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ABSTRACT

Due to the large masses, heavy quarks are produced early and experience the full evolution

of the medium. The comparison between the nuclear modification factors of heavy flavor and

light hadrons can provide insights into the expected flavor dependence of parton energy loss.

The relative coalescence contribution to baryon production is expected to be more significant

than that to mesons because of their larger number of constituent quarks. In particular,

models involving coalescence of charm and light-flavor quarks predict a large enhancement

in the Λ+
c /D

0 production ratio in the heavy ion collisions relative to pp collisions and also

predict that this enhancement has a strong pT dependence.

This dissertation presents the production of inclusive (prompt) Λ+
c baryons in proton-

proton and lead-lead collisions at 5.02 TeV in 2015 (2017 and 2018) with CMS detector

at the CERN LHC [1 ]. These two analyses show that Λ+
c baryons production is found to

be suppressed in heavy ion collisions. This suppression is consistent with the suppression

observed in D0 meson measurements. The Λ+
c /D

0 production ratios in pp collisions are

consistent with a model obtained by adding color reconnection in hadronization to PYTHIA8.

Also the Λ+
c /D

0 production ratios in pp collisions are consistent with the model that includes

enhanced contribution from the decay of excited charm baryons and the model includes the

effect of fragmentation and coalescence [1 ]. There is a hint of an enhancement in the Λ+
c /D

0

production ratio in PbPb collisions in the pT range of 6–12.5 GeV/c compared to pp collisions.

The Λ+
c /D

0 ratios in pp and PbPb collisions for pT > 12.5 GeV/c are found to be consistent

with each other.
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1. INTRODUCTION

This chapter presents the theoretical basis and the motivations of the experimental studies

in this dissertation.

1.1 Elementary Particle

All elementary particles can be categorized into two groups by their spin: fermions

(particles with semi-integer spin) and bosons (particles with integer spin). The wave function

of a system of identical bosons is symmetric under the exchange of any pair of them, while

the wave function of a system of identical fermions is anti-symmetric.

Figure 1.1 shows the elementary particles in the Standard Model [2 ]. There are six types

of quarks, known as flavor: up, down, charm, strange, top and bottom. Every quark has

a corresponding type of antiparticle, called as an antiquark. All six types of quarks and

leptons are fermions and can be further categorized into three generations. The gluon and

the photon is the force carrier of the strong and electromagnetic interaction, respectively.

The W and Z bosons are the force carriers of the weak interaction. The Higgs boson, which

was discovered at the Large Hadron Collider (LHC) [3 ], [4 ], explains how most elementary

particles acquire their mass [5 ].

1.2 Quantum Chromodynamics

Quantum Chromodynamics (QCD) [7 ], [8 ] is a gauge field theory that describes the

strong interaction between quarks and gluons. It is the SU(3) component of the Standard

Model [2 ]. This strong interaction is a short-range interaction, on the order of 10−15m. In

QCD, gluons interact with quarks and other gluons via ”color charge”. The color charge in

strong interaction is like the electric charge in electromagnetic interaction. There are three

color charges: red, blue and yellow. QCD has three main properties: color confinement,

asymptotic freedom and chiral symmetry breaking.

• Color confinement is the phenomenon that particles are all color neutral, and color charged

particles, such as individual quark or gluon cannot be isolated [9 ].
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Figure 1.1. Elementary Particles Included In The Standard Model. This
Figure Is Taken From Wikipedia [6 ].
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• Asymptotic freedom: When the energy scale of strong interactions increases or the length

scale decreases, there is a reduction in the strong interactions between quarks and

gluons [8 ], [10 ], [11 ].

• Chiral symmetry breaking. (chirality, discrimination between left and right-handed.)

1.2.1 Lattice Quantum Chromodynamics

Many physical processes involve hadrons. Since hadros are composed of quarks and

gluons, the properties of hadrons are governed by QCD. Theoretical calculations of these

properties require non-perturbative method, and Lattice QCD is a tool to carry out these

calculations. In other words, Lattice QCD reformulates QCD on a lattice of discrete space-

time points. Of course, any quantity calculated on the lattice would depend on the lattice

spacing. Performing the same calculation multiple times with different, decreasing lattice

spacing until the scaling regime is reached, could remove the lattice spacing dependence.

The details of how the QCD Lagrangian is put on the lattice could be found in Ref. [2 ].

1.3 Quark Gluon Plasma

For a few millionths of a second, shortly after the Big Bang, the universe was filled with

an astonishingly hot, dense soup made of all kinds of particles moving at near light speed.

This mixture was dominated by quarks and gluons. Under this extreme temperature, quarks

and gluons were bound only weakly, free to move on their own, and this is called a quark

gluon plasma (QGP) [12 ], [13 ], [14 ].

Lattice QCD predicts that there is a change in the state of matter (a phase transition)

from a hadronic system to a nearly free gas of quarks and gluon (QGP). Figure 1.2 shows

the temperature vs baryon chemical potential [15 ]. The line of first-order transition ends

somewhere near the high temperature axis, indicated on the diagram by the label ’critical

point’.

There are three major states for the QCD system shown in Fig. 1.2 [15 ]: hadron gas, the

QGP state, and the color superconductor. The quark matter phase can be reached either by
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Figure 1.2. A Sketch Illustrating The Experimental And Theoretical Explo-
ration Of The QCD Phase Diagram [15 ].
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compressing nuclear matter to high density while at rather low temperatures or increase the

vacuum. The high density phase are expected to play a key role in the interior of neutron

stars. With the temperature and/or density increasing, the deconfinement of quarks and

gluons occurs as a consequence of the asymptonic freedom and results in the formation of

QGP.

Phase transitions usually involve a change in the symmetry of the system. In the early

universe, the quarks were massless and there were an equal number of quarks and antiquarks.

In the universe today, after the transition to normal nuclear matter, there is a small difference

in the light quark masses - as well as an even larger difference between the light quark masses

and those of the other quarks, even between the light quark and the strange quark. This

mass difference is caused by chiral symmetry breaking. At high temperature chiral symmetry

is expected to be restored.

1.3.1 Parton Energy Loss

The QGP state produced in ultra-relativistic heavy ion collisions can last just for a very

short time of a few fm/c, so it cannot be directly observed. Parton energy loss is one

important signature of the QGP.

In heavy-ion collisions, when the QGP is produced, the out-going partons can lose a large

amount of their energy as they traverse the medium, primarily through gluon radiation [16 ]–

[18 ] and collisional energy loss [19 ], [20 ]. Thus, the spectra of produced hadrons will shift

toward lower pT region compared to pp collisions and thus show suppression at high pT .

The nuclear modification factor (RAA) is one variable to quantify the parton energy loss.

(the ratio of the yield in heavy ion collisions to that in pp collisions scaled by the number of

nucleon-nucleon interactions). RAA is defined as the followings:

RAA(pT ) = 1
〈TAA〉

dNPbPb

dpT

/
dσpp

dpT

. (1.1)

RAA = 1 means that the heavy-ion collisions is the same as pp collisions. When RAA > 1,

the production is enhanced. When RAA < 1, the production is suppressed, which is the gen-

eral expectation for hadrons with high pT as a consequence of the in-medium parton energy
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loss.

1.4 Heavy Ion Collisions

In order to recreate conditions similar to those of the very early universe, accelerators

make head-on collisions between massive ions, such as gold or lead nuclei. The Relativis-

tic Heavy-Ion Collider (RHIC) at BNL [21 ]–[24 ] and the Large Hadron Collider (LHC) at

CERN [25 ], [26 ] produce AuAu and PbPb collisions at energies up to 200 GeV/nucleon

and 5500 GeV/nucleon, respectively in the center of mass. In these heavy ion collisions the

hundreds of proton and neutrons in two such nuclei smash into one another. This forms a

miniscule fireball in which everything ”melts” into a QGP. The primary goal of heavy ion

collisions is to study the properties of QGP.

In this chapter, the centrality of heavy ion collisions is described.

1.4.1 Centrality Reconstruction And Calibration

The size of the proton may be considered negligible in proton-proton collisions. However,

the size of the nuclei cannot be ignored in heavy-ion collisions. In principle, the centrality

gives the degree of the overlap of two colliding nuclei. (i.e., the centrality class of 0-30%

corresponds to the 30% of collisions with the largest overlap of the two nuclei.). However,

the collision geometry cannot be measured directly and only the final-state variables such as

momentum and energy can be measured. In the CMS experiment, the events are divided into

centrality classes according to the sum of transverse energy (ET ) measured in the Hadron

Forward Calorimeters (which will be described in 2.2 .). The distribution of the sum of HF

ET for a large sample of minimum bias collisions is measured, and is used to devide the

data sample into centrality classes (i.e., the top 10% most energy deposited corresponds to

centrality class 0-10%.). The distribution measured in PbPb collisions at 2.76 TeV is shown

in Figure 1.3 [27 ]. The centrality of a collision can also be determined by other final-state

observable like rapidity loss, but the basic principle is the same.
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Figure 1.3. Distribution Of The Sum Of HF ET For A Large Minimum Bias
Event Sample Divided Into Centrality Classes Of PbPb Collisions At 2.76 TeV.
Figure Is Taken From Ref. [27 ].
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The geometric quantities of heavy ion collisions, such as number of participating nucle-

ons (Npart), number of binary nucleon-nucleon collision (Ncoll), can be calculated by Monte

Carlo Glauber model [28 ], in which each nucleon position in a nucleus is stochastically de-

termined event-by-event. The geometric quantities are estimated by averaging over multiple

events in this model. The position of each nucleon in a nucleus is determined according

to the Woods-Saxon or Fermi distribution [28 ]. The nucleons are assumed to move with a

straight trajectory along the beam axis. The details of how impact parameter, Ncoll and Npart

distributions are calculated from the Monte Carlo Glauber model is written in Ref. [28 ].

1.5 Open Heavy Flavor Study In Heavy Ion Collisions

Measurements of heavy-quark production provide unique constraints to help us under-

stand parton energy loss and the degree of thermalization in QGP [12 ] formed in high energy

heavy ion collisions. Because of the large masses, heavy quarks are generated via initial

hard scattering in heavy ion collisions and experience the whole evolution of the medium.

Thus they are effective probes to study the properties of the medium and in-medim interac-

tions [29 ]. Besides the in-medium interactions, a detailed study of the hadronization process

is critical for the interpretation of experimental data. In addition to the fragmentation pro-

cess, hadron production can also occur via coalescence, in which partons combine with each

other while transversing the QGP medium or at the phase boundary [30 ], [31 ], in heavy ion

collisions. The probability of coalescence has a strong dependence on the pT distribution.

This probability is observed reduced at high transverse momentum (pT > 6 GeV/c), and

thus the hadronization process is expected to be dominated by fragmentation.

A significant enhancement of the baryon-to-meson ratio is observed in heavy ion collisions

for hadrons with up, down, or strange quarks [32 ], [33 ] in pT range 2-6 GeV/c. This enhance-

ment, and its dependence on centrality can be explained in a scenario with hadronization

via coalescence. Furthermore, elliptic flow, the second Fourier component of the azimuthal

distribution of emitted particles, is found to roughly scale with the number of constituent

quarks in the pT range of 2–5 GeV/c at RHIC [34 ], an observation which is also consistent

with the expectation for coalescence.
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A significant contribution of coalescence to the hadronization of charm quarks from the

QGP medium is supported by various measurements of charmonium and open charm produc-

tion at RHIC and LHC energies [35 ]–[43 ]. One such observable is the nuclear modification

factor, which is introduced in section 1.3 . At RHIC, the RAA for J/ψ mesons with pT ≤ 7

GeV/c produced in AuAu collisions decreases significantly from peripheral to central colli-

sions [35 ]. In contrast, in higher energy PbPb collisions at the LHC, the J/ψ RAA has a

much smaller centrality dependence [36 ], [37 ]. The difference between the AuAu and PbPb

results can be explained by a larger coalescence probability in PbPb collisions because of

the larger number of produced charm and anti-charm quarks at the higher center-of-mass

energy. The RAA of D0 meson in AuAu collisions, can be qualitatively reproduced by models

involving coalescence [38 ], [39 ]. At the LHC, the measurements of D0 RAA and D0 azimuthal

anisotropy [40 ]–[43 ] are well explained by models involving coalescence.

Due to the larger number of constituent quarks in baryons, the relative coalescence

contribution to baryon production is expected to be more significant than that to mesons.

Models involving coalescence of charm and light-flavor quarks predict a large enhancement

in the Λ+
c /D

0 production ratio in heavy ion collisions relative to pp collisions and also

predict that this enhancement has a strong pT dependence [44 ]–[47 ]. Comparison of Λ+
c

baryon production in pp and lead-lead (PbPb) collisions can thus provide essential insight

into understanding heavy-quark transport in the medium and heavy-quark hadronization

via coalescence. All discussions of Λ+
c and D0 in this thesis also include their corresponding

charge conjugate states.

In this thesis, the analyses on inclusive and prompt Λ+
c pT -differential cross section in

both pp and PbPb collisions, nuclear modification factor in PbPb collisions, and Λ+
c /D

0 in

both pp and PbPb collisions with the CMS detector will be presented [1 ]. The production of

prompt Λ+
c baryons are found to be suppressed in PbPb collision in centrality class 0–90%

and 0–10% [1 ]. A hint shows that there is an enhancement of the prompt Λ+
c /D

0 production

ratio in 6–12.5 GeV/c in PbPb collisions compared to pp results. The Λ+
c /D

0 production

ratio in PbPb collisions is consistent with the result from pp collisions when pT > 12.5

GeV/c [1 ]. Apart from these CMS measurements, similar measurements of Λ+
c are also

performed with ALICE, LHCb detector [48 ]–[51 ] in different rapidity ranges and different
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center of mass energies. The LHCb pT -differential cross section results for the rapidity range

2.0 < y < 4.5 were found to be compatible with the next-to-leading order Generalized Mass

Variable Flavor Number Scheme [50 ], [52 ], while the ALICE and CMS values were larger

than predictions, for |y| < 0.5 and |y| < 1 [1 ], [48 ]. The ALICE Λ+
c /D

0 production ratio for

6-12 GeV/c in PbPb collisions was noticed to be much larger than pp and pPb collisions,

and this difference is possible to be described via a model involving only coalescence in

hadronization [49 ].

