all v ∈ Rn and thus Cc = 0.

It follows that if Cc is not identically zero, then there must be Ts ∈ (t1, t2) such that∫ Ts
0 CceAcηb dη 6= 0.

We now present the main result of this subsection.

Theorem 4. Let (Ac, b) be a controllable pair. Then
∫ Ts

0 CceAcηb dη 6= 0 for all Ts > 0 except

for countably many isolated Ts.

Proof. Note that
∫ Ts

0 CceAcηb dη is an analytic function in Ts. By Lemma 13 , there are points

where it is not zero. The theorem now follows from the fact that if an analytic function is

not identically zero, then its zeros are isolated, see [67 , page 240].

Remark 8. Isolated in Theorem 4 means that if
∫ t0

0 CceAcηbdη = 0 for t0 > 0, then there

exists ε > 0 such that
∫ t

0 CceAcηbdη 6= 0 for all t such that 0 < |t− t0| < ε.

We conclude from Theorem 4 that for the plant given by (4.1 ), if the pair (Ac, Bc) is

controllable and Bc is a column vector, then the matrix rank condition is almost always

satisfied by the discretized system given by (4.2 ).
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4.4.3 Systems where the matrix rank condition not satisfied in the CT domain
but it is satisfied in the DT domain

The following numerical example motivates our discussion in this subsection.

Example 2. We consider a CT state-space model from [63 ], where

x =



q1

q2

q̇1

q̇2


, Ac =



0 0 1 0

0 0 0 1
−2k
m

k
m

−c
m 0

k
m

−2k
m 0 −c

m


, Bc =



0

0

0
k
m


, Cc =

 1 0 0 0

0 1 0 0

.

Let m = 5 kg, k = 5 N/m, and c = 10 N·s/m. Then we have

Ac =



0 0 1 0

0 0 0 1

−2 1 −1 0

1 −2 0 −1


, Bc =



0

0

0

1


.

By Theorem 4 , a discretization using almost any sampling time would give the matrix rank
condition. For example, if we discretize the above system with the sampling time Ts = 0.1 sec,
then

Ad =



0.9907 0.0047 0.0903 0.0002

0.0047 0.9907 0.0002 0.0903

−0.1805 0.0900 0.8100 0.0044

0.0900 −0.1805 0.0044 0.8100


,

Bd =
[

0 0.0047 0.0002 0.0903
]

>, and Cd = Cc, where rank(CcBc) 6= rank(Bc) but

rank(CdBd) = rank(Bd).

We now characterize a class of systems for which the matrix rank condition does not hold

in the CT domain but it is satisfied in the DT domain as illustrated by the above example.

We consider a CT LTI plant modeled by (4.1 ). We make the following assumptions:

Assumption 1. rank(Ac) = n, rank(Bc) = m, and rank(Cc) = p, where m ≤ p ≤ n.
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Assumption 2. The matrices Bc and Cc have the form,

Bc =

 Op×m

B∗

, Cc =
[

Ip Op×(n−p)

]
.

Assumption 3. Let A = A−1
c (Ad − In), where Ad = eAcTs. Let A1 ∈ Rp×n be the sub-matrix

of A such that A =
[

A1
> A∗>

]
> and rank(A1Bc) = m.

Note that CcBc = O and hence rank(CcBc) 6= rank(Bc), that is, the matrix rank con-

dition for the existence of an UIO for the above CT plant. We will show that if the above

assumptions are satisfied, then the matrix rank condition for the DT plant given by (4.2 ) is

satisfied.

Theorem 5. If Assumptions 1 , 2 , and 3 are satisfied, then the matrix rank condition for the

DT plant given by (4.2 ) is satisfied.

Proof. From Assumption 2 , we have

CcBc =
[

Ip Op×(n−p)

] Op×m

B∗

 = O.

Thus, rank(CcBc) = 0, but rank(Bc) = m. Therefore, rank(CcBc) 6= rank(Bc). We also

have Ad = eAcTs , and Bd =
∫ Ts

0 eAcηBcdη. The condition, rank(Ac) = n implies that Ac is

invertible. Therefore, Bd = A−1
c (Ad − In)Bc = ABc. Since, by Assumption 3 , rank(ABc) =

m, we have

CdBd = CdABc =
[
Ip Op×(n−p)

]  A1Bc

A∗Bc

 = A1Bc.

Hence, rank(CdBd) = rank(Bd) = m.

Remark 9. Note that rank(CdBd) = rank(Bd) = m implies that p ≥ m which is a part of

Assumption 1 .
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4.5 Example

We consider an NCS shown in Figure 4.1 with the nonlinear CT model of the inverted
pendulum on a cart as a plant. We assume the presence of the unknown sparse input and
output errors caused by malicious packet drops during output measurements and control
signal transmissions. In our design, the nonlinear plant model is linearized about an equi-
librium point of interest. Then, the linearized DT model is used to synthesize the proposed
estimator employing a vector recovery method and an UIO. The state estimate from the
proposed state estimator is then fed into the controller designed using the discrete LQR
method. In the observer design, the linearized model of the inverted pendulum on a cart is
used, however, in the simulations, the nonlinear model is employed. The nonlinear modelling
equations are,

(m1 + m2)ẍ + Fxẋ + m2l(θ̈ cos θ − θ̇2 sin θ) − u = 0

Jθ̈ + Fθθ̇ − m2lg sin θ + m2lẍ cos θ = 0

 (4.9)

where the model parameters are given in [55 ].
As in [58 ], the state vector is x = [x θ ẋ θ̇]>. We choose the output ys ∈ R2 as

ys = [x θ]>. Linearizing the system model about the origin, we obtain the linear CT
system model of the form (4.1 ), where

Ac =



0 0 1 0

0 0 0 1

0 −1.9333 −1.9872 0.0091

0 36.9771 6.2589 −0.1738


,

Bc =
[
0 0 0.3205 −1.0095

]>
, Cc =

1 0 0 0

0 1 0 0

 .

The matrix rank condition for the above CT system does not hold. Therefore, a CT UIO
for this system cannot be designed. To remedy this situation, the authors of [58 ] and [55 ]
added one more sensor, which is equivalent to selecting Cc = [I3 O3×1]. Our method does
not need this additional sensor because by Theorem 4 , a discretization using almost any
sampling time would give the matrix rank condition. To demonstrate this, we first discretize
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the above CT system with sampling time period Ts = 0.2 sec using the exact discretization
method to obtain

Ad =



1 −0.0381 0.1644 −0.0023

0 1.8088 0.1235 0.2480

0 −0.4037 0.6588 −0.0362

0 8.9315 1.3069 1.7668


, Bd =



0.0057

−0.0199

0.0550

−0.2108


.

The matrix rank condition is satisfied by the discretized system model for Cd = Cc =
[I2 O2×2], that is, rank(CdBd) = rank(Bd) = 1. We next compute

M =



0.0768 −0.2663

−0.2663 0.9232

0.7360 −2.5512

−2.8192 9.7723


, L =



1.0182 0.4739

0.2937 0.1367

−0.2519 4.3787

2.9786 −8.8061


,

Kd =
[
−0.3027 −62.3770 −8.4185 −10.3468

]
.

We choose τ = 10, 3% packet drops during control signal transmission, and 10% packet

drops during measurements transmission. It can be seen in Figure 4.2 that the combined

controller-observer compensator stabilizes the nonlinear plant about the equilibrium of in-

terest and the observer estimates the states with sufficient accuracy. Figure 4.3 shows the

plant outputs corrupted by the sensor measurement noise successfully recovered. In the top

subfigure of Figure 4.4 , the DT control signal sent by the controller is compared with the

control signal received by the actuator. The bottom subfigure shows the control signal after

passing through the ZOH.

4.6 Conclusions

In this chapter, we show that if a CT system satisfies the matrix rank condition, then

the exact discretization of it will (with the possible exception of a countable set of sampling

times) satisfy the matrix rank condition. We show that for a controllable single-input system,

the exact discretization of it will (with the possible exception of a countable set of sampling
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Figure 4.2. State estimates of the nonlinear plant.

times) satisfy the matrix rank condition, regardless of whether it holds for the original CT

system. We characterize a class of systems for which the matrix rank condition fails in the

CT domain but holds in the DT domain. We test our proposed estimators on a CT nonlinear

model of the inverted pendulum on a cart corrupted by unknown input and output errors.

The CT linearized inverted pendulum on a cart model does not satisfy the matrix rank

condition for the existence of an UIO but its discretized model does satisfy the discrete

matrix rank condition.
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Figure 4.3. Left subfigures show the output estimates of the plant generated
by the digital estimator. Right subfigures show the outputs of the nonlinear
CT system.

Figure 4.4. Top subfigure shows plots of the control signal generated by the
controller and the control signal received by the plant. Bottom plot shows the
control signal received by the nonlinear plant.
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5. OBSERVERS FOR CYBER-PHYSICAL SYSTEMS WITH

UNSECURED COMMUNICATION NETWORKS AND

SUBJECTED TO DISTURBANCE

5.1 Introduction

In this chapter, the objective is to simultaneously estimate the state, communication

errors, and unknown disturbance in a CPS with unsecured communication networks and

subjected to disturbance. We assume that the communication errors are sparse and the

unknown disturbance is arbitrary.

We perform a comparative study of the norm-based observer given in Chapter 2 and

the combined norm-UIO based observer given in Chapter 3 , when the cyber-physical sys-

tem is subjected to sparse errors in the communication channels and arbitrary disturbance.

We perform converges analysis of the estimation error for the closed-loop CPS driven by

the combined controller-observer compensator. We propose a novel design method for the

norm-based observer and the combined norm-UIO based observer using fictitious output

measurements to improve their performance.

In our analysis, we use the following definitions. The set of natural numbers is denoted N.

The 0-norm of a finite dimensional vector v, denoted ‖v‖0, is the number of nonzero elements

in v. A vector v is iv-sparse if it has at most iv nonzero components, that is, ‖v‖0 ≤ iv. A

vector v ∈ Rn is sparse if ‖v‖0 <
n
2 . The sparsity of the vector v is sv = 1 − ‖v‖0

n
, which

is the ratio of number of zero elements in v by the number of elements in v. The spark

of a matrix F , denoted spark(F ), is the smallest number of linearly dependent columns of

F . We will also use the standard vector p-norms defined by ‖x‖p = (|x1|p + · · · + |xn|p)1/p,

1 ≤ p < ∞. For any matrix G, its p-norm is: ‖G‖p = sup‖x‖p=1 ‖Gx‖p. For a sequence of

vectors f [0], f [1], . . . , its `∞-norm is ‖{f [k]}∞
k=0‖∞ = supk≥0 ‖f [k]‖2. By convention, when

the norm of a vector or a matrix is used without any subscript p, it will mean the 2-norm.

A sequence of scalars {aq} ∈ `1 if ‖{aq}‖1 = ∑∞
q=0 |aq| < ∞.
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5.2 Problem Statement

We consider a DT plant modeled by

x[k + 1] = Ax[k] +B1u
a[k] +Bdd[k]

ys[k] = Cx[k],

 (5.1)

where A ∈ Rn×n, B1 ∈ Rn×m, Bd ∈ Rn×nd , and C ∈ Rp×n. The vectors x[k] ∈ Rn, u[k] ∈ Rm,

and d[k] ∈ Rnd are the state, the control input, and unknown disturbance actin on the system,

respectively. See, for example, [61 , Chapter 2] or [62 ] for the modeling and analysis of DT

systems. We assume that the pair (A,B1) is reachable and the pair (A,C) is observable.

