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ABSTRACT

This thesis analyzed three fundamental fluid dynamics problems arising from multiphase

flows that may be encountered in hydraulically fractured flow passages. During hydraulic

fracturing (“fracking”), complex fluids laden with proppants are pumped into tight rock

formations. Flow passages in these formation are naturally heterogeneous with geometric

variations, which become even more pronounced due to fracking. Upon increasing the flow

area (and, thus, the conductivity of the rock), crude oil, shale gas or other hydrocarbons

can then flow out of the formation more easily. In this context, we encounter the following

three fluid mechanical phenomena: fluid–fluid interfacial instabilities, flow-wise variation of

the hydraulic conductivity, and particle migration in the pumped fluids.

First, we studied the (in)stability of the interface between two immiscible liquids in angled

(tapered) Hele-Shaw cells, as model of a non-uniform flow passage. We derived an expression

for the growth rate of perturbations to the flat interface and for the critical capillary number,

as functions of the small gap gradient (taper). On this basis, we formulated a three-regime

theory to describe the interface’s stability. Specifically, we found a new regime in which the

growth rate changes from negative to positive (converging cells), or from positive to negative

(diverging cells), thus the interface’s stability can change type at some location in the cell.

We conducted three-dimensional OpenFOAM® simulations of the Navier–Stokes equations,

using the continuous surface force method, to validate the theory.

Next, we investigated the flow-wise variation of the hydraulic conductivity inside a non-

uniformly shaped fracture with permeable walls. Using lubrication theory for viscous flow, in

conjunction with the Beavers–Joseph–Saffman boundary condition at the permeable walls,

we obtained an analytical expression for the velocity profile, conductivity, and wall perme-

ation velocity. The new expression highlights the effects of geometric variation, the per-

meability of the walls, and the effect of flow inertia. The theory was validated against

OpenFOAM® simulations of the Navier–Stokes equations subject to a tensorial slip bound-

ary condition.

Finally, we extended the utility of phenomenological models for particle migration in

shear flow using the physics-informed neural networks (PINNs) approach. We first verified

12



the approach for solving the inverse problem of radial particle migration in a non-Brownian

suspension in an annular Couette flow. Then, we applied this approach to both non-Brownian

and Brownian suspensions in Poiseuille slot flow, for which a definitive calibration of the

phenomenological migration model has been lacking. Using PINNs, we identified the un-

known/empirical parameters in the physical model, showing that (unlike assumptions made

in the literature) they depend on the bulk volume fraction and shear Péclet number.
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1. INTRODUCTION

1.1 Background

Crude oil and natural gas exist as fluids in large underground reservoirs in sedimentary

basins around the world. They occupy the connected porous media within strata of sedimen-

tary rocks, typically sandstones or carbonates [  1 ]. Over the last decade, hydraulic fracturing

(“fracking”) of shales has paved the way towards increasing the recoverable reserves of oil

and gas in the United States [  2 ]. During fracking, complex fluids (primarily water-based

suspensions with dispersed particulates termed “proppants”) [  3 ], [  4 ] are pumped into tight

formations [  5 ], [  6 ]. Figure  1.1 shows a ‘candidate’ rock formation for hydraulic fracturing;

these formations are naturally heterogeneous with geometric variations in the flow passages

that become even more significant during fracking. Upon increasing the ‘conductivity’ of the

rock (i.e., by enlarging the flow passages through high-pressure facturing), crude oil, shale

gas or other hydrocarbons can then flow out of the formation more easily.

Although the effectiveness of fracking was demonstrated in 1947 [  8 ], it remains a chal-

lenging approach to energy production, in particular, due to the complex thermo-hydro-

mechanical-chemical coupled processes involved across multiple space and time scales [ 9 ].

One such process is the stability of the interface between the fracking (displacing) fluid and

the hydrocarbons (displaced fluid) [ 7 ]. In the fracturing process, the displacing fluid, primar-

ily water with proppants [  10 ], is injected into a well bore at high pressure to create cracks

in the subsurface rock formation. A stable interface can produce a “clean” sweep of the

fracture, whereas an unstable interface leaves oil or gas films and layers behind. Thus, there

is an impetus to study fluid–fluid interface instabilities in complex geometries.

Fracking is inherently a multiscale problem [ 9 ]: as the injected high-pressure fluid enters

a rock formation from the well bore, a complex array of cracks of various shapes, sizes,

and with flow-wise variations, are created [  3 ], [ 11 ]. This network of fractures increases the

conductivity of the rock formation by increasing the available flow area [ 12 ], [  13 ]. Similarly,

in enhanced geothermal systems [ 14 ], heat is extracted from hot rocks by flooding the dry

fracture network [ 15 ], [ 16 ]. Thus, it is of practical importance, as well as of fundamental

14



Figure 1.1. A “heterolithic facies” has permeability variations on the length
scale of 1 cm vertically and on the length scale of 10 cm horizontally. Oil
and gas are trapped in the nonuniform spaces between the layers. Reproduced
from Muggeridge, Cockin, Webb, et al. [ 7 ] under CC BY 3.0.

scientific interest, to understand the conductivity variations in complex and non-uniform

fractures.

Another complex subsurface flow process is particle migration in flows, a phenomenon

common to many areas of the engineering sciences. From the collective motion of cells in

the circulatory system [  17 ] to the generation of stable emulsions for food and household

products [ 18 ] to the deposition of proppants into hydraulic fractures [  19 ], understanding

how, why and when objects migrate and interact in flows is a fundamental fluid mechanics

problem [ 20 ]. Although much has been accomplished since the pioneering work in the 19th

and 20th centuries, there still remain aspects to particle migration in flows that are not

fully understood, are unexpected [  21 ] and are difficult to disentangle [  22 ]. Fracking involves

the use of not just clear fluids but also fluids bearing “proppants,” which are particulate

materials meant to settle into cracks to prop them open [ 19 ], [ 23 ], [ 24 ] (see the schematic

in Fig.  1.2 ), prevent crack localization instabilities [ 25 ] and increase fracture conductivity.

Even formulating this transport problem is difficult due to various hydrodynamics effects

involved [ 26 ], nonuniformities in the proppant particle shapes [  19 ], [  23 ], [  24 ] (see Fig.  1.2 )

and the flow conduits [  11 ], the proppants’ nontrivial surface chemistry [  27 ] and the variable

15



Figure 1.2. A typical schematic of the hydraulic fracturing process.
Proppant-bearing fluid is pumped into a primary (large) crack, with many
secondary (smaller) cracks branching from it. Proppants are used in hydraulic
fracturing to attempt to keep fractures open upon the cessation of fluid injec-
tion. The fracture walls are permeable shale rock and may exhibit “leak off.”
Reproduced from Chen, Barboza, Sun, et al. [ 30 ] under CC BY 4.0.

flow conditions present during fracking [  28 ]. In fact, advanced experimental techniques that

can interrogate proppant transport in the subsurface are only just now coming online [ 29 ].

1.2 Literature survey

1.2.1 Interfacial instability

In the 1950s, Hill [ 31 ], Saffman and Taylor [ 32 ], [  33 ], and Chouke et al. [ 34 ] laid the foun-

dations for the study of viscous fingering through both theoretical analysis and experiments.

16



Figure 1.3. Example interfacial instability: fern-like snowflake is a “multi-
branched stellar dendrite crystal.” Republished with permission of IOP Pub-
lishing Ltd, from “The Physics of snow crystals” by Libbrecht [ 38 ], Reports on
Progress in Physics, vol. 68, pp. 855–895, © 2005 IOP Publishing Ltd; permis-
sion conveyed through Copyright Clearance Center, Inc.

Specifically, Hill [ 31 ] performed a one-dimensional (1D) stability analysis and conducted

quantitative experiments for both stable and unstable interface between sugar liquors and

water. Saffman and Taylor [  32 ] considered a less viscous fluid (air) displacing a more viscous

one (glycerine) in a Hele-Shaw cell [  35 ], i.e., the thin gap between two closely spaced flat

plates, and predicted the finger’s growth rate via linear instability. Saffman and Taylor [ 32 ]

additionally predicted and verified that when a single finger forms in a Hele-Shaw cell, it

occupies nearly exactly half the horizontal width of the cell, for most experiments. Through

the exact analogy of flow in a Hele-Shaw cell and flow in a two-dimensional (2D) porous

medium under Darcy’s law [ 36 ], [ 37 ], Saffman and Taylor [  32 ] enabled a significant amount

of theoretical and experimental research on interfacial instabilities.

Interfacial instabilities are quite common in nature and industry: the formation of snow

flakes (see Fig.  1.3 ) [  39 ], crystal growth [ 39 ], [  40 ], the mixing in stratified flows [ 41 ], the

ribbing instability in coating flows (see Fig.  1.4 ) [ 42 ]–[ 44 ], the formation of droplet clouds or

sprays in combustion problems [  45 ], the gravity-driven infiltration phenomena into initially

dry homogeneous soil [  46 ], drop and bubble dynamics in microfluidic devices [  44 ], [  47 ], to

list a few. In most (but not) all cases, the instabilities are caused by a viscosity contrast
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Figure 1.4. Example interfacial instability: ribbing. Reprinted from Journal
of Non-Newtonian Fluid Mechanics, vol. 103, pp. 123–139, by Varela López,
Pauchard, Rosen, and Rabaud, “Non-Newtonian effects on ribbing instability
threshold” [ 48 ] © 2002 Elsevier, with permission.

at the fluid–fluid interface [  36 ]. Finger-like patterns form as the unstable interface grows,

which has led to this phenomenon being called viscous fingering.

Due to the importance of interfacial instabilities in narrow channels (or otherwise con-

fined geometries) in many applications, attempts to control the viscous fingering have been

made. For example, one can consider either natural of flow-driven geometric variations of

the flow passage [  49 ]–[ 59 ], one can control the injection flow rate [  60 ]–[ 62 ], one can change

the permeability by adjusting the structure of porous media [  55 ], [  63 ], [  64 ], one can apply

an external force via rotation of the geometry or through a magnetic field [  65 ]–[ 69 ], one can

change the fluid phase by using Non-Newtonian fluids [  70 ]–[ 72 ] or adding particles [  73 ]–[ 75 ],

and so on. There are three ways to alter the physical geometry of an experimental Hele-Shaw

apparatus: (i) creating a gradient along or perpendicular to the flow direction by relaxing

the requirement that the plates be parallel [ 49 ]–[ 51 ], [  53 ], [  54 ], [  59 ]; (ii) using an elastic mem-

brane (that deforms due to flow underneath it) instead of a solid plate [  58 ], [  76 ]–[ 80 ]; and

(iii) lifting one of the plates in a time dependent manner [  60 ], [ 81 ]. Among these possibilities,

the case of a geometric gradient in the flow direction has attracted special attention because

it naturally imitates the non-uniform, fractured subsurface flow passages [ 7 ]. The gradient

could be (a) a positive gradient for an increasing gap width in the flow direction (termed a

diverging Hele-Shaw cell), or (b) a negative gradient for a decreasing gap width (termed a

converging cell).
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Currently, despite extensive research on the topic, the predictions of mathematical anal-

ysis have not taken the local capillary number into account. In tapered geometries, the local

capillary number is not constant due to the changing mean velocity (under imposed flow

rate), thus the interfacial stability characteristics change locally accordingly. Furthermore,

the mathematical analysis have not been verified through three-dimensional (3D) direct nu-

merical simulation (DNS) of flow and interfacial instability. In fact, a study by Dong, Yan,

and Li [  82 ] concluded that a “3D [numerical] model is preferred to obtain a better comparison

with experimental results.” Indeed, in 3D DNS, unlike physical experiments or the numerous

previous simulations of the depth-averaged Hele-Shaw equations, we have control over the

entire problem setup, which allows us to capture the full physics of the problem. The goal

of this study is to fill this knowledge gap for rectangular Hele-Shaw cells with nonuniform

gap thickness.

1.2.2 Fracture conductivity

To provide a sense of the scale on which the half-aperture h of a fracture may vary with

the flow-wise direction x, consider the standard Perkins–Kern–Nordgren (PKN) [  83 ] and the

Khristianovitch–Zheltov–Geertsma–de Klerk (KGD) models, which idealize fractures as long

and narrow elliptical cracks [ 84 ]. Garagash and Detournay [ 85 ] showed that the fracture tip

has a shape with h(x) ∼ (xtip − x)1/2 as x → xtip > L. (The typical fracture geometry we

consider has total length Ltotal, appreciable variations in the shape occur over some typical

scale L � Ltotal, with the tip falling outside the domain in Fig.  1.5 .) Thus, the shape

gradient away from the crack tip goes as α = dh/dx ∼ −(xtip − x)−1/2. Clearly, as x → −∞

(away from the crack tip), |α| → 0−, justifying the small slope assumption |α| � 1. Typical

fracture geometry parameter values are summarized in Table  1.1 , further justifying that,

away from the crack tip, dh/dx ∼ |α| � ε = h0/L; that is, the fracture’s typical slope is

much smaller than its aspect ratio.

The simplest model of fracture conductivity (the parallel-plate model [ 86 ]) assumes that

fracture walls are smooth, impermeable walls with a constant aperture of 2h0 (distance

between the walls) and span w (length in the transverse direction); see Fig.  1.5 . By analogy
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Figure 1.5. Schematic of a typical fracture flow geometry idealized as a Hele-
Shaw cell. The fracture’s shape varies appreciably over a “typical” length
L, and it has a constant gradient dh/dx ∼ α, so that the half-aperture is
h(x) = h0 + αx (to a linear approximation). The fracture is long and thin
meaning ε = h0/L � 1 and α = dh/dx = [h(L) − h0]/L = ∆h/L � 1,
where h0 = h(0). Gravity is neglected but, in these schematics, it would act
in the transversely in the negative y-direction. The flow is symmetric about
the centerline z = 0, and primarily in the x-direction, along the fracture. The
top and bottom walls z = ±h(x) are permeable (permeability kw) and allow a
non-zero vertical velocity component vw at the wall, which is to be determined.

to lubricating viscous flow between two plates (the so-called Hele-Shaw model [  87 ]), one

can calculate the hydraulic conductivity to be K = h2
0/3. Then, the transmissivity of the

fracture (∝ h0wK) follows the well-known “cubic law” [  88 ]. However, the flow passages in

both naturally [  1 ] and hydraulically fractured [  3 ] formations have a variable aperture 2h(x).

Generally, the walls of fractures are not parallel [ 89 ], in part due to the flow-wise deformation

of the fracture due to large injection pressures [  90 ], requiring corrections to Darcy’s laws arise

via a modified conductivity and transmissivity models [ 91 ]–[ 93 ]. However, these models are

for impermeable walls.

The bounding surfaces of a fracture are the porous rock formations themselves, therefore

they should not be idealized as impermeable plates [  94 ]. Permeation of gas into the matrix,

and its subsequent diffusion, affects the late-years productivity of fractured wells [  95 ], [  96 ].

Berman [ 97 ] and Sellars [ 98 ] investigated the effects of a permeable wall in a constant-height

channel using the idealized boundary condition of equal prescribed wall-normal velocities.

Since then, a large literature has addressed many variations on this problem, including

asymmetric wall normal velocities [ 99 ], flow development effects [ 100 ], unsteadiness [ 101 ],
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Table 1.1. Typical dimensions of a hydraulic fracture and typical values of
the dimensionless parameters of the hydraulic conductivity model derived in
this study.

Quantity Notation Value Remarks

Fracture total length Ltotal 100 ∼ 1000 m [  4 ]
Fracture width w 10 ∼ 100 m [  4 ]
Fracture gap/aperture h0 2 ∼ 10 mm [ 4 ]
Typical velocity U0 . 10−3 m s−1 [ 3 ]
Permeability of the wall kw . 5 × 10−13 m2 [ 4 ]

Hele-Shaw shape variation δ = α/ε . 10−1 Slow variation
Hele-Shaw aspect ratio ε = h0/L 10−4 ∼ 10−2 Using L = Ltotal/100
Hele-Shaw slope α = dh/dx . 10−3 Using |α| ∼ εδ
Wall slip coeff. φ =

√
kw/(bh0) . 10−3 b = 0.1

Reduced Reynolds number R̃e = ρU0h
2
0/(µL) . 0.1 ρ, µ for water

and so on. These works rely on reducing the problem to a nonlinear ordinary differential

equation, owing to the existence of a similarity transformation in two dimensions (2D).

Unfortunately, this technique does not work in the case of a aperture gradient, such as the

present geometry with h = h(x); instead a perturbation solution must be sought [  92 ], [  102 ].

Kumar, Datta, and Kalyanasundaram [  103 ] showed that a similar situation arises if the

geometry is uniform but the slip length varies in the flow-wise direction, i.e., `slip = `slip(x).

Importantly, imposing the wall-normal velocity a priori is a significant limitation of the

previous studies because, as Conlisk notes, “[t]he suction velocity at the wall ... must be

calculated from the properties of the porous medium” [ 104 , p. 162].

Beavers and Joseph [  105 ] experimentally characterized pressure-driven (Poiseuille) flow

over a naturally permeable surface (i.e., channel flow with porous walls) and proposed a

boundary condition to account for the wall permeation. Specifically, they showed that the

shear stress balance at the fluid–solid interface can be represented by a first-order (partial)

slip boundary condition with slip length `slip =
√

kw/b, where kw is the permeability of the

porous wall, and b is a dimensionless constant determined by the structure of the material,

ranging from 0.1 to 4.0 [ 105 ]. Taylor [ 106 ] observed that b is not a universal value, but

rather it depends on the flow geometry. Saffman [  107 ] substantiated this observation and

generalized the slip condition to arbitrary surfaces. However, this correction only affects the
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already empirically-determined slip length, thus the form of the boundary condition remains

unchanged, while b ≈ 0.1 is in good agreement with most experiments [  108 ]. Zhang and

Prosperetti [  109 ] provided further evidence for the slip boundary condition via pore-scale

direct numerical simulations of a two-dimensional channel flow. A more detailed discussion

of the history and mathematical foundations of the partial slip boundary condition can

be found in [ 110 ], [ 111 ]. Now, define the dimensionless quantity φ = `slip/h0 as the slip

coefficient. For the typical dimensions of a hydraulically-driven fracture, we estimate the

dimensionless parameters values in Table  1.1 .

To address the issue that fracture walls in the subsurface are themselves porous media,

Mohais, Xu, Dowd, et al. [ 14 ] and Mohais, Xu, and Dowd [  112 ] employed the Beavers–Joseph

boundary condition to solve for the flow in, and obtain a correction for the conductivity

K of, uniform-aperture fractures with permeable walls. So far, however, a theory for the

conductivity of variable-aperture fractures with porous walls (the most common case in the

subsurface) is lacking. This study aims to fill this knowledge gap.

1.2.3 Particle migration

Suspensions of particles in narrow channels are ubiquitously encountered both in na-

ture and applications [  113 ]. The particle’s shape, surface properties, interactions between

particles, and the carrier (suspending) fluid’s viscoelasticity all contribute to the migra-

tion dynamics. Particle concentration changes in suspensions have been investigated by

many researchers [  114 ]–[ 122 ]. Karnis and Mason [  115 ] conducted a pioneering experiment

by measuring the particle accumulation along a fluid meniscus in a tube, specifically they

found the inward displacement of particles near the meniscus. Gadala-Maria and Acrivos

[ 123 ] observed a decrease in suspension viscosity after shearing, whereas the viscosity of

the pure suspending fluid remain constant under the same circumstances. Later, Leighton

and Acrivos [  124 ] attributed this phenomenon to the shear-induced migration of particles,

which reduces the particle concentration and thereby the viscosity. Tehrani [  119 ] measured

the particle concentration in fracking fluids, in which the elastic properties of the fluid and

the shear-rate gradient both contribute to the migration of particles. It was found that, in
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shear-thinning dominant fluids, particles migrate to regions of lower shear rate; in contrast,

highly elastic fluids produce little or no migration. Semwogerere, Morris, and Weeks [ 122 ]

observed that the distance required for the concentration profile to develop to steady state

increases significantly with increasing Péclet number for Pe � 100 in Brownian suspensions,

in marked contrast to non-Brownian suspensions. Here, the shear Péclet number is defined

as Pe = 6πη0γ̇a3
p/(kBT ), where η0 is the viscosity of the solvent, kB is the Boltzmann con-

stant, T is the temperature, ap is the radius of an isolated Brownian particle, and γ̇ is a

characteristic shear rate (reciprocal of the characteristic time scale in the shear flow).

Theoretical analyses have also been performed to compute the particle concentration

and velocity fields by shear-induced effect [ 116 ], [  118 ], [  121 ], or by the collaboration of shear-

induced migration and buoyancy [  120 ], Brownian motion [  122 ] or gravity [  125 ]. Some of the

mathematical models used include the suspension balance model [  126 ], [ 127 ], the diffusive

flux model [ 118 ], [ 121 ], [ 125 ], [ 128 ], or other newly formulated

Meanwhile, numerical approaches have also been developed to simulate the particle mi-

gration effect [ 129 ]. Shiozawa and McClure [  130 ] followed the numerical methods of Dontsov

and Peirce [  131 ], [  132 ], which are based on a continuum model using the constitutive model

from [  133 ], and simulated the particle transport in a fully three-dimensional (3D) hydraulic

fracture, capturing the transition from Poiseuille flow to Darcy flow as the particle laden

fluids transitions from a dilute mixture to packed bed. Yeo and Maxey [ 134 ] used fully 3D

numerical simulations on suspensions of non-colloidal monodisperse particles in a narrow

channel (plane Poiseuille flow). They resolved the interparticle forces through the force-

coupling method [  135 ] based on singularity expansions of Stokes flow. The simulations results

divide the channel into three regions: near-wall, intermediate and core region, with different

particle velocity functions. Besides, complex geometries also attracted researchers’ atten-

tion. Vigolo, Radl and Stone [  21 ] predicted the location of particle accumulation in steady

and pulsatile flows through T-junctions, via 3D numerical simulations and a model of the

two-phase flow, and found agreement with theoretical trapping mechanism for low-density

particles. More recently, Manoorkar, Krishnan, Sedes, et al. [ 136 ] simulated the suspen-

sion through a T-junction using discrete-particle simulations employing immersed boundary

techniques and the lattice Boltzmann method.
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Phillips, Armstrong, Brown, et al. [ 118 ] proposed an insightful phenomenological model

for the shear-induced migration of particles in a low Reynolds number flow [  124 ], including

a priori unknown constants of order unity, which are found from experimental data (by fit-

ting/calibration). The fluid mechanics of particulate suspensions remains a frontier problem

[ 137 ], and the diffusive-flux model of Phillips, Armstrong, Brown, et al. [ 118 ] is not without

its criticisms [ 138 ]. Nevertheless, although much more sophisticated models of suspensions

exist [  20 ], [  139 ], including the suspension balance model [ 126 ], [  127 ], [  140 ]–[ 142 ], the two-

fluid model [  143 ], even direct numerical simulation [  129 ], the phenomenological model of

Phillips, Armstrong, Brown, et al. [ 118 ] remains a popular in the study of shear-induced

particle migration in suspensions [ 144 ]–[ 146 ].

1.3 Knowledge gaps and organization of the thesis

The knowledge gaps identified by the literature survey in Sect.  1.2 will be addressed in

different chapters of this thesis, organized as follows:

• While there has been extensive research on the interfacial stability in tapered ge-

ometries, the predictions of mathematical analysis have not taken the local capillary

number into account. In tapered geometries, the local capillary number is not con-

stant due to the changing mean velocity (under imposed flow rate), thus the interfacial

stability characteristics change locally accordingly. Further, Dong, Yan, and Li [ 82 ]

concluded that a “3D [numerical] model is preferred to obtain a better comparison

with experimental results,” which motivates the comparison of stability theory with

direct numerical simulations (DNSs). Thus, clear gaps exist regarding the interfacial

stability in tapered geometries: What are the stability characteristics of a fluid–fluid

interface in the presence of geometric variations, when the local capillary number might

not be constant? Can these characteristics be predicted by theory? Can we validate the

theory via 3D DNS? These questions will be answered in Chapter  2 of this thesis.