1.6 Event Simulation

Event generators are software libraries that generate simulated high energy particles

physics events. These event generators are based on some theoretical models or frameworks.

1.6.1 PYTHIA8 Event Generator

The PYTHIA program is a general-purpose generator for the generation of events in high

energy collisions, i.e., for description of collisions at high energies between electrons, protons,

photons and heavy nuclei. It contains theory and models for a number of physics aspect,

including hard and soft interactions, parton distributions, intial- and final-state parton show-

ers, multiparton interactions, fragmentation and decay [53 ]. PYTHIA8 with different tunes

are used in all analyses described in this thesis. The detailed information could be found in

this comprehensive manual in Ref. [53 ]. Hadronization is performed via an implementation

of the Lund string fragmentation model. As q and q̄ move apart, the potential energy stored

in the string increases, and the string may break by production of a new q,q̄,, so that the

system splits into two colour-singlet systems qq̄, and q,q̄. Further breaks may occur unless

the invariant mass of either of these string pieces is not large enough. In the Lund string

model, the string break-up process is assumed to proceed until only on-mass-shell hadron

remain, each hadron corresponding to a small piece of string with a quark in one end and

an antiquark in the other [54 ].
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2. THE CMS DETECTOR

The work in this thesis is performed using the data collected by the Compact Muon Solenoid

(CMS) detector. The CMS detector is a general-purpose detector at the CERN Large Hadron

Collider (LHC), which covers broad physics programs, such as the search for and study of

the Higgs boson, the exploration of physics beyond the Standard Model, and also heavy ion

physics.

Figure 2.1 shows a schematic representation of the CMS detector with its various subsys-

tems in retracted positions. The CMS detector is build around a 13 m long superconducting

solenoid magnet with an inner diameter of 6 m. This takes the form of a cylindrical coil of

superconducting cables which can generate a magnetic field of 4 Tesla. The actual magnetic

filed strength is 3.8 Tesla during data taking. The innermost part is a silicon-based tacker.

Then the next one is a scintillating crystal electromagnetic calorimeter, and then the next

one is hadron calorimeter. Outside the magnet are the large muon detectors. This chapter

presents certain details of the detector subsystems relevant to the analyses in this thesis. A

complete description of the CMS detector can be found in Ref. [55 ]. The detector coordinate

system has the origin centered at the nominal collision point inside the experiment, with

the z axis pointing along the counterclockwise beam direction, the x axis pointing radially

inward towards the center of the LHC ring, and the y axis pointing vertically upward.

2.1 The Inner Tracking System

The CMS inner tracking system is designed to precisely and efficiently reconstruct the

trajectories of charged particles and the secondary vertices. At the LHC designed luminosity,

there will be on average about 1000 particles from more than 20 overlapping proton-proton

interactions traversing the tracker for each bunch crossing. The CMS tracker consists of a

pixel detector and a silicon strip tracker. This thesis uses both the data collected before

the pixel detector upgrade and after the pixel detector upgrade. Before the pixel detector

upgrade (from the end of 2016), the pixel detector is with three barrel layers at radii between

4.4 cm and 10.2 cm. Figure 2.2 is a schematic view of the previous CMS tracker (used for

2015 data taking, and these data are used for inclusive Λ+
c analysis). This pixel detector
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Figure 2.1. A Schematic Representation Of The CMS Detector With Its
Various Subsystems In Retracted Positions (CERN)
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consists of three barrel layers (BPIX) at radii of 4.4 cm, 7.3 cm and 10.2 cm, and two

forward/backward disks (FPIX) at longitudinal positions of ±34.5 cm and ±46.5 cm and

extending in radius from about 6 cm to 15 cm. The silicon strip tracker is comprised of 10

barrel layers (TIB and TOB) at midpseudorapidity extending outwards to a radius of 110 cm,

and 3 smaller disc layers (TID) and 9 larger disc layers (TEC) at forward pseudorapidity [56 ].

Figure 2.2. Schematic View Of The Previous CMS Tracker (Before The End
Of 2016), Showing The Nomenclature Used To Identify Different Sections.
Each line Represents A Detector Module. Double Lines Indicate Back-to-back
Modules Which Deliver Stereo Hits In The Strip Tracker. This Figure Is Taken
From Ref. [57 ].

After the upgrade, the pixel detector is with four concentric, cylindrical layers with a

length of 548.8 mm and radii between 3 cm and 16 cm. The accuracy of the position infor-

mation can be described by the resolution of track impact parameter. The impact parameter

is defined as the minimal distance between the track helix and the primary vertex. Figure 2.3 

and 2.4 show respectively the transverse and longitudinal impact parameter resolutions for

the upgraded and previous pixel detectors as a function of the track (total) momentum for

zero pileup. The ratio of the impact parameter resolutions show that the impact parameter

resolution is expected to be greatly improved. This improvement at lower absolute momen-
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tum is due to the reduction of material in the upgraded detector [57 ]. Detailed information

of the CMS tracking system can be found in Ref. [56 ], [57 ].

Figure 2.3. Transverse Impact Parameter Resolution For Muon Tracks As A
Function Of The Track Momentum For Different η Ranges. The Black Circles
Labeled As ”Current” Is For The One Before The Upgrade. The Red Triangles
Are For The Upgraded Pixel Detector. The Lower Part Of Each Plot Shows
The Ratio Of The Previous Detector Resolution To The Upgraded Resolution.
(Top-left) 0 < η < 1; (Top-right) 11 < η < 1.5; (Bottom-left) 1.5 < η < 2;
(Bottom-right) 2 < η < 2.5. This Figure Is Taken From Ref. [57 ].

2.2 Hadron Forward Calorimeter

The hadron forward calorimeter (HF) is extremely important to heavy ion collisions,

since the centrality can be determined with the HF detector, which has been discussed in

section 1.4.1 . The forward calorimeter is essentially a cylindrical steel structure with an

outer radius of 130.0 cm. Azimuthally, each HF calorimeter consists of 18 modular wedges

covering 20°. The two HF calorimeters are located 11.2 m away from the interaction region,

one on each end, and together they extend the calorimeter coverage from |η|=3.0 to 5.2.

The steel absorber is composed of 5 mm thick grooved steel and quartz fibers are used as

the sensitive material. Each HF calorimeter consists of 432 readout towers, containing long
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Figure 2.4. Longitudinal Impact Parameter Resolution For Muon Tracks
As A Function Of The Track Momentum For Different η Ranges. The Black
Circles Labeled As ”Current” Is For The One Before The Upgrade. The Red
Triangles Are For The Upgraded Pixel Detector. The Lower Part Of Each
Plot Shows The Ratio Of The Previous Detector Resolution To The Upgraded
Resolution. (Top-left) 0 < η < 1; (Top-right) 11 < η < 1.5; (Bottom-left)
1.5 < η < 2; (Bottom-right) 2 < η < 2.5. This Figure Is Taken From Ref. [57 ].
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and short quartz fibers running parallel to the beam, providing information on the shower

energy and relative contribution originating from hadrons versus electrons and photons. The

cross sectional view and transverse plan of HF calorimeter are shown in Fig. 2.5 . A detailed

description can be found in Ref [56 ].

Figure 2.5. (Left) The Cross Sectional View Of The HF Calorimeter. (Right)
Transverse Segmentation Of A Single 20° Modular Edge Of The HF Detector.
Figures Are Taken From Ref. [56 ].

2.3 The Level-1 And High Level Trigger System

For the nominal LHC design luminosity of 1034cm−2s−1, an average of 17 events occurs at

the beam crossing frequency of 25 ns. The high input rate must be reduced to accommodate

the on-line computer. Therefore, the trigger system is designed to reduce the rate of recording

under 1 kHz by keeping the interesting events for analyses and filtering out the uninteresting

events. CMS reduces this rate by two steps: (1) The Level-1 (L1) Trigger [58 ]. (2) High-

Level Trigger (HLT) [59 ]. The L1 triggers are hardware-based system and the HLT triggers

are software-based.

The L1 triggers consists of custom-built programmable electronics, which are largely

integrated with the readout systems of subdetectors. The L1 triggers are designed to reduce

the rate under 100 kHz. Within 4 µs, the system must decide whether to drop an event

or pass it to the HLT triggers. The L1 triggers are typically implemented using simple
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threshold algorithms written to filed-programmable gate arrays (FPGAs), which allow for a

fully customizable hardware circuit.

The HLT triggers select events in a similar way, and pass a fraction of these events to the

remainder of the online computer resources. For each event, objects such as tracks, muons,

and jets can be reconstructed and applied selection criteria to select the interesting events

for analyses.

2.4 The CMS Computing Model

Unlike previous generations of experiments, the majority of data storage and processing

resources are available outside the host laboratory. CMS chooses to use a distributed system

of computing resources. Figure 2.6 shows the dataflow between CMS computing centers [56 ].

The details of the CMS computing system can be found in Ref. [60 ].

Figure 2.6. Dataflow Between Different CMS Computing Centers. This
Figure Is Taken From Ref. [56 ].

Tier-0 is the first tier of the computing system, which is responsible to accept and store

the raw data at CERN, perform a real-time reconstruction of the data, and distribute both

raw and reconstructed data to Tier-1.

Tier-1 regional centers archives the RAW and reconstructed data (a second copy of

RAW and reconstructed RECO data), performs additional reconstruction over the data

with the timely calibration, and distribute reconstruction data to Tier-2. Besides these

responsibilities, it also provide secure storage and redistribution for Monte Carlo simulated

samples which are produced by the Tier-2 and other centers.

The Tier-2 centres have the following responsibilities:
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• keep part of the reconstruction data for physics analyses.

• produce Monte Carlo simulations.
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3. Λ+
c RECONSTRUCTION AND CUT OPTIMIZATION

In this thesis, the Λ+
c baryons are reconstructed through the hadronic decay channel Λ+

c →

P+K−π+ with a branching ratio of 6.28±0.32% [2 ]. Figure 3.1 is the schematic view of the

Λ+
c → P+K−π+ decay channel and the variables marked will be defined and discussed below.

Figure 3.1. Schematic View Of The Λ+
c Decay Channel Used In This Thesis.

3.0.1 Λ+
c Reconstruction

Λ+
c candidates are considered by assuming that three tracks having the mass of pro-

ton, kaon and pion and then do the permutations. The decay vertex is reconstructed by

using a ROOT ”KinematicParticleVertexFitter”, where least-mean squared minimization is

implemented. Several geometric selections are applied in order to reduce the combinato-

rial background. In particular, the Λ+
c are selected according to the following topological

variables:

• the 2D decay length significance with respect to Beam Spot (BS) for pp collisions and 3D

decay length significance with respect to Primary Vertex (PV) for PbPb collisions.
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• 2D pointing angle α with respect to BS for pp collisions and 3D pointing angle α with

respect to PV for PbPb collisions.

• vertex probability.

• track pT over Λ+
c pT ratio for pp and PbPb collisions.

3.0.2 Cut Optimization

The aim of the cut optimization is to maximize the statistical significance (which is

s/
√
b in this analysis) of the signals with a still reasonable high signal efficiency. The op-

timal cut minimizing background efficiency for a specific signal efficiency is obtained by

the TMVA(Toolit for Multivatiate Data Analysis with ROOT) [61 ]. Rectangular cut and

Boosted Decision Tree is chosen as the classification methods in TMVA. The reconstructed

Λ+
c candidates that are matched to the generated Λ+

c baryons are used as the signal sam-

ple and sideband data are used as the background sample. The sideband is defined as the

shoulder region right next to the ∼3σ boundaries of fit to the observed signal on both side

(i.e., mass = 2.315–2.355 GeV/c2 and mass = 2.215–2.255 GeV/c2).

Due to the high luminosity, more than one collision can occur in the same bunch crossing

in pp collisions. To make the measurement less sensitive to this pileup effect, two-dimensional

variables in the transverse plane with respect to an estimate of the pp interaction region

(beamspot) are used in pp collisions.

The cut variables for pp collisions are the followings:

• 2D decay length significance with respect to BS. (”2D dls”)

• vertex probability.(”chi2cl”)

• 2D pointing angle with respect to BS.(”2D α”)

• daughter tracks pT ratio distribution.

And the cut variables for PbPb collisions are the followings:

• 3D decay length significance with respect to PV. (”3D dls”)
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• vertex probability.(”chi2cl”)

• 3D pointing angle with respect to PV.(”3D α”)

• daughter tracks pT ratio distribution.

To minimize the size of the analysis tree output, the following initial cuts are applied for

the Λ+
c production with 2015 CMS pp and PbPb data for inclusive Λ+

c analysis.

• 3D dls with respect to PV > 1.0 and > 2.0 for pp and PbPb collision.

• chi2cl > 0.05 for both pp and PbPb.

• 3D α < 0.2 in PbPb collisions and 3D α does not have this initial cuts in pp collisions.

• track pT > 1 GeV/c and > 0.7 GeV/c for PbPb and pp.

