
SYSTEMS SUPPORT FOR DATA ANALYTICS BY
EXPLOITING MODERN HARDWARE

by

Hongyu Miao

A Dissertation

Submitted to the Faculty of Purdue University

In Partial Fulfillment of the Requirements for the degree of

Doctor of Philosophy

School of Electrical and Computer Engineering

West Lafayette, Indiana

December 2021

THE PURDUE UNIVERSITY GRADUATE SCHOOL
STATEMENT OF COMMITTEE APPROVAL

Dr. Felix Xiaozhu Lin, Chair

Department of Computer Science, University of Virginia

Dr. Kathryn S. McKinley

Google Inc.

Dr. Mithuna S. Thottethodi

School of Electrical and Computer Engineering, Purdue University

Dr. Y. Charlie Hu

School of Electrical and Computer Engineering, Purdue University

Approved by:

Dr. Dimitrios Peroulis

School of Electrical and Computer Engineering, Purdue University

2

To my entire family.

3

ACKNOWLEDGMENTS

I would like to thank my advisor, Prof. Felix Xiaozhu Lin, for his advice, help, and

support. In addition to guidances in research, he also provided all resources I need to

complete my PhD study, including equipments and fundings. As Felix’s first PhD student,

we fell into many traps and learned many lessons together in the first few years, which not

only is a fortune for me but also paves the way for other/future PhD students in our group.

I would like to thank Dr. Kathryn S. McKinley for her advice, help, and support. In

addition to guidance in research, her kindness, supportiveness, and responsiveness inspire

me. If I had chances in the future, I would like to do the same thing to support junior people

as what Kathryn did.

I would like to thank the rest of my committee, Prof. Y. Charlie Hu and Prof. Mithuna

S. Thottethodi, for their feedback, questions, and discussions on my thesis work.

I would like to thank Prof. Gennady Pekhimenko and Prof. Myeongjae Jeon for their

advice, help, and support through my MSR internship and follow-up collaborations.

Finally, I especially would like to thank my entire family for their long-term care, love,

and support, so that I can focus on my PhD study. Without them, I could not have done it.

4

Contents

LIST OF TABLES . 9

LIST OF FIGURES . 10

ABSTRACT . 12

1 INTRODUCTION . 14

1.1 Data Analytics and Hardware Platforms . 14

1.2 Challenges to System Software (OS and Runtime) 15

1.3 Thesis Overview . 15

2 STREAMBOX: STREAM ANALYTICS ON A MULTICORE MACHINE 18

2.1 Introduction . 18

2.2 Stream Model and Background . 19

2.3 Design Goals and Criteria . 21

2.4 System Overview . 22

2.5 Cascading Containers . 24

2.5.1 Container Implementation . 25

2.5.2 Single-input Transforms . 26

2.5.3 Multi-input Transforms . 28

2.5.4 Synchronized Access to Containers 30

2.6 Pipeline Scheduling . 30

2.7 Pipeline State Management . 31

5

2.7.1 Bundles . 31

2.7.2 Transform Internal State . 32

2.8 Implementation . 33

2.9 Evaluation . 34

2.9.1 Throughput and Scalability . 35

2.9.2 Validation of Key Design Features . 38

2.10 Related Work . 40

2.11 Summary . 42

3 STREAMBOX-HBM: STREAM ANALYTICS ON HIGH BANDWIDTH HYBRID

MEMORY . 44

3.1 Introduction . 44

3.2 Background & Motivation . 46

3.2.1 Modern Stream Analytics . 47

3.2.2 Exploiting HBM . 50

3.3 System Overview . 52

3.4 KPA and Streaming Operations . 53

3.4.1 KPA . 54

3.4.2 Streaming Operations . 56

3.4.3 Pipeline Execution Over KPAs . 59

3.5 Dynamically Managing Hybrid Memory . 60

6

3.5.1 Memory Management and Resource Monitoring 63

3.6 Implementation and Methodology . 64

3.7 Evaluation . 66

3.7.1 Comparing to Existing Engines . 66

3.7.2 Throughput and Bandwidth . 69

3.7.3 Demonstration of Key Design Features 70

3.7.4 Impact of Data Parsing at Ingestion 72

3.8 Related Work . 74

3.9 Summary . 75

4 SWAPNN: TOWARDS OUT-OF-CORE NEURAL NETWORKS ON TINY MI-

CROCONTROLLERS . 78

4.1 Introduction . 78

4.2 Background and Motivations . 83

4.2.1 A Taxonomy of NN layers . 83

4.2.2 The System Model . 86

4.3 SwapNN: Automatically Scheduling IO/Compute Tasks in Parallel 88

4.3.1 Challenges . 88

4.3.2 SwapNN Design . 89

4.4 Implementation & Methodology . 94

4.5 Findings . 96

7

4.5.1 Software/Hardware Parameters and Their Tradeoffs 96

4.5.2 Impact on Per-frame Delay . 99

4.5.3 Impact on NN Throughput . 100

4.5.4 Impact on Flash Durability . 103

4.5.5 Impact on System Energy . 104

4.5.6 Out-of-core Data Security and Safety 105

4.6 Related Work . 106

4.7 Summary . 107

5 CONCLUSION . 108

5.1 Thesis Contributions . 108

5.1.1 System Support for Stream Processing on Cloud Hardware 108

5.1.2 System Support for Machine Learning Inference on Edge Hardware . 109

5.2 General Lessons and Hints for Runtime System Designs 111

5.2.1 Apps: Algorithms Adapting to Hardware Changes 111

5.2.2 Runtime: Better Managing Resources than General Hardware and OS 112

5.2.3 OS: Configuring Kernel Parameters Accordingly 112

5.2.4 Hardware: Choosing Hardware Based on Applications’ Demand . . . 113

REFERENCES . 114

8

LIST OF TABLES

2.1 Terminology . 19

2.2 Test platforms used in experiments . 34

3.1 Selected compound (declarative) operators in StreamBox-HBM and their constitu-
ent streaming primitives. 47

3.2 KPA primitives. R denotes a record bundle. KPA(c) denotes a KPA with
resident keys from column c. 55

3.3 Selected compound (declarative) operators in StreamBox-HBM and their constitu-
ent streaming primitives. 56

3.4 KNL and Xeon Hardware used in evaluation . 66

4.1 Normalized arithmetic intensity (N) on NN layers with MCU’s common speed
range (64–480 MOPS [124], [125]) and IO bandwidth range (10–40 MB/s [126]).
NN: VGG16 . 83

4.2 Number of IO-bound and compute-bound layers and quantized memory footprints
of popular NNs [128]. 84

9

LIST OF FIGURES

1.1 An overview of the thesis work . 16

2.1 A transform in a StreamBox pipeline. 22

2.2 An overview of cascading containers . 24

2.3 The life cycle of a container . 24

2.4 A logic diagram of OOP temporal join . 27

2.5 Unordered containers for Join and its downstream. For brevity, container
watermarks are not drawn . 29

2.6 Throughput of StreamBox as a function of hardware parallelism and latency.
StreamBox scales well. 34

2.7 StreamBox achieves high throughput even when a large fraction of records
arrive out-of-order. 36

2.8 StreamBox scales better than Spark and Beam with Wordcount on 56CM,
with a 1-second target latency. 37

2.9 In-order processing reduces parallelism, scalability, and throughput. 38

2.10 When records do not respect epoch boundaries, it limits parallelism, scalabil-
ity, and throughput. 39

2.11 Performance impact of watermark arrival rate for Wordcount on 56CM. . . 40

3.1 Example streaming data and computations 48

3.2 GroupBy on HBM and DRAM operating on 100M key/value records with
about 100 values per key. Keys and values are 64-bit random integers. Sort
leverages HBM bandwidth with sequential access and outperforms Hash on
HBM. 51

3.3 An overview of StreamBox-HBM using record bundles and KPAs. RC: refer-
ence count; BID: bundle ID. 53

3.4 Declarative operators implemented atop KPAs 58

3.5 Pipeline execution on KPAs for YSB [59]. Declarative operators shown on right. 60

3.6 StreamBox-HBM dynamically manages hybrid memory 61

3.7 StreamBox-HBM achieves much higher throughput and memory bandwidth
usage than Flink, quickly saturating IO hardware. Legend format: “Engine
Machine IO”. Benchmark: YSB [59] . 68

10

3.8 StreamBox-HBM’s throughput (as lines, y-axis on left) and peak bandwidth
utilization of HBM (as columns, y-axis on right) under 1-second target output
delay. StreamBox-HBM shows good throughput and high memory bandwidth
usage . 69

3.9 StreamBox-HBM outperforms alternative implementations, showing the effic-
acy of KPA and its management of hybrid memory. Benchmark: TopK Per
Key . 71

3.10 StreamBox-HBM dynamically balances its demands for limited memory re-
sources under varying workloads. Benchmark: TopK Per Key 71

3.11 Parsing at the ingestion shows varying impacts on the system throughput. All
cores on KNL and X56 are in use. Parsers: RapidJSON [90], Protocol Buffers
(v3.6.0) [91], and text strings to uint64 [92]. Benchmark: YSB 73

4.1 Many popular NNs exceed the MCU memory size [110]. 79

4.2 Per-layer compute and IO delays in NNs. (1) Observation: NNs have a mix
of IO-bound and compute-bound layers. (2) Insight: IO time can be hidden
by compute time with parallel execution. (3) Configuration: MCU is ARM
Cortex-M7 @ 216 MHz, tile/buffer size is 128 KB, Transcend SD card size is
32 GB. 84

4.3 IO/compute delays in out-of-core NN execution. The total execution delay is
dominated by compute in the compute-bound layers and IO in the IO-bound
layers. 85

4.4 An example of out-of-core NN execution, showing Conv (compute-bound) and
FC (IO-bound) layers. Note: gray/green boxes show the computation of NN
layers in NN layers/frames, and yellow boxes show the IO operation in NN
layers/frames. 87

4.5 Overview of SwapNN: scheduling IO/compute tasks across tiles, layers, and
frames in parallel according to dependencies, priorities, and memory constraints. 88

4.6 Swapping latency of NNs with different SRAM sizes and buffer sizes. Obser-
vation: swapping incurs negligible or modest delay in latency. 95

4.7 Number of IO/compute tasks in NNs under different buffer/tile sizes. Obser-
vation: the number of IO/compute tasks drops significantly as the buffer/tile
size increases. 97

4.8 Swapping throughput of NNs under diffent SRAM sizes and buffer/tile sizes. 101

4.9 AlexNet: tile parallelism for low delay and pipeline parallelism for high through-
put. 104

5.1 Lessons on exploiting multicore and hybrid memory systems 110

11

ABSTRACT

A large volume of data is continuously being generated by data centers, humans, and

internet of things (IoT). In order to get useful insights, such enormous data must be processed

in time with high throughput, low latency, and high accuracy. To meet such performance

demands, a large body of new hardware is being shipped by vendors, such as multi-core

CPUs, 3D-stacked memory, embedded microcontrollers, and other accelerators.

However, traditional operating systems (OSes) and data analytics frameworks, the key

layer that bridges high-level data processing applications and low-level hardware, fails to

deliver these requirements due to quickly evolving new hardware and increases in explosion

of data. For instance, general OSes are not aware of the unique characters and demands

of data processing applications. Data analytics engines for stream processing, e.g., Apache

Spark and Beam, always add more machines to deal with more data but leave every single

machine underutilized without fully exploiting underlying hardware features, which leads to

poor efficiency. Data analytics frameworks for machine learning inference on IoT devices

cannot run neural networks that exceed SRAM size, which disqualifies many important use

cases.

In order to bridge the gap between the performance demands of data analytics and the

new features of emerging hardware, in this thesis we exploit runtime system designs for

high-level data processing applications by exploiting low-level modern hardware features.

We study two important data analytics applications, including real-time stream processing

and on-device machine learning inference, on three important hardware platforms across

the Cloud and the Edge, including multicore CPUs, hybrid memory system combining 3D-

stacked memory and general DRAM, and embedded microcontrollers with limited resources.

In order to speed up and enable the two data analytics applications on the three hardware

platforms, this thesis contributes three related research projects. In project StreamBox,

we exploit the parallelism and memory hierarchy of modern multicore hardware on single

machines for stream processing, achieving scalable and highly efficient performance. In

project StreamBox-HBM, we exploit hybrid memories to balance bandwidth and latency,

achieving memory scalability and highly efficient performance. StreamBox and StreamBox-

12

HBM both offer orders of magnitude performance improvements over the prior state of the

art, opening up new applications with higher data processing needs. In project SwapNN,

we investigate a system solution for microcontrollers (MCUs) to execute neural networks

(NNs) inference out-of-core without losing accuracy, enabling new use cases and significantly

expanding the scope of NN inference on tiny MCUs.

We report the system designs, system implementations, and experimental results. Basing

on our experience in building above systems, we provide general guidances on designing

runtime systems across hardware/software stack for a wider range of new applications on

future hardware platforms.

13

1. INTRODUCTION

1.1 Data Analytics and Hardware Platforms

Data analytics

Data is growing exponentially. Every day, about 2.5 quintillion bytes of date is continu-

ously being produced by data centers, humans, and Internet of Things (IoT) devices. For

instance, we post half a million Tweets and generate four petabytes of data on Facebook

per day. The trend of data growing will continue, reaching 463 exabytes of data per day in

2025 [1]. In order to extract useful insights from the large volume of data, data analytics

has become one of the most important workloads.

Stream processing is one of the central paradigms of modern data analytics. Stream

data consists of unbounded numbers of records. Each record includes one or more data

values and a time stamp which indicates when the record was generated. The use cases of

stream processing span many domains, such as tweet sentiment analysis, fraud detection in

businesses, and log monitoring in data centers. Stream processing has an insatiable demand

for high throughput and low latency.

Machine learning (ML) inference is another central paradigm of modern data analytics.

It is the process of using a trained machine learning algorithm to make a prediction. The

more data, the better the accuracy of its predictions. For example, object detection, traffic

monitoring, and self driving all benefit from more data.

Hardware platforms

To meet the performance demands of data analytics, a large body of new hardware

platforms are being shipped by hardware vendors. These new hardware platforms are very

diverse and they target different performance goals, such as computation speed, memory

bandwidth, and energy efficiency. Based on deployment scenarios, they can be classified into

two categories.

Cloud hardware: Cloud is one of the most important platforms for data analytics. Due

to the large volume of data, new hardware in cloud focus on improving computation speed

14

and memory speed. For instance, many-core CPUs have tens to hundreds of cores, which

can speed up data analytics with high parallelism. 3D-stacked memory has 5 times higher

bandwidth than general DRAM, so they can speed up data analytics by moving data faster.

Edge hardware: To avoid the costs of sending data to Cloud, there is a trend to push data

analytics tasks to Edge IoT devices, driven by the new applications, such as smart homes,

smart cities, and autonomous driving. On-device data analytics at the edge is attractive

because it saves network bandwidth and preserves data privacy. Due to the constraints

of cost and energy, IoT devices are resource-constraint and they focus on efficiency. For

example, microcontrollers-based cameras and sensors have very tiny memory and battery.

1.2 Challenges to System Software (OS and Runtime)

The fast evolution in varying performance demands of data analytics applications and in

varying new features of emerging hardware platforms brings significant challenges to existing

system software, including operating systems and data analytics runtimes.

General operating systems are not aware of the unique characters and demands of data

analytics applications. General OSes are designed for all kinds of applications and aim to

achieve reasonable performance for all of them. They cannot adapt to the unique demands

of one specific application. Therefore, the optimization space for specific data analytics in

OSes is limited.

Existing data analytics systems are not aware of the unique features of underlying hard-

ware. They are well optimized for fault tolerance, scalability, and consistency, like Spark

Streaming and Apache Beam. They always try to add more machines to deal with more

data, but neglect the optimization for single machine with new hardware features, which

wastes resources.

1.3 Thesis Overview

The theme of this thesis is to provide systems support for data analytics by exploiting

modern hardware. The goal of the thesis is to achieve high performance for data analytics on

15

Stream	processing Machine	learning	inference

StreamBox StreamBox-HBM SwapNN

Multicore	CPUs Hybrid	memory Tiny	microcontroller

Data	analytics	apps

Runtime	systems

Hardware	platforms

Linux RTOSOperating	systems

Cloud Edge

Figure1.1. An overview of the thesis work

advanced hardware platforms in the Cloud and enable on-device data analytics on resource-

constraint hardware platforms at the Edge.

An overview of the thesis work is shown in Figure 1.1 . We study two types of data ana-

lytics workloads, including stream processing and machine learning inference, on three types

of hardware platforms across Cloud and Edge, including multicore CPUs, hybrid memory,

and tiny microcontrollers.

Chapter 2 presents StreamBox [2], a stream analytics engine that exploits hardware

parallelism of modern multicore machine, achieving scalable and highly efficient performance.

We introduce a novel data structure called cascading containers to track dependences between

epochs while at the same time processing any available records in any epoch. The key

contribution of this work is a generalization of out-of-order record processing to out-of-order

epoch processing that maximizes parallelism while minimizing synchronization overheads.

Experimental results show our system scales to a large number of cores and out performs

other state of the art engines. On the 56-core system, StreamBox reduces latency by a factor

of 20 over Spark Streaming [3] and matches the throughput of results of Spark and Apache

Beam [4] on medium-size clusters of 100 to 200 CPU cores for grep and wordcount queries.

Chapter 3 presents StreamBox-HBM [5], the first stream analytics engine that optim-

izes performance for hybrid memory combining high bandwidth memory (HBM) and DRAM,

achieving memory scalability and highly efficient performance.. Our design addresses the

limited capacity of HBM and HBM’s need for sequential-access and high parallelism. We in-

16

troduce a novel dynamic key/record pointer extraction called KPA that minimizes the use of

precious HBM capacity. We use sequential grouping algorithms on KPAs to balance limited

capacity while exploiting high bandwidth. We design a runtime that manages parallelism

and KPA placement in hybrid memories. Our system outperforms engines without KPA and

with sequential-access algorithms by 7x and engines with random-access algorithms by an

order of magnitude.

Chapter 4 presents SwapNN [6], the first system that enables high-accuracy neural

network (NN) inference on extremely resource-constraint microcontrollers without losing

accuracy, enabling new use cases and significantly expanding the scope of NN inference on

tiny MCUs. Running neural networks (NNs) on microcontroller units (MCUs) is becoming

increasingly important (e.g., tolerating poor networks and preserving data privacy), but is

very difficult due to the tiny SRAM size of MCU. Prior work proposes many algorithm-level

techniques to reduce NN memory footprints, but all at the cost of sacrificing accuracy and

generality, which disqualifies MCUs for many important use cases. We investigate a system

solution for MCUs to execute NNs out of core: dynamically swapping NN data chunks

between an MCU’s tiny SRAM and its large, low-cost external flash. Out-of-core NNs on

MCUs raise multiple concerns: execution slowdown, storage wear out, energy consumption,

and data security. We present a study showing that none is a showstopper; the key benefit

– MCUs being able to run large NNs with full accuracy and generality – triumphs the

overheads. Our findings suggest that MCUs can play a much greater role in edge intelligence.

Chapter 5 first summarizes the thesis work. It then presents the lessens we learned

through building above systems and presents our general guidances on designing runtime

systems across hardware/software stack for a wider range of new applications on future

hardware platforms: (1) in application level, algorithms should adapt to hardware changes;

(2) in runtime level, it’s better managing resources than general hardware and OS, because

runtime can leverage both applications’ unique demand and hardware’s unique features. (3)

in OS level, kernel parameters should be configured accordingly to reduce OS overhead, e.g.,

enabling huge page and RDMA. (4) in hardware level, choosing hardware should be based

on applications’ demand.

17

2. STREAMBOX: STREAM ANALYTICS ON A MULTICORE

MACHINE

2.1 Introduction

Stream processing is a central paradigm of modern data analytics. Stream engines process

unbounded numbers of records by pushing them through a pipeline of transforms, a con-

tinuous computation on records [7]. Records have event timestamps, but they may arrive

out-of-order, because records may travel over diverse network paths and computations on

records may execute at different rates. To communicate stream progression, transforms emit

timestamps called watermarks. Upon receiving a watermark wts, a transform is guaranteed

to have observed all prior records with event time ≤ ts.

Most stream processing engines are distributed because they assume processing require-

ments outstrip the capabilities of a single machine [3], [8], [9]. However, modern hardware

advances make a single multicore machine an attractive streaming platform. These advances

include (i) high throughput I/O that significantly improves ingress rate, e.g., Remote Dir-

ect Memory Access (RDMA) and 10Gb Ethernet; (ii) terabyte DRAMs that hold massive

in-memory stream processing state; and (iii) a large number of cores. This work seeks to

maximize streaming throughput and minimize latency on modern multicore hardware, thus

reducing the number of required machines to process streaming workloads.

Stream processing on a multicore machine raises three major challenges. First,

the streaming engine must extract parallelism aggressively. Given a set of transforms

{d1, d2, · · · , dn} in a pipeline, the streaming engine should exploit (i) pipeline parallelism

by simultaneously processing all the transforms on different records in the data stream and

(ii) data parallelism on all the available records in a transform. Second, the engine must

minimize thread synchronization while respecting dependences. Third, the engine should

exploit the memory hierarchy by creating sequential layout and minimizing data copying as

records flow through various transforms in the pipeline.

18

Table2.1. Terminology
Term Definition
Stream An unbounded sequence of records
Transform A computation that consumes and produces

streams
Pipeline A dataflow graph of transforms
Watermark A special event timestamp for marking

stream progression
Epoch A set of records arriving between two water-

marks
Bundle A set of records in an epoch (processing unit

of work)
Evaluator A worker thread that processes bundles and

watermarks
Container Data structure that tracks watermarks,

epochs, and bundles
Window A temporal processing scope of records

2.2 Stream Model and Background

This section describes our out-of-order stream processing model and terminology, sum-

marized in Table 2.1 .

Streaming pipelines A stream processing engine receives one or more streams of records

and performs a sequence of transforms D = {d1, d2, · · · , dn} on the records R. Each record

rts ∈ R has a timestamp ts for temporal processing. A record has an event timestamp

defined by its occurrence (e.g., when a sensor samples a geolocation). Ingress of a record to

the stream engine determines its arrival timestamp.

Out-of-order streaming Because data sources are diverse, records travel different paths,

and transforms operate at different rates, records may arrive out-of-order at the stream

processing engine or to individual transforms. To achieve low latency, the stream engine

must continuously process records and thus cannot stall waiting for event and arrival time

to align. We adopt the out-of-order processing (OOP) [10] paradigm based on windows to

address this challenge.

Watermarks and stream epochs Ingress and transforms emit strictly monotonic event

timestamps called watermarks wts, as exemplified in Figure 2.1 (a). A watermark guarantees

no subsequent records will have an event time earlier than ts. At ingress, watermarks delimit

19

ordered consecutive epochs of records. An epoch may have records with event timestamps

greater than the epoch’s end watermark due to out-of-order arrival. The stream processing

engine may process records one at a time or in bundles.

We rely on stream sources and transforms to create watermarks based on their knowledge

of the stream data [7], [11]. We do not inject watermarks (as does prior work [12]) to force

output and manage buffering.

Pipeline egress Transforms define event-time windows that dictate the granularity at

which to output results. Because we rely on watermarks to define streaming progression,

the rate of egress is bounded by the rate of watermarks, since a transform can only close a

window after it receives a watermark. We define the output delay in a pipeline from the time

it first receives the watermark wts that signals the completion of the current window to the

moment when it delivers the window results to the user. This critical path is implicit in the

watermark timestamps. It includes processing any remaining records in epochs that precede

wts and processing wts itself.

Programming model We use the popular model from timely dataflow [13], Google data-

flow [7], and others. To compose a pipeline, developers declare transforms and define data-

flows among transforms. This is exemplified by the following code that defines a pipeline for

Windowed Grep, one benchmark used in our evaluation (§3.7).
// 1. Declare transforms

Source <string > source (/* config info */);

FixedWindowInto <string > fwi(seconds (1));

WindowedGrep <string >wingrep (/* regexp */);

Sink <string > sink();

// 2. Create a pipeline

Pipeline* p = Pipeline :: create ();

p->apply(source); //set source

// 3. Connect transforms together

connect_transform(source , fwi);

connect_transform(fwi , wingrep);

connect_transform(wingrep , sink);

// 4. Evaluate the pipeline

20

Evaluator eval (/* config info */);

eval.run(p); // run the pipeline

To implement a transform, developers must define the following functions, as shown in

Figure 2.1 (b): (i) ProcessRecord(r) consumes a record r and may emit derived records. (ii)

ProcessWm(w) consumes a watermark w, flushes the transform’s internal state, and may emit

derived records and watermarks. ProcessWm(w) is always invoked only after ProcessRecord(r)

consumes all records in the current epoch.

2.3 Design Goals and Criteria

We seek to exploit the potential of modern multicore hardware with its abundant hard-

ware parallelism, memory capacity, and I/O bandwidth for high throughput and low latency.

A key contribution of this work is exploiting epoch parallelism by concurrently processing all

available epochs in every transform, in addition to pipeline parallelism. Epoch parallelism

generalizes the idea of processing the records in each epoch out-of-order by processing epochs

out-of-order. The following two invariants ensure correctness:

(1) Records respect epoch boundaries Each epoch is defined by a start watermark wstart

and an end watermark wend that arrive at ingress at time start and end, and consists only of

records rat that arrive at ingress at time at, with start < at < end. Once an ingress record

rat is assigned an epoch, records never changed epochs, since this change might violate the

watermark guarantee.

(2) Watermark ordering A transform D may only consume wend after it consumes all

the records r in the epoch. This invariant transitively ensures that watermarks and epochs

are processed in order, and is critical to pipeline correctness, as it enforces the progression

contract on ingress and between transforms.

Our primary design goal is to minimize latency by exploiting epoch and pipeline paral-

lelism with minimal synchronization while maintaining these invariants. In particular, our

engine processes unconsumed records using all available hardware resources regardless of

record ordering, delayed watermarks, or epoch ordering. We further minimize latency by

exploiting the multicore memory hierarchy (i) by creating sequential memory layout and

21

minimizing data movement, and (ii) by mapping streaming data flows to the NUMA archi-

tecture.

2.4 System Overview

Process
Record()

ProcessWm()

internal state

flushbundles

0:100:20 0:20
0:11 0:050:22 0:12

0:10
0:18 0:05 0:110:12 0:18D

(a) A logic view of a transform, which consumes and

produces out-of-order records as delimited by watermarks

An epoch
Start

(b) A transform in StreamBox. It is executed to consume and

produce records belonging to multiple epochs in parallel.

Transform

A record

End

Watermarks

Figure2.1. A transform in a StreamBox pipeline.

A StreamBox pipeline includes multiple transforms and each transform has multiple

containers. Each container is linked to a container in a downstream transform or egress.

Containers form a network pipeline organization, as depicted in Figure 2.2 . Records, derived

records, and watermarks flow through the network by following the links. A window consists

of one or more epochs. The window size determines the output aggregation and memory

layout, but otherwise does not influence how StreamBox manages epochs.

This dataflow pipeline network is necessary to exploit parallelism because parallelism

emerges dynamically as a result of variation in record arrival times and the variation in pro-

cessing times of individual records and watermarks for different transforms. For instance,

records, based on their content, may require variable amounts of processing. Furthermore,

it is typically faster to process a record than a watermark. However, exposing this abund-

ant record processing parallelism and achieving low latency require prioritizing containers

22

on the critical path through the network. StreamBox prioritizes records in containers with

timestamps preceding the pipeline’s upcoming output watermark. Otherwise, the scheduler

processes records from transforms with the most open containers. StreamBox thus dynam-

ically adds parallelism to the bottleneck transforms of the network to optimize latency.

StreamBox implements three core components:

Elastic pipeline execution StreamBox dynamically allocates worker threads (evaluators)

from a pool to transforms to maximize CPU utilization. StreamBox pins each evaluator to

a CPU core to limit contention. During execution, StreamBox dispatches pending records

and watermarks to evaluators. An evaluator executes transform code (i.e., ProcessRecord()

or ProcessWm()) and produces new records and watermarks that further drive the execution

of downstream transforms.

When dispatching records, StreamBox packs them into variable sized bundles for pro-

cessing to amortize dispatch overhead and improve throughput. Bundles differ from batches

in many other streaming engines [3], [9], [12]. First, bundle size is completely orthogonal to

the transform logic and its windowing scheme. StreamBox is thus at liberty to vary bundle

size dynamically per transform, trading dispatch latency for overhead. Second, dynamic-

ally packing records in bundles does not delay evaluators and imposes little buffering delay.

StreamBox only produces sizable bundles when downstream transforms back up the pipeline.

Cascading containers Each container belongs to a transform and tracks one epoch, its

state (open, processing, or consumed), the relationship between the epoch’s records and its

end watermark, and the output epoch(s) in the downstream consuming transform(s). Each

transform owns a set of containers for its current input epochs. With this container state,

executers may concurrently consume and produce records in all epochs without breaking or

relaxing watermarks.

Pipeline state management StreamBox places records belonging to the same temporal

windows (one or more adjacent epochs) in contiguous memory chunks. It adapts a bundle’s

internal organization of records, catering to data properties, e.g., the number of values per

key. StreamBox steers bundles so that they flow mostly within their own NUMA nodes rather

than across nodes. To manage transform internal state, StreamBox instantiates a contiguous

23

array of slides per transform, where each slide holds processing results for a given event-time

range, e.g., a window. Evaluators operate on slide arrays based on window semantics, which

are independent of the epoch tracking mechanism – cascading containers. The slide array

realization incurs low synchronization costs under concurrent access.

2.5 Cascading Containers

09:00

04:00

00:00

25:00 15:0020:00

(Upstream)

Window

Aggregation

Sink

OldestNewest

1

Mapper

Unclaimed

bundle

Retrieved bundle

(not consumed yet)

3

A2 A1A3

S4 S3 S2 S1

M1

W1

(Downstream)

2

W2

Flow of bundles

& watermarks

Figure2.2. An overview of cascading containers

OPEN

9:00

WM
ASSIGNED

WM
RETRIEVED

WM
CONSUMED

WM_CANCELED

(DESTROY)

(INIT)

Figure2.3. The life cycle of a container

Cascading containers track epochs and orchestrate concurrent evaluators (i) to consume

all of an epoch’s records before processing its end watermark, (ii) to consume watermarks in

stream order, and (iii) to emit records derived from an upstream epoch into the corresponding

downstream epoch(s).