• Currently, the theory of fracture conductivity is based on many assumptions: smooth,

impermeable walls with a constant aperture and span. However, flow passages in both

natural and fractured formations violate the assumptions. A knowledge gap in the lit-
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erature on hydraulic conductivity of fractures exists regarding: What is the conductivity

of a variable-aperture fracture? What is the combined effect of geometric variation and

permeation at the fracture’s porous walls? To answer these questions, in Chapter  3 of

this thesis, we investigate the flow-wise variation of the hydraulic conductivity inside

a non-uniformly shaped fracture with permeable walls, using lubrication theory for

viscous flow in conjunction with the Beavers–Joseph–Saffman boundary condition at

the porous wall.

• “Disentagling” the individual effects in phenomenological models of shear-induced mi-

gration of particles in a low Reynolds number flow has been of particular interest in the

suspensions literature [ 118 ], [ 144 ], [ 147 ], yet a complete understanding of when and how

to use these phenomenological models has not been achieved. The a priori unknown

model parameters were only properly calibrated against experiments on flow in a con-

centric Couette cell. Subsequent studies on Poiseuille flows showed that the model is

only in qualitative agreement with experiments. Therefore, a gap in the shear-induced

migration literature pertains to: What should be the values of the phenomenological

model’s parameters for shear-induce migrations in suspensions in Poiseuille flows?

How can these parameters be obtained from previous experiments, for both Brownian

and non-Brownian suspensions? To answer these questions, in Chapter  4 we apply

the novel physics-informed neural network (PINN) approach of Raissi, Perdikaris, and

Karniadakis [ 148 ] towards understanding particle migration in shear flow.
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2. INTERFACIAL DYNAMICS IN ANGLED HELE-SHAW

CELLS: INSTABILITY REGIMES

SUMMARY

We present a theoretical and numerical study on the (in)stability of the interface between two

immiscible liquids, i.e., viscous fingering, in angled Hele-Shaw cells across a range of capillary

numbers (Ca). We consider two types of angled Hele-Shaw cells: diverging cells with a

positive depth gradient and converging cells with a negative depth gradient, and compare

those against parallel cells without a depth gradient. A modified linear stability analysis

is employed to derive an expression for the growth rate of perturbations on the interface

and for the critical capillary number (Cac) for such tapered Hele-Shaw cells with small gap

gradients. Based on this new expression for Cac, a three-regime theory is formulated to

describe the interface (in)stability: (i) in Regime I, the growth rate is always negative, thus

the interface is stable; (ii) in Regime II, the growth rate remains zero (parallel cells), changes

from negative to positive (converging cells), or from positive to negative (diverging cells),

thus the interface (in)stability possibly changes type at some location in the cell; (iii) in

Regime III, the growth rate is always positive, thus the interface is unstable. We conduct

three-dimensional direct numerical simulations of the full Navier–Stokes equations, using

a phase field method to enforce surface tension at the interface, to verify the theory and

explore the effect of depth gradient on the interface (in)stability. We demonstrate that the

depth gradient has only a slight influence in Regime I, and its effect is most pronounced in

Regime III. Finally, we provide a critical discussion of the stability diagram derived from

theoretical considerations versus the one obtained from direct numerical simulations.

The material in this chapter was published in [D. Lu, F. Municchi, and I. C. Christov,

“Computational Analysis of Interfacial Dynamics in Angled Hele-Shaw Cells: Instability

Regimes,” Transp. Porous Med., vol. 131, pp. 907–934, 2020] [  149 ] © 2020 Springer Nature.

Reprinted with permission.
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2.1 Problem statement

Currently, despite extensive research on the interface (in)stability analysis, the predic-

tions of mathematical analysis have not taken the local capillary number into account. In

tapered geometries, the local capillary number is not constant due to the changing mean

velocity (under imposed flow rate), thus the interfacial stability characteristics change lo-

cally accordingly. Further, Dong, Yan, and Li [  82 ] concluded that a “3D [numerical] model

is preferred to obtain a better comparison with experimental results,” which motivates the

comparison of stability theory with direct numerical simulations (DNSs). The goal of this

chapter is to fill this knowledge gap for rectangular Hele-Shaw cells with nonuniform gap

thickness by: (i) extending the linear stability theory of interfacial instability in Hele-Shaw

cell with clear fluids by taking into account the local streamwise variation of parameters

(e.g., capillary number, depth of the cell, and so on); (ii) supplementing and verifying the

theoretical analysis with “full” 3D DNS.

To this end, this chapter is organized as follows. In Sect.  2.2 , we derive the (growth)

decay rate of a (un)stable fluid–fluid interface between two immiscible phases in a Hele-

Shaw with variable gap thickness (but constant gap gradient) via linear stability theory.

Specifically, starting with Darcy’s equation (i.e., the depth-averaged momentum equation)

and the continuity equation, we obtain a Laplace equation for pressure. By solving the

latter, we find the pressure jump at the fluid–fluid interface, and we match this pressure

jump to the one found from the Young–Laplace equation. Thus, we arrive at the growth

rate of the interface. On the basis of this mathematical result, we then classify the interface

stability into three flow regimes depending on the difference between a critical capillary

number and inlet or outlet capillary numbers, generalizing previous work on this problem

by [  53 ]. Next, in Sect.  2.4.1 , we perform a series of DNSs (the methodology for which is

described in Sect.  2.3 ) in a specific set of Hele-Shaw geometries. We use the simulations

to verify our mathematical model (i.e., the theory developed in Sect.  2.2 ) for the growth

rate of the interface. Then, in Sect.  2.4.2 , we discuss the effect of the gap gradient on the

stability based on the theoretical solution and further numerical experiments. In Sect.  2.4.3 ,

we compare and discuss the flow regimes maps (in the 2D parameter space defined by the
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capillary number and the gap gradient) determined by theoretical and numerical analyses.

Finally, conclusions stated and avenues for future work are discussed in Sect.  2.5 .

2.2 Linear stability analysis

Consider two immiscible and incompressible viscous fluids flowing in a narrow gap be-

tween two rigid plates (see Fig.  2.1 ) with a constant depth gradient α. The depth of the

cell h(x) = hin + αx satisfies maxx h(x) � W and maxx h(x) � L. Although we neglect

gravity, in Fig.  2.1 it would act in the negative z-direction. The flow is in the x-direction,

and the Hele-Shaw cell’s gap thickness, h(x), only varies in this direction. The densities

and viscosities of the displacing and defending fluids are denoted respectively as ρ1, µ1 and

ρ2, µ2. A fully developed flow of fluid 1 (the displacing fluid), with an average (in the y-z

cross-section) velocity Uin, pushes into a quiescent fluid 2 (the defending fluid). Between

the two fluids there exists an interface that, due to immiscibility, is endowed with surface

tension γ. The interface is not necessarily flat, and its shape is given by x = ζ(y, t). The

horizontal direction perpendicular to the flow, i.e., the y-direction in Fig.  2.1 , is assumed

to be large compared to the typical gap size. Therefore, consistent with the linear stability

analysis to be carried out below (and also previous work of [  53 ], [ 150 ]), we consider the

interface to be periodic in y. Specifically, we shall apply a full-period initial perturbation to

an initially flat interface to respect the periodic boundary conditions (PBCs) at y = 0 and

y = W . Experiments have shown that PBCs have a similar effect to physical sidewalls in a

cylindrical Hele-Shaw cell [ 151 ], i.e., two coaxial cylinders separated by a small gap.

2.2.1 Linear growth rate

Following [ 54 ], we start our linear stability analysis with the 2D (i.e., depth- or z-

averaged) governing equations for the viscous fluid flow in the thin gap between two closely

spaced plates [ 37 ]:

uj = − h2

12µj

∇pj, (2.1)
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Figure 2.1. Top view schematic configuration of the flow in a rectilinear Hele-
Shaw cell with a constant depth gradient α. The depth of the cell, h(x) =
hin + αx, satisfies maxx h(x) � W and maxx h(x) � L and hin is the depth
at the inlet. Although we neglect gravity, in this view it would act in the
negative z-direction. The flow is in the x-direction, and the Hele-Shaw cell’s
gap thickness, h(x), only varies in this direction.

where the subscript j = 1, 2 represents the displacing and defending fluid, respectively; uj is

the depth-averaged velocity field of fluid j in the (x, y) plane, pj is the pressure field of fluid

j, while h and µj were defined above (see also Fig.  2.1 ). Equation (  2.1 ) is supplemented by

the continuity (conservation of mass) equation for each incompressible fluid phase:

∇ · (huj) = 0. (2.2)

The flow has been assumed to be fully developed and steady.

Substituting Eq. (  2.1 ) into Eq. (  2.2 ), we obtain the governing equation for the pressure

in each fluid

∇2pj + 3α

h(x)
∂pj

∂x
= 0. (2.3)
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In an angled Hele-Shaw cell, the depth is h(x) = hin + αx, so

1
h(x) = 1

hin + αx
= 1

hin

− αx

h2
in

+ O(α2). (2.4)

Substituting Eq. (  2.4 ) back into Eq. (  2.3 ), and neglecting the O(α2) terms (consistent with

the lubrication approximation under which Eq. (  2.1 ) is derived [see, e.g.,  37 ]), the pressure

equation now has constant coefficients:

∂2pj

∂x2 + ∂2pj

∂y2 + 3α

hin

∂pj

∂x
= 0 (α � 1). (2.5)

Next, assume a flat base state for the (unperturbed) interface shape, denoted ζ(y, t) =

ζ0(t). Then, we express the perturbed interface as a Fourier series:

ζ(y, t) = ζ0(t) +
∑
n6=0

εnaneikny+λn(t), (2.6)

which satisfies the condition of periodic boundary conditions (PBCs) in y. In Eq. ( 2.6 ), the

time derivative of λn(t), denoted henceforth as λ̇n and not necessarily constant, represents

the growth rate of mode n, and kn = 2πn/W is its spatial wave number. We take kn > 0

without loss of generality. The magnitude of each perturbation mode is quantified by a

dimensionless number εn, and εn′ 6= εn for any two modes n′ and n in a mode-coupling

analysis [  150 ]. In the present work, we restrict ourselves to a single mode analysis, thus the

sum may be dropped:

ζ(y, t) = ζ0(t) + εaeiky+λ(t). (2.7)

This approximation is justified since all mode coupling terms would be at least second order,

or more specifically, coupling of modes n′ and n would be of order εn′εn, which would be

dropped eventually in our linear stability analysis below.

Next, we expand each phase’s pressure pj in perturbation series. Consistent with the

interfacial perturbation in Eq. ( 2.7 ), only terms up to O(ε) are kept:

pj(x, y, t) = p0j(x; t) + εp1j(x, y; t), (2.8)
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where p0j(x; t) represents the base state, i.e., the pressure drop across the channel under

uniform displacement. Meanwhile, p1j(x, y; t) is the pressure perturbation due to the inter-

facial disturbance. Note that the perturbative pressure expansion from Eq. (  2.8 ) satisfies the

steady PDE, i.e., Eq. (  2.5 ), but may depend on time as a parameter due to the fluid–fluid

interface’s motion. Consistent with these definitions, the pressure gradient of the base state

p0j(x; t) satisfies Darcy’s equation and p1j(x, y; t) must vanish away from the interface, i.e.,

lim
x→−∞

p11(x, y; t) = lim
x→+∞

p12(x, y; t) = 0.

We proceed by expressing the pressure perturbation as a Fourier series:

p1j(x, y; t) =
∑

n

gjn(x)eikny+λn(t), j = 1, 2, (2.9)

where each gjn = O(1). Again, Eq. ( 2.9 ) can be reduced to a single-mode representation due

to higher-order terms being dropped in our linear stability analysis:

p1j(x, y; t) = gj(x)eiky+λ(t). (2.10)

Solving the pressure equation by substituting Eqs. (  2.8 ) and ( 2.10 ) into Eq. (  2.5 ) (see

Appendix for details), we obtain the pressure jump across the fluid–fluid interface:

(
p1 − p2

)∣∣∣
x=ζ(y,t)

=
4U
(
ζ0(t)

)
hin

α[h(ζ0(t))]2
(µ1 − µ2)

+ εeiky+λ(t) aγCa

[h
(
ζ0(t)

)
]2

(1 − M) −

 λ̇

U
(
ζ0(t)

) + α

 3
hin

− 2
h
(
ζ0(t)

)
 1 + M

k


+ O(ε2) (α � 1), (2.11)

where Ca := 12Uµ2/γ is the definition of the capillary number, γ is the interfacial surface

tension as before, M := µ1/µ2 is defined as the ratio of the fluids’ viscosities, and U =

U
(
ζ0(t)

)
and h = h

(
ζ0(t)

)
are the local (non-constant) velocity and depth at the unperturbed

interface, respectively. It follows that Ca also depends on t, implicitly, through U
(
ζ0(t)

)
and

h
(
ζ0(t)

)
; however, we have left this dependency implicit to simplify the notation.
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On the other hand, the capillary pressure jump at the interface x = ζ(y, t) also satisfies

the Young–Laplace equation. If the defending fluid wets the wall, i.e., the contact angle

between the defending fluid and the wall is θc = 0, then Park and Homsy’s analysis [ 152 ]

yields

(
p1 − p2

)∣∣∣
x=ζ(y,t)

= 2γ

h[ζ(y, t)]
(
1 + 3.8Ca2/3 + · · ·

)
+ γ

R

[
π

4 + O(Ca2/3)
]

, (2.12)

where R is the radius of curvature of the interface, and we have taken into account the

variable gap depth, h[ζ(y, t)] 6= const., as suggested by [ 153 ]. Neglecting higher-order terms

(in this linear, Ca � 1 analysis), Eq. ( 2.12 ) simplifies to

(
p1 − p2

)∣∣∣
x=ζ(y,t)

= 2γ

h[ζ(y, t)] + π

4
γ

R
. (2.13)

If the wetting is not perfect, considering the contact angle θc, the pressure jump is written

as (
p1 − p2

)∣∣∣
z=ζ(y,t)

= γ

{
2 cos θc

h[ζ(y, t)] + f(θc)κ
}

, (2.14)

where κ = 1/R is the curvature of the interface, defined as

κ := − ∂2ζ/∂y2

[1 + (∂ζ/∂y)2]3/2

= −∂2ζ

∂y2

1 − 3
2

(
∂ζ

∂y

)2

+ O

(∂ζ

∂y

)4


= k2εaeiky+λ(t) + O(ε2),

(2.15)

and f(θc) is a function of the contact angle to account for the interface curvature within the

gap [ 36 ], [ 152 ]. Specifically, based on the analysis of [  154 ],

f(θc) =
(

π

4 − θc

2

)
1 + sin θc

cos θc

. (2.16)

Of course, this general expression yields the two standard cases: f(0) = π/4 and f(π/2) = 1

(interpreted as a limit).
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Now, using the expansion in Eqs. ( 2.4 ) and ( 2.15 ), Eq. ( 2.14 ) becomes

(
p1 − p2

)∣∣∣
x=ζ(y,t)

= 2γ cos θc

h
(
ζ0(t)

) + εaγeiky+λ(t)

f(θc)k2 − 2 cos θcα

[h
(
ζ0(t)

)
]2

+ O(ε2). (2.17)

Matching the O(ε) terms in Eqs. ( 2.11 ) and ( 2.17 ), we obtain

eiky+λ(t) Caγa

[h
(
ζ0(t)

)
]2

(1 − M) −

 λ̇

U
(
ζ0(t)

) + α

 3
hin

− 2
h
(
ζ0(t)

)
 1 + M

k


=

f(θc)k2 − 2α cos θc

[h
(
ζ0(t)

)
]2

 γaeiky+λ(t). (2.18)

Rearranging the last equation, yields the final form of our theoretical prediction for the

growth rate λ̇(t) of an interface between immiscible fluids in a rectilinear Hele-Shaw cell

with a constant depth gradient α:

(1 + M)
 λ̇

U
(
ζ0(t)

) + α

 3
hin

− 2
h
(
ζ0(t)

)


=
(

1 − M + 2α cos θc

Ca

)
k −

f(θc)k3[h
(
ζ0(t)

)
]2

Ca
(α � 1). (2.19)

Equation (  2.19 ) differs from the solution discussed by [  54 ] in that it does not assume

an instantaneous development of the instability; rather the dynamics occurs over a finite

time span during which the interface “sees” the cell’s depth variation. Thus, Eq. ( 2.19 )

captures the dynamic interplay between the growth/decay of a perturbation and the flow-

wise geometric variations it encounters, as exemplified by h
(
ζ0(t)

)
. Specifically, we have

defined a non-constant Ca = 12Uµ2/γ, where U = U
(
ζ0(t)

)
is not the fixed inlet value but,

rather, it is the average velocity at some downstream cross-section x = ζ0(t). U = U
(
ζ0(t)

)
can be easily determined by conservation of mass; see, e.g., the discussion of Eq. ( 2.24 )

below. Consequently, λ(t) is governed by an ordinary differential equation (not an algebraic

equation), and it may grow (or decay, or both) during its time evolution, despite the sign of

λ̇ obtained from a “frozen-time” linear stability analysis [ 155 ].

33



In the absence of a depth gradient, i.e., α = 0 (thus, U and Ca = const.), Eq. (  2.19 )

reduces to

λ̇ =
(1 − M

1 + M

)
Uk − f(θc)h2

inU

Ca(1 + M)k3, (2.20)

which agrees exactly with the growth rate for the fingering instability given by Homsy [ 36 ]

for θc = π/2, and if gravity and the Rayleigh–Darcy convection terms are neglected therein.

2.2.2 Classification of instability regimes

The threshold of instability is determined by setting λ̇ = 0. Then, from Eq. (  2.19 ), we

obtain

3α(1 + M) =
(

1 − M + 2α cos θc

Ca

)
hink −

f(θc)[h
(
ζ0(t)

)
]2hin

Ca
k3 (α � 1). (2.21)

Solving for the critical capillary number, Cac, for fixed k in Eq. ( 2.21 ), we obtain

Cac =
2α cos θc − f(θc)k2[h

(
ζ0(t)

)
]2

(1 + M)
 3

hin
− 2

h

(
ζ0(t)

) α
k

+ (M − 1)
. (2.22)

This critical capillary number determines the threshold of instability for the fluid–fluid in-

terface. The interface is stable if Ca < Cac; it is unstable if Ca > Cac. To the best of our

knowledge, Eq. ( 2.22 ) is a new result because Cac implicitly depends on the interface location

x = ζ0(t) through h
(
ζ0(t)

)
. Now, let us consider the possible flow and instability regimes

in Hele-Shaw cells with a gap gradient by analyzing Eq. ( 2.22 ) in detail. Importantly, these

flow regimes could not be determined (i.e., they do not exists) in previously analyses based

on a fixed Cac.

Parallel cell.

In this case, there is no depth gradient, i.e., α = 0, and Eq. ( 2.22 ) becomes

Cac = −f(θc)k2h2
in

(M − 1) . (2.23)
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The capillary number is constant along the cell, i.e., Ca(x) ≡ Cain = Caout. So, the critical

capillary number delineates three regimes when compared with the inlet capillary number:

• Regime I: Cain < Cac. In this regime, the growth rate is negative, λ̇ < 0. The

finger’s growth is suppressed, and the interface becomes flat asymptotically.

• Regime II: Cain = Cac. In this regime, the growth rate is zero, λ̇ = 0. The finger’s

growth is neither inhibited nor triggered (i.e., this represents a marginally stable case).

The finger’s length remains constant, and linear stability cannot determine whether

an initial perturbation will grow or decay.

• Regime III: Cain > Cac. In this regime, the growth rate is positive, λ̇ > 0. The

interface is unstable and the finger’s growth is triggered.

Diverging cell.

In this case, α > 0. The depth-averaged velocity of a stable flat interface is intrinsically

a function of the channel’s depth along the flow direction due to conservation of mass. This

leads us to specifically decompose the capillary number into an inlet (constant) and local

(variable) contribution:

Ca = 12µ2U

γ
= Cain

hin

h(ζ0)
, (2.24)

where Cain = 12µ2Uin/γ and hin are the constant capillary number and depth at the inlet

of the cell. Ca as defined in Eq. (  2.24 ) is implicitly a function of t through ζ0. This local

Ca decreases with x because the velocity is decreasing for a diverging cell (expanding cross-

sectional area). Although Cac decreases as well, according to Eq. (  2.22 ), as h(ζ0) increases,

the change of the local Ca is faster than Cac. Therefore, we can still introduce three regimes

by comparing the local Ca with Cac:

• Regime I: Cain < Cac. In this regime, the growth rate is always negative, λ̇ < 0, and

the finger’s growth is inhibited.

• Regime II: Cain > Cac and Caout < Cac. In this regime, the growth rate is positive,

λ̇ > 0, at the inlet, but changes sign becoming negative, λ̇ < 0, at some point down-
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stream in the cell. Thus, the finger’s length initially increases but then saturates and

would be expected to decrease at longer times.

• Regime III: Caout > Cac. In this regime, the growth rate is always positive, λ̇ > 0,

and the initial finger perturbation grows in time.

Converging cell.

In this case, α < 0. Now, local capillary number from Eq. (  2.24 ) increases along the flow

direction. Again, three instability regimes can be defined by comparing the local Ca with

Cac:

• Regime I: Caout < Cac. In this regime, the growth rate is always negative, λ̇ < 0,

and the finger’s growth is inhibited.

• Regime II: Cain < Cac < Caout. In this regime, the growth rate is negative, λ̇ < 0,

at the inlet, but changes sign becoming positive, λ̇ > 0, at some point downstream in

the cell. The finger’s length decreases initially but grows at longer times.

• Regime III: Cain > Cac. In this regime, the growth rate is always positive, λ̇ > 0,

and the initial finger perturbation continues to grow in time.

It is important to note that this analysis predicts that, in diverging and converging cells,

Regime II exists for a finite range of Cain values. This observation is in stark contrast to the

parallel cells for which Regime II is simply the marginally stable case Cain = Cac. Thus, in

diverging and converging Hele-Shaw cells, the stability of a perturbation may change during

its evolution. Previous studies of elastic-walled Hele-Shaw cells also commented on this effect

[ 156 , §4.2.1].

Now, to illustrate these three regimes for parallel, diverging and converging Hele-Shaw

cells, in Fig.  2.2 , we plot the growth rate λ̇ as a function of the inlet capillary number Cain

and the dimensionless flow-wise position x∗ = x/L. The contact angle is assumed to be

π/2, so we take f(θc) = 1. In these plots, x∗ = 0 and x∗ = 1 represent the inlet and

outlet, respectively. The intersection between a given λ̇ surface and the horizontal plane
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λ̇ = 0 indicates a transition in (in)stability. Thus, our classification of instability into three

regimes becomes clear. Regime I is to the left of the line of intersection, Regime III is to the

right of this line, and Regime II refers to cases in which the line of intersection is crossed

only for some range of Cain values. For example, in a parallel cell (Fig.  2.2a ), the line of

intersection is parallel to the x∗ axis, thus Regime II corresponds to one specific value of

Cain. For that value of Cain, the interface is neutrally stable. In a diverging cell (Fig.  2.2b )

or a converging cell (Fig.  2.2c ), on the other hand, the line of intersection is crossed for a

range for Cain values, as one goes from the inlet to the outlet, i.e., from x∗ = 0 to x∗ = 1.

Furthermore, by comparing the growth rates in Figs.  2.2b and  2.2c , we observe that, for

larger Cain, the growth rate in a converging cell could be greater than that in a diverging

cell. This observation could explain the recent counterintuitive simulation results reported

by [  55 ], in which while the perturbation in a converging Hele-Shaw cell has a larger growth

rate than in a parallel cell, the perturbation’s growth rate in a diverging cell can be smaller,

for large Cain, than a in parallel cell.