The initial cuts applied for the Λ+
c production with 2017/2018 CMS pp and PbPb data

for prompt Λ+
c analysis are:

• 3D dls with respect to PV > 2.0 for PbPb collision only when pT < 30 GeV/c.

• chi2cl > 0.05 for both pp and PbPb. (No cuts for PbPb collisions with pT > 30 GeV/c.)

• 3D α < 0.2 in PbPb collisions.

• track pT > 1 GeV/c and > 0.5 GeV/c for PbPb and pp collisions, respsectively.

The rapidity of the Λ+
c candidates are required to be within ±1, leading to the daughter

track pseudorapidity dominantly reside in ±1.2. Thus, |ηtrack| < 1.2 is required in the initial

cuts for both analyses. The sample with these initial cuts are used as inputs to the TMVA

training.

The optimal cut values are defined as the one that can maximize the significance s/
√
b.

The statistical significance is defined as this form so that the input signal and background

do not need to be normalized to the same number of luminosity. Since the signal back-

ground ratio for Λ+
c is small, if the default statistical significance definition in TMVA package

(s/
√
s+ b) is used, the optimized cuts are sensitive to the normalized weight.
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s = s× (signal cut efficiency), where s is the number of Λ+
c candidate in data before

optimal cuts, and the signal efficiency is Λ+
c after optimal cuts over the Λ+

c candidates before

optimal cut.

b = b× (background cut efficiency), where b is the amount of background before cuts,

and the background efficiency is background after optimal cuts over the background before

optimal cut. Signal region is defined as |mΛ+
c

− mΛ+
c (PDG)| < 3σ. σ is the with of Λ+

c

candidates mass fitting in MC.
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4. PRODUCTION OF INCLUSIVE Λ+
c IN PP AND PBPB

COLLISIONS AT 5.02 TeV WITH 2015 CMS DATA

This chapter presents the details of the measurements of inclusive Λ+
c with 2015 CMS data.

4.1 Data Sets And Monte Carlo Simulation

This analysis is performed using the 2015 pp and PbPb data at √
sNN = 5.02 TeV. The

luminosity of MB pp, MB PbPb golden json and tracker only json sample are 38 nb−1, ∼

21.639 µb−1 and ∼ 22.223 µb−1, respectively. Thus, the luminosity for MB PbPb data is

∼ 44 µb−1. More data are available from PbPb 30-100% centrality trigger sample which

has a luminosity of ∼ 57.711 µb−1. Details of the data sets for inclusive Λ+
c analysis are

summarized in Tab. 4.1 . The good quality of the data is ensured by applying the JSON file

Table 4.1. CMS 2015 Datasets Used For Inclusive Λ+
c Production Analysis.

sample DAS name Global Tag
pp /MinimumBias1-20/Run2015E-PromptReco-v1/AOD auto:run2_data

PbPb /HIMinimumBias1-11/HIRun2015-PromptReco-v1/AOD 75X_dataRun2_v13

for pp and PbPb respectively. (The file describes which luminosity sections in which runs

are considered good and should be processed. In CMS, these files are in the JSON format.)

• Cert_262081-262328_5TeV_PromptReco_Collisions15_25ns_JSON.txt

• Cert_262548-263757_PromptReco_HICollisions15_JSON_v2_PbPb.txt

• Cert_263685-263757_PromptReco_HICollisions15_TrackerOnly_JSON.txt

Both pp and PbPb samples were reconstructed using the CMSSW version CMSSW_7_5_8.

4.1.1 Signal Monte Carlo

Monte Carlo simulations of inclusive Λ+
c productions were made in order to estimate

the acceptance × reconstruction efficiency (αε) and also to help to evaluate systematic

uncertainties. For pp collisions, QCD events are generated by PYTHIA8 [53 ] with Tune
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CUEP8M1 [62 ] at 5.02 TeV. We use the Λ+
c → P+K−π+ channel, which includes four

sub-channels:

• Λ+
c → PK̄∗(892)0 → P+K−π+ (1.29%)

• Λ+
c → ∆(1232)++K− → P+K−π+ (1.07%)

• Λ+
c → Λ(1520)π+ → P+K−π+ (0.494%)

• Λ+
c → P+K−π+ (nonresonant) (3.4%)

While in Particle Physics Booklet, the decay channel shows like this: The whole branching

fraction for Λ+
c → P+K−π+ is 6.28 ±0.32%. The four sub-channels are:

• Λ+
c → PK̄∗(892)0 (1.94 ± 0.27%)

• Λ+
c → ∆(1232)++K− (1.07 ± 0.25%)

• Λ+
c → Λ(1520)π+ (2.2 ± 0.5%)

• Λ+
c → P+K−π+ (nonresonant) (3.4 ± 0.4%)

The sum of the branching fractions of the above sub-channels is not equal to that

of the whole channel that we use in this analysis. The reason for this is that for the

first three sub-channels, there are two decays. We will calculate the branching fraction

of Λ+
c → PK̄∗(892)0 → P+K−π+ as an example: Λ+

c → PK̄∗(892)0 → P+K−π+ is from:

• Λ+
c → PK̄∗(892)0 (1.94%)

• K̄∗(892)0 → Kπ (∼ 100%)

The second bullet actually is composed of: K̄∗(892)0 → K−π+ and K̄∗(892)0 → K̄0π0.

While the second step is a decay into kaon and pion which are not only K± and π∓. We use

Isospin conservation to calculate the branching fraction with the C-G coefficient. We use

this pair (I,M) to represent (Isospin, the z-component of Isospin). So we have the followings:
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π0:(1,1), π0:(1,0), K−:(1
2 ,

−1
2 ), K̄0:(1

2 ,
1
2) and K̄

∗(892)0:(1
2 ,

1
2). From C-G coefficient, we get 2

3

for K̄∗(892)0 → K−π+ and 1
3 for the other channel. Then the final branching fraction for

Λ+
C → PK̄∗(892)0 → P+K−π+ is 1.94% × 2

3 = 1.29%

The final branching fractions for all the sub-channels are written as the followings:

• Λ+
c → PK̄∗(892)0 → P+K−π+ (1.94% × 2

3 = 1.29%)

• Λ+
c → ∆(1232)++K− → P+K−π+ (1.07%)

• Λ+
c → Λ(1520)π+ → P+K−π+ (2.2% × 22.5% =0.494%)

• Λ+
c → P+K−π+ (nonresonant) (3.4%)

The reason that we calculate this branching fraction is that we need to mix the simula-

tion samples for four sub-channels according to the individual branching fraction to do this

analysis, also we need this relative branching fraction to calculate αε which will be described

in details later. Λ+
c were forced to decay to these four sub-channels respectively, which means

that for these four sub-channels, we should have 4 simulation samples, in each of which, Λ+
c

were forced to decay to the specific sub-channel. Only events with at least one Λ+
c with

|y| < 1.2 and |η| < 2.4 were kept. The number of generated output simulation events for Λ+
c

different sub-channels and different pT thresholds are shown in Tab. 4.2 . A P̂T threshold is

also used to speed up PYTHIA production of high Λ+
c pT events, as also listed in the table.

It has been studied that these P̂T thresholds are low enough for according Λ+
c pT , and will

not bias the distribution.

Table 4.2 shows the requested simulation samples for each individual sub-channel. Two

P̂T bins are used in order to obtain enough sample in different pT bins. The P̂T > 0 GeV/c

condition is used for pT = 5-10 GeV/c sample. The P̂T > 4 GeV/c condition is used to

produce pT > 10 GeV/c sample. The P̂T cut is selected to ensure 100% efficiency for the

signals in the corresponding pT bins.

For PbPb productions, selected PYTHIA8 events were embedded into a simulated PbPb

background generated by HYDJET (VERSION 1.8, tune ”Cymbal5Ev8”) [63 ].
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Table 4.2. Λ+
c pT Threshold, Number Of Output Events And P̂T Threshold

For Simulation Samples For Inclusive Λ+
c Analysis In Both pp And PbPb

Collisions.
sub-channel Λ+

c pT threshold (GeV/c) # output simulation events P̂T (GeV/c)
Λ+

c → PK̄∗(892)0 → P+K−π+ 4 50k 0
Λ+

c → PK̄∗(892)0 → P+K−π+ 10 50k 4
Λ+

c → ∆(1232)++K− → P+K−π+ 4 50k 0
Λ+

c → ∆(1232)++K− → P+K−π+ 10 50k 4
Λ+

c → Λ(1520)π+ → P+K−π+ 4 20k 0
Λ+

c → Λ(1520)π+ → P+K−π+ 10 20k 4
Λ+

c → P+K−π+ (nonresonant) 4 100k 0
Λ+

c →→ P+K−π+ (nonresonant) 10 100k 4
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Table 4.3. Summary Of HLT Paths Used In The 2015 pp And PbPb Analysis
DataSet HLT trigger

pp HLTL1MinimumBiasHF1OR_part* _v1
PbPb HLTL1MinimBiasHF2AND_part*_v1
PbPb HLT_HIL1Centralityext30100MinimumumBiasHF2AND_part1_v1, part1, part2, part3

Table 4.4. Track Selection Criteria Applied In The 2015 pp And PbPb HLT Tracking.
pp pT PbPb pT

Track quality highpurity highpurity
|η| <1.2 <1.2
pT >0.7 >1

Track algo 4-5-6-7 4-5-6-7
trkChi2/trkNdof/trkNlayers <0.15 <0.15

trkNHits >=11 >=11
trkPtError/trkPt <0.1 <0.3

4.1.2 Event Selection

This analysis uses samples collected from minimum-bias triggers. Event selections are

used to reject noise and beam-background event.

For pp, the HLT trigger is HLTL1MinimumBiasHF1OR_part*_v1. To further en-

hance the statistics for PbPb collisions with centrality 30-100%, the centrality triggers are

also used in this inclusive Λ+
c analysis. The names of the specific centrality triggers are:

HLT_HIL1Centralityext30100MinimumumBiasHF2AND_part*_v1.

The HLT track reconstruction in PbPb collisions corresponds to the standard Heavy ion

tracking sequence used in the HI analysis. The HLT track reconstruction in pp includes

the first 5 offline tracking iterations. A summary of the track selections applied in the HLT

tracking is presented in Table 4.4 .

In the offline analysis for PbPb collisions, an additional selection of hadronic collisions is

applied by requiring a coincidence of at least three of the HF calorimeter towers, with more

than 3 GeV of total energy, from the HF detectors on both sides of the interaction point.

Events are required to have at least one reconstructed primary vertex [56 ]. The primary
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vertex is formed by two or more associated tracks and is required to have a distance from

the nominal interaction region of less than 15 cm along the beam axis and less than 0.15

cm in the transverse plane. Table 4.3 shows the HLT MB triggers for both pp and PbPb

collisions for 2015 CMS data sets used in this inclusive Λ+
c analysis.

4.2 Signal Extraction

In this section, inclusive Λ+
c candidates and signal yield extraction for pp and PbPb

collision are described. Raw yields are extracted in each pT interval via unbinned maximum

likelihood fit to the invariant mass distribution. The fit function consists of the following

components:

• a double Gaussian function with same mean but different width and strength to model

the signal shape determined from MC in the each pT bin.

• a 3rd-order Chebyshev polynomial function to model the combinatorial background and

the swapped Λ+
c component for both pp and PbPb collisions.

We use the same strategy as Ref. [41 ]: the signal shape is defined by the simulation,

and a floating width parameter is used to accommodate the difference in the signal shape

between simulation and data in all pT bins except for pp 5–6 GeV/c. The swapped compo-

nents are the Λ+
c signals with incorrect mass assignment from the exchange of the proton

and pion mass for lack of particle identification. Although three particles are combined for

a Λ+
c signal, the charge of kaon differs from that of both the proton and the pion, which

means that only proton and pion have the possibility for incorrect mass assignment.

In the above signal extraction procedure, we fix the two widths of the double Gaussian and

the ratio of the yield between the two Gaussians. We let the mean and also one parameter

that corresponds to two widths of the double Gaussian float in this fit in all bins except

for pp 5–6 GeV/c. For pp 5–6 GeV/c, because there is always a bias in the fit, we scan

the value of float width in the range [-0.4,0.4] and perform a toy MC study to find the

value of the width with the smallest bias. All parameters, including mean, two sigma of
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double Gaussian MC fit are shown in Figure 4.2 and Figure 4.3 (in several pT ranges for pp

collisions). Figure 4.5 –Figure 4.7 show the signal extraction with the default fit function in

both pp and PbPb collisions with three centrality ranges. The red line represents the signal

on top of the background, while the blue dashed line is the fit function for the background.

The distribution of swapped component is broad (about 30 times broader) as shown in

Figure 4.1 and cannot be distinguished from the combinatorial background. We thus use the

Chebyshev polynomial function to represent the combination of the swapped component and

the combinatorial background. Figure 4.1 shows the mass distribution of the gen-matched

signal as well as the swapped component.

4.3 Acceptance And Efficiency Correction

Acceptance and efficiency corrections are applied to the extracted inclusive Λ+
c yields

in order to get the corrected spectra. In this section, we present the acceptance×efficiency

product as a function of pT of inclusive Λ+
c . The studies are performed using PYTHIA8

samples for pp and PYTHIA+HYDJET samples for PbPb collisions.

The correction factor that is relevant for the cross section is the acceptance efficiency.