Figure 2.2 shows the cascading container design. Each transform owns a set of input

stream containers, one for each potential epoch. When StreamBox creates a container uc, it

24

creates one downstream container dc (or more) for its output in the downstream transform(s)

and links to it, causing a cascade of container creation. It puts all records and watermarks

derived from the transform on uc into this corresponding downstream container dc. All these

containers form a pipeline network. As stream processing progresses, the network topology

evolves. Evaluators create new containers, establish links between containers, and destroy

consumed containers.

2.5.1 Container Implementation

StreamBox initializes a container Down when the transform receives the first input record

or bundle of an epoch. Each container includes any unclaimed bundles of the epoch. An

unconsumed counter tracks the number of bundles that ever entered the container but are

not fully consumed. After processing a bundle, Down deposits derived output bundles in the

downstream container and then updates the unconsumed counter.

Container state StreamBox uses a container to track an epoch’s life cycle as follows and

shown in Figure 2.3 .

open Containers are initially empty. An open container receives bundles from the immediate

upstream Dup. The owner Down processes the bundles simultaneously.

wm assigned When Dup emits an epoch watermark w, it deposits w in Down’s dependent

container. Eventually Down consumes all bundles in the container and the unconsumed

counter drops to zero, at which point Down retrieves and processes the end watermark.

wm retrieved A container enters this state when Down starts processing the end water-

mark.

wm consumed After Down consumes the end watermark, it guarantees that it has flushed

all derived state and the end watermark to the downstream container and Down may be

destroyed.

wm cancelled Dup chooses not to emit the end watermark for the (potential) epoch. Sec-

tion 2.5.2 describes how we support windowing transforms by cancelling watermarks and

merging containers.

25

Lock-free container processing Containers are lock-free to minimize synchronization

overhead. We instantiate the end watermark as an atomic variable that enforces acquire-

release memory order. It ensures that Down observes all Dup evaluators’ writes to the con-

tainer’s unclaimed bundle set before observing Dup’s write of the end watermark. The

unclaimed bundle set is a concurrent data structure that aggressively weakens the ordering

semantics on bundles for scalability. Examples of other such data structures include non-

linearizable lock-free queues [14] and relaxed priority queues [15]. We further exploit this

flexibility to make the bundle set NUMA-aware, as discussed in Section 2.7.1 .

2.5.2 Single-input Transforms

If a transform has only one input stream, all its input epochs – and therefore the con-

tainers – are ordered, even though records are not.

Creating containers The immediate upstream container Dup creates downstream con-

tainers on-demand and links to them. Figure 2.2 1 shows an example of container creation.

When StreamBox processes the first bundle in A3, it creates S4 and any missing container

that precedes it, in this case S3, and links A3 to S4 and A2 to S3. To make concurrent growth

safe, StreamBox instantiates downstream links and containers using an atomic variable with

strong consistency. Subsequent bundle processing uses the instantiated links and containers.

Processing To select a bundle to process, evaluators walk the container list for a transform,

starting from the oldest container to the youngest, since the oldest container holds the most

urgent work for state externalization. If an evaluator encounters containers in the wm consumed

state, it destroys the container. Otherwise,
1. it retrieves an unclaimed bundle. If none exists,

2. it retrieves the end watermark when (i) the watermark is valid (i.e., the container

has wm assigned), and (ii) all bundles are consumed (unconsumed == 0), and (iii) all

watermarks in the preceding containers of Down are consumed.

3. If the evaluator fails to retrieve a bundle or watermark from this container, it moves

to the next younger container on Down’s list.
Figure 2.2 shows an example. An evaluator starts from the oldest container W1 to

find work 2 . Because W1 is in wm retrieved (all bundles are consumed and the end

26

L

R

Ddown

0:300:40 0:100:20

Join L0’ R0’L1’ R1’

0:000:100:100:20

Joint watermarks seen by Ddown

after consuming each epoch

L0L1

R1 R0

partial watermarks

L

R

Ddown
Join

partial watermarks

(a) A logic view of Join. The processing of two input streams

progress independently, resulting in interleaved epochs in output

(b) Arbitrarily ordering Join’s output epochs relaxes watermarks

A record

2

1

3

Figure2.4. A logic diagram of OOP temporal join

watermark is being processed), the worker moves on to W2. Because all bundles in W2

are consumed but the end watermark is available, it retrieves the watermark (09:00) for

processing. Section 2.6 describes how we prioritize transforms in the container network.

Merging containers for windowing For each input container, we create a potential

downstream container, expecting each input epoch will correspond to an output epoch.

However, when a transform D performs windowing operations, it often must wait for multiple

watermarks to correctly aggregate records. In this case, we merge containers. Figure 2.2 3

shows an example of Aggregation on a 10-min window. After consuming container A1

with its 04:00 watermark, the Aggregation transform cannot yet emit a watermark and

retire its current window (0:00-10:00). Our solution is to cancel watermarks and merge the

downstream output containers until the windowing logic, which uses event time, is satisfied.

This operation is cheap. StreamBox cancels watermarks by simply marking them wcancel. As

evaluators walk container lists and observe wcancel, they logically treat adjacent containers

as one, e.g., S2 and S3. When the transform receives a watermark ts ≥ 10, it emits the

watermark which will eventually close the container.

27

2.5.3 Multi-input Transforms

A multi-input transform, such as temporal Join and Union, takes multiple input streams

and produces one stream. Figure 2.4 shows an example of out-of-order temporal join [10].

The left and right input streams progress independently (they share Djoin’s internal state).

The output stream consists of interleaved epochs resulting from processing either input

stream. These epochs are delimited by partial watermarks (wL or wR), which are also

solely derived from the input streams. The downstream Ddown derives a joint watermark as

min(w′L, w′R), where w′L and w′R are the most recent left and right partial watermarks.

The case for unordered containers A multi-input transform, unlike single-input trans-

forms, cannot always have its downstream containers arranged on an ordered list (§2.5.2)

because an optimal ordering of output epochs depends on their respective end (partial) wa-

termarks. On the other hand, arbitrarily ordering output epochs may unnecessarily relax

watermarks and delay watermark processing .

Figure 2.4 (b) shows an example of arbitrarily ordering output epochs. While processing

open input epochs L0/L1 and R0/R1 1 , StreamBox arbitrarily orders the corresponding

output as L1’→R1’→L0’→R0’ without knowing the end watermarks. Later, these output

epochs eventually receive their partial end watermarks 2 . Upon consuming them, Ddown

derives joint watermarks based on its subsequent observations of partial watermarks 3 . Un-

fortunately, the joint watermark is more relaxed than the partial watermarks. For instance,

the partial watermark 00:30 of R0’ guarantees that all records in R0’ are later than 00:30.

However, from the derived joint watermark, Ddown only knows that they are later than 00:00.

Relaxed watermarks propagate to all downstream transforms. To tighten a joint watermark,

StreamBox should have placed L0’ and L1’ (and perhaps more subsequent left epochs) be-

fore R0’ and R1’. However, it cannot make that decision before observing all these partial

watermarks.

In summary, StreamBox must achieve two objectives in tracking epochs for multi-input

transforms. (1) It must track output epochs with corresponding containers for epoch paral-

lelism. (2) It must defer ordering these containers until it determines their end watermarks.

28

L

R

(Upstream)

D2

DJoin

L1

R1

S2

S1

U

3

2

4

(to downstream)

D1

11

C2

C1

(Downstream)

Figure2.5. Unordered containers for Join and its downstream. For brevity,
container watermarks are not drawn

Solution StreamBox maintains unordered containers for a multi-input transform’s output

epochs and their downstream counterparts. Once StreamBox determines the ordering of one

epoch, it appends the corresponding container to an ordered list and propagates this change

downstream. Figure 2.5 shows an example.

•Djoin owns two ordered container lists L and R.

•D1, the immediate downstream transform of Djoin, owns three ordered lists of containers.

L1 and R1 are derived from Djoin’s L and R, respectively. S1 holds merged containers from

L1 and R1.

•With D2 downstream of D1, D2 owns an unordered set U and an ordered list S2.

As Djoin processes its input streams L and R, it deposits the derived bundles and water-

marks to containers on L1, R1, and S1 1 . D1 selects the oldest container C1 on L1 and

R1 to process and it appends C1 to S1 2 . Processing C1, deposits records in container C2

(following the down link), which subsequently produces records in containers at S2 3 and

beyond 4 .

29

2.5.4 Synchronized Access to Containers

In the cascading containers network, the concurrent evaluators dynamically modify the

network topology by creating, linking, and destroying containers. Although the most fre-

quent container operations, such as processing records, are lock-free as described in Sec-

tion 2.5.1 , modifying the container network must be synchronized. We carefully structure

network modifications in reader and writer paths and synchronize them with one readers-

writer lock for each container list. To retrieve work, an evaluator holds the container list’s

reader lock while walking the list. If the evaluator needs to modify the list (e.g., to destroy

a container), it atomically upgrades the reader lock to a writer lock.

2.6 Pipeline Scheduling

A pipeline’s latency depends on how fast the engine externalizes the state of the current

window. To this end, StreamBox’s scheduler prioritizes upcoming state externalization.

StreamBox maintains a global notion of the next externalization moment (NEM). The up-

coming windowed output requires processing of all bundles and watermarks with timestamps

prior to NEM. After each state externalization, StreamBox increments the NEM monotonic-

ally based on a prediction. In the common case where externalization is driven by temporal

windows, the engine can accurately predict NEM as the end of the current window. In case

windowing information is unavailable, the engine may predict NEM based on historical ex-

ternalization timing. Mispredicting NEM may increase the output delay but will not affect

correctness.

NEM guides work prioritization in StreamBox. All evaluators independently retrieve work

(i.e., bundles or watermarks) from cascading containers. By executing StreamBox’s dispatch

function, an evaluator looks for work by traversing container lists from the oldest to the

youngest, starting from the top of the network. It prioritizes bundles in containers with

timestamps that precede NEM.

Watermark processing is on the critical path of state externalization and often entails

substantial amount of work, e.g., reduction of the window state. To accelerate watermark

processing, StreamBox creates a special watermark task queue. Watermark tasks are defined

30

as lambda functions. StreamBox gives these tasks higher priority and executes them with the

same set of evaluators – without oversubscribing the CPU cores. An evaluator first processes

watermark tasks. After completing a task, evaluators return to the dispatcher immediately.

Evaluators never wait on a synchronization barrier inside the watermark evaluator. This

on-demand, extra parallelism accelerates watermark evaluation.

2.7 Pipeline State Management

The memory behavior of a stream pipeline is determined by the bundles of records flowing

among transforms and the transforms’ internal states. To manage this state, StreamBox tar-

gets locality, NUMA-awareness, and coarse-grained allocation/free. We decouple state man-

agement from other key aspects, including epoch tracking, worker scheduling, and transform

logic.

2.7.1 Bundles

Adaptive internal structure StreamBox adaptively packs records into bundles for pro-

cessing.

StreamBox seeks to (i) maximize sequential access, (ii) minimize data movement, and

(iii) minimize the per-record overhead incurred by bundling.

A bundle stores a “flat” sequence of records sequentially in contiguous memory chunks.

This logical record ordering supports grouping records temporally in epochs and windows,

and by keys. It achieves both because temporal computation usually executes on all the

keys of specific windows, rather than on specific keys of all windows. This choice contrasts

to prior work that simply treats <window, key> as a new key.

To minimize data movement, StreamBox adapts bundle internals to the transform al-

gorithm. For instance, given a Mapper that filters records, the bundles include both records

and a bitmap, where each bit indicates the presence of a record, so that a record can be

logically filtered by simply toggling a bit. Databases commonly use this optimization [12] as

well.

31

StreamBox adapts bundle internals based on input data properties. The performance of

keyed transforms, i.e., those consuming key-value pairs, is sensitive to the physical organiza-

tion of these values. If each key has a large number of values, a bundle will hold a key’s values

using an array of pointers, each pointing to an array of values. This choice makes combining

values produced by multiple workers as cheap as copying a few pointers. If each key only

has a few values, StreamBox holds them in an array and copies them during combining. To

learn about the input data, StreamBox samples a small fraction of it.

NUMA-aware bundle flows StreamBox explicitly steers bundles between transforms for

NUMA locality by maximizing the chance that a bundle is both produced and consumed on

the same NUMA node.

Each bundle resides in memory from one NUMA node and is labeled with that node.

When an evaluator processes a container, it prefers unclaimed bundles labeled with its same

NUMA node. It will process non-local bundles only when bundles from the local node are

all consumed. To facilitate this process, an evaluator always allocates memory on its NUMA

node, and later deposits the new bundle to the NUMA node of the downstream container.

Notice that the NUMA-aware scheduling only affects the order among bundles within a

container. It does not starve important work, e.g., containers to be dispatched by the next

externalization moment.

2.7.2 Transform Internal State

StreamBox organizes a transform’s internal state as an array of temporal slides, forming

a slide. Each slide corresponds to a window (for fixed windows) or a window’s offset (for

sliding windows). Note that the size of a slide is independent of an epoch size.

To access a transform’s state, an evaluator operates on a range of slides: updating slides

in-place for accumulating processing results; fetching slides for closing a window; and retiring

slides for state flushing. Since concurrent evaluators frequently access the slide arrays, we

need to minimize locking and data movement. To achieve this goal, StreamBox grows the

array on-demand and atomically. It only copies pointers when fetching slides. It decouples

the logical retirement of slides from their actual, likely expensive destruction. To support

32

concurrent access to a single slide, the current StreamBox implementation employs off-the-

shelf concurrent data structures, as discussed below.

2.8 Implementation

We implement StreamBox in 22K SLoC of C++11. The implementation extensively uses

templates, static polymorphism, and C++ smart pointers. We implemented Windowing,

GroupBy, Aggregation, Mapper, Reducer, and Temporal Join as our library transforms.

Our scalable parallel runtime relies on the following scalable low-level building blocks.

C++ libraries We use boost [16] for timekeeping and locks, Intel TBB [17] for concur-

rent hash tables, and Facebook folly [18] for optimized vectors and strings. Folly improves

the performance of some benchmarks by 20–30%. For scalable memory allocation, we use

jemalloc [19], which scales much better than std::alloc and TBB [20] on our workloads.

Concurrent hash tables are hotspots in most statefull pipelines. We tested three open-

source concurrent hash tables [17], [18], [21], but they either did not scale to a large core

count or required pre-allocating a large amount of memory. Despite the extensive research

on scalable hash tables [22], [23], we needed to implement an internally partitioned hash

table. We wrapped TBB’s concurrent hash map. This simple optimization improves our

performance by 20–30%.

Bundle size is an empirical trade off between scheduling delay and overhead. StreamBox

mainly varies bundle size at pipeline ingress. When the engine is fully busy, with all records

in one ingress epoch, it produces as many bundles as evaluators, e.g., 56 bundles for 56

evaluators, to maximize the bundle size without starving any thread. The largest bundle

size is around 80K records. When the ingress slows down, the system shrinks bundle sizes to

reduce latency. We empirically determine that a 2× reduction in bundle size balances a 10%

drop in ingress data rate. We set the minimal bundle size at 1K records to avoid excessive

per-record overhead.

33

 0

 10000

 20000

 30000

 40000

 4 12 32 56

T
h
ro

u
g

h
p
u
t

K
R

e
c/

s

Cores

Windowed Grep

CM56 (1sec)
CM56 (50ms)
CM12 (1sec)

CM12 (50ms)

(a)

 0

 1000

 2000

 3000

 4000

 5000

 4 12 32 56

T
h
ro

u
g

h
p
u
t

K
R

e
c/

s

Cores

Word Count

CM56 (1sec)
CM56 (50ms)
CM12 (1sec)

CM12 (50ms)

(b)

 0

 1000

 2000

 3000

 4000

 5000

 4 12 32 56

T
h
ro

u
g

h
p
u
t

K
R

e
c/

s

Cores

Temporal Join

CM56 (1sec)
CM56 (50ms)
CM12 (1sec)

CM12 (50ms)

(c)

 0

 500

 1000

 1500

 2000

 4 12 32 56

T
h
ro

u
g

h
p

u
t

K
R

e
c/

s

Cores

Counting Distinct URLs

CM56 (1sec)
CM56 (50ms)
CM12 (1sec)

CM12 (50ms)

(d)

 0

 200

 400

 600

 800

 1000

 1200

 1400

 4 12 32 56

T
h
ro

u
g

h
p

u
t

K
R

e
c/

s

Cores

Network Latency Monitoring

CM56 (1sec)
CM56 (500ms)

CM12 (1sec)
CM12 (500ms)

(e)

 0

 1000

 2000

 3000

 4000

 5000

 4 12 32 56

T
h
ro

u
g

h
p

u
t

K
R

e
c/

s

Cores

Tweets Sentiment Analysis

CM56 (1sec)
CM56 (500ms)

CM12 (1sec)
CM12 (500ms)

(f)

Figure2.6. Throughput of StreamBox as a function of hardware parallelism
and latency. StreamBox scales well.

Table2.2. Test platforms used in experiments
56CM Dell PowerEdge R930

4x14 Xeon E7-4850v4 “Broadwell”, 256GB DRAM, Linux 4.4

12CM Dell PowerEdge R720

2x6 Xeon E5-2630v2 “Ivy Bridge”, 256GB DRAM, Linux 4.4

2.9 Evaluation

Methodology We evaluate StreamBox on the two multicore servers, summarized in

Table 2.2 . 56CM is a high-end server that excels at real-time analytics and 12CM is a

mid-range server. Although 100 Gb/s Infiniband (RDMA) networks are available, our local

network is only 10 Gb/s. However, 10 Gb/s is insufficient to test StreamBox and furthermore

even if we used Infiniband, it will directly store stream input in memory. We therefore gener-

ate ingress streams from memory. We dedicate a small number of cores (1–3) to the pipeline

source. We then replay these large memory buffers pre-populated with records and emit

in-memory stream epochs continuously. We measure the maximum sustained throughput of

up to 38 GB/s at the pipeline source when the pipeline delay meets a given target.

34

Benchmarks We use the following benchmarks and datasets. Unless stated otherwise,

each input epoch contains 1 M records and spans 1 second of event time. (1) Windowed

Grep (grep) searches the input text and outputs all occurrences of a specific string. We

use Amazon Movie Reviews (8.7 GB in total) [24] as input, a sliding window of 30 seconds,

and 1 second target latency. The input record size is 1 KB. (2) Word Count (wordcount)

splits input texts into words and counts the occurrences of each word. We use 954 MB

English books [25] as input, a sliding window of 30 seconds, and 1 second target latency.

The input record size is 100 bytes. (3) Temporal Join (join) has two input streams,

for which we randomly generate unique 64-bit integers as keys. The join window for each

record is ± 0.5 seconds. (4) Counting Distinct URLs (distinct) [9] counts unique URL

identifiers. We use the Yandex dataset [26] with 70 M unique URLs and a fixed window of 1

second. (5) Network Latency Monitoring (netmon) [9] groups network latency records

by IP pairs and computes the average per group. We use the Pingmesh dataset [27] with

88 M records and a fixed window of 1 second. The source emits 500K records per epoch.

(6) Tweets Sentiment Analysis (tweets) [9] correlates sentiment changes in a tweet

stream to the most frequent words. It correlates results from two pipelines: one that selects

windows with significant sentiment score changes, and the other that calculates the most

frequent words for each window. We use a public dataset of 8 million English tweets [28] and

a fixed window of 1 second. This benchmark is the most complex and uses 8 transforms.

2.9.1 Throughput and Scalability

This section evaluates the throughput, scalability, and out-of-order handling of Stream-

Box, and compares with existing stream processing systems.

Throughput Figure 3.8 presents throughput on the y-axis for the six benchmarks as a

function of hardware parallelism on the x-axis and latency as distinct lines. StreamBox has

high throughput and typically processes millions of input records per second on a single

machine, while delivering latencies as low as 50 ms. In particular, Grep achieves up to 38 M

records per second, which translates to 38 GB per second. This outstanding performance is

due to low overheads and high system utilization. Profiling shows that all CPU cores have

35

consistently high utilization (> 95%) and that most time is spent performing transform logic,

e.g., processing stream data and manipulating hash tables.

Scalability Figure 3.8 shows that StreamBox scales well with core count for most benchmarks

on both the 12-core and 56-core machines. When scalability diminishes in a few cases beyond

32 cores, as for Grep, it is a result of memory-bound computation saturating the machine.

 0

 2000

 4000

 6000

4 12 32 56

T
h
ro

u
g
h
p
u
t

K
R
e
c/

s

Cores

0%
20%
40%

(a) Wordcount

 0

 200

 400

 600

 800

 1000

4 12 32 56

T
h
ro

u
g
h
p
u
t

K
R
e
c/

s

Cores

0%
20%
40%

(b) Netmon

 0

 2000

 4000

 6000

4 12 32 56

T
h
ro

u
g
h
p
u
t

K
R
e
c/

s

Cores

0%
20%
40%

(c) Tweets

Figure2.7. StreamBox achieves high throughput even when a large fraction
of records arrive out-of-order.

Out-of-order records By design, StreamBox efficiently computes on out-of-order records.

To demonstrate this feature, we force a certain percent of records to arrive early in each

epoch, i.e., the event time of these records is larger than the enclosing epoch’s end water-

mark. Figure 2.7 shows the effect on throughput for 3 benchmarks. StreamBox achieves

nearly the same throughput and latency as in in-order data processing. In particular, the

throughput loss is as small as 7% even with 40% of records out-of-order. The minor de-

gradation is due to early-arriving records that accumulate more windows in the pipeline.

We attribute this consistent performance to (i) out-of-order epoch processing, since each

transform continuously processes out-of-order records without delay, and (ii) prioritizing

bundles and watermarks that decide the externalization latency of the current window in

the scheduler.

Comparing to distributed stream engines We first compare StreamBox with published

results of a few popular distributed stream processing systems and then evaluate two of

36

 0

 2000

 4000

 6000

 8000

4 12 32 56

7K 10K 10K 8K
T
h
ro

u
g
h
p
u
t

K
R

e
c/

s

Cores

StreamBox
Spark Streaming

Beam

Figure2.8. StreamBox scales better than Spark and Beam with Wordcount
on 56CM, with a 1-second target latency.

them on our 56-core machine. Most published results are based on processing of in-order

stream data. For out-of-order data, they either lack support (e.g., no notion of watermarks)

or expect transforms to “hold and sort”, which significantly degrades latency [29], [30].

Compared to existing systems, StreamBox jointly achieves low millisecond latency and

high throughput (tens of millions of records per second). Very few systems achieve both. To

achieve similar throughput, prior work uses at least a medium-size cluster with a few hundred

CPU cores [3], [8]. For instance, under the 50-ms target latency, StreamBox’s throughput

on 56CM is 40× greater than StreamScope [8] running on 100 cores. Moreover, even under

a 1-second target latency, StreamBox achieves much higher throughput per core. StreamBox

can process 700K records/sec for Grep and 90K records/sec for Wordcount per core, which

are 4.7× and 1.5× faster than the per-core processing rate reported by Spark Streaming on

a 100-node cluster with a total of 400 cores.

We further experimentally compare StreamBox with Spark (v2.1.0) [3] and Apache Beam

(v0.5.0, executing its Direct Runner) [7], on the same machine (56CM). Note that Beam’s

Direct Runner is known to be unoptimized for a single machine. We verify that they both

utilize all cores. We set the the target latency to 1 second since they cannot achieve 50 ms as

StreamBox does. Figure 2.8 shows that StreamBox achieves significantly higher throughput

(by more than one order of magnitude) and it scales much better with core count.

Comparing to single-machine streaming engines A few streaming engines are de-

signed for a single machine: Oracle CEP [31], StreamBase [32], Esper [33], and SABER (for

37

CPU+GPU) [34]. With 4 to 16 CPU cores, they achieve throughput between thousands and

a few million of records per second. None of them reports to scale beyond 32 CPU cores. In

particular, we tested Esper [33] on 56CM with Wordcount. On four cores, Esper achieves

around 900K records per second, which is similar to StreamBox with the same core count.

However, we were unable to get Esper to scale even after applying recommended program-

ming techniques, e.g., context partitioning [35]. As the core count increases, we observed

the throughput drops.

In summary, StreamBox achieves better or similar per core performance than prior work.

More importantly, StreamBox scales well to a large core count even with out-of-order record

arrival.

2.9.2 Validation of Key Design Features

 0

 10000

 20000

 30000

 40000

 50000

32 56

T
h
ro

u
g
h
p
u
t

K
R

e
c/

s

Cores

StreamBox
In-order

(a) Grep

 0

 2000

 4000

 6000

 8000

32 56

T
h
ro

u
g
h
p
u
t

K
R

e
c/

s

Cores

StreamBox
In-order

(b) Wordcount

 0

 1000

 2000

32 56

T
h
ro

u
g
h
p
u
t

K
R

e
c/

s

Cores

StreamBox
In-order

(c) Distinct

Figure2.9. In-order processing reduces parallelism, scalability, and throughput.

This section evaluates the performance and scaling contributions of our key design fea-

tures.

Epoch parallelism for out-of-order processing Epoch parallelism is fundamental to

producing abundant parallelism and exploiting out-of-order processing. We compare with

in-order epoch processing by implementing “hold and sort,” in which each transform waits

to process an epoch until all its records arrive. Note that this in-order epoch processing

leaves out the high cost of sorting records. It processes records within an epoch out-of-order.

38

 0

 2000

 4000

 6000

 8000

4 12 32 56

T
h
ro

u
g

h
p

u
t

K
R

e
c/

s

Cores

StreamBox
No-respect

(a) Wordcount on 56CM

 0

 2000

 4000

4 12

T
h
ro

u
g

h
p

u
t

K
R

e
c/

s

Cores

StreamBox
No-respect

(b) Wordcount on 12CM

Figure2.10. When records do not respect epoch boundaries, it limits paral-
lelism, scalability, and throughput.

Figure 2.9 shows that in-order epoch processing reduces throughput by 25% – 87%. Profiling

reveals the reduced parallelism causes poor CPU utilization.

Records must respect epoch boundaries .StreamBox enforces the invariant that records

respect epoch boundaries by mapping upstream containers to downstream containers (§2.5).

We compare this to an alternative design where a transform’s output records always flow

into the most recently opened downstream container. Records then no longer respect epoch

boundaries, since later records may enter earlier epochs. Violating the epoch invariant

leads to huge latency fluctuations in watermark externalization, degrading performance.

Figure 2.10 shows that not respecting epoch boundaries reduces throughput by up to 71%.

Prioritized scheduling (§2.6) Prioritizing containers on the critical path is crucial to

latency and throughput. To explore its effect, we disable prioritized scheduling such that

evaluators freely retrieve available bundles anywhere in the pipeline starting from its curent

source and sink container. In this configuration, evaluators tend to rush into one transform,

drain bundles there, and then move to the next. We confirmed this behavior with profiling.

Performance measurements show that the pipeline latency fluctuates greatly and sometimes

overshoots the target latency by a factor of 10.

39

NUMA-awareness (§2.7) We find NUMA-awareness especially benefits memory-bound

benchmarks. For example, grep without windowing achieves 54 GB/s on 56CM, which is

12.5% higher than a configuration with NUMA-unaware evaluators.

Watermark arrival rates. Frequent watermarks lead to shorter epochs and more contain-

ers, each with fewer records, thus increasing the maintenance cost of cascading containers.

In general, as shown in Figure 2.11 , containers are sufficiently lightweight so that frequent

watermarks (e.g., 100× more watermarks in 10K records/epoch) result in only a minor per-

formance loss (e.g., 20%). However, substantial performance degradation emerges for water-

marks at the rate of 1 K records/epoch, because frequent container creation and destruction

incur too much synchronization.

 0

 2000

 4000

 6000

10
00

K
10

0K 10
K 1KT

h
ro

u
g
h
p
u
t

K
R

e
c/

s

Records/Epoch

Figure2.11. Performance impact of watermark arrival rate for Wordcount on 56CM.

2.10 Related Work

This section compares StreamBox to prior work that uses the out-of-order processing

(OOP) model, distributed and single server stream engines, and on exploiting shared memory

for streaming.

OOP stream processing A variety of classic streaming engines focus on processing in-order

records with a single core (e.g., StreamBase [32], Aurora [36], TelegraphCQ [37], Esper [33],

Gigascope [29], and NiagaraST [38]). Li et al. [10] advocate OOP stream processing that re-

lies on stream progression messages, e.g. punctuations, for better throughput and efficiency.

The notion of punctuations is implemented in many modern streaming engines [7], [8], [12].

40

These systems do exploit pipeline and batch parallelism, but they do not exploit out-of-order

processing of epochs to expose and deliver highly scalable data parallelism on a single server.

Single-machine streaming engines Trill [39] inspires StreamBox’s state management with

its columnar store and bit-vector design. However, Trill’s punctuations are generated by the

engine itself in order to flush its internal batches, which limits parallelism. Furthermore,

Trill assumes ordered input records, which limits it applicability. StreamBox has neither

of these limitations. SABER [34] is a hybrid streaming engine for CPUs and GPGPUs.

Similar to StreamBox, it exploits data parallelism with multithreading. However, SABER

does not support OOP. It must reorder execution results from concurrent workers, limiting its

applicability and scalability. Oracle CEP [31] exploits record parallelism by relaxing record

ordering. However, it lacks the notion of watermarks and does not implement statefull OOP

pipelines.

Distributed streaming engines Several systems process large continuous streams using

hundreds to thousands of machines. Their designs often focus on addressing the pressing

concerns of a distributed environment, such as fault tolerance [3], [8], [9], programming

models [7], [13], and API compatibility [40]. TimeStream [9] tracks data dependence between

transform’s input and output, but uses it for failure recovery. StreamBox also tracks fine-

grained epoch dependences, but for minimizing externalization latency. StreamScope [8]

handles OOP using watermark semantics, but it does not exploit OOP for performance as

does StreamBox. It instead implements operator determinism based on holding and waiting

for watermarks. StreamBox is partially inspired by Google’s dataflow model [7] and is an

implementation of its OOP programming model. However, to the best of our knowledge

and based on our experiments, the Apache Beam [4] open-source implementation of Google

dataflow does not exploit epoch parallelism on a multicore machine.

Data analytics on a shared memory machine Some data analytics engines propose

to facilitate sequential memory access [41], [42] and one exploits NUMA zhang2015numa.

StreamBox’s bundles are similar to morsels in a relational query evaluator design [22], where

evaluators process data fragments (“morsels”) in batch and that are likely allocated on local

NUMA nodes. StreamBox favors low scheduling delay for stream processing. Evaluators are

41

rescheduled after consuming each bundle, instead of executing the entire pipeline for that

bundle.