2.3 Direct numerical simulations

Numerical simulations are carried out using the interFoam solver [ 157 ], [  158 ] implemented

in OpenFOAM® ver. 6.0 [  159 ], an open-source library based on the finite volume method

(FVM) [  160 ]. In this analysis, the fluids are considered as incompressible, immiscible and

unsteady. As depicted in Fig.  2.1 , the fluids flow through a Hele-Shaw cell with a depth

that varies with x. The contact angle between the displacing fluid and the wall is taken

to be θc = π/2 (the interface is flat across the depth). Three types of cells are considered:

converging (negative depth gradient, α < 0), parallel (zero gradient, α = 0), and diverging

(positive depth gradient, α > 0).

Below, we present numerical “experiments” (studies) based on water (fluid 1) injected

into mineral oil (fluid 2). The corresponding fluid properties, geometric parameters and flow

quantities used for these simulations are summarized in Table  2.1 . In simulations, the Uin

values used are back-calculated from Cain.
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(a) a parallel cell (α = 0) (b) a diverging cell (α = 5 × 10−4)

(c) a converging cell (α = −5 × 10−4)

Figure 2.2. The growth rate λ̇ as a function of inlet capillary number Cain

and the flow-wise dimensionless position x∗ = x/L in different cells: (a) a
parallel cell, (b) a diverging cell, and (c) a converging cell, with M = 0.0154
and other geometric/material properties as in Table  2.1 . The intersection of
the growth rate surface (shaded) and the λ̇ = 0 surface (meshed) is marked
by red lines, indicating the change of sign of λ̇ and an exchange of stability.

2.3.1 Governing equations

In our DNS study, we solved the “full” 3D Navier–Stokes equation directly in each fluid,

instead of the simplified and depth-averaged equations commonly solved in previous numer-

ical studies. Specifically, the governing equations solved by the interFoam implementation
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Table 2.1. Fluid properties, geometric parameters and flow quantities used
for the numerical simulations.

Property Value (SI units)

µ1 1.0 × 10−3

ρ1 1.0 × 103

µ2 6.50 × 10−2

ρ2 8.30 × 102

γ 2.95 × 10−2

θc π/2

Quantity Value (SI units or – )

hin 1 × 10−3

W 5 × 10−2

L 2 × 10−1

α 0, ±5 × 10−4, ±10 × 10−4

Cain 0.0067 to 0.0200

[ 158 ] in OpenFOAM® are the conservation of mass and momentum for a two-fluid mixture,

written as:

∇ · v = 0, (2.25)
∂(%v)

∂t
+ ∇ · (%v ⊗ v) = −∇p + ∇ · [η(∇v + ∇v>)] + F , (2.26)

where % = %(x, y, z, t) is the mixture density, v = v(x, y, z, t) is the mixture velocity, p =

p(x, y, z, t) is the pressure, η = η(x, y, z, t) is the mixture viscosity, and F is a fictitious body

force used to enforce surface tension at the fluid–fluid interface. Physically, this body force

due to surface tension results in a pressure jump at the interface, and it is evaluated (per

unit volume) by the continuum surface force (CSF) model [ 161 ], [ 162 ]:

F = γκ∇φ, (2.27)
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where γ is the surface tension, and κ = −∇ · (∇φ/‖∇φ‖) is the mean curvature of the

fluid–fluid interface computed directly from its surface normals. Here, φ = φ(x, y, z, t) is the

phase fraction in a given cell of the computational grid, defined as

φ



∈ (0, 1) ⇒ Interface;

= 1 ⇒ Fluid 1;

= 0 ⇒ Fluid 2.

(2.28)

The phase fraction keeps track of where each fluid (“1” and “2”) goes in the computational

domain. We stress that this “mixture” model does not consider “different” physics than the

mathematical model in Sect.  2.2 ; this is simply a numerical approach to handling dissimilar

fluids separated by an immiscible interface.

In the interFoam solver, the phase fraction φ is solved using a modified volume-of-fluid

(VOF) method [ 163 ]:

∂φ

∂t
+ ∇ · (φv) + ∇ · (φ(1 − φ)vr) = 0, (2.29)

where vr = v1 − v2 is the relative velocity between the two fluids. The fluid properties of

the mixture, as well as the mixture velocity, to be used in Eqs. (  2.25 ) and (  2.26 ), can thus

be expressed as

% = φρ1 + (1 − φ)ρ2, (2.30a)

η = φµ1 + (1 − φ)µ2, (2.30b)

v = φv1 + (1 − φ)v2, (2.30c)

where the subscripts “1” and “2” refer to fluid 1 (displacing) and fluid 2 (displaced/defend-

ing), respectively. Eqs. (  2.25 ), (  2.26 ) and (  2.29 ) are discretized spatially using the FVM and

integrated in time via an Euler implicit scheme. Convection terms are discretized using a

linear upwind scheme, while diffusion terms are discretized using a linear scheme. Gauss

integration is employed for both terms, and gradients are corrected to account for non-
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orthogonal fluxes, which occur in angled cells. The Navier–Stokes solution algorithm used

in interFoam is “PIMPLE,” which is a combination of the pressure-implicit with splitting

of operators (PISO) method [ 164 ], [ 165 ] and the semi-implicit method for pressure-linked

equations (SIMPLE) [  165 ], [ 166 ]. In PIMPLE, PISO is used as the inner loop corrector to

update pressure and velocity, and SIMPLE is used as the outer loop corrector to ensure

convergence. Thus, PIMPLE achieves a more robust pressure-velocity coupling.

2.3.2 Mesh generation

When performing numerical simulations, on one hand, it is important to have a mesh

that is fine enough to capture the physical properties accurately; on the other hand, a mesh

with fewer cells saves computational resources. To balance accuracy and efficiency, we only

refine the mesh in the region of interest, which in the present problem is the fluid–fluid

interface. We use a relatively coarse mesh for the remainder of the Hele-Shaw cell. Since the

interface is moving, adaptive mesh refinement is employed. At every time step the mesh is

dynamically refined in the spatial region where 0.001 < φ(x, y, z, t) < 0.999, i.e., close to the

interface to ensure it is well resolved. The initial mesh resolution is given in Table  2.2 .

Table 2.2. Mesh generation for grid and time independence test(s) parameters
for a parallel cell. For converging and diverging cells, only ∆z changes.

Case ID 1 2 3

Grid elements 750 6,000 48,000
Grid resolution, ∆x [m] 8 × 10−3 4 × 10−3 2 × 10−3

Grid resolution, ∆y [m] 5 × 10−3 2.5 × 10−3 1.25 × 10−3

Grid resolution, ∆z [m] 3.33 × 10−4 1.67 × 10−4 8.33 × 10−5

Time step [s] 10−3 10−4 10−5

2.3.3 Initial and boundary conditions

At the inlet (x = 0), we employ a horizontal velocity profile that satisfies no-slip at

z = 0, hin, i.e., ux(z) = −6Uin(z/hin − 1/2)2 + (3/2)Uin, as the boundary condition for
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the mixture velocity. A zero-gradient boundary condition is employed for the flow at the

outlet (x = L), except the pressure, which is fixed to zero to set the gauge. Initially, fluid

1 and fluid 2 are separated by a flat interface x = ζ0 = 20 mm. An initial perturbation is

applied at the interface, i.e., ζ(y, 0) = ζ0[1 + ε sin(ky)] (see Fig.  2.3a ). The initial magnitude

of the perturbation is set by ε = 0.2, and its wavenumber is k = 2π/W . Along the top

(z = h(x)) and bottom (z = 0) plates of the cell, a no-slip boundary condition is prescribed.

All variables are assumed to be periodic at the side (lateral) ends, y = 0 and y = W , of

the cell. An example simulation under these initial and boundary conditions is shown in

Fig.  2.3 , highlighting how the initial perturbation can grow or decay, and how the interface

remains sharp due to adaptive mesh refinement.

2.3.4 Grid and time step independence test

Three sets of simulations on different meshes, as listed in Table  2.2 , were conducted to

show grid and time step independence. We compute the deviation of the finger’s length,

defined as ξ(t) := maxy[ζ(y, t)] − ζ0(t), and found from linear stability analysis to be ξla(t),

to the simulation prediction ξns(t), as:

ε(t) =
∣∣∣∣∣ξns(t) − ξla(t)

ξla(t)

∣∣∣∣∣ . (2.31)

The results in Fig.  2.4 show that the difference in the values of ε(t) between case 2

and case 3 (less than 1%) is insignificant for the purposes of this study. Therefore, for the

remainder of the present work, we will employ case 2 as the simulation grid of choice. This

grid is less demanding in terms of computational resources than the grid from case 3.

2.4 Results: Comparing theory to simulations and stability regimes

2.4.1 Verification of the linear stability analysis

Hu, Wang, and Sun [ 167 ] already performed extensive verification of the interFoam

solver’s use for simulating viscous fingering in a Hele-Shaw cell of constant depth. Im-

portantly, they showed that simulations can capture quite accurately experimental and the-
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Table 2.3. Classification of cases for simulations used for verification of the linear theory.
Cain = 0.0067 Cain = 0.0147 Cain = 0.0200

Converging cell (α = −5 × 10−4) Case 4 Case 5 Case 6

Parallel cell (α = 0) Case 7 Case 8 Case 9

Diverging cell (α = 5 × 10−4) Case 10 Case 11 Case 12

oretical predictions about the length and width of a single finger, as in the classical [ 32 ]

experiments and analysis.

In this subsection, we explore flows in angled Hele-Shaw cells with different capillary

numbers for converging (α < 0), parallel (α = 0) and diverging (α > 0) cell geometries

as cataloged by the ‘cases’ in Table  2.3 . We wish to verify the linear stability theory from

Sect.  2.2 through numerical simulations. Before we discuss the numerical results in detail,

it is instructive to make a few remarks. First, the linear analysis holds, strictly speaking,

only at the moment of initiation (onset) of instability. Nevertheless, the linear analysis is

generally used in the literature to describe the unstable interface’s evolution. Additionally,

here for simplicity and for consistency with some previous analyses, only one Fourier mode

was used to represent the perturbation. At later times in the displacement process, the

simulations capture the full nonlinear unstable interface evolution, which is expected to be

qualitatively similar (but quantitatively different) than the prediction of the linear analysis.

This specific point is of interest to us in the present work. Even when linear theory does not

provide precise quantitative prediction about the interface’s evolution (and, instead, direct

numerical simulations must be used), linear theory correctly delineates the stability regimes

and their transitions in the capillary number–depth gradient, i.e., (Ca, α), space.

The first verification results are presented in Fig.  2.5 for each of the three types of Hele-

Shaw cells in panels (a), (b) and (c). Solid and dotted lines refer to numerical and theoretical

results, respectively. Lines with different symbols represent different cases from Table  2.3 

with different inlet capillary numbers Cain. The finger’s length ξ (left panels) and growth

rate λ̇(t) (right panels) are plotted as functions of time. The theoretical predictions are

computed from Eqs. (  2.6 ) and ( 2.19 ) with ξ(t) = maxy[ζ(y, t)] − ζ0(t). Numerical results
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(a) initial interface perturbation

(b) interface evolution, stable case: Cain = 0.01, t = 45s

(c) interface evolution, unstable case: Cain = 0.03, t = 45s

Figure 2.3. Top view of example simulation of interface evolution in a con-
verging cell (α = −5 × 10−4).

are post-processed from the simulation data; the finger’s length is calculated as ξ(t) =

{maxy[ζ(y, t)] + miny[ζ(y, t)}/2, and the growth rate is calculated as λ̇(t) = [1/ξ(t)]dξ/dt

using the cubic-spline interpolation with smoothing available in SciPy [ 168 ].

Numerical results and linear stability analysis agree very well at Cain = 0.0200 in each

cell: Case 6 in Fig.  2.5a ; Case 9 in Fig.  2.5b ; and Case 12 in Fig.  2.5c . In these cases, the

finger’s length ξ(t) increases over time and the growth rate λ̇(t) remains positive, meaning
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(a) parallel cell (α = 0)
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(b) diverging cell (α = 5 × 10−4)
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(c) converging cell (α = −5 × 10−4)

Figure 2.4. Grid and time step independence tests show the % difference
in the fingers length (between linear stability and numerical simulation) as a
function of time. Clearly, the simulation parameters in case 2 and case 3 lead
to very similar results, so case 2 shall be employed for all simulations herein.

that the interface is unstable, which corresponds to Regime III in classification introduced in

Sect.  2.2 . At Cain = 0.00147, numerical simulations show a roughly constant finger’s length.

The growth rate is almost zero (Case 8 in Fig.  2.5b ), or suffers a change of sign (Case 5 in

Fig.  2.5a and Case 11 in Fig.  2.5c ). At this value of Cain we are reminded of Regime II

from the linear stability analysis. As Cain is decreased to 0.0067, simulations show that ξ(t)

continues to decay, and λ̇(t) is always negative: Case 4 in Fig.  2.5a ; Case 7 in Fig.  2.5b ; and

Case 10 in Fig.  2.5c .

Therefore, the prediction from linear stability theory regarding three instability regimes

has been verified through numerical simulations. However, the quantitative prediction of

the growth rate from linear analysis is most accurate in Regime III, which corresponds to
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the classical Saffman–Taylor instability. In Regime I and II, our results quantify the differ-

ence between the linear model and 3D DNS. Indeed, as the interface becomes flattened, it

is increasingly less meaningful to try to define the finger’s length as the difference between

maximum and minimum extent. In this case, integrated metrics such as the isoperimetric

ratio have been preferred by other authors [  169 ]. Moreover, we have verified that the evolu-

tion of the perturbations according to linear stability theory and DNS match more closely

(quantitatively) for smaller perturbation magnitudes, e.g., taking ε = 0.05 or even 0.02.

However, to better resolve these very small (and slower growing perturbations), a finer mesh

should be used. The effect of the perturbation magnitude ε is not an emphasis of the present

study, hence these details are omitted for brevity. As mentioned earlier, we use the small

but not infinitesimal value of ε = 0.2 in all of our DNS results.

2.4.2 The effect of the flow-wise depth gradient

In this subsection, we investigate the effect of the depth gradient α on the growth/decay

of perturbations on the fluid–fluid interface. The various cases with different values of α are

cataloged in Table  2.4 . The theoretical predictions and numerical results for the growth rate

λ̇(t), as defined in Sect.  2.2 , in these different (in)stability regimes are shown in Figs.  2.6a ,

 2.6c and  2.6e , respectively, for different values of α. The results show that as α increases,

λ̇ decreases. In other words, following the terminology most recently used in [  170 ], the

diverging cells have a relatively stabilizing effect in all three regimes, while converging cells

relatively destabilize the interface, compared to the interface evolution in a parallel cell for

the same value of Cain. Specifically, the growth rate from 3D simulations is not constant, but

varies with time, which qualitatively verifies our novel extension of previous linear stability

analysis (Sect.  2.2 ).

To further compare the effect of the depth gradient in each regime, in Fig.  2.6b ,  2.6d and

 2.6f , we present the integral of growth rate over time, i.e., λ(t) =
∫ t

0 λ̇(t′) dt′ =
∫ ξ(t)

ξ(0) dξ′/ξ′ =

ln |ξ(t)| − ln |ξ(0)|, which is computed over the first 20 s of simulation time. In Regime I (see

Fig.  2.6 top row), the simulation results show that the depth gradient has a slight effect on

the interface: the integral of the growth rate λ decreases slightly with α. The present linear
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(a) a converging cell with α = −5 × 10−4
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Figure 2.5. Linear stability analysis verification for the finger’s length ξ(t)
and the growth rate λ̇(t) in (a) a converging cell (Cases 4, 5, 6), (b) a parallel
cell (Cases 7, 8, 9), (c) a diverging cell (Cases 10, 11, 12). Colors represent
different inlet Ca, as labelled. Simulations results (solid curves) verify the
three regimes theory: blue solid curves (decreasing ξ and λ̇ < 0) are in Regime
I, yellow solid curves (roughly constant ξ and λ̇ ≈ 0) are in Regime II, and
red solid curves (increasing ξ and λ̇ > 0) are in Regime III.
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(e) Regime III (Ca = 0.0200)
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Figure 2.6. The effect of depth gradient α on the growth rate λ̇(t) (a,c,e) and
the integral of the growth rate λ (b,d,f), in the three regimes. As α increases, λ̇
decreases. The growth rate from 3D simulations is not constant but varies with
time, which qualitatively verifies our linear stability analysis from Sect.  2.2 ,
denoted as “LSA with variable Ca.” “LSA with fixed Ca” stands for the quasi-
steady analysis of [ 53 ]. LSA with fixed Ca does not capture the decreasing
trend of λ with α obtained by the present LSA with variable Ca and 3D DNS.
In turn, the latter exaggerates the gradient’s effect compared to DNS.
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Table 2.4. Classification of the simulations conducted to ascertain the effect
of the depth gradient.

Regime I Regime II Regime III
Cain = 0.0067 Cain = 0.0147 Cain = 0.0200

α = −10 × 10−4 Case 13 Case 14 Case 15
α = −5 × 10−4 Case 4 Case 5 Case 6
α = 0 Case 7 Case 8 Case 9
α = 5 × 10−4 Case 10 Case 11 Case 12
α = 10 × 10−4 Case 16 Case 17 Case 18

stability analysis exaggerates the gradient’s effect: the predicted slope of λ, as a function of

α, is larger than the one from DNS. We conjecture that a weakly-nonlinear stability analysis

(e.g., extending the work of [  150 ] to the case of an angled Hele-Shaw cell), which keeps higher-

order terms in the perturbation expansion, could correct this exaggeration. Moreover, since

λ is decreasing and negative, then the suppression of viscous fingering that exists in Regime

I is most effective in diverging cells, and the larger α, the better. This result is somewhat

counterintuitive compared to discussion in [  53 ] wherein converging cells are described as the

most stabilizing; however, in [  53 ] the three regime diagram proposed herein was obviously

not considered.

In Regime II (see Fig.  2.6 middle row), the effect of the gradient is stronger than in Regime

I: as α increases, λ decreases more rapidly. The gap gradient has the most significant effect

in Regime III (see Fig.  2.6 bottom row), indicating that the triggering of fingering in Regime

III is most clearly observed in converging cells, and the larger |α|, the better. Returning to

the comparison with the previous linear stability analysis from [  53 ] (dotted lines with stars

in Fig.  2.6b ,  2.6d and  2.6f ), we observe that it does not capture the decreasing trend of λ

with α, specifically because in our simulations we have taken a contact angle of θc = π/2.

In general, the linear stability analysis provides a theoretical explanation for the DNS

results, specifically in the prediction of the dependence of the growth rate on the depth

gradient α in an angled Hele-Shaw cell (Fig.  2.6b ,  2.6d and  2.6f ). As the capillary number

decreases, the discrepancy between theory and simulation increases, as is to be expected

for this Ca � 1 linear theory. In particular, one way to understand this observation is to
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note that as Cain decreases, the interface becomes more and more flattened, and the finger’s

length is no longer a sensitive metric.

2.4.3 Stability diagram

In Sect.  2.4.1 , the linear analysis was verified through numerical simulations of flows

throughout the three regimes of the proposed stability classification. However, for marginal

cases near the dividing curves between two regimes, we observed that the predictions of the

linear theory do not quantitatively agree with DNS. To better understand this discrepancy,

we conducted further numerical experiments to explore the numerical regime map for various

depth gradient values α. In this subsection, we compare the numerical regime diagram to

the theoretically predicted one. The result is shown in Fig.  2.7 . Other stability diagrams

from previous research [  59 ], [ 64 ], [ 74 ] have shown the (in)stability by linear stability analysis,

experiments, or both. Here, we supplement the diagram with 3D direct numerical simulation

results, and make a comparison with the linear stability analysis.

The theoretical division of (in)stability regimes in a Hele-Shaw cell is based on the local

capillary number at the inlet, Cain. The critical capillary number Cac for a particular angled

Hele-Shaw cell is obtained from Eq. ( 2.22 ). By setting Cain = Cac or Caout = Cac, we obtain

the Cain and Caout values at the onset of the stability transition, respectively. Then, we

refer both critical cases back to Cain, by computing the corresponding value of Cain for

Caout = Cac. Thus, we obtain two sets of Cain values, computed from setting Cain = Cac

and from Caout = Cac, respectively, which divide the flow into three regimes in the (α, Cain)

plane.Note that the stability diagram depends on the Hele-Shaw cell’s geometry because the

Cain that we compute from Caout = Cac is related to the length of the channel. However,

in our simulation the interface never reaches the end of the Hele-Shaw cell. Therefore,

the horizontal length scale to be used in the nondimensionalization should be reconsidered

to determine whether the interface will change its stability during its transit of the initial

length of the Hele-Shaw cell. To make a reasonable comparison with the simulation results,

we evaluate Caout at x = 40 mm, the maximum distance reached by the interfaces in the

simulations.
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Figure 2.7. Stability Diagram: theoretical and numerical results are plotted
as dashed and solid curves, respectively. Green and orange curves represent
the critical situations such that Cac = Cain and Cac = Calocal, respectively.
The error bars represent the difference in Cain between two simulations. The
boxed regimes are those defined by the linear theory and the others are those
defined via direct numerical simulations.

The theoretically predicted regime divisions are shown in Fig.  2.7 as dashed curves. The

Cain values calculated from Cain = Cac are plotted with circles, while the ones obtained

from Calocal = Cac are plotted with crosses. Note that there is an intersection between

the two curves at α = 0 because in this case there is no sense in which to distinguish

Cain from Calocal. For α 6= 0, the local capillary number at the inlet Cain is the minimum

capillary number in converging cells (α < 0), while it is the maximum capillary number in

diverging cells (α > 0). Therefore, the critical Cain from Cain = Cac separates Regime II

from Regime III in converging cells, while it separates Regime I from Regime II in diverging

cells. The intersection could also be interpreted as follows: as |α| decreases, the range of

Regime II narrows, finally collapsing to a point for α = 0 (parallel cell, i.e., the “classical”

Saffman–Taylor case).
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Solid curves are the results of direct numerical simulations, representing the division of

the parameter space into three regimes as predicted by the 3D evolution of the interface.

Numerical experiments were carried out for α = 0, ±5×10−4 and ±10×10−4, across multiple

Cain values ranging from 0.0067 to 0.02 with a step of 0.0013. The numerical results show a

general agreement with the theoretically predicted regime map, except for Regime II. This

is not surprising because the marginally stable regime is hard to capture in simulations.

The stability diagram in Fig.  2.7 also captures the effect of depth gradient on the regimes:

as α increase, the regimes boundaries move up to larger Cain values. In particular, we observe

that simulations predict a much weaker dependence on α than the linear stability analysis.

2.5 Conclusions

In this chapter, we analyzed the instability of the interface between immiscible viscous

fluids in angled Hele-Shaw cells with small constant depth gradient in the flow-wise direction.

We performed a linear stability analysis, and we derived an analytical solution for the time-

dependent (not constant) growth rate λ̇(t) of perturbations to a flat interface. Our theoretical

result takes into account the geometric variations and the local capillary number Ca due to

the changing cross-sectional area of the flow conduit. Specifically, we have analyzed the

case, not previously considered, of the interface instability developing on a time scale on

which the flow-wise geometric variations matter. Consequently, dynamic changes in stability

were shown to be possible during the interface’s propagation. Then, we obtained a critical

capillary number Cac by letting λ̇ = 0. By comparing the local capillary number with Cac, we

put forward a division of the stability diagram into three regimes. In Regime I, the interface

is always stable; in Regime II, the interface remains neutrally stable (in a parallel cell), while

in angled cells, an exchange of stability occurs at a specific position in the cell: from stable to

unstable (in a converging cell), or from unstable to stable (in a diverging cell). This regime

classification implies, in particular, that whether or not a depth gradients is stabilizing (or

destabilizing) for a given inlet flow rate (thus, given capillary number) depends on which

regime the flow falls into. Therefore, a negative depth gradient (converging geometry) is not

generically a stabilizing mechanism.
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Next, we performed 3D direct numerical simulations of the same physical system, using

the interFoam solver built onto the OpenFOAM® platform, in order to verify the proposed

three regimes theory. In Regime III, the finger’s length and growth rate computed from

simulations agree well with theoretical predictions, verifying the linear stability analysis for

the classical Saffman–Taylor instability. Meanwhile, in Regimes I and II, the simulation

results support the regimes’ existence, but do not match the λ̇ values predicted by linear

stability, due to the former’s limitations discussed above.