However, to present the effect of acceptance by itself, we also provide the acceptance as a

function of pT . The acceptance (α) is defined as the fraction of Λ+
c generated in |y| < 1 that

have three tracks that fullfill the initial single track acceptance selections (i.e., pT >0.7 GeV/c

(pp) or 1.0 GeV/c (PbPb) and |η| < 1.2). Figure 4.8 shows α as a function of Λ+
c pT in pp

(upper left) and PbPb collisions in 0–100% (upper right), 0–30% (lower left) and 30–100%

(lower right) centrality bins. For all centrality ranges in PbPb collisions, the acceptances are

identical as expected. The acceptance in pp is higher than the one in PbPb for pT = 10–20

GeV/c due to looser track pT cuts. It is confirmed by assigning the same track pT cut where

the pp and PbPb acceptance are essentially the same.

The reconstruction efficiency εreco is defined as the fraction of reconstructed Λ+
c candidates

with reconstructed and selected tracks that fullfill the Λ+
c selection criteria which are the
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Figure 4.1. The Mass Distribution Of Gen-match Signal And The Swapped
Component For pp In pT = 10–20 GeV/c. The Red Points Are The Gen-
matched Signal And The Blue Points Are Swapped Component.
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optimized cuts from TMVA training of each pT bins. There are four sub-channels for this

channel, so when we calculate the acceptance×efficiency product, we weight Aεreco of each

sub-channel as:

αεreco =
∑4

n=1 αiεreco(i) × Bi∑4
n=1 Bi

, (4.1)

We do the centrality reweight and normalized by Ncoll to account for the following facts:

1) there is a difference in centrality distributions between data and MC for PbPb collisions;

2) and there is exactly one signal in each simulated event, while more in real data.
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Figure 4.7. Λ+
c Signal Extraction In PbPb Collisions For pT Range 10–20

GeV/c In Centrality Class 0–100% (left), 0–30% (Middle) And 30–100%
(Right).The Red Line Is The Function For Foreground And The Blue Dashed
Line Is The Function For The Background.

When calculating αεreco, a pT weight is included to avoid the difference between the pT

shapes from the simulation and real data. The reweight is defined as follows:

weight = Λ+
c pT spectrum

gen-level Λ+
c pT spectrum

(4.2)

For pp, we do the pT reweight as discussed above. The pT weight is done for several times

until the values of αε is converged. But for PbPb, we only have one pT bin for centrality

ranges 0–100%, 0–30% and 30–100%. The pT function is obtained via the mT scaling from

the measurement of D0 invariant yield in 0–100% centrality[41 ], [64 ] since this is the only

centrality bin where both Λ+
c and D0 have results. Under this scaling assumption, the

invariant yields of Λ+
c and D0 vs transverse mass mT =

√
p2

T +m2 are the same. From

m2(Λ+
c ) + p2

T (Λ+
c ) = m2(D0) + p2

T (D0), the invariant yield distribution for Λ+
c from D0 can

be obtained. Figure 4.9 and Figure 4.10 show the invariant yield of prompt and nonprompt

Λ+
c (normalized by TAA ) from mT scaling. The mT scaling is not used in pp collisions,

because at low pT , there could be significant medium effect according to the model.

There is one additional correction applied to αεreco for the PbPb data set. Previous

CMS results have found more suppression for prompt than nonprompt D0 mesons [41 ], [64 ],

which can be quantified for 10 < pT < 20 GeV/c as Rnonprompt
AA /Rprompt

AA = 1.66 ± 0.38. As

nonprompt baryons tend to have greater pT and decay farther from the collision point than

50



Figure 4.8. The Λ+
c Acceptance As A Function Of pT In pp Collision As Well

As PbPb In 0–30%, 0–100% And 30–100% Centrality Bins.
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Figure 4.9. Invariant Yield Of Prompt Λ+
c Derived From mT Scaling Of Prompt D0.
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prompt baryons, αεreco is larger for nonprompt baryons. Changing the nonprompt fraction

to account for the different suppression increases αεreco by 15%.

Figure 4.11 shows the acceptance×efficiency for both pp and PbPb (all centrality bins).

Because the optimized cuts for pp are looser than PbPb and the multiplicity for pp is smaller

than that of PbPb collisions, the acceptance×efficiency for pp is higher than PbPb as we

expected.

4.4 Systematic Uncertainties

This section presents the studies of systematic uncertainties. Systematic uncertainties

arise from the extraction of the raw signal yield, the ability of the MC simulation to reproduce

the combined acceptance and efficiency, the branching fraction of the decay mode, and the

integrated luminosity [1 ]. The systematic uncertainty studies are discussed in detail below:

• The systematic uncertainty in the signal yields is obtained by varying the modeling func-

tions that are used for the signal and background contributions.

• The background function is changed from the default third- to second- and fourth-

order Chebyshev polynomials. The maximum difference in yield between these

two alternative functions and the default fit function is taken as the systematic

uncertainty.

• The default signal model function is the sum of two Gaussian functions with param-

eters chosen as described in Section 4.2 . For the pp (PbPb) collision data, the

alternative model is a triple (single) Gaussian function with similar procedures

used for the parameters.

• As the signal width is fixed for 5–6 GeV/c in pp collisions, an additional systematic

uncertainty is assessed by varying the width by ±40%, corresponding to the

maximum deviations with respect to the simulation observed in other pT bins in

pp and PbPb collisions.
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• The uncertainty measures the effect of the selection criteria variation. We define a double

ratio as:

DR = NData(varied)
NData(nominal)

/
NMC(varied)
NMC(nominal)

, (4.3)

whereNData(nominal) andNData(varied) are the yields obtained from data using the de-

fault and alternative selection criteria, respectively, andNMC(nominal) andNMC(varied)

are the corresponding yields from the simulated events.

For each of the topological selection criteria, the double ratio is evaluated at many

different values of the selection criterion. For all but the α cut in PbPb collisions,

DR is plotted as a function of the selection value and fit to a linear function. The

difference between unity and the value of the fitted line at the point where no selection

is applied, is taken as the systematic uncertainty. For the α requirement in PbPb

collisions, the systematic uncertainty is obtained from the biggest differences between

unity and the value of DR from all of the alternative selection values. Combining the

results of the three topological selection criteria systematic uncertainties in quadrature

results in final uncertainties due to selection cut for both pp and PbPb collisions [1 ].

• a potential mismodeling of the pT distribution of Λ+
c baryons because αε is strongly de-

pendent on the Λ+
c pT . In pp collisions, the default pT shape is derived from the data.

For PbPb collisions, the default pT shape is obtained from mT scaling of the measured

D0 pT spectrum. For each data set, two alternative pT spectra, one from PYTHIA8

and one from PYTHIA8 with color reconnection (will be described in Section 4.5 ) are

considered and the maximum deviation in Aε is taken as the systematic uncertainty [1 ].

• imprecise knowledge of the resonant substructure of the pK− π+ decay mode [2 ]. The

αε is the weighted sum of the four known sub-channels. The branching ratio for each

sub-channel has an uncertainty [2 ]. The systematic uncertainty associated with this is

evaluated by determining αε for each sub-channel and randomly adjusting the weights

by the uncertainties of each branching fraction. The systematic uncertainty is obtained
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from the standard deviation of a Gaussian fit to the different average αε values for both

pp and PbPb events [1 ].

• the track reconstruction efficiency, which is 4% for pp collisions [41 ] and 5% for PbPb col-

lisions [65 ]. As there are three tracks in the Λ+
c decay, the corresponding uncertainties

on the measured pT spectra are 12 and 15% for pp and PbPb, respectively, while for

the Λ+
c /D

0 production ratio, the uncertainties are 4 and 5%, respectively [1 ].

• possible mismodeling of the nonprompt component, namely Λ+
c from hadron decays,

in the inclusive Λ+
c sample. The inclusive αε is the weighted sum of prompt and

nonprompt αε according to the prompt and nonprompt fractions. As found using the

standard PYTHIA8 MC sample, the nonprompt αε is generally 3-4 times larger than

the prompt αε and so an incorrect nonprompt fraction in PYTHIA8 will result in

an incorrect αε for the inclusive sample. To evaluate this systematic uncertainty, an

alternative method is used to obtain the final result based on a fixed-order plus next-

to-leading logarithm (FONLL) calculation [66 ]. Since there is no direct predictions

for Λ+
c cross sections in FONLL, a generator-only PYTHIA8 sample of nonprompt

Λ+
c events is reweighted to match the pT -differential hadron cross section from a

fixed-order plus next-to-leading logarithm (FONLL) calculation [66 ]. The resulting

pT -differential cross section for nonprompt Λ+
c baryons is multiplied by the appropriate

luminosity, branching fractions, and αε for nonprompt Λ+
c events to obtain an estimate

of the number of reconstructed nonprompt Λ+
c baryons in each pT bin. Subtracting

this value from the measured number of reconstructed Λ+
c baryons gives the number

of reconstructed prompt Λ+
c baryons. These reconstructed prompt yields are then

corrected using the prompt αε as well as luminosity and branching fractions to estimate

the pT -differential cross section for prompt Λ+
c baryons. Finally, the two cross sections

give an alternative estimate of the nonprompt fraction in each pT bin, and therefore an

alternative estimate of the weighted inclusive αε value. The systematic uncertainty is

taken as the difference between the nominal and alternative αε values. Besides the same

method which is applied to pp collision for PbPb collisions, an additional systematic
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uncertainty is assessed by taking the difference between applying and not applying the

correction for different values of RAA for nonprompt and prompt Λ+
c baryons [1 ].

• The overall Λ+
c →pK− π+ branching fraction uncertainty is 5.3% [2 ]. The uncertainties

in the integrated luminosity in pp collisions and the MB selection efficiency in PbPb

collisions are 2.3% [67 ] and 2.0% [68 ], respectively. The uncertainties in TAA are listed

in Table 4.5 .

For the measurement of the pT spectra, the uncertainties associated with the Λ+
c →pK−

π+ branching fraction and subresonant contributions, the luminosity and MB selection ef-

ficiency, and the nonprompt fraction contribute only to the overall normalization and are

labeled global uncertainties. Adding these contributions in quadrature yields global uncer-

tainties of 21% (31%) for pp (PbPb) collisions. In measuring the nuclear modification factor

RAA, the uncertainties associated with the branching fraction and subresonant contributions

cancel and the nonprompt fraction uncertainty partially cancels. In calculating the Λ+
c /D

0

production ratio, the uncertainties associated with D0 from the yield extraction, selection

criteria efficiency, and pT shape are obtained from Ref. [41 ], while the uncertainties in the

integrated luminosity in pp collisions and the MB selection efficiency in PbPb collisions can-

cel [1 ]. The overview for the relative systematic uncertainties for all the measurements are

in Tab. 4.6 -4.10 .

Table 4.5. Summary Of The 〈Ncoll〉, 〈TAA〉, And 〈Npart〉 Values For Three
PbPb Centrality Ranges At 5.02 TeV.

Centrality 〈TAA〉[µb−1] 〈Npart〉 〈Ncoll〉
0–30% 15.41+0.33

−0.47 270.7+3.2
−3.4 1079+74

−78
30–100% 1.41+0.09

−0.06 46.8+2.4
−1.2 98+8

−6
0–100% 5.61+0.16

−0.19 114.0+2.6
−2.6 393+26

−28

4.5 Results

This section presents the pT -differential cross section and RAA of inclusive Λ+
c in both

pp and PbPb collisions (within three centrality classes), and the Λ+
c /D

0 production ratio in

both pp and PbPb collisions (within centrality: 0–100%).
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Table 4.6. Summary Of Relative Systematic Uncertainties Of Inclusive Λ+
c

Cross Section In pp Collisions At 5.02 TeV With CMS 2015 Data.
Source pT interval(GeV/c)

5–6 6–8 8–10 10–20
Inv. mass fit(Background PDF) 5.4% 4.4% 6.6% 10.2%

Inv. mass fit(Signal PDF) 27.9% 4.0% 4.7% 3.2%
Tracking efficiency 12%
Selection efficiency 5.6%

MC pT shape 0.1% 0.7% 0.5% 2.6%
Total bin by bin 31.4% 14.5% 15.5% 17.2%

αε 8.1%
nonprompt fraction 18%

Luminosity 2.3%
Branching ratio 5.3%

Table 4.7. Summary Of Relative Systematic Uncertainties Of Inclusive Λ+
c

Differential Yield From Data For 5.02 TeV PbPb Collisions With Three Cen-
trality Ranges With CMS 2015 Data.

Source PbPb 30–100% PbPb 0–30% PbPb 0–100%
10–20GeV/c 10–20GeV/c 10–20GeV/c

Inv. mass fit(Background PDF) 8.6% 6.6% 9.0%
Inv. mass fit(Signal PDF) 3.1% 3.7% 2.1%

Tracking efficiency 15%
Selection efficiency 18.9%

MC pT shape 5.2%
Total bin by bin 26.3% 25.8% 26.3%

αε 8.1%
nonprompt fraction 29%

Nevents PbPb 2%
Branching ratio 5.3%
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Table 4.8. Summary Of Relative Systematic Uncertainties From Data For
Inclusive Λ+

c RAA At 5.02 TeV PbPb Collisions For Centrality 0–100%, 0–30%
And 30–100% With CMS 2015 Data.