We consider the case when the plant is remotely controlled via unsecured communication

networks. A block diagram of such a CPS architecture is depicted in Figure 5.1 . The output

Figure 5.1. The CPS architecture considered in this paper.

signals of the plant are measured by the sensors and transmitted to the combined controller-

estimator. In its passage through the unsecured network, the output signal is corrupted by

the unknown error es[k]. Thus the signal received by the estimator is yc[k] = ys[k] + es[k].

In a similar way, the control signal uc[k] from the controller to the plant is corrupted by the
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unknown error ea[k] during its transmission causing the plant to receive the signal ua[k] =

uc[k] + ea[k] instead. The model of the CPS can thus be represented as

x[k + 1] = Ax[k] +B1(uc[k] + ea[k]) +Bdd[k]

yc[k] = Cx[k] + es[k].

 (5.2)

We assume that the communication errors ea[k] and es[k] are sparse, and the disturbance

d[k] is arbitrary.

In this chapter, our objective is to compare the performance of two types of observers for

such CPSs. The first type of the observer is norm-based and the second type is combined

norm-UIO based observer. We then propose a fictitious output design method to improve

the observers’ performance.

5.3 Application of the 1-Norm Approximation Based Observer

In this section, we apply the 1-norm approximation based observer given in Chapter 2 

to a CPS with sparse communication errors and subjected to arbitrary disturbance. We

first use the system model (5.2 ) to derive modeling equation, which expands the system into

a form amenable to the 1-norm approximation method. The key to the derivation of this

equation is the accumulation of output measurements. The equation is then used to estimate

the sparse errors and the disturbance.

5.3.1 Accumulation of CPS measurements

Let B2 =
[
Bd B1

]
, u1[k] = uc[k], and u2[k] =

[
d[k]> ea[k]>

]>
, where B2 ∈ Rn×(nd+m),

and u2[k] ∈ Rnd+m. Then we represent the plant model given by (5.2 ) as

x[k + 1] = Ax[k] + B1u1[k] + B2u2[k]

yc[k] = Cx[k] + es[k].

 (5.3)

We make the following assumption.
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Assumption 4. The matrix B2 has full column rank and the output matrix C has full row

rank.

For each time k, let Y k be the the vector composed of τ measurements of yc on the

sample interval [k − τ + 1, k], where τ ≥ 1 is a design parameter. We have

Y k ,



yc[k]

yc[k − 1]
...

yc[k − τ + 1]


=



CAτ−1

CAτ−2

...

C


x[k − τ + 1]

+ B2



u2[k − 1]

u2[k − 2]
...

u2[k − τ + 1]


+ Iτp



es[k]

es[k − 1]
...

es[k − τ + 1]


+ B1



u1[k − 1]

u1[k − 2]
...

u1[k − τ + 1]


, Oτ−1x[k − τ + 1] + B2U

k
2 + IτpE

k
s + B1U

k
1 ,

where Oτ−1 ∈ Rτp×n, B2 ∈ Rτp×(τ−1)(nd+m), Iτp ∈ Rτp×τp, B1 ∈ Rτp×(τ−1)m. The matrices B2,
Iτp, and B1 have the form

B1 =



CB1 · · · CAτ−2B1
... . . . ...

Op×m · · · CB1

Op×m · · · Op×m


, B2 =



CB2 · · · CAτ−2B2
... . . . ...

Op×(d+m) · · · CB2

Op×(d+m) · · · Op×(d+m)


, Iτp =


1

. . .

1

 ,

where O(·)×(·) denotes a zero matrix with appropriate dimensions. Note that yc[k] and uc[k]

are known to the designer at all time instances. Let Ŷ k = Y k − B1U
k
1 . Then Ŷ k is also

known at all times. We next let Ω =
[
Iτp B2

]
and Ek =

[
Ek

s
>

Uk
2

>
]>

to put Ŷ k into a

form suitable for using norm minimization techniques:

Ŷ k = Oτ−1x[k − τ + 1] + ΩEk. (5.4)
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Note that Ŷ k ∈ Rτp, Ω ∈ Rτp×(τp+(τ−1)(nd+m)), and Ek ∈ Rτp+(τ−1)(nd+m). We will use (5.4 )

to estimate the vector Ek, which will give estimates for es, ea, and d that are needed in the

construction of the state observers of the CPS.

5.3.2 Sparse errors and disturbance estimation

In this subsection, we present a norm approximation method for estimating the state

x[k], unknown input u2[k], and unknown output error es[k] in the CPS given by (5.3 ). More

specifically, we use the 1-norm minimization problem to approximate the 0-norm minimiza-

tion problem for estimating the sparse errors ea and es, and the disturbance d.

To proceed, let NOτ−1 ∈ R(τp−n)×τp be a left annihilator of Oτ−1, that is, NOτ−1Oτ−1 =

O(τp−n)×n. Premultiplying both sides of (5.4 ) by NOτ−1 , we obtain NOτ−1Ŷ k = NOτ−1ΩEk.

Since the pair (A,C) is assumed to be observable, we can choose τ > n − rankC so that

rank Oτ−1 = n. Then, rankNOτ−1 = τp − n. Let Zk = NOτ−1Ŷ k and W = NOτ−1Ω.

Our objective is to solve for Ek subject to the constraint, Zk = WEk. Note that W ∈

R(τp−n)×(τp+(τ−1)(nd+m)) is full row rank since rankNOτ−1 = τp − n, rank Ω = τp, and W =

NOτ−1Ω.

To this end, let ΣiE = {Ek : ‖Ek‖0 ≤ iE} be the set of all iE -sparse vectors and let N (W )

denote the null space of the matrix W . We need the following lemma from [18 ]; see also [66 ].

Lemma 14. If Σ2iE ∩ N (W ) = {0}, then any iE-sparse solution Ek to Zk = WEk is unique.

We have the following corollary.

Corollary 2. If spark(W ) > 2(iEs + iU2), then any iE-sparse solution Ek to Zk = WEk is

unique.

Remark 10. Note that if spark(W ) > 2(iEs + iU2), then τp− n > 2(iEs + iU2).

It is shown in [21 ] that solving for the sparsest Ek subject to Zk = WEk is equivalent to

solving the optimization problem,

min ‖Ek‖0 subject to Zk = WEk.
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It is observed in [18 ] that the above minimization problem can be approximated by the

1-norm minimization problem,

Ẽk = min ‖Ek‖1 subject to Zk = WEk. (5.5)

To ensure the unique approximation, we choose τ so that the assumption of Corollary 2 is

satisfied. We assume that over the time interval [k − τ + 1, k], the vectors Ek
s and Uk

2 are

iEs-sparse and iU2-sparse, respectively. Premultiplying both sides of (5.4 ) by (Oτ−1)†, we

obtain

x[k − τ + 1] = (Oτ−1)†
(
Ŷ k − ΩEk

)
. (5.6)

Let x̂[k] be the estimate of x[k]. Substituting Ẽk from (5.5 ) into the above equation gives

x̂[k − τ + 1] = (Oτ−1)†
(
Ŷ k − ΩẼk

)
. (5.7)

Let Ũk
2 be the estimate of Uk

2 , then we have

Ũk
2 =

[
Ẽk

τp+1 · · · Ẽk
τp+(τ−1)(nd+m)

]>
. (5.8)

Using (5.7 ) and (5.8 ), we obtain the plant state estimate,

x̂[k] =Aτ−1x̂[k − τ + 1] +
[
B1 · · · Aτ−2B1

]
Uk

1

+
[
B2 · · · Aτ−2B2

]
Ũk

2 . (5.9)

Let ẽs[k], ẽa[k], and d̃[k] be the estimates of ea[k], ea[k], and d[k], respectively. We have

ẽs[k] =
[
Ẽk

1 · · · Ẽk
p

]>
. (5.10)

We also have,

ũ2[k − 1] =
[
Ũk

21 · · · Ũk
2nd+m

]>
. (5.11)
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From (5.11 ), we obtain ẽa[k − 1] and d̃[k − 1], where

d̃[k − 1] =
[
ũ21 [k − 1] · · · ũ2nd

[k − 1]
]>
, (5.12)

ẽa[k − 1] =
[
ũ2nd+1 [k − 1] · · · ũ2nd+m [k − 1]

]>
. (5.13)

5.3.3 The approximation accuracy

In [21 ], Candes and Tao use (5.5 ) to approximate the exact solution to Zk = WEk,

that is, using the 1-norm to approximate the 0-norm optimization problem. The reason for

this is because the 0-norm optimization problem is NP-hard [35 ]. In addition, the 1-norm

optimization problem is convex and the 1-norm solution is a good approximation to the

0-norm solution [40 ]. It is shown in [10 ], [15 ], [66 ] that the 1-norm approximation accuracy

is related to the sparsity of the vector Ek, that is, the bigger sE , the higher accuracy of using

Ẽk to approximate Ek. Following this fact, we will propose a novel fictitious output design

method to increase the sparsity of the vector Ek in order to improve the estimation accuracy.

5.4 Application of the Combined Norm-UIO Based Observer

In this section, we apply the norm-UIO based observer architecture for estimating the

state, the unknown input, and the unknown output error in the CPS modeled by (5.3 ).

5.4.1 UIO structure and unknown input estimation

To design the UIO, we need an estimate of the output ys[k]. From (5.2 ), we have ys[k] =

yc[k] − es[k]. Since we already have an estimate ẽs[k] of es[k] from (5.10 ), we can form the

following estimate of the output ys[k],

ỹs[k] = yc[k] − ẽs[k]. (5.14)

This plant output estimate from the norm-based estimator will be used in the combined

UIO-based estimator; see Figure 5.1 .
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To proceed with our analysis, note that

ỹs[k] = yc[k] − ẽs[k] = Cx[k] + (es[k] − ẽs[k]).

Let fs[k] = es[k] − ẽs[k]. Then the DT plant model can be represented as

x[k + 1] = Ax[k] +B1u1[k] +B2u2[k]

ỹs[k] = Cx[k] + fs[k].

 (5.15)

We use the following UIO to estimate the state of the DT plant model (5.15 ):

z[k + 1] =(I −MC) (Az[k] + AMỹs[k] +B1u1[k])

+ L(ỹs[k] − Cz[k] − CMỹs[k]) (5.16a)

x̂[k] =z[k] +Mỹs[k], (5.16b)

where M ∈ Rn×p, and L ∈ Rn×p are design parameter matrices, z[k] ∈ Rn is the state of the

UIO, and x̂[k] ∈ Rn is the state estimate of (5.15 ). The accuracy of the state estimate given

by the UIO will be discussed in the next section.

We assume the following standard UIO existence conditions for the system, see for ex-

ample, [68 ]:

• There exists a matrix L such that the matrix (A1 − LC) is Schur stable.

• There exists a matrix M such that (I −MC)B2 = O.

In the following, we assume that such L and M have been chosen and are in use. It is easy

to check that the second condition above is equivalent to the condition

rankB2 = rank(CB2), (5.17)

since rank(MCB2) ≤ rank(CB2) ≤ rankB2. In fact, the rank condition above is a necessary

condition for different types of UIO designs, see for example [30 ], [31 ].
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Since B2 by assumption has full column rank and (5.17 ) holds, CB2 has a left inverse,

for which we can use the Moore-Penrose pseudoinverse (CB2)†. Premultiplying both sides

of x[k+ 1] = Ax[k] +B1u1[k] +B2u2[k] by the matrix (CB2)†C, we obtain an exact formula

for the unknown input:

u2[k] = (CB2)† (ys[k + 1] − CAx[k] − CB1u1[k]) .

Since we do not have access to ys[k+ 1] or x[k] directly, we use the approximations ỹs[k+ 1]

and x̂[k] in their place and obtain an estimate of the unknown input u2[k]:

û2[k] = (CB2)† (ỹs[k + 1] − CAx̂[k] − CB1u1[k]) .