More importantly, however, the proposed linear theory, when compared to the simulation

results, correctly captures the general dependence of the interface growth rate on the depth

gradient. Specifically, in Regime I, simulation results show that the integral of the growth rate

λ decreases slightly with the gap gradient; meanwhile, linear stability analysis exaggerates the

effect, which is expected to be corrected by employing a weakly-nonlinear stability analysis.

Simulations also suggest that the suppression of fingering in Regime I is most robust in

diverging angled Hele-Shaw cells. Furthermore, in Regime II, the effect of the gradient is

stronger than that in Regime I. The gap gradient’s effect is significant in Regime III, in

which case it acts to trigger the fingering instability, especially in converging cells. In all

three regimes, the diverging (converging) cells have a relatively stabilizing (destabilizing)

effect, with respect to the interface evolution in parallel cells for the same Ca value, which

is contrary to the intuition developed in recent experimental studies.

Finally, we compared the regime stability diagram in the (α, Cain) plane as predicted

by theory and as computed from simulations. Although there are some expected systematic

sources of error between theory and simulation here, the stability diagram in Fig.  2.7 , to

the best of our knowledge, for the first time, compares 3D direct numerical simulations with

linear stability analysis of instability in an angled Hele-Shaw cell. Consequently, the present

work might provide a framework through which to understand interfacial (in)stability in the

presence of geometry variations. Specifically, researchers may:

1. compare quantitatively their simulation or experimental results against the stability

diagram (Fig.  2.7 ) to determine in which regime applies, and therefore understand

whether the depth gradient is stabilizing or destabilizing;
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2. solve the ordinary differential equation ( 2.19 ) for the growth of the interface under the

specific flow and geometric conditions of their simulation or experiment, to determine

the expected behavior of perturbations of the fluid–fluid interface (growth, decay, or

both).

Additionally, we hope that this stability diagram provides a methodology for addressing

the question of how one might improve the sweep efficiency of fluid–fluid displacements in

complex fractured rock composed of a network of non-uniform passages. For example, if

the flow (for a particular diverging or converging flow passage) can be controlled and forced

into Regime I, or at least into Regime II, the interfacial instabilities can be mitigated. Such

fundamental understanding of fingering control can also be employed to minimize the risk

of geomechanical phenomena during overflushing. In fact, it was shown [  171 ] that viscous

fingering (occurring in Regime III) causes a non-uniform sweep of proppants in a fracture,

which are important to distribute uniformly to prevents the fracture’s collapse.

Further work considering a weakly-nonlinear analysis with mode coupling to extend the

predictive capability of the stability theory is appended in Sect.  2.A.2 . In future, direct

numerical simulation could be employed to verify studies on the critical wave number kc at

fixed Ca, such as the prior work of [  150 ]. In fact, simulations possess a crucial advantage over

experiments: simulations allow precise control over the initial conditions, including the wave

number of the interfacial disturbance. Finally, the effects of shear-dependent viscosity [ 172 ],

yield stress [  173 ] and viscoelasticity [  174 ] on the interfacial instability in angled Hele-Shaw

cells should be investigated, building upon the previous work in parallel cells. This aspect

of future work is particularly relevant given that non-Newtonian fluids are commonly used

in hydraulic fracturing applications [ 4 ], [ 6 ].

54



2.A Appendix

2.A.1 Supplementary steps in the main analytical derivations

To derive the pressure jump at the interface, we first substitute Eq. (  2.8 ) into Eq. (  2.5 )

and collect terms at O(1) to obtain

d2p0j

dx2 + 3α

hin

dp0j

dx
= 0, j = 1, 2 (α � 1). (2.32)

Solving the ordinary differential equation in Eq. ( 2.32 ), we have

p0j = C1je
−3αx/hin + C2j. (2.33)

Here, the constants C2j are set by the arbitrary pressure gauge for each fluid; specifically, we

can set C2j = 0 without loss of generality. (Eq. (  2.3 ) can also be solved without the lineariza-

tion in α that leads to Eq. ( 2.32 ) [ 175 ]. However, it is not clear whether the significantly

more complicated expressions contribute much within the lubrication approximation with

α � 1.) Now, we must specify boundary conditions. At the interface, x = ζ = ζ0(t) + O(ε),

the x-velocities at the leading order (i.e., for an unperturbed interface) must match:

lim
x→ζ−

0

ux1 = lim
x→ζ+

0

ux2 = U
(
ζ0(t)

)
, (2.34)

where U is the local velocity at the interface. Then, using Eqs. (  2.1 ) and ( 2.33 ), we can

re-express Eq. ( 2.34 ) as

lim
x→ζ−

0

dp01

dx
= − 12µ1U(x)

[h(x)]2

∣∣∣∣∣
x=ζ0(t)

, (2.35a)

lim
x→ζ+

0

dp02

dx
= − 12µ2U(x)

[h(x)]2

∣∣∣∣∣
x=ζ0(t)

. (2.35b)

Applying the boundary condition from Eqs. ( 2.35 ) to the solution in Eq. ( 2.33 ), we have

p0j =
4µjU

(
ζ0(t)

)
hin

α[h
(
ζ0(t)

)
]2

e
− 3α

hin

(
x−ζ0(t)

)
(α � 1). (2.36)
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Similarly, substituting Eqs. (  2.8 ) and (  2.10 ) into Eq. (  2.5 ) and collecting terms at O(ε),

we have
d2gj

dx2 + 3α

hin

dgj

dx
− k2gj = 0, j = 1, 2 (α � 1), (2.37)

subject to

lim
x→−∞

g1(x) = lim
x→+∞

g2(x) = 0. (2.38)

The solution to Eq. (  2.37 ) is of the form gj = bj1e
m1x + bj2e

m2x, where bj1 and bj2 are

constants, and

m1,2 = − 3α

2hin

1 ±
√

1 + 4k2h2
in

9α2

 . (2.39)

Therefore,

g1(x) = b11e
m1x + b12e

m2x. (2.40)

In a diverging cell, α > 0, thus m1 < 0 and m2 > 0. From the boundary condition from

Eq. ( 2.38 ), b11 = 0. In a converging cell, α < 0, thus m1 > 0, m2 < 0 and b12 = 0. Hence,

g1(x) =


b12e

m2x, α > 0;

b11e
m1x, α < 0.

(2.41)

Similarly,

g2(x) =


b21e

m1x, α > 0;

b22e
m2x, α < 0.

(2.42)

Following [ 54 ], Eq. ( 2.41 ) and ( 2.42 ) can be combined into a single equation:

gj = b̂(j, α)em̂(j,α)x, (2.43)

where

m̂(j, α) = − 3α

2hin

1 + (−1)j sgn(α)
√

1 + 4k2h2
in

9α2

 , (2.44)
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where sgn(α) = |α|/α for α 6= 0 and vanishes otherwise. Therefore, Eq. (  2.10 ) becomes

p1j = b̂(j, α)em̂(j,α)x+iky+λ(t) (α � 1). (2.45)

Finally, substituting the leading-order pressure from Eq. ( 2.36 ) and the pressure-correction

term from Eq. ( 2.45 ) into the definition of pj from Eq. ( 2.8 ), leads to

pj(x, y, t) =
4µjU

(
ζ0(t)

)
hin

α[h
(
ζ0(t)

)
]2

e
− 3α

hin

(
x−ζ0(t)

)
+ εb̂(j, α)em̂(j,α)x+iky+λ(t). (2.46)

Now, onto the boundary conditions for pj at the interface. First, consider the kinematic

condition, which states that interface velocity equals the fluid velocity at the interface:

∂ζ

∂t
= uj · n̂|x=ζ(y,t), (2.47)

where uj is given by Eq. (  2.1 ). Letting F = 0, where F (x, y) := x − ζ(y, t), implicitly define

the interface position, the unit surface normal n̂ can be defined, in Cartesian coordinates,

as

n̂ = ∇F

‖∇F‖
= 1

‖∇F‖

(
∂F

∂x
,
∂F

∂y

)
=
1 +

(
∂ζ

∂y

)2
−1/2 (

1, −∂ζ

∂y

)
. (2.48)

Using a Taylor-series expansion for |∂ζ/∂y| � 1, we have

n̂ =
(

1, −∂ζ

∂y

)1 − 1
2

(
∂ζ

∂y

)2

+ O

(∂ζ

∂y

)4


'
(
1, −εaeiky+λ(t)ik

)
,

(2.49)

if only leading-order terms are kept.

Next, we combine Eq. (  2.1 ) with pj as given by Eq. ( 2.46 ) to obtain the Darcy velocities

uj = −
[h
(
ζ(t)

)
]2

12µj

(
∂pj

∂x
,
∂pj

∂y

)
, j = 1, 2. (2.50)
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Combining Eqs. ( 2.49 ) and ( 2.50 ), we find the normal velocity to be

uj · n̂ = −
[h
(
ζ(t)

)
]2

12µj

(
∂pj

∂x
− ∂pj

∂y

∂ζ

∂y

)
. (2.51)

Therefore, each fluid’s velocity normal to the interface is given by

uj · n̂|x=ζ(y,t) = U
(
ζ0(t)

)
+ ε

U
(
ζ0(t)

)
a

 2α

h
(
ζ0(t)

) − 3α

hin

−
[h
(
ζ0(t)

)
]2b̂m̂

12µj

em̂ζ0

 eiky+λ(t) + O(ε2). (2.52)

Substituting Eq. ( 2.7 ) and Eq. ( 2.52 ) back into Eq. ( 2.47 ), we obtain

b̂(j, α) = −
12µjU

(
ζ0(t)

)
a

m̂[h
(
ζ0(t)

)
]2

 λ̇

U
(
ζ0(t)

) + α

 3
hin

− 2
h
(
ζ0(t)

)
 e−m̂ζ0(t). (2.53)

For sufficiently large wave numbers compared to the gap gradient [  54 ], i.e., |khin/α| � 1,

we can approximate the exponents, given in Eq. (  2.44 ), as m̂(1, α) ≈ k and m̂(2, α) ≈ −k.

Then, the pressure at the interface becomes

pj(x, y, t)|x=ζ =
4µjU

(
ζ0(t)

)
hin

α[h(ζ0(t))]2

− εeiky+λ(t) 12U
(
ζ0(t)

)
a

[h
(
ζ0(t)

)
]2

µj +
 λ̇

U
(
ζ0(t)

) + α

 3
hin

− 2
h
(
ζ0(t)

)
 µj

m̂(j, α)

+ O(ε2).

(2.54)

Thus, finally, the pressure difference across the interface takes the form of Eq. ( 2.11 ) above.

2.A.2 Weakly nonlinear analysis

If we keep the O(ε2) perturbation, the interface can be described as

ζ = ζ0 + εa1e
iky+λ1(t) + ε2a2e

2iky+λ2(t), (2.55)
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then
∂ζ

∂t
= εa1e

iky+λ1(t)λ̇1 + ε2a2e
2iky+λ2(t)λ̇2. (2.56)

Similarly, the pressure at the interface is

pj = p0j + εp1j + ε2p2j, (2.57)

where p1j = g1j(x)eiky+λ1 , p2j = g2j(x)e2iky+λ2 . Substituting the pressure back into governing

equation, we obtain the following three equations by respectively collecting the O(1) terms:

∂2p0j

∂x2 + ∂2p0j

∂y2 + 3α

hin

∂p0j

∂x
= 0; (2.58)

the O(ε) terms:
∂2g1j

∂x2 − k2g1j + 3α

hin

∂g1j

∂x
= 0; (2.59)

and the O(ε2) terms:
∂2g2j

∂x2 − k2g2j + 3α

hin

∂g2j

∂x
= 0. (2.60)

For the O(1) terms, the solution is the same with the linear analysis:

p0j = 4µjUhin

α[h
(
ζ0(t)

)
]2

e
− 3α

hin

(
x−ζ0(t)

)
, (2.61)

Similarly,

p1j = b̂1(j, α)em̂1(j,α)x+iky+λ1 , (2.62)

p2j = b̂2(j, α)em̂2(j,α)x+2iky+λ2 . (2.63)

Therefore the total pressure can be written as

pj = 4µjUhin

α[h
(
ζ0(t)

)
]2

e
− 3α

hin

(
x−ζ0(t)

)
+ εb̂1(j, α)em̂1(j,α)x+iky+λ1 + ε2b̂2(j, α)em̂2(j,α)x+2iky+λ2 . (2.64)

Then we have the partial differential expression of the pressure
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∂pj

∂x

∣∣∣∣∣
x=ζ

= ∂p0j

∂x

∣∣∣∣∣
x=ζ

+ ε
∂p1j

∂x

∣∣∣∣∣
x=ζ

+ ε2 ∂p2j

∂x

∣∣∣∣∣
x=ζ

= − 12µjU

[h
(
ζ0(t)

)
]2

+ ε

 12µjU

[h
(
ζ0(t)

)
]2

3α

hin

a1e
iky+λ1 + b̂1(j, α)m̂1(j, α)em̂1(j,α)ζ0+iky+λ1


+ ε2

 12µjU

[h
(
ζ0(t)

)
]2

(
3α

hin

a2e
2iky+λ2 − 9α2

2h2
in

a2
1e

2iky+2λ1

)

+ a1b̂1(j, α)m̂1(j, α)2em̂1(j,α)ζ0+2iky+2λ1 + b̂2(j, α)m̂2(j, α)em̂2(j,α)ζ0+2iky+λ2


+ O(ε3). (2.65)

Similarly, the partial differential expression of the pressure over y are calculated as:

∂pj

∂y

∣∣∣∣∣
x=ζ

= ∂p0j

∂y

∣∣∣∣∣
x=ζ

+ ε
∂p1j

∂y

∣∣∣∣∣
x=ζ

+ ε2 ∂p2j

∂y

∣∣∣∣∣
x=ζ

= εikb̂1(j, α)em̂1(j,α)ζ0+iky+λ1

+ ε2ik
(

a1b̂1(j, α)m̂1(j, α)em̂1(j,α)ζ0+2iky+2λ1

+ b̂2(j, α)em̂2(j,α)ζ0+2iky+λ2

)
.

(2.66)

Therefore,

∂pj

∂x
− ∂pj

∂y

∂ζ

∂y

∣∣∣∣∣
x=ζ

= − 12µjU

[h
(
ζ0(t)

)
]2

+ ε

 12µjU

[h
(
ζ0(t)

)
]2

3α

hin

a1e
iky+λ1

+ b̂1(j, α)m̂1(j, α)em̂1(j,α)ζ0+iky+λ1


+ ε2

 12µjU

[h
(
ζ0(t)

)
]2

(
3α

hin

a2e
2iky+λ2 − 9α2

2h2
in

a2
1e

2iky+2λ1

)

+ a1b̂1(j, α)m̂1(j, α)2em̂1(j,α)ζ0+2iky+2λ1

+ b̂2(j, α)m̂2(j, α)em̂2(j,α)ζ0+2iky+λ2

+ k2a1b̂1(j, α)em̂1(j,α)ζ0+2iky+2λ1

+ O(ε3). (2.67)
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Keeping the O(ε2) terms in Eq. ( 2.49 ), we have

uj · n = −
[h
(
ζ0(t)

)
]2

12µj

(
∂pj

∂x
,
∂pj

∂y

)
·
(

1, −∂ζ

∂y

)1 − 1
2

(
∂ζ

∂y

)2


= −
[h
(
ζ0(t)

)
]2

12µj

(
1 + 1

2ε2k2a2
1e

2iky+2λ1

)(
∂pj

∂x
− ∂pj

∂y

∂ζ

∂y

)
.

(2.68)

Plugging Eq. ( 2.67 ) into Eq. ( 2.68 ), we find that in Eq. ( 2.68 ), to O(1),

[h
(
ζ0(t)

)
]2

12µj

12µjU

[h
(
ζ0(t)

)
]2

= U, (2.69)

and to O(ε),

−3αU

hin

a1e
iky+λ1 −

[h
(
ζ0(t)

)
]2

12µj

b̂1(j, α)m̂1(j, α)em̂1(j,α)ζ0+iky+λ1 , (2.70)

and to O(ε2),

− 3αU

hin

a2e
2iky+λ2 + 9α2U

2h2
in

a2
1e

2iky+2λ1

−
[h
(
ζ0(t)

)
]2

12µj

[a1b̂1(j, α)m̂1(j, α)2em̂1(j,α)ζ0+2iky+2λ1

+ b̂2(j, α)m̂2(j, α)em̂2(j,α)ζ0+2iky+λ2 + k2a1b̂1(j, α)em̂1(j,α)ζ0+2iky+2λ1 ]

+ 1
2Uk2a2

1e
2iky+2λ1 . (2.71)

Matching Eqs. ( 2.70 ) and ( 2.71 ) with the O(ε) and O(ε2) terms in Eq. (  2.56 ), we ob-

tain two equations related to the linear and weakly nonlinear growth rate, i.e., λ̇1 and λ̇2,

respectively:

a1e
iky+λ1(t)λ̇1 = −3αU

hin

a1e
iky+λ1 −

[h
(
ζ0(t)

)
]2

12µj

b̂1(j, α)m̂1(j, α)em̂1(j,α)ζ0+iky+λ1 , (2.72)
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which reduces to

b̂1(j, α)m̂1(j, α)em̂1(j,α)ζ0 = − 12µjUa1

[h
(
ζ0(t)

)
]2

(
λ̇1

U
+ 3α

hin

)
, (2.73)

and

a2e
2iky+λ2(t)λ̇2 = −3αU

hin

a2e
2iky+λ2 + 9α2U

2h2
in

a2
1e

2iky+2λ1

−
[h
(
ζ0(t)

)
]2

12µj

[a1b̂1(j, α)m̂1(j, α)2em̂1(j,α)ζ0+2iky+2λ1

+ b̂2(j, α)m̂2(j, α)em̂2(j,α)ζ0+2iky+λ2

+ k2a1b̂1(j, α)em̂1(j,α)ζ0+2iky+2λ1 ] + 1
2Uk2a2

1e
2iky+2λ1 ,

(2.74)

which reduces to

b̂2(j, α)m̂2(j, α)em̂2(j,α)ζ0+λ2 = 12µjU

[h
(
ζ0(t)

)
]2

[
−
(

a2λ̇2

U
+ 3αa2

hin

)
eλ2 +

(
9α2

2h2
in

+ 1
2k2

)
a2

1e
2λ1

]

+ 12µjUa2
1

[h
(
ζ0(t)

)
]2

(
λ̇1

U
+ 3α

hin

)(
k2

m̂1
+ m̂1

)
e2λ1 .

(2.75)

Substituting Eqs. (  2.73 ) and (  2.75 ) back into the pressure equation Eq. (  2.64 ), we can

rewrite it as

pj|x=ζ = 4µjUhin

α[h
(
ζ0(t)

)
]2

− ε

12µjUa1e
iky+λ1

[h
(
ζ0(t)

)
]2

+ 12µjUa1e
iky+λ1

m̂1[h
(
ζ0(t)

)
]2

(
λ̇1

U
+ 3α

hin

)
+ ε2

− 12Uµja2e
2iky+λ2

[h
(
ζ0(t)

)
]2

+ 9α2

2h2
in

a2
1e

2iky+2λ1 − 12µUa2
1e

2iky+2λ1

[h
(
ζ0(t)

)
]2

(
λ̇1

U
+ 3α

hin

)

+ 12µjU

m̂2(j, α)[h
(
ζ0(t)

)
]2

[
−
(

a2λ̇2

U
+ 3αa2

hin

)
e2iky+λ2 +

(
9α2

2h2
in

+ 1
2k2

)
a2

1e
2iky+2λ1

]

+ 12µjUa2
1

m̂2(j, α)[h
(
ζ0(t)

)
]2

(
λ̇1

U
+ 3α

hin

)(
k2

m̂1
+ m̂1

)
e2iky+2λ1

+ O(ε3).

(2.76)
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Following our previous analysis in the linear stage, it is easy to conclude that m̂1(1, α) =

m̂2(1, α) = k, and m̂1(2, α) = m̂2(2, α) = −k, in which the subscript represents the first

order or second order perturbation.

Therefore, the pressure jump at the interface is written as

p1 − p2|x=ζ = 4Uhin

α[h
(
ζ0(t)

)
]2

(µ1 − µ2) − ε
12Ua1e

iky+λ1

[h
(
ζ0(t)

)
]2

(µ1 − µ2)

+
(

λ̇1

U
+ 3α

hin

)(
µ1

m̂11
− µ2

m̂12

)+ ε2

12U(µ1 − µ2)
[h
(
ζ0(t)

)
]2

− a2e
2iky+λ2

− a2
1e

2iky+2λ1

(
λ̇1

U
+ 3α

hin

)
+ 12a2U

[h
(
ζ0(t)

)
]2

(
µ1

m̂11
− µ2

m̂12

)−
(

λ̇2

U
+ 3α

hin

)
e2iky+λ2

+
(

9α2

2h2
in

+ 1
2k2

)
a2

1e
2iky+2λ1


+ 12Ua2

1k
2

[h
(
ζ0(t)

)
]2

(
λ̇1

U
+ 3α

hin

)
e2iky+2λ1

(
µ1

m̂11m̂21
− µ2

m̂12m̂22

)

+ 12Ua2
1

[h
(
ζ0(t)

)
]2

(
λ̇1

U
+ 3α

hin

)(
µ1m̂11

m̂21
− µ2m̂12

m̂22

)
e2iky+2λ1

+ O(ε3)

= Caγhin

3α[h
(
ζ0(t)

)
]2

(M − 1) − ε
Caγa1e

iky+λ1

[h
(
ζ0(t)

)
]2

[
(M − 1) +

(
λ̇1

U
+ 3α

hin

)
M + 1

k

]

+ ε2e2iky

− Caa2γ(M − 1)eλ2

[h
(
ζ0(t)

)
]2

+ Caγa2

k[h
(
ζ0(t)

)
]2

(M + 1)
−

(
λ̇2

U
+ 3α

hin

)
eλ2

+
(

9α2

2h2
in

+ 1
2k2

)
a2

1e
2λ1

+ Caγa2
1

[h
(
ζ0(t)

)
]2

(
λ̇1

U
+ 3α

hin

)
(M − 1)e2λ1

+ O(ε3).

(2.77)

On the other hand, the capillary pressure jump given by Young-Laplace equation is

p1 − p2 = γ

{
2 cos θc

h[ζ(y, t)] + κ

}
, (2.78)
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where

1
h(ζ) = 1

h(ζ0) + α(εa1eiky+λ1 + ε2a2e2iky+λ2)

= 1
h(ζ0)

− ε
αa1e

iky+λ1

[h(ζ0)]2
+ ε2

(
−αa2e

2iky+λ2

[h(ζ0)]2
+ α2a2

1e
2iky+2λ1

[h(ζ0)]3

)
+ O(ε3),

(2.79)

and

κ = − ∂2ζ/∂y2

[1 + (∂ζ/∂y)2]3/2

= k2εa1e
iky+λ1 + ε2a2k

2e2iky+λ2 + O(ε3).
(2.80)

Thus Eq. ( 2.78 ) is rewritten as

p1 − p2 = 2γ cos θc

h(ζ0)
+ εγ

(
−2 cos θcαa1e

iky+λ1

[h(ζ0)]2
+ k2a1e

iky+λ1

)

+ ε2γ(2 cos θc

(
−αa2e

2iky+λ2

[h(ζ0)]2
+ α2a2

1e
2iky+2λ1

[h(ζ0)]3

)

+ a2k
2e2iky+λ2) + O(ε3).