2.11 Summary

StreamBox is an out-of-order stream processing engine for multicore machines. StreamBox

organizes out-of-order records into epochs determined by arrival time at pipeline ingress and

delimited by periodic event time watermarks. It manages all epochs with a novel parallel

data structure called cascading containers. Each container manages an epoch, including its

records and end watermark. StreamBox dynamically creates and manages multiple inflight

containers for each transform. StreamBox links upstream containers to their downstream

consuming containers. StreamBox provides three core mechanisms:

(1) StreamBox satisfies dependences and transform correctness by tracking producer/con-

sumer epochs, records, and watermarks. It optimizes throughput and latency by creating

abundant parallelism. It populates and processes multiple transforms and multiple in pro-

gress containers per transform. For instance, when watermark processing is a long latency

event, StreamBox is not stalled, because as soon as any subsequent records arrive, it opens

new containers and starts processing them.

(2) StreamBox elastically maps software parallelism to hardware. It binds a set of worker

threads to cores. (i) Each thread independently retrieves a set of records (a bundle) from

a container and performs the transform, producing new records that it deposits to a down-

stream container(s). (ii) To optimize latency, it prioritizes the processing of containers with

timestamps required for the next stream output. As is standard in stream processing, out-

puts are scoped by temporal windows that are scoped by watermarks to one or more epochs.

(3) StreamBox judiciously places records in memory by mapping streaming access patterns

to the memory architecture. To promote sequential memory access, it organizes pipeline

state based on the output window size, placing records in the same windows contiguously.

To maximize NUMA locality, it explicitly steers streams to flow within local NUMA nodes

rather than across nodes.

42

We evaluate StreamBox on six benchmarks with a 12-core and a 56-core machines. Stre-

amBox scales well up to 56 cores, and achieves high throughput (millions of records per

second) and low latency (tens of milliseconds) on out-of-order records. On the 56-core sys-

tem, StreamBox reduces latency by a factor of 20 over Spark Streaming [3] and matches the

throughput of results of Spark and Apache Beam [7] on medium-size clusters of 100 to 200

CPU cores for grep and wordcount.

The full source code of StreamBox is available at http://xsel.rocks/p/streambox .

43

http://xsel.rocks/p/streambox

3. STREAMBOX-HBM: STREAM ANALYTICS ON HIGH

BANDWIDTH HYBRID MEMORY

3.1 Introduction

Cloud analytics and the rise of the Internet of Things increasingly challenge stream

analytics engines to achieve high throughput (tens of million records per second) and low

output delay (sub-second) [2], [3], [12], [43]. Modern engines ingest unbounded numbers

of time-stamped data records, continuously push them through a pipeline of operators, and

produce a series of results over temporal windows of records. Many streaming pipelines group

data in multiple rounds (e.g., based on record time and keys) and consume grouped data

with a single-pass reduction (e.g., computing average values per key). For instance, data

center analytics compute the distribution of machine utilization and network request arrival

rate, and then join them by time. Data grouping often consumes a majority of the execution

time and is crucial to low output delay in production systems such as Google Dataflow [44]

and Microsoft Trill [12]. Grouping operations dominate queries in TPC-H (18 of 22) [45],

BigDataBench (10 of 19) [46], AMPLab Big Data Benchmark (3 of 4) [47], and even Malware

Detection [48]. These challenges require stream engines to carefully choose algorithms (e.g.

Sort vs. Hash) and data structures for data grouping to harness the concurrency and memory

systems of modern hardware.

Emerging 3D-stacked memories, such as high-bandwidth memory (HBM), offer oppor-

tunities and challenges for modern workloads and stream analytics. HBM delivers much

higher bandwidth (several hundred GB/s) than DRAM, but at longer latencies and at re-

duced capacity (16 GB) versus hundreds of GBs of DRAM. Modern CPUs (KNL [49]), GPUs

(NVIDIA Titan V [50]), FPGAs (Xilinx Virtex UltraScale+ [51]), and Cloud TPUs (v2 and

v3 [52]) are using HBM/HBM2. Because of HBM capacity limitations, vendors couple HBM

and standard DRAM in hybrid memories on platforms such as Intel Knights Landing [49].

Although researchers have achieved substantial improvements for high performance comput-

ing [53], [54] and machine learning [55] on hybrid HBM and DRAM systems, optimizing

streaming for hybrid memories is more challenging. Streaming queries require high network

bandwidth for ingress and high throughput for the whole pipeline. Streaming computations

44

are dominated by data grouping, which currently use hash-based data structures and random

access algorithms. We demonstrate these challenges with measurements on Intel’s Knights

Landing architecture (§3.2). Delivering high throughput and low latency streaming on HBM

requires high degrees of software and hardware parallelism and sequential accesses.

We present StreamBox-HBM, a stream analytics engine that transforms streaming data

and computations to exploit hybrid HBM and DRAM memory systems. It performs sequen-

tial data grouping computations primarily in HBM. StreamBox-HBM dynamically extracts

into HBM one set of keys at a time together with pointers to complete records in a data

structure we call Key Pointer Array (KPA), minimizing the use of precious HBM memory

capacity. To produce sequential accesses, we implement grouping computations as sequential-

access parallel sort, merge, and join with wide vector instructions on KPAs in a streaming

algorithm library. These algorithms are best for HBM and differ from hash-based grouping

on DRAM in other engines [2], [3], [7], [56], [57].

StreamBox-HBM dynamically manages applications’ streaming pipelines. At ingress,

StreamBox-HBM allocates records in DRAM. For grouping computations for key k, it dy-

namically allocates extracted KPA records for k on HBM. For other streaming computations

such as reduction, StreamBox-HBM allocates and operates on bundles of complete records

stored in DRAM. Based on windows of records specified by the pipeline, the StreamBox-HBM

runtime further divides each window into bundles to expose data parallelism in bottleneck

stream operations. It uses bundles as the unit of computation, assigning records to bundles

and threads to bundles or KPA. It detects bottlenecks and dynamically uses out-of-order

data and pipeline parallelism to optimize throughput and latency by producing sufficient

software parallelism to match hardware capabilities.

The StreamBox-HBM runtime monitors HBM capacity and DRAM bandwidth (the two

major resource constraints of hybrid memory) and optimizes their use to improve perform-

ance. It prevents either resource from becoming a bottleneck with a single control knob:

a decision on where to allocate new KPAs. By default StreamBox-HBM allocates KPAs on

HBM. When the HBM capacity runs low, StreamBox-HBM gradually increases the fraction

of new KPAs it allocates on DRAM, adding pressure to the DRAM bandwidth but without

saturating it.

45

We evaluate StreamBox-HBM on a 64-core Intel Knights Landing with 3D-stacked HBM

and DDR4 DRAM [58] and a 40 Gb/s Infiniband with RDMA for data ingress. On 10

benchmarks, StreamBox-HBM achieves throughput up to 110 M records/s (2.6 GB/s) with

an output delay under 1 second. We compare StreamBox-HBM to Flink [57] on the popular

YSB benchmark [59] where StreamBox-HBM achieves 18× higher throughput per core. Much

prior work reports results without data ingress [2], [12]. As far as we know, StreamBox-HBM

achieves the best reported records per second for streaming with ingress on a single machine.

The key contributions are as follows. (1) New empirical results find on real hardware that

sequential sorting algorithms for grouping are best for HBM, in contrast to DRAM, where

random hashing algorithms are best [60]–[62]. Based on this finding, we optimize grouping

computations with sequential algorithms. (2) A dynamic optimization for limited HBM

capacity that reduces records to keys and pointers residing in HBM. Although key/value

separation is not new [12], [63]–[68], mostly it occurs statically ahead of time, instead of

selectively and dynamically. (3) Our novel runtime manages parallelism and KPA placement

based on both HBM’s high bandwidth and limited capacity, and DRAM’s high capacity

and limited bandwidth. The resulting engine achieves high throughput, scalability, and

bandwidth on hybrid memories. Beyond stream analytics, StreamBox-HBM’s techniques

should improve a range of data processing systems, e.g., batch analytics and key-value stores,

on HBM and near-memory architectures [69]. To our knowledge, StreamBox-HBM is the

first stream engine for hybrid memory systems. The full source code of StreamBox-HBM is

available at http://xsel.rocks/p/streambox .

3.2 Background & Motivation

This section presents background on our stream analytics programming model, runtime,

and High Bandwidth Memory (HBM). Motivating results explore GroupBy implementations

with sorting and hashing on HBM. We find merge-sort exploits HBM’s high memory band-

width with sequential access patterns and high parallelism, achieving much higher through-

put and scalability than hashing on HBM.

46

http://xsel.rocks/p/streambox

3.2.1 Modern Stream Analytics

Programming model

We adopt the popular Apache Beam programming model [56] used by stream engines

such as Flink [57], Spark Streaming [3], and Google Cloud Dataflow [7]. These engines all

use declarative stream operators that group, reduce, or do both on stream data such as

those in Table 3.3 . To define a stream pipeline, programmers declaratively specify operators

(computations) and a pipeline of how data flows between operators, as shown in the following

pseudo code.
/* 1. Declare operators */

Source source (/* config info */);

WinGroupbyKey <key_pos > wingbk (1 _SECOND);

SumPerKey <key_pos ,v_pos > sum;

Sink sink;

/* 2. Create a pipeline */

Pipeline p; p.apply(source);

/* 3. Connect operators */

connect_ops(source , wingbk);

connect_ops(wingbk , sum);

connect_ops(sum , sink);

/* 4. Execute the pipeline */

Runner r(/* config info */);

r.run(p);

Table3.1. Selected compound (declarative) operators in StreamBox-HBM and
their constituent streaming primitives.

Compound

Operators

Pa
rD

o

Av
gA

ll

Fi
lt

er

Wi
nd

ow
in

g

Un
io

n

Co
un

tB
yK

ey

To
pK

By
Ke

y

Te
mp

Jo
in

Co
gr

ou
p

Streaming

Primitives on KPA

Grouping

Sort/Merge/Join…
 ● ● ● ● ● ● ●

Reduction

Keyed/Unkeyed
● ● ● ● ●

47

Per Key

Aggregation
Projection Egress

G

Filter
External

Join
Window

G G + R G G + R

G: Grouping R: Reduce

1 2 3 4 5

(a) Pipeline of Yahoo streaming benchmark (YSB) which counts ad views. It filters
records by ad id 1, takes a projection on columns 2, joins by ad id with associated cam-
paign id 3, then counts events per campaign per window 4 and 5. The pipeline will serve
as our running example for design and evaluation

Op

(G)

0:100:20 0:20 0:10

A record A window

Op

(R)

0:100:20

(b) A stream of records flowing through a grouping operator (G) and a reduction operator
(R)

Process
Record

Close Win

State
bundles

(c) Parallel operator execution. Engine batches records in bundles, consuming and pro-
ducing bundles in multiple windows in parallel

Figure3.1. Example streaming data and computations

48

Streaming computations: grouping & reduction

The declarative operators in Table 3.3 serve two purposes. (1) Grouping computations

organize records by keys and timestamps contained in sets of records. They sort, merge,

or select a subset of records. Grouping may both move and compute on records, e.g., by

comparing keys. (2) Reduction computations aggregate or summarize existing records and

produce new ones, e.g., by averaging or computing distributions of values. Pipelines may

interleave multiple instances of operations, as exemplified in Figure 3.1a . In most pipelines,

grouping dominates total execution time.

Stream execution model

Figure 3.1b shows our execution model. Each stream is an unbounded sequence of records

R produced by sources, such as sensors, machines, or humans. Each record consists of

an event timestamp and an arbitrary number of attribute keys (columns). Data sources

inject into record streams special watermark records that guarantee all subsequent record

timestamps will be later than the watermark timestamp. However, records may arrive out-of-

order [10]. A pipeline of stream operations consumes one or more data streams and generates

output on temporal windows.

Stream analytics engine

Stream analytics engines are user-level runtimes that exploit parallelism. They exploit

pipeline parallelism by executing multiple operators on distinct windows of records. We

extend the StreamBox engine, which also exploits data parallelism by dividing windows into

record bundles [2]. Figure 3.1c illustrates the execution of an operator. Multiple bundles

in multiple windows are processed in parallel. After finishing processing one window, the

runtime closes the window by combining results from the execution on each bundle in the

window.

To process bundles, the runtime creates operator tasks, manages threads and data, and

maps them to cores and memory resources. The runtime dynamically varies the parallelism

49

of individual operators depending on their workloads. At one given moment, distinct worker

threads may execute different operators, or execute the same operator on different records.

3.2.2 Exploiting HBM

Modern HBM stacks up to 8 DRAM dies in special purpose silicon chips [70], [71].

Compared to normal DRAM, HBM offers (1) 5–10× higher bandwidth, (2) 5–10× smaller

capacity due to cost and power [70]–[72], and (3) latencies typically ∼20% higher due to

added stacking silicon layers.

Recent platforms couple HBM and DDR4-based DRAM as a hybrid memory system [49],

[73], [74]. Hybrid memories with HBM and DRAM differ substantially from hybrid memories

with SRAM and DRAM; or DRAM and NVM; or NUMA. In the latter systems, the faster

tiers (e.g., on-chip cache or local NUMA memory) offer both higher bandwidth and lower

latency. HBM lacks a latency benefit. We show next that for workloads to benefit from HBM,

they must exhibit prodigious parallelism and sequential memory access simultaneously.

We measure two versions of GroupBy, a common stream operator on Intel’s KNL with

96 GB of commodity DRAM and 16 GB of HBM (Table 3.4). (1) Hash partitions input

〈key,value〉 records and inserts them into an open-addressing, pre-allocated hash table. (2)

Sort merge-sorts the input records by key (§ 3.4.2). We tune both implementations with

hardware-specific optimizations and handwritten vector instructions. We derive our Hash

from a state-of-the-art implementation hand-optimized for KNL [61], and implement Sort

from a fast implementation [75] and hand-optimize it with AVX-512. Our Hash is 4× faster

(not shown) than a popular, fast hash table not optimized for KNL [18]. Both implementa-

tions achieve state-of-the-art performance on KNL.

Figure 3.2 compares the throughput and bandwidth of Sort and Hash on HBM and

DRAM. The x-axis shows the number of cores. We make the following observations. (1)

Sort achieves the highest throughput and bandwidth when all cores participate. (2) When

parallelism is low (fewer than 16 cores), the sequential accesses in Sort cannot generate

enough memory traffic to fully exercise HBM high bandwidth, exhibiting throughput similar

to Sort on DRAM. (3) HBM reverses the existing DRAM preference between Sort and

50

 0

 50

 100

 150

 200

 250

2 16 32 48 64

m
ill

io
n
 p

a
ir

s
/

se
c

cores

throughput
HBM Sort

DRAM Sort
HBM Hash

DRAM Hash

 0

 50

 100

 150

 200

 250

 300

 350

 400

2 16 32 48 64

G
B

 /
 s

e
c

cores

memory bandwidth
HBM Sort

DRAM Sort
HBM Hash

DRAM Hash

Figure3.2. GroupBy on HBM and DRAM operating on 100M key/value
records with about 100 values per key. Keys and values are 64-bit random in-
tegers. Sort leverages HBM bandwidth with sequential access and outperforms
Hash on HBM.

Hash. On DRAM, Sort is limited by memory bandwidth and underperforms Hash on more

than 40 cores. On HBM, Sort outperforms Hash by over 50% for all core counts. Hash

experiences limited throughput gains (10%) from HBM, mostly due to its sequential-access

partitioning phase. Sort’s advantage over Hash is likely to grow as HBM’s bandwidth

continues to scale [72]. (4) HBM favors sequential-access algorithms even though they incur

higher algorithmic complexity.

Prior work explored tradeoffs for Sort and Hash on DRAM [60]–[62], concluding Hash

is best for DRAM. But our results draw a different conclusion for HBM – Sort is best for

HBM. Because HBM employs a total wider bus (1024 bits vs. 384 bits for DRAM) with a

wider SIMD vector (AVX-512 vs. standard AVX-256), it changes the tradeoff for software.

Why are existing engines inadequate?

Existing engines have shortcomings that limit their efficiency on hybrid memories. (1)

Most engines use hash tables and trees, which poorly match HBM [2], [3], [12], [56], [57].

(2) They lack mechanisms for managing data and intermediate results between HBM and

DRAM. Although the hardware or OS could manage data placement [76]–[78], their reactive

51

approaches use caches or pages, which are insufficient to manage the complexity of stream

pipelines. (3) Stream workloads may vary over time due to periodic events, bursty events,

and data resource availability. Existing engines lack mechanisms for controlling the resultant

time-varying demands for hybrid memories. (4) With the exception of StreamBox [2], most

engines generate pipeline parallelism, but do not generate sufficient total parallelism to

saturate HBM bandwidth.

3.3 System Overview

We have three system design challenges: (1) creating sequential access in stream com-

putations; (2) choosing which computations and data to map to HBM’s limited capacity;

and (3) trading off HBM bandwidth and limited capacity with DRAM capacity and limited

bandwidth. To address them, we define a new smaller extracted data structure, new primit-

ive operations, and a new runtime. This section overviews these components and subsequent

sections describe them in detail.

Dynamic record extraction

StreamBox-HBM dynamically extracts needed keys and record pointers in a KPA data

structure and operates on KPAs in HBM.

Sequential access streaming primitives

We implement data grouping primitives, which dominate stream analytics, with

sequential-access parallel algorithms on numeric keys in KPAs. The reduce primitives

dereference KPA pointers sequentially, randomly accessing records in DRAM, and operate

on bundles of records in DRAM.

Plentiful parallelism

StreamBox-HBM creates computational tasks on KPA and bundles, producing sufficient

pipeline and data parallelism to saturate the available cores.

52

Operator pipeline Threads

Mem mgmt

HBMDRAMS
tr

e
a
m

in
g

R
e
c
o
rd

s

Streaming primitives

KPAsRecord

Bundles

Scheduler

RC:2

RC:1

Record

bundles
KPAs

HBMDRAM

BID:0x42

BID:0x30

BIDs:

0x30

0x42

BIDs:

0x42

Figure3.3. An overview of StreamBox-HBM using record bundles and KPAs.
RC: reference count; BID: bundle ID.

Dynamic mapping

When StreamBox-HBM creates a grouping task, it allocates or reuses a KPA in HBM.

It monitors HBM capacity and DRAM bandwidth and dynamically balances their use by

deciding where it allocates newly created KPAs. It never migrates existing data.

System architecture

StreamBox-HBM runs standalone on one machine or as multiple distributed instances on

many machines. Since our contribution is the single-machine design, we focus the remaining

discussion on one StreamBox-HBM instance. Figure 3.3 shows how StreamBox-HBM ingests

streaming records through network sockets or RDMA and allocates them in DRAM – in

arrival order and in row format. StreamBox-HBM dynamically manages pipeline parallelism

similar to most stream engines [2], [3], [12], [57]. It further exploits data parallelism within

windows with out-of-order bundle processing, as introduced by StreamBox [2].

3.4 KPA and Streaming Operations

This section first presents KPA data structures (§3.4.1) and primitives (§3.4.2). It then

describes how KPAs and the primitives implement compound operators used by programmers

53

(§3.4.2), and how StreamBox-HBM executes an entire pipeline while operating on KPAs

(§3.4.3).

3.4.1 KPA

To reduce capacity requirements and accelerate grouping, StreamBox-HBM extracts KPAs

from DRAM and operates on them in HBM with specialized stream operators. Table 3.2 lists

the operator API. KPAs are the only data structures that StreamBox-HBM places in HBM.

A KPA contains a sequence of pairs of keys and pointers pointing to full records in DRAM,

as illustrated in Figure 3.3 . The keys replicate the record column required for performing

the specified grouping operation without touching the full records. We refer to the keys in

KPAs as resident. All other columns are nonresident keys.

One KPA represents intermediate grouping results. The first time StreamBox-HBM en-

counters a grouping operation on a key k, it creates a KPA by extracting the specified key

for each record in one bundle and creating the pointer to the corresponding record. To

execute a subsequent grouping computation on a new key q, StreamBox-HBM swaps the

KPA’s resident key with the new resident key q column for the corresponding record. After

multiple rounds of grouping, one KPA may contain pointers in arbitrary order, pointing to

records in arbitrary number of bundles, as illustrated in Figure 3.3 . Each KPA maintains

a list of bundles it points to, so that the KPA can efficiently update the bundles’ reference

counts. StreamBox-HBM reclaims record bundles after all the KPAs that point to them are

destroyed.

Why one resident column?

We enclose only one resident column KPA because this choice greatly simplifies the

implementation and reduces HBM memory consumption. We optimize grouping algorithms

for a specific data type – key/pointer pairs, rather than for tuples with an arbitrary column

count. Moving key/pointer pairs and swapping keys prior to each grouping operation is

much cheaper than copying arbitrarily sized multi-column tuples.

54

T
ab

le
3.

2.
K

PA
pr

im
iti

ve
s.

R
de

no
te

s
a

re
co

rd
bu

nd
le

.
K

P
A

(c
)

de
no

te
s

a
K

PA
w

ith
re

sid
en

t
ke

ys
fro

m
co

lu
m

n
c.

P
rim

iti
ve

A
cc

es
s

D
es

cr
ip

tio
n

Maint

Ex
tr

ac
t

R
→

H
B

M
(k

)
Se

qu
en

tia
l

C
re

at
e

a
ne

w
K

PA
fro

m
a

re
co

rd
bu

nd
le

.
M

at
er

ia
liz

e
K

P
A

(c
)→

R
R

an
do

m
Em

it
a

bu
nd

le
of

fu
ll

re
co

rd
s

ac
co

rd
in

g
to

K
PA

.
K

ey
Sw

ap
K

P
A

(c
1)
→

K
P

A
(c

2)
R

an
do

m
R

ep
la

ce
a

K
PA

’s
ke

ys
w

ith
a

no
nr

es
id

en
t

co
lu

m
n.

Group

So
rt

K
P

A
(c

)→
K

P
A

(c
)

Se
qu

en
tia

l
So

rt
th

e
K

PA
by

re
sid

en
t

ke
ys

M
er

ge
K

P
A

1(
c)

,K
P

A
2(

c)
→

K
P

A
3(

c)
Se

qu
en

tia
l

M
er

ge
tw

o
so

rt
ed

K
PA

s
by

re
sid

en
t

ke
ys

Jo
in

K
P

A
1(

c)
,K

P
A

2(
c)
→

R
Se

qu
en

tia
l

Jo
in

tw
o

so
rt

ed
K

PA
s

by
re

sid
en

t
ke

ys
.

Em
it

ne
w

re
co

rd
s.

Se
le

ct
R

or
K

P
A

1(
c)
→

K
P

A
2(

c)
Se

qu
en

tia
l

Su
bs

et
a

bu
nd

le
as

a
K

PA
w

ith
su

rv
iv

in
g

ke
y/

po
in

te
r

pa
irs

.
Pa

rt
iti

on
K

P
A

(c
)→
{K

P
A

i(c
)}

Se
qu

en
tia

l
Pa

rt
iti

on
a

K
PA

by
ra

ng
es

of
re

sid
en

t
ke

ys
.

Reduce

K
ey

ed
K

P
A

(c
)→

R
R

an
do

m
D

o
pe

r-
ke

y
re

du
ct

io
n

ba
se

d
on

th
e

re
sid

en
t

ke
ys

.
U

nk
ey

ed
R

1
or

K
P

A
→

R
2

R
an

do
m

D
o

re
du

ct
io

n
ac

ro
ss

al
lr

ec
or

ds
.

55

3.4.2 Streaming Operations

Table3.3. Selected compound (declarative) operators in StreamBox-HBM and
their constituent streaming primitives.

Compound

Operators

Pa
rD
o

Av
gA

ll

Fi
lt

er

Wi
nd

ow
in

g

Un
io
n

Co
un

tB
yK

ey

To
pK

By
Ke

y

Te
mp

Jo
in

Co
gr

ou
p

Streaming

Primitives on KPA

Grouping

Sort/Merge/Join…
 ● ● ● ● ● ● ●

Reduction

Keyed/Unkeyed
● ● ● ● ●

StreamBox-HBM implements the streaming primitives in Table 3.2 , and the compound

operators in Table 3.3 . The primitives fall into the following categories.

•Maintenance primitives convert between KPAs and record bundles and swap resident

keys. Extract initializes the resident column by copying the key value and initializing record

pointers. Materialize and KeySwap scan a KPA and dereference the pointers. Materialize

copies records to an output bundle in DRAM. KeySwap loads a nonresident column and

overwrites its resident key.

•Grouping primitives Sort and Merge compare resident keys and rearrange key/pointer

pairs within or across KPAs. Other primitives simply scan input KPAs and produce output

in sequential order.

•Reduction primitives iterate through a bundle or KPA once and produce new records.

They access nonresident columns with mostly random access. Keyed reduction scans a KPA,

dereferences the KPA’s pointers, locates full records, and consumes nonresident column(s).

Per-key aggregation scans a sorted KPA and keeps track of contiguous key ranges. For each

key range, it coalesces values from a nonresident column. Unkeyed reduction scans a record

bundle, consumes nonresident column(s), and produces a new record bundle.

56

Primitive Implementation

Our design goal for primitive operations is to ensure that they all have high parallelism

and that grouping primitives produce sequential memory access. All primitives operate on

64-bit value key/pointer pairs. They compare keys and based on the comparison, move keys

and the corresponding pointers.

Our Sort implementation is a multi-threaded merge-sort. It first splits the input KPA

into N chunks, sorts each chunk with a separate thread, and then merges the N sorted

chunks. A thread sorts its chunk by splitting the chunk into blocks of 64× 64-bit integers,

invoking a bitonic sort on each block, and then performing a bitonic merge. We hand-tuned

the bitonic sort and merge kernels with AVX-512 instructions for high data parallelism.

After sorting chunks, all N threads participate in pairwise merge of these chunks iteratively.

As the count of resultant chunks drops below N , the threads slice chunks at key boundaries

to parallelize the task of merging fewer, but larger chunks among them. Merge reuses the

parallel merge logic in Sort. Join first sorts the input KPAs by the join key. It then scans

them in one pass – comparing keys and emitting records along the way.

Compound Operators

We implement four common families of compound operators with streaming primitives

and KPAs.

•ParDo is a stateless operator that applies the same function to every record, e.g., filtering

a specific column. StreamBox-HBM implements ParDo by scanning the input in sequential

order. If the ParDo does not produce new records (e.g., Filter and Sample), StreamBox-HBM

performs Selection over KPA. When they produce new records (e.g., FlatMap), StreamBox-

HBM performs Reduction and emits new records to DRAM.

•Windowing operators group records into temporal windows using Partition on KPA. They

treat the timestamp column as the partitioning key and window length (for fixed windows)

or slide length (for sliding windows [79]) as the key range of each output partition.

57

Sort (x N)

Reduction

M
e

rg
e

 (
x
 N

)

Sort (x N)

L R

M
e

rg
e

 (
x
 N

)

HBMDRAM

Join (x N)

HBMDRAM

(a) Keyed Aggregation (b) Temporal Join

Figure3.4. Declarative operators implemented atop KPAs

•Keyed Aggregation is a family of statefull operators that aggregate given column(s) of

the records sharing a key (e.g., AverageByKey and PercentileByKey). StreamBox-HBM im-

plements them using a combination of Sort and Reduction primitives, as illustrated in Fig-

ure 3.4 a. As N bundles of records in the same window arrive, the operator extracts N

corresponding KPAs, sorts the KPAs by key, and saves the sorted KPAs as internal state

for the window (shown in the dashed-line box). When the operator observes the window’s

closure by receiving a watermark from upstream, it merges all the saved KPAs by key k.

The result is a KPA(k) representing all records in the window sorted by k. The operator

then executes per-key aggregation as out-of-KPA reduction as discussed earlier. The imple-

mentation performs each step in parallel with all available threads. As an optimization, the

threads perform early aggregation on individual KPAs before the window closure.

•Temporal Join takes two record streams L and R. If two records, one in L and one in R

in the same temporal window, share a key, it emits a new combined record. Figure 3.4 b

shows the implementation for R. For the N input bundles in R, StreamBox-HBM extracts

their respective KPAs, sorts the KPAs, and performs two types of primitives in parallel: (1)

Merge: the operator merges all the sorted KPAs by key. The resultant KPA is the window

state for R, as shown inside the dashed line box of the figure. (2) Join with L: in parallel with

Merge, the operator joins each of the aforementioned sorted KPA with the window state on

58

L shown in the dashed line box. StreamBox-HBM concurrently performs the same procedure

on L. It uses primitive Join on two sorted KPA(k)s, which scans both in one pass. The

operator emits to DRAM the resultant records, which carry the join keys and any additional

columns.

3.4.3 Pipeline Execution Over KPAs

During pipeline execution, StreamBox-HBM creates and destroys KPA and swaps resident

keys dynamically. It seeks to execute grouping operators on KPA and minimize the number

of accesses to nonresident columns in DRAM. At pipeline ingress, StreamBox-HBM ingests

full records into DRAM. Prior to executing any primitive, StreamBox-HBM examines it and

transforms the input of grouping primitives as follows.
/* X: input (a KPA or a bundle) */

/* c: column containing grouping key */

X = IsKPA(X) ? X : Extract(X)

if ResidentColumn of X != c

KeySwap(X, c)

Execute grouping on X

StreamBox-HBM applies a set of optimizations to further reduce the number of DRAM

accesses. (1) It coalesces adjacent Materialize and Extract primitives to exploit data locality.

As a primitive emits new records to DRAM, it simultaneously extracts the KPA records

required by the next operator in the pipeline. (2) It updates KPA’s resident keys in place,

and writes back dirty keys to the corresponding nonresident column as needed for future

KeySwap and Materialize operations. (3) It avoids extracting records that contain fewer

than three columns, which are already compact.

Example

We use YSB [59] in Figure 3.1a to show pipeline execution. We omit Projection, since

StreamBox-HBM stores results in DRAM. Figure 3.5 shows the engine ingesting record

bundles to DRAM 1 . Filter, the first operator, scans and selects records based on column

ad type, producing KPA(ad id) 2 . External Join (different from temporal join) scans the

KPA and updates the resident keys ad id in place with camp id loaded from an external

59

Select

HBMDRAM

Reduce

Key

Swap

Part.