Note that there is a one step delay in the above estimate. We will use the above estimator

in our convergence analysis. The unknown input estimator has the form

û2[k − 1] = (CB2)† (ỹs[k] − CAx̂[k − 1] − CB1u1[k − 1]) . (5.18)

The estimation error for the unknown input is

u2[k] − û2[k] = (CB2)† (CAe[k] − fs[k + 1]) , (5.19)

which shows explicitly the dependency of the accuracy of the unknown input estimate on the

state estimation error e[k] and the error fs[k+1] for the estimation of es[k+1]. It is immediate

that if e[k] → 0 and fs[k] → 0, which we do not know a priori, then u2[k] − û2[k] → 0. We

will explore the issue of accuracy and convergence in the next subsection.
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5.4.2 Approximation and convergence analysis

In this section, we discuss the accuracy of the state estimate and the unknown input

estimate. Let e[k] = x[k] − x̂[k] be the state estimation error. Then after some algebraic

manipulations, we obtain

e[k + 1] = ((I −MC)A− LC) e[k] − Lfs[k]

−Mfs[k + 1] + (I −MC)B2u2[k]

= ((I −MC)A− LC) e[k] − Lfs[k] −Mfs[k + 1]. (5.20)

Let A1 = (I −MC)A. Then (5.20 ) can be represented as

e[k + 1] = (A1 − LC) e[k] − Lfs[k] −Mfs[k + 1]. (5.21)

Let G = A1 − LC and N = −
[
L M

]
, and v[k] =

[
fs[k]> fs[k + 1]>

]>
. Let h[k] = Nv[k],

then (5.21 ) can be written as

e[k + 1] = Ge[k] + h[k]. (5.22)

We have the following theorem.

Theorem 6. Suppose {v[k]} ∈ `∞. If G is Schur stable and {h[k]} ∈ `∞, then there is

ζ > 0, which depends only on G, such that:

1. (term-wise absolute bound)

‖e[k]‖ ≤ ‖Gke[0]‖ + ζ‖{h[k]}‖∞ (5.23)

for each k ∈ N;

2. (steady-state bound)

lim sup
k→∞

‖e[k]‖ ≤ ζ lim sup
k→∞

‖h[k]‖. (5.24)

To prove Theorem 6 , we need the following lemma.
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Lemma 15. Let {aq} ∈ `1 and {bq} ∈ `∞ be nonnegative sequences. Then

lim sup
k→∞

k∑
q=0

ak−qbq ≤ ‖{aq}‖1 lim sup
k→∞

bk.

Proof. The claim is clearly true if bq = 0 for all q. Suppose not all bq’s are zero. By scaling,

we may assume that

‖{aq}‖1 =
∞∑

q=0
aq = 1.

We first treat the case when {bq} is a decreasing sequence, that is, b0 ≥ b1 ≥ · · · . For

each k ≥ 0, let

pk =
k∑

q=0
ak−qbq.

Let m ≥ 0. Then for k > m, we have

pk =
k∑

q=0
ak−qbq

=
m−1∑
q=0

ak−qbq +
k∑

q=m

ak−qbq

≤ ‖{bq}‖∞

m−1∑
q=0

ak−q + bm

k∑
q=m

ak−q

= ‖{bq}‖∞

k∑
q=k−m+1

aq + bm

k−m∑
q=0

aq

≤ ‖{bq}‖∞

k∑
q=k−m+1

aq + bm.

Let ε > 0. Note that there is M ∈ N such that if m ≥ M , then ∑∞
q=m+1 ai < ε/‖{bq}‖∞.

It follows that

pk ≤ bm + ε whenever m ≥ M and k ≥ 2m.
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From this we can conclude that

lim sup
k→∞

pk ≤ bm + ε for all m ≥ M

and thus

lim sup
k→∞

pk ≤ lim sup
m→∞

bm + ε.

Since ε > 0 is arbitrary, the case of decreasing {bq} follows.

For the general case, let

sk = sup{bq : q ≥ k}

for each k ≥ 0. Then sk is a decreasing sequence, bk ≤ sk for each k, and lim sup sk =

lim sup bk. Thus

lim sup
k→∞

k∑
q=0

ak−qbq ≤ lim sup
k→∞

k∑
q=0

ak−qsq

≤ lim sup
k→∞

sk

= lim sup
k→∞

bk

and the proof of the lemma is complete.

Using the above lemma, we will now prove Theorem 6 .

Proof of Theorem 6 . By simple recursion or induction, we have

e[k] = Gke[0] +
k−1∑
j=0

Gjh[k − 1 − j]. (5.25)
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Since G is Schur stable, we have σ(G) < 1, where σ(G) is the spectral radius of G defined as

σ(G) = max{|λ1(G)|, . . . , |λn(G)|}. Recall that Gelfand’s spectral radius formula [69 , p. 195]

states that

σ(G) = lim
k→∞

‖Gk‖1/k,

which implies limk→∞ ‖Gk‖ = 0. Thus there is K ∈ N such that ‖GK‖ < 1. Let ρ = ‖GK‖

and ξ = max0≤k≤K−1{‖Gk‖}. Each k ∈ N can be written as k = rK + s, where r is a

nonnegative integer and s ∈ {0, 1, . . . , K − 1}. Therefore

‖Gk‖ = ‖GrKGs‖

≤ ‖GrK‖‖Gs‖

≤ ρr‖Gs‖

≤ ξρr.

We can now conclude that

∞∑
k=0

‖Gk‖ ≤ Kξ

1 − ρ
,

which in particular implies that {‖Gk‖} ∈ `1.

Lemma 15 and equation (5.25 ) gives both the absolute term-wise bound (5.23 ) and the

steady-state bound (5.24 ).

It is observed in [12 ], [22 ], [66 ] that the sparse error es[k] can be recovered with high

accuracy when the sparsity sE of Ek is close to 1. Then, for such cases, fs[k] ≈ 0 and it is

perhaps possible to satisfy limk→∞ fs[k] = 0. We therefore expect that when the sparsity sE

of Ek is close to 1, the state estimate and the unknown input estimate to be quite accurate

after a transient period.

5.5 Comparison of the Proposed Observers

In this section, we compare the two types of observer designs given in Subsections 5.3.2 

and 5.4.1 .

87



5.5.1 Differences between the observers

The 1-norm approximation based observer uses the 1-norm to approximate the 0-norm

optimization problem. The accuracy of such approximation depends on the sparsity of the

vector Ek. For example, if d[k] = 0 and sE ≈ 1, then Ẽk ≈ Ek. See [10 ], [22 ] for simulation

results that illustrate the accuracy of the estimation with sparse vector Ek. However, sE

cannot be guaranteed to be close to 1 since the plant of the CPS in a real environment

usually contains arbitrary disturbance d[k]. For example, if d[k] is normal distributed random

noise, and es[k] and ea[k] are sparse attacks on the output measurements and control signal

transmission through communication networks, then the presence of d[k] will decrease the

sparsity of Ek, which will reduce the accuracy of the 1-norm approximation.

To proceed with our discussion, recall that the vector Ek is the collection of es[k] to

es[k − τ + 1], u2[k − 1] to u2[k − τ + 1], and u2[k] =
[
d>[k] e>

a [k]
]>

. From (5.7 ) and (5.9 ),

we see that the norm based state estimate is impacted by accuracy of the whole vector Ẽk,

including both the es and u2 parts. On the other hand, we see from (5.20 ) that only the first

p elements, or the es portion, of Ẽk impact the accuracy of the combined norm-UIO based

state estimate. In particular, if the estimate for es is very accurate, then the UIO based

state estimate should also be very accurate regardless of the accuracy of the u2 estimate.

An inaccurate estimate of u2 would only impact the state estimate from the norm-based

estimator. The norm-UIO based estimator is insensitive to such recovery errors. We thus

can conclude that the combined norm-UIO based estimator should in general be more robust

than the norm-based state estimator.

Furthermore, the state estimates may also contain iterative errors. Indeed, suppose

there is a recovery error in Ẽk
τp+1 through Ẽk

τp+(τ−1)(nd+m), then the delayed state estimate

from (5.7 ) is incorrect. Since Ũk
2 =

[
Ẽk

τp+1 · · · Ẽk
τp+(τ−1)(nd+m)

]>
by (5.8 ), the state estimate

given by (5.9 ) contains iterative errors.
The increased accuracy of the combined norm-UIO based estimator comes at the cost

of additional processing and more stringent conditions for its existence. In particular, the
matrix rank condition (5.17 ) may not be satisfied by some plants. For example, consider
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an UAV model found in [48 ], which is remotely controlled as a CPS. For simplicity, we let
d[k] = 0. The discrete state-space model has the form given by (5.2 ), where B2 = B1, and

A =



1 0.01 0 0 0 0

0 1 0 0 0 0

0 0 1 0.01 0 0

0 0 0 1 0 0

0 0 0 0 1 0.01

0 0 0 0 0 1


, B1 =



0.0001 0 0

0.1963 0 0

0 0.0001 0

0 0.0618 0

0 0 0.0002

0 0 0.3439


, C> =



1 0 0

0 0 0

0 1 0

0 0 0

0 0 1

0 0 0


.

In this example, the triple (A,B1, C) is both reachable and observable, but rank(CB2) 6=

rankB2. The combined norm-UIO based estimator does not exist for this plant model.

In the next subsection, we apply both estimators to a DT plant remotely controlled as a

CPS. We compare the performance of the estimators discussed above.

5.5.2 Example

We consider a CPS with the DT model of an inverted pendulum on a cart as the plant;
see [55 ] for the modeling of this plant. The DT plant and the DT estimator are interconnected
through unsecured communication networks as shown in Figure 5.1 , where

A =



1 −0.038 0.164 −0.002

0 1.808 0.123 0.248

0 −0.403 0.658 −0.036

0 8.931 1.306 1.766


, B1 =



0.0057

−0.0199

0.0550

−0.2108


, Bd =



0.953

0.073

0.207

0.775


, C =


1 0 0 0

0 1 0 0

0 0 1 0

 .

We assume that each element of ea[k] and es[k] has 0.05 probability of being nonzero, and

when the element is nonzero, the value of the element is normally distributed with 0 mean

and 0.1 variance. We assume that the disturbance d[k] is normally distributed also with 0

mean and 0.1 variance. As in [55 ], we use the initial state, x[0] =
[
0.10 −0.05 0.15 0.05

]>
.

We choose τ = 10 and assume that y[−1] through y[−9] and u[−1] through u[−9] are zero.

Simulation results are shown in Figure 5.2 and Figure 5.3 . In Subfigures (5.2a ) and (5.2b ),

the blue dot lines show the true states of the plant and the red dot lines show the estimated
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(a) (b)

Figure 5.2. State estimates by (a) the norm-based estimator, and (b) the
combined norm-UIO based estimator.

states generated by the estimators. In Subfigure (5.3a ), the blue dot lines show the true

sparse es[k] and the red dot lines show the recovered ẽs[k] from the norm-based estimator.

In Subfigures (5.3b ) and (5.3c ), the blue dot lines in the top and bottom subfigures are the

true d[k] and ea[k], respectively. The red dot lines in Subfigure (5.3b ) are the recovered

d̃[k] and ẽa[k] from the norm-based estimator. The red dot lines in Subfigure (5.3c ) are the

recovered d̃[k] and ẽa[k] from the combined norm-UIO based estimator.