Source PbPb 30–100% PbPb 0–30% PbPb 0–100%
10–20GeV/c 10–20GeV/c 10–20GeV/c

Inv. mass fit pp(Background PDF) 10.2% 10.2% 10.2%
Inv. mass fit pp(Signal PDF) 3.2% 3.2% 3.2%

Inv. mass fit PbPb(Background PDF) 8.6% 6.6% 9.0%
Inv. mass fit PbPb(Signal PDF) 3.1% 3.7% 2.1%

Tracking efficiency 19%
Selection efficiency pp 5.6%

Selection efficiency PbPb 18.9%
MC pT shape pp 2.6% 2.6% 2.6%

MC pT shape PbPb 5.2% 5.2% 5.2%
Total bin by bin 31.3% 30.9% 31.4%

nonprompt fraction 20.9%
Luminosity 2.3%
Nevents PbPb 2%

Table 4.9. Summary Of Relative Systematic Uncertainties For The Λ+
c /D

0

(Inclusive Λ+
c And Prompt D0) Production Ratio In pp Collisions At 5.02 TeV

With CMS 2015 Data.
Source pT interval (GeV/c)

5–6 6–8 8–10 10–20
Inv. mass fit Λ+

c (Background PDF) 5.4% 4.4% 6.6% 10.2%
Inv. mass fit Λ+

c (Signal PDF) 27.9% 4.0% 4.7% 3.2%
Inv. mass fit D0 3% 3% 1.7% 4.0%
Tracking efficiency 4%

Selection efficiency Λ+
c 5.6%

Selection efficiency D0 3.6%
MC pT shape Λ+

c 0.1% 0.7% 0.5% 2.6%
MC pT shape D0 2.0% 1.0% 1.0% 1.0%
Total bin by bin 29.7% 10.3% 11.4% 14.1%

αε 8.1%
nonprompt fraction 18%

B (Λ+
c ) 5.3%

B (D0) 1.3%
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Table 4.10. Summary Of Relative Systematic Uncertainties For The Λ+
c /D

0

(Inclusive Λ+
c And Prompt D0) Production Ratio In PbPb Collisions At 5.02

TeV In The Centrality Range 0–100% With CMS 2015 Data.
Source pT interval (GeV/c)

10–20
Inv. mass fit Λ+

c (Background PDF) 9.0%
Inv. mass fit Λ+

c (Signal PDF) 8.0%
Inv. mass fit D0 6.5%
Tracking efficiency 5%

Selection efficiency Λ+
c 18.9%

Selection efficiency D0 1%
MC pT shape Λ+

c 5.2%
MC pT shape D0 3.5%
Total bin by bin 23.5%

αε 7.9%
nonprompt fraction 29%

B (Λ+
c ) 5.3%

B (D0) 1.3%
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The inclusive Λ+
c pT -differential cross section in pp collisions is defined as

dσΛ+
c

pp

dpT

∣∣∣∣∣∣
|y|<1

= 1
2L∆pT B

NΛ+
c

pp ||y|<1

αε
, (4.4)

where NΛ+
c

pp ||y|<1 is the Λ+
c yield extracted in each pT bin, L is the integrated luminosity,

∆pT is the width of each pT bin, B is the branching ratio of the decay, and αε is the product

of the acceptance and efficiency. The factor of 1
2 accounts for averaging the particle and

antiparticle contributions.

The inclusive Λ+
c cross section in PbPb collisions is presented as

1
〈TAA〉

dNΛ+
c

PbPb
dpT

∣∣∣∣∣∣
|y|<1

= 1
〈TAA〉

1
2Nevents∆pT B

NΛ+
c

PbPb||y|<1

αε
, (4.5)

where Nevents is the number of MB events used for the analysis and 〈TAA〉 is the nuclear

overlap function, which is the average number of nucleon-nucleon (NN) binary collisions

(〈Ncoll〉) divided by the NN cross section, and can be interpreted as the NN-equivalent

integrated luminosity per heavy ion collision.

The values of 〈TAA〉, 〈Ncoll〉, and the average number of participating nucleons (〈Npart〉),

generated with a Glauber model [28 ], are the averages of these quantities over events in the

given centrality range, and are listed in Table 4.5 .

Figure 4.12 shows the pT -differential cross section of inclusive Λ+
c baryon production in

pp collisions for the range of 5 < pT < 20 GeV/c and the TAA-scaled yields in PbPb collisions

for the range of 10 < pT < 20 GeV/c, for three centrality classes. The 21% (31%) normal-

ization uncertainty for the pp (PbPb) results is not included in the boxes representing the

systematic uncertainties for each data point. While the shape of the pT distribution in pp

collisions is consistent with the inclusive production calculation from PYTHIA8 using tune

CUETP8M1 and activating the “SoftQCD:nondiffractive” processes, the data are systemati-

cally higher. The hadronization in PYTHIA8 can be modified by adding a color reconnection

(CR) mechanism in which the final partons in the string fragmentation are considered to be

color connected in such a way that the total string length becomes as short as possible [69 ].

The calculations using the recommended color reconnection model from Ref. [69 ] are consis-
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tent with our pT -differential cross section in pp collisions. The pT -differential cross section in

pp collisions is also compared to the GM-VFNS perturbative QCD calculations [70 ], which

includes only prompt Λ+
c baryon production. The GM-VFNS prediction is significantly be-

low our data for pT < 10 GeV/c, similar to the difference found by ALICE [48 ]. PYTHIA8

predicts that 8–15% of generated Λ+
c baryons arise from hadrons, with the low (high) value

corresponding to the Λ+
c pT interval 5 < pT < 6 GeV/c (10 < pT < 20 GeV/c). There-

fore, accounting for the effects of nonprompt Λ+
c production will only marginally reduce the

disagreement with the GM-VFNS prediction [1 ].

The nuclear modification factor, RAA of Λ+
c is defined as the followings:

RAA(pT ) = 1
〈TAA〉

dNΛ+
c

PbPb
dpT

/
dσΛ+

c
pp

dpT

. (4.6)

The nuclear modification factor RAA for inclusive Λ+
c baryons in the pT range 10–20

GeV/c is shown in Fig. 4.13 as a function of the number of participating nucleons 〈Npart〉 for

PbPb collisions. The results suggest that Λ+
c is suppressed in PbPb collisions for pT > 10

GeV/c, but no conclusion can be drawn because of the large uncertainties. The difference in

RAA values between the 0–30% and 30–100% centrality ranges is consistent with an enhanced

suppression in the more central PbPb collisions [1 ].

Figure 4.14 shows the Λ+
c /D

0 production ratio as a function of pT for pp collisions and

PbPb collisions in the centrality range 0–100%. The production ratio found from pp collisions

is similar in shape versus pT but about three times larger in magnitude compared to the

calculation from PYTHIA 8.212 tune CUETP8M1. Results using the Monash 2013 [71 ]

tune are found to be consistent with those from the CUETP8M1 tune. Besides providing

a reasonable description of Λ+
c baryon pT -differential cross sections, Fig. 4.14 shows that

calculations using a color reconnection model are consistent with our results for the Λ+
c /D

0

production ratio in pp collisions [1 ].
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Figure 4.12. The pT -differential Cross Sections For Inclusive Λ+
c Production

In pp Collisions And The TAA-scaled Yields For Three Centrality Regions Of
PbPb Collisions. The Boxes And Error Bars Represent The Systematic And
Statistical Uncertainties, Respectively. The PbPb Data Points Are Shifted
In The Horizontal Axis For Clarity. Predictions For pp Collisions Are Dis-
played For PYTHIA8 With The CUETP8M1 Tune (Open Crosses), PYTHIA8
With Color Reconnection [69 ] (Open Stars), And GM-VFNS [70 ] (Open Cir-
cles Labeled “JHEP 12 (2017) 021”) Along With Ratios To The Data In The
Lower Two Panels. The PYTHIA8 (GM-VFNS) Predictions Are For Inclu-
sive (Prompt) Λ+

c Production. The Error Bars On The GM-VFNS Prediction
Account For The Scale Variation Uncertainty. The Lower Panels Show The
Data-to-prediction Ratio For pp Collisions With Inner And Outer Error Bars
Corresponding To The Statistical And Total Uncertainty In The Data, Re-
spectively, And The Shaded Box At Unity Indicating The 21% Normalization
Uncertainty. The Shaded Boxes In The Bottom Panel Represent The GM-
VFNS Uncertainty. This Figure Is Taken From Ref. [1 ].
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5. PRODUCTION OF PROMPT Λ+
c IN PP AND PBPB

COLLISIONS AT 5.02 TEV WITH 2017 AND 2018 CMS DATA

This chapter presents the details of the measurements of prompt Λ+
c with 2017 and 2018

CMS data. Since the luminosity of 2017 pp and 2018 PbPb is 6 and 13 times larger than

2015 CMS data, respectively, lower and higher pT ranges could be achieved and the prompt

component of Λ+
c could be distinguished from data.

5.1 Data Sets And Monte Carlo Simulation

This analysis is performed using 2017 pp and 2018 PbPb data at √
sNN = 5.02 TeV. The

luminosity for Zerobias pp and MinimumBias PbPb is 252 nb−1 and 0.58 nb−1, respectively.

Details of the data sets for prompt Λ+
c analysis are summarized in Table 5.1 . The good

Table 5.1. CMS 2017 And 2018 Data Sets Used In The Prompt Λ+
c Production Analysis.

sample DAS name Global Tag

pp /HIZeroBias1-12/Run2017G-17Nov2017-v1/AOD 94X_dataRun2_
ReReco_EOY17_v6

PbPb /HIMinimumBias0-19/HIRun2018A-04Apr2019-v1/AOD 103X_dataRun2_Prompt_
fixEcalADCToGeV_v1

quality of the data is ensured by applying the JSON file for pp and PbPb respectively.

(JSON files has been introduced in 4.1 .)

• Cert_306546-306826_5TeV_EOY2017ReReco_Collisions17_JSON.txt

• Cert_326381-327564_HI_PromptReco_Collisions18_JSON.txt

pp and PbPb samples were reconstructed using CMSSW version CMSSW_9_4_10 and

CMSSW_10_3_3_patch1.
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5.1.1 Event Selection

This analysis uses samples collected from Zero-bias and Minimum-bias triggers. Event

selections are used to reject noise and beam-background event.

The following offline event selection criteria are applied to each PbPb event to remove

background from the sources such as beam-gas collisions, beam scraping events and electro-

magnetic interactions (ultra-peripheral collisions):

• pprimaryVertexFilter: In the B=3.8 T data, where tracks are reconstructed, requirement

of a reconstructed 2-track primary vertex was imposed. In central events, the minimum

pT requirement was increased, and the tracking region was narrowed down, to keep

the maximum number of fitted tracks stable around 40–60, ensuring time-efficient

reconstruction. When tracks are not reconstructed, i.e. B= 0 T, the z-vertex position is

obtained by maximizing the compatibility of pixel cluster length and global z-positions

with a vertex hypothesis. The vertex is only accepted of it lies between ±25 cm from

the center of the detector. The requirement of an accepted vertex removes non-inelastic

collision events (e.g. beam-gas UPC) with large HF energy deposits but very few pixel

hits.

• phfCoincFilter2Th4: This filter requires at least 2 towers on each side of the interac-

tion point in the HF with tower above 4 GeV threshold. The requirement removes

approximately 99% of UPC events.

• pclusterCompatibilityFilter: A particle traversing a pixel module at some angle leave a

cluster with a width proportional to its angle of incidence. The expected width of the

cluster can be determined by the particle pseudrapidity and z-position of the collision

vertex. For a given z-position, one can determine the number of clusters in an event

that have a width compatible with the hypothesis that the collision vertex was at the

z-position. One can scan the z-axis to determine how many clusters are compatible

with a vertex at each position. This technique can be used to locate the z-position

of a collision vertex, or determine if a collision likely occurred outside the interaction

region (i.e. beam scraping).
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• −15 < PV z < 15: The primary vertex is required to be between ± 15 cm from the center

of the detector in the z-direction.

5.2 Signal Extraction

In this section, Λ+
c candidates and signal yield extraction for pp and PbPb collision are

described. Raw yield are extracted in each pT interval via unbinned maximum likelihood fit

to the invariant mass distribution. The fit function consists of the following components:

• a double Gaussian function with same mean but different widths and strengths to model

the signal shape determined from MC in the each pT bin for pp collisions; a triple

Gaussian function with same mean but different widths and strengths to model the

signal shape determined from MC in the each pT bin for PbPb collisions.

• a Chebyshev polynomial function to model the combinatorial background and the swapped

Λ+
c component for both pp and PbPb collisions. Previous CMS inclusive Λ+

c analysis [1 ]

already shows that the distribution of swapped component is broad (about 30 times

broader) and the shape is very closed to the combinatorial background. The detailed

information is in 4.2 . The order of the Chebyshev polynomial function is decided

by LLR test. The default background fit function for PbPb collisions is Chebyshev

pol3 function. The default background fit function for pp collisions is Chebyshev pol1,

Chebyshev pol2 and Chebyshev pol3 for 3–5 GeV/c, 5–8 GeV/c, and 8–30 GeV/c.

We use the same strategy as that in the inclusive Λ+
c analysis [1 ] (which is described in

4.2 ): The signal shape is defined by the MC, and the float width parameter is to accommodate

the difference of the signal shape between MC and data in all pT bins.

5.3 Prompt Λ+
c Extraction by DCA Fit

The prompt and nonprompt Λ+
c are distinguished by fitting the data mix Λ+

c DCA

distribution by a mixture of prompt and nonprompt Λ+
c DCA from MC samples. The

Λ+
c DCA distributions for prompt and nonprompt Λ+

c from the MC are expected to be

different. The prompt part should have a narrower distribution near 0 while the nonprompt
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Figure 5.1. Invariant Mass Distribution Of Λ+
c Candidates With pT=3–4

GeV/c (Left), 4–5 GeV/c (Middle) And 5–6 GeV/c In pp Collisions. The
Solid Line Represents The Full Fit And The Dashed Line Represents The
Background Component.
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Figure 5.2. Invariant Mass Distribution Of Λ+
c Candidates With pT=6–8

GeV/c (Left), 8–10 GeV/c (Middle) And 10–12.5 GeV/c In pp Collisions. The
Solid Line Represents The Full Fit And The Dashed Line Represents The
Background Component.

distribution is much wider. There could be a MC-data difference which could influence the

prompt and nonprompt Λ+
c yields obtained by the Λ+

c DCA fit. To estimate this effect, the

resolution from MC is scaled by an arbitrary number, and see which scale will lead to the

best 2 component Λ+
c DCA fit (details below).