Sort

Reduce

…

…

Key

Swap …

N

N

N

Filter

Ingress

Ext.
Join

Window

Count
ByKey

Egress

1

2

3

4

5

6

7

8
9

Figure3.5. Pipeline execution on KPAs for YSB [59]. Declarative operators
shown on right.

key-value store 3 , which is a small table in HBM. The operator writes back camp id to full

records and swaps in timestamps t 4 , resulting in KPA(t). Operator Window partitions the

KPA by t 5 . Keyed Aggregation swaps in the grouping key camp id 6 , sorts the resultant

KPA(camp id) 7 , and runs reduction on KPA(camp id) to count per-key records 8 . It

emits per-window, per-key record counts as new records to DRAM 9 .

3.5 Dynamically Managing Hybrid Memory

In spite of the compactness of KPAs representation, HBM still cannot hold all the KPAs

at once. StreamBox-HBM manages which new KPAs to place on what type of memory by

addressing the following two concerns.

1. Balancing demand. StreamBox-HBM balances the aggregated demand for limited HBM

capacity and DRAM bandwidth to prevent either from becoming a bottleneck.

2. Managing performance. As StreamBox-HBM dynamically schedules a computation, it

optimizes for the access pattern, parallelism, and contribution to the critical path by where

60

DRAM Bandwidth Usage

H
B

M
 C

a
p
a
c
it
y
 U

s
a
g
e

Low-demand

for both

High-demand

for both

High demand

for HBM cap

High demand

for DRAM BW

1

2

3

Scheduler

HBM DRAM

Tags =

{Urgent,

High, Low}

Tags

allocator

Monitor

TasksTasksTasks

(a) Balancing usage of limited HBM

capacity and DRAM bandwidth

(b) Passing scheduling and

resource knowledge to allocation

Figure3.6. StreamBox-HBM dynamically manages hybrid memory

it allocates the KPA for the computation. StreamBox-HBM prioritizes creating KPA in HBM

for aggregation operations on the critical path to pipeline output. When work is on the

critical path, it further prioritizes increasing parallelism and throughput for these operations

versus KPA that are processing early arriving records. We mark bundles an urgent on the

critical path with a performance impact tag, as described below.

StreamBox-HBM monitors HBM capacity and DRAM bandwidth and trades them off

dynamically. For individual KPA allocations, StreamBox-HBM further considers the critical

path. StreamBox-HBM does not migrate existing KPAs, which are ephemeral, unlike other

software systems for hybrid memory [76]–[78].

Dynamically Balancing Memory Demand

Figure 3.6 plots StreamBox-HBM’s state space. StreamBox-HBM strives to operate in the

diagonal zone 1 , where limiting capacity and bandwidth demands are balanced. If both

capacity and bandwidth reach their limit, StreamBox-HBM operates in the top-right corner

in zone 1 , while throttling the number of concurrent threads working on DRAM to avoid

over-subscribing bandwidth and wasting cores, and preventing back pressure on ingestion.

When the system becomes imbalanced, the state moves away from zone 1 to 2 or 3 .

Example causes include additional tasks spawned for DRAM bundles which stress DRAM

bandwidth, and delayed watermarks that postpone window closure which stresses HBM

61

capacity. If left uncontrolled, such imbalance will lead to performance degradations. When

HBM is full, all future KPAs regardless of their performance impact tag are forced to spill to

DRAM. When DRAM bandwidth is fully saturated, additional parallelism on DRAM wastes

cores.

At runtime, StreamBox-HBM balances resources by tuning a global demand balance knob

as shown in Figure 3.6 . StreamBox-HBM gradually changes the fraction of the new KPA

allocations on HBM or DRAM, and pushes its state back to the diagonal zone. In rare cases,

there is no more HBM capacity and no more DRAM bandwidth because the data ingestion

rate is too high. To address this issue, StreamBox-HBM dynamically starts or stops pulling

data from data source according to current resource utilization.

Performance impact tags

To identify the critical path, StreamBox-HBM maintains a global target watermark, which

indicates the next window to close. StreamBox-HBM deems any records with timestamps

earlier than the target watermark on the critical path. When creating a task, the StreamBox-

HBM scheduler tags it with one of three coarse-grained impact tags based on when the window

that contains the data for this task will be externalized. Windows are externalized based

on their record-time order. (1) Urgent is for tasks on the critical path of pipeline output.

Examples include the last task in a pipeline that aggregates the current window’s internal

state. (2) High is for tasks on younger windows (i.e., windows with earlier record time), for

which results will be externalized in the near future, say one or two windows in the future.

(3) Low is for tasks on even younger windows, for which results will be externalized in the

far future.

Demand balance knob

We implement a demand balance knob as a global vector of two scalar values {klow, khigh},

each in the range of [0, 1]. klow and khigh define the probabilities for StreamBox-HBM to al-

locate KPAs on HBM for Low and High tasks correspondingly. Urgent tasks always allocate

62

KPAs from a small reserved pool of HBM. The knob in conjunction with each KPA alloca-

tion’s performance impact tag determines the KPA placement as follows.
/* to choose memory type to be M */

switch (alloc_perf_tag)

case Urgent:

M = HBM

case High:

M = random (0,1) < k_high ? HBM : DRAM

case Low:

M = random (0,1) < k_low ? HBM : DRAM

allocate on M

StreamBox-HBM refreshes the knob values every time it samples the monitored resources.

It changes the knob values in small increments ∆ for controlling future HBM allocations. To

balance memory demand it first considers changing klow; if klow already reaches an extreme

(0 or 1), StreamBox-HBM considers changing khigh if the pipeline’s current output delay still

has enough headroom (10%) below the target delay. We set the initial values of khigh and

klow to 1, and set ∆ to 0.05.

3.5.1 Memory Management and Resource Monitoring

StreamBox-HBM manages HBM memory with a custom slab allocator on top of a memory

pool with different fixed-sized elements, tuned to typical KPA sizes, full record bundle sizes,

and window sizes. The allocator tracks the amount of free memory. StreamBox-HBM meas-

ures DRAM bandwidth usage with Intel’s processor counter monitor library [80]. StreamBox-

HBM samples both metrics at 10 ms intervals, which are sufficient for our analytic pipelines

that target sub-second output delays.

By design, StreamBox-HBM never modifies a bundle by adding, deleting, or reordering

records. After multiple rounds of grouping, all records in a bundle may be dead (unrefer-

enced) or alive but referenced by different KPAs. StreamBox-HBM reclaims a bundle when

no KPA refers to any record in the bundle using reference counts (RC). On the KPA side,

each KPA maintains one reference for each source bundle to which any record in the KPA

points. On the bundle side, each bundle stores a reference count (RC) tracking how many

KPAs link to it. When StreamBox-HBM extracts a new KPA (R → KPA), it adds a link

63

pointing to R if one does not exist and increments the reference count. When it destroys a

KPA, it follows all the KPA’s links to locate source bundles and decrements their reference

counts. When merging or partitioning KPAs, the output KPA(s) inherits the input KPAs’

links to source bundles, and increments reference counts at all source bundles. When the

reference count of a record bundle drops to zero, StreamBox-HBM destroys the bundle.

3.6 Implementation and Methodology

We implement StreamBox-HBM in C++ atop StreamBox, an open-source research ana-

lytics engine [2], [81]. StreamBox-HBM has 61K lines of code, of which 38K lines are new for

this work. StreamBox-HBM reuses StreamBox’s work tracking and task scheduling, which

generate task and pipeline parallelism. We introduce new operator implementations and

novel management of hybrid memory, replacing all of the StreamBox operators and enhan-

cing the runtime, as described in the previous sections. The current implementation supports

numerical data, which is very common in data analytics [82].

Benchmarks

We use 10 benchmarks with a default window size of 10 M records that spans one second of

event time. One is YSB, a widely used streaming benchmark [43], [83], [84]. YSB processes

input records with seven columns, for which we use numerical values rather than JSON

strings. Figure 3.1a shows its pipeline.

We also use nine benchmarks with a mixture of widely tested, simple pipelines (1–8) and

one complex pipeline (9). All benchmarks process input records with three columns – keys,

values, and timestamps, except that input records for benchmark 8 and 9 contain one extra

column for secondary keys. (1) TopK Per Key groups records based on a key column and

identifies the top K largest values for each key in each window. (2) Windowed Sum Per

Key aggregates input values for every key per window. (3) Windowed Median Per Key

calculates the median value for each key per window. (4) Windowed Average Per Key

calculates the average of all values for each key per window. (5) Windowed Average All

calculates the average of all values per window. (6) Unique Count Per Key counts unique

64

values for each key per window. (7) Temporal Join joins two input streams by keys per

window. (8) Windowed Filter takes two input streams, calculates the value average on one

stream per window, and uses the average to filter the key of the other stream. (9) Power

Grid is derived from a public challenge [85]. It finds houses with the most high-power plugs.

Ingesting a stream of per-plug power samples, it calculates the average power of each plug in

a window and the average power over all plugs in all houses in the window. Then, for each

house, it counts the number of plugs that have higher load than average. Finally, it emits

the houses that have most high-power plugs in the window.

For YSB, we generate random input following the benchmark directions [59]. For Power

Grid, we replay the input data from the benchmark [85]. For other benchmarks, we generate

input records with columns as 64-bit random integers. Note that our grouping primitives,

e.g. sort and merge, are insensitive to key skewness [86].

Hardware platform

We implement StreamBox-HBM on KNL [58], a manycore machine with hybrid HBM/-

DRAM memory. Compared to the standard DDR4 DRAM on the machine, the 3D-stacked

HBM DRAM offers 5× higher bandwidth with 20% longer latency. The machine has 64

cores with 4-way simultaneous multithreading for a total of 256 hyper-threads. We launch

one thread per core as we find out this configuration outperforms two or four hyper-threads

per core due to the number of outstanding memory requests supported by each core. The

ISA includes AVX-512, Intel’s wide vector instructions. We set BIOS to configure HBM and

DRAM in flat mode, where both memories appear fully addressable to StreamBox-HBM. We

also compare to cache mode, where HBM is a hardware-managed last-level cache in front of

the DDR4 DRAM. Table 3.4 summarizes the KNL hardware and a 56-core Intel Xeon server

(X56) used in evaluation for comparisons.

Data ingress

We use a separate machine (an i7-4790 with 16 GB DDR4 DRAM) called Sender to

generate input streams. To create sufficient ingestion bandwidth, we connect Sender to KNL

65

Table3.4. KNL and Xeon Hardware used in evaluation
KNL Xeon Phi 7210 $5,000
CPU: 64 Cores @ 1.3 GHz
HBM: 16 GB BW: 375 GB/s Latency: 172 ns
DRAM: DDR4 96 GB BW: 80 GB/s Latency: 143 ns
NIC1: 40Gb/s Infiniband Mellanox ConnectX-2
NIC2: 10GbE Mellanox ConnectX-2
X56 Xeon E7-4830v4 “Broadwell” $23,000
CPU: 4x14 cores @ 2.0 GHz
DRAM: DDR4 256 GB BW: 87 GB/s Latency: 131 ns
NIC: 10GbE Intel X540 DP

using RDMA over 40 Gb/s Infiniband. With RDMA ingestion, StreamBox-HBM on KNL pre-

allocates a pool of input record bundles. To ingest bundles, StreamBox-HBM informs Sender

of the bundle addresses and then polls for a notification which signals bundle delivery from

Sender. To compare StreamBox-HBM with commodity engines that do not support RDMA

ingestion, we also deliver input over our available 10 Gb/s Ethernet using the popular, fast

ZeroMQ transport [87]. With ZeroMQ ingestion, the engine copies incoming records from

network messages and creates record bundles in DRAM.

3.7 Evaluation

We first show StreamBox-HBM outperforms Apache Flink [57] on YSB. We then eval-

uate StreamBox-HBM on the other benchmarks, where it achieves high throughput by ex-

ploiting high memory bandwidth. We demonstrate that the key design features, KPA and

dynamically balancing memory and performance demands, are essentially to achieving high

throughput.

3.7.1 Comparing to Existing Engines

Comparing to Flink on YSB

We compare to Apache Flink (1.4.0) [57], a popular stream analytics engine known for

its good single-node performance on the YSB benchmark described in Section 3.6 . To com-

pare fairly, we configure the systems as follows. (1) Both StreamBox-HBM and Flink ingest

data using ZeroMQ transport over 10 Gb/s Ethernet, since Flink’s default, Kafka, is not

66

fast enough and it does not ingest data over RDMA. (2) The Sender generates records of

numerical values rather than JSON strings. We run Flink on KNL by configuring HBM and

DRAM in cache mode, so that Flink transparently uses the hybrid memory. We also com-

pare on the high end Xeon server (X56) from Table 3.4 because Flink targets such systems.

We set the same target egress delay (1 second) for both engines.

Figure 3.7 shows throughput (a) and peak bandwidth (b) of YSB as a function of hard-

ware parallelism (cores). StreamBox-HBM achieves much higher throughput than Flink on

KNL. It also achieves much higher per-dollar throughput on KNL than Flink running on

X56, because KNL cost is $5,000, 4.6× lower than X56 at $23,000. Figure 3.7 shows when

both engines ingest data over 10 Gb/s Ethernet on KNL, StreamBox-HBM maximizes the

I/O throughput with 5 cores while Flink cannot saturate the I/O even with all 64 cores.

By comparing these two operating points, StreamBox-HBM shows 18× per core through-

put than Flink. On X56, Flink saturates the 10 Gb/s Ethernet I/O when using 32 of 56

cores. As shown in Figure 3.7 b, when StreamBox-HBM saturates its ingestion I/O, adding

cores will further increase the peak memory bandwidth usage which results from StreamBox-

HBM executing grouping computations with higher parallelism. This parallelism does not

increase the overall pipeline throughput which is bottlenecked by ingestion, but it reduces

the pipeline’s latency by closing a window faster. Once we replace StreamBox-HBM’s 10

Gb/s Ethernet ingestion with 40 Gb/s RDMA, its throughput further improves by 2.9×

(saturating the I/O with 16 cores), leading to 4.1× higher machine throughput than Flink.

Overall, StreamBox-HBM achieves 18× higher per core throughput than Flink.

Qualitative comparisons

Other engines, e.g., Spark, and Storm, report lower or comparable performance to Flink,

with at most tens of millions of records/sec per machine [2], [3], [31]–[33], [88]. None reports

110 M records/sec on one machine as StreamBox-HBM does (shown below). Executing on

a 16-core CPU and a high-end (Quadro K500) GPU, SABER [89] reports 30 M records/sec

on a benchmark similar to Windowed Average, which is 4× lower than StreamBox-HBM as

shown in Section 3.7.2 . On a 24-core Xeon server, which has much higher core frequency

67

 0

 25

 50

 2 16 32 48 64

RDMA ingestion limit

10 GbE ingestion limit
T
h
ro

u
g
h
p
u
t

M
R

e
c/

s

Cores

StreamBox-HBM KNL RDMA
StreamBox-HBM KNL 10GbE

Flink KNL 10GbE
Flink X56 10GbE

(a) Input throughput under 1-second target delay.
Note: X56’s 10GbE NIC is slightly faster than that
on KNL.

 0

 50

 100

 150

2 16 32 48 64Pe
a
k

B
a
n
d
w

id
th

 G
B

/s

Cores

StreamBox-HBM KNL RDMA
StreamBox-HBM KNL 10GbE

Flink KNL 10GbE

(b) Peak memory bandwidth usage of HBM

Figure3.7. StreamBox-HBM achieves much higher throughput and memory
bandwidth usage than Flink, quickly saturating IO hardware. Legend format:
“Engine Machine IO”. Benchmark: YSB [59]

than KNL, Tersecades [82], a highly optimized version of Trill [12], achieves 49 M records/sec

on the same Windowed Average benchmark; compared to it, StreamBox-HBM achieves 2.3×

higher machine throughput and 3.5× higher per core throughput before saturating the I/O.

In summary, StreamBox-HBM achieves much higher single-node performance than existing

streaming engines.

68

 0

 10

 20

 30

 2 16 32 48 64
 0

 50

 100

 150

 200

 250
T
h
ro

u
g
h
p
u
t

M
R

e
c/

s

H
B

M
 B

W
 U

se
 G

B
/s

Cores

TopK Per Key

(a)

 0

 10

 20

 30

 2 16 32 48 64
 0

 50

 100

 150

 200

 250

T
h
ro

u
g
h
p
u
t

M
R

e
c/

s

H
B

M
 B

W
 U

se
 G

B
/s

Cores

Windowed Med Per Key

(b)

 0
 20
 40
 60
 80

 100
 120

 2 16 32 48 64
 0
 50
 100
 150
 200
 250

RDMA ingestion limit

T
h
ro

u
g
h
p
u
t

M
R

e
c/

s

H
B

M
 B

W
 U

se
 G

B
/s

Cores

Windowed Filter

(c)

 0

 10

 20

 30

 40

 2 16 32 48 64
 0

 50

 100

 150

 200

 250

T
h
ro

u
g
h
p
u
t

M
R

e
c/

s

H
B

M
 B

W
 U

se
 G

B
/s

Cores

Temporal Join

(d)

 0

 40

 80

 120

 2 16 32 48 64
 0
 50
 100
 150
 200
 250

RDMA ingestion limit

T
h
ro

u
g
h
p
u
t

M
R

e
c/

s

H
B

M
 B

W
 U

se
 G

B
/s

Cores

Windowed Average

(e)

 0

 20

 40

 60

 2 16 32 48 64
 0

 50

 100

 150

 200

 250

T
h
ro

u
g
h
p
u
t

M
R

e
c/

s

H
B

M
 B

W
 U

se
 G

B
/s

Cores

Windowed Sum Per Key

(f)

 0

 20

 40

 60

 2 16 32 48 64
 0

 50

 100

 150

 200

 250

T
h
ro

u
g
h
p
u
t

M
R

e
c/

s

H
B

M
 B

W
 U

se
 G

B
/s

Cores

Windowed Avg Per Key

(g)

 0

 20

 40

 60

 2 16 32 48 64
 0

 50

 100

 150

 200

 250

T
h
ro

u
g
h
p
u
t

M
R

e
c/

s

H
B

M
 B

W
 U

se
 G

B
/s

Cores

Unique Count Per Key

(h)

 0

 5

 10

 2 16 32 48 64
 0

 50

 100

 150

 200

 250

T
h
ro

u
g
h
p
u
t

M
R

e
c/

s

H
B

M
 B

W
 U

se
 G

B
/s

Cores

Power Grid

(i)

Figure3.8. StreamBox-HBM’s throughput (as lines, y-axis on left) and peak
bandwidth utilization of HBM (as columns, y-axis on right) under 1-second
target output delay. StreamBox-HBM shows good throughput and high memory
bandwidth usage

3.7.2 Throughput and Bandwidth

We use nine benchmarks and experimental setup described in Section 3.6 to demonstrate

that StreamBox-HBM: (1) supports simple and complex pipelines, (2) well utilizes HBM

bandwidth, and (3) scales well for most pipelines.

Throughput and scalability

Figure 3.8 shows throughput on the left y-axis as a function of hardware parallelism

(cores) on the x-axis. StreamBox-HBM delivers high throughput and processes between 10 to

110 M records/s while keeping output delay under the 1-second target delay. Six benchmarks

scale well with hardware parallelism and three benchmarks achieve their maximum through-

69

put at 16 or 32 cores. Scalability diminishes over 16 cores in a few benchmarks because the

engine saturates RDMA ingestion (marked as red horizontal lines in the figures). Most other

benchmarks range between 10 and 60 M records/sec. The simple Windowed Average pipeline

achieves 110 M records/sec (2.6 GB/s) with 16 participating cores. StreamBox-HBM’s good

performance is due its effective use of HBM and its creation and management of parallelism.

Memory bandwidth utilization

StreamBox-HBM generally utilizes HBM bandwidth well. When all 64 cores participate,

most benchmarks consume 150–250 GB/sec, which is 40%–70% of the HBM bandwidth limit.

Furthermore, the throughput of most benchmarks benefits from this bandwidth, which far ex-

ceeds the machine’s DRAM peak bandwidth (80 GB/sec). Profiling shows that bandwidth is

primarily consumed by Sort and Merge primitives for data grouping. A few benchmarks show

modest memory bandwidth use, because their computations are simple and their pipeline

are bound by the IO throughput of ingestion.

3.7.3 Demonstration of Key Design Features

This section compares software and hardware StreamBox-HBM configurations, demon-

strating their performance contributions.

HBM hardware benefits

To show HBM benefits versus other changes, we configure our system to use only DRAM

(StreamBox-HBM DRAM) and compare to StreamBox-HBM in Figure 3.9 . StreamBox-HBM

DRAM reduces throughput by 47% versus StreamBox-HBM. Profiling reveals performance is

capped due to saturated DRAM bandwidth.

Efficacy of KPA

We demonstrate the extraction benefits of KPA on HBM by modifying the engine to

operate on full records. Because HBM cannot hold all streaming data, we use cache mode,

70

 0

 10

 20

 30

 40

 2 16 32 48 64

T
h
ro

u
g
h
p
u
t

M
R

e
c/

s

Cores

StreamBox-HBM
StreamBox-HBM Caching

StreamBox-HBM DRAM
StreamBox-HBM Caching NoKPA

Figure3.9. StreamBox-HBM outperforms alternative implementations, show-
ing the efficacy of KPA and its management of hybrid memory. Benchmark:
TopK Per Key

0

20

40

60

80

D
R

A
M

 B
W

U

s
a

g
e

(G

B
/s

)

0

20

40

60

80

D
R

A
M

 B
W

U

s
a

g
e

(G

B
/s

)

0

4

8

12

16

20 30 40 50 60

H
B

M
 C

a
p

a
c
it
y
 U

s
a

g
e

(G

B
)

Ingestion Rate
(M Rec/sec)

0

4

8

12

16

100 150 200 250 300H
B

M
 C

a
p

a
c
it
y
 U

s
a

g
e

(G

B
)

Bundles between
Adjacent Watermarks

Peak Avg HW limit

2

1

4

3

6

5

7

7

(a) Increasing ingestion rate (b) Delaying watermark arrival

4

Figure3.10. StreamBox-HBM dynamically balances its demands for limited
memory resources under varying workloads. Benchmark: TopK Per Key

thus relying on the hardware to migrate the data between HBM and DRAM (StreamBox-

HBM Caching NoKPA). This configuration still uses sequential-access computations, just

not on extracted KPA records. It is StreamBox [2] with sequential algorithms on hardware-

managed hybrid memory. Figure 3.9 shows StreamBox-HBM outperforms StreamBox-HBM

Caching NoKPA consistently on all core counts by up to 7×. Without KPA and software

management of HBM, scaling is limited to 32 cores. The performance bottleneck is excessive

data movement due to migration and grouping full records.

71

Explicit KPA placement

StreamBox-HBM fully controls KPA placement and eschews transparent management by

the OS or hardware. To show this benefit, we run KPA by turning off KPA placement and

configuring HBM and DRAM in cache mode (StreamBox-HBM Caching). This configuration

still enjoys the KPA mechanisms, but relies on hardware caching to migrate KPAs between

DRAM and HBM. Figure 3.9 shows StreamBox-HBM Caching drops throughput up to 23%

compared to StreamBox-HBM. The performance loss is due to excessive copying. All KPAs

must be first instantiated in DRAM before moving to HBM. The hardware may move full

records to HBM, paying a cost while having little performance return. For stream processing,

software manges hybrid memories better than hardware.

Balancing memory demands

To show how StreamBox-HBM balances hybrid memory demands dynamically, we in-

crease data ingress rates to increase memory usage. Figure 3.10 a shows when we increase

the ingestion rate, HBM capacity usage increases 1 . StreamBox-HBM kicks in to counter-

balance the trend, allocating more KPAs on DRAM 2 . Computation on the extra KPAs

on DRAM substantially increases DRAM bandwidth utilization. StreamBox-HBM controls

the peak value at 70 GB/sec, close to the DRAM bandwidth limit without saturating it 3 .

As ingestion rate increases, StreamBox-HBM keeps both resources highly utilized without

exhausting them by adding back pressure to ingestion 4 . Figure 3.10 b shows when we

delay ingestion watermarks, which extends KPA lifespans in HBM, adding pressure on HBM

capacity 5 . Observing the increased pressure, StreamBox-HBM allocates more KPAs on

DRAM, which increases DRAM bandwidth usage 6 . As pressure on both resources in-

creases, StreamBox-HBM keeps utilization of both high without exhausting them 7 .

3.7.4 Impact of Data Parsing at Ingestion

Our design and evaluation so far focus on a common situation where the engine ingests

and processes numerical data [82]. Yet, some streaming systems may ingest encoded data,

72

1

10

100

1000

10000

JSON Protocol	Buffers Text	Strings

KNL X56

StreamBox-HBM’s tput
over	parsed data

Pa
rs
in
g	
th
ro
ug
hp

ut
M
Re

c/
s

Figure3.11. Parsing at the ingestion shows varying impacts on the system
throughput. All cores on KNL and X56 are in use. Parsers: RapidJSON [90],
Protocol Buffers (v3.6.0) [91], and text strings to uint64 [92]. Benchmark: YSB

parsing the data before processing. To examine how data parsing would impact StreamBox-

HBM’s throughput, we construct microbenchmarks that parse the encoded input for the YSB

benchmark. We tested three popular encoding formats: JSON, Google’s Protocol Buffers,

and simple text strings. We run these microbenchmarks on KNL and X56 (listed in Table 3.4)

to see if the parsing throughputs can keep up with StreamBox-HBM’s throughput on YSB.

As shown in Figure 3.11 , parsing at the ingestion shows varying impacts, depending on the

ingested data format. While parsing simple text strings can be 29× as fast as StreamBox-

HBM processing the parsed numerical data, parsing protocol buffers is 4.4× as fast, and

parsing JSON is only 0.13× as fast. Our results also show that data parsing on X56 is 3-4×

faster than KNL in general.

Our results therefore have two implications towards fast stream processing when ingested

data must be parsed first. First, one shall consider avoiding ingested data formats (e.g.

JSON) that favor human-readability over efficient parsing. Data in such formats shall be

transcoded near the data sources. Second, since KNL excels at processing numerical data

but is disadvantaged in data parsing, system administrators may team up Xeon and KNL

machines as a hybrid cluster: the Xeon machines parse ingested data and the KNL machines

run StreamBox-HBM to execute the subsequent streaming pipeline.

73

3.8 Related Work

Stream analytics engines

Much prior work improves stream analytics performance on a single node. StreamBox

coordinates task and data parallelism with a novel out-of-order bundle processing approach,

achieving high throughput and low latency on multicores [2]. SABER accelerates stream-

ing operators using multicore CPU and GPU [89]. Other work uses FPGA for stream

processing [93]. No prior work, however, optimizes stream analytics for hybrid memories.

StreamBox-HBM complements prior work that addresses diverse needs in distributed stream

processing [3], [8], [9], [13], [44], [88]. They address issues such as fault tolerance [3], [8], [9],

programming models [13], and adaptability [43], [94]. As high throughput is fundamental to

distributed processing, StreamBox-HBM can potentially benefit those systems regardless of

their query distribution methods among nodes.

Managing keys and values

KPA is inspired by key/value separation [66]. Many relational databases store records in

columnar format [63], [64], [67], [68] or use an in-memory index [65] to improve data locality

and speed up query execution. For instance, Trill applies columnar format to bundles to

efficient process only accessed columns, but extracts all of them at once [12]. Most prior

work targets batch processing and therefore extracts columns ahead of time. By contrast,

StreamBox-HBM creates KPAs dynamically and selectively – only for columns used to group

keys. It swaps keys as needed, maintaining only one key from a record in HBM at time to

minimize the HBM footprint. Furthermore, StreamBox-HBM dynamically places KPAs in

HBM and DRAM based on resource usage.

Data processing for high memory bandwidth

X-Stream accelerates graph processing with sequential access [41]. Recent work optimized

quick sort [95], hash joins [75], scientific workloads [53], [54], and machine learning [55]

for KNL’s HBM, but not streaming analytics. Beyond KNL, Mondrian [69] uses hardware

74

support for analytics on high memory bandwidth in near-memory processing. Together, these

results highlight the significance of sequential access and vectorized algorithms, affirming

StreamBox-HBM’s design.

Managing hybrid memory or storage

Many generic systems manage hybrid memory and storage. X-mem automatically places

application data based on application execution patterns [96]. Thermostat transparently

migrates memory pages between DRAM and NVM while considering page granularity and

performance [97]. CoMerge makes concurrent applications share heterogeneous memory tiers

based on their potential benefit from fast memory tiers [98]. Tools such as ProfDP measure

performance sensitivity of data to memory location and accordingly assist programmers in

data placement [99]. Unlike these systems that seek to make hybrid memories transparent to

applications, StreamBox-HBM constructs KPAs specifically for HBM and fully controls data

placement for stream analytics workloads. Several projects construct analytics and storage

software for hybrid memory/storage [100], [101]. Most of them target DRAM with NVM

or SSD with HDD, where high-bandwidth memory/storage delivers lower latency as well.

Because HBM lacks a latency advantage, borrowing from these designs is not appropriate.

3.9 Summary

We present StreamBox-HBM, a stream analytics engine that transforms streaming data

and computations to exploit hybrid HBM and DRAM memory systems. It performs sequen-

tial data grouping computations primarily in HBM. StreamBox-HBM dynamically extracts

into HBM one set of keys at a time together with pointers to complete records in a data

structure we call Key Pointer Array (KPA), minimizing the use of precious HBM memory

capacity. To produce sequential accesses, we implement grouping computations as sequential-

access parallel sort, merge, and join with wide vector instructions on KPAs in a streaming

algorithm library. These algorithms are best for HBM and differ from hash-based grouping

on DRAM in other engines [2], [3], [7], [56], [57].

75

StreamBox-HBM dynamically manages applications’ streaming pipelines. At ingress,

StreamBox-HBM allocates records in DRAM. For grouping computations for key k, it dy-

namically allocates extracted KPA records for k on HBM. For other streaming computations

such as reduction, StreamBox-HBM allocates and operates on bundles of complete records

stored in DRAM. Based on windows of records specified by the pipeline, the StreamBox-HBM

runtime further divides each window into bundles to expose data parallelism in bottleneck

stream operations. It uses bundles as the unit of computation, assigning records to bundles

and threads to bundles or KPA. It detects bottlenecks and dynamically uses out-of-order

data and pipeline parallelism to optimize throughput and latency by producing sufficient

software parallelism to match hardware capabilities.