(2.81)

Collecting the O(ε) terms in Eqs. ( 2.77 ) and ( 2.81 ), we obtain

− Caγa1e
iky+λ1

[h
(
ζ0(t)

)
]2

[
(M − 1) +

(
λ̇1

U
+ 3α

hin

)
M + 1

k

]

= γ

(
−2 cos θcαa1e

iky+λ1

[h(ζ0)]2
+ k2a1e

iky+λ1

)
, (2.82)

reducing to

(1 + M)
(

λ̇1

U
+ 3α

hin

)
=
(

1 − M + 2α cos θc

Ca

)
k −

k3[h
(
ζ0(t)

)
]2

Ca
, (2.83)

which is exactly the same with the linear analysis in the previous section.

Similarly, collecting the O(ε2) terms in Eqs. ( 2.77 ) and ( 2.81 ), we obtain

− Caa2γ(M − 1)eλ2

[h
(
ζ0(t)

)
]2

+ Caγa2(M + 1)
k[h

(
ζ0(t)

)
]2

[
−
(

λ̇2

U
+ 3α

hin

)
eλ2 +

(
9α2

2h2
in

+ 1
2k2

)
a2

1e
2λ1

]
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+ Caγa2
1

[h
(
ζ0(t)

)
]2

(
λ̇1

U
+ 3α

hin

)
(M − 1)e2λ1

= γ

[
2 cos θc

(
− αa2e

λ2

[h(ζ0)]2
+ α2a2

1e
2λ1

[h(ζ0)]3

)
+ a2k

2eλ2

]
(2.84)

which reduces to

(M + 1)
(

λ̇2

U
+ 3α

hin

)
= k(1 − M) + ka2

1(M − 1)
a2

(
λ̇1

U
+ 3α

hin

)
e2λ1−λ2

+ (M + 1)
(

9α2

2h2
in

+ 1
2k2

)
a2

1e
2λ1−λ2

− 2 cos θck

Ca

(
−α + α2a2

1e
2λ1−λ2

h(ζ0)a2

)
−

k3[h
(
ζ0(t)

)
]2

Ca
,

(2.85)

which is the newly derived weakly nonlinear growth rate λ̇2 equation.
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3. THE HYDRAULIC CONDUCTIVITY OF A SHAPED

FRACTURE WITH PERMEABLE WALLS

SUMMARY

We investigate the flow-wise variation of the hydraulic conductivity inside a non-uniformly

shaped fracture with permeable walls. Using lubrication theory for viscous flows, in con-

junction with the Beavers–Joseph–Saffman boundary condition at the permeable walls, we

obtain an analytical expression for the velocity profile, conductivity, and wall permeation

velocity. These predictions highlight the effects of geometric variation (through the local

slope of the aperture’s flow-wise variation), the permeability of the walls (through a dimen-

sionless slip coefficient), and the effect of flow inertia (through a Reynolds number). The

theory is validated against an OpenFOAM® solver for the Navier–Stokes equations subject

to a tensorial slip boundary condition, showing good agreement. The mathematical results

have implications on system-level (multiscale) modeling of hydraulically fractured reservoirs,

in which the Darcy conductivity of each non-uniform passage must be accurately accounted

for, throughout the fractured porous rock.

The material in this chapter was published in [D. Lu, F. Municchi, and I. C. Chris-

tov, “The hydraulic conductivity of a shaped fracture with permeable walls,” Mech. Res.

Commun., vol. 111, 103650, 2021] [ 176 ].
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3.1 Problem statement

Currently, the theory of fracture conductivity is based on many assumptions: smooth,

impermeable walls with a constant aperture and span. However, both naturally and fractured

formations violates the assumptions. The bounding surfaces of a fracture are the porous

rock formations themselves, therefore they should not be idealized as impermeable plates

[ 94 ]. Generally, the walls of fractures are not parallel [ 89 ], in part due to the flow-wise

deformation of the fracture due to large injection pressures [ 90 ], requiring corrections to

Darcy’s laws arise via a modified conductivity and transmissivity models [ 91 ]–[ 93 ]. So far,

a theory for the conductivity of variable-aperture fractures with porous walls (the most

common case in the subsurface) is lacking.

In this chapter, we aim to fill this knowledge gap by deriving a theory for the conductivity

of variable-aperture fractures with porous walls (the most common case in the subsurface).

We take the perturbative mathematical approach, based on the notion of slow variation

in fluid mechanics [  177 ], to calculate the conductivity of a shaped fracture with permeable

walls (see Sect.  3.2 ). Importantly, in Sect.  3.3 , we also validate our proposed model for K

against direct numerical simulations using a custom solver built on OpenFOAM® [ 159 ], [  178 ].

We provide an implementation of the semi-implicit method for pressure-linked equations

(SIMPLE) algorithm (see, e.g., [ 160 , Ch. 15]) for the Navier–Stokes equations subject to the

tensorial form of the Beavers–Joseph–Saffman (BJS) boundary condition.

3.2 Mathematical analysis

3.2.1 Governing equations

The flow geometry and notation are shown in Fig.  1.5 . An incompressible Newtonian fluid

of density ρ and dynamic viscosity µ fills the gap. The fracture is long and thin, which justifies

taking h(x) to be a linear function [ 179 ]. Alternatively, one is allowed to substitute α = α(x)

in the results below if dh/dx 6= const., as long as maxx α(x) satisfies the original smallness

assumption [ 86 ], [ 92 ]. Let U0 be the average inlet velocity at the inlet (x = 0), which serves

as the scale for the horizontal velocity u(x, z) in the fracture. The flow is assumed to be 2D,
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i.e., the fracture is infinite in the transverse y-direction. Then, conservation of mass requires

that the scale for the vertical velocity v(x, z) be V0 = U0h0/L = εU0 [ 104 , Sect. 4.9].

Now, we define the dimensionless (starred) variables

x∗ = x/L, z∗ = z/h0, h∗(x∗) = h(x)/h0,

u∗(x∗, z∗) = u(x, z)/U0, v∗(x∗, z∗) = v(x, z)/V0,

p∗(x∗, z∗) = εh0p(x, z)/(µU0), K∗(x∗) = K(x)/h2
0, (3.1)

where Re = ρU0h0/µ is the Reynolds number and R̃e = εRe is a reduced Reynolds number

[ 86 ]. Then, the dimensionless conservation of mass and momentum equations are

∂u∗

∂x∗ + ∂v∗

∂z∗ = 0, (3.2a)

R̃e

(
u∗ ∂u∗

∂x∗ + v∗ ∂u∗

∂z∗

)
= −∂p∗

∂x∗ + ε2 ∂2u∗

∂x∗2 + ∂2u∗

∂z∗2 , (3.2b)

ε2R̃e

(
u∗ ∂v∗

∂x∗ + v∗ ∂v∗

∂z∗

)
= −∂p∗

∂z∗ + ε4 ∂2v∗

∂x∗2 + ε2 ∂2v∗

∂z∗2 , (3.2c)

subject to the following boundary conditions (BCs):

symmetry at z∗ = 0 : ∂u∗

∂z∗ = 0 and v∗ = 0; (3.3a)

partial slip at z∗ = h∗ : u∗ = −φ
∂u∗

∂z∗ , (3.3b)

where φ is the slip coefficient, and h∗ = h∗(x∗) = 1 + αx∗/ε. Observe that, here, we can

introduce δ = α/ε = [h(L) − h(0)]/h0 = ∆h/h0, which is the percent change of h(x) over

the typical fracture variation length L, so that h∗(x∗) = 1 + δx∗. The assumption of slow

variation dictates that δ � 1, while the assumption of lubrication (small aspect ration)

dictates that ε = h0/L � 1 (see also [ 86 ], [  104 ]). These two assumptions are independent

and lead to α = εδ ≪ 1, which is typical of fractures, as discussed in Sect.  1.1 .

The BC in Eq. ( 3.3a ) is the centerline symmetry condition, while the BC in Eq. ( 3.3b )

comes from the BJS partial slip BC [  105 ], [  107 ], [ 108 ], [ 180 ], [ 181 ] on the permeable wall (see

Sect.  3.A for details). Physically, the BJS BC enforces a shear stress balance along the fluid–
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porous solid interface by relating the tangential velocity component to the normal component

of the velocity gradient via the slip coefficient φ (which is an empirically-measurable constant

set by the permeability of the surrounding medium and its pore geometry, recall Sect.  1.1 ).

Importantly, the BJS BC allows us to solve for the flow in the fracture without solving for

the flow in the surround porous medium.

3.2.2 Perturbation solution for the velocity profile

Following the standard procedure of a regular perturbation expansion [  182 ], the velocity

field is expanded as u∗ = u∗
0 + R̃e u∗

1 + · · · and v∗ = v∗
0 + R̃e v∗

1 + · · · (R̃e � 1). Then, we

find the horizontal velocity at the leading order (see Sect.  3.A.1 for details):

u∗
0(x∗, z∗) =

(
h∗2 − z∗2

2 + φh∗
)(

−dp∗

dx∗

)
. (3.4)

Since the flow is in the direction of positive x∗, dp∗/dx∗ < 0. Then, the leading-order

depth-averaged velocity is

〈u∗
0〉(x∗) = 1

h∗(x∗)

∫ h∗(x∗)

0
u∗

0(x∗, z∗) dz∗

= 3φh∗ + h∗2

3

(
−dp∗

dx∗

)
.

(3.5)

And, the vertical velocity at the leading order is

v∗
0(x∗, z∗) = (h∗ + φ) dh∗

dx∗ z∗ dp∗

dx∗ −
(

z∗2

6 − h∗2

2 − φh∗
)

z∗ d2p∗

dx∗2 . (3.6)

At the next order in R̃e, we find the depth-averaged velocity’s correction:

〈u∗
1〉(x∗) =

(
3
35h∗2 + φ

3 h∗ + φ2

3

)
h∗4

(
−dp∗

dx∗

)
d2p∗

dx∗2

−
(

h∗

5 + φ

3

)
h∗3(h∗ + φ)1

ε

dh∗

dx∗

(
dp∗

dx∗

)2

. (3.7)
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For the present purposes, it is not necessary to write out u∗
1 and v∗

1 but they can be calculated

(see Sect.  3.A.1 ).

3.2.3 Equivalent Darcy’s law and the hydraulic conductivity

To obtain the conductivity K in a shaped fracture with porous walls, we must put the

flow field thus obtained into the form of a Darcy-like law, i.e., 〈u∗〉 ∝ −dp∗/dx∗, with

the proportionality factor being the sought-after result. To this end, combining Eqs. ( 3.5 )

and ( 3.7 ) we obtain the “full” depth-average horizontal velocity up to O(R̃e): 〈u∗〉 = 〈u∗
0〉 +

R̃e〈u∗
1〉. However, at this point, the pressure distribution p∗(x∗) is still unknown. To close the

problem, we need another constraint. Mohais, Xu, Dowd, et al. [ 14 ] provided one solution

by assuming a constant permeation velocity vw in a parallel fracture (α = dh∗/dx∗ = 0,

h∗ = 1), i.e., v0|z=±h0
= ±vw. We could apply this BC here too (see Sect.  3.A.1 ), however,

as discussed in Sect.  1.1 , the assumption of a constant vw is not suitable for shaped fractures,

due to the flow-wise x∗-variation of the aperture.

Instead, to close the problem, we impose the full flux onto the leading-order depth-

averaged velocity, i.e., we set 〈u∗
0〉 = 1. We impose this condition because, as discussed in

Sect.  1.1 , the representative fracture region of interest is away from the crack tip, and thus

the flow is not leak-off dominated, following Refs. [  14 ], [  92 ], [  112 ], [  183 ] but in contrast to

Refs. [ 3 ], [ 4 ], [ 184 ] (or, e.g., Refs. [  185 ], [ 186 ] in the context of filtration). Thus, v∗
w will not

be constant and will be self-consistently determined as a function of x∗. Another modeling

approach is to set the wall-normal velocity via the local pressure, as in filtration problems

[ 185 ], [ 186 ], however this approach is beyond the scope of the present study focused on

porous media flows.

Applying the constraint 〈u∗
0〉 = 1 to Eq. ( 3.5 ), we compute dp∗/dx∗ and d2p∗/dx∗2 (see

Sect.  3.A.1 ). Substituting the latter results into Eq. (  3.7 ) and putting it all together,

〈u∗〉 = −K∗ dp∗

dx∗ ,

K∗(x∗) =
[

3φh∗ + h∗2

3 − R̃e
h∗3(28φ2 + 22φh∗ + 3h∗2)δ

35(3φ + h∗)2

]
,

(3.8)
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which is already in the form of Darcy’s law. Finally, Eq. ( 3.8 ) can be put in dimensional

form:

〈u〉 = −K
µ

∂p

∂x
, K = h2

0
3 C, (3.9)

where we have defined the dimensionless function

C(x) =
[
3φh∗ + h∗2 − 3R̃e

h∗3(28φ2 + 22φh∗ + 3h∗2)δ
35(3φ + h∗)2

]

= 1︸︷︷︸
(I)

+ 3φ︸︷︷︸
(II)

+
(2 + 3φ) x

L
− 3R̃e

3 + 22φ + 28φ2

35(3φ + 1)2

δ

︸ ︷︷ ︸
(III)

+ O
(
δ2
)

(3.10)

to represent the “correction” to the hydraulic conductivity of the fracture. As discussed in

Sect.  1.1 , typical fractures are long and shallow (ε � 1), and the slopes of the wall variation

are even smaller (α = εδ ≪ 1), thus we expanded a number of terms in Eq. ( 3.10 ) into

Taylor series and kept only terms up to O(δ) to highlight the key physical effects of shape

variation in a fracture with permeable walls.

The function C accounts for wall permeation through the BJS slip coefficient φ =
√

kw/(bh0), the shape of the fracture through the slope α = dh/dx and aspect ratio ε = h0/L,

and weak inertia through the reduced Reynolds number R̃e = ρU0h
2
0/(µL). The first term

(I) on the right-hand side of Eq. ( 3.10 ) corresponds to the classic conductivity calculated by

the Hele-Shaw analogy [  87 ]; the second term (II) comes from wall permeation [  14 ]; the third

term (III), which is the novel contribution of our calculation, and is explicitly a function of

the flow-wise coordinate x, is due to the coupled effect of geometry variation, fluid inertia,

and wall permeation.
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3.2.4 Wall permeation velocity

Substituting the expression for dp∗/dx∗ into the vertical velocity from Eq. (  3.6 ), and

evaluating the result at z∗ = h∗, we obtain the a priori unknown wall permeation velocity

vw(x) = −V0
h(x)δ

3φh0 + h(x) . (3.11)

Recall that α < 0 (⇒ δ < 0), so vw > 0, i.e., the velocity is into the wall. Observe that

both vw and the term (III) in C vanish for α = 0 (⇒ δ = 0) (parallel walls) because, in this

case, there is no driving force to push fluid into the porous walls. We have imposed the full

volumetric flux onto the leading-order solution (see also [  183 ]), and it must be conserved.

Note vw 6= 0 for φ = 0 because there can still be fluid penetrating the wall in the normal

direction even if there is no (tangential) slip. The permeation velocity for φ = 0 is driven by

the flow-wise contraction of the aperture (rather than being imposed a priori [ 14 ]).

3.3 Results and Discussion

Figure  3.1 shows the flow profile generated from the perturbative solution from Sect.  3.2 ,

for a fracture with linear aperture variation. The streamlines highlight the 2D nature of the

velocity field, as well as permeation through the fracture’s top wall. The pressure does not

vary with z∗, as required by the lubrication (small aspect ratio, ε � 1) approximation.

Next, we validate our mathematical results against “full” Navier–Stokes direct numerical

simulations (DNS) [ 187 ]. We carried out DNS using the simpleFoam solver in OpenFOAM®

ver. 7.0 [  159 ], [  178 ], an open-source library based on the finite volume method [ 160 ]. The

simulations (see Supplementary Material for description of the method) were performed

using the Hele-Shaw cell geometry with varying aperture along x from Fig.  1.5 . Importantly,

unlike previous computational studies on flow in fractures with permeable walls [  188 ], we did

not impose the wall (tangent and normal) velocities from the theory onto the simulations.

The latter approach is akin to verification, while we seek validation [ 189 ] between theory

and simulation. Instead, we imposed a tensorial slip condition on the tangential velocity

(the BJS BC) coupled with a normal pressure flux BC, to allow the simulation to self-
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Figure 3.1. Illustration of the dimensionless analytical flow solution
(Eqs. (  3.4 ), (  3.5 ) and (  3.6 )) obtained for the model shaped fracture with per-
meable angled walls. Only the top half (0 ≤ z∗ ≤ 1) is shown, for clarity.
Background color denotes pressure, and curves are streamlines shaded by ve-
locity magnitude. Here, α = −10−3, ε = 0.01, R̃e = 0.01, φ = 10−3.

consistently determine the flow (in particular, the unknown wall permeation velocity) and

pressure profiles.

The DNSs provide the 2D velocity field and the pressure distribution, i.e., it solves for(
u∗(x∗, z∗), v∗(x∗, z∗)

)
and p∗(x∗, z∗) (both scaled as in Eq. ( 3.1 )). From these quantities,

the volumetric flux across a vertical cross-section and the pressure gradient at a given x∗ are

computed, yielding 〈u∗(x∗)〉 and dp∗/dx∗. Their ratio, 〈u∗〉/(−dp∗/dx∗) is to be compared

to the theoretically predicted dimensionless hydraulic conductivity K∗(x∗) from Eq. ( 3.8 ).

First, in Fig.  3.2 , we show the velocity profiles across the midlength plane (x∗ = 0.5) of

fractures with different slopes. The simulation results agree well with theory. The zoomed-in

inset in Fig.  3.2 (a) highlights that u∗ does not start from 0, but rather some finite value, as

required by the BJC partial slip BC. For all α, v∗ = 0 at the centerline (z∗ = 0) as required by

symmetry, then increases smoothly in absolute value towards the walls (Fig.  3.2 (b)). Fluid

enters into the surrounding porous medium and the wall permeation velocity v∗
w = v∗|z∗=h∗ is

self-consistently computed (shown in Supplementary Material Fig. S.7). The wall permeation

velocity increases with |α| to maintain the imposed flux through these narrowing fractures.
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Figure 3.2. Dimensionless velocity profiles across the fracture aperture z∗,
at the mid-fracture plane x∗ = 0.5, for φ = 5 × 10−4 and R̃e = 0.01: (a)
the horizontal component u∗(x∗, z∗) (inset highlights the non-zero slip veloc-
ity at the wall); (b) the vertical component v∗(x∗, z∗). Solid curves are the
theoretical profiles from Eq. ( 3.6 ), and filled circles with the same colors are
the corresponding simulation results. Colors represent different α values (see
legend).

Meanwhile, for α = 0, v∗ = 0 for all z∗, i.e., there is no permeation into the porous medium,

only slip at the fluid–solid interfaces (z∗ = ±1).

To verify the derived analytical expression for the hydraulic conductivity in a shaped

fracture, we compute K∗(x∗) in multiple angled fractures with permeable walls, based on

typical reservoir properties summarized in Table  1.1 . Figure  3.3 (a) shows the predicted K∗

(from theory) against the simulated K∗ values along the fracture (multiple x∗ for each) for

multiple slope values α, and multiple slip coefficients φ, for fixed R̃e. In the same color

family, the brightness of the color refers to the value of φ: the darker the color, the smaller

φ is. The classical conductivity K = 1/3 (i.e., for α = φ = 0) calculated from the Hele-Shaw

analogy [ 86 ], [  87 ] is shown by (simulated) and (predicted). All data points in Fig.  3.3 (a)

lie close to the line of slope 1, which means that the predicted conductivity (from theory)

is in good agreement with the simulations. For φ > 10−3, the correlated trend continues,

but in these cases the slip length is large and the single-domain simulation approach is not
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appropriate (the flow in the surrounding porous medium should be resolved as well to be

able to impose suitable BCs numerically).

In Fig.  3.3 (b), we plot the conductivity variation along the flow-wise (x∗) direction, a

novel prediction of the present theory. By comparing the conductivity for the same α but

different φ, for example, α = −10−3 (the red color family), we observe that wall slip has only

a weak effect on K∗. By comparing the conductivity for different α (different color families),

we observe that K∗ decreases with x∗, which means that it becomes “harder” for the fluid

to flow through the narrowing fractures. Of course this is expected on physical grounds,

but this effect of α on K∗ had not been quantified prior to this study. In particular, our

results in Fig.  3.3 show that that even weak slopes have a much more significant impact

on the conductivity, than wall slip due to the permeability of the walls. Likewise, the wall

permeation velocity v∗
w has not been a priori specified, and is also a strong function of α

(recall Sect.  3.2.4 and Fig.  3.10 below in Sect.  3.A.2 ).

3.4 Conclusions and Outlook

The contribution of this study is the mathematical expressions, Eqs. ( 3.9 ) and (  3.10 ), that

relate the fracture conductivity to the geometric and physical quantities, and which explicitly

shows the coupling between the fracture shape (in terms of its wall angle), the permeability of

the porous wall (in terms of the Beavers–Joseph–Saffman slip length), and the inertia of the

fluid in the fracture (in terms of a Reynolds number). Additionally, unlike previous studies on

fractures with permeable walls, we self-consistently determined the wall permeation velocity,

Eq. (  3.6 ), which is a priori unknown and is set by the balance of pressure forces pushing

fluid into the walls, and the permeability of the surrounding matrix. From these results,

we concluded that the coupling effect of geometric variation, wall permeation and inertia

leads to a decreasing conductivity along a narrowing fracture. Importantly, what has not

been appreciated in previous studies is that, among these factors, the geometric variation

(specifically, the resistance to flow induced by the narrowing of a fracture) dominates the

conductivity change, even for slow shape variation (small slopes). The theory was validated
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Figure 3.3. The dimensionless conductivity K∗ of shaped fractures, for dif-
ferent slip coefficients φ and wall slopes α: (a) correlation plot of predicted K∗

values from Eq. ( 3.8 ) versus simulated K∗ values; (b) the variation of K∗(x∗)
along the fracture length. Colors represent cases with different α and φ values:

: α = 0, φ ∈ {0, 5×10−4, 10−3}; : α = −10−4, φ ∈ {0, 5×10−4, 10−3}; :
α = −5×10−3, φ ∈ {0, 5×10−4, 10−3}; : α = −10−3, φ ∈ {0, 5×10−4, 10−3}.
In (b), filled circles represent the simulation results, and solid curves of the
same color represent the corresponding theoretical prediction Eq. (  3.10 ) with
R̃e = 0.01.

against direct numerical simulation of the Navier–Stokes equations in a model Hele-Shaw

geometry.

3.A Appendix

The supporting material consists of two sections, seven figures  3.4 to  3.10 , and Table  3.1 .

Section  3.A.1 provides the steps in the derivation of the hydraulic conductivity presented

and discussed in the main text. These steps are included for completeness and to aid a

reader in following the mathematical derivation.

Section  3.A.2 describes the OpenFOAM® solver methodology for generating the direct

numerical simulation data reported in the main text. Section  3.A.2 includes ancillary details

about the verification of the simulations (grid independence tests) and post-processing of
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the simulation data. Toward these ends, Figs.  3.4 through  3.9 are appended to the end of

Section  3.A.2 .

The OpenFOAM® solver and post-processing scripts are freely available at the repository

 https://github.com/daihui-lu/HydraulicConductivityofShapedFractures  , per the “Research

data availability” statement in the main text.

Figures  3.9 and  3.10 are complementary representations of data and information discussed

in the main text. They are provided for completeness but are not essential to the conclusions

in the main text.

3.A.1 Supplementary steps in the main analytical derivations

The Beavers–Joseph–Saffman (BJS) [  105 ], [  107 ] partial slip boundary condition (BC) on

the permeable wall is

u∗ = −φ

(
∂u∗

∂z∗ + ε2 ∂v∗

∂x∗

)
= −φ

∂u∗

∂z∗ + O(ε2) at z∗ = ±h∗(x∗). (3.12)

The slip coefficient φ, which is a dimensionless slip length (i.e., φ = `slip/h0), is an empirically-

measurable quantity that enforces a shear stress balance at the porous walls, as discussed in

the Introduction of the main text.