We can see in Subfigures (5.3a ) and (5.3b ) that the errors es[k], d[k], and ea[k] are not

exactly recovered by the norm-based estimator. We hypothesize that the reason for not

perfect recovery is that the presence of the disturbance d[k] decreases the sparsity sE of

the vector Ek and thus it reduces the accuracy rate of the 1-norm approximation of the

0-norm optimization problem. Comparing Subfigure (5.3b ) with Subfigure (5.3c ), we see

that the recovery of ea[k] and d[k] using the combined norm-UIO based estimator is superior

compared with the norm-based estimator. To compare the performance of the estimators

quantitatively, we evaluate the performance indices

Jd = ∑100
k=10 ‖d[k] − d̃[k + 1]‖1

Je = ∑100
k=10 ‖ea[k] − ẽa[k + 1]‖1

 (5.26)
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(a) (b)

(c)

Figure 5.3. Sparse errors and disturbance recovery: (a) Recovery of es[k] by
the norm-based estimator; (b) Recovery of ea[k] and d[k] by the norm-based
estimator; and (c) Recovery of ea[k] and d[k] by the combined norm-UIO based
estimator.

for the simulation results shown in Subfigures (5.3b ) and (5.3c ). The values of the indices

for the simulations in Subfigure (5.3b ) are: Jd = 3.0902 and Je = 0.4572, while the index

values for the simulations of Subfigure (5.3c ) are: Jd = 0.6134 and Je = 0.3573.

These results illustrate the superiority of the UIO-based estimator over the norm-based

estimator discussed in Subsection 5.5.1 .
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5.6 Estimation Enhancement Using Fictitious Output Measurements

In this section, we propose a novel fictitious output measurements design method to

improve the observers’ performance for the system with sparse communication errors and

arbitrary disturbance.

The technique of creating redundancies using linear combinations of signals is quite stan-

dard in communications and it is typically used to help identify and correct errors. The

whole theory of error correcting codes is based on this idea. However, there is a price to be

paid. In communications, as is the case here, the cost is bandwidth, delay, and processing.

5.6.1 Generating fictitious outputs

We conclude from Subsection 5.5.2 that the increased number of admissible nonzero
elements in the vector E [k] caused by the arbitrary error d[k] reduces the estimation ac-
curacy. In other words, we need to increase the sparsity sE of the vector E [k] in order
to improve the estimators’ performance. To this end, let F(ys[k]) denote a fictitious out-
put vector whose elements are linear combinations of the output measurements ys[k]. Let
ys

aug[k] =
[
ys[k]> F(ys[k])>

]>
. The operation of the fictitious output measurements oper-

ator is depicted in Figure 5.4 . On the plant side, the collected output measurements ys[k]

Figure 5.4. Generating fictitious output measurements.

are transmitted to a coder. The coder generates ys
aug[k] and collects the information of all

possible linear combinations of p sensor measurements that generate F(ys[k]). We use L(ys)
to denote the linear combinations information. Then, ys

aug[k] and L(ys) are transmitted to
a decoder on the estimator side through an unsecured communication network that intro-
duces sparse errors esn[k] to the fictitious output measurements ys

aug[k]. Note that L(ys) is
a fixed signal over time and therefore it can be easily recovered by comparing the copies
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of this signal at the decoder side. The decoder decodes L(ys) to obtain the matrix Cf and
sends the corrupted output measurements yc

aug[k] and the matrix Cf to the estimator. Since
the elements of F(ys[k]) are linear combinations of the elements of ys[k], the rows of matrix
Cf are linear combinations of the rows of the plant output matrix C. We have the pair
(F(ys[k]), Cf ) of the form

F(ys[k]) =



ys
1[k] + ys

2[k]
...

ys
p−1[k] + ys

p[k]
...

ys
1[k] + · · · + ys

p[k]


, Cf =



C(1) + C(2)

...

C(p−1) + C(p)

...

C(1) + · · · + C(p)


, (5.27)

where C(1), . . . , C(p) are the rows of the matrix C. Let pf be the number of rows of Cf . Let

Ci
p denote the number of i-combinations from a given set of p elements, where Ci

p = p!
i!(p−i)! .

Then, in general, we can have Cf whose number of rows is given by

pf =
p∑

i=2
Ci

p.

Let Caug =
[
C> C>

f

]>
. We then construct the augmented model with fictitious outputs of

the form,

x[k + 1] = Ax[k] +B1u1[k] +B2u2[k]

yc
aug[k] = Caugx[k] + esn[k].

 (5.28)

In the next subsection, we show how to use the augmented model to improve the perfor-

mance of the estimators.

5.6.2 Estimators’ design using fictitious outputs

In this subsection, we first show that the original CPS given by (5.3 ) and the augmented

CPS given by (5.28 ) share the same estimators’ existence conditions. We then analyze the
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reason why the proposed estimators’ performances are improved after adding the fictitious

output measurements.

We conclude from Subsection 5.3.2 that the norm-based estimator for the CPS given

by (5.3 ) exists if

1. The pair (A,C) is observable;

2. spark(W ) > 2(iEs + iU2).

We then conclude from Subsection 5.4 that the combined norm-UIO based estimator for (5.3 )

exists if

1. The pair (A,C) is observable;

2. spark(W ) > 2(iEs + iU2);

3. rankB2 = rank(CB2);

4. There exists a matrix L ∈ Rn×p such that the matrix (A1 − LC) is Schur stable.

It is easy to verify that Condition 4 ) above is equivalent to the following linear matrix

inequality (LMI):  −P A>
1 P − C>T>

PA1 − TC −P

 ≺ 0, (5.29)

where P = P> � 0 and T = PL.

We now present the design lemma.

Lemma 16. If the norm-based estimator and the combined norm-UIO based estimator exist

for the CPS given by (5.3 ), then they also exist for the augmented CPS given by (5.28 ).

Proof. Since Cf is a linear combination of the rows of matrix C and Caug =
[
C> C>

f

]>
, it

is obvious that the pair (A,Caug) is observable if the pair (A,C) is observable. Let paug be

the number of rows of matrix Caug. Since paug > p, if we choose the same τ for both designs

and if we have the same iEs and iU2 , then τpaug − n > τp− n > 2(iEs + iU2).
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It is easy to see that (5.3 ) and (5.28 ) share the same conditions 1 ), 2 ), and 3 ). Let
Taug =

[
T Tf

]
and use Caug and Taug in (5.29 ) instead of C and T to obtain


−P A>

1 P −
[
C> C>

f

] T >

T >
f


PA1 −

[
T Tf

] C

Cf

 −P


,

which is equivalent to

 −P A>
1 P − C>T >

PA1 − TC −P

+

 On×n −C>
f T >

f

−Tf Cf On×n

 .

Let Tf = On×pf
. Then we can take the same P and T as in (5.29 ) to design the estimators

using the augmented model.

5.6.3 Improving approximation with fictitious outputs

From Subsection 5.3.3 , we conclude that the larger sE , the more accurate approximation

of Ek by Ẽk. Therefore, to show that adding the fictitious output measurements improves

the performance of the estimators, we need to show that adding fictitious outputs increases

the sparsity of Ek. Note that

Ek =

Ek
s

Uk
2

 = R



es[k]

ea[k − 1]

d[k − 1]
...


, (5.30)

where R is a row elementary matrix. We assume that es1 , . . . , esp , ea1 , . . . , eam , d1, . . . , dnd

can be modeled as independent and identically distributed (i.i.d.) random variables. Let

P((·) 6= 0) denote the probability of a random variable not equal to 0. Since es[k] and

ea[k] are sparse and d[k] is arbitrary, we assume P(esh
6= 0) = P1, P(eai 6= 0) = P2, and

P(dj 6= 0) = 1, where P1 and P2 are positive negligibly small constants, and h = 1, . . . , p,
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i = 1, . . . ,m, and j = 1, . . . , nd. Let µE denote the expectation of P(El 6= 0), where l =

1, . . . , τp+ (τ − 1)(nd +m). We then have

µE =
∑p

h=1 P1 +∑m
i=1 P2 + nd

p+m+ nd

= pP1 +mP2 + nd

p+m+ nd

≈ nd

p+m+ nd

.

Let Ek
aug denote the signal vector (5.30 ) for the augmented system given by (5.28 ). Since

paug > p and paug = p+ pf , choosing the same P1, P2, and P(dj 6= 1) = 1, we obtain

µEaug = (p + pf )P1 + mP2 + nd

(p + pf ) + m + nd
≈ nd

(p + pf ) + m + nd
< µE ,

which implies the increased sparsity sEaug of Ek
aug after adding the fictitious output measure-

ments.

5.6.4 Example

This example illustrates how we can improve the observers’ performance using the aug-
mented output matrix Caug augmented with the matrix of fictitious outputs Cf , where

Cf =



1 1 0 0

1 0 1 0

0 1 1 0

1 1 1 0


.

We assume 0.05 probability of each element of ea[k] and esn[k] to be nonzero and we assume

d[k] to be a normal distributed error with 0 mean and 0.1 variance. The simulation results

are shown in Figure 5.5 . The values of the performance indices for the simulations in Sub-

figure 5.5b are: Jd = 5.3600 × 10−10 and Je = 2.8195 × 10−10, while the index values for the

simulations of Subfigure 5.5c are: Jd = 3.5335 × 10−10 and Je = 2.3171 × 10−10, which is a

significant improvement compared with the model without the fictitious outputs. To further

illustrate the effectiveness of the fictitious output method, we increase the probability of each

element of ea[k] and esn[k] to be nonzero from 0.05 to 0.20. As expected, the performance
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indices Jd and Je increase as the probability increases. The performance indices Jd and Je

have the values, Jd = 0.8561 and Je = 0.2181 for the norm-based observer and Jd = 0.7376

and Je = 0.1506 for the combined norm-UIO based observer. The simulation results of the

observers’ performance when the probability reaches 0.20 are shown in Figure 5.6 .

(a) (b)

(c)

Figure 5.5. Sparse errors and disturbances recovery after adding the fictitious
output measurements: (a) Recovery of es[k] by the norm-based observer; (b)
Recovery of ea[k] and d[k] by the norm-based observer; and (c) Recovery of
ea[k] and d[k] by the combined norm-UIO based observer.
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(a) (b)

(c)

Figure 5.6. Sparse errors and disturbance recovery using the fictitious output
measurements after decreasing the sparsity sea and sesn from 0.95 to 0.80.

5.6.5 Combined norm-UIO based observers for a CPS with sparse communica-
tion errors and subjected to arbitrary disturbances

In this subsection, we present a combined norm-UIO based observer to simultaneously

estimate the state, the sparse communication errors, and arbitrary disturbances for a CPS

depicted in Figure 5.1 . In our design, we first check if the conditions for the existence of the

UIO are satisfied. If the UIO does not exist, then we use only the norm-based observer to

estimate the state as well as the communication errors and the disturbance. We summarize

our discussion in Algorithm 1 .
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Algorithm 1: Norm-based and combined norm-UIO observer-controller compen-
sator design
1 For a system given by (5.1 ), check if the triple (A,B1, C) is reachable and

observable; If not, STOP
2 Choose τ such that Corollary 2 is satisfied and compute Ẽk from (5.5 ) using a linear

programming algorithm
3 Compute ẽs[k] using (5.10 )
4 Construct Cf and form Caug = [C> C>

f ]>
5 Check if the matrix rank condition given by (5.17 ) is satisfied, NEXT; If not,

use (5.9 ), (5.12 ), and (5.13 ) to estimate x[k], d[k], and ea[k], respectively
6 Let C := Caug; Solve (I −MC)B2 = 0 to obtain

M = B2
(
(CB2)† +M0(Ip − (CB2)(CB2)†)

)
7 Let A1 = (I −MC)A and T = PL; Compute P and T by solving (5.29 )
8 Check if P = P> � 0, let L = P−1T , NEXT; If not, use (5.9 ), (5.12 ), and (5.13 ) to

estimate x[k], d[k], and ea[k], STOP
9 Use (5.16 ) and (5.18 ) to estimate x[k] and u2[k]

10 Apply (5.12 ) and (5.13 ) to û2[k − 1] from (5.18 ) to estimate d[k] and ea[k].
11 Compute the control feedback gain Kd and let u[k] = −Kdx̂[k] + r, where r is the

reference signal.