The best MC resolution effect scale to match the data is determined by a fit shown in

Fig. 5.17 . The best scale is at the minimum of χ2 vs. scale. The statistic error of the

fitted prompt ratio is assigned as the statistic error and the systematic error is assigned as
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Figure 5.3. Invariant Mass Distribution of Λ+
c Candidates With pT= 12.5–15

GeV/c (Left), 15–20 GeV/c (Middle) And 20–30 GeV/c In pp Collisions. The
Solid Line Represents The Full Fit And The Dashed Line Represents The
Background Component.
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Figure 5.4. Invariant Mass Distribution Of Λ+
c Candidates With pT= 6–8

GeV/c (Left), 8–10 GeV/c (Middle) And 10–20 GeV/c In PbPb Collisions
Within The Centrality Range 0–90%. The Solid Line Represents The Full Fit
And The Dashed Line Represents The Background Component.

the difference in prompt ratio between the minimal χ2 and minimal χ2+2.3 [2 ] or the best

smearing DCA fit and DCA significance fit without any smearing .

The statistic of pT > 15 GeV/c is quite low, and the signal shape is not obvious. The

value of number of signal minus the statistical error hits a negative value, which leads to

unreasonable fitted prompt ratio. Also, it is not able to extract the signal number for

3 < pT < 4 GeV/c. The PYTHIA prompt ratio shows that the prompt ratio for pT > 15

GeV/c is closed to that of its neighbour bin (12.5 < pT < 15 GeV/c), and also same case for
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Figure 5.5. Invariant Mass Distribution Of Λ+
c Candidates With pT= 12.5–15

GeV/c (Left), 15–20 GeV/c (Middle) And 20–30 GeV/c In PbPb Collisions
Within The Centrality Range 0–90%. The Solid Line Represents The Full Fit
And The Dashed Line Represents The Background Component.
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Figure 5.6. Invariant Mass Distribution Of Λ+
c Candidates With pT= 30–40

GeV/c (Left) In Centrality Range 0–90%, 10–12.5 GeV/c (Middle) And 12.5–15
GeV/c In PbPb Collisions Within The Centrality Range 0–10%. The Solid
Line Represents The Full Fit And The Dashed Line Represents The Back-
ground Component.

3 < pT < 4 GeV/c. Thus, the prompt ratio for 15–30 GeV/c is quoted as that for 12.5–15

GeV/c, and the prompt ratio for 3–4 GeV/c is quoted as that for 4–5 GeV/c. The systematic

uncertainty due to prompt ratio for these three pT bins (3–4, 15–20, and 20–30 GeV/c) will

be assigned as the biggest difference between the quoted prompt ratio and that predicted

by PYTHIA or next-to-leading logarithm (FONLL). There is no FONLL nonprompt Λ+
c

cross section predictions, thus, a generator-only PYTHIA8 sample of nonprompt Λ+
c events
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Figure 5.7. Invariant Mass Distribution Of Λ+
c Candidates With pT= 15–20

GeV/c (Left), 20–30 GeV/c (Middle) And 30–40 GeV/c In PbPb Collisions
Within The Centrality Range 0–10%. The Solid Line Represents The Full Fit
And The Dashed Line Represents The Background Component.
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Figure 5.8. Invariant Mass Distribution Of Λ+
c Candidates With pT= 6–8

GeV/c (Left), 8–10 GeV/c (Middle) And 10–12.5 GeV/c In PbPb Collisions
Within The Centrality Range 30–50%. The Solid Line Represents The Full
Fit And The Dashed Line Represents The Background Component.

is reweighted to match the pT -differential b hadron cross section from FONLL calculation.

The resulting pT -differential cross section for nonprompt Λ+
c baryons is multiplied by the

appropriate luminosity, branching fractions, and αε for nonprompt Λ+
c events to obtain an

estimate of the nonprompt ratio of Λ+
c . All the detailed information is listed in Table 5.2 .

The s/b is so small for pT=6–8 GeV/c, and 10–12.5 GeV/c in centrality class 0–90% and

0–10% in PbPb collisions that these two pT bins could not do DCA fit. The prompt ratios
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Figure 5.9. Invariant Mass Distribution Of Λ+
c Candidates With pT= 12.5–15

GeV/c (Left), 15–20 GeV/c (Middle) And 20–30 GeV/c In PbPb Collisions
Within The Centrality Range 30–50%. The Solid Line Represents The Full
Fit And The Dashed Line Represents The Background Component.
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Figure 5.10. Invariant Mass Distribution Of Λ+
c Candidates With pT= 30–40

GeV/c (Left) In Centrality Range 30–50%, 6–8 GeV/c (Middle) And 8–10
GeV/c In PbPb Collisions Within The Centrality Range 10–30%. The Solid
Line Represents The Full Fit And The Dashed Line Represents The Back-
ground Component.

of these two pT bins are estimated from the prompt ratios in the corresponding pT bins in

pp collisions.
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Figure 5.11. Invariant Mass Distribution Of Λ+
c Candidates With pT=

10–12.5 GeV/c (Left), 12.5–15 GeV/c (Middle) And 15–20 GeV/c In PbPb
Collisions Within The Centrality Range 10–30%. The Solid Line Represents
The Full Fit And The Dashed Line Represents The Background Component.
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Figure 5.12. Invariant Mass Distribution Of Λ+
c Candidates With pT= 20–30

GeV/c (Left), 30–40 GeV/c (Middle) Within The Centrality Range 10–30%
And 5–6 GeV/c In PbPb Collisions Within The Centrality Range 50–90%.
The Solid Line Represents The Full Fit And The Dashed Line Represents The
Background Component.

where, P represents prompt Λ+
c and NP represents nonprompt Λ+

c . Previous CMS results

have found more suppression for prompt than nonprompt D0 mesons [41 ], [64 ], which can

be quantified for 6–8 GeV/c (0–100% centrality) as RAA(P )D0
RAA(NP )D0

= 0.675 ± 0.219. This ratio

for 10–12.5 GeV/c (0–10% centrality) can be quantified as 0.83 ± 0.10. The Λ+
c /D

0 in both

pp and PbPb is estimated from ALICE results [48 ], [49 ].
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Figure 5.13. Invariant Mass Distribution Of Λ+
c Candidates With pT= 6–8

GeV/c (Left), 8–10 GeV/c (Middle) And 10–12.5 GeV/c In PbPb Collisions
Within The Centrality Range 50–90%. The Solid Line Represents The Full
Fit And The Dashed Line Represents The Background Component.

2.2 2.25 2.3 2.35 2.4

)2 (GeV/cπpKm

2500

3000

3500

4000

4500

2
E

ve
nt

s/
0.

00
8 

G
eV

/c

 < 15
T

12.5 < p
−
CΛ + +

CΛ

  - 187
 + 207Yield: 1141

Cent. 50-90%

|y| < 1

CMS  (5.02 TeV PbPb)-10.58 nb

Work in progress

Data
Signal+Background
Background

2.15 2.2 2.25 2.3 2.35 2.4

)2 (GeV/cπpKm

1200

1400

1600

1800

2000

2200

2400

2600

2800

3000

3200

2
E

ve
nt

s/
0.

00
8 

G
eV

/c

 < 20
T

15 < p
−
CΛ + +

CΛ

  - 117
 + 141Yield: 593

Cent. 50-90%

|y| < 1

CMS  (5.02 TeV PbPb)-10.58 nb

Work in progress

Data
Signal+Background
Background

2.15 2.2 2.25 2.3 2.35 2.4

)2 (GeV/cπpKm

800

1000

1200

1400

1600

1800

2
E

ve
nt

s/
0.

00
8 

G
eV

/c

 < 30
T

20 < p
−
CΛ + +

CΛ

  - 79
 + 80Yield: 539

Cent. 50-90%

|y| < 1

CMS  (5.02 TeV PbPb)-10.58 nb

Work in progress

Data
Signal+Background
Background

Figure 5.14. Invariant Mass Distribution Of Λ+
c Candidates With pT=

12.5–15 GeV/c (Left), 15–20 GeV/c (Middle) And 20–30 GeV/c In PbPb Col-
lisions Within The Centrality Range 50–90%. The Solid Line Represents The
Full Fit And The Dashed Line Represents The Background Component.

The uncertainty due to prompt ratio for these two pT bins will be assigned as the quadratic

sum of the uncertainty from RAA ratio and pp prompt ratio. Thus the uncertainty due to

prompt ratio is 34.9% for 6–8 GeV/c in centrality range 0–90%, and 24.5% for 10–12.5 GeV/c

in centrality range 0–10%. The detailed information of the prompt ratio in PbPb collisions

within five centrality classes are shown in Tab. 5.3 and 5.4 .
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Table 5.2. This Table Shows All The Fitted Prompt Ratio Got From The
Best MC Resolution Scale Factor, The Systematic Uncertainty Due To DCA
Fit And Also The Predicted Prompt Ratio From PYTHIA8 And FNOLL In
pp Collisions For pT Bins 3–4 GeV/c, 15–20 GeV/c And 20–30 GeV/c.

pT intervals (GeV/c) fitted prompt ratio PYTHIA FNOLL uncertainty (%)
3–4 0.85 0.67 0.98 21.2
4–5 0.85 0.70 not needed 16.5
5–6 0.8 0.70 not needed 6.3
6–8 0.88 0.68 not needed 9.1
8–10 0.73 0.67 not needed 11.1

10–12.5 0.78 0.66 not needed 11.1
12.5–15 0.89 0.66 not needed 11.1
15–20 0.89 0.68 0.90 23.6
20–30 0.89 0.70 0.91 21.3

Table 5.3. This Table Shows All The Fitted Prompt Ratio Got From The
Best MC Resolution Scale Factor And The Systematic Uncertainty Due To
DCA Fit In PbPb Collisions In Centrality Class: 0–10% And 0–90%.
pT intervals (GeV/c) prompt ratio systematic uncertainty on prompt ratio

centrality class: 0–90% in PbPb
6–8 0.93 34.9%
8–10 0.9 ± 0.04 6.7%

10–12.5 0.8 ± 0.04 5%
12.5–15 0.9 ± 0.03 3.3%
15–20 0.86 ± 0.03 1.2%
20–30 0.9 ± 0.03 2.2%
30–40 0.89 ± 0.05 4.3%

centrality class: 0–10% in PbPb
10–12.5 0.68 24.5%
12.5–15 0.91 ± 0.03 6.6%
15–20 0.96 ± 0.03 6.3%
20–30 0.94 ± 0.02 1.1%
30-40 0.90 ± 0.04 4.4%
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Table 5.4. This Table Shows All The Fitted Prompt Ratio Got From The Best
MC Resolution Scale Factor And The Systematic Uncertainty Due To DCA
Fit In PbPb Collisions In Centrality Class: 10–30%, 30–50% And 50–90%.

pT intervals (GeV/c) Prompt ratio Systematic uncertainty (%)
centrality class: 10–30% in PbPb

6–8
8–10 0.79 ± 0.05 3.8

10–12.5 0.92 ± 0.05 7.6
12.5–15 0.78 ± 0.09 13.3
15–20 0.82 ± 0.04 2.4
20–30 0.90 ± 0.04 1.1
30–40 0.93 ± 0.06 7.5

centrality class: 30–50% in PbPb
6–8 0.99 ± 0.05 6.1
8–10 0.81 ± 0.05 6.2

10–12.5 0.92 ± 0.03 3.3
12.5–15 0.83 ± 0.07 9.6
15–20 0.91 ± 0.04 4.4
20–30 0.97 ± 0.05 3.1
30–40 0.90 ± 0.08 10.0

centrality class: 50–90% in PbPb
5–6
6–8 0.89 ± 0.04 11.0
8–10 0.86 ± 0.04 2.3

10–12.5 0.88 ± 0.04 2.3
12.5–15 0.92 ± 0.04 4.3
15–20 0.85 ± 0.06 10.6
20–30 0.88 ± 0.05 4.5
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Figure 5.15. The Top Pannels Of Both Plots Show Prompt + Nonprompt
Fit Of The Signal Λ+

c DCA Distribution Measured With The Invariant Mass
Fit For pT Range: 8–12.5 GeV/c In pp Collisions. The Left Plot Is With The
Best MC Resolution Scale Factor In DCA Fit. The Right Plot Is From DCA
Significance Fit Without Any Smearing, Which Is Used For Systematic Un-
certainty Estimation. The Bottom Pannels Of Both Plots Show The Data/Fit
Ratios.

5.4 Acceptance And Efficiency Correction

Acceptance and efficiency corrections are applied to the extracted Λ+
c yield in order to get

the corrected spectra. In this section, the acceptance×efficiency as a function of transverse

momentum pT of Λ+
c is presented. The studies are performed with PYTHIA8 sample for pp

and PYTHIA+HYDJET sample for PbPb.

The same strategy as that in 4.3 has been applied. Besides the pT and centrality reweight,

the PVz weight is also added to avoid the difference in PVz shape between MC and data. All

weights are done for several times until the values of αε is converged. Figure 5.18 shows the
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Figure 5.16. The Top Pannels Of Both Plots Show Prompt + Nonprompt Fit
Of The Signal Λ+

c DCA Distribution Measured With The Invariant Mass Fit
For pT Range 12.5–15 GeV/c In PbPb Collisions In Centrality Class 0–90%.
The Left Plot Is With Best MC Resolution Scale Factor. The Right Plot Is
Used For Systematic Uncertainty Estimation. The Bottom Pannels Of Both
Plots Show The Data/Fit Ratios.

acceptance times total efficiency as a function of pT for both pp and PbPb collisions within

five centrality classes.