The StreamBox-HBM runtime monitors HBM capacity and DRAM bandwidth (the two

major resource constraints of hybrid memory) and optimizes their use to improve perform-

ance. It prevents either resource from becoming a bottleneck with a single control knob:

a decision on where to allocate new KPAs. By default StreamBox-HBM allocates KPAs on

HBM. When the HBM capacity runs low, StreamBox-HBM gradually increases the fraction

of new KPAs it allocates on DRAM, adding pressure to the DRAM bandwidth but without

saturating it.

We evaluate StreamBox-HBM on a 64-core Intel Knights Landing with 3D-stacked HBM

and DDR4 DRAM [58] and a 40 Gb/s Infiniband with RDMA for data ingress. On 10

benchmarks, StreamBox-HBM achieves throughput up to 110 M records/s (2.6 GB/s) with

an output delay under 1 second. We compare StreamBox-HBM to Flink [57] on the popular

YSB benchmark [59] where StreamBox-HBM achieves 18× higher throughput per core. Much

prior work reports results without data ingress [2], [12]. As far as we know, StreamBox-HBM

achieves the best reported records per second for streaming with ingress on a single machine.

The key contributions are as follows. (1) New empirical results find on real hardware that

sequential sorting algorithms for grouping are best for HBM, in contrast to DRAM, where

random hashing algorithms are best [60]–[62]. Based on this finding, we optimize grouping

computations with sequential algorithms. (2) A dynamic optimization for limited HBM

capacity that reduces records to keys and pointers residing in HBM. Although key/value

separation is not new [12], [63]–[68], mostly it occurs statically ahead of time, instead of

76

selectively and dynamically. (3) Our novel runtime manages parallelism and KPA placement

based on both HBM’s high bandwidth and limited capacity, and DRAM’s high capacity

and limited bandwidth. The resulting engine achieves high throughput, scalability, and

bandwidth on hybrid memories. Beyond stream analytics, StreamBox-HBM’s techniques

should improve a range of data processing syshbmtems, e.g., batch analytics and key-value

stores, on HBM and near-memory architectures [69]. To our knowledge, StreamBox-HBM is

the first stream engine for hybrid memory syshbmtems. The full source code of StreamBox-

HBM is available at http://xsel.rocks/p/streambox .

77

http://xsel.rocks/p/streambox

4. SWAPNN: TOWARDS OUT-OF-CORE NEURAL

NETWORKS ON TINY MICROCONTROLLERS

4.1 Introduction

With low cost and energy, MCUs are becoming ubiquitous platforms for neural networks

(NNs), a paradigm dubbed tinyML [102]. Running NN on MCU, rather than sending raw

data off, offers multiple advantages, notably tolerating poor networks and preserving data

privacy. Use cases include detecting farming crop disease by classifying leaf photos [103] and

extracting traffic patterns by analyzing city images.

A top obstacle in tinyML is memory limit. On one hand, an MCU has small memory,

which comprises tens to hundreds KB of SRAM as the main memory and byte-addressable

flash of no more than a few MBs for read-only data. Note that the byte-addressable flash is

different from external block-addressable storage such as SD cards [104].

On the other hand, state-of-the-art NNs achieve high accuracy and generality with large

memory footprints [105], [106]. An NN’s memory footprint includes read-only parameters

and intermediate/final results called feature maps. Although MCU can process one NN layer

in memory before loading the next layer, a layer’s parameters and feature maps can still take

up to 100 MB (e.g. VGG16 [107]). This exceeds the MCU memory size by up to two orders

of magnitude. Such a memory gap is widening as recent NNs are becoming larger [108] while

MCU memory sees slow, if at all, scaling due to cost constraints [109].

A popular approach to overcoming memory limitation is to engineer NNs themselves.

Common techniques include model compression [111]–[113], parameter quantization [114],

designing tiny NNs from scratch [115], as well as automation of these procedures [116].

In exchange, this approach gives away model accuracy or generality at varying degrees.

Unfortunately, in order for an NN to fit into the MCU memory, the NN either becomes

substantially inaccurate (e.g. < 60% top-1 accuracy as shown in Figure 4.1) or too specialized

(e.g. can only detect a few object classes [117]).

This disqualifies MCUs from the use cases where high accuracy/generality are desired

while delays can be tolerated, for example: (1) NN inference on slowly changing signals, e.g.,

monitoring crop health by analyzing hourly photos [103] and traffic patterns by analyzing

78

101 102 103 104 105

60

65

70

75

80

85

Memory Footprint of NNs (KB)

The set of NNs that can
run on MCUs

(Enabled by prior work)

MobileNets-v2 (2018) ResNet (2016)

VGG (2014) EfficientNet (2019)

MobileNets-v2 Pruned ResNet Pruned

VGG Pruned

To
p

-1
 A

cc
u

ra
cy

 (
%

)

55

50

VGG (32x32) Pruned
Unusable
accuracy

The set of NNs that can run on MCUs
(Enabled by this work)

MCU SRAM size =103 KB

Figure4.1. Many popular NNs exceed the MCU memory size [110].

video frames every 20-30 minutes [117]. (2) profiling NNs on device: occasionally running

a full-blown NN to estimate the accuracy of long-running smaller NNs [118]; (3) transfer

learning: re-training NNs on MCUs with data collected from deployment every hour or

day [119].

A case for out-of-core NNs

Can an MCU execute NNs that far exceed its physical memory size? A proven wisdom

is to dynamically swap tiles of NN layers between memory tiers [120]. Specially, an MCU

runtime can split one NN layer’s working set into a series of tiles, each small enough to fit

the MCU memory; load tiles from external storage (a micro SD card) to memory, compute

on them, and write results back to the storage for subsequent processing. While prior

systems have swapped NN tiles between a server’s CPU/GPU memories [121], applying the

idea to MCU, in particular swapping between small SRAM and a wimpy SD card, raises

multiple concerns: loss of SD card durability, execution slowdown due to IO operations,

energy increase, and safety/security of out-of-core NN data. This chapter aims to address

these concerns.

79

Key observations

This chapter demonstrates the practicality of out-of-core NN on MCUs, for which we

have following observations.

• Swapping overhead is only pronounced in certain NN layers. Only on layers with low

arithmetic intensity, notably fully connected (FC) layers, the swapping delay due to

IO is longer than that of computation; on layers with higher arithmetic intensity, e.g.

convolution (Conv), the swapping delay is dwarfed by that of computation. The swap-

ping overhead is further diminished by MCU’s relative low CPU speed as compared to

its IO speed.

• Swapping rate is throttled by computation, which limits the wear rate of SD cards. As

a common NN structure, IO-bound layers such as FC are spaced by compute-bound

layers such as Conv. As a result, even with continuous NN executions, IO is only

exercised intermittently.

• Most IO traffic for swapping is read This is because a layer’s parameters and input

feature maps are often much larger than its output feature maps. Fortunately, read

traffic does not wear SD cards.

• Hide swapping delays with parallelism at various granularities. Within a layer, the

MCU can exploit tile parallelism, by computing on a tile while transferring others

to/from the storage. Between consecutive NN executions such as on a sequence of

video frames, the MCU can further exploit pipeline parallelism, by overlapping the

swapping IO for an earlier frame with the computation of a later frame.

• Modern MCU hardware often over-provision durability. For example, a 64 GB SD

card can last more than 10 years with 100 GB of daily writes (Section 4.5.4). As such,

MCU can trades the surplus durability as a system resource for accommodating large

NNs. Modern MCUs incorporate rich specialized hardware, e.g., for DMA, hash, and

crypto, which accelerates and secures IO operations.

80

• IO adds marginal energy to an already busy MCU. With an MCU already busy on

computation, most of its hardware components in high power states. Further activating

the SD card increases the system energy moderately.

Quantitative findings

We present SwapNN, a scheduler design that automatically schedules IO and compute

tasks. SwapNN exploits the IO/compute parallelism across tiles, layers, and data frames,

meanwhile respects memory constraint and data dependency. We applied SwapNN to a

diverse set of NNs, MobileNets [122], AlexNet [123], and VGG16 [107], on a Cortex-M7

MCU with 340 KB of SRAM. Our findings are:

• Low to modest speed overhead. NNs with dominant compute-bound layers see neg-

ligible swapping overhead, both in per-frame delay and frame throughput. Compared

to running VGG on an ideal MCU with infinite main memory (SRAM), out-of-core

execution with 512 KB memory sees only 6.9% longer per-frame delay and only 3%

lower throughput. NNs with more IO-bound layers such as AlexNet see notable delay

increase (50%) while insignificant loss in throughput (15.7%) thanks to tile and pipeline

parallelism.

• Large tiles are crucial to low swapping overhead. A key parameter in out-of-core NN is

the tile size, which determines the granularity of IO/compute task. While small tiles

lead to fine-grained tasks and therefore better compute/IO parallelism, they increase

the total amount of IO traffic and the per-byte IO delay. As we will show experi-

mentally, the cost of small tiles overshadows the benefit of parallelism on typical MCU

hardware and NNs,

• Low durability loss. Even with an MCU executing NNs continuously, the write traffic

due to swapping is no more than a few hundred GBs per day, comparable to SD card

writes on a commodity surveillance camera. A 64 GB SD card can sustain such a write

rate for 7.5 years before half of its cells are worn out.

81

• Modest increase in energy consumption. Our worst-case estimation shows swapping

increases system energy by less than 42% compared to running NNs with infinite

memory (all in memory without swapping).

• Out-of-core data can be secured with known mechanisms, such as encryption and hash-

based integrity protection. Specialized hardware on MCUs further reduces their over-

head.

Contributions

Our contributions are as follows.

• We present the first study of applying swapping to NN on MCUs. We analyze the

swapping-generated IO activities and their implications on performance, storage dur-

ability, energy, and data security.

• We explore software/hardware parameters that impact swapping overhead. Towards

lowering swapping overhead, our findings shed light on setting software parameters and

designing MCU hardware (e.g., choosing SRAM size).

• We present a scheduler design that can automatically schedule IO and compute tasks

in parallel. The scheduler exploits a common NN characteristic that an NN often has

a mix of IO-bound and compute-bound layers. It exploits IO/compute parallelism

across NN layers and across data frames while respecting memory constraint and data

dependency.

• We make a case that an MCU of less than ten dollars with hundreds of KB SRAM can

execute large NNs such as VGG16, which expands the scope of tinyML significantly.

82

Table4.1. Normalized arithmetic intensity (N) on NN layers with MCU’s
common speed range (64–480 MOPS [124], [125]) and IO bandwidth range
(10–40 MB/s [126]). NN: VGG16

	

Layer Compute
(MOps)

IO traffic
(MB) N on typical MCUs

block1_conv2 1849.69 6.46 5.96 -- 178.97
block1_pool 3.21 4.01 0.017 -- 0.50
block3_conv3 1849.69 2.19 17.55 -- 526.57
block4_pool 0.40 0.50 0.017 -- 0.50
block5_conv1 462.42 2.56 3.76 --112.89
fc1 102.76 102.79 0.02 -- 0.62
fc2 16.78 16.79 0.02 -- 0.62

4.2 Background and Motivations

4.2.1 A Taxonomy of NN layers

To study the swapping overhead, we focus on a layer’s swapping delay relative to its

computation delay on typical MCUs. The rationale is that as MCU can perform swapping

and computation in parallel, the longer of the two delays will be the layer’s bottleneck.

Study setup

Since the working set of a layer may not fit into SRAM, we split a layer’s input, weight

parameter, and output into small tiles (e.g., 128KB). For compute time, we measure the

time to calculate every output tile, then calculate the layer’s compute time by adding every

output tile’s compute time. For IO time, we measure the time to read input tiles, weight tiles

(once), and output tiles, and then calculate the layer’s IO time by adding them together.

Figure 4.2 shows the IO time and compute time of each layer in three typical CNNs, where

the buffer size for tiles is 128 KB.

Classifying NN layers

In general, arithmetic intensity, as commonly used in HPC [127], characterizes a work-

load’s compute/IO ratio. It is defined as W/Q, where Q is the amount of data to move in the

memory hierarchy and W is the amount of arithmetic operations on the data. By factoring

83

Table4.2. Number of IO-bound and compute-bound layers and quantized
memory footprints of popular NNs [128].

 MobileNets AlexNet VGG16 ResNet18 GoogLeNet

Num. of compute-bound layers 14 5 13 16 21

Num. of IO-bound layers 13 3 2 2 6

Size of feature maps (MB) 10 1 15 5 6.5

Size of weight (MB) 4 62 138 11 13

Memory footprint (MB) 14 63 153 16 19.5

 0

 2

 4

 6

 8

co
n

v
1

p
o
o
l1

re
lu

1

co
n

v
2

p
o
o
l2

re
lu

2

co
n

v
3

co
n

v
4

co
n

v
5

p
o
o
l5

fc
6

fc
7

fc
8IO

/C
o
m

p
u

te
 t

im
e
 (

S
e
c.

)

Compute time IO time

(a) AlexNet (input shape:
227)

 0

 20

 40

 60

 80

b
1

-c
o
n

v
1

b
1

-c
o
n

v
2

b
1

-p
o
o
l

b
2

-c
o
n

v
1

b
2

-c
o
n

v
2

b
2

-p
o
o
l

b
3

-c
o
n

v
1

b
3

-c
o
n

v
2

b
3

-c
o
n

v
3

b
3

-p
o
o
l

b
4

-c
o
n

v
1

b
4

-c
o
n

v
2

b
4

-c
o
n

v
3

b
4

-p
o
o
l

b
5

-c
o
n

v
1

b
5

-c
o
n

v
2

b
5

-c
o
n

v
3

b
5

-p
o
o
l

fc
1

fc
2

p
re

d
s

IO
/C

o
m

p
u

te
 t

im
e
 (

S
e
c.

) Compute time IO time

(b) VGG16 (input shape: 224)

 0

 0.2

 0.4

 0.6

co
n

v
1

d
w

-1
p

w
-1

d
w

-2
p

w
-2

d
w

-3
p

w
-3

d
w

-4
p

w
-4

d
w

-5
p

w
-5

d
w

-6
p

w
-6

d
w

-7
p

w
-7

d
w

-8
p

w
-8

d
w

-9
p

w
-9

d
w

-1
0

p
w

-1
0

d
w

-1
1

p
w

-1
1

d
w

-1
2

p
w

-1
2

d
w

-1
3

p
w

-1
3

p
re

d
sIO

/C
o
m

p
u

te
 t

im
e
 (

S
e
c.

)

Compute time IO time

(c) MobileNet (input shape: 224,
alpha: 1)

Figure4.2. Per-layer compute and IO delays in NNs. (1) Observation: NNs
have a mix of IO-bound and compute-bound layers. (2) Insight: IO time can
be hidden by compute time with parallel execution. (3) Configuration: MCU
is ARM Cortex-M7 @ 216 MHz, tile/buffer size is 128 KB, Transcend SD card
size is 32 GB.

in an MCU’s CPU speed (Scpu) and IO bandwidth (SIO), we define N = (W/SCP U)/(Q/SIO)

as the normalized arithmetic intensity on MCU. Of a given layer, N > 1 means swapping

incurs less delay than computation, i.e, a compute-bound layer; N < 1 means swapping

incurs longer delay, i.e. an IO-bound layer.

On modern MCUs with simple CPU cores, SCP U is primiarly determined by the CPU

clockrate; it ranges from 64 MOPS to 480 MOPS [124], [125]. SIO is jointly determined

by the MCU’s DMA bandwidth and the SD card bandwidth, ranging from 10 MB/s to 40

MB/s as reported in the literature [126]. With these values, common NN layers fall into

three distinct categories per their normalized arithemetic intensity (N).

(1) A majority of compute-bound layers (N >> 1). Notable examples are Conv layers

known for their high complexity. In the example of VGG16 (Table 4.1), N for the Conv

layers far exceeds 1 even with a high CPU clockrate and slow IO. They often dominate an

NN’s execution time (51% – 90%), as exemplified by the three NNs in Figure 4.2 . On these

layers, the computation delay overshadows the IO delay.

84

 0

 10

 20

 30

 40

alexnet vgg mobilenet

600

IO
/c

o
m

p
u
te

 t
im

e
 (

se
c)

Compute time of compute-bound layers
IO time of compute-bound layers
Compute time of io-bound layers

IO time of io-bound layers

Figure4.3. IO/compute delays in out-of-core NN execution. The total exe-
cution delay is dominated by compute in the compute-bound layers and IO in
the IO-bound layers.

(2) Some IO-bound layers (N < 1). Examples include fully connected (FC) and depth-

wise convolutional layers (DW). These layers perform light computation over large volumes

of feature maps and weight parameters. Of all layers in an NN, they are often minorities (e.g.

2 out of 21 in VGG16). With out-of-core execution, the IO delay exceeds the computation

delay by up to 10× (e.g. fc1 in Table 4.1 and Figure 4.2b).

(3) Other layers with insignificant overheads, e.g., Relu and Maxpooling. These layers have

low complexity and contribute a tiny fraction of data to move and to compute (0.3%-0.9%)

for an NN. As such, their swapping overhead is insignificant.

Common pattern of NN layers

Based on the NN layer classification, there are two common patterns in typical CNNs:

(1) CNNs have a mix of compute-bound and IO-bound layers, and the number of

compute-bound layers is usually larger than other layers. Table 4.2 shows the number

of compute-bound and IO-bound layers in typical CNNs. For instance, MobileNets [122],

Alexnet [123], VGG16 [107], ResNet18 [129], and GoogLeNet [105] have 14/13, 5/3, 13/2,

16/2, and 21/6 of compute-bound/IO-bound layers respectively.

(2) The overall CNN execution time is dominated by the compute time of compute-bound

layers and the IO time of IO-bound layers. Figure 4.3 shows the IO time and compute

85

of IO-bound/compute-bound layers. For instance, compute time of compute-bound layers

dominate the overall time in Alexnet and VGG. For Mobilenet, the IO-time of IO-bound

layers dominates the overall time, because Mobilenet is using specially point-wise and depth-

wise convolutions [122], which have lower compute complexity than general convolutional

layers.

Insights: Towards lowering the swapping overhead, we exploit the aforementioned pat-

tern of NN layers. By executing compute-bound layers and IO-bound layers in parallel, we

hide the IO delays behind the compute delays.

4.2.2 The System Model

MCU hardware

We assume the following hardware components: (1) a CPU with clockrate from tens

of MHz to a few hundred MHz, as exemplified by Arm Cortex M3 and M7; (2) on-chip

SRAM: from tens of KBs to several MBs; (3) on-chip NOR flash: byte-addressable, read-

only memory no more than a few MBs; (4) cheap external storage, e.g. a micro SD card

ranging from tens of GBs to a few hundred GBs; (5) a DMA engine, for moving data between

SRAM and external storage without CPU involved; (6) optionally, on-chip accelerators for

computing crypto and hash functions.

Major vendors ship numerous MCU models meeting the above conditions. Examples

include the STM32 MCU family from STMicroelectronics [130] and the LCP series from

NXP Semiconductors [131]. They are priced at $1-$20 per unit.

NN workloads & metrics

We motivate our study by considering periodic NN inference on video/audio data as a

sequence of frames captured by MCUs at run time. To characterize inference speed, we

consider both the inference delay of each frame and throughput as the number of frames

processed per second. MCU applications may be sensitive to either metric or both. For

instances, keyword spotting is sensitive to inference delays [132] and car counting benefits

from high throughput [117].

86

Frame 0 FCConv

FCConvFrame 1

Frame 0
Conv

CPU

W R

Frame 0
Conv

W

Frame 1
Conv

W
/
F

R
/
C

Fr0
FC

W/
C

Frame 1
Conv

Fr0
FC

R W R WRR/F

Tile0

…

… … …

Tile parallelism in a layer Pipeline parallelism across frames

…

IO …

Time

Tile1

Figure4.4. An example of out-of-core NN execution, showing Conv (compute-
bound) and FC (IO-bound) layers. Note: gray/green boxes show the computa-
tion of NN layers in NN layers/frames, and yellow boxes show the IO operation
in NN layers/frames.

Out-of-core NN executions

We consider the following swapping strategy. An NN’s parameters are pre-stored on the

external flash. Given an input frame, the MCU executes the NN’s layers in sequence. It

processes a layer in tiles, in case the layer’s memory footprint exceeds MCU’s main memory:

to do so, the MCU loads to the main memory a tile of parameters and a tile of input feature

maps, computes a tile of output feature maps in memory, and writes back the output to the

external flash. Altogether, the input and output tiles shall simultaneously fit in the main

memory.

As shown in Figure 4.4 , MCU extracts CPU/IO parallelism for hiding IO delays. (1)

Tile parallelism within an NN layer : while computing an output tile Tile0, MCU can pre-

load from flash the input tiles for computing the next output tile Tile1 ; while writing back

the completed Tile0 back to flash, MCU can compute Tile1 simultaneously. (2) Layer

parallelism: in a similar fashion, MCU can execute an earlier layer’s computation with a

latter layer’s IO simultaneously. (3) Pipeline parallelism across data frames: MCU can

execute compute-bound and IO-bound layers for different frames in parallel, as these layers

exercise complementary resources, namely CPU and IO bandwidth. As shown in Figure 4.4 ,

MCU swaps frame 0’s FC layer while computes on frame 1’s Conv layer.

87

Compute task Task dependencyIO task Layer boundary

Frame 1

Frame 2
Ready IO tasks

Ready Compute tasks
IO

Compute

Ready tasks, whose
prior tasks have
finished, from different
layers and frames

Selected tasks will be
executed in parallel based on
priority if their memory
buffers have been allocated
successfully

Dependency graphs of IO/compute tasks in two consecutive frames

Select

INIT READY SELECTED FINISHED

Release
dependencies
and free
memory

An NN with
3 layers

Figure4.5. Overview of SwapNN: scheduling IO/compute tasks across tiles,
layers, and frames in parallel according to dependencies, priorities, and memory
constraints.

4.3 SwapNN: Automatically Scheduling IO/Compute Tasks in Parallel

In order to reduce IO overhead in swapping, we present SwapNN, a scheduler design that

automatically schedules IO tasks and compute tasks across tiles, layers and frames in parallel

based on NN characteristics, meanwhile respects memory constraint and data dependency.

4.3.1 Challenges

As shown in Figure 4.4 , MCU ideally could extract CPU/IO parallelism for hiding IO

delays. However, such ideal parallel scheduling sequence is difficult to find because it must

meet the following requirements at the same time: (1) the scheduler must automatically

identify what tiles should be executed in parallel according to their dependencies and relative

IO/compute time; (2) the working set of tiles being executed in parallel must be smaller than

SRAM at every single moment; (3) the parallel sequence should keep both MCU core and

IO bandwidth fully utilized to avoid either of them from idling.

Furthermore, divers NN layers with different parameters and diverse SRAM sizes on

MCUs create a huge space of choices for deciding parallel sequence for IO/compute tasks,

which makes parallel scheduling even more difficult.

88

4.3.2 SwapNN Design

To address the above challenges, we present the design of SwapNN, describing how to de-

cide tile size, manage memory buffers, and schedule IO/compute tasks in parallel, meanwhile

respect memory constraint, data dependency, and task priority.

Tiling NN layers and managing memory buffers

A key question in swapping is to decide tile sizes for NN layers based on SRAM size.

SwapNN splits SRAM size into fixed number of buffers, and then calculates tile sizes based

on layer parameters and buffer size, which are totally transparent to users’ application code.

Specifically, the input tile size depends on the output tile size, so they will be decided together

and the larger one of them must be smaller than buffer size. Weight tile size doesn’t depend

on input or output, so it is calculated just according to weight size and buffer size.

As show in Algorithm 1 & 2 , SwapNN equally splits SRAM into buffers with fixed size,

and creates three separate memory buffer pools for input feature maps, weight parameters,

and output feature maps, who have 1/4, 1/2, and 1/4 of total memory buffers. The reason

why SwapNN creates separate memory pools, instead of one pool, is that single memory

pool for input/weight/output tiles leads to deadlock in parallel execution. For example, all

memory buffers may be allocated to input and weight tiles, so execution cannot continue

because of no memory buffers for output tiles. The rational to choose 1/4, 1/2, and 1/4 is

based on the minimal parallel working set of computing one output tile, which includes one

input tile, at least two weight tiles, and one output tile.

NN task and graph

As shown in Figure 4.5 , SwapNN defines two types of tasks: IO task and compute task.

An IO task reads/writes tiles from/to SD, and a compute task computes an output tile based

on corresponding input/weight tiles.

SwapNN defines an NN as a computation graph G = (V, E), where V is the node set

of IO and compute tasks, and E is the edge set representing dependencies. For instance, a

89

compute task depends on IO tasks that read input/weight tiles, and a write IO task depends

on a compute task that finishes computing output tile. Every task has a set of properties,

e.g., in-degree counter indicating the number predecessors of current task, memory buffer

and tile sizes, execution time, and execution priority.

Two things that are worth noting in NN graph: (1) we enforce dependencies between

an input tile and multiple weight tiles to ensuring reading input tile first, so that reading

other weight tiles can happen in parallel with computing an output tile. (2) each output tile

depends on all weight tiles, so weight tiles may be read multiple times (once for each output

tile) during execution.

As show in Algorithm 1 & 2 , BuildGraph() takes NN architecture and SRAM size as

parameters. For each layer, SwapNN: (1) calculates tile sizes for input/weight/output based

on memory buffer size; (2) creates read IO tasks for input and weight tiles, compute tasks for

computing output tiles, and write IO tasks for output tiles; (3) inserts IO/compute tasks to

execution graph based on dependencies; (4) sets task properties, including execution time,

memory buffer size, inDegree counter, and priority.

Task state

As shown in Figure 4.5 , SwapNN defines the following states for every IO/compute task

to manage their lifecycle:

• INIT A task is set to INIT state when building the execution graph based on NN

architecture, layer parameters, SRAM size, buffer size, and dependency.

• READY A task becomes READY when all of its predecessors have finished, at which

point the in-degree counter of the task drops to zero.

• SELECTED A task switches to SELECTECD from READY when its memory buffers

has been successfully allocated, e.g., an input/weight buffer for a read IO task or an

output buffer for a compute task.

90

• FINISHED When a IO/compute task is finished, it switches to FINISHED state, at

which point SwapNN decreases the in-degree counter by one for the task’s all successors

to release the dependency and free memory buffers accordingly.

Task priority

When there are multiple READY tasks from multiple layers and frames, the tasks from

earlier frames/layers should have higher priority to be executed to guarantee per frame

delay. SwapNN assigns priority to tasks based on their frame number and layer number

when creating these tasks, and schedules them at runtime according to the priority.

Scheduling NN tasks

Given tiling strategies of NN layers, SwapNN finds the optimal parallel sequences for IO

and compute tasks based on their dependencies, available memory buffers, and priority. One

goal of scheduling is to keep both MCU and IO busy to avoid either of them from idling, to

achieve low latency and high throughput.

As show in Algorithm 1 &2 , SwapNN maintains two tasks queues, ReadyIO and ReadyCP,

for READY IO tasks and READY compute tasks respectively. READY tasks in these two

queues are sorted based on their priority, and the one with the highest priority will be

scheduled each time.

ScheduleIOTask() keeps looking for IO tasks in ReadyIO queue in priority order. For

write IO tasks that do not require memory allocation, SwapNN issues write DMA operation,

and then frees memory buffers and releases the dependencies for the task’s successors. For

read IO task, SwapNN first tries to allocate memory buffer for it. If the allocation succeeds,

then issue read DMA operation and release the dependencies for the task’s successors.

ScheduleComputeTask() keeps looking for compute tasks in ReadyCP queue in priority

order. It first tries to allocate memory buffers to store computing output. If the allocation

succeeds, SwapNN executes the compute task, release the dependencies for its successors,

and free memory buffers of input/weight tiles.

91

Algorithm 1: Scheduling IO/compute tasks in parallel
Input : NN architecture and SRAM size
Layers[L] = parameters of L layers in an NN
ReadyIO = a set of READY IO tasks sorted by priority
ReadyCP = a set of READY Compute tasks sorted by priority
Function BuildGraph(Layers, SRAMSize):

G = empty graph
for Layer ∈ Layers do

Calculate tile sizes for input, weight, and output;
for all input tiles do

Insert an IO task for reading input tile to G;
for all weight tiles do

Insert an IO task for reading weight tile to G;
Insert a Compute task to G;

Insert an IO task for writing output tile to G;
Set the root IO Task to READY and insert into ReadyIO;
return G;

Function ScheduleIOTask(G):
while readyIO is NOT empty() do

for iotask in ReadyIO do // in priority order
if iotask is WRITE then

Execute the write iotask;
ReleaseSuccessors(G, iotask);
freeMemoy(iotask.buffptr);

else // iotask is READ
buffptr = AllocateMemory();
if buffptr != NULL then

Execute the READ IO task;
ReleaseSuccessors(G, iotask);

Function ScheduleComputeTask(G):
while readyCP is NOT empty() do

for cptask in ReadyCP do // in priority order
buffptr = AllocateMemory(); // for output tile
if buffptr != NULL then

Execute the Compute task;
ReleaseSuccessors(G, cptask);
freeMemory(); // for input and weight tiles

Function ReleaseSuccessors(G, task):
for suctask in task’s successors do

if suctask.inDegree - - == 0 then
insert suctask to ReadyIO or ReadyCP;

92

Algorithm 2: Scheduling IO/compute tasks in parallel (continued)
freeListIn, freeListWt, freeListOut = lists of free memory buffers for input, weight, and
output tiles

Function AllocateMemory(freeList):
if freeList is empty then

return NULL;
buffptr = select one buffer from freeList;
return buffptr;

Function FreeMemory(buffptr, freeList):
insert buffptr to freeList;

93

With two separate threads running ScheduleIOTask() and ScheduleComputeTask(),

SwapNN can schedule any ready IO and compute tasks in parallel across tiles, NN lay-

ers, and data frames, meanwhile respects memory constraint, data dependency, and task

priority. Therefor, the IO overhead in swapping can be reduced.

4.4 Implementation & Methodology

Implementation

We implement swapping kernels for typical NN layers to compute tiles on MCU atop

CMSIS-NN library [133], and currently supported layers include Convolution, ReLu, Pooling,

Fully Connected, Depth-wise convolution, and Point-wise convolution. We implement the

scheduler in C++, which can run on desktop to find the best parallel scheduling sequence

without deploying on MCUs.

Studied NNs

We study three representative NNs, whose memory footprints range from sveral-MB to

hundred-MB (with quantization). As shown in Table 4.2 : MobileNet has large feature maps

but small weight parameters, AlexNet has small feature maps but large weight parameters,

and VGG16 has 1000× larger memory footprint than MCUs’ SRAM size.

Input data

We use synthetic images as the input. Note that the input contents do not affect NN

execution time/efficiency, hence our measurement results.