Let R̃e = εRe be finite as ε → 0. Then, upon taking the limit ε → 0 of Eqs. (  3.2 ),

Eq. ( 3.2a ) remains unchanged, and Eqs. ( 3.2b ) and ( 3.2c ) become

R̃e u∗ ∂u∗

∂x∗ + R̃e v∗ ∂u∗

∂z∗ = −∂p∗

∂x∗ + ∂2u∗

∂z∗2 , (3.13a)

0 = −∂p∗

∂z∗ . (3.13b)

Now, assume a regular perturbation expansion in R̃e � 1. The velocity field is expanded as

u∗ = u∗
0 + R̃e u∗

1 + · · · , (3.14a)

v∗ = v∗
0 + R̃e v∗

1 + · · · . (3.14b)
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Substituting Eqs. ( 3.14 ) into Eqs. ( 3.13 ) and neglecting O(R̃e) and higher-order terms,

we obtain the leading-order momentum equations:

0 = −∂p∗

∂x∗ + ∂2u∗
0

∂z∗2 , (3.15a)

0 = −∂p∗

∂z∗ , (3.15b)

subject to the boundary conditions (BCs):

∂u∗
0

∂z∗

∣∣∣∣∣
z∗=0

= 0, v∗
0|z∗=0 = 0︸ ︷︷ ︸

symmetry

and u∗
0|z∗=h∗ = − φ

∂u∗

∂z∗

∣∣∣∣∣
z∗=h∗︸ ︷︷ ︸

BJS BC

. (3.16)

Recall that, by symmetry, we are only solving for the profile in the top half of the fracture.

Therefore, the leading-order solution for the horizontal velocity has the form

u∗
0(x∗, z∗) = 1

2
dp∗

dx∗ z∗2 + C1(x∗)z∗ + C2(x∗), (3.17)

where C1 and C2 are arbitrary (integration) functions of x∗. Since p∗ is independent of z∗

by Eq. (  3.15b ), henceforth we write ∂p∗/∂x∗ = dp∗/dx∗. Imposing the boundary condi-

tions ( 3.16 ) onto Eq. ( 3.17 ), we obtain

u∗
0(x∗, z∗) =

(
h∗2 − z∗2

2 + φh∗
)(

−dp∗

dx∗

)
. (3.18)

Since the flow is in the direction of positive x∗, dp∗/dx∗ < 0, so we choose to associate

a negative sign with this term in some equations, for clarity, as is standard in the fluid

mechanics literature. Then, the leading-order depth-averaged velocity is

〈u∗
0〉(x∗) = 1

h∗(x∗)

∫ h∗(x∗)

0
u∗

0(x∗, z∗) dz∗ = 3φh∗(x∗) + h∗(x∗)2

3

(
−dp∗

dx∗

)
. (3.19)
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Next, we determine the leading-order vertical velocity. From the conservation of mass

equation,
∂u∗

∂x∗ + ∂v∗

∂z∗ = 0, (3.20)

we deduce that

∂v∗
0

∂z∗ = −∂u∗
0

∂x∗ =
(

h∗ dh∗

dx
+ φ

dh∗

dx

)
dp∗

dx∗ −
(

z∗2 − h∗2

2 − φh∗
)

d2p∗

dx∗2 . (3.21)

Now, integrating both sides of Eq. (  3.21 ) from 0 to an arbitrary z∗, and using the second

boundary condition in Eq. ( 3.16 ), we find that the vertical velocity is

v∗
0(x∗, z∗) =

(
h∗ dh∗

dx
+ φ

dh∗

dx

)
z∗ dp∗

dx∗ −
(

z∗3

6 − h∗2z∗

2 − φh∗z∗
)

d2p∗

dx∗2 . (3.22)

From Eqs. ( 3.13 ), we obtain the first-order perturbation equation:

u∗
0
∂u∗

0
∂x∗ + v∗

0
∂u∗

0
∂z∗ = ∂2u∗

1
∂z∗2 . (3.23)

Substituting the O(1) solution from Eq. ( 3.18 ) above into Eq. ( 3.23 ), we obtain

∂2u∗
1

∂z∗2 =
(h∗2

2 + φh∗
)2

+ z∗4

12

 dp∗

dx∗
d2p∗

dx∗2 +
(

h∗2 + z∗2

2 + φh∗
)

(h∗ + φ)α

ε

(
dp∗

dx∗

)2

, (3.24)

subject to homogeneous BCs:

∂u∗
1

∂z∗

∣∣∣∣∣
z∗=0

= 0 and u∗
1|z∗=h∗ = 0. (3.25)

Integrating both sides of Eq. ( 3.24 ) from 0 to an arbitrary z∗, and substituting the boundary

conditions from Eq. (  3.25 ), we obtain the first-order inertial correction to the horizontal

velocity component:

u∗
1(x∗, y∗) =

(h∗2

2 + φh∗
)2

z∗2 − h∗2

2 + 1
360

(
z∗6 − h∗6

) dp∗

dx∗
d2p∗

dx∗2

+
[(

h∗2

2 + φh∗
)

z∗2 − h∗2

2 + z∗4 − h∗4

24

]
(h∗ + φ)α

ε

(
dp∗

dx∗

)2

.

(3.26)
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From the latter, we find the depth-averaged velocity correction:

〈u∗
1〉 = 1

h∗(x∗)

∫ h∗(x∗)

0
u∗

1(x∗, z∗) dz∗

=
(

3
35h∗6 + 1

3φh∗5 + φ2

3 h∗4
)(

−dp∗

dx∗

)
d2p∗

dx∗2 −
(1

5h∗4 + 1
3φh∗3

)
(h∗ + φ)α

ε

(
dp∗

dx∗

)2

.

(3.27)

To close the problem, we need another constraint. Mohais, Xu, Dowd, et al. [ 14 ] provided

one solution by assuming a constant permeation velocity vw in a parallel fracture (α = 0,

h∗ = 1), i.e., v0|z=±h = ±vw (v∗
0

∣∣∣
z∗=±1

= ±1). If we apply this constraint to the above

analysis, the dimensionless average horizontal velocity becomes

〈u∗〉 =
[

3φ + 1
3 + R̃e

(
3
35 + 1

3φ + φ2

3

)
3

3φ + 1

](
−dp∗

dx∗

)

=
(

3φ + 1
3

)[
1 + R̃e

(
3
35 + 1

3φ + φ2

3

)
9

(3φ + 1)2

](
−dp∗

dx∗

)
.

(3.28)

This solution differs from [  14 ] in that the we have expanded only the velocity u∗ in powers

of R̃e, while Mohais, Xu, Dowd, et al. [ 14 ] expanded p∗ as well and obtained (using our

notation):

−dp∗

dx∗ = 〈u∗〉

 3
1 + 3φ

− R̃e

 9(7φ + 1)
140(1 + 3φ)3 +

(
3 + 6φ

2 + 6φ

)2
 . (3.29)

To the leading order in R̃e, we may use the Taylor series (1− ξ)−1 = 1+ ξ +O(ξ2) to rewrite

( 3.29 ) as

〈u∗〉 =
(

3φ + 1
3

){
1 + R̃e

[
3(7φ + 1)

140(3φ + 1)2 + 3(2φ + 1)2

4(3φ + 1)

]}(
−dp∗

dx∗

)
. (3.30)

Despite the different expansion methods used to obtain Eqs. ( 3.28 ) and (  3.30 ), the

leading-order terms are the same, i.e., they both yield:

〈u∗〉 = 1
3 (1 + 3φ)

(
1 + 27

35R̃e
)(

−dp∗

dx∗

)
+ O(R̃e

2
, φ2, φR̃e), (3.31)

meaning they are asymptotically equivalent for φ � 1 and R̃e � 1.
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Now, however, the wall permeation velocity vw (and its relation to the pressure gradient

dp/dx) is not necessarily known a priori. To close the problem, we apply the flux constraint

〈u∗
0〉 = 1 to Eq. ( 3.19 ), and we obtain

dp∗

dx∗ = − 3
3φh∗(x∗) + h∗(x∗)2 ⇒ d2p∗

dx∗2 = (9φ + 6h∗)δ
[3φh∗(x∗) + h∗(x∗)2]2 . (3.32)

Substituting the latter results into Eq. (  3.27 ) and suppressing the explicit notation that h∗

is a function of x∗, we have

〈u∗
1〉 = h∗3(28φ∗2 + 22φh∗ + 3h∗2)δ

35(3φ + h∗)2
dp∗

dx∗ . (3.33)

Finally, from Eqs. ( 3.19 ) and ( 3.33 ), 〈u∗〉 can be reconstituted into a Darcy’s law, as

shown in Eq. ( 3.8 ) in the main text and discussed therein.

3.A.2 Implementation of the numerical solver and its verification

The solution algorithm for the incompressible Navier–Stokes equations [Eqs. ( 3.2 ) in the

main text] used in our direct numerical simulation (DNS) study is SIMPLE (semi-implicit

method for pressure-linked equations) [see, e.g.,  160 , Ch. 15]. In this study, we set the

tolerance for the pressure and velocity components’ residuals to be 10−5 (see the example

convergence plot in Fig.  3.4 ). The BCs applied in the simulation are summarized in the

schematic in Fig.  3.5 . In particular, note that the BJS BC (  3.12 ) is, mathematically, a

Robin (or mixed-type) BC. However, within the iterative algorithm, we reformulated it as

a Dirichlet boundary condition to enhance stability and ensure consistency of fluxes within

the pressure iterations.

The BJS BC, as given in the computational paper by Layton, Schieweck, and Yotov [ 180 ],

is essentially a slip condition enforcing a specific value of the velocity field in the face-planar

direction of the boundary cell. In this formulation, the condition does not alter the velocity

normal to the porous walls.

In OpenFOAM® [ 159 ], [  178 ] and, more generally, in the finite volume method [  160 ],

discretization is performed by summing all the contribution from the volumetric source
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Figure 3.4. SIMPLE algorithm’s residuals plot for a sample simulation with
α = −10−3, φ = 5 × 10−4 and R̃e = 0.01. The tolerance used is 10−5 for both
the pressure residual and each velocity component’s residual. The simulation
converges after about 10 000 iterations.

terms (if present) and fluxes, looping over all the cell faces. In order to discretize generic

differential equations without any specific knowledge of the form of the fluxes, OpenFOAM®

requires that each flux is expressed in terms of a face value uf and a face-normal gradient

(∇u)f · nf , where f is a generic face and nf is the vector normal to such face. Therefore,

an explicit or implicit (i.e., matrix coefficients) expression for those two face-based fields is

required. Boundary faces are no exception. Thus, with reference to Fig.  3.6 , it is necessary

to provide expressions for ub and (∇u)b · n that take into account the BJS BC. In vector

form, the boundary condition reads:

T · ub = −T ·
(

`
∂u

∂n

)
b

, (3.34)

where T = (I − nn) is the projector on the tangential plane, I is the identity operator, and

` = `slip is the BJS slip length discussed in the main text.

However, a problem described by the Navier–Stokes equations with a BC of the type

in Eq. (  3.34 ) is not well posed, since such condition only constrains the face-planar field.
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u: zeroGradient
p: FixedValue
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BJS BC + FixedFluxPressure
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xu: FixedPro�le
p: zeroGradient

Figure 3.5. Schematic of the OpenFOAM® boundary conditions used in the
numerical simulations.

Therefore, it is necessary to specify a condition on the face-normal field. Since the BJS

BC does not provide such a constrain, we assume that all the flow arriving normal to the

boundary leaves the domain. This assumption corresponds to:

n ·
(

∂u

∂n

)
b

= 0 . (3.35)

In this sense, condition (  3.35 ) merely correspond to copying the value of the velocity field in

the first cell. In fact, using a linear interpolation scheme one obtains:

n ·
(

∂u

∂n

)
b

≈ n · (ub − uc)
δx

, (3.36)

which results in:

n · ub = n · uc . (3.37)

Equation ( 3.34 ) is also discretized using a linear interpolation scheme:

T · ub = −T ·
(

`
ub − uc

δx

)
= T ·

(
`

uc

δx + `

)
. (3.38)
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n
c b

Figure 3.6. Illustration of a boundary cell with face centers an face normals.
In this figure, c is the cell center (blue dot) and the blue line represents the
boundary. The BJS BC is applied at point b, corresponding to the center of
the boundary face, where δx is the distance between b and c, and n is the
vector normal to the boundary face.

The final form of the BC is then implemented as a Dirichlet BC:

ub = n(n · ub) + T · ub = n(n · ub) + T ·
(

`
uc

δx + `

)
. (3.39)

This formulation clearly requires multiple fixed point iterations that, if they converge, result

in the correct calculation of up up to second-order accuracy. For the pressure field, we

employ a fixedFluxPressure BC, which essentially imposes a pressure gradient based on the

flux leaving the domain, and allows the simulation to self-consistently determine the wall

permeation velocity.

Since we study steady flow, the initial conditions are only relevant for the convergence

(rather than the accuracy), so they are simply specified as zero velocity and zero pressure.
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At the inlet of the fracture (x = 0), we impose the theoretically computed velocity profile

given by Eqs. ( 3.18 ) and (  3.21 ) (with dp∗/dx∗ computed from Eq. ( 3.27 ) under the constraint

〈u∗〉 = 1), which has a non-zero permeation velocity and satisfies the BJS BC at the inlet’s

walls (z = ±h0).

A zero-gradient velocity BC is employed across the outlet plane (x = L), and the pressure

there is set to zero gauge pressure (see Fig.  3.5 ). We do not consider the case of a closed

fracture, so we do not need to impose a crack-tip condition.

To find the optimal computational grid arrangement for the simulations results presented

in the main text, we ran a series of test cases with different numbers of grid elements and

with different grid resolutions (spacing), as summarized in Table  3.1 . The simulations can be

considered non-dimensional (the fluid’s physical properties are chosen to fix the dimensionless

parameters such as R̃e). To maintain ε, the simulation channel has length L = 100 and inlet

half-aperture h0 = 1. From each simulation, we extracted the velocities at the cross-sectional

plane located at x = L/2 (x∗ = 0.5). We also extracted the pressure gradient dp/dx variation

along the whole channel. Then, we calculated the percent change of these quantities with

respect to the theoretical values (see above). Finally, the velocities from the simulations were

rescaled by 〈u〉 to be comparable to the theory, since the constraint 〈u〉 = 1 was imposed in

the derivation.

The grid independence study revealed that the optimal choice is 4000 grid elements with

∆x = 0.5 and ∆z = 0.05, as it showed significantly better performance on the permeation

velocity than coarser girds and finer grids did not improve the accuracy notably (see Fig.  3.7 ).

The slip velocity and axial pressure gradient showed convergence for 4000 grid elements, with

the error increasing for larger grids. Therefore, we used 4000 grid elements for all DNS results

reported in the main text. Note that a non-uniform grid spacing (see Fig.  3.8 ) was used in

the vertical direction to better resolve the flow near the porous walls.
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Figure 3.7. Grid independence of key (dimensionless) flow quantities. Per-
cent difference (relative to the theoretical solution in the main text) of the
wall permeation velocity v∗

(
x∗, h∗(x∗)

)
, the wall slip velocity u∗

(
x∗, h∗(x∗)

)
,

and the axial component of the pressure gradient dp∗/dx∗, all evaluated at
x∗ = 0.5 but using different grids.

Figure 3.8. Schematic of the computational grid showing the non-uniform
vertical spacing (“boundary layer meshing”). Notice that the grid spacing is
scaled in the horizontal direction to fit the figure.
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Figure 3.9. Flow-wise variation: Dimensionless velocity profiles versus frac-
ture aperture z∗ at the planes x∗ ∈ {0.2, 0.5, 0.8}, for α = −10−3, φ = 10−4

and R̃e = 0.01: (a) the horizontal component u∗(x∗, z∗); (b) the vertical com-
ponent v∗(x∗, z∗). Solid curves are the theoretical profiles from Eq. ( 3.22 ), and
filled circles with the same colors are the corresponding simulation results.
Profiles are color-coded by their x∗ positions.

Table 3.1. Information about the grids used to establish grid independence
of the direct numerical simulation results.

Grid arrangement 100 × 50 200 × 100 400 × 200 800 × 400
Total grid elements 5 000 20 000 80 000 320 000
∆x resolution 1 0.5 0.25 0.125
∆z resolution 0.02 0.01 0.005 0.0025
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Figure 3.10. The dimensionless wall permeation velocity v∗
w(x∗) along the

channel for R̃e = 0.01. Colors represent cases with different α and φ values:
: α = 0, φ ∈ {0, 5×10−4, 10−3}; : α = −10−4, φ ∈ {0, 5×10−4, 10−3}; :

α = −5×10−3, φ ∈ {0, 5×10−4, 10−3}; : α = −10−3, φ ∈ {0, 5×10−4, 10−3}.
Filled circles represent the simulation results, and solid curves of the same color
represent the corresponding theoretical predictions.
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4. PHYSICS-INFORMED NEURAL NETWORKS FOR

UNDERSTANDING THE SHEAR MIGRATION OF

PARTICLES IN VISCOUS FLOW

SUMMARY

We harness the physics-informed neural network (PINN) approach to extend the utility of

phenomenological models for particle migration in shear flow. Specifically, we propose to

constrain the neural network training via a model for the physics of shear-induced particle

migration in suspensions. Then, we train the PINN against experimental data from the

literature, showing that this approach provides both better fidelity to the experiments, and

novel understanding of the relative roles of the hypothesized migration fluxes. We first

verify the PINN approach for solving the inverse problem of radial particle migration in

a non-Brownian suspension in an annular Couette flow. In this classical case, the PINN

yields the same value (as reported in the literature) for the ratio of the two empirical model

parameters. Next, we apply the PINN approach to analyze experiments on particle migration

in both non-Brownian and Brownian suspensions in Poiseuille slot flow, for which a definitive

calibration of the phenomenological migration model has been lacking. Using the PINN

approach, we identify the unknown/empirical parameters in the physical model through the

inverse solver capability of PINNs. Specifically, the values are significantly different from

those for the Couette cell, highlighting an inconsistency in the literature that uses the latter

value for Poiseuille flow. Importantly, the PINN results also show that the inferred values

of the empirical model’s parameters vary with the shear Péclet number and the particle

bulk volume fraction of the suspension, instead of being constant as assumed in previous

literature.

The material in this chapter has been submitted for publication as [D. Lu and I. C.

Christov, “Physics-informed neural networks for understanding shear migration of particles

in viscous flow,” preprint, arXiv:2111.04684, 2021] [ 190 ].
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4.1 Problem statement

Phillips, Armstrong, Brown, et al. [ 118 ] proposed an insightful phenomenological model

for the shear-induced migration of particles in a low Reynolds number flow [  124 ]. Specifically,

they posited that the distribution of particles, accounted for by the volume fraction φ(x, t)

of the fluid–particle suspension, obeys a conservation law [ 118 ], [ 138 ]:

Dφ

Dt
= −∇ · J . (4.1)

In Eq. (  4.1 ), the material derivative of the left-hand side represents the unsteady transport

of particles by a flow u, while J on the right-hand side represents a spatial flux arising from

the hydrodynamic interactions of particles. Consequently, Eq. ( 4.1 ) is often referred to as a

diffusive-flux model in the literature. Phillips, Armstrong, Brown, et al. [ 118 ] decomposed

the flux as J = Nc+Nη+NB, where they posited that Nc, Nη and NB represent the particle

fluxes due to the variations in the particle collision frequency, the spatial variations of the

viscosity of the suspension, and the spatial variations of the concentration (responsible for

Brownian diffusion, by Fick’s law), respectively. For unidirectional flows, Dφ/Dt = ∂φ/∂t

[ 138 ].

Specifically, Phillips, Armstrong, Brown, et al. [ 118 ] proposed the following “constitutive

laws” for the diffusive fluxes:

Nc = −Kca
2
p

(
φ2∇γ̇ + φγ̇∇φ

)
, (4.2a)

Nη = −Kηγ̇φ2
(

a2
p

η

)
dη

dφ
∇φ, (4.2b)

NB = −D∇φ, (4.2c)

where Kc and Kη are a priori unknown constants of order unity, which are found from

experimental data (by fitting/calibration). Therefore, Eq. (  4.1 ), with the fluxes given in

Eqs. (  4.2 ), becomes a parametrized partial differential equation (PDE). Here, ap is a particle’s

radius, D is its Brownian diffusivity (in principle, known from the Stokes–Einstein relation

D = kBT/6πηsap with T being temperature and kB being Boltzmann’s constant), η is the
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non-constant dynamic viscosity of the suspension, which may depend on many parameters

[ 191 ], ηs is the carrier Newtonian fluid’s viscosity, and γ̇(x, t) is the non-uniform shear rate

in the flow. For a general flow field u(x, t), the shear rate is evaluated as the magnitude of

the rate-of-strain tensor E = 1
2(∇u + ∇u>), i.e., γ̇ =

√
2E : E.

At steady state, ∂( · )/∂t = 0. Then, Eq. (  4.1 ) can be integrated once in space over some

domain V , with the constant of integration set to zero by imposing a no-flux condition on the

domain’s boundary ∂V . Therefore, the resulting governing physics equation at steady-state

is

Nc + Nη + NB = 0, (4.3)

which can be considered as a “continuity equation” expressing the conservation of parti-

cles. Equation ( 4.3 ) also implies that if the initial particle volume fraction is such that∫
A φ(x, 0) dx = φb = const. across any cross-section A, then

∫
A φ(x, t) dx = φb for any t > 0.

Additionally, the flow field u obeys the Stokes flow momentum equation [  118 ], which takes

the form (using a more standard [ 37 ] sign convention and definition of E as above):

∇ · τ = ∇p, τ = 2ηE, η = ηsηr(φ), (4.4)

where ηr (dimensionless) is the contribution from the suspension to be introduced below, and

p(x) is the hydrodynamic pressure. We will consider only neutrally buoyant suspensions, and

so body forces are neglected in Eq. (  4.4 ). The velocity field is additionally incompressible,

∇ · u = 0, but this relation is automatically satisfied by the unidirectional flows considered

herein [ 37 ], so it is not a physical constraint that we need to enforce explicitly.

The fluid mechanics of particulate suspensions remains a frontier problem [  137 ], and the

diffusive-flux model of Phillips, Armstrong, Brown, et al. [ 118 ] is not without its criticisms

[ 138 ]. Nevertheless, although much more sophisticated models of suspensions exist [ 20 ], [ 139 ],

including the suspension balance model [ 126 ], [  127 ], [ 140 ]–[ 142 ], the two-fluid model [  143 ],

even direct numerical simulation [ 129 ], Eqs. (  4.1 )–( 4.2 ) remain a popular model through

which to study shear-induced particle migration in suspensions [ 144 ]–[ 146 ].
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“Disentagling” the individual effects of shear-induced fluxes in Eq. (  4.3 ) has been of

particular interest in the suspensions literature [  192 ]. (Note that although Merhi, Lemaire,

Bossis, et al. [ 192 ] also included a fourth, “curvature-induced” flux in Eq. ( 4.3 ), its origin

has been disputed by Bricker and Butler [  193 ].) Machine learning is a viable approach

toward processing experimental data to disentangle the relative strengths of the fluxes in

Eq. (  4.3 ). To this end, in Section  4.2 , we apply the novel physics-informed neural network

(PINN) approach of Raissi, Perdikaris, and Karniadakis [  148 ] towards understanding particle

migration in shear flow. Specifically, we propose to constrain the neural network using the

model given by Eqs. ( 4.3 ) and ( 4.4 ). In Section  4.3 , we validate this approach on the classical

Couette cell experiments (and modeling) of Phillips, Armstrong, Brown, et al. [ 118 ]. Then,

in Section  4.4 , we apply the PINN approach to the more challenging case of Poiseuille channel

flow. In doing so, we re-interpret experiments on pressure-driven flows of both non-Brownian

(Section  4.4.2 ) and Brownian (Section  4.4.3 ) suspensions, uncovering new aspects of the

shear-induced migration model. Finally, conclusions are drawn in Section  4.5 . Additional

data pre-processing and verification details (regarding the PINN calculations) are provided

in Appendices  4.A.1 and  4.A.2 , respectively.