5.5 Systematic Uncertainties

Systematic uncertainties arise from the extraction of the raw signal yield, the ability of

the MC simulation to reproduce the combined acceptance and efficiency, the prompt ratio

from DCA fit, the branching fraction of the decay mode, and the integrated luminosity. The

detailed systematic uncertainties are described in detail as follows:

The systematic uncertainty in the signal yields is obtained by varying the modeling

functions that are used for the signal and background contributions and also the fit range.
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Figure 5.17. χ2 Of Λ+
c DCA Fit Vs. MC Resolution Scale Factor For 12.5–15

GeV/c In Centrality Class 0–90% In PbPb Collisions.

The background function is changed from the default order to default order +1 Chebyshev

polynomials, with the difference in yields between alternative function and default fit function

taken as the systematic uncertainty on background fit function. When the effect of changing

the background fit function is considered, the signal shape is fixed according to the default fit

function to avoid the signal shape changing effect. The systematic uncertainty for the signal

PDF has been estimated by changing from the default signal fit function to an alternative

signal fit function, for both pp and PbPb collisions. The alternative signal fit function

is triple Gaussians, and double Gaussians for pp and PbPb collisions, respectively. The

difference in signal yields between alternative signal fit function and the default one is taken

as the systematic uncertainty on signal fit function. The systematic uncertainty for the fit

range has been estimated by changing the fit range from the default range to alternative fit

ranges, for both pp and PbPb collisions. The biggest difference in the signal yields between

nominal and alternative fit range is taken as the systematic uncertainty on the fit range.
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Figure 5.18. Acceptance Times Total Efficiency As A Function Of pT For
The pp And PbPb Analysis For Prompt Λ+

c . The Black Spots Correspond To
The Acceptance Times Total Efficiency For pp collisions. The Red Stars, Blue
Boxes, Yellow Triangles, Green Triangles And Pink Markers Correspond To
0–90%, 0–10%, 10–30%, 30–50% and 50–90% In PbPb Collisions, Respectively.

Five sources of systematic uncertainties associated with the MC modeling of the data

are evaluated. The first uncertainty measures the effect of the selection criteria variation,

the same method is applied as in section 4.4 . For each selection criteria (BDTG value or

topological selection criteria), the double ratio is evaluated at many different values of the

selection criterion. 6–10 GeV/c in PbPb collisions in 0–90% centrality class could not do the

double ratio scan due to the small s/
√
b, the uncertainties for these two pT bins are achieved

by adding the systematic uncertainty for decay length significance and vertex probability in

10–12.5 GeV/c (0–90% centrality) and that of pointing angle α in 8–10 GeV/c in quadrature.

The second uncertainty arises from a potential mismodeling of the pT distribution of Λ+
c

baryons because αε is strongly dependent on the Λ+
c pT . For both pp and PbPb collisions, the

default pT shape is derived from the data and the alternative pT spectra is from PYTHIA8
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with color reconnection (described in section 4.5 ). The deviation in αε is taken as the

systematic uncertainty.

The third uncertainty arises from imprecise knowledge of the resonant substructure of

the pK− π+ decay mode [2 ]. The procedure is described in section 4.4 .

The fourth uncertainty associated with the MC modeling of the data is the track recon-

struction efficiency, which is the same as that in section 4.4 .

The fifth uncertainty arises form the prompt ratio that is got from DCA fit. This is

explained in section 5.3 .

The overall Λ+
c →pK− π+ branching fraction uncertainty is 5.3% [2 ]. The uncertainties in

the integrated luminosity in pp collisions and the MB selection efficiency in PbPb collisions

are 1.9% [73 ] and 1.5% [68 ], respectively.

For the measurement of the pT spectra, the uncertainties associated with the Λ+
c →pK−

π+ branching fraction, tracking efficiency, the luminosity and MB selection efficiency are

labeled as global uncertainties. Adding these contributions in quadrature yields global un-

certainty of 6.8 and 7.4% for pp and PbPb collisions, respectively. In measuring the nuclear

modification factor RAA, the uncertainties associated with the branching fraction and sub-

resonant contributions cancel and the prompt fraction uncertainty (for 6–8 GeV/c in 0–90%

centrality class and 10–12.5 GeV/c in 0–10% centrality class) partially cancels. In calculating

the Λ+
c /D

0 production ratio, the uncertainties associated with D0 from the yield extraction,

selection criteria efficiency, and pT shape are obtained from Ref. [41 ], while the uncertainties

in the integrated luminosity in pp collisions and the MB selection efficiency in PbPb colli-

sions cancel. Table 5.5 -5.18 are the summary tables for relative systematic uncertainties for

each measurements for prompt Λ+
c .

5.6 Results

This section presents the pT spectrum in both pp and PbPb (5 centrality ranges), RAA,

the Λ+
c /D

0 production ratio in both pp and PbPb collisions.
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Table 5.5. Summary Of Relative Systematic Uncertainties For Prompt Λ+
c

Cross Section In pp Collisions At 5.02 TeV With CMS 2017 Data.
source pT interval (GeV/c)

3-
4

4-
5

5-
6

6-
8

8-
10

10-
12.5

12.5-
15

15-
20

20-
30

Inv. mass fit (Background) 6.9% 5.8% 1.4% 0.0% 5.4% 5.7% 1.0% 4.8% 0.7%
Inv. mass fit(Signal) 0.2% 0.1% 0.3% 5.9% 1.1% 6.4% 1.2% 0.6% 2.9%
Inv. mass fit range 11.6% 21.7% 4.2% 5.8% 7.8% 6.9% 2.3% 3.3% 8.3%
Tracking efficiency 12%
Selection efficiency 8.7% 8.7% 8.7% 13.6% 1.1% 3.5% 7.0% 8.2% 8.6%

MC pT shape 4.5% 0.8% 0.3% 0.6% 0.3% 0.4% 0.1% 0.5% 3.1%
αεreco 8.6% 8.27% 8.25% 8.43% 8.23% 8.27% 8.18% 8.07% 8.20%

prompt fraction 21.2% 16.5% 6.3% 9.1% 11.1% 11.1% 11.1% 23.6% 21.3%
Luminosity 1.9%

Branching ratio 5.3%
Total systematic uncertainty 31.3% 33.1% 19.5% 24.2% 21.4% 22.4% 20.6% 30.0% 29.3%

Table 5.6. Summary Of Relative Systematic Uncertainties For Prompt Λ+
c

Differential Yield In PbPb Collisions At 5.02 TeV For Centrality 0–90% With
CMS 2018 Data.

source pT interval (GeV/c)
6–8 8–10 10–12.5 12.5–15 15–20 20–30 30–40

Inv. mass fit(Background) 0.9% 7.5% 5.4% 0.8% 6.9% 7.7% 3.8%
Inv. mass fit(Signal) 4.8% 6.8% 4.1% 1.3% 0.9% 2.3% 0.2%
Inv. mass fit range 42.8% 23.2% 2.9% 1.3% 16.2% 19.3% 7.8%
Tracking efficiency 15%
Selection efficiency 36.2% 22.1% 6.5% 13.7% 4.6% 10.7% 20.2%

MC pT shape 1.1% 0.4% 0.8% 0.3% 0.6% 1.4% 1.1%
αεreco 8.2% 8.2% 8.3% 8.2% 8.2% 8.0% 8.0%

prompt fraction 34.9% 6.7% 5% 3.3% 1.2% 2.2% 4.3%
Number of events 1.5%
Branching ratio 5.3%
Total uncertainty 68.6% 38.7% 21.1% 22.9% 25.6% 29.6% 28.7%
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Table 5.7. Summary Of Relative Systematic Uncertainties For Prompt Λ+
c

Differential Yield In PbPb Collisions At 5.02 TeV For Centrality 0–10% With
CMS 2018 Data.

source pT interval (GeV/c)
10–12.5 12.5–15 15–20 20–30 30–40

Inv. mass fit(Background) 5.1% 10.3% 4.9% 5.9% 2.7%
Inv. mass fit(Signal) 2.9% 3.9% 4.8% 0.3% 1.4%
Inv. mass fit range 8.9% 24.5% 12.0% 11.8% 8.2%
Tracking efficiency 15%
Selection efficiency 6.5% 13.7% 4.6% 10.7% 20.2%

MC pT shape 0.02% 0.3% 1.2% 1.5% 0.3%
αεreco 8.6% 8.3% 8.2% 8.1% 8.3%

prompt fraction 24.5% 6.6% 6.3% 1.1% 4.4%
Number of events 1.5%
Branching ratio 5.3%
Total Uncertainty 32.9% 35.7% 24.0% 24.8% 28.8%

Table 5.8. Summary Of Relative Systematic Uncertainties For Prompt Λ+
c

Differential Yield In PbPb Collisions At 5.02 TeV For Centrality 10–30% With
CMS 2018 Data.

source pT interval (GeV/c)
8–10 10–12.5 12.5–15 15–20 20–30 30–40

Inv. mass fit(Background) 1.9% 1.9% 0.3% 7.2% 11.0% 0.3%
Inv. mass fit(Signal) 1.2% 1.4% 0.4% 0.6% 0.6% 0.3%
Inv. mass fit range 11.7% 20.8% 12.3% 11.2% 6.4% 16.1%
Tracking efficiency 15%
Selection efficiency 22.1% 6.5% 13.7% 4.6% 10.7% 20.2%

MC pT shape 0.3% 0.7% 0.2% 0.03% 2.0% 1.6%
αεreco 8.2% 8.7% 8.7% 8.5% 8.0% 8.2%

prompt fraction 3.8% 7.6% 13.3% 2.4% 1.1% 7.5%
Number of events 1.5%
Branching ratio 5.3%
Total uncertainty 31.1% 29.5% 29.1% 23.1% 24.5% 32.4%
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Table 5.9. Summary Of Relative Systematic Uncertainties For Prompt Λ+
c

Differential Yield In PbPb Collisions At 5.02 TeV For Centrality 30–50% With
CMS 2018 Data.

source pT interval (GeV/c)
6–8 8–10 10–12.5 12.5–15 15–20 20–30 30–40

Inv. mass fit(Background) 2.2% 7.8% 7.4% 11.4% 8.3% 0.3% 5.4%
Inv. mass fit(Signal) 6.1% 0.7% 1.6% 2.2% 0.2% 0.6% 0.5%
Inv. mass fit range 9.1% 5.4% 4.8% 11.9% 4.2% 4.3% 10.3%
Tracking efficiency 15%
Selection efficiency 36.2% 22.1% 6.5% 13.7% 4.6% 10.7% 20.2%

MC pT shape 0.9% 0.4% 0.8% 0.4% 0.5% 0.5% 1.1%
αεreco 7.9% 8.6% 8.3% 8.3% 8.3% 8.4% 8.3%

prompt fraction 6.1% 6.2% 3.3% 9.6% 4.4% 3.1% 10.0%
Number of events 1.5%
Branching ratio 5.3%
Total uncertainty 42.3% 30.8% 21.4% 29.7% 21.2% 21.7% 31.1%

Table 5.10. Summary Of Relative Systematic Uncertainties For Prompt Λ+
c

Differential Yield In PbPb Collisions At 5.02 TeV For Centrality 50–90% With
CMS 2018 Data.

2*source pT interval (GeV/c)
6–8 8–10 10–12.5 12.5–15 15–20 20–30

Inv. mass fit(Background) 0.4% 0.8% 6.4% 6.8% 11.0% 0.5%
Inv. mass fit(Signal) 4.4% 0.7% 0.9% 2.1% 2.4% 3.7%
Inv. mass fit range 12.8% 18.1% 4.6% 11.5% 13.0% 5.7%
Tracking efficiency 15%
Selection efficiency 36.2% 22.1% 6.5% 13.7% 4.6% 10.7%

MC pT shape 0.9% 0.7% 0.7% 0.3% 0.3% 0.3%
αεreco 8.2% 8.1% 8.2% 8.2% 8.2% 8.0%

prompt fraction 11.0% 2.3% 2.3% 4.3% 10.6% 4.5%
Number of events 1.5%
Branching ratio 5.3%
Total uncertainty 44.0% 33.8% 20.8% 26.7% 27.4% 22.4%
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Table 5.11. Summary Of Relative Systematic Uncertainties For Prompt Λ+
c

RAA In Centrality Class: 0–90% With CMS 2017/2018 Data.
source pT interval (GeV/c)

6–8 8–10 10–12.5 12.5–15 15–20 20–30
Inv. mass fit (pp) 8.3% 9.6% 11.0% 2.8% 5.9% 8.8%

Inv. mass fit(PbPb) 43.0% 25.3% 7.4% 2.0% 17.6% 20.9%
Tracking efficiency 19%

Selection efficiency(pp) 13.6% 1.1% 13.5% 7.0% 8.2% 8.6%
Selection efficiency(PbPb) 10.9% 10.9% 6.5% 13.7% 4.6% 20.2%

MC pT shape (pp) 0.6% 0.3% 0.4% 0.1% 0.5% 3.1%
MC pT shape (PbPb) 1.1% 0.4% 0.8% 0.3% 0.6% 1.4%

prompt fraction 32.4% 12.9% 12.2% 11.6% 23.6% 21.4%
Luminosity (pp) 1.9%

Number of events (PbPb) 1.5%
Total uncertainty 60.3% 37.2% 30.3% 27.4% 36.8% 42.8%