Methodology

In order to understand how swapping affects the latency, throughput, SD durability,

energy consumption, and security, we do the following steps for all three NNs: (1) Given

SRAM size and buffer size, calculate the tile sizes for all layers of an NN; (2) Based on tile

sizes of layers, we run the swapping kernels as microbenchmarks on target MCU hardware

94

 0

 400

 800

 1200

16 32 64 128

La
te

n
cy

 (
se

c)

Buffer/tile size (KB)

Compute only w/o swapping
IO only w/ swapping

Compute/IO sequentially w/ swapping
Compute/IO in parallel w/ swapping

(a) VGG, SRAM
512KB

 0

 400

 800

 1200

16 32 64 128

La
te

n
cy

 (
se

c)

Buffer/tile size (KB)

Compute only w/o swapping
IO only w/ swapping

Compute/IO sequentially w/ swapping
Compute/IO in parallel w/ swapping

(b) VGG, SRAM 1MB

 0

 400

 800

 1200

16 32 64 128

La
te

n
cy

 (
se

c)

Buffer/tile size (KB)

Compute only w/o swapping
IO only w/ swapping

Compute/IO sequentially w/ swapping
Compute/IO in parallel w/ swapping

(c) VGG, SRAM 4MB

 0

 400

 800

 1200

16 32 64 128

La
te

n
cy

 (
se

c)

Buffer/tile size (KB)

Compute only w/o swapping
IO only w/ swapping

Compute/IO sequentially w/ swapping
Compute/IO in parallel w/ swapping

(d) VGG, SRAM 8MB

 0

 20

 40

 60

16 32 64 128

La
te

n
cy

 (
se

c)

Buffer/tile size (KB)

Compute only w/o swapping
IO only w/ swapping

Compute/IO sequentially w/ swapping
Compute/IO in parallel w/ swapping

(e) AlexNet, SRAM
512KB

 0

 20

 40

 60

16 32 64 128

La
te

n
cy

 (
se

c)

Buffer/tile size (KB)

Compute only w/o swapping
IO only w/ swapping

Compute/IO sequentially w/ swapping
Compute/IO in parallel w/ swapping

(f) AlexNet, SRAM
1MB

 0

 20

 40

 60

16 32 64 128

La
te

n
cy

 (
se

c)

Buffer/tile size (KB)

Compute only w/o swapping
IO only w/ swapping

Compute/IO sequentially w/ swapping
Compute/IO in parallel w/ swapping

(g) AlexNet, SRAM
4MB

 0

 20

 40

 60

16 32 64 128

La
te

n
cy

 (
se

c)

Buffer/tile size (KB)

Compute only w/o swapping
IO only w/ swapping

Compute/IO sequentially w/ swapping
Compute/IO in parallel w/ swapping

(h) AlexNet, SRAM
8MB

 0
 40
 80

 120
 160

1
6

3
2

6
4

1
2

8La
te

n
cy

 (
se

c)

Buffer/tile size (KB)

Compute only w/o swapping
IO only w/ swapping

Compute/IO sequentially w/ swapping
Compute/IO in parallel w/ swapping

(i) Mobilenet, SRAM
512KB

 0
 40
 80

 120
 160

16 32 64 128

La
te

n
cy

 (
se

c)

Buffer/tile size (KB)

Compute only w/o swapping
IO only w/ swapping

Compute/IO sequentially w/ swapping
Compute/IO in parallel w/ swapping

(j) Mobilenet, SRAM
1MB

 0
 40
 80

 120
 160

16 32 64 128

La
te

n
cy

 (
se

c)

Buffer/tile size (KB)

Compute only w/o swapping
IO only w/ swapping

Compute/IO sequentially w/ swapping
Compute/IO in parallel w/ swapping

(k) Mobilenet, SRAM
4MB

 0
 40
 80

 120
 160

16 32 64 128

La
te

n
cy

 (
se

c)

Buffer/tile size (KB)

Compute only w/o swapping
IO only w/ swapping

Compute/IO sequentially w/ swapping
Compute/IO in parallel w/ swapping

(l) Mobilenet, SRAM
8MB

Figure4.6. Swapping latency of NNs with different SRAM sizes and buffer
sizes. Observation: swapping incurs negligible or modest delay in latency.

(TM32F746NG-Discovery board: ARM Cortex-M7 at 216 MHz, 340 KB SRAM, 32 GB SD

card), and then measure the IO/compute time for tiles; (3) The scheduler takes NN architec-

ture/parameters, SRAM size, buffer/tile sizes, IO/compute time of tiles as parameters, and

then automatically finds out the optimal parallel scheduling sequences for IO and compute

tasks across layers and frames.

For latency, we measure the time to process one NN frame. For throughput, we measure

the time to process 10 consecutive NN frames in parallel and then calculate the throughput.

For energy, we measure the worst-case energy consumption by keep running IO and compute

tasks simultaneously.

95

4.5 Findings

This section focus on the analysis and findings of out-of-core NN on MCUs by answering

the following questions:

• What are the parameters and tradeoffs that affect swapping performance?

• How does swapping affect per-frame latency?

• How does swapping affect throughput?

• Will swapping wear out SD soon?

• How much extra energy does swapping consume?

• Does swapping incur security issues?

4.5.1 Software/Hardware Parameters and Their Tradeoffs

There are multiple hardware/software parameters that affect the swapping performance,

including SRAM size, buffer/tile size, the number of buffers, NN’s memory footprint, and the

ratio of compute-bound and IO-bound layers in NNs. We analyze each of them as following:

• SRAM size: Large SRAM leads to large memory buffers or more memory buffers, but

also increases cost and energy consumption.

• Buffer/tile size: Tile is a small chunk of input/weight/output, and it decides the

granularity of IO/compute task. Small tiles lead to fine-grained tasks and therefore

better compute/IO parallelism, but they increase the total amount of IO traffic/time.

Buffers are used to store tiles, and tile size is calculated based on buffer size. We treat

them the same in discussion.

• The number of memory buffers: The more, the better. More memory buffers allows

more tiles co-existing in SRAM, so more tasks can be executed in parallel.

• NN’s memory footprint: It’s decided by NN architecture. NNs with larger memory

footprint see higher IO overhead in swapping due to more IO traffic, and vice versa.

96

 0

 20000

 40000

 60000

 80000

16 32 64 128

N
u
m

b
e
r

o
f

ta
sk

s

Buffer/tile size (KB)

Num. of Compute tasks
Num. of IO tasks

(a) VGG

 0

 20000

 40000

 60000

16 32 64 128

N
u
m

b
e
r

o
f

ta
sk

s

Buffer/tile size (KB)

Num. of Compute tasks
Num. of IO tasks

(b) AlexNet

 0

 1000

 2000

 3000

16 32 64 128

N
u
m

b
e
r

o
f

ta
sk

s

Buffer/tile size (KB)

Num. of Compute tasks
Num. of IO tasks

(c) Mobilenet

Figure4.7. Number of IO/compute tasks in NNs under different buffer/tile
sizes. Observation: the number of IO/compute tasks drops significantly as the
buffer/tile size increases.

• The ratio of compute-bound and IO-bound layers in NNs. It’d decided by NN architec-

ture and affects the IO overhead in swapping. NNs with more compute-bound layers,

the IO overhead is lower since IO time can be hidden by relatively longer compute

time. In contrast, NNs with more IO-bound layers, the IO overhead is higher since the

relatively longer IO time cannot be hidden by compute time.

Tradeoffs in buffer/tile size, the number of buffers, IO traffic/time, and parallel-
ism

Given SRAM size, the buffer/tile size and the number of buffers can be decided, and

their tradeoffs effects overall IO traffic/time and parallelism in swapping.

• Large buffer/tile size leads to low IO traffic/time, but limits execution parallelism:

Given an NN and SRAM size, large buffer/tile size leads to small number of tiles,

and hence low IO traffic. The overall IO time is short due to less IO traffic, but the

execution parallelism is low due to small number of buffers.

• Small buffer/tile size leads to high execution parallelism, but increases overall IO traf-

fic/time: Given an NN and SRAM size, small buffer/tile leads to large number of

tiles, and hence high IO traffic. The overall IO time is long due to high IO traffic and

more fine-grained IO tasks, but the execution parallelism is high due to large number

of memory buffers, which allow more tiles to co-exist in memory and be processed in

parallel.

97

Experimental insights

We study how these parameters affect swapping performance on MCU with experiments,

and we have the following findings:

• Increasing buffer/tile size can significantly reduce the number of IO tasks and overall

IO time.

The number of IO tasks drops as buffer/tile size increases. Figure 4.7 shows the number

of IO/compute tasks of NNs under different buffer sizes. For instance, when buffer/tile

size increases from 16 KB to 128 KB, the number of IO tasks (Grey bars in Figure 4.7)

of VGG, AlexNet, and MobileNet drops from 85024 to 2248, from 68040 to 5390, and

from 3190 to 870 separately.

Overall IO time drops as buffer/tile size increases. As the IO time (gray bar) shown

in Figure 4.6a , Figure 4.6e , and Figure 4.6i , where SRAM size is 512 KB. When

buffer/tile size increases from 16 KB to 128 KB, the overall IO time of VGG, AlexNet,

and MobileNet drops from 257.824s to 52.4849s, from 27.4765s to 13.6731s, and from

167.183s to 10.6669s separately. The same pattern can also be observed when using

larger SRAM sizes in Figure 4.6 .

• Parallel execution can reduce IO overhead, especially when there are larger numbers of

buffers.

When there are more memory buffers, more IO/compute tasks can be executed in par-

allel, and hence more IO time can be hidden by compute time. For instance, the white

and yellow bars in Figure 4.6a show the sequential execution time and parallel execu-

tion time under different buffer sizes (different number of buffers). When buffer/tile

size increases from 16 KB to 128 KB, the number of buffers drops from 32 to 4, and

IO time reduced by parallel execution drops from 251s to 10s (compared to sequential

execution). The same pattern can also be observed in other NNs in Figure 4.6 .

• Given SRAM size, comparing to small buffer/tile size with high parallelism, large buf-

fer/tile size with low parallelism incurs much lower IO overhead in swapping.

98

Both large buffer/tile size (small number of buffers) and high parallelism can reduce

IO overhead, but they are in conflict and cannot be achieved at the same time. We

observe that the former one can reduce more IO time then the later one.

MobileNet is IO-intensive NN, parallel execution cannot reduce IO overhead much even

with more buffers (smaller buffer/tile size, e.g, 16 KB). However, increasing buffer size

can reduce IO time from 167s to 16s when buffer size increases from 16KB to 128KB,

as shown in Figure 4.6i .

The same pattern also can be observed in AlexNet and VGG, but benefit of choos-

ing large buffer/tile size is not as significant as MobileNet because they are less IO-

intensive. For these two NNs, parallel execution plays a bigger role to hide IO time

when buffer size is small, while low overall IO tasks/time plays a bigger role when buffer

size is large. Overall, large buffer/tile size still overshadows the benefit of parallelism.

4.5.2 Impact on Per-frame Delay

Implication: With large buffer/tile size, NNs with a small fraction of IO-bound layers

see negligible delay increase; NNs with more IO-bound layers see modest delay increase.

Within a compute-bound layer, MCU can execute IO and computation for consecut-

ive tiles simultaneously (as these tiles are independent), completely hiding the IO delay

behind the much longer computation delay. Within an IO-bound layer, IO and compute

for consecutive tiles can happen simultaneously as well, but the long IO delay cannot be

totally hidden by relatively shorter compute delay. For other layers, e.g. relu/pooling, the

IO/compute delay is insignificant.

As such, the increased delay of an NN due to swapping is mainly determined by the

proportion of IO-bound layers’ IO delay to all layers’ total compute delay. The increased

delay for NNs with less IO-bound layers is negligible. As VGG shown in Table 4.2 , only

2 out of 13 layers are IO-bound, leading to only about 6.9% increased delay as shown in

Figure 4.6a – Figure 4.6d (Yellow vs. Black bars). The increased delay for NNs with more

IO-bound layers is modest. As AlexNet and MobileNet show in Table 4.2 , 3 of 5 and 13 of

28 layers are IO-bound, leading to 50% and 150% increased delay when buffer/tile size is as

99

large as 128 KB, as shown in Figure 4.6e – Figure 4.6l (Yellow vs. Black bars). Overall,

the increased delay due to swapping is negligible for compute-intensive NNs and modest for

IO-intensive NNs.

Implication:

Insight for hardware designer: increasing SRAM size only increases cost, but cannot

improve the latency much in swapping.

As shown in Figure 4.6 , the latency of VGG, AlexNet, and MobileNet does not decrease

much as the SRAM size increases. For given buffer size, using larger SRAM can increase

the number of buffers, and hence can increase parallelism. However increasing SRAM size

and the number of buffers cannot help much, because the gap between the number of tasks

and the number of buffer is too large (100× gap). For instance, the number of IO tasks in

MobileNet is 55877 (Figure 4.7c) when buffer size is 16 KB, but the number of buffers only

increases from 32 to 512 (100× smaller than 55877) when SRAM size increase from 512KB

to 8MB.

4.5.3 Impact on NN Throughput

Implication: With large buffer/tile size, NNs see negligible or modest throughput loss.

NNs with negligible delay increase will also see negligible throughput loss when processing

a stream of frames, since the IO time can be hidden by the relatively longer compute time.

For instance, the throughput loss is only 3% for VGG as shown in Figure 4.8d , where

buffer/tile size is 128 KB and SRAM size is 8 MB.

For those NNs seeing higher delay increase, the throughput loss is relatively higher, since

the longer IO time cannot hidden by the relatively shorter compute time. Although MCU can

reduce throughput loss by exploiting parallelism, but not much due to the limited number

of buffers. For instance, the throughput loss for AlexNet and MobileNet is 15.7% and 46.4%

as shown in Figure 4.8h and Figure 4.8l where buffer size is 128 KB and SRAM size is 8 MB.

100

 0

 5×10-5

 0.0001

 0.00015

1
6

3
2

6
4

1
2

8

T
h
ro

u
g
h
p
u
t

fr
a
m

e
s/

se
c

Buffer/tile size (KB)

Compute only w/o swapping
Compute/IO in parallel w/ swapping

(a) VGG, SRAM
512KB

 0

 5×10-5

 0.0001

 0.00015

1
6

3
2

6
4

1
2

8

T
h
ro

u
g
h
p
u
t

fr
a
m

e
s/

se
c

Buffer/tile size (KB)

Compute only w/o swapping
Compute/IO in parallel w/ swapping

(b) VGG, SRAM 1MB

 0

 5×10-5

 0.0001

 0.00015

1
6

3
2

6
4

1
2

8

T
h
ro

u
g
h
p
u
t

fr
a
m

e
s/

se
c

Buffer/tile size (KB)

Compute only w/o swapping
Compute/IO in parallel w/ swapping

(c) VGG, SRAM 4MB

 0

 5×10-5

 0.0001

 0.00015

1
6

3
2

6
4

1
2

8

T
h
ro

u
g
h
p
u
t

fr
a
m

e
s/

se
c

Buffer/tile size (KB)

Compute only w/o swapping
Compute/IO in parallel w/ swapping

(d) VGG, SRAM 8MB

 0
 0.001
 0.002
 0.003
 0.004
 0.005

1
6

3
2

6
4

1
2

8

T
h
ro

u
g
h
p
u
t

fr
a
m

e
s/

se
c

Buffer/tile size (KB)

Compute only w/o swapping
Compute/IO in parallel w/ swapping

(e) AlexNet, SRAM
512KB

 0
 0.001
 0.002
 0.003
 0.004
 0.005

1
6

3
2

6
4

1
2

8

T
h
ro

u
g
h
p
u
t

fr
a
m

e
s/

se
c

Buffer/tile size (KB)

Compute only w/o swapping
Compute/IO in parallel w/ swapping

(f) AlexNet, SRAM
1MB

 0
 0.001
 0.002
 0.003
 0.004
 0.005

1
6

3
2

6
4

1
2

8

T
h
ro

u
g
h
p
u
t

fr
a
m

e
s/

se
c

Buffer/tile size (KB)

Compute only w/o swapping
Compute/IO in parallel w/ swapping

(g) AlexNet, SRAM
4MB

 0
 0.001
 0.002
 0.003
 0.004
 0.005

1
6

3
2

6
4

1
2

8

T
h
ro

u
g
h
p
u
t

fr
a
m

e
s/

se
c

Buffer/tile size (KB)

Compute only w/o swapping
Compute/IO in parallel w/ swapping

(h) AlexNet, SRAM
8MB

 0

 0.005

 0.01

 0.015

1
6

3
2

6
4

1
2

8

T
h
ro

u
g
h
p
u
t

fr
a
m

e
s/

se
c

Buffer/tile size (KB)

Compute only w/o swapping
Compute/IO in parallel w/ swapping

(i) Mobilenet, SRAM
512KB

 0

 0.005

 0.01

 0.015

1
6

3
2

6
4

1
2

8

T
h
ro

u
g
h
p
u
t

fr
a
m

e
s/

se
c

Buffer/tile size (KB)

Compute only w/o swapping
Compute/IO in parallel w/ swapping

(j) Mobilenet, SRAM
1MB

 0

 0.005

 0.01

 0.015

1
6

3
2

6
4

1
2

8

T
h
ro

u
g
h
p
u
t

fr
a
m

e
s/

se
c

Buffer/tile size (KB)

Compute only w/o swapping
Compute/IO in parallel w/ swapping

(k) Mobilenet, SRAM
4MB

 0

 0.005

 0.01

 0.015

1
6

3
2

6
4

1
2

8

T
h
ro

u
g
h
p
u
t

fr
a
m

e
s/

se
c

Buffer/tile size (KB)

Compute only w/o swapping
Compute/IO in parallel w/ swapping

(l) Mobilenet, SRAM
8MB

Figure4.8. Swapping throughput of NNs under diffent SRAM sizes and buffer/tile sizes.

101

Implication:

Cross-frame (pipeline) parallelism cannot improve throughput much due to the limited

number of buffers, even if increasing SRAM size.

A common pattern in an NN is that one or more compute-bound layers followed by one or

more IO-bound layers, i.e. a pipeline with interleaved compute-bound and IO-bound stages.

For instance, the AlexNet in Figure 4.2a , conv1-5 (compute-bound stage) is followed by

fc6-8 (IO-bound stage). When executing NN on a sequence of frames, MCU can overlap

IO/compute-bound stages of adjacent frames, hence hiding the IO delays that cannot be

hidden at the layer/tile levels with each frame. As shown in Figure 4.9 , MCU can swap for

frame 0’s FC layers while computing Frame 1’s Conv layers, leading high MCU/IO utilization

and throughput.

However, such parallelism that overlaps IO/compute-bound stages in adjacent frames

cannot be fully exploited on MCUs with tiny SRAM due to the limited number of memory

buffers. As Figure 4.8 shown, the throughput of VGG, AlexNet, and Mobilenet does not

increase much as the SRAM size becomes larger. Because of the same reason as in latency

above, the gap between the number of tasks and the number of buffers is too large (1000×).

For instance, the number of IO tasks in MobileNet is 558770 (10 frames, 55877 IO tasks

in each frame shown in Figure 4.7c) when buffer size is 16 KB, but the number of buffers

only increase from 32 to 512 (1000× smaller than 558770) when SRAM size increases from

512 KB to 8 MB. The small number of buffers have been consumed by one frame, so other

frames cannot get buffers to be executed in parallel.

Implication:

Increasing buffer/tile size leads to higher throughput than increasing parallelism.

Same as the tradeoff in latency, given SRAM size: if the buffer/tile size is large (the

number of buffer is small), the overall IO time is shot but parallelism is low; if the buffer/tile

size is small (the number of buffer is large), the overall IO time is long but the parallelism

is high. Overall, large buffer/tile size leads to higher throughput than small buffer/tile with

high parallelism, especially for NNs that have more IO-bound layers. For instance, MobileNet

102

has more IO-bound layers, and its throughput increase 20× when buffer size increases from

16 KB to 512 KB (although parallelism drops due to less buffers) as shown in Figure 4.8l .

While VGG and AlexNet have relatively less IO-bound layers, and their throughput does

not change much when increasing buffer size, as shown in Figure 4.8d and Figure 4.8h . The

reason is that parallelism is high when buffer/tile size is small, and overall IO time is short

when buffer size is large.

4.5.4 Impact on Flash Durability

Implication:

SD card sees negligible durability loss, and its lifetime could be years or tens of years with

swapping.

The amount of data written to SD card per frame is not large because NN layers are

read-most, and the write frequency is low due to the long execution time on slow MCU.

Modest write rate

For a given NN and SRAM size, the amount of data written to SD card is determined

by the frame rate (reciprocal of delay per frame) and the amount of data to write per

frame (upper bound is the sum of output feature maps of all layers), which have negative

correlations: (1) for large NNs, frame rate is low but the amount of data to write per frame

is large; (2) for small NNs, frame rate is high but the amount of data to write per frame

is small. Therefore, no matter an NN is large or small, the data written per day won’t be

large. For instance, swapping writes only 2.0/2.8 GB for VGG16/AlexNet per day. Even for

the extreme case, MobileNet, which has high frame rate and relatively large feature maps to

write, swapping writes 123 GB per day.

SD card has long lifetime even with swapping

SD card is build up of many cells, which have limited write cycles [134]. As the capacity

is becoming larger [135], the durability budget is keeping increasing. The study [136] keeps

103

Conv Conv2 Conv3 Conv4

Fc6 Fc7

Compute:

IO:

Time line:

Frame 0 Frame 1

Conv1 Conv2 Conv3 ConvCompute:

Fc6 Fc6 Fc7 Fc7IO:

Tile parallelism in each layer

Tile parallelism in each layer + Pipeline parallelism across frames

conv1 Fc6relu1pool1 Fc7 Fc8conv2 relu2pool2 conv3 conv4 conv5 pool5

AlexNet:

Figure4.9. AlexNet: tile parallelism for low delay and pipeline parallelism for
high throughput.

writing 24/7 as fast as possible to 40 4 GB SD cards, and 1, 20, and 40 of 40 cards observe

the first failures after writing 6.5 TB, 9 TB, and 12.5 TB of data to them. Based on their

results, the first cell is only expected to fail on a 64 GB SD card after running MobileNet,

AlexNet, and VGG16 for 2.4 – 4.5, 104 – 200, and 145 – 280 years, and 50% of cells fail

(10K cycles per cell [137], [138]) only after running for 7.5, 328, and 460 years.

4.5.5 Impact on System Energy

Implication:

Swapping adds modest energy consumption to an already busy MCU.

We estimate the worst-case energy overhead due to swapping. Our test platform is an

STM32F746NG-Discovery board (ARM Cortex-M7 at 216 MHz; 340 KB SRAM) with an

external power meter [139]. We run two benchmarks. (1) in-core emulates NN executions

with an infinite amount of memory: it runs NN compute [133] for 1000 iterations. (2) out-

of-core emulates NN executions with the most intensive IO traffic in parallel to the compute:

it executes the same amount of compute with an IO thread repeatedly flushing data blocks

to SD card Each data block is 100 KB (close to tile size); the flush is asynchronous using

the MCU’s DMA engine. Note that the IO traffic in real applications is less intensive (which

will not keep writing all the time) than our benchmarks, so the energy we measure is the

worst-case energy consumption that is higher than real cases.

104

Our measurement shows that: the additional IO workloads increases the system energy

by 42%, from 0.07 Wh (in-core) to 0.10 Wh (out-of-core); the total execution time goes

from 178 sec to 213 sec. Our obsevations are: (1) The actual energy overhead in out-of-

core NNs is likely much less: while the out-of-core benchmark keeps IO always busy, the

actual out-of-core NNs exercise IO intermittently (§4.2.1) because most NN layers are likely

compute-bound. (2) We attribtute the modest energy overhead to the incremental nature

of system energy: when an MCU-based device is already busy executing compute, its most

power-hungry hardware – cores, interconnect, SRAM, and regulators – is already activated;

executing IO, which activiates an SD card and the MMC controller in addition, adds to the

energy but not much.

4.5.6 Out-of-core Data Security and Safety

Compared to storing NN data in on-chip SRAM, (temporarily) storing it off-chip is more

vulnerable to physical attacks [140]: adversaries may learn or corrupt the data by tapping

into the IO bus between MCU and the SD card, or the SD card itself. Fortunately, by

encrypting NN data before swapping out, MCU can ensure the data to be confidential and

integral; the overhead is linear to the data amount. Hardware crypto, such as for ASE [141],

[142], is already common on modern MCUs. Its computation overhead is comparable to (or

even less than) the least intensive NN compute (e.g. FC layers).

Compared to SRAM, SD cards are less durable. Yet, it is known that a SD card rarely

fails as a whole but seeing a gradual increase number of corrupted cells over time [143].

Cell corruption is often silent, i.e. a read value simply differs from what was written last

time. Fortunately, MCU can detects such failures with hash-based integrity checking. With

specialized hardware on MCUs, computing hash is no more expensive than the least intensive

NN compute [141]. Upon detection of bad cells, the MCU can recompute the most recent

NN layer and recover the corrupted out-of-core data.

105

4.6 Related Work

Implications on model compression

Existing work on tinyML tries to run NNs on MCUs by reducing memory footprint, such

as model compression [111]–[113], parameter quantization [114], designing tiny NNs from

scratch [115], as well as automation of these procedures [116]. However, they give away

model accuracy or generality at varying degrees. In order for an NN to fit into the MCU

memory, the NN either becomes substantially inaccurate or too specialized. In contrast, our

swapping solution doesn’t incur accuracy and generality loss. Our solution boosts design

freedom in tinyML, where memory limit was considered as the primary motivation for model

compression. With the removal of such a limit, developers now have the choice of run large

NNs without compression, retaining full model accuracy. Even in case of model compression

is warranted, e.g. for faster NN execution, developers now have a wider selection of baseline

NNs, including the ones with orders of higher memory footprints than MCUs.

Relation to prior swapping systems

Prior work enables out-of-core NN training with large batches on GPU/CPU memory

systems [121], [144]–[147], but they cannot address the unique challenge on MCU that even a

single layer exceeds main memory during NN inference. Prior work, e.g., Scratch-Pad [148] ,

proposes generic technique to swap data between SRAM and DRAM (not SD) for embedded

devices. However, they don’t leverage NN characteristics to optimize swapping, and they

don’t answer how swapping affects SD card lifetime, execution slowdown, energy consump-

tion, and data security for NN applications. This chapter presents the first study on these

questions and shows that swapping is feasible without much overhead.

Complement to existing inference framework

Tensorflow Lite Micro [149] is a framework for running NN inference on embedded devices.

CMSIS-NN [133] provides optimized NN kernels for ARM Cortex-M MCUs. SONIC [150]

supports intermittent computing for NN inference on MUCs. TVM [151] can generate op-

106

timized code for NNs on MCUs. However, none of them supports NNs whose memory

footprints are larger than physical memory on MCUs. Our out-of-core solution is a com-

plement to existing frameworks. It can be used in conjunction with them and expand their

design space.

4.7 Summary

This chapter advocates enabling large NNs on tiny MCUs without losing accuracy by

swapping data to SD card. With the parallel scheduler that overlaps IO and compute

tasks to hide IO overhead, our study shows that none of SD card durability loss, execution

slowdown, energy consumption, or data security is an issue. We find that an MCU with

hundreds of KBs SRAM can execute NNs with a few hundreds MBs of memory footprint (a

1000× gap). Out-of-core execution expands the scope of NN applications on MCUs.

107

5. CONCLUSION

In this chapter, we first summarize the contributions of this thesis. Based on the lessons

we learn from building StreamBox and StreamBox-HBM systems, we then provide general

hints to system designs for future workloads on new hardware platforms.

5.1 Thesis Contributions

In this thesis, we demonstrate that: Novel runtime system designs not only can signific-

antly speed up data analytics by exploiting emerging hardware platforms in the Cloud but

also can enable data analytics on resource-constraint hardware platforms at the Edge.

5.1.1 System Support for Stream Processing on Cloud Hardware

We build StreamBox and StreamBox-HBM systems from scratch to speed up stream

processing by exploiting multicore hardware and high-bandwidth hybrid memory hardware

in the Cloud.

In StreamBox, our designs exploits the parallelism and memory hierarchy of modern

multicore hardware. StreamBox executes a pipeline of transforms over records that may

arrive out-of-order. The key contribution is to produce and manage abundant parallelism

by generalizing out-of-order processing to out-of-order epoch processing, and by dynamically

prioritize epochs to optimize latency. Experimental results show our system scales to a large

number of cores and achieves throughput on-par with distributed engines on medium-size

clusters.

In StreamBox-HBM, our designs exploit hybrid memory to achieve scalable high perform-

ance. We introduce a novel dynamic key/record pointer extraction into KPAs that minimizes

the use of precious HBM capacity. We use sequential grouping algorithms on KPAs to bal-

ance limited capacity while exploiting high bandwidth. We design a runtime that manages

parallelism and KPA placement in hybrid memories. Experimental results show that our

system outperforms engines without KPA and with sequential-access algorithms by 7x and

engines with random-access algorithms by an order of magnitude.

108

The designs of StreamBox/StreamBox-HBM provide a concrete example on how to op-

timize stream analytics on modern hardware for future researchers and engineers:

• Improving the performance of stream analytics requires systematic optimizations across

software/hardware stack. This work achieves the best-reported performance by apply-

ing full-stack system optimizations, involving hardware features (multicore, hybrid

memory, and SIMD), operating system, runtime system, network, memory manage-

ment, scheduling, data structure, and algorithms;

• Improving the performance of stream analytics require identifying the root bottleneck

of a wide range of operators, instead of individual operator. This work classifies all

operators into Grouping and Reducing, and uses HBM to speed up all Grouping oper-

ators that dominate execution time, including Sort, Merge, Join, Select, Partitioning,

etc.

No prior work on stream analytics has pushed performance to hardware limit or achieved

such high performance (110 millions records/sec throughput under 1 second latency) on a

single machine as StreamBox/StreamBox-HBM does. StreamBox/StreamBox can be easily

integrated to existing distributed stream analytics frameworks as the execution backend on

every single machine, such as Sparking Streaming and Apache Beam. They significantly

improve the performance of stream analytics workloads.

5.1.2 System Support for Machine Learning Inference on Edge Hardware

We build SwapNN to enable large machine learning models on resource-constraint mi-

crocontrollers without losing accuracy, which was impossible before this work.