4.2 PINN algorithm description and implementation

In recent years, with the explosive growth of available data, computing modalities, and

requisite hardware resources, deep learning algorithms have been applied to a range of prob-

lems arising from computer science, physics and engineering fields [ 194 ], including in the

field of fluid mechanics [  195 ]. It has been suggested that machine learning could “have

influence closer to the principles of fluid mechanics, when [...] used in conjunction with

human reasoning” [  196 , p. 4]. In this vein, physics-informed machine learning has emerged

as an approach that “integrates seamlessly data and mathematical physics models, even in

partially understood ... contexts” [  197 ]. Specifically, Raissi, Perdikaris, and Karniadakis

[ 148 ] developed a computational approach to couple machine learning with some underlying

physics (human reasoning), which they termed physics-informed neural networks (PINNs).

PINNs are a deep learning framework for solving problems involving PDEs by embedding
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(in a suitable sense) the physics into the neural network. Due to their versatility, PINNs

have been applied to solve forward and inverse problems in fluid mechanics [  198 ]–[ 203 ], solid

mechanics [  204 ], [  205 ], material science [ 206 ], and heat transfer [  207 ], amongst many other

applications. PINNs are appealing due to their standardized implementation. They use au-

tomatic differentiation [  208 ] techniques to discretize the differential operators needed for the

back-propagation problem, as well as the PDEs representing the physics [  148 ], [  209 ]. This

approach makes PINNs mesh-free and, thus, easy to use for evaluating the PDE residual even

from sparse experimental data sets (‘observations’). Importantly, PINNs can determine un-

known parameters in the physics embedded therein, even from incomplete (or partial) data

sets, making PINNs useful for reduced-order model calibration.

In this chapter, we use a PINN to solve the inverse problem of reduced-model determina-

tion for particle migration in suspensions. Given measurements of a velocity field component

u and a particle volume fraction profile φ, we seek to learn the unknown parameters Kc and

Kη in the model given in Eq. ( 4.2 ). The governing physics equations are embedded into the

PINN as shown in Fig.  4.1 . We use two independent neural networks, NN(u) and NN(φ),

to approximate the velocity distribution and particle distribution profile, respectively. Both

NNs are fully-connected and feed-forward, with multiple hidden layers each.

Suppose that the measured data is available on N (possibly random) sample points.

The residuals of the fluid’s conservation of momentum equation (  4.4 ) and the suspension’s

continuity equation (  4.3 ) (suitably simplified for some given flow conditions and domain

geometry) are evaluated from the approximated values of u and φ at these N collocation

points. Then, combining the error between predictions and observations with the error in

satisfying the physics from the residuals, along with any constraints, we formulate a loss

function as:

L = wuMSEu + wφMSEφ︸ ︷︷ ︸
training data

+ wpMSEp + wmMSEm︸ ︷︷ ︸
physics

+ wcMSEc︸ ︷︷ ︸
constraints

, (4.5)
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where, for example,

MSEu = 1
N

N∑
i=1

‖u(i) − utrain(i)‖2, (4.6a)

MSEφ = 1
N

N∑
i=1

|φ(i) − φtrain(i)|2, (4.6b)

MSEp = 1
N

N∑
i=1

‖Nc(i) + Nη(i) + NB(i)‖2 , (4.6c)

MSEm = 1
N

N∑
i=1

‖∇ · τ (i) − ∇p(i)‖2 . (4.6d)

The MSE terms in L represent various “mean squared errors.” The notation “(i)”

denotes the value of the quantity at the ith data point in the set of N observations. For

clarity, we omit this explicit notation below without fear of confusion. The first two terms

of L correspond to the errors between the predicted and the input velocity and particle

distribution training data, respectively. Then, the following two terms of L correspond

to error in satisfaction of the physics, i.e., the suspension’s momentum equation ( 4.4 ) and

continuity equation ( 4.3 ), respectively. The last term of L represent errors committed in

satisfaction of “constraints.” The constraints can involve, e.g., boundary conditions, integral

constraints, or any other mathematical statement not captured in the “physics” term, which

is typically used to denote only the satisfaction of governing (partial) differential equations.

The coefficients wj where j ∈ {u, φ, m, p, c}, represent weights of the corresponding loss

terms. Although the relative values of the weights of terms in the loss function may influence

the ability to train the NN [ 210 ], here we generally take them to be equal.

Figure  4.1 shows the architecture of the PINN. Initially, a randomly selected set of

network weight vectors Θ(0)
u and Θ(0)

φ are used to construct NN(u) and NN(φ), respectively.

Then, we feed NN(u) and NN(φ) with training data, and obtain predictions on u and φ. We

calculate the derivatives of u and φ needed to evaluate the physics-informed loss terms via

automatic differentiation in TensorFlow [  211 ]. Then, starting with guesses K(0)
c and K(0)

η

for the model parameters, we calculate the loss terms corresponding to the continuity and

momentum equations, as well as any constraints. The activation function is the hyperbolic

tangent function. During the process of minimizing L , Θ(k)
u , Θ(k)

φ , K(k)
c and K(k)

η are updated
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Figure 4.1. Architecture of the proposed PINN for solving the inverse prob-
lem of reduced-model determination for particle migration in suspensions. The
loss L is formulated (as in Eq. ( 4.5 )) in terms of root-mean-squared errors
between predictions and observations (MSEu, MSEφ), and errors in satisfac-
tion of the underlying PDEs from physics (MSEm, MSEp), as well as boundary
conditions and/or additional constraints (MSEc).

at each iteration k. The loss function is minimized using “Adam” [  212 ], which is a stochastic

gradient descent algorithm, and “L-BFGS-B” subsequently. The stopping criterion for the

optimization is that the change in the loss function between iterations is less than machine

precision. However, this stopping criterion may or may not satisfy our convergence criterion.

So, upon the stoppage of the optimization procedure, we check that L < TOL, for some

prescribed tolerance TOL ' 10−2. Upon satisfaction of the latter criterion, we consider the

solution converged. Then, we have obtained not only the optimized neural networks’ weights

Θu and Θφ, but also the initially unknown model parameters Kc and Kη.
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4.3 Couette flow

4.3.1 Governing physics equations

For flow between concentric rotating cylinders, the domain is V = {x = (r, θ) | κR ≤

r ≤ R, 0 ≤ θ < 2π}, where κ < 1 is dimensionless, and the problem is independent of the

axial, z, coordinate. The radial component of the momentum equation (  4.4 ) (where Stokes

flow is now in cylindrical coordinates [ 37 ]) reduces to

1
r2

∂

∂r

(
r2τrθ

)
= 0 ⇒ τrθ = A

r2 , (4.7)

where A is a constant to be calculated by imposing boundary conditions [  118 ]. Note that in

this case of axisymmetric flow, ∂p/∂θ = 0. Equivalently,

γ̇ = γ̇rθ = A

r2η
, A = −Ω∫ R

κR(r3η)−1 dr
, (4.8)

where Ω is the angular velocity of the inner cylinder. On dimensional grounds alone, for

a neutrally buoyant non-Brownian suspension at low Reynolds number at steady state, it

is expected that η/ηs = ηr(φ) [ 191 ], where ηs is the Newtonian solvent’s dynamic viscosity,

and ηr(φ) is the dimensionless contribution to the viscosity due to particles. Indeed, the

experiments of Phillips, Armstrong, Brown, et al. [ 118 ] were verified to be in this specific

regime, and they used the empirical Krieger–Dougherty relation:

ηr(φ) =
(

1 − φ

φm

)−a

, (4.9)

where φm = 0.68 is the maximum packing volume fraction, and a = 1.82 is a positive

empirical exponent (in principle, related to φm [ 191 ]). The form of Eq. ( 4.9 ) and values for

φm and a are based on experimental correlations [ 213 ], [  214 ], and they are well-established

for non-Brownian suspensions [  20 ], [  215 ]. Here, we are only interested in interrogating the

particle migration model, so any fitting parameters for the fluid and suspension properties

are taken as per the literature.
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Next, dimensionless governing equations are obtained by scaling the dimensional variables

in the following way:

r∗ = r/R, γ̇∗(r∗) = γ̇rθ(r)/Ω, u∗(r∗) = uθ(r)/Umax, (4.10)

where Umax = ΩκR is the maximum velocity at the rotating wall. Therefore, the momentum

equation ( 4.8 ) can be written as

γ̇∗(r∗) = −1
r∗2ηr

∫ 1
κ (r∗3ηr)−1 dr∗

. (4.11)

Neglecting the Brownian flux, the continuity equation (  4.3 ) for the non-Brownian sus-

pension in this geometry is

1
γ̇

dγ̇

dr
+ 1

φ

dφ

dr
+ Kη

Kc

1
η

dη

dr
= 0, (4.12)

where we have dropped the ‘rθ’ subscript on γ̇ without fear of confusion. Equation ( 4.12 )

can be nondimensionalized as follows:

1
γ̇∗

dγ̇∗

dr∗ + 1
φ

dφ

dr∗ + Kη

Kc

1
ηr

dηr

dr∗ = 0. (4.13)

Observe that in this (non-Brownian) case, only the ratio Kη/Kc of the two model parameters

shows up in the final form of the particle transport equation. In other words, there is only

a single quantity to “fit,” and this fact is reflected in the PINN architecture used for this

problem.

Additionally, the particle distribution satisfies

1
1 − κ

∫ 1

κ
φ(r∗) dr∗ = φb, (4.14)

where φb is the bulk volume fraction. The uniform distribution of particles at the initial time

is then φ(r, t = 0) = φb, and at steady state conservation of mass requires that Eq. (  4.14 )

hold.
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Phillips, Armstrong, Brown, et al. [ 118 ] suggested, based on analysis of their experiments,

that Kc/Kη ≈ 0.66 best fits the profile measured for steady-state Couette flow of suspensions

of 2ap = 675 µm particles at φb = 0.55. The agreement was also good when comparing with

experimental data at φb = 0.45, 0.50 and 0.55. In this section, we wish to investigate the

best-fit value of Kc/Kη obtained by the PINN approach for solving the inverse problem.

4.3.2 PINN loss function

For this problem, the loss function is

L = wuMSEu + wφMSEφ + wpMSEp + wmMSEm + wcMSEc. (4.15)

The notation for the MSE terms was introduced in Sect.  4.2 . These terms are now imple-

mented as

MSEu = 1
N

N∑
i=1

|u∗ − u∗
train|2, (4.16a)

MSEφ = 1
N

N∑
i=1

|φ − φtrain|2, (4.16b)

MSEm = 1
N

N∑
i=1

∣∣∣∣∣γ̇∗ + 1
r∗2ηr

∫ 1
κ (r∗3ηr)−1 dr∗

∣∣∣∣∣
2

, (4.16c)

MSEp = 1
N

N∑
i=1

∣∣∣∣∣ 1
γ̇∗

dγ̇∗

dr∗ + 1
φ

dφ

dr∗ + Kη

Kc

1
ηr

dηr

dr∗

∣∣∣∣∣
2

, (4.16d)

MSEc =
∣∣∣∣ 1
1 − κ

∫ 1

κ
φ(r∗) dr∗ − φb

∣∣∣∣2 . (4.16e)

The integrals in the expressions in Eqs. (  4.16c ) and (  4.16e ) are approximated by averages

over the randomly selected set of collocation points (essentially a Monte Carlo quadrature):∫ 1
κ (·) = ∑N

i=1(·)× (1−κ)/N . Appendix  4.A.1 describes how the experimental data (digitized

from [ 118 ]) was pre-processed into training data.

Note that the output variables of the NNs are u and φ, as depicted in Fig.  4.1 . Thus,

the remaining variables ηr and γ̇∗ have to be expressed in terms of these output variables.
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Recall that γ̇ = rd(uθ/r)/dr for purely azimuthal flow by definition [  37 ]. Then, using the

nondimensionalization from Eq. ( 4.10 ):

γ̇∗(r∗) = κr∗ d

dr∗

(
u∗(r∗)

r∗

)
. (4.17)

Substituting the expression for γ̇∗ from Eq. (  4.17 ) and ηr from Eq. (  4.9 ) into the MSE

expressions (  4.16c ) and (  4.16d ), the loss function from Eq. (  4.15 ) now depends only on

the NN weights (Θu and Θφ) and the parameter Kc/Kη. By minimizing the resulting

L (Θu, Θφ, Kc/Kη) with respect to its arguments, we find the NNs and the value of Kc/Kη

that simultaneously lead to the best agreement with the training data and the physics.

4.3.3 Comparison between PINN, theory and experiment

To evaluate the “theoretical” particle distribution profile, we use the chain dηr/dr∗ =

(dηr/dφ)(dφ/dr∗) to re-write Eq. ( 4.13 ) as:

(
1
φ

+ Kη

Kc

1
ηr

dηr

dφ

)
dφ

dr∗ = − 1
γ̇∗

dγ̇∗

dr∗ =
(

2
r∗ + 1

ηr

dηr

dφ

dφ

dr∗

)
, (4.18)

where the second equality follows from using the dimensionless version of Eq. (  4.8 ). Now,

Eq. ( 4.18 ) can be rearranged as an ODE for φ(r∗):

[
1
φ

+
(

Kη

Kc

− 1
) 1

ηr

dηr

dφ

]
dφ

dr∗ = 2
r∗ . (4.19)

Finally, we can use the Krieger viscosity from Eq. ( 4.9 ), multiply both sides of Eq. ( 4.19 ) by

φ and solve for dφ/dr∗, to obtain a first-order nonlinear ODE for φ(r∗):

dφ

dr∗ = 2φ

[(Kη/Kc − 1)a(φ/φm)(1 − φ/φm)−1 + 1]r∗ , (4.20)

which is the same as Eq. (21) of Phillips, Armstrong, Brown, et al. [ 118 ]. Equation (  4.20 ) can

be integrated from r∗ = κ to r∗ = 1 using an arbitrary value φ(r∗ = κ) = φw ∈ [0, 1] as the

initial condition. Then, a nonlinear iteration (implemented using optimize.root_scalar
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from the SciPy stack in Python [  168 ]) updates φw until the constrain (  4.14 ) is satisfied for

the given φb. This solution will be shown as the “theory” curve in the figures below.

In Fig.  4.2 , we compare our PINN results using wu = wφ = wp = wm = wc = 1 to theory

(numerical solution of Eq. (  4.20 )) and the experiments (by Phillips, Armstrong, Brown, et

al. [ 118 ]). We use neural networks with two hidden layers with 10 nodes in each layer and

a learning rate of 0.001 for the Adam optimizer. The process of choosing a suitable number

of layers and nodes is discussed in Appendix  4.A.2 .

Two versions of the theoretical prediction for the particle distribution profile are shown

in Fig.  4.2 (b). One is calculated by solving Eq. ( 4.20 ) (numerically by the method described

above) using the value Kc/Kη = 0.66 suggested in [  118 ]. The other theoretical prediction is

derived via the ad-hoc approximation 1.82(1 − Kη/Kc) ≈ −1 made in Phillips, Armstrong,

Brown, et al. [ 118 ]. We observe that the PINN prediction is an improvement over the numer-

ical solution of Eq. ( 4.20 ). Surprisingly, the approximation 1.82(1 − Kη/Kc) ≈ −1 improves

the agreement further between the theory and experiments. This approximation, made out of

convenience in [  118 ], does not appear to be justifiable on the basis of mathematical grounds

(such as perturbation theory), therefore its good agreement with experiment must be simply

coincidence.

As evidenced by Fig.  4.2 , we obtain good agreement between the PINN predictions

and the experimental data, for both u∗ and φ. To account for the statistical variation in

the converged (“learned”) value of Kc/Kη due to the random initialization of the NNs, we

averaged the predictions from 100 using different initializations to obtain a statistical result

with mean and standard error: Kc/Kη = 0.66 ± 0.05, which is consistent with the fitted

value in [  118 ] by their non-machine-learning approach. Thus, we have validated the PINN

approach for the shear-induced migration of non-Brownian particles in a concentric Couette

cell, showing that PINNs do not only provide suitable predictions for the velocity and particle

distribution profiles, but they also “learn” the accepted value of the model parameter Kc/Kη

given in the literature.
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Figure 4.2. Validation of the proposed PINN approach to shear-induced
migration. The PINN is applied to analyze the experiment from Phillips,
Armstrong, Brown, et al. [ 118 ] in a concentric Couette cell at φb = 0.55, yield-
ing: (a) the dimensionless velocity profile u∗(r∗) and (b) the particle distribu-
tion (volume fraction) φ(r∗). Symbols represent the experimental data from
Phillips, Armstrong, Brown, et al. [ 118 ]; red solid curves are PINN predictions;
dashed curve is the numerical solution of Eq. ( 4.20 ); curve with cross symbols
in (b) is the approximate analytical solution from Phillips, Armstrong, Brown,
et al. [ 118 , Eqs. (24)–(25)]. The PINN “learns” a value of the unknown model
parameter Kc/Kη ≈ 0.66, which is in agreement with [ 118 ].

4.4 Poiseuille flow

4.4.1 Governing physics equations

For Poiseuille flow in a slot of height 2H, the domain is V = {x = (x, y) | − H ≤

y ≤ +H, −∞ < x < ∞}. For fully developed flow, the x dependence drops out, and we

introduce the dimensionless variables

x∗ = x/L, y∗ = y/H, γ̇∗(y∗) = γ̇(y)/γ̇0, u∗(y∗) = ux(y)/Umax, (4.21)

where Umax is the centerline (maximum) velocity of the solvent fluid at the same volumetric

flow rate, γ̇0 = Umax/H is the mean shear rate, and L is a typical axial length scale for the

channel.

101



Now, the dimensionless continuity equation ( 4.3 ) for the suspension takes the form

Kcφ

(
φ

d2u∗

dy∗2 + du∗

dy∗
dφ

dy∗

)
+ Kη

du∗

dy∗
φ2

ηr

dηr

dy∗ + 1
Pe

dφ

dy∗ = 0. (4.22)

In Eq. (  4.22 ), Pe is the shear Péclet number, which quantifies the relative importance of

shear migration to Brownian migration of particles [ 191 ], defined as

Pe =
a2

pγ̇0

D
=

6πηsa
3
pγ̇0

kBT
, (4.23)

where kB is Boltzmann’s constant, and T is temperature. Observe that unlike the case of

Eq. (  4.13 ), Eq. (  4.22 ) for finite Pe cannot be divided by Kc (to only consider the ratio

Kη/Kc). Again, the particle distribution is constrained such that

1
2

∫ +1

−1
φ(y∗) dy∗ =

∫ 1

0
φ(y∗) dy∗ = φb. (4.24)

For a dense non-Brownian suspension (Pe � 1), the velocity is not parabolic [ 118 ], [  216 ].

Its shape is found by solving the momentum equation (  4.4 ) for pressure-driven Poiseuille

flow of the suspension:
d

dy∗

(
ηr(φ)du∗

dy∗

)
= G∗ = GH2

ηsUmax
, (4.25)

where G∗ (resp. G) is the dimensionless (resp. dimensional) axial pressure gradient, which

is constant in unidirectional flow [  37 ]. Integrating Eq. (  4.25 ) once and imposing a centerline

symmetry condition, we have

ηr(φ)du∗

dy∗ = G∗y∗. (4.26)

Similarly to the approach of Reyes, Howard, Perdikaris, et al. [ 202 ], Eq. ( 4.26 ) will be

enforced via the PINN’s loss function to account for the blunted (non-parabolic) velocity

profiles of dense suspensions. However, we will not enforce no-slip boundary conditions with

Eq. (  4.26 ) because experiments [  216 ]–[ 218 ] suggest that dense suspensions can slip along

the channel walls (see Fig.  4.3 ). The proposed machine learning methodology naturally
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handles slip without further effort. To calculate G∗ from the experimental data, Eq. (  4.26 )

is integrated from y∗ = 0 to y∗ = 1 and rearranged, yielding

G∗ = u∗(1) − u∗(0)∫ 1
0 y∗/ηr(φ) dy∗

, (4.27)

which is evaluated using the experimental u∗ and φ profiles and the trapezoidal rule for the

integral.

For a strongly Brownian suspension (Pe = O(1)), as we will discuss in Sect.  4.4.3 , the

velocity profile in experiments [ 219 ] is indistinguishable from a parabolic one, so instead of

Eq. ( 4.26 ), we can simply enforce

u∗(y∗) = 1 − y∗2. (4.28)

Put differently: now ηr(φ) ≈ 1, u∗(1) = 0 (the dilute suspension does not slip), and the scale

Umax is chosen to make G∗ = −2 in this case, consistent with Eq. ( 4.27 ).

4.4.2 Non-Brownian dense suspension

PINN loss function

In a non-Brownian dense suspension, the Brownian diffusive flux NB can be neglected

in Eq. (  4.3 ), which eliminates the term Pe−1dφ/dy∗ from Eq. (  4.22 ) (equivalently, the limit

Pe → ∞ corresponds to a non-Brownian suspension). Then, in this case, the MSE terms as

introduced in Eq. ( 4.5 ) in Sect.  4.2 are now be implemented as:

MSEu = 1
N

N∑
i=1

|u∗ − u∗
train|2, (4.29a)

MSEφ = 1
N

N∑
i=1

|φ − φtrain|2, (4.29b)

MSEp = 1
N

N∑
i=1

∣∣∣∣∣Kc

Kη

φ

(
φ

d2u∗

dy∗2 + du∗

dy∗
dφ

dy∗

)
+ du∗

dy∗
φ2

ηr

dηr

dy∗

∣∣∣∣∣
2

, (4.29c)

MSEm = 1
N

N∑
i=1

∣∣∣∣∣ηr(φ)du∗

dy∗ − G∗y∗
∣∣∣∣∣
2

, (4.29d)
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MSEc =
∣∣∣∣∫ 1

0
φ(y∗)dy∗ − φb

∣∣∣∣2 . (4.29e)

Appendix  4.A.1 describes how the experimental data (digitized from [  216 ]) was pre-processed

into training data.

Note that in MSEp, dηr/dy∗ is calculated by the chain rule: dηr/dy∗ = (dηr/dφ)(dφ/dy∗).

Then, substituting ηr from Eq. (  4.9 ) into the loss function, we obtain L , which depends

only on the NN weights (Θu and Θφ) and the ratio Kc/Kη. By minimizing the resulting

L (Θu, Θφ, Kc/Kη) with respect to its arguments using wu = wφ = wp = wm = wc = 1, we

find the value of Kc/Kη that simultaneously leads to the best agreement with the training

data and the physics.

Comparison between PINN, theory and experiment

We can solve for the “theoretical” prediction for φ from Eq. (  4.22 ). For a non-Brownian

suspensions, the dependence of the viscosity on the particle volume fraction is given by

Eq. (  4.9 ), and the velocity profile obeys Eqs. ( 4.26 ). Substituting these expressions into

Eq. (  4.22 ) and neglecting the Brownian term (Pe → ∞), we once again obtain a nonlinear

first-order ODE for φ(y∗):

dφ

dy∗ = φ[
(1 − Kη/Kc) a(φ/φm) (1 − φ/φm)−1 − 1

]
y∗

, (4.30)

Similar to the result in Sect.  4.3.3 , Koh, Hookham, and Leal [ 216 ] assumed Kc/Kη = 0.66.

Then, Eq. (  4.30 ) can be integrated numerically from y∗ = 1 back to y∗ = 0 (to handle the

singularity at y∗ = 0). An arbitrary value φ(y∗ = 1) = φw ∈ [0, 1] is used as an initial

guess. Then, a nonlinear iteration (implemented using optimize.root_scalar from the

SciPy stack in Python [  168 ]) updates φw until the constrain (  4.24 ) is satisfied for the given

φb. This solution will be shown as the “theory” curve in the figures below.