5.7 Conclusions

We presented two observer architectures to simultaneously estimate the state, commu-

nication errors, and unknown disturbances in CPSs with sparse communication errors and

subjected to arbitrary disturbances. We compared these two designs and showed the superi-

ority of the combined norm-UIO based observer over the norm-based observer. We proposed

using fictitious output measurements to improve the performance of the observers. A com-

bined norm-UIO based observer design algorithm was formulated. The proposed observers

can be used to design UIO-based fault detection and isolation (FDI) algorithms as well as

the distributed fault-tolerant control for large-scale interconnected systems; see, for exam-

ple, [25 ], [70 ] for related approaches.
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6. CONTROLLER-OBSERVER COMPENSATOR SYNTHESIS

FOR UNSECURED CYBER-PHYSICAL SYSTEMS

6.1 Introduction

Data and signal processing in CPSs are usually done in the discrete time (DT) domain.

During the system analysis, a continuous time (CT) signal from the physical plant is sam-

pled and then collected by DT sensors. The collected DT signal is transmitted to the control

subsystem through communication networks. The control subsystem processes the received

signal and generates a DT feedback signal that is sent to the physical plant through com-

munication networks. On the plant side, the feedback signal is used by DT actuators to

effect control commands. We refer to [71 ] for detailed discussion of the DT sensors and

actuators, and [72 ] for the modeling of the CPS. The communication signals received by the

CPS sensors and actuators may be corrupted by random disturbances and sensor and actu-

ator faults. This necessities the analysis of the impact of this type of disturbances on CPS

performance. In this chapter, we use ideas from the theory of error correcting codes (ECC)

to design filters that mitigate and in many cases eliminate errors from sensor and actuator

faults. In addition, an accurate state vector estimate must be available for effective control

feedback implementation. A common approach to estimate the state of a system subjected

to disturbances is through an unknown input observer (UIO), see for example, [26 ]–[28 ]. See

also [31 ], [73 ], [74 ] for comparative study and different approaches for the UIO designs.

Since the CPSs are interconnected by communication networks that are not necessarily

secure, the issue of reliable data communication must be addressed in the design of CPSs.

In particular, sparse attacks in communication networks need to be addressed. As discussed

in Chapter (5 ), the sparse attacks problem can be transformed into a 0-norm minimization

problem that is usually solved using the `1-norm approximation method. One disadvantage

of using the norm approximation method for sparse malicious attacks recovery in CPS is

that it creates one sampling period time delay [22 ], [23 ]. Therefore, a robust control strategy

needs to take this issue into account. A notion of robustness for cyber systems inspired by

existing notions of input-output stability is introduced in [24 ]. In this chapter, we propose a
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model reference robust control strategy to overcome the presence of malicious attacks during

the control signal transmission.

In this chapter, we present a controller-observer compensator for a CPS with sensor

and actuator faults and subjected to sparse malicious attacks. We propose a novel state

observer architecture that combines a norm approximator with a bank of UIOs. We form

an augmented CPS model using output signal accumulation with fictitious measurements

to satisfy the UIO existence conditions. We propose novel sensor and actuator fault filters

using error correcting code (ECC) approach. We present a model reference controller whose

performance can be specified. The proposed controller design is presented in terms of linear

matrix inequalities (LMIs) and its guaranteed performance is characterized.

6.2 Unsecured Cyber-Physical System

In this section, we discuss the modeling of a CPS with unsecured communication networks

and subjected to sensor and actuator faults.

6.2.1 The CPS modeling

We consider a CT linear time-invariant (LTI) plant model of the form

ẋ(t) = Acx(t) +Bcu(t)

y(t) = Ccx(t),

 (6.1)

where Ac ∈ Rn×n, Bc ∈ Rn×m, and Cc ∈ Rp×n. We assume the pairs (Ac, Bc) and (Ac, Cc)

to be controllable and observable, and p ≥ m. The CT plant is remotely controlled by the

digital controller-observer compensator as shown in Figure 6.1 . The compensator receives

output measurement samples and generates the DT control signal that is sent to the plant

through unsecured communication networks.

Our design of the digital combined controller-observer compensator is performed in the

DT domain. We discretize the continuous plant model using the exact discretization method.
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Figure 6.1. A block diagram of the CPS considered in this chapter.

Let Ts denote the sampling time period used to discretize the CT plant model. Then the

discretized plant model has the form

x[k + 1] = Ax[k] +Bu[k]

y[k] = Cx[k],

 (6.2)

where A = eAcTs , B =
∫ Ts

0 eAcηBcdη, and C = Cc. See, for example [61 , Subsection 1.1.2

and Chapter 2] or [62 , Subsection 4.2.1] for discussions on modeling and the properties of

DT systems. We select the discretization time Ts such that the pair (A,B) is reachable—

see [62 , p. 209] for a discussion of selecting the desired Ts. In our analysis and design,

we will assume that the matrix B has full column rank, the output matrix C has full row

rank, and rankB = rank(CB). The plant output y(t) from (6.1 ) is sensed by imperfect

digital sensors to give an output ys[k] = y[k] + v[k], where v[k] is the sensor fault. This

corrupted sensor signal is transmitted to the controller-observer compensator through an

unsecured communication network. We assume the network is under sparse maliciously

injected attacks labeled es[k]. The corrupted signal received by the compensator then has

the form yc[k] = y[k]+v[k]+es[k]. The compensator generates the control signal ur[k], which
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is then transmitted along with the reference command signal r[k] to the plant. During the

control signal transmission, the unsecured network is subjected to sparse maliciously injected

attacks to the control signal denoted ea[k]. We also take into account the presence of the

actuator fault labeled w[k]. The input to the filter is ua[k] = uc[k]+ea[k]+w[k]. The output

of the filter is ũa[k], which is then passed through the zero-order-hold (ZOH) element and

applied to the transducer. The closed-loop CPS is modeled as the DT system of the form,

x[k + 1] = Ax[k] +B(uc[k] + ea[k] + w[k])

yc[k] = Cx[k] + v[k] + es[k].

 (6.3)

In the following sections, we will show how to design filters that are capable of filtering out

actuator and sensor faults from system (6.3 ).

6.2.2 Modeling of sensor and actuator faults and sparse malicious attacks

In this subsection, we discuss how we model the sensor and actuator faults and the sparse

malicious attacks. We assume that each component of the the sensor and actuator vectors

are at fault with probabilities Pv and Pw, respectively, and the nonzero fault values are

given by continuous probability density functions (p.d.f.). To make this precise, let δ denote

the Dirac delta function at 0 and let fv, fw be continuous p.d.f. on R (such as the uniform

and normal distributions). We assume that for all i, k, vi[k] are independent identically

distributed (i.i.d.) real-valued random variables with p.d.f. Pv = (1 − Pv)δ + Pvfv and that

for all j, k, wj[k] are i.i.d. real-valued random variables with p.d.f. Pw = (1 − Pw)δ + Pwfw,

see for example [75 , Section 4.3.2]. It then follows that Prob(vi[k] 6= 0) = Pv and that

nonzero values are given by the continuous p.d.f. fv. Similar considerations apply to the

random variables wj[k] with Prob(wj[k] 6= 0) = Pw.

In our discussion, we assume that the malicious attacks es[k] and ea[k] are sparse at every

sample time k, that is, the 0-norm ‖es[k]‖0 <
p
2 and ‖ea[k]‖0 <

m
2 . As in the case for sensors

and actuators, we also assume that esi [k] and eaj [k] are i.i.d. with continuous probability

density when they are nonzero. We assume the attacks es[k] and ea[k] are maliciously injected

to the unsecured communication networks during the signal transmission between the plant
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and the controller-observer compensator. When different signals are transmitted through

the same network at the same sample time, these signals are all corrupted by the same

maliciously injected attacks.

We model the sensor and actuator faults and the sparse malicious attacks as uniformly

bounded signals that are functions of k and the bounds are known to the designer.

In the following section, we discuss sensor and actuator fault filters design.

6.3 Sensor and Actuator Fault Filters Design

In this section, we use ideas from the theory of error correcting codes (ECC) to design

filters that mitigate and in many cases eliminate errors from sensor and actuator faults. The

well known fundamental idea of ECC is that the redundancy introduced allows a properly

designed receiver to compare different “copies” to detect and eliminate errors [32 , p. 355].

In this study, we use a repetition scheme as shown in the block diagram in Figure 6.2 . The

advantage of this scheme is that it is simple and, as we will show, quite effective. Before

proceeding with our design, we first compute the probability of error for the repetition scheme

applied to errors with p.d.f of the form P = (1 − P)δ + Pf , where f is a continuous p.d.f.

Figure 6.2. A block diagram of the sensor fault filter.

6.3.1 Error Probability for Repetition Filter

We first consider the scalar case. Suppose a device makes an additive error to a real-

valued input a with the given p.d.f. We make β copies of a and pass it through β independent

copies of the device. Then the outputs have the form αj = a+ ξj, j = 1, . . . , β, where {ξj}β
j=1
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is a collection of i.i.d. real-valued random variable with the given p.d.f. Let η be the number

of ξj’s that are nonzero. If η ≤ β − 2, or equivalently at least two of the ξj’s are zero, then

there are at least two copies of the original message a in the collection {αj}β
j=1. From basic

probability theory [44 , p. 93], we have

Prob (η ≤ β − 2) = 1 − β(1 − P)Pβ−1 − Pβ.

For convenience, let p2 = Prob (η ≤ β − 2). For example, when P = 0.1 and β = 5, we

have p2 > 0.9995. So we look for two elements that are equal in the collection {αj}β
j=1.

Note it follows from our assumption that the p.d.f. is continuous except at the origin that

αi = αj 6= a for i 6= j can happen only with probability zero. It follows that if there are two

or more equal elements in {αj}β
j=1, they must equal a with probability one. We conclude

that a can be recovered exactly with probability at least p2. Once we have a, we obtain each

ξj = αj − a exactly.

If we do not find two elements that are equal in the collection {a+ ξj}β
j=1, which happens

with probability one if P = 1, we use the average of the copies as the estimate:

ā = 1
β

β∑
j=1

αi.

The estimation error is ∑β
j=1 ξj/β, which has a variance that decreases at the rate of 1/β. If

the fault has zero mean, then ā provides a good estimate of a for a reasonable β. With ā,

we estimate ξj by ξ̄j = αj − ā.

We next consider the case when a = (a1, . . . , al) is a real l-dimensional vector. We assume

that the errors for each component of a are independent and apply the scalar case to each

component ai separately. As in the scalar case, we use β copies of a and β devices that each

can handle l components independently. We obtain an estimate ā using the scalar procedure

on each component. Each component of ā is either exactly correct or is an average of the β

copies. By the independence assumption, we have

Prob (ā = a) ≥ pl
2.
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6.3.2 System Equations after Filtering

In our case, the input to the sensor is uc[k] + ea[k], which the sensor changes to uc[k] +

ea[k] + w[k]. The sensor filter either restores the original input to the sensor uc[k] + ea[k]

exactly with probability at least pl
2 or outputs an estimate whose accuracy depends on β.