Different from prior algorithm-level solutions sacrificing accuracy as the cost, we investig-

ate a system solution for MCUs to execute NNs out of core: dynamically swapping NN data

chunks between an MCU’s tiny SRAM and its large, low-cost external flash. We present a

study showing that none of execution slowdown, storage wear out, energy consumption, or

data security is a showstopper; the key benefit – MCUs being able to run large NNs with

109

Cheap VM
(huge page)

Apps

OS kernel
RDMA network

bypass kernel, free CPU

High task
parallelism

Custom mem
allocator

Sequential mem
access

Runtime Thread pool
+ custom task scheduler

Wide SIMD
(avx512)

Multicore + Hybrid
Memory

Packed data
structure

Figure5.1. Lessons on exploiting multicore and hybrid memory systems

full accuracy and generality – triumphs the overheads. Our findings suggest that MCUs can

play a much greater role in edge intelligence.

SwapNN boosts design freedom in tinyML, where memory limit was considered as the

primary motivation for model compression. With the removal of such a limit, developers

now have the choice of run large NNs without compression, retaining full model accuracy.

Even in case of model compression is warranted, e.g. for faster NN execution, developers

now have a wider selection of baseline NNs, including the ones with orders of higher memory

footprints than MCUs.

None of existing NN inference framework for MCUs can run NNs that have larger memory

footprint than MCU’s SRAM size as SwapNN does. SwapNN’s out-of-core solution is a

complement to existing frameworks. It can be used in conjunction with them and expand

their design space. It expands the cope of NNs on MCUs.

110

5.2 General Lessons and Hints for Runtime System Designs

As illustrated in the thesis, building runtime systems for high-level applications by ex-

ploiting low-level hardware features is powerful to improve performance, reduce resource

waste, and enable new use cases that were previously impossible. However, such runtime

system designs require full-stack optimizations across hardware, OS, runtime, and applica-

tions. To help future system designs for new applications and new hardware, we summarize

some general hints based on our experience in exploiting multicore and hybrid memory hard-

ware. The key design choices in whole software/hardware stack are shown in Figure 5.1 , and

we will introduce them from the top app-level to the bottom hardware-level in the following

subsections.

5.2.1 Apps: Algorithms Adapting to Hardware Changes

Our hint is that the best algorithms to choose may change when new hardware emerges,

so system designers should rethink the algorithms on different hardware platforms. For

example, both Sort and Hash can implement data Grouping. Prior work concludes Hash is

best on DRAM, but we find Sort is best on HBM when we implement StreamBox-HBM.

Because HBM employs a total wider bus with a wider SIMD vector, it changes the tradeoff

for software.

For instance, based on this hint, we made a few choices in the application level to fully

exploit the underlying multicore and hybrid memory hardware when building StreamBox and

StreamBox-HBM: (1) high task parallelism to fully utilize under multicore architecture; (2)

wide SIMD to make sure that CPU cores can generate enough outstanding memory requests

to utilize the high bandwidth of HBM; (3) sequential memory access to ensure cache locality

and row buffer locality in HBM and DRAM; (4) packed data structure to reduce the memory

consumption for the small capacity of HBM.

111

5.2.2 Runtime: Better Managing Resources than General Hardware and OS

Our hint is that runtime systems better manage resources than general hardware and

OS, because they can leverage the knowledge of both applications’ unique demands and

hardware’s unique features. For example, both hardware and OS can manage hybrid memory

transparently on Intel Knights Landing, but they waste bandwidth either because of moving

all data from DRAM to HBM for every access or not being aware of bandwidth/capacity

differences or applications’ memory access pattern. In contrast, StreamBox-HBM runtime

fully controls data placement based on the knowledge of stream analytics and hybrid memory,

and it achieves significant speedup comparing to hardware or OS approaches.

For instance, based on this hint, we make the following choices in StreamBox and

StreamBox-HBM: (1) customized memory allocator, instead of OS’s default, to dynamically

allocate memory from HBM and DRAM based on HBM’s capacity constraint and DRAM’s

bandwidth constraint, and to decide the granularity of memory allocation based on applica-

tion’s memory access. (2) customized thread pool and task scheduler, instead of OS’s default

scheduler, to map tasks to CPU cores based on application’s knowledge and demands, e.g.,

the emergency of tasks.

5.2.3 OS: Configuring Kernel Parameters Accordingly

Our hint is that the kernel parameters should be configured appropriately based on

application’s demands and hardware features. For example, Linux supports general 4KB

page and huge page (e.g., 2MB). For data intensive workloads that continuously allocate and

free large memory chunks, huge page is a better choice to reduce the overhead of memory

allocation and address translation.

For instance, based on this hint, we made the following choices in StreamBox-HBM: (1)

configuring OS kernel to enable huge page and mapping all physical memory into user space

without freeing them, so that runtime system can fully control memory management to avoid

the overhead of memory mapping/unmapping or allocation/deallocation. (2) bypassing OS

kernel using RDMA to free CPU from transferring IO data.

112

5.2.4 Hardware: Choosing Hardware Based on Applications’ Demand

Our hint is that choosing underlying hardware should consider the unique demand of

high-level applications. For instance, for data intensive applications that have insatiable

demands for memory and performance, high-bandwidth memory and multicore CPUs are

intuitively good matches. Although they cannot not improve applications performance out

of the box, but advanced runtime system designs can solve this problem as we demonstrated

in the thesis.

113

REFERENCES

[1] J. Bulao, How much data is created every day in 2021? 2021. [Online]. Available: https:
//techjury.net/blog/how-much-data-is-created-every-day/#gref .

[2] H. Miao, H. Park, M. Jeon, G. Pekhimenko, K. S. McKinley and F. X. Lin, ‘Streambox:
Modern stream processing on a multicore machine,’ in Proceedings of the 2017 USENIX
Conference on USENIX Annual Technical Conference, ser. USENIX ATC’17, USENIX As-
sociation, 2017.

[3] M. Zaharia, T. Das, H. Li, T. Hunter, S. Shenker and I. Stoica, ‘Discretized streams:
Fault-tolerant streaming computation at scale,’ in Proceedings of the Twenty-Fourth ACM
Symposium on Operating Systems Principles, ACM, 2013, pp. 423–438.

[4] Apache, Beam, https://beam.apache.org/ , 2017.

[5] H. Miao, M. Jeon, G. Pekhimenko, K. S. McKinley and F. X. Lin, ‘Streambox-hbm:
Stream analytics on high bandwidth hybrid memory,’ in Proceedings of the Twenty-Fourth
International Conference on Architectural Support for Programming Languages and Operat-
ing Systems, ACM, 2019, pp. 167–181.

[6] H. Miao and F. X. Lin, ‘Enabling large neural networks on tiny microcontrollers with
swapping,’ arXiv preprint arXiv:2101.08744, 2021.

[7] T. Akidau, R. Bradshaw, C. Chambers, S. Chernyak, R. J. Fernández-Moctezuma, R.
Lax, S. McVeety, D. Mills, F. Perry, E. Schmidt et al., ‘The dataflow model: A practical
approach to balancing correctness, latency, and cost in massive-scale, unbounded, out-of-
order data processing,’ Proceedings of the VLDB Endowment, vol. 8, no. 12, pp. 1792–1803,
2015.

[8] W. Lin, Z. Qian, J. Xu, S. Yang, J. Zhou and L. Zhou, ‘Streamscope: Continuous reliable
distributed processing of big data streams,’ in Proc. of NSDI, 2016, pp. 439–454.

[9] Z. Qian, Y. He, C. Su, Z. Wu, H. Zhu, T. Zhang, L. Zhou, Y. Yu and Z. Zhang,
‘Timestream: Reliable stream computation in the cloud,’ in Proceedings of the 8th ACM
European Conference on Computer Systems, ser. EuroSys ’13, Prague, Czech Republic: ACM,
2013, pp. 1–14, isbn: 978-1-4503-1994-2. doi: 10.1145/2465351.2465353 . [Online]. Available:
http://doi.acm.org/10.1145/2465351.2465353 .

[10] J. Li, K. Tufte, V. Shkapenyuk, V. Papadimos, T. Johnson and D. Maier, ‘Out-of-order
processing: A new architecture for high-performance stream systems,’ Proceedings of the
VLDB Endowment, vol. 1, no. 1, pp. 274–288, 2008.

114

https://techjury.net/blog/how-much-data-is-created-every-day/#gref
https://techjury.net/blog/how-much-data-is-created-every-day/#gref
https://beam.apache.org/
https://doi.org/10.1145/2465351.2465353
http://doi.acm.org/10.1145/2465351.2465353

[11] T. Akidau, A. Balikov, K. Bekiroğlu, S. Chernyak, J. Haberman, R. Lax, S. McVeety, D.
Mills, P. Nordstrom and S. Whittle, ‘Millwheel: Fault-tolerant stream processing at internet
scale,’ Proc. VLDB Endow., vol. 6, no. 11, pp. 1033–1044, Aug. 2013, issn: 2150-8097. doi:
10 .14778/2536222 .2536229 . [Online]. Available: http ://dx .doi . org /10 .14778/2536222 .
2536229 .

[12] B. Chandramouli, J. Goldstein, M. Barnett, R. DeLine, D. Fisher, J. C. Platt, J. F.
Terwilliger and J. Wernsing, ‘Trill: A high-performance incremental query processor for
diverse analytics,’ Proceedings of the VLDB Endowment, vol. 8, no. 4, pp. 401–412, 2014.

[13] D. G. Murray, F. McSherry, R. Isaacs, M. Isard, P. Barham and M. Abadi, ‘Naiad: A
timely dataflow system,’ in Proceedings of the Twenty-Fourth ACM Symposium on Operating
Systems Principles, ser. SOSP ’13, Farminton, Pennsylvania: ACM, 2013, pp. 439–455, isbn:
978-1-4503-2388-8. doi: 10.1145/2517349.2522738 . [Online]. Available: http://doi.acm.org/
10.1145/2517349.2522738 .

[14] C. Desrochers, Moodycamel::concurrentqueue, 2016. [Online]. Available: https://github.
com/cameron314/concurrentqueue .

[15] D. Alistarh, J. Kopinsky, J. Li and N. Shavit, ‘The spraylist: A scalable relaxed priority
queue,’ SIGPLAN Not., vol. 50, no. 8, pp. 11–20, Jan. 2015, issn: 0362-1340. doi: 10.1145/
2858788.2688523 . [Online]. Available: http://doi.acm.org/10.1145/2858788.2688523 .

[16] A. Gurtovoyi and D. Abrahamsi, Boost c++ libraries, http://www.boost.org/ , 2017.

[17] Intel, Intel threading building blocks, 2017. [Online]. Available: https://software.intel.
com/en-us/intel-tbb .

[18] Facebook, Folly, 2017. [Online]. Available: https://github.com/facebook/folly#folly-
facebook-open-source-library .

[19] J. E. David Goldblatt Dave Watson, Jemalloc memory allocator, http://http://jemall
oc.net/ , 2017.

[20] Intel, Scalable memory allocator, https://www.threadingbuildingblocks.org/tutorial-
intel-tbb-scalable-memory-allocator , 2017.

[21] M. Goyal, B. Fan, X. Li, D. G. Andersen and M. Kaminsky, Libcuckoo, 2017. [Online].
Available: https://github.com/efficient/libcuckoo .

[22] V. Leis, P. Boncz, A. Kemper and T. Neumann, ‘Morsel-driven parallelism: A numa-
aware query evaluation framework for the many-core age,’ in Proceedings of the 2014 ACM
SIGMOD international conference on Management of data, ACM, 2014, pp. 743–754.

115

https://doi.org/10.14778/2536222.2536229
http://dx.doi.org/10.14778/2536222.2536229
http://dx.doi.org/10.14778/2536222.2536229
https://doi.org/10.1145/2517349.2522738
http://doi.acm.org/10.1145/2517349.2522738
http://doi.acm.org/10.1145/2517349.2522738
https://github.com/cameron314/concurrentqueue
https://github.com/cameron314/concurrentqueue
https://doi.org/10.1145/2858788.2688523
https://doi.org/10.1145/2858788.2688523
http://doi.acm.org/10.1145/2858788.2688523
http://www.boost.org/
https://software.intel.com/en-us/intel-tbb
https://software.intel.com/en-us/intel-tbb
https://github.com/facebook/folly#folly-facebook-open-source-library
https://github.com/facebook/folly#folly-facebook-open-source-library
http://http://jemalloc.net/
http://http://jemalloc.net/
https://www.threadingbuildingblocks.org/tutorial-intel-tbb-scalable-memory-allocator
https://www.threadingbuildingblocks.org/tutorial-intel-tbb-scalable-memory-allocator
https://github.com/efficient/libcuckoo

[23] C. Balkesen, J. Teubner, G. Alonso and M. T. Özsu, ‘Main-memory hash joins on multi-
core cpus: Tuning to the underlying hardware,’ in Data Engineering (ICDE), 2013 IEEE
29th International Conference on, IEEE, 2013, pp. 362–373.

[24] L. Wang, J. Zhan, C. Luo, Y. Zhu, Q. Yang, Y. He, W. Gao, Z. Jia, Y. Shi, S. Zhang et
al., ‘Bigdatabench: A big data benchmark suite from internet services,’ in High Performance
Computer Architecture (HPCA), 2014 IEEE 20th International Symposium on, IEEE, 2014,
pp. 488–499.

[25] M. Hart, Free ebooks by project gutenberg, http://www.gutenberg.org/wiki/Main Page ,
2017.

[26] P. S. Eugene Kharitonov, Yandex: Personalized web search challenge, https://www.
kaggle.com/c/yandex-personalized-web-search-challenge/data , 2017.

[27] C. Guo, L. Yuan, D. Xiang, Y. Dang, R. Huang, D. Maltz, Z. Liu, V. Wang, B. Pang, H.
Chen et al., ‘Pingmesh: A large-scale system for data center network latency measurement
and analysis,’ ACM SIGCOMM Computer Communication Review, vol. 45, no. 4, pp. 139–
152, 2015.

[28] Z. Cheng, J. Caverlee and K. Lee, ‘You are where you tweet: A content-based approach
to geo-locating twitter users,’ in Proceedings of the 19th ACM international conference on
Information and knowledge management, ACM, 2010, pp. 759–768.

[29] C. Cranor, T. Johnson, O. Spataschek and V. Shkapenyuk, ‘Gigascope: A stream data-
base for network applications,’ in Proceedings of the 2003 ACM SIGMOD international con-
ference on Management of data, ACM, 2003, pp. 647–651.

[30] P. A. Tucker, D. Maier, T. Sheard and L. Fegaras, ‘Exploiting punctuation semantics in
continuous data streams,’ IEEE Transactions on Knowledge and Data Engineering, vol. 15,
no. 3, pp. 555–568, 2003.

[31] Oracle®, Stream explorer, 2017. [Online]. Available: http://bit.ly/1L6tKz3 .

[32] M. C. Stanley Zdonik Michael Stonebraker, Streambase systems, 2017. [Online]. Avail-
able: http://www.tibco.com/products/tibco-streambase .

[33] EsperTech, Esper, 2017. [Online]. Available: http://www.espertech.com/esper/ .

[34] A. Koliousis, M. Weidlich, R. Castro Fernandez, A. L. Wolf, P. Costa and P. Pietzuch,
‘Saber: Window-based hybrid stream processing for heterogeneous architectures,’ in Pro-
ceedings of the 2016 International Conference on Management of Data, ser. SIGMOD ’16,
San Francisco, California, USA: ACM, 2016, pp. 555–569, isbn: 978-1-4503-3531-7. doi: 10.
1145/2882903.2882906 . [Online]. Available: http://doi.acm.org/10.1145/2882903.2882906 .

116

http://www.gutenberg.org/wiki/Main_Page
https://www.kaggle.com/c/yandex-personalized-web-search-challenge/data
https://www.kaggle.com/c/yandex-personalized-web-search-challenge/data
http://bit.ly/1L6tKz3
http://www.tibco.com/products/tibco-streambase
http://www.espertech.com/esper/
https://doi.org/10.1145/2882903.2882906
https://doi.org/10.1145/2882903.2882906
http://doi.acm.org/10.1145/2882903.2882906

[35] EsperTech, Esper faq, 2017. [Online]. Available: http://www.espertech .com/esper/
faq esper.php#scaling .

[36] D. Abadi, D. Carney, U. Cetintemel, M. Cherniack, C. Convey, C. Erwin, E. Galvez,
M. Hatoun, A. Maskey, A. Rasin et al., ‘Aurora: A data stream management system,’ in
Proceedings of the 2003 ACM SIGMOD international conference on Management of data,
ACM, 2003, pp. 666–666.

[37] S. Chandrasekaran, O. Cooper, A. Deshpande, M. J. Franklin, J. M. Hellerstein, W.
Hong, S. Krishnamurthy, S. R. Madden, F. Reiss and M. A. Shah, ‘Telegraphcq: Continuous
dataflow processing,’ in Proceedings of the 2003 ACM SIGMOD international conference on
Management of data, ACM, 2003, pp. 668–668.

[38] D. Maier, J. Li, P. Tucker, K. Tufte and V. Papadimos, ‘Semantics of data streams and
operators,’ in International Conference on Database Theory, Springer, 2005, pp. 37–52.

[39] B. Chandramouli, J. Goldstein, M. Barnett, R. DeLine, D. Fisher, J. C. Platt, J. F.
Terwilliger and J. Wernsing, ‘Trill: A high-performance incremental query processor for
diverse analytics,’ Proceedings of the VLDB Endowment, vol. 8, no. 4, pp. 401–412, 2014.

[40] Twitter, Heron, https://twitter.github.io/heron/ , 2017.

[41] A. Roy, I. Mihailovic and W. Zwaenepoel, ‘X-stream: Edge-centric graph processing
using streaming partitions,’ in Proceedings of the Twenty-Fourth ACM Symposium on Op-
erating Systems Principles, ser. SOSP ’13, Farminton, Pennsylvania: ACM, 2013, pp. 472–
488, isbn: 978-1-4503-2388-8. doi: 10 . 1145 / 2517349 . 2522740 . [Online]. Available: http :
//doi.acm.org/10.1145/2517349.2522740 .

[42] A. Kyrola, G. Blelloch and C. Guestrin, ‘Graphchi: Large-scale graph computation on
just a PC,’ in Proceedings of the 10th USENIX Conference on Operating Systems Design and
Implementation, ser. OSDI’12, Hollywood, CA, USA: USENIX Association, 2012, pp. 31–46,
isbn: 978-1-931971-96-6. [Online]. Available: http://dl.acm.org/citation.cfm?id=2387880.
2387884 .

[43] S. Venkataraman, A. Panda, K. Ousterhout, M. Armbrust, A. Ghodsi, M. J. Franklin, B.
Recht and I. Stoica, ‘Drizzle: Fast and adaptable stream processing at scale,’ in Proceedings
of the 26th Symposium on Operating Systems Principles, ser. SOSP ’17, Shanghai, China:
ACM, 2017, pp. 374–389, isbn: 978-1-4503-5085-3. doi: 10.1145/3132747.3132750 . [Online].
Available: http://doi.acm.org/10.1145/3132747.3132750 .

117

http://www.espertech.com/esper/faq_esper.php#scaling
http://www.espertech.com/esper/faq_esper.php#scaling
https://twitter.github.io/heron/
https://doi.org/10.1145/2517349.2522740
http://doi.acm.org/10.1145/2517349.2522740
http://doi.acm.org/10.1145/2517349.2522740
http://dl.acm.org/citation.cfm?id=2387880.2387884
http://dl.acm.org/citation.cfm?id=2387880.2387884
https://doi.org/10.1145/3132747.3132750
http://doi.acm.org/10.1145/3132747.3132750

[44] T. Akidau, R. Bradshaw, C. Chambers, S. Chernyak, R. J. Fernández-Moctezuma, R.
Lax, S. McVeety, D. Mills, F. Perry, E. Schmidt et al., ‘The dataflow model: A practical
approach to balancing correctness, latency, and cost in massive-scale, unbounded, out-of-
order data processing,’ Proceedings of the VLDB Endowment, vol. 8, no. 12, pp. 1792–1803,
2015.

[45] H. Solutions, Tpc-h, http://www.tpc.org/tpch/ , Last accessed: July 25, 2018.

[46] L. Wang, J. Zhan, C. Luo, Y. Zhu, Q. Yang, Y. He, W. Gao, Z. Jia, Y. Shi, S. Zhang, C.
Zheng, G. Lu, K. Zhan, X. Li and B. Qiu, ‘Bigdatabench: A big data benchmark suite from
internet services,’ in High Performance Computer Architecture (HPCA), 2014 IEEE 20th
International Symposium on, Feb. 2014, pp. 488–499. doi: 10.1109/HPCA.2014.6835958 .

[47] AMPLab, Amplab big data benchmark, Last accessed: July 25, 2018. [Online]. Available:
https://amplab.cs.berkeley.edu/benchmark/# .

[48] R. Xie, Malware detection, https://www.endgame.com/blog/technical - blog/data-
science- security-using-passive-dns-query-data- analyze-malware , Last accessed: Jan 25,
2019.

[49] Intel, Knights Landing, the Next Generation of Intel Xeon Phi, http://www.enterprise
tech.com/2014/11/17/enterprises-get-xeon-phi-roadmap/ , Last accessed: Dec. 08, 2014.

[50] nVIDIA, Nvidia titan v, https://www.nvidia.com/en-us/titan/titan-v/ , 2018.

[51] Xilinx, Xilinx virtex ultrascale+, https://www.xilinx.com/products/silicon-devices/
fpga/virtex-ultrascale-plus.html , 2018.

[52] Google, Google clout tpu, https://cloud.google.com/tpu/ , 2018.

[53] A. Li, W. Liu, M. R. B. Kristensen, B. Vinter, H. Wang, K. Hou, A. Marquez and
S. L. Song, ‘Exploring and analyzing the real impact of modern on-package memory on
hpc scientific kernels,’ in Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, ser. SC ’17, Denver, Colorado: ACM, 2017,
26:1–26:14, isbn: 978-1-4503-5114-0. doi: 10 . 1145/3126908 . 3126931 . [Online]. Available:
http://doi.acm.org/10.1145/3126908.3126931 .

[54] I. B. Peng, R. Gioiosa, G. Kestor, P. Cicotti, E. Laure and S. Markidis, ‘Exploring
the performance benefit of hybrid memory system on hpc environments,’ in 2017 IEEE
International Parallel and Distributed Processing Symposium Workshops (IPDPSW), May
2017, pp. 683–692. doi: 10.1109/IPDPSW.2017.115 .

118

http://www.tpc.org/tpch/
https://doi.org/10.1109/HPCA.2014.6835958
https://amplab.cs.berkeley.edu/benchmark/#
https://www.endgame.com/blog/technical-blog/data-science-security-using-passive-dns-query-data-analyze-malware
https://www.endgame.com/blog/technical-blog/data-science-security-using-passive-dns-query-data-analyze-malware
http://www.enterprisetech.com/2014/11/17/enterprises-get-xeon-phi-roadmap/
http://www.enterprisetech.com/2014/11/17/enterprises-get-xeon-phi-roadmap/
https://www.nvidia.com/en-us/titan/titan-v/
https://www.xilinx.com/products/silicon-devices/fpga/virtex-ultrascale-plus.html
https://www.xilinx.com/products/silicon-devices/fpga/virtex-ultrascale-plus.html
https://cloud.google.com/tpu/
https://doi.org/10.1145/3126908.3126931
http://doi.acm.org/10.1145/3126908.3126931
https://doi.org/10.1109/IPDPSW.2017.115

[55] Y. You, A. Buluç and J. Demmel, ‘Scaling deep learning on gpu and knights landing
clusters,’ in Proceedings of the International Conference for High Performance Computing,
Networking, Storage and Analysis, ser. SC ’17, Denver, Colorado: ACM, 2017, 9:1–9:12, isbn:
978-1-4503-5114-0. doi: 10.1145/3126908.3126912 . [Online]. Available: http://doi.acm.org/
10.1145/3126908.3126912 .

[56] Apache Beam. [Online]. Available: https://beam.apache.org/ .

[57] P. Carbone, S. Ewen, S. Haridi, A. Katsifodimos, V. Markl and K. Tzoumas, ‘Apache
flink: Stream and batch processing in a single engine,’ Data Engineering, p. 28, 2015.

[58] J. Jeffers, J. Reinders and A. Sodani, Intel Xeon Phi Processor High Performance Pro-
gramming: Knights Landing Edition. Morgan Kaufmann, 2016.

[59] Yahoo! Benchmarking Streaming Computation Engines at Yahoo! https://yahooeng.
tumblr.com/post/135321837876/ , Last accessed: May. 01, 2018.

[60] C. Balkesen, G. Alonso, J. Teubner and M. T. Özsu, ‘Multi-core, main-memory joins:
Sort vs. hash revisited,’ Proc. VLDB Endow., vol. 7, no. 1, pp. 85–96, Sep. 2013, issn: 2150-
8097. doi: 10.14778/2732219.2732227 . [Online]. Available: http://dx.doi.org/10.14778/
2732219.2732227 .

[61] C. Kim, T. Kaldewey, V. W. Lee, E. Sedlar, A. D. Nguyen, N. Satish, J. Chhugani, A. Di
Blas and P. Dubey, ‘Sort vs. hash revisited: Fast join implementation on modern multi-core
cpus,’ Proc. VLDB Endow., vol. 2, no. 2, pp. 1378–1389, Aug. 2009, issn: 2150-8097. doi:
10.14778/1687553.1687564 . [Online]. Available: https://doi.org/10.14778/1687553.1687564 .

[62] O. Polychroniou, A. Raghavan and K. A. Ross, ‘Rethinking simd vectorization for in-
memory databases,’ in Proceedings of the 2015 ACM SIGMOD International Conference
on Management of Data, ser. SIGMOD ’15, Melbourne, Victoria, Australia: ACM, 2015,
pp. 1493–1508, isbn: 978-1-4503-2758-9. doi: 10.1145/2723372.2747645 . [Online]. Available:
http://doi.acm.org/10.1145/2723372.2747645 .

[63] P. A. Boncz, M. Zukowski and N. Nes, ‘Monetdb/x100: Hyper-pipelining query execu-
tion.,’ in Cidr, vol. 5, 2005, pp. 225–237.

[64] P.-A. Larson, C. Clinciu, C. Fraser, E. N. Hanson, M. Mokhtar, M. Nowakiewicz, V.
Papadimos, S. L. Price, S. Rangarajan, R. Rusanu and M. Saubhasik, ‘Enhancements to sql
server column stores,’ in Proceedings of the 2013 ACM SIGMOD International Conference on
Management of Data, ser. SIGMOD ’13, New York, New York, USA: ACM, 2013, pp. 1159–
1168, isbn: 978-1-4503-2037-5. doi: 10 .1145/2463676 .2463708 . [Online]. Available: http :
//doi.acm.org/10.1145/2463676.2463708 .

119

https://doi.org/10.1145/3126908.3126912
http://doi.acm.org/10.1145/3126908.3126912
http://doi.acm.org/10.1145/3126908.3126912
https://beam.apache.org/
https://yahooeng.tumblr.com/post/135321837876/
https://yahooeng.tumblr.com/post/135321837876/
https://doi.org/10.14778/2732219.2732227
http://dx.doi.org/10.14778/2732219.2732227
http://dx.doi.org/10.14778/2732219.2732227
https://doi.org/10.14778/1687553.1687564
https://doi.org/10.14778/1687553.1687564
https://doi.org/10.1145/2723372.2747645
http://doi.acm.org/10.1145/2723372.2747645
https://doi.org/10.1145/2463676.2463708
http://doi.acm.org/10.1145/2463676.2463708
http://doi.acm.org/10.1145/2463676.2463708

[65] T. J. Lehman and M. J. Carey, Query processing in main memory database management
systems, 2. ACM, 1986, vol. 15.

[66] C. Nyberg, T. Barclay, Z. Cvetanovic, J. Gray and D. Lomet, ‘Alphasort: A risc machine
sort,’ SIGMOD Rec., vol. 23, no. 2, pp. 233–242, May 1994, issn: 0163-5808. doi: 10.1145/
191843.191884 . [Online]. Available: http://doi.acm.org/10.1145/191843.191884 .

[67] V. Raman, G. Attaluri, R. Barber, N. Chainani, D. Kalmuk, V. KulandaiSamy, J.
Leenstra, S. Lightstone, S. Liu, G. M. Lohman, T. Malkemus, R. Mueller, I. Pandis, B.
Schiefer, D. Sharpe, R. Sidle, A. Storm and L. Zhang, ‘Db2 with blu acceleration: So much
more than just a column store,’ Proc. VLDB Endow., vol. 6, no. 11, pp. 1080–1091, Aug.
2013, issn: 2150-8097. doi: 10.14778/2536222.2536233 . [Online]. Available: http://dx.doi.
org/10.14778/2536222.2536233 .

[68] M. Stonebraker, D. J. Abadi, A. Batkin, X. Chen, M. Cherniack, M. Ferreira, E. Lau, A.
Lin, S. Madden, E. O’Neil, P. O’Neil, A. Rasin, N. Tran and S. Zdonik, ‘C-store: A column-
oriented dbms,’ in Proceedings of the 31st International Conference on Very Large Data
Bases, ser. VLDB ’05, Trondheim, Norway: VLDB Endowment, 2005, pp. 553–564, isbn:
1-59593-154-6. [Online]. Available: http://dl.acm.org/citation.cfm?id=1083592.1083658 .

[69] M. Drumond, A. Daglis, N. Mirzadeh, D. Ustiugov, J. Picorel, B. Falsafi, B. Grot and D.
Pnevmatikatos, ‘The mondrian data engine,’ in Proceedings of the 44th Annual International
Symposium on Computer Architecture, ser. ISCA ’17, Toronto, ON, Canada: ACM, 2017,
pp. 639–651, isbn: 978-1-4503-4892-8. doi: 10.1145/3079856.3080233 . [Online]. Available:
http://doi.acm.org/10.1145/3079856.3080233 .

[70] JEDEC, High bandwidth memory (hbm) dram. standard no. jesd235, 2013.

[71] JEDEC, High bandwidth memory 2. standard no. jesd235a, 2016.

[72] D. U. Lee, K. W. Kim, K. W. Kim, H. Kim, J. Y. Kim, Y. J. Park, J. H. Kim, D. S. Kim,
H. B. Park, J. W. Shin, J. H. Cho, K. H. Kwon, M. J. Kim, J. Lee, K. W. Park, B. Chung
and S. Hong, ‘25.2 a 1.2v 8gb 8-channel 128gb/s high-bandwidth memory (hbm) stacked
dram with effective microbump i/o test methods using 29nm process and tsv,’ in 2014 IEEE
International Solid-State Circuits Conference Digest of Technical Papers (ISSCC), Feb. 2014,
pp. 432–433. doi: 10.1109/ISSCC.2014.6757501 .