Table 5.12. Summary Of Relative Systematic Uncertainties For Prompt Λ+
c

RAA In Centrality Class: 0–10% With CMS 2017/2018 Data.
source pT intervals (GeV/c)

10–12.5 12.5–15 15–20 20–30
Inv. mass fit (pp) 11.0% 2.8% 5.9% 8.8%

Inv. mass fit(PbPb) 10.7% 26.9% 13.8% 13.2%
Tracking efficiency 19%

Selection efficiency(pp) 13.5% 7.0% 8.2% 8.6%
Selection efficiency(PbPb) 6.5% 13.7% 4.6% 20.2%

MC pT shape (pp) 0.4% 0.1% 0.5% 3.1%
MC pT shape (PbPb) 0.02% 0.3% 1.2% 1.5%

prompt fraction 10.0% 12.9% 24.4% 21.3%
Luminosity (pp) 1.9%

Number of events (PbPb) 1.5%
Total uncertainty 30.4% 38.7% 35.7% 39.6%
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Table 5.13. Summary Of Relative Systematic Uncertainties For Prompt Λ+
c

RAA In Centrality Class: 10–30% With CMS 2017/2018 Data.
source pT interval (GeV/c)

8–10 10–12.5 12.5–15 15–20 20–30
Inv. mass fit (pp) 9.6% 11.0% 2.8% 5.9% 8.8%

Inv. mass fit (PbPb) 12.0% 20.9% 12.3% 13.4% 12.7%
Tracking efficiency 19%

Selection efficiency (pp) 1.1% 13.5% 7.0% 8.2% 8.6%
Selection efficiency (PbPb) 10.9% 6.5% 13.7% 4.6% 20.2%

MC pT shape (pp) 0.3% 0.4% 0.1% 0.5% 3.1%
MC pT shape (PbPb) 0.3% 0.7% 0.2% 0.03% 2.0%

prompt fraction 11.7% 13.5% 17.3% 23.7% 21.3%
Luminosity (pp) 1.9%

Number of events (PbPb) 1.5%
Total uncertainty 29.3% 36.5% 32.6% 35.1% 39.4%

Table 5.14. Summary Of Relative Systematic Uncertainties For Prompt Λ+
c

RAA In Centrality Class: 30–50% With CMS 2017/2018 Data.
source pT interval (GeV/c)

6–8 8–10 10–12.5 12.5–15 15–20 20–30
Inv. mass fit (pp) 8.3% 9.6% 11.0% 2.8% 5.9% 8.8%

Inv. mass fit (PbPb) 11.2% 9.5% 9.0% 16.6% 9.3% 4.4%
Tracking efficiency 19%

Selection efficiency (pp) 13.6% 1.1% 13.5% 7.0% 8.2% 8.6%
Selection efficiency (PbPb) 10.9% 10.9% 6.5% 13.7% 4.6% 20.2%

MC pT shape (pp) 0.6% 0.3% 0.4% 0.1% 0.5% 3.1%
MC pT shape (PbPb) 0.9% 0.4% 0.8% 0.4% 0.5% 1.1%

prompt fraction 11.0% 12.7% 11.6% 14.7% 24.0% 21.5%
Luminosity (pp) 1.9%

Number of events (PbPb) 1.5%
Total uncertainty 31.4% 28.8% 30.5% 33.2% 34.0% 37.7%
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Table 5.15. Summary Of Relative Systematic Uncertainties For Prompt Λ+
c

RAA In Centrality Class: 50–90% With CMS 2017/2018 Data.
source pT interval (GeV/c)

6–8 8–10 10–12.5 12.5–15 15–20 20–30
Inv. mass fit (pp) 8.3% 9.6% 11.0% 2.8% 5.9% 8.8%

Inv. mass fit (PbPb) 13.5% 18.2% 7.9% 13.5% 17.2% 6.8%
Tracking efficiency 19%

Selection efficiency (pp) 13.6% 1.1% 13.5% 7.0% 8.2% 8.6%
Selection efficiency (PbPb) 10.9% 10.9% 6.5% 13.7% 4.6% 20.2%

MC pT shape (pp) 0.6% 0.3% 0.4% 0.1% 0.5% 3.1%
MC pT shape (PbPb) 0.9% 0.7% 0.7% 0.3% 0.3% 0.3%

prompt fraction 14.3% 11.3% 11.3% 11.9% 25.9% 21.8%
Luminosity (pp) 1.9%

Number of events (PbPb) 1.5%
Total uncertainty 33.6% 32.2% 30.1% 30.6% 38.1% 38.2%

Table 5.16. Summary Of Relative Systematic Uncertainties For Prompt
Λ+

c /D
0 In pp Collisions At 5.02 TeV.

source pT interval (GeV/c)
3-
4

4-
5

5-
6

6-
8

8-
10

10-
12.5

12.5-
15

15-
20

20-
30

Inv. mass fit (Λ+
c ) 20.2% 14.5% 12.5% 8.1% 5.8% 9.3% 29.8% 13.9% 6.8%

Inv. mass fit(D0) 7.6% 3.5% 3.0% 3.0% 1.7% 2.1% 2.1% 4.0% 2.0%
Tracking efficiency 4%

Selection efficiency(D0) 3.6% 0.5%
Selection efficiency(Λ+

c ) 23.8% 19.0% 27.0% 24.5% 0.3% 13.5% 28.7% 28.7% 8.6%
MC pT shape (Λ+

c ) 4.5% 0.8% 0.3% 0.6% 0.3% 0.4% 0.1% 0.5% 3.1%
MC pT shape (D0) 3.0% 2.0% 2.0% 1.0% 1.0% 1.0% 0.0% 0.0% 0.0%

prompt fraction (Λ+
c ) 21.2% 16.5% 11.3% 6.8% 9.6% 20.5% 11.1% 23.6% 21.3%

prompt fraction (D0) 10%
Branching ratio (Λ+

c ) 5.3%
Branching ratio (D0) 1.3%

αεreco (Λ+
c ) 8.6% 8.27% 8.25% 8.43% 8.23% 8.27% 8.18% 8.07% 8.20%

Total uncertainty 41.8% 33.0% 35.4% 30.9% 18.9% 30.4% 45.4% 42.6% 28.3%
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Table 5.17. Summary Of Relative Systematic Uncertainties For Prompt
Λ+

c /D
0 In PbPb Collisions In Centrality Class 0–90%.

source pT interval (GeV/c)
6–8 8–10 10–12.5 12.5–15 15–20 20–30 30–40

Inv. mass fit (Λ+
c ) 11.4% 18.5% 29.9% 5.4% 12.8% 18.9% 5.8%

Inv. mass fit(D0) 1.7% 1.7% 1.3% 1.3% 6.5% 9.4% 7.5%
Tracking efficiency 5%

Selection efficiency(D0) 3.5% 2.7%
Selection efficiency(Λ+

c ) 36.2% 22.1% 6.5% 13.7% 4.6% 20.2% 10.7%
MC pT shape (Λ+

c ) 1.1% 0.4% 0.8% 0.3% 0.6% 1.4% 1.1%
MC pT shape (D0) 1.0% 1.0% 1.0% 0.0% 0.0% 0.0% 0.0%

prompt fraction (Λ+
c ) 34.9% 6.7% 5% 3.3% 1.2% 2.2% 4.3%

prompt fraction (D0) 10%
Branching ratio (Λ+

c ) 5.3%
Branching ratio (D0) 1.3%

αεreco (Λ+
c ) 8.2% 8.2% 8.3% 8.2% 8.2% 8.0% 8.0%

Total uncertainty 53.8% 33.4% 34.6% 21.5% 21.5% 33.0% 21.2%

Table 5.18. Summary Of Relative Systematic Uncertainties For Prompt
Λ+

c /D
0 In PbPb Collisions In Centrality Class 0–10%.

source pT interval (GeV/c)
10–12.5 12.5–15 15–20 20–30 30–40

Inv. mass fit (Λ+
c ) 7.2% 25.3% 6.9% 9.8% 15.8%

Inv. mass fit(D0) 3.4% 3.4% 12.0% 12% 12.7%
Tracking efficiency 5%

Selection efficiency(D0) 8.1% 2.7%
Selection efficiency(Λ+

c ) 6.5% 13.7% 4.6% 10.7% 20.2%
MC pT shape (Λ+

c ) 0.02% 0.3% 1.2% 1.5% 0.3%
MC pT shape (D0) 1.0% 0.0% 0.0% 0.0% 0.0%

prompt fraction (Λ+
c ) 24.5% 6.6% 6.3% 1.1% 4.4%

prompt fraction (D0) 10%
Branching ratio (Λ+

c ) 5.3%
Branching ratio (D0) 1.3%

αεreco (Λ+
c ) 8.6% 8.3% 8.2% 8.1% 8.3%

Total uncertainty 31.6% 34.2% 23.3% 24.2% 32.7%
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The pT -differential cross section for prompt Λ+
c in pp collisions is defined as:

dσΛ+
c

pp

dpT

∣∣∣∣∣∣
|y|<1

= fprompt

2L∆pT B
NΛ+

c
pp ||y|<1

αε
, (5.2)

where NΛ+
c

pp ||y|<1 are the Λ+
c yields extracted in each pT interval, L (252/nb for Zero Bias)

is the luminosity, ∆pT is the width of the pT interval, fprompt is the prompt ratio of Λ+
c , B

is the branching ratio of the decay channel that is used in this analysis, αε represents the

acceptance × efficiency correction. The factor 1/2 accounts for the fact that the yield were

measured for particles and antiparticles, but the cross section is given for particles only.

The cross section for prompt Λ+
c PbPb are presented as the followings:

1
〈TAA〉

dNΛ+
c

PbPb
dpT

∣∣∣∣∣∣
|y|<1

= fprompt

〈TAA〉
1

2Nevents∆pT B
NΛ+

c
PbPb||y|<1

αε
, (5.3)

where Nevents are the number of MB events (centrality class 0–90% has 3,395,373,402

events corrected by the event filter), 〈TAA〉 = 〈Ncoll〉/σpp-inelastic is the nuclear overlap func-

tion, which is equal to the value of Ncoll divided by the pp cross section. Other parameters

are the same as those in pp collisions.

Figure 5.19 and 5.20 show the pT -differential cross section of prompt Λ+
c baryon pro-

duction in pp collisions for the range of 3 < pT < 30 GeV/c and the TAA-scaled yields in

PbPb collisions in five centrality classes. The 13.3% (16.0%) normalization uncertainty for

the pp (PbPb) results is not included in the boxes representing the systematic uncertainties

for each data point.

RAA of prompt Λ+
c is defined as the followings:

RAA(pT ) = 1
〈TAA〉

dNΛ+
c

PbPb
dpT

/
dσΛ+

c
pp

dpT

. (5.4)

The nuclear modification factor RAA for prompt Λ+
c baryons in five centrality classes is

shown in Fig. 5.21 as a function of pT . The results show that Λ+
c is suppressed in PbPb

collisions in 0–90% and 0–10% centrality classes compared to peripheral collisions.
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Figure 5.22 shows the Λ+
c /D

0 production ratio as a function of pT for pp collisions and

PbPb collisions in the centrality range 0–90 and 0–10%. Figure. 5.22 shows that calculations

using a color reconnection model is consistent with our results for the Λ+
c /D

0 production

ratio in pp collisions within uncertainty. There is a hint of an enhancement in the Λ+
c /D

0

production ratio in PbPb collisions in the pT range of 6–10 GeV/c compared to pp data,

but due to the large systematic uncertainty, no solid conclusion can be drawn. The PbPb

measurement in the pT range 12.5–30 GeV/c is consistent with the pp result. This lack of

an enhancement may suggest that there is no significant contribution from the coalescence

process for pT > 12.5 GeV/c in PbPb collisions.
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Figure 5.19. The pT -differential Cross Sections For Prompt Λ+
c Production

In pp Collisions. The Boxes And Error Bars Represent The Systematic And
Statistical Uncertainties, Respectively. The Bottom Panel Shows Data/Pre-
dictions Ratios.
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With Color Reconnection [69 ]. The Black And Purple Solid Lines Are The pp
And PbPb Calculations(0–100% centrality) For Prompt Λ+

c Over Prompt D0

Production Ratio From Ref. [47 ], And The Dashed Line Is The pp Calculation
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6. SUMMARY

The pT -differential cross sections of inclusive Λ+
c (including prompt and nonprompt contribu-

tions) and prompt Λ+
c have been measured with 2015 pp/PbPb and 2017/2018 pp/PbPb at

5.02 TeV with CMS detector. The shape of the inclusive Λ+
c pT distribution in pp collisions

is well described by the PYTHIA8 event generator. GMVFNS predictions with 3 different

fragmentation functions are consistent with 2017 pp prompt data within uncertainties with

pT > 8 GeV/c, while pp data measurements are systematically above these three predictions

when pT < 8 GeV/c.

There is a suppression of prompt Λ+
c observed in centrality class: 0-90% and 0-10% in

PbPb collisions. This is consistent with the suppression observed inD0 meson measurements,

which is understood to originate from the strong interaction between the charm quark and

the quark-gluon plasma.

The Λ+
c /D

0 production ratios in pp collisions are consistent with a model obtained by

adding color reconnection in hadronization to PYTHIA8, and also with a model that includes

enhanced contributions from the decay of excited charm baryons. There is a hint of an

enhancement of Λ+
c /D

0 production ratio in 6–12.5 GeV/c in PbPb collisions compared with

pp production ratio. The Λ+
c /D

0 production ratios in pp and PbPb collisions for pT = 12.5–30

GeV/c are found to be consistent with each other. This may suggest that the coalescence

process does not play a significant role in Λ+
c baryon production in this pT range.
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