Similarly, the actuator filter either restores the original input to the actuator ys[k] + es[k]

exactly or gives an estimate with similar probability and condition.

We choose β large enough so that pl
2 is close to 1 and that when the filter outputs only an

estimate, it is accurate with high probability. Therefore, we will use a model that assumes

that the filters are perfect in our design. Then the model of the closed-loop CPS, after the

filtering operation, simplifies to

x[k + 1] = Ax[k] +B(uc[k] + ea[k])

ỹc[k] = Cx[k] + es[k].

 (6.4)

6.3.3 An example illustrating the enhancement of the norm-UIO based observer
performance by adding the sensor fault filter

In this subsection, we consider a CPS with the DT model of an inverted pendulum

on a cart as the plant; see [55 ] for the modeling of this plant. Our objective is to show

the significant estimation improvement of the norm-UIO based observer, which is given in

Chapter 5 , after adding the sensor fault filter.
The DT plant model’s parameter matrices are:

A =



1 −0.038 0.164 −0.002

0 1.808 0.123 0.248

0 −0.403 0.658 −0.036

0 8.931 1.306 1.766


, B =



0.0057

−0.0199

0.0550

−0.2108


, C =


1 0 0 0

0 1 0 0

0 0 1 0

 .

For simplicity, we let uc[k] = ea[k] = w[k] = 0. In this example, the probability that a

component of ys[k] contains random sensor fault is 0.7 and when the component is at fault,

the value of the fault is uniformly distributed in the range [0, 1]. We assume that each
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component of es[k] has probability 0.15 of being nonzero and when the element is nonzero,

the value of the component is normally distributed with zero mean and unit variance. We

set the initial state x[0] =
[
0 0 0 0

]>
. We choose τ = 10 and assume that y[−9] through

y[ − 1] and u[ − 9] through u[ − 1] are zero. The filter uses β = 50 signal copies. The

simulation results are shown in Subfigure (6.3a ), Subfigure (6.3b ), and Figure 6.4 . In

(a) (b)

(c)

Figure 6.3. State estimates by (a) the combined observer with filter; (b) the
combined observer only; (c) the bank of UIOs with filter. Note that the scale
of the y-axis for the plots are different in order to show more detail.

Subfigures (6.3a ) and (6.3b ), the blue dot lines show the true states of the plant and the red

dot lines show the estimated states generated by the combined observer with and without

the filter, respectively. In Subfigures (6.4a ) and (6.4b ), the blue dot lines are the true es[k]
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(a) (b)

(c)

Figure 6.4. Sparse error recovery: (a) Recovery of es[k] by the norm-based
approximator with filter; (b) Recovery of es[k] by the norm-based approxima-
tor only; and (c) Recovery error of the norm-based approximator with filter.

and the red dot lines are the recovered ês[k] generated by the norm-based approximator with

and without filter, respectively. The blue dot lines in Subfigure (6.4c ) show the recovery

error d[k] of the norm-based approximator with filter.

Subfigure (6.3a ) and Subfigure (6.3b ) show the significant state estimation improvement

of the combined observer with the sensor faults filter. Subfigure (6.4a ) and Subfigure (6.4b )

show that the recovery of es[k] using the combined observer with filter is superior over the

one using the combined observer only. The reason for this is that the sensor faults v[k]
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are non-sparse, and without the filter, the 1-norm approximator cannot reliably recover the

non-sparse combined error es[k] + v[k].

6.4 Estimation Enhancement with A Bank of UIOs

In this section, we propose a novel state observer architecture consisting of a bank of

unknown input observers (UIOs). This novel observer architecture is depicted in Figure 6.5 .

Figure 6.5. A block diagram of the UIO-based state observer.

6.4.1 Output signal accumulation with fictitious measurement

In this subsection, we introduce a fictitious measurement to augment the system. Using

the output signal ys[k], collected by the sensors, we form the fictitious output ys
f ic[k] =∑p

i=1 y
s
i [k]. Note that the fictitious output ys

f ic[k] is a linear combination of the output sensor

measurements. Both the output signal and the fictitious measurement are transmitted to

the compensator. Using the fictitious measurement increases the dimension of the vector

transmitted to the compensator by one. Also note that by taking the linear combination

of the output sensor measurements, we form implicitly the linear combination of the sensor

fault signals. To proceed, let vf ic[k] = ∑p
i=1 vi[k] and Cf ic = ∑p

i=1 C(i), where C(i) is the i-th

row of the matrix C. Then, we have

ys
f [k] = Cfx[k] + vf [k],
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where

ys
f [k] =

 ys[k]

ys
f ic[k]

 , Cf =

 C

Cf ic

 , vf [k] =

 v[k]

vf ic[k]

 .
The output measurement signal after filtering and received by the compensator has the form

ỹc
f [k] = Cfx[k] + ef [k],

where ỹc
f [k] ∈ Rp+1, Cf ∈ R(p+1)×n, and ef [k] ∈ Rp+1 is the sparse malicious attack signal

against the accumulated output measurement signal ys
f [k]. Taking into account the aug-

mented output measurement and (6.4 ), we obtain the following closed-loop CPS model:

x[k + 1] = Ax[k] +B(uc[k] + ea[k])

ỹc
f [k] = Cfx[k] + ef [k].

The system model after the norm approximation takes the form

x[k + 1] = Ax[k] +B(uc[k] + ea[k])

ỹf [k] = Cfx[k] + d[k],

 (6.5)

where ỹf [k] = ỹc
f [k]− êf [k], d[k] = ef [k]− êf [k], and êf [k] is the estimation of ef [k] generated

by the norm-based approximator.

Remark 11. Since Cf ic is a linear combination of the rows of the matrix C, it is easy to

check that the CPS model given by (6.4 ) and the augmented CPS model given by (6.5 ) have

the same norm-based approximator design conditions.

In the next subsection, we propose a novel state observer architecture consisting of a

bank of UIOs for the augmented system given by (6.5 ).

6.4.2 State observer architecture comprising a bank of UIOs

For i = 1, . . . , p+1, let ỹfi [k] be the vector ỹf [k] with the i-th component removed, Cfi be

the matrix Cf with the i-th row removed, and di[k] the vector d[k] with the i-th component

removed. Note that ỹfi [k] ∈ Rp, Cfi ∈ Rp×n, and di[k] ∈ Rp.
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For each i = 1, . . . , p+ 1, we use ỹfi [k], Cfi , and di[k] to form a subsystem Si defined by

Si ≡

 x[k + 1] = Ax[k] +B(uc[k] + ea[k])

ỹfi [k] = Cfix[k] + di[k].
(6.6)

There are p + 1 subsystems and by its definition, each subsystem Si is insensitive to the

disturbance di[k]. We construct an UIO for the i-th subsystem using

zi[k + 1] =(I −MiCfi)
(
Azi[k] + AMiỹfi [k] +Bu[k]

)
+ Li

(
ỹfi [k] − Cfiz

i[k] − CfiMiỹfi [k]
)

(6.7a)

x̂i[k] =zi[k] +Miỹfi [k], (6.7b)

where zi[k] ∈ Rn is the state of the i-th UIO, x̂i[k] ∈ Rn is the state estimate of (6.6 ), and

Mi ∈ Rn×p, Li ∈ Rn×p are design parameter matrices.

We have the following theorem.

Theorem 7. Let AM = (I − MC)A. If rankB = rank(CB) and there exists a matrix

PO = P>
O � 0 such that  −PO ?

POAM − TC −PO

 ≺ 0, (6.8)

where T = POL, then (6.7 ) is an effective UIO for the subsystem (6.6 ) for each i = 1, . . . , p+1.

Proof. We will verify that each subsystem Si satisfies the standard UIO existence conditions.

For i = p+1, we have Cfi = C. Therefore, the triple (A,B,C) and the triple (A,B,Cfi) share

the same UIO existence conditions. We next consider i = 1, . . . , p. For each i = 1, . . . , p, let

C i and I i denote the matrix C and the p× p identity matrix with their respective i-th rows

removed, and let Ri =

 I i

1 · · · 1

. It is clear from the definition that Ri is p × p and has full

rank. Then for each i = 1, . . . , p,

RiC =

 C i∑p
i=1 C(i)

 =

 C i

Cf ic

 = Cfi .
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Since rank(CB) = rankB and Ri has full rank, we have

rank(CfiB) = rank(RiCB) = rank(CB) = rankB,

and thus the rank condition is satisfied. We next verify condition (6.8 ). We have by assump-

tion that (I −MC)B = O. Let Mi = MR−1
i . Then

(
I −MiCfi

)
B =

(
I −MR−1

i RiC
)
B = (I −MC)B = O.

With this Mi, we can use AMi =
(
I −MiCfi

)
A in condition (6.8 ). Then

AMi = AM ,

and we can take POi = PO and Ti = TR−1
i in (6.8 ). Thus (6.8 ) for Mi and (6.8 ) for M are

identical and the proof is complete.

6.4.3 Comparison logic algorithm

In this subsection, we propose a comparison logic algorithm that compares the state

estimates from the p + 1 UIOs. The objective is to find the state estimate, x̂i[k] that is

insensitive to di[k]. We then choose x̂i[k] as our state estimate of x[k].

The UIO given by (6.7 ) for the i-th subsystem (6.6 ) is insensitive to di[k]. The state

estimate x̂i[k] from the i-th UIO is the correct estimate of the state x[k]. Note that the state

estimates from the other p UIOs are affected by di[k]. We use the state estimates from all

p+1 UIOs to determine the state estimate x̂[k] as follows, where ζ > 0 is a selected threshold

and i, j = 1, . . . , p+ 1:

1. If there exists i such that ‖xi[k] − xj[k]‖ > ζ for all j 6= i, we let

x̂[k] = x̂i[k].

112



2. Otherwise, we let

x̂[k] = 1
p+ 1

p+1∑
i=1

xi[k].

Algorithm 2 summarizes our discussion of the state observer design for the CPS shown

in Figure 6.1 . An illustration of the algorithm will be given in the next subsection.

Algorithm 2: State observer design using a bank of UIOs
1 Discretize the CT system given by (6.1 ) using the exact discretization method to

obtain the DT system triple (A,B,C)
2 Check if the pair (A,B) is reachable and the pair (A,C) is observable; If not, STOP
3 Check that the conditions of Theorem 7 are satisfied. If not, STOP
4 Design the sensor and actuator fault filters using the method discussed in Section 6.3 

5 Augment the sensor output measurement ys[k] with the fictitious output
measurement ys

f ic[k]
6 Compute êf [k] and obtain the augmented system given by (6.5 )
7 Compute Mi = B

(
CfiB

)†
and solve the LMI given by (6.8 )

8 Calculate xi[k] using (6.7b ) and compare xi[k] with xj[k] using the comparison logic
algorithm from Subsection 6.4.3 

9 Find the state estimate x̂[k].

6.4.4 An example illustrating the enhancement of the combined observer per-
formance using a bank of UIOs

To illustrate the state estimation improvement using the bank of UIOs, we compare the

state estimation results from standard UIO with the ones using a bank of UIOs. In both

simulations, we choose the same plant and the same parameters as discussed in Subsec-

tion 6.3.3 . The simulation results are shown in Subfigures (6.3a ) and (6.3c ). Comparing

Subfigure (6.3c ) with Subfigure (6.3a ), we can see the state estimation enhancement when

using a bank of UIOs. To compare the performance of the observers quantitatively, we

evaluate the performance indices

Je = ∑100
k=10 ‖xi[k] − x̂i[k]‖1, (6.9)
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where i = 1, . . . , n. The values of the indices for the simulations in Subfigure (6.3a ) and

Subfigure (6.3c ) are:

JeUIO
=



0.980

26.028

9.668

176.360


, JebUIOs

=



0.013

0.045

0.125

0.479


.