[73] E. J. Fluhr, J. Friedrich, D. Dreps, V. Zyuban, G. Still, C. Gonzalez, A. Hall, D.
Hogenmiller, F. Malgioglio, R. Nett, J. Paredes, J. Pille, D. Plass, R. Puri, P. Restle, D.
Shan, K. Stawiasz, Z. T. Deniz, D. Wendel and M. Ziegler, ‘Power8: A 12-core server-class
processor in 22nm soi with 7.6tb/s off-chip bandwidth,’ in 2014 IEEE International Solid-
State Circuits Conference Digest of Technical Papers (ISSCC), Feb. 2014, pp. 96–97. doi:
10.1109/ISSCC.2014.6757353 .

120

https://doi.org/10.1145/191843.191884
https://doi.org/10.1145/191843.191884
http://doi.acm.org/10.1145/191843.191884
https://doi.org/10.14778/2536222.2536233
http://dx.doi.org/10.14778/2536222.2536233
http://dx.doi.org/10.14778/2536222.2536233
http://dl.acm.org/citation.cfm?id=1083592.1083658
https://doi.org/10.1145/3079856.3080233
http://doi.acm.org/10.1145/3079856.3080233
https://doi.org/10.1109/ISSCC.2014.6757501
https://doi.org/10.1109/ISSCC.2014.6757353

[74] P. Hammarlund, R. Kumar, R. B. Osborne, R. Rajwar, R. Singhal, R. D’Sa, R. Chappell,
S. Kaushik, S. Chennupaty, S. Jourdan, S. Gunther, T. Piazza and T. Burton, ‘Haswell: The
fourth-generation intel core processor,’ IEEE Micro, no. 2, pp. 6–20, 2014.

[75] X. Cheng, B. He, X. Du and C. T. Lau, ‘A study of main-memory hash joins on many-
core processor: A case with intel knights landing architecture,’ in Proceedings of the 2017
ACM on Conference on Information and Knowledge Management, ser. CIKM ’17, Singa-
pore, Singapore: ACM, 2017, pp. 657–666, isbn: 978-1-4503-4918-5. doi: 10.1145/3132847.
3132916 . [Online]. Available: http://doi.acm.org/10.1145/3132847.3132916 .

[76] C. Wang, T. Coa, J. Zigman, F. Lv, Y. Zhang and X. Feng, ‘Efficient management for
hybrid memory in managed language runtime,’ in IFIP International Conference on Network
and Parallely Computing (NPC), 2016.

[77] W. Wei, D. Jiang, S. A. McKee, J. Xiong and M. Chen, ‘Exploiting program semantics
to place data in hybrid memory,’ in Proceedings of the International Conference on Parallel
Architecture and Compilation (PACT), 2015, isbn: 978-1-4673-9524-3.

[78] W. Zhang and T. Li, ‘Exploring phase change memory and 3d die-stacking for power-
/thermal friendly, fast and durable memory architectures,’ in Proceedings of the 18th Inter-
national Conference on Parallel Architectures and Compilation Techniques (PACT), 2009,
isbn: 978-0-7695-3771-9.

[79] A. Arasu, S. Babu and J. Widom, ‘The cql continuous query language: Semantic found-
ations and query execution,’ The VLDB Journal, vol. 15, no. 2, pp. 121–142, Jun. 2006, issn:
1066-8888. doi: 10.1007/s00778-004-0147-z . [Online]. Available: http://dx.doi.org/10.1007/
s00778-004-0147-z .

[80] Intel Performance Counter Monitor - A better way to measure CPU utilization, Last
accessed: May. 01, 2017. [Online]. Available: https://software.intel.com/en-us/articles/intel-
performance-counter-monitor .

[81] H. Miao, H. Park, M. Jeon, G. Pekhimenko, K. S. McKinley and F. X. Lin, Streambox
code, https://engineering.purdue.edu/∼xzl/xsel/p/streambox/index.html , Last accessed:
July 25, 2018.

[82] G. Pekhimenko, C. Guo, M. Jeon, R. Huang and L. Zhou, ‘Tersecades: Efficient data
compression in stream processing,’ in 2018 USENIX Annual Technical Conference (USENIX
ATC 18), USENIX Association, 2018.

[83] Data Artisians, The Curious Case of the Broken Benchmark: Revisiting Apache Flink
vs. Databricks Runtime, https://data-artisans.com/blog/curious-case-broken-benchmark-
revisiting-apache-flink-vs-databricks-runtime , Last accessed: May. 01, 2018.

121

https://doi.org/10.1145/3132847.3132916
https://doi.org/10.1145/3132847.3132916
http://doi.acm.org/10.1145/3132847.3132916
https://doi.org/10.1007/s00778-004-0147-z
http://dx.doi.org/10.1007/s00778-004-0147-z
http://dx.doi.org/10.1007/s00778-004-0147-z
https://software.intel.com/en-us/articles/intel-performance-counter-monitor
https://software.intel.com/en-us/articles/intel-performance-counter-monitor
https://engineering.purdue.edu/~xzl/xsel/p/streambox/index.html
https://data-artisans.com/blog/curious-case-broken-benchmark-revisiting-apache-flink-vs-databricks-runtime
https://data-artisans.com/blog/curious-case-broken-benchmark-revisiting-apache-flink-vs-databricks-runtime

[84] DataBricks, Benchmarking Structured Streaming on Databricks Runtime Against State-
of-the-Art Streaming Systems, https://databricks.com/blog/2017/10/11/benchmarking-
structured-streaming-on-databricks-runtime-against-state-of -the-art-streaming-systems.
html , Last accessed: May. 01, 2018.

[85] Z. Jerzak and H. Ziekow, ‘The debs 2014 grand challenge,’ in Proceedings of the 8th
ACM International Conference on Distributed Event-Based Systems, ser. DEBS ’14, Mumbai,
India: ACM, 2014, pp. 266–269, isbn: 978-1-4503-2737-4. doi: 10.1145/2611286.2611333 .
[Online]. Available: http://doi.acm.org/10.1145/2611286.2611333 .

[86] M.-C. Albutiu, A. Kemper and T. Neumann, ‘Massively parallel sort-merge joins in
main memory multi-core database systems,’ Proc. VLDB Endow., vol. 5, no. 10, pp. 1064–
1075, Jun. 2012, issn: 2150-8097. doi: 10.14778/2336664.2336678 . [Online]. Available: http:
//dx.doi.org/10.14778/2336664.2336678 .

[87] iMatix Corporation, Zeromq, http://zeromq.org/ , 2018.

[88] A. Toshniwal, S. Taneja, A. Shukla, K. Ramasamy, J. M. Patel, S. Kulkarni, J. Jack-
son, K. Gade, M. Fu, J. Donham et al., ‘Storm@ twitter,’ in Proceedings of the 2014 ACM
SIGMOD international conference on Management of data, ACM, 2014, pp. 147–156.

[89] A. Koliousis, M. Weidlich, R. Castro Fernandez, A. L. Wolf, P. Costa and P. Pietzuch,
‘Saber: Window-based hybrid stream processing for heterogeneous architectures,’ in Pro-
ceedings of the 2016 International Conference on Management of Data, ser. SIGMOD ’16,
San Francisco, California, USA: ACM, 2016, pp. 555–569, isbn: 978-1-4503-3531-7. doi: 10.
1145/2882903.2882906 . [Online]. Available: http://doi.acm.org/10.1145/2882903.2882906 .

[90] M. Yip and T. Company, Rapidjson, https ://github.com/Tencent/rapidjson , Last
accessed: July 25, 2018.

[91] Google, Google protocol buffers, https://developers.google.com/protocol-buffers/ , Last
accessed: July 25, 2018.

[92] Jan, String-to-uint64, http://jsteemann.github.io/blog/2016/06/02/fastest-string-to-
uint64-conversion-method/ , Last accessed: Jan 25, 2019.

[93] A. Hagiescu, W.-F. Wong, D. F. Bacon and R. Rabbah, ‘A computing origami: Folding
streams in fpgas,’ in Proceedings of the 46th Annual Design Automation Conference, ACM,
2009, pp. 282–287.

122

https://databricks.com/blog/2017/10/11/benchmarking-structured-streaming-on-databricks-runtime-against-state-of-the-art-streaming-systems.html
https://databricks.com/blog/2017/10/11/benchmarking-structured-streaming-on-databricks-runtime-against-state-of-the-art-streaming-systems.html
https://databricks.com/blog/2017/10/11/benchmarking-structured-streaming-on-databricks-runtime-against-state-of-the-art-streaming-systems.html
https://doi.org/10.1145/2611286.2611333
http://doi.acm.org/10.1145/2611286.2611333
https://doi.org/10.14778/2336664.2336678
http://dx.doi.org/10.14778/2336664.2336678
http://dx.doi.org/10.14778/2336664.2336678
http://zeromq.org/
https://doi.org/10.1145/2882903.2882906
https://doi.org/10.1145/2882903.2882906
http://doi.acm.org/10.1145/2882903.2882906
https://github.com/Tencent/rapidjson
https://developers.google.com/protocol-buffers/
http://jsteemann.github.io/blog/2016/06/02/fastest-string-to-uint64-conversion-method/
http://jsteemann.github.io/blog/2016/06/02/fastest-string-to-uint64-conversion-method/

[94] S. Rajadurai, J. Bosboom, W.-F. Wong and S. Amarasinghe, ‘Gloss: Seamless live re-
configuration and reoptimization of stream programs,’ in Proceedings of the Twenty-Third
International Conference on Architectural Support for Programming Languages and Oper-
ating Systems, ser. ASPLOS ’18, Williamsburg, VA, USA: ACM, 2018, pp. 98–112, isbn:
978-1-4503-4911-6. doi: 10.1145/3173162.3173170 . [Online]. Available: http://doi.acm.org/
10.1145/3173162.3173170 .

[95] B. Bramas, ‘Fast sorting algorithms using avx-512 on intel knights landing,’ arXiv pre-
print arXiv:1704.08579, 2017.

[96] S. R. Dulloor, A. Roy, Z. Zhao, N. Sundaram, N. Satish, R. Sankaran, J. Jackson and
K. Schwan, ‘Data tiering in heterogeneous memory systems,’ in Proceedings of the Eleventh
European Conference on Computer Systems, ser. EuroSys ’16, London, United Kingdom:
ACM, 2016, 15:1–15:16, isbn: 978-1-4503-4240-7. doi: 10.1145/2901318.2901344 . [Online].
Available: http://doi.acm.org/10.1145/2901318.2901344 .

[97] N. Agarwal and T. F. Wenisch, ‘Thermostat: Application-transparent page management
for two-tiered main memory,’ in Proceedings of the Twenty-Second International Conference
on Architectural Support for Programming Languages and Operating Systems, ser. ASPLOS
’17, Xi’an, China: ACM, 2017, pp. 631–644, isbn: 978-1-4503-4465-4. doi: 10.1145/3037697.
3037706 . [Online]. Available: http://doi.acm.org/10.1145/3037697.3037706 .

[98] T. D. Doudali and A. Gavrilovska, ‘Comerge: Toward efficient data placement in shared
heterogeneous memory systems,’ in Proceedings of the International Symposium on Memory
Systems, ser. MEMSYS ’17, Alexandria, Virginia: ACM, 2017, pp. 251–261, isbn: 978-1-
4503-5335-9. doi: 10.1145/3132402.3132418 . [Online]. Available: http://doi.acm.org/10.
1145/3132402.3132418 .

[99] S. Wen, L. Cherkasova, F. X. Lin and X. Liu, ‘Profdp: A lightweight profiler to guide
data placement in heterogeneous memory systems,’ in Proceedings of the 32th ACM on
International Conference on Supercomputing, ser. ICS ’18, Beijing, China: ACM, 2018.

[100] L. Lu, T. S. Pillai, A. C. Arpaci-Dusseau and R. H. Arpaci-Dusseau, ‘Wisckey: Separ-
ating keys from values in ssd-conscious storage,’ in 14th USENIX Conference on File and
Storage Technologies (FAST 16), Santa Clara, CA: USENIX Association, 2016, pp. 133–148,
isbn: 978-1-931971-28-7. [Online]. Available: https://www.usenix.org/conference/fast16/
technical-sessions/presentation/lu .

[101] F. Xia, D. Jiang, J. Xiong and N. Sun, ‘Hikv: A hybrid index key-value store for dram-
nvm memory systems,’ in 2017 USENIX Annual Technical Conference (USENIX ATC 17),
Santa Clara, CA: USENIX Association, 2017, pp. 349–362, isbn: 978-1-931971-38-6. [Online].
Available: https://www.usenix.org/conference/atc17/technical-sessions/presentation/xia .

123

https://doi.org/10.1145/3173162.3173170
http://doi.acm.org/10.1145/3173162.3173170
http://doi.acm.org/10.1145/3173162.3173170
https://doi.org/10.1145/2901318.2901344
http://doi.acm.org/10.1145/2901318.2901344
https://doi.org/10.1145/3037697.3037706
https://doi.org/10.1145/3037697.3037706
http://doi.acm.org/10.1145/3037697.3037706
https://doi.org/10.1145/3132402.3132418
http://doi.acm.org/10.1145/3132402.3132418
http://doi.acm.org/10.1145/3132402.3132418
https://www.usenix.org/conference/fast16/technical-sessions/presentation/lu
https://www.usenix.org/conference/fast16/technical-sessions/presentation/lu
https://www.usenix.org/conference/atc17/technical-sessions/presentation/xia

[102] An introduction to tinyml, 2020. [Online]. Available: https://towardsdatascience.com/
an-introduction-to-tinyml-4617f314aa79 .

[103] Nuru ai expansion: Supporting farmers to diagnose crop diseases, 2020. [Online]. Avail-
able: https://blog.plantwise.org/2020/03/13/nuru-ai-expansion-supporting-farmers-to-
diagnose-crop-diseases/ .

[104] Stmicroelectronics stm32 family, 2020. [Online]. Available: https://en.wikipedia.org/
wiki/STM32 .

[105] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke
and A. Rabinovich, ‘Going deeper with convolutions,’ in Proceedings of the IEEE conference
on computer vision and pattern recognition, 2015, pp. 1–9.

[106] K. Siu, D. M. Stuart, M. Mahmoud and A. Moshovos, ‘Memory requirements for convo-
lutional neural network hardware accelerators,’ in 2018 IEEE International Symposium on
Workload Characterization (IISWC), IEEE, 2018, pp. 111–121.

[107] K. Simonyan and A. Zisserman, ‘Very deep convolutional networks for large-scale image
recognition,’ arXiv preprint arXiv:1409.1556, 2014.

[108] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke
and A. Rabinovich, ‘Going deeper with convolutions,’ in Proceedings of the IEEE conference
on computer vision and pattern recognition, 2015, pp. 1–9.

[109] The role of srams in nextgen iot and wearable embedded designs, 2014. [Online]. Avail-
able: https : //www .embedded . com /the - role - of - srams - in - nextgen - iot - and - wearable -
embedded-designs/ .

[110] D. Blalock, J. J. G. Ortiz, J. Frankle and J. Guttag, ‘What is the state of neural network
pruning?’ In MLSys, 2020.

[111] M. Zhu and S. Gupta, ‘To prune, or not to prune: Exploring the efficacy of pruning for
model compression,’ arXiv preprint arXiv:1710.01878, 2017.

[112] S. Han, H. Mao and W. J. Dally, ‘Deep compression: Compressing deep neural networks
with pruning, trained quantization and huffman coding,’ arXiv preprint arXiv:1510.00149,
2015.

[113] H. Li, A. Kadav, I. Durdanovic, H. Samet and H. P. Graf, ‘Pruning filters for efficient
convnets,’ arXiv preprint arXiv:1608.08710, 2016.

[114] S. Gupta, A. Agrawal, K. Gopalakrishnan and P. Narayanan, ‘Deep learning with limited
numerical precision,’ in International Conference on Machine Learning, 2015, pp. 1737–1746.

124

https://towardsdatascience.com/an-introduction-to-tinyml-4617f314aa79
https://towardsdatascience.com/an-introduction-to-tinyml-4617f314aa79
https://blog.plantwise.org/2020/03/13/nuru-ai-expansion-supporting-farmers-to-diagnose-crop-diseases/
https://blog.plantwise.org/2020/03/13/nuru-ai-expansion-supporting-farmers-to-diagnose-crop-diseases/
https://en.wikipedia.org/wiki/STM32
https://en.wikipedia.org/wiki/STM32
https://www.embedded.com/the-role-of-srams-in-nextgen-iot-and-wearable-embedded-designs/
https://www.embedded.com/the-role-of-srams-in-nextgen-iot-and-wearable-embedded-designs/

[115] H. Yang, M. Fritzsche, C. Bartz and C. Meinel, ‘Bmxnet: An open-source binary neural
network implementation based on mxnet,’ in Proceedings of the 25th ACM international
conference on Multimedia, ACM, 2017, pp. 1209–1212.

[116] J. Lin, W.-M. Chen, Y. Lin, J. Cohn, C. Gan and S. Han, ‘Mcunet: Tiny deep learning
on iot devices,’ arXiv preprint arXiv:2007.10319, 2020.

[117] M. Xu, X. Zhang, Y. Liu, G. Huang, X. Liu and F. X. Lin, ‘Approximate query service
on autonomous iot cameras,’ in Proceedings of the 18th International Conference on Mobile
Systems, Applications, and Services, 2020, pp. 191–205.

[118] H. Shen, S. Han, M. Philipose and A. Krishnamurthy, ‘Fast video classification via
adaptive cascading of deep models,’ in Proceedings of the IEEE conference on computer
vision and pattern recognition, 2017, pp. 3646–3654.

[119] M. Xu, F. Qian, Q. Mei, K. Huang and X. Liu, ‘Deeptype: On-device deep learning
for input personalization service with minimal privacy concern,’ Proceedings of the ACM on
Interactive, Mobile, Wearable and Ubiquitous Technologies, vol. 2, no. 4, pp. 1–26, 2018.

[120] M. Alwani, H. Chen, M. Ferdman and P. Milder, ‘Fused-layer cnn accelerators,’ in The
49th Annual IEEE/ACM International Symposium on Microarchitecture, IEEE Press, 2016,
p. 22.

[121] C.-C. Huang, G. Jin and J. Li, ‘Swapadvisor: Pushing deep learning beyond the gpu
memory limit via smart swapping,’ in Proceedings of the Twenty-Fifth International Con-
ference on Architectural Support for Programming Languages and Operating Systems, 2020,
pp. 1341–1355.

[122] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand, M. An-
dreetto and H. Adam, ‘Mobilenets: Efficient convolutional neural networks for mobile vision
applications,’ arXiv preprint arXiv:1704.04861, 2017.

[123] A. Krizhevsky, I. Sutskever and G. E. Hinton, ‘Imagenet classification with deep con-
volutional neural networks,’ in Advances in neural information processing systems, 2012,
pp. 1097–1105.

[124] Floating point operations per second, 2020. [Online]. Available: https://en.wikipedia.
org/wiki/FLOPS .

[125] Arm cortex-m, 2020. [Online]. Available: https://en.wikipedia.org/wiki/ARM Cortex-
M .

[126] Microsd card benchmarks, 2020. [Online]. Available: https://www.pidramble.com/wiki/
benchmarks/microsd-cards .

125

https://en.wikipedia.org/wiki/FLOPS
https://en.wikipedia.org/wiki/FLOPS
https://en.wikipedia.org/wiki/ARM_Cortex-M
https://en.wikipedia.org/wiki/ARM_Cortex-M
https://www.pidramble.com/wiki/benchmarks/microsd-cards
https://www.pidramble.com/wiki/benchmarks/microsd-cards

[127] Roofline model, 2020. [Online]. Available: https ://en .wikipedia .org/wiki/Roofline
model .

[128] S. albanie, Estimates of memory consumption and flop counts for various convolutional
neural networks. 2021. [Online]. Available: https://github.com/albanie/convnet-burden .

[129] K. He, X. Zhang, S. Ren and J. Sun, ‘Deep residual learning for image recognition,’
in Proceedings of the IEEE conference on computer vision and pattern recognition, 2016,
pp. 770–778.

[130] Stm32 32-bit arm cortex mcu, 2020. [Online]. Available: https : //www.st . com/en/
microcontrollers-microprocessors/stm32-32-bit-arm-cortex-mcus.html .

[131] Nxp general purpose microcontrollers, 2020. [Online]. Available: https://www.nxp.com/
products/processors - and- microcontrollers/arm- microcontrollers/general - purpose- mcus :
GENERAL-PURPOSE-MCUS .

[132] Y. Zhang, N. Suda, L. Lai and V. Chandra, ‘Hello edge: Keyword spotting on micro-
controllers,’ arXiv preprint arXiv:1711.07128, 2017.

[133] L. Lai, N. Suda and V. Chandra, ‘Cmsis-nn: Efficient neural network kernels for arm
cortex-m cpus,’ arXiv preprint arXiv:1801.06601, 2018.

[134] Kingston flash memory guide, 2015. [Online]. Available: https://media.kingston.com/
pdfs/MKF 283.1 Flash Memory Guide EN.pdf .

[135] History and evolution of memory cards, 2020. [Online]. Available: https://koofr.eu/
blog/posts/history-and-evolution-of-memory-cards .

[136] Sd cart testing, 2020. [Online]. Available: https://support.embeddedarm.com/support/
solutions/articles/22000202866-sd-card-testing .

[137] Every thing you need to know about slc, mlc, and tlc nand flash, 2015. [Online]. Available:
https://www.mydigitaldiscount.com/everything-you-need-to-know-about-slc-mlc-and-tlc-
nand-flash.html .

[138] Transcend industrial temp microsd 64 gb, 2020. [Online]. Available: https://cdn.transc
end-info.com/products/images/modelpic/574/EN USDC10I PS 2020.pdf .

[139] Usb c power meter tester, 2020. [Online]. Available: https://www.amazon.com/gp/
product/B07X3HST7V/ref=ppx yo dt b asin title o00 s00?ie=UTF8&psc=1 .

[140] The exploration and exploitation of an sd memory card, 2020. [Online]. Available: http:
//bunniefoo.com/bunnie/sdcard-30c3-pub.pdf .

126

https://en.wikipedia.org/wiki/Roofline_model
https://en.wikipedia.org/wiki/Roofline_model
https://github.com/albanie/convnet-burden
https://www.st.com/en/microcontrollers-microprocessors/stm32-32-bit-arm-cortex-mcus.html
https://www.st.com/en/microcontrollers-microprocessors/stm32-32-bit-arm-cortex-mcus.html
https://www.nxp.com/products/processors-and-microcontrollers/arm-microcontrollers/general-purpose-mcus:GENERAL-PURPOSE-MCUS
https://www.nxp.com/products/processors-and-microcontrollers/arm-microcontrollers/general-purpose-mcus:GENERAL-PURPOSE-MCUS
https://www.nxp.com/products/processors-and-microcontrollers/arm-microcontrollers/general-purpose-mcus:GENERAL-PURPOSE-MCUS
https://media.kingston.com/pdfs/MKF_283.1_Flash_Memory_Guide_EN.pdf
https://media.kingston.com/pdfs/MKF_283.1_Flash_Memory_Guide_EN.pdf
https://koofr.eu/blog/posts/history-and-evolution-of-memory-cards
https://koofr.eu/blog/posts/history-and-evolution-of-memory-cards
https://support.embeddedarm.com/support/solutions/articles/22000202866-sd-card-testing
https://support.embeddedarm.com/support/solutions/articles/22000202866-sd-card-testing
https://www.mydigitaldiscount.com/everything-you-need-to-know-about-slc-mlc-and-tlc-nand-flash.html
https://www.mydigitaldiscount.com/everything-you-need-to-know-about-slc-mlc-and-tlc-nand-flash.html
https://cdn.transcend-info.com/products/images/modelpic/574/EN_USDC10I_PS_2020.pdf
https://cdn.transcend-info.com/products/images/modelpic/574/EN_USDC10I_PS_2020.pdf
https://www.amazon.com/gp/product/B07X3HST7V/ref=ppx_yo_dt_b_asin_title_o00_s00?ie=UTF8&psc=1
https://www.amazon.com/gp/product/B07X3HST7V/ref=ppx_yo_dt_b_asin_title_o00_s00?ie=UTF8&psc=1
http://bunniefoo.com/bunnie/sdcard-30c3-pub.pdf
http://bunniefoo.com/bunnie/sdcard-30c3-pub.pdf

[141] Performance of state-of-the-art cryptography on arm-based microprocessors, 2020. [On-
line]. Available: https : / / csrc . nist . gov / csrc / media / events / lightweight - cryptography -
workshop-2015/documents/presentations/session7-vincent.pdf .

[142] P. Schwabe and K. Stoffelen, ‘All the aes you need on cortex-m3 and m4,’ in Interna-
tional Conference on Selected Areas in Cryptography, Springer, 2016, pp. 180–194.

[143] Reliable sd-based block storage, 2017. [Online]. Available: https://support.embeddedarm.
com/support/solutions/articles/22000202867-reliable-sd-based-block-storage .

[144] A. Hayakawa and T. Narihira, ‘Out-of-core training for extremely large-scale neural
networks with adaptive window-based scheduling,’ arXiv preprint arXiv:2010.14109, 2020.

[145] M. Rhu, N. Gimelshein, J. Clemons, A. Zulfiqar and S. W. Keckler, ‘Vdnn: Virtualized
deep neural networks for scalable, memory-efficient neural network design,’ in 2016 49th
Annual IEEE/ACM International Symposium on Microarchitecture (MICRO), IEEE, 2016,
pp. 1–13.

[146] Y. Yu, M. Abadi, P. Barham, E. Brevdo, M. Burrows, A. Davis, J. Dean, S. Ghemawat,
T. Harley, P. Hawkins et al., ‘Dynamic control flow in large-scale machine learning,’ in
Proceedings of the Thirteenth EuroSys Conference, 2018, pp. 1–15.

[147] T. Jin and S. Hong, ‘Split-cnn: Splitting window-based operations in convolutional
neural networks for memory system optimization,’ in Proceedings of the Twenty-Fourth In-
ternational Conference on Architectural Support for Programming Languages and Operating
Systems, 2019, pp. 835–847.

[148] A. Dominguez, S. Udayakumaran and R. Barua, ‘Heap data allocation to scratch-pad
memory in embedded systems,’ Journal of Embedded Computing, vol. 1, no. 4, pp. 521–540,
2005.

[149] R. David, J. Duke, A. Jain, V. J. Reddi, N. Jeffries, J. Li, N. Kreeger, I. Nappier,
M. Natraj, S. Regev et al., ‘Tensorflow lite micro: Embedded machine learning on tinyml
systems,’ arXiv preprint arXiv:2010.08678, 2020.

[150] G. Gobieski, B. Lucia and N. Beckmann, ‘Intelligence beyond the edge: Inference on
intermittent embedded systems,’ in Proceedings of the Twenty-Fourth International Confer-
ence on Architectural Support for Programming Languages and Operating Systems, ACM,
2019, pp. 199–213.

[151] T. Chen, T. Moreau, Z. Jiang, L. Zheng, E. Yan, H. Shen, M. Cowan, L. Wang, Y.
Hu, L. Ceze et al., ‘Tvm: An automated end-to-end optimizing compiler for deep learning,’
in 13th USENIX Symposium on Operating Systems Design and Implementation (OSDI 18),
2018, pp. 578–594.

127

https://csrc.nist.gov/csrc/media/events/lightweight-cryptography-workshop-2015/documents/presentations/session7-vincent.pdf
https://csrc.nist.gov/csrc/media/events/lightweight-cryptography-workshop-2015/documents/presentations/session7-vincent.pdf
https://support.embeddedarm.com/support/solutions/articles/22000202867-reliable-sd-based-block-storage
https://support.embeddedarm.com/support/solutions/articles/22000202867-reliable-sd-based-block-storage

	TITLE PAGE
	COMMITTEE APPROVAL
	DEDICATION
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	ABSTRACT
	INTRODUCTION
	Data Analytics and Hardware Platforms
	Challenges to System Software (OS and Runtime)
	Thesis Overview

	STREAMBOX: STREAM ANALYTICS ON A MULTICORE MACHINE
	Introduction
	Stream Model and Background
	Design Goals and Criteria
	System Overview
	Cascading Containers
	Container Implementation
	Single-input Transforms
	Multi-input Transforms
	Synchronized Access to Containers

	Pipeline Scheduling
	Pipeline State Management
	Bundles
	Transform Internal State

	Implementation
	Evaluation
	Throughput and Scalability
	Validation of Key Design Features

	Related Work
	Summary

	STREAMBOX-HBM: STREAM ANALYTICS ON HIGH BANDWIDTH HYBRID MEMORY
	Introduction
	Background & Motivation
	Modern Stream Analytics
	Exploiting HBM

	System Overview
	KPA and Streaming Operations
	KPA
	Streaming Operations
	Pipeline Execution Over KPAs

	Dynamically Managing Hybrid Memory
	Memory Management and Resource Monitoring

	Implementation and Methodology
	Evaluation
	Comparing to Existing Engines
	Throughput and Bandwidth
	Demonstration of Key Design Features
	Impact of Data Parsing at Ingestion

	Related Work
	Summary

	SWAPNN: TOWARDS OUT-OF-CORE NEURAL NETWORKS ON TINY MICROCONTROLLERS
	Introduction
	Background and Motivations
	A Taxonomy of NN layers
	The System Model

	SwapNN: Automatically Scheduling IO/Compute Tasks in Parallel
	Challenges
	SwapNN Design

	Implementation & Methodology
	Findings
	Software/Hardware Parameters and Their Tradeoffs
	Impact on Per-frame Delay
	Impact on NN Throughput
	Impact on Flash Durability
	Impact on System Energy
	Out-of-core Data Security and Safety

	Related Work
	Summary

	CONCLUSION
	Thesis Contributions
	System Support for Stream Processing on Cloud Hardware
	System Support for Machine Learning Inference on Edge Hardware

	General Lessons and Hints for Runtime System Designs
	Apps: Algorithms Adapting to Hardware Changes
	Runtime: Better Managing Resources than General Hardware and OS
	OS: Configuring Kernel Parameters Accordingly
	Hardware: Choosing Hardware Based on Applications' Demand

	INDEX
	REFERENCES