In Fig.  4.3 ,  4.4 ,  4.5 we compare the PINN solutions to the laser-Doppler velocimetry

experimental measurements of Koh, Hookham, and Leal [  216 ] at φb = 0.1, 0.2, 0.3, respec-

tively. As in Sect.  4.3.1 , we use the scaled viscosity function ηr(φ) given in Eq. (  4.9 ), because
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Figure 4.3. Application of the proposed PINN-based approach to experiment
187 from Koh, Hookham, and Leal [  216 ] at φb = 0.1 and G∗ = −1.51. The
PINN found Kc/Kη = 0.10 ± 0.012.
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Figure 4.4. Application of the proposed PINN-based approach to experiment
189 from Koh, Hookham, and Leal [  216 ] at φb = 0.2 and G∗ = −1.22. The
PINN found Kc/Kη = 0.44 ± 0.018.

their experiments are also for a neutrally buoyant non-Brownian suspension at low Reynolds

number, like [ 118 ]. As can be deduced from the figures, the PINN predictions for the profiles

u∗(y∗) and φ(y∗) agree well with the experiment data. Specifically, the PINN predicts φ

better than pure theory from Eq. (  4.30 ) because, when using Eq. (  4.30 ) as a constraint on

the learning process, the PINN “smooths out” the physically-questionable singularity of the

ODE at y∗ = 0. Note that this feature of the PINN approach was also mentioned in [  202 ],
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Figure 4.5. Application of the proposed PINN-based approach for to exper-
iment 192 from Koh, Hookham, and Leal [ 216 ] at φb = 0.3 and G∗ = −1.04.
The PINN found Kc/Kη = 0.58 ± 0.020.

in the context of the shear stress singularity at the channel centerline under a power-law

rheological model.

Table 4.1. Values of the shear-induced migration model’s parameter Kc/Kη,
as inferred by the PINN from non-Brownian experimental data of Koh,
Hookham, and Leal [  216 ], for different bulk volume fractions φb. As before,
these statistical results, with a mean and a standard error, come from 100 runs
of the PINN algorithm using different random initializations of the NNs.

φb Kc/Kη

0.1 0.10 ± 0.012
0.2 0.44 ± 0.018
0.3 0.58 ± 0.020

Importantly, by training the PINN, we deduce best-fit Kc/Kη values different from the

traditional value of 0.66, which has only been validated for the concentric Couette flow

(Sec.  4.3.3 ). Table  4.1 summarizes the values that the PINN “learns” from experimental

data with different values of φb for the Poiseuille flow in a slot.

4.4.3 Brownian suspension

Now, we return to the “full” Eq. (  4.22 ) at finite Pe, which was defined in Eq. (  4.23 ).

Now, it is expected that η/ηs = ηr(φ, Pe) [ 191 ] (see also [  20 , Ch. 7]), while the suspension is
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still neutrally buoyant, at steady state and at low Reynolds number. (The geometry is still

that of Poiseuille flow in a slot as introduced in Sect.  4.4.2 .)

Unlike the previous sections, we can no longer use the Krieger–Dougherty viscosity func-

tion from Eq. (  4.9 ) for the Brownian suspension. Instead, motivated by the work of Kang

and Mirbod [ 144 ], we take the Brownian suspension’s shear viscosity to be

ηr(φ, Pe) = η∞(φ) + η0(φ) − η∞(φ)
1 + KP eηsa3

pγ̇/(kBT ) = η∞(φ) + η0(φ) − η∞(φ)
1 + KP ePeγ̇∗/(6π) , (4.31)

where

η0(φ) = (1 − φ/φm0)−a0 , (4.32a)

η∞(φ) = (1 − φ/φm∞)−a∞ , (4.32b)

based on the correlations proposed by Kruif, Iersel, Vrij, et al. [ 220 ]. Typically, φm0 =

0.63, φm∞ = 0.71, a0 = 1.96, a∞ = 1.93, and KP e = 1.31 are used in the literature [  144 ]

based on experimental fits. While the zero-Pe and infinite-Pe “plateaus” of the viscosity

function (  4.31 ) can be measured accurately (yielding the maximum volume fractions φm0

and φm∞ , along with the exponents a0 and a∞), the transition over intermediate Pe is

characterized by the dimensionless parameter KP e. This parameter is harder to infer from

a single experiment (and, indeed, has not been reported in the papers on shear-induced

migration of Brownian particles), thus we propose to treat it as a priori unknown, like Kc

and Kη. In other words, we will self-consistently determine the unknown KP e via the inverse

formulation in the PINN approach applied to experiments on shear-induced migration of

Brownian suspensions.

Observe that we keep the (dimensionless, recall Eq. ( 4.21 )) variable local shear rate

γ̇∗ = γ̇∗(y∗) = du∗/dy∗ in Eq. (  4.31 ); γ̇∗ 6= const. in Poiseuille flow. Nevertheless, using

particle-image velocimetry, Frank, Anderson, Weeks, et al. [ 219 ] found experimentally that

the velocity profile of a Brownian suspension flowing through a rectangular channel only

slightly deviates from the parabolic profile of the solvent (see Fig.  4.6 ), hence γ̇∗(y∗) ≈ −2y∗.
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Therefore, we shall use the parabolic profile from Eq. ( 4.28 ) to define MSEm in the loss

function, instead of the full momentum equation, for the Brownian suspensions.
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Figure 4.6. Measured axial velocity of a Brownian suspension in Poiseuille
flow reproduced from Frank, Anderson, Weeks, et al. [ 219 ] is compared to
a dimensional version of the parabolic profile from Eq. ( 4.28 ), showing good
agreement. The channel width is 2H = 50 µm, and Umax ≈ 1391 µm s−1 from
the figure in [ 219 ].

PINN loss function

For the Brownian suspension, the MSE terms is as introduced in Eq. ( 4.5 ) in Sect.  4.2 

are now implemented as:

MSEu = 1
N

N∑
i=1

|u∗ − u∗
train|2, (4.33a)

MSEφ = 1
N

N∑
i=1

|φ − φtrain|2, (4.33b)

MSEp = 1
N

N∑
i=1

∣∣∣∣∣Kcφ

(
φ

d2u∗

dy∗2 + du∗

dy∗
dφ

dy∗

)
+ Kη

du∗

dy∗
φ2

ηr

dηr

dy∗ + 1
Pe

dφ

dy∗

∣∣∣∣∣
2

, (4.33c)

MSEm = 1
N

N∑
i=1

∣∣∣u∗ − 1 + y∗2
∣∣∣2 , (4.33d)

MSEc =
∣∣∣∣∫ 1

0
φ(y∗) dy∗ − φb

∣∣∣∣2 . (4.33e)
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Appendix  4.A.1 describes how the experimental data (digitized from [  219 ]) was pre-processed

into training data.

Using ηr from Eq. ( 4.31 ), we can calculate dηr/dy∗ = (dηr/dφ)(dφ/dy∗) in Eq. ( 4.33c )

by the chain rule. Now, the loss L (recall Eq. (  4.5 )) depends only on the neural network

weights (Θu and Θφ) and the unknown model parameters Kc, Kη, and KP e. By minimizing

the resulting L (Θu, Θφ, Kc, Kη, KP e) using wu = wφ = wp = wm = wc = 1, with respect to

its arguments, we find suitable NN weights and values of the parameters Kc, Kη, and KP e

that simultaneously lead to the best agreement with the training data and the physics.

Comparison between PINN, theory and experiment

For Brownian suspensions, we substitute the parabolic velocity profile from Eq. ( 4.28 )

and the Brownian suspension viscosity from Eq. (  4.31 ) into Eq. ( 4.22 ), to again obtain a

nonlinear first-order ODE for φ(y∗):

dφ

dy∗ = 2Kcφ
2ηr + 2y∗Kηφ2f2(φ)

(Pe−1 − 2Kcy∗φ)ηr − 2y∗Kηφ2f1(φ) , (4.34)

where

f1(φ) = dη∞

dφ
+ dη0/dφ − dη∞/dφ

1 + KP ePe y∗/(3π) ,

= a0

φm0

(
1 − φ

φm0

)−a0−1

+ (a0/φm0)(1 − φ/φm0)−a0−1 − (a∞/φm∞)(1 − φ/φm∞)−a∞−1

1 + KP ePe y∗/(3π) ,

(4.35a)

f2(φ) = −[η0(φ) − η∞(φ)] KP ePe/(3π)
[1 + KP ePe y∗/(3π)]2 . (4.35b)

Using the numerical procedure described in Sect.  4.4.2 , we solve for the “theory” prediction

for φ(y∗) from Eqs. ( 4.34 ) and ( 4.24 ), using the values for Kc and Kη in Eq. ( 4.34 ) and KP e

in Eq. ( 4.35 ) obtain by PINN.

The comparisons between the experimental data of Frank, Anderson, Weeks, et al. [ 219 ]

(symbols), the theory (dashed), and the PINN (solid) are shown in Figs.  4.7 and  4.8 . The

comparisons show that the PINN predictions agree well with experiment data, while the
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“theory” solutions do not. With a limited number of discrete observations of u∗ and φ from

the experiments used as training data, the PINN algorithm not only accurately predicts the

distributions of u∗(y∗) and φ(y∗), but also “learns” the suitable values of Kc, Kη, and KP e,

which were a priori unknown.

Table  4.2 summarizes the values that the PINN “learns” from experimental data with

different values of φb and Pe. To account for the variations in the converged values of the

unknown model parameters, due to the random initialization of the NNs, we averaged the

predictions from 100 different initializations to obtain a statistical result with a mean and a

standard error. Importantly, the PINN analysis suggests that Kc and Kη vary with φb and

Pe. This important issue was not addressed in previous literature, in which the values of

Kc and Kη are taken from [ 118 ] and applied to any flow scenario (even if the values in [ 118 ]

were validated only for the concentric Couette flow). Now, however, we discover that Kη (in

particular) decreases with Pe. The last result for Pe = 69 suggests that a vanishing viscosity-

variation flux, ‖Nη‖ ≈ 0, for this Brownian case of Pe 6� 1. This result is consistent with

the fact that the velocity profile is parabolic (recall Fig.  4.6 ), and the strongly-Brownian

suspension effectively has the same viscosity as the Newtonian carrier fluid. Further, while

the values obtained for KP e in Table  4.2 is on the same order as the value 1.31 used in

literature, they are not the same, suggesting that this parameter (quantifying the suspension

rheology’s shear-dependence) should be measured for each suspension experiment.
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Figure 4.7. Application to experiment from Frank, Anderson, Weeks, et al.
[ 219 ] at φb = 0.34: (a) Pe = 4400; (b) Pe = 550; (c) Pe = 69.
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Figure 4.8. Application to experiment from Frank, Anderson, Weeks, et al.
[ 219 ] at φb = 0.22: (a) Pe = 4400; (b) Pe = 550; (c) Pe = 69.

Table 4.2. Values of the shear-induced migration model’s parameters Kc, Kη,
and KP e, as inferred by the PINN from the experimental data of Frank, An-
derson, Weeks, et al. [ 219 ], for different bulk volume fractions φb and different
values of shear Péclet number Pe. As before, these statistical results, with a
mean and a standard error, come from 100 runs of the PINN algorithm using
different random initializations of the NNs.

φb Pe Kc Kη KP e

0.34 4400 2.74 × 10−4 ± 2.23 × 10−3 8.28 × 10−3 ± 5.38 × 10−2 1.77 ± 0.61 × 10−1

0.34 550 7.84 × 10−5 ± 4.64 × 10−4 6.32 × 10−4 ± 5.88 × 10−3 1.46 ± 5.69 × 10−1

0.34 69 2.47 × 10−4 ± 3.92 × 10−4 3.58 × 10−7 ± 2.97 × 10−6 1.51 ± 2.58 × 10−2

0.22 4400 4.17 × 10−4 ± 1.94 × 10−3 1.21 × 10−2 ± 7.37 × 10−2 1.71 ± 4.85 × 10−2

0.22 550 9.98 × 10−5 ± 9.18 × 10−4 1.61 × 10−3 ± 1.39 × 10−2 1.47 ± 1.69 × 10−2

0.22 69 5.73 × 10−4 ± 7.35 × 10−4 5.51 × 10−7 ± 7.12 × 10−7 1.51 ± 1.07 × 10−2

Note that the model from Eq. ( 4.34 ) breaks down if dφ/dy∗ changes sign at some y∗ 6=

0. This situation can occur when the denominator in Eq. (  4.34 ) reaches 0. The φ(y∗)

profile develops a seemingly nonphysical maximum on each side of the centerline y∗ = 0

(see Fig.  4.8 (a)). This observation highlights a deficiency of using the Phillips, Armstrong,

Brown, et al. [ 118 ] model for Brownian suspensions. Further, it is important to emphasize

that this breakdown of the Brownian shear-induced migration model is unrelated to the fact

that the shear rate vanishes at the center of the channel, which is a separate issue addressed

by “nonlocal” shear rate modifications to account for the breakdown of the continuum theory

at the scale of a single particle diameter [  126 ], [ 138 ], [  140 ]. On the other hand, the PINN
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approach predicts a smooth curve that agrees with the experimental data because the PINN

does not attempt to interpret the model in a point-wise sense (or as a “law of nature,” which

it is clearly not), but rather uses only its residual to constrain the learning process.

4.5 Conclusion

Thirty years later, the phenomenological model of Phillips, Armstrong, Brown, et al. [ 118 ]

continues to be the “workhorse” of macroscopic modeling of shear-induced particle migration

in low-Reynolds-number flows of suspensions, as recent studies on simulation of migration

in Brownian suspensions [  144 ] and experiments [  145 ] and simulations [  146 ] on migration

in complex fluids demonstrate. However, the model’s parameters were only ever properly

calibrated against experiments in an annular Couette cell [ 118 ]. Subsequent studies on shear-

induced migration in Poiseuille flows [  216 ], [  219 ] showed that the model, as calibrated against

the annular Couette flow data, is only in qualitative agreement with slot-flow experiments

(despite being quantitatively accurate for Couette flow). Furthermore, the application of the

model to Brownian suspensions [ 144 ] showed even worse agreement between “theory” and

experiments.

To remedy these apparent contradictions/difficulties exposed in the literature, we pro-

posed to shift the paradigm of how such a phenomenological model should be used. In this

chapter, we employed a machine learning methodology in which the Phillips, Armstrong,

Brown, et al. [ 118 ] model is used constrain a machine learning approach to assimilating the

experimental data on particle migration. Using the idea of physics-informed neural networks

(PINNs) pioneered by Karnidakis and collaborators [  148 ], [  197 ], we constructed a loss func-

tion from the Phillips, Armstrong, Brown, et al. [ 118 ] model and optimized neural networks

to simultaneously best-approximate velocity and volume fraction experimental data, as well

as the unknown/phenomenological parameters in the model. The PINN approach seamlessly

identified the unknown parameters in the model as part of the training process. In doing

so, we found that the parameter values calibrated for annular Couette flow data are not

accurate for other flow scenarios, such as Poiseuille flow and/or for a Brownian suspension.

Additionally, the model’s parameters were found to vary with the bulk volume fraction and

112



the shear Péclet number of the suspension, which was not previously established for this

model (though the Péclet dependence was observed in experiments [ 219 ], and in the suspen-

sion balance model discussed therein). This point was particularly important for the case of

Brownian suspensions, highlighting why the phenomenological model solved as “basic law”

with the parameters from [  118 ] (as done in [  144 ]) could not match any of the experimental

data.

In summary, we proposed to shift the paradigm of how phenomenological models for

shear-induced migration should be used. The models widely used in the literature are only

postdictive, requiring calibration against an experiment for each flow scenario they are to be

used in. Even then, attempting to solve the models as a “basic law” to predict the particle

distribution (having somehow best-fit the parameters) requires overcoming unphysical sin-

gularities. On the other hand, employing the models within the PINN approach does not

require pointwise solutions or the parameters to be known a priori. Therefore, their values

and, thus, the true relative importance of the different particle migration fluxes (collisional,

viscosity-gradient or Brownian) in a given experiment can be uncovered via PINNs (but not

via the standard approach in the literature, based on directly solving an ODE for the particle

distribution). It should be re-emphasized that using the parameter values (calibrated in 1992

only for annular Couette flow) in varied flow scenarios strongly enforces physics that may or

may not be manifested in the particular flow under consideration. We have demonstrated

that, to gain an understanding of the “unknown physics” (to use the terminology of Reyes,

Howard, Perdikaris, et al. [ 202 ]) of particle migration in a variety of flow experiments, PINNs

can be effectively employed to simultaneously solve the inverse and forward problems and

to significantly extend the practical utility of the standard phenomenological models.

4.A Appendix

4.A.1 Pre-processing of experimental data into training data

For training of the NNs, we utilize the experimental data from the literature. Specifically,

we digitized the data from Fig. 7 of Ref. [ 118 ], Figs. 10, 11, 15, and 19 of Ref. [ 216 ], and Figs. 3

and 4 of Ref. [ 219 ]. Experimental data points in these figures are limited (approximately
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20 points in each plot). The NNs need more data points to achieve successful training

(approximately 50 times the number of weights [  221 ]). Thus, assuming the particle migration

profiles and suspension velocities are smooth functions, we use interpolation to generate

more data samples for the training of the NNs from the limited experimental data points.

Specifically, we use interpolate.interp1d from the SciPy stack in Python [ 168 ] to obtain

values at sample points that are not part of the digitized experimental data.

4.A.2 Choice of number of hidden layers and neurons per layer

To attempt to find an optimal number of hidden layers and nodes per layer (and justify

the choices made for the PINN architecture used in the main text), we plot the training error

for different numbers of hidden layers, as shown in Fig.  4.9 . We first train the PINNs for

10, 000 iterations using the “Adam” [  212 ] optimizer, then we use the “L-BFGS-B” optimizer

until convergence. Figure  4.9 shows that adding layers (and/or more neurons per layer)

does not reduce the training error further, while this action leads to a significantly higher

computational cost (and requires more computing resources for the training process to reach

convergence). Fewer layers (and/or fewer neurons per layer) tends to lead to divergence, i.e.,

failure of the training process. Therefore, as a suitable trade-off, we use 2 hidden layers with

10 neurons in each layer in the NNs for PINN approach.

114



0 2000 4000 6000 8000 10000
Iterations

3

2

1

0

1

Tr
ai

ni
ng

 e
rro

r i
n 

lo
g 

sc
al

e

10-10
20-20
10-20
5-5-5-5
10-10-10-10
20-20-20-20
5-10-20-30
5-5-5-5-5-5
10-10-10-10-10-10
20-20-20-20-20-20
5-10-20-30-40-50

Figure 4.9. Training errors from PINNs with different numbers of hidden
layers, and different number of neurons in each layer, in the NN architecture.
The labels represent the layers and number of neurons per layer.

115



5. SUMMARY AND OUTLOOK

This chapter summarizes the main accomplishments of this thesis and presents avenues for

future work.

5.1 Thesis summary

In this thesis, we have analyzed, through mathematical calculations, computational sim-

ulations, and machine learning, the fluid dynamics related to three topics inspired by multi-

phase flows relevant to hydraulically fractured flow passages: fluid–fluid interfacial instabili-

ties, flow-wise variations of the hydraulic conductivity, and shear-induced particle migration

in suspensions. Specifically, the chapter-wise accomplishments of this thesis are:

• Chapter  2 : We formulated a three-regime theory to describe the interfacial instability

of immiscible displacement in tapered passages (Hele-Shaw cells): (i) in Regime I, the

growth rate of perturbations to the flat interface is always negative, thus the interface

is stable; (ii) in Regime II, the growth rate of perturbations remains zero (parallel

cells), changes from negative to positive (converging cells), or from positive to negative

(diverging cells), thus the interface stability possibly changes type at some location in

the cell; (iii) in Regime III, the growth rate of perturbations is always positive, thus the

interface is unstable, leading to “finger” formation. We conducted three-dimensional

direct numerical simulations (using the inteFoam solver from OpenFOAM®) to validate

the proposed theory and to further explore the effect of the depth gradient (taper) on

the interfacial instability. In doing so, we demonstrated that the depth gradient has

only a slight influence in Regime I, and its effect is most pronounced in Regime III.

• Chapter  3 : We derived an expression for the flow-wise variation of the hydraulic

conductivity inside a non-uniformly shaped fracture with permeable walls. This ana-

lytical result highlights the effects of geometric variation (through the local slope of the

aperture’s flow-wise variation), the permeability of the walls (through a dimensionless

slip coefficient), and the effect of flow inertia (through a Reynolds number). Among

these factors, we found that the geometric variation (specifically, the resistance to flow
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induced by the narrowing of a fracture) dominates the conductivity change, even for

slow shape variation (small slopes). We validated the theory against an OpenFOAM®

solver for the Navier–Stokes equations subject to a tensorial slip boundary condition.

• Chapter  4 : We harnessed the physics-informed neural networks (PINNs) approach

to extend the utility of phenomenological models for particle migration in shear flow.

Using the PINN approach, we identified the unknown parameters in the empirical

model through the inverse solver capability of PINNs. Specifically, we discovered that

the model’s parameters’ values are significantly different in different flow regimes. For

example the parameter values for Poiseuille flow do not match those for a concentric

Couette flow. This result highlights an inconsistency in the literature, wherein the

concentric Couette flow values are used for Poiseuille flow. Importantly, we found that

the inferred values of the empirical model’s parameters vary with the shear Péclet

number and the particle bulk volume fraction of the suspension, instead of being

constant as assumed in previous literature. In doing so, we demonstrated that the

phenomenological model for shear migration is more useful as a constraint on a machine

learning process, than a stand-alone “basic law.”

5.2 Future work

In future work on the Saffman–Taylor (viscous fingering) instability, our analytical flow

solution in Chapter  3 could be used to revisit the effect of wall permeation on the interfacial

instability in angled Hele-Shaw cells. It is also of interest to study the effect of particle

migration on the interfacial instability. Previous research [ 73 ], [ 75 ], [ 222 ] has found that

viscous fingering of suspensions is strongly dependent on the particle volume fraction in

the fluid: the suspended particles delay the onset of instability but accelerate a finger’s

growth rate once instability is triggered [  75 ]. Xu, Kim, and Lee [  73 ] hypothesized that the

instability is caused by shear-induced migration and particle accumulation at the interface.

Therefore, future work on the interaction between shear-induced particle migration and

interfacial instabilities in angled Hele-Shaw cells can start by combining the models and

results from Chapters  2 and  4 .
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In Chapter  3 we derived an analytical solution for the hydraulic conductivity inside a

non-uniformly shaped fracture with permeable walls. In future work, the analytical solu-

tions derived could be used to improve systems-level (network) modelling of hydraulically

fractured reservoirs [ 223 ], in which the Darcy conductivity of each non-uniform passage must

be accurately accounted for, throughout the fractured porous rock. Currently, only simple

modifications of Darcy’s law are used to capture the geometric variation and wall permeabil-

ity [  224 ]. As mentioned in Chapter  3 , our analysis is easily applied to fractures with other

(more complex but still “slow”) types of geometric variations, such those considered in [ 92 ].

In Chapter  4 we harnessed physics-informed neural networks (PINNs) to understand

particle migration in shear flow. Despite the success of the proposed PINN approach, we

have found that it faces challenges in convergence during training. Our results indicate that,

the training of the neural network might fail when the optimization procedure diverges (or

converges to a local minimum) for different random initializations, which is a well known

problem [  210 ]. Although the Adam and BFGS optimizers have been used in succession to

mitigate the local minimum issue, it still remains unclear how to guarantee that the opti-

mization process on the networks’ weights converges to a global minimum. In future work,

further effort can be put in this direction. For example, a transfer learning technique may be

worth exploring: first train a network solving a related problem, then initialize the network

we intend to train with those fully trained weights and biases. Beyond improving the PINN

training process, the proposed approach could also be applied to shear-induced migration in

non-Newtonian fluids, along the lines of the phenomenological model of Hernández [ 146 ].
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