These results illustrate the superiority of the observer using the bank of UIOs over the

standard UIO-based observer.

In summary, the performance of the state observer is based on the sparsity of malicious

attack vectors es and ea. If ses and sea are sufficiently large, then x̂[k] is expected to be the

correct estimate of x[k]. In general, however, we have

e[k] = x[k] − x̂[k] 6= 0. (6.10)

In the next section, we propose a model-reference controller for the CPS considered in this

chapter.

6.5 Model Reference Controller Design

In this section, we propose a controller design method for system (6.5 ) so that its state

tracks the state of a given model-reference signal generator.

6.5.1 Controller design

The model-reference signal generator is described by

xr[k + 1] = Arx
r[k] +Brr[k], (6.11)

where Ar = A − BKr, Br = B, Kr ∈ Rm×n is a gain matrix, and r[k] ∈ Rm is a command
signal that is chosen so that xr[k] represents a desired state trajectory of the plant. The
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tracking error is given by er[k] = x[k] − xr[k]. Using the state equation of (6.5 ) and the fact
that uc[k] = −ur[k] + r[k] (see Figure 6.1 ), we obtain

er[k + 1] = x[k + 1] − xr[k + 1]

= Ax[k] + B (uc[k] + ea[k]) − Arxr[k] − Br[k]

= Arer[k] + B (Krx[k] + uc[k] + ea[k] − r[k])

= Arer[k] + B (Krx[k] − ur[k] + ea[k]) .

In our design, we take ur[k] = Krx̂[k], which when substituted along with (6.10 ) into the

above gives

er[k + 1] = Arer[k] +B (Kre[k] + ea[k])

= Arer[k] +Bξ[k], (6.12)

where ξ[k] = Kre[k] + ea[k]. We need the following definition from [65 ].

Definition 5. The system er[k + 1] = f(k, er[k], ξ[k]) is globally uniformly l∞-stable with

performance level γ if the following conditions are satisfied:

1. If ξ[k] = 0 for all k, then the undisturbed system er[k + 1] = f(k, er[k]) is globally

uniformly exponentially stable with respect to the origin.

2. For zero initial condition, er[0] = 0, and every bounded unknown input ξ[k], we have

‖er[k]‖ ≤ γ‖ξ[k]‖∞.

3. For every initial condition and every bounded unknown input, we have

lim sup
k→∞

‖er[k]‖ ≤ γ‖ξ[k]‖∞.

We have the following lemmas.

Lemma 17. If Ar is Schur stable and that either condition 2 ) or condition 3 ) of Definition 5 )

is satisfied, then the tracking error dynamics given by (6.12 ) is globally uniformly l∞-stable

with performance level γ.
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Proof. It is easy to check that conditions 2 ) and 3 ) are equivalent for linear systems. Since

Ar is Schur stable by assumption, the error dynamics (6.12 ) are globally uniformly l∞-stable

with performance level γ.

Lemma 18. Suppose, for the error governed by equation (6.12 ), there exist a continuous

function V : Rn → R and scalars δ ∈ (0, 1), ω1, ω2 > 0, and λ ≥ 0 such that

ω1‖er[k]‖2 ≤ V (er[k]) ≤ ω2‖er[k]‖2 (6.13)

and

∆V [k] ≤ −δ
(
V (er[k]) − λ‖ξ[k]‖2

)
(6.14)

for all k, where ∆V [k] = V (er[k + 1]) − V (er[k]). Then the error is globally uniformly

l∞-stable with performance level γ =
√
λ/ω1 with respect to disturbance sequence ξ[k].

Proof. See [76 ].

Using the above lemmas, we can show that if there exist a matrix PC = P>
C � 0 and a

scalar δ ∈ (0, 1) such that

A>
r PCAr − (1 − δ)PC ?

B>PCAr B>PCB − δI

 � 0, (6.15)

then the tracking error er[k] is l∞-stable with performance level γ = 1/
√
λmin(PC).

6.5.2 Solving for the controller gain matrix

We now present a method to solve matrix inequality (6.15 ). Let P̃C = P−1
C . Then using

standard arguments, we can show that (6.15 ) is equivalent to the linear matrix inequality

(LMI) 
P̃C ? ?

P̃CA
>
r (1 − δ)P̃C ?

B> Om×n δI

 � 0. (6.16)
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Indeed, taking the Schur complement of P̃C, we obtain

(1 − δ)P̃C ?

Om×n δI

−

P̃CA
>
r

B>

 P̃−1
C

[
ArP̃C B

]

=

(1 − δ)P̃C − P̃CA
>
r PCArP̃C ?

−B>PCArP̃C δI −B>PCB

 � 0.

Let Ξ2 =

 PC On×m

Om×n I

. We then have Ξ2 = Ξ>
2 6= O. Premultiplying and postmultiplying

the above inequality by Ξ>
2 and Ξ2, respectively, gives

(1 − δ)PC − A>
r PCAr ?

−B>PCAr δI −B>PCB

 � 0,

which is equivalent to (6.15 ). We now substitute Ar = A−BKr into (6.16 ) to obtain


P̃C ? ?

P̃CA
> − Z>B> (1 − δ)P̃C ?

B> Om×n δI

 � 0, (6.17)

where Z = KrP̃C. Since (6.17 ) is an LMI, the parameter matrices P̃C and Z can be obtained

by solving (6.17 ) using any standard LMI toolbox. We then calculate the controller gain

matrix, Kr = ZP̃−1
C .

We summarize the above discussion of the robust model reference controller design in

the following algorithm.

Remark 12. A possible method for computing the parameter δi in each line search iteration

is a bisection method presented, for example, in [77 , p. 209].

6.6 Application to Self-Driving Vehicle

In this section, we apply the proposed controller-observer compensator to a self-driving

vehicle. We first discuss the modeling of the plant of the ground vehicle and then analyze
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Algorithm 3: Controller design
1 Set i = 1
2 Construct the parameter δi using any 1-D line search and substitute δi into (6.17 )
3 Compute parameter matrices P̃C and Z by solving (6.17 )
4 If there are no feasible solutions, set i = i + 1 and go to STEP 2; If there is a feasible

solution, compute Kr = ZP̃−1
C , NEXT

5 Construct the control law, uc[k] = −Krx̂[k] + r[k], where x̂[k] is the CPS state
estimate obtained from the observer constructed using Algorithm 2 .

the controller performance in the presence of sensor and actuator faults and sparse malicious

attacks. Our objective is to control the ground vehicle to follow a desired reference trajectory.

6.6.1 Ground vehicle model

In this subsection, we discuss the dynamics of a ground vehicle that we will use as a

dynamical plant of the CPS described in Subsection 6.2.1 . The dynamical model that we

consider is known in the literature as the bicycle model. Our modeling process follows that

of [45 , p. 22] and of [78 ].

We use the Society of Automotive Engineering (SAE) standard coordinate system for the

body-fixed coordinate system of the ground vehicle as shown in Fig. 6.6 . The nomenclature

Figure 6.6. Free-body diagram of bicycle model in body-fixed coordinates.

used in the model description is given in Table 6.1 .
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Table 6.1. Parameters and nomenclature for the bicycle model.
Parameter Definition Unit

vx Longitudinal velocity m/s
Y Global position m
ψ Yaw angle rad
m Vehicle mass kg
Iz Mass moment of inertia kg · m2

l1 Distance from CG to front axle m
l2 Distance from CG to rear axle m

Ff , Fr Front and rear tire force N
Cαf , Cαr Front and rear tire stiffness N/rad

δf Front steering angle rad

We make the following simplifying assumptions:

1. The vehicle is symmetrical along its longitudinal axis;

2. No motion exists in the roll and pitch directions;

3. The vehicle is steered by the front wheels;

4. The vehicle has a constant longitudinal velocity, vx.

Following [45 ], we choose the state of the vehicle dynamical model as x =
[
ẏ θ ωz Y

]>
,

where ẏ is the car velocity along the lateral direction y out of the right-hand side of the

vehicle, θ = ψ, and ωz is the yaw angular velocity. The vehicle modeling equations in a

state-space format can then be represented as (6.1 ), where

Ac =



−2Cαf +2Cαr

mvx
0 −vx − 2Cαf l1−2Cαrl2

mvx
0

0 0 1 0

−2Cαf l1−2Cαrl2
Izvx

0 −2l21Cαf +2l22Cαr

Izvx
0

−1 −vx 0 0


, Bc =



2Cαf

m

0
2l1Cαf

Iz

0


, Cc =


1 0 0 0

0 1 0 0

0 0 0 1

 .

In our simulations, we use the following vehicle parameters: Cαf = Cαr = 30000.00 N/rad,

l1 = 1.20 m, l2 = 1.22 m, m = 1280 kg, Iz = 2500 kg · m2, and vx = 5 m/sec. Note that the

system is controllable and observable but not stable.
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6.6.2 Simulations

In our simulations, we use the sampling time period Ts = 0.05 sec to discretize the

plant model with the exact discretization method. Following Algorithm 3 , we compute the

controller gain,

Kr =
[
0.49 3.92 −0.06 −8.46

]
.

We simulate two scenarios. We first consider a self-driving vehicle moving along the

X axis with a constant longitudinal speed vx = 5 m/s. We compare the performance of

the proposed closed-loop controller-observer compensator against the open-loop strategy. In

the open-loop strategy, we set uc[k] = r[k] = 0 for all samples k. We assume that each

component of the sensor output, ys[k], and the actuator input, ua[k], has 0.7 probability

of being contaminated by random sensor and actuator faults. The faults are uniformly

distributed with values in the interval [0, 1]. We assume that each element of es[k] and ea[k]

has 0.15 and 0.05 probability, respectively, of being nonzero. The sparse attacks are assumed

to be normally distributed with mean 0 and variance 1.

In Subfigure (6.7a ), the blue dot lines depict the true states of the plant and the red

dot lines show the estimated states. In this simulation, the moving vehicle is controlled

by the proposed controller-observer compensator. In Subfigure (6.7b ), the blue dot lines

show the true states of the plant controlled by the open-loop strategy. The blue dot line

in the top subplot in (6.7c ) shows the sparse attack signal ea[k], and the bottom subplot

shows the reference control signal, r[k] = 0. The desired state of this driving scenario

is xr[k] =
[
0 0 0 0

]>
at all samples k. Since the plant is unstable, we can see from

Subfigures (6.7b ) and (6.7c ) that when the reference control signal is corrupted by sparse

malicious attacks at sample k = 38 and sample k = 90, the state of the plant operating in

the open loop mode is unable to follow the desired state. In Subfigure (6.7a ), we can see that

when the closed-loop control strategy is applied, the plant state follows desired state after

a few samples in the presence of sparse attacks. These simulations illustrate the expected

performance of the proposed controller as discussed in Subsection 6.5.1 .

We next simulate the case when the vehicle is to follow a more complex path shown in

Figure 6.8 . The blue dot line in Figure 6.8 shows the desired trajectory of the self-driving
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vehicle. We first let the simulated vehicle move along the desired trajectory and collect the

reference signal r[k] at every sample k. We then simulate the vehicle motion in the CPS

environment as in the previous case when the vehicle is driven by the proposed controller-

observer compensator. The simulation results are shown in Figure 6.9 . As can be seen, the

proposed closed-loop controller-observer compensator performs as desired in the presence of

sensor and actuator faults and sparse malicious attacks.

6.7 Conclusion

In this chapter, we are inspired by ideas from the theory of error correcting codes to

propose a repetition scheme to compare different copies of the actuator and sensor signals

to eliminate errors from sensor and actuator faults. The advantage of this scheme is that it

is simple and quite effective. However it requires a bank of identical sensors which in some

cases may be prohibitively expensive. This issue calls for further investigation.

An open problem is to investigate the performance of the proposed controller-observer

compensator on a CPS with more detailed model with modeling uncertainties.
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(a) (b)

(c)

Figure 6.7. (a) State and state estimates of the moving vehicle driven by
the proposed robust controller-observer compensator; (b) State of the self-
driving vehicle in the open-loop mode; (c) Sparse malicious attack signal and
the reference signal.
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Figure 6.8. A driving scenario in the second simulation.

(a) (b) (c)

Figure 6.9. (a) The desired reference trajectory; (b) The actual trajectory of
the self-driving car driven by the proposed robust controller-observer compen-
sator; (c) Comparison between the reference trajectory and the actual trajec-
tory.
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7. SUMMARY AND OPEN PROBLEMS

7.1 Summary

In this thesis, we propose methods for simultaneously estimating the state, the sparse

attacks, and the disturbance of a CPS under sparse adversarial attacks and subjected to

arbitrary disturbance.

In Chapter 2, we analyze a scenario where the output measurements of the DT linear

CPS are subjected to sparse malicious packet drop attacks. A sparse error recovery method

was proposed to overcome the problem.

In Chapter 3, a general case of a CPS under malicious attacks is considered. That is,

sparse malicious packet drop attacks corrupt both control signals and output measurements

of the DT linear CPS. A novel DT observer-controller compensator architecture is proposed.

In Chapter 4, we propose a method of applying the DT observer-controller compensator

to a CT nonlinear CPS. We give an example of systems showing the continuous-discrete UIO

existence dichotomy.

In Chapter 5, we apply the proposed observer to a CPS under sparse adversarial at-

tacks and subjected to arbitrary disturbance. A novel design method is proposed that uses

fictitious output measurements to enhance the observer’s performance.

In Chapter 6, a controller-observer compensator is proposed for CPSs with sensor and

actuator faults and unsecured communication networks. Sensor and actuator fault filters are

proposed that use ECC approach to enhance the proposed observer’s performance. A model

reference controller with a performance level that can be calculated is given.

7.2 Open Problems

In this section, we describe methods of applying DT decentralized combined observer-

controller compensators to different types of CT decentralized cyber-physical systems. In

the design of the compensators for these systems, we propose to use the design methods

presented in this thesis.
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7.2.1 Review of different types of decentralization methods

A large-scale CPS can be composed of several smaller interconnected units. Many mod-

ern large-scale cyber-physical systems consist of several subsystems coupled through their

dynamics, controllers, or performance objectives. For examples, aircraft, satellite, and mo-

bile robot formations [79 ]–[81 ]; automated highways and other shared infrastructures [82 ],

[83 ]; flexible structures [84 ] and supply chains [85 ], [86 ]. When regulating these systems, it

is often advantageous to adopt a decentralized control architecture in which the overall con-

troller is composed of interconnected sub-controllers, each of which accesses a subset of the

plant’s state measurements. In the following, we discuss different types of decentralization.

Completely overlapping decentralization

We begin by considering an unstructured large-scale linear time-invariant (LTI) system

model,
ẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t),

 (7.1)

where A ∈ Rn×n, B ∈ Rn×m, and C ∈ Rp×n. Following [87 ], we apply the so called completely

overlapping decomposition to system (7.1 ) using the following steps:

• Decompose the input-output pair (u, y) into N input-output sub-pairs (ui, yi) such that

(i) the coupling between ui and yi is maximized, for all i = 1, . . . , N ; (ii) the coupling

between uj and yi is minimized, i, j = 1, . . . , j 6= i.

• Decompose matrices B and C according to the partition obtained on u and y, re-

spectively. Specifically, B = [B1 B2 · · · BN ] and C = [C>
1 C>

2 · · · C>
N ]>. Hence,

Bu = ∑N
i=i Biui and yi = Cix for all i.

The completely overlapping decentralization of (7.1 ) can be presented as

 ẋ(t) = Ax(t) +∑N
i=1 Biui(t)

yi(t) = Cix(t), i = 1, 2, · · · , N,
(7.2)
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whereBi ∈ Rn×mi , and Ci ∈ Rpi×n. Note that p = ∑N
i=1 pi, m = ∑N

i=1 mi, B = [B1 B2 · · · BN ],

and C = [C>
1 C>

2 · · · C>
N ]>.

The completely overlapping decentralized system can be regarded as a N -channel inter-

connected system with the input ui(t) and the output yi(t) for its i-th control channel. We

use the following example to show the application of this type of decentralization.

Example 3. Consider the mass-spring system from [88 ] shown in Figure 7.1 . We view this

Figure 7.1. An example of a completely overlapping decentralized system.
The example is taken from [88 ].

system as a two-channel interconnected system with the input ui(t) and the output yi(t) for

its i-th control channel, where i = 1, 2. The state of the system is defined as

x(t) = [pM(t) ṗM(t) p1(t) ṗ1(t) p2(t) ṗ2(t)]>,

where pM , p1, and p2 are the positions of masses M , m1, and m2, respectively. f1 and f2

are the damping force parameters, k1 and k2 are the spring constants, and u1 and u2 are the

input forces.
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The system modeling equations are:



ṗM = ṗM

Mp̈M = −(k1 + k2)pM − (f1 + f2)ṗM + k1p1 + f1ṗ1 + k2p2 + f2ṗ2

ṗ1 = ṗ1

m1p̈1 = k1pM + f1ṗM − k1p1 − f1ṗ1 + u1

ṗ2 = ṗ2

m2p̈2 = k2pM + f2ṗM − k2p2 − f2ṗ2 + u2.

Let m1 = m2 = 1 kg, M = 10 kg, k1 = k2 = 1 N/m, f1 = f2 = 0.1 N·s/m. Choose p1 and p2

as the outputs. The state space of the system has the form (7.2 ), where

A =



0 1 0 0 0 0

−0.2 −0.02 0.1 0.01 0.1 0.01

0 0 0 1 0 0

1 0.1 −1 −0.1 0 0

0 0 0 0 0 1

1 0.1 0 0 −1 −0.1


,

B1 =
[
0 0 0 1 0 0

]>
, B2 =

[
0 0 0 0 0 1

]>
,

C1 =
[
0 0 1 0 0 0

]
, C2 =

[
0 0 0 0 1 0

]
.

Non-overlapping decentralization

Following [87 , Chapter 8], we apply the so called non-overlapping decomposition method

to the unstructured LTI system model given by (7.1 ). Let xi ∈ Rni be a non-overlapping par-

tition of x (possibly under a suitable reordering of the state variables), i.e., x =
[
x1 · · · xN

]>
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with ∑N
i=1 ni = n and where xi defines the state of subsystem Si. The unstructured model

takes the form:

ẋ1
...

ẋN

 =


A11 · · · A1N

... . . . ...

AN1 · · · ANN




x1
...

xN

+


B11 · · · B1N

... . . . ...

BN1 · · · BNN




u1
...

uN



y1
...

yN

 =


C11 · · · C1N

... . . . ...

CN1 · · · CNN




x1
...

xN

 .

The model equation of subsystem Si is

 ẋi = Aiixi +Biiui +∑
i6=j(Aijx+Bijuj)

yi = Ciixi +∑
i6=j Cijxj.

The non-overlapping decentralized system can be regarded as an interaction of N subsystems

Si, i = 1, . . . , N . We use the following example to illustrate the application of this type of

decentralization.

Example 4. Consider the system from [89 ] shown in Figure 7.2 , consisting of a cascade

interconnection of three water tanks. The modeling equations are:



ẋ1 = k3
√
x3 − k1

√
x1

ẋ2 = −k2
√
x2 + u2

ẋ3 = k2
√
x2 − k3

√
x3 + u1

y1 = x2

y2 = x1,
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Figure 7.2. An example of a non-overlapping decentralized system.

where xi, i = 1, 2, 3 is the water level; u1 and u2 are the input water volume flows; k1 =

k2 = k3 = 2. The linearized model about the equilibrium pair (xe, ue), where xe = [1 1 1]>

and ue = [0 2]>, has the form,

A =


−1 0 1

0 −1 0

0 −1 0

 , B =


0 0

0 1

1 0

 , C =

0 1 0

1 0 0

 .

Using the non-overlapping decomposition method, the above unstructured linearized system

can be partitioned into two interconnected subsystems as

S1 :

 ẋ2 = −x2 + u2

y1 = x2,

S2 :



ẋ1

ẋ3

 =

−1 1

0 1


x1

x3

+

0

1

x2 +

0

1

u1

y2 =
[
1 0

] x1

x3

 .
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7.2.2 Secure state estimation and control using non-overlapping decentralized
CPS model

In this subsection, we propose to design a class of observer-controller compensators for

secrue state estimation and control of N interconnected cyber-physical systems under non-

overlapping decentralization form.

Problem statement and preliminary analysis

Consider N interconnected physical systems are remotely controlled as N cyber-physical

systems as shown in Figure 7.3 .

Figure 7.3. Non-overlapping interconnected decentralized CPS.

The dynamic model for system Si is:

Si :


ẋi = Aiixi +Biui + Eisi

yi = Ciixi + Fisi

zi = Czixi +Dziui,

where xi, ui, and yi are the state, input, and output of system Si, respectively. Additional

input variables si and output variables zi are used to describe the interconnection terms with
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the neighboring systems. We define the interaction model as si = ∑N
j=1 Lijzj, where Lij are

interconnection matrices.

As shown in Figure 7.3 , for each physical system Si, we assume the malicious packet drop

attacks occur during the control signals and output measurements transmission between the

controller-observer compensator and the physical system. We define u1, . . . , uN as the control

signals sent by the compensators; ũ1, . . . , ũN as the corrupted control signals received by the

physical systems; y1, . . . , yN as the output measurements sent by the physical systems; and

ỹc1, . . . , ỹcN as the corrupted output measurements received by the compensators.

Our first objective is to estimate the state xi of each system Si using the corrupted output

measurement yi. We then use each state estimate x̃i in the local controllers instead of the

true state.

Since we assumed that each system Si is interconnected with its neighboring systems, the

state observer Ei for each system Si is to be designed taking into account interconnections.

The implementation of the designed observer is shown in Figure 7.4 . The inputs of the

Figure 7.4. Interconnected state observers.

state observer Ei are ỹi, ui, and ŝi, where ỹi is calculated using the vector recovery strategy

discussed in Section 3.3 . The control signal ui is generated by the controller that we discuss
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later. The interaction between the observer Ei and its neighboring observers is denoted as

ŝi. We define ŝi = ∑N
j=1 Lijẑj, where ẑj = Czjx̂j + Dzjuj. The output of the state observer Ei

is x̂i, which is the state estimate of the system Si. The state estimate x̂i is then sent to the

decentralized controllers.

We next design the interconnected decentralized controllers. The interconnected con-

troller implementation is shown in Figure 7.5 . The input of the interconnected decentralized

Figure 7.5. Interconnected decentralized controllers.

controller Ci is x̂i, which is state estimate of the system Si generated by the state observer Ei.

The controller Ci can exchange the input information with its neighboring controllers. The

output of the controller Ci is ui, which is the control signal of system Si. The control signal ui

is sent back to the interconnected state observer to create a closed-loop observer-controller

compensator. The control signal ui is sent to the system Si through a communication net-

work.

We show the observer-controller compensator implementation of non-overlapping CPS in

Figure 7.6 .
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Figure 7.6. Observer-controller compensator implementation for non-overlapping CPS.
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