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ABSTRACT

Impacting individual’s social and physical well-being, psychiatric disorders have been a substantial

burden on public health. As such disorders are frequently observed aggregating in families, we can

expect a large involvement of heritable components underlying their etiologies. Therefore, studying

the genetic architecture and basis is one of the most important aims toward developing effective

treatments for psychiatric disorders. The overall objective of this dissertation is to contribute to un-

derstanding the genetics of psychiatric disorders. Analyzing summary statistics from genomewide

association studies (GWAS) of psychiatric disorders, we mainly present results of two projects. In

the first one, we evaluated commonalities and distinctions in genetic risk of four highly comor-

bid childhood onset neuropsychiatric disorders: attention deficit/hyperactivity disorder (ADHD),

autism spectrum disorder (ASD), obsessive-compulsive disorder (OCD) and Tourette’s syndrome

(TS). Through systematic analysis of genetic architecture and correlation, we confirmed exitance of

genetic components shared across ADHD, ASD and TS, as well as OCD and TS. Subsequently, we

identified those components at variant, gene, and tissue specificity levels through meta-analyses.

Our results pointed toward possible involvement of hypothalamus-pituitary-adrenal (HPA) axis,

a human stress response system, in the etiology of these childhood onset disorders. The second

project includes the proposition of a novel framework for general GWAS summary statistics-based

analyses. Instead of regular odds ratio and standard errors archived in the summary statistics, we

proposed a recounstruction approach to rewrite the results in terms of single nucleotide polymor-

phisms (SNP) allelic and genotypic frequencies. We also put forward three applications built-upon

the proposed framework, and evaluated the performance on both synthetic data and real GWAS re-

sults of psychiatric disorders for each of them. Through these three applications, we demonstrated

that this framework can broaden the scope of GWAS summary statistics-based analyses and unify

various of analyses pipelines. We hope our work can serve as a stepping-stone for future researchers

aiming at understanding and utilizing GWAS results of complex psychiatric disorders.

14



1 INTRODUCTION

1.1 Psychiatric disorders and contribution of genetic factors to the outcome

According to the US National Health Expenditure Accounts, health care spending accounts for

17.7% of the overall share of 2019’s gross domestic product in US and this cost has been growing

steadily over the past decades. The public health burden and associated decrease in quality of life

brought on by common and still incurable disorders highlight the need to understanding their eti-

ology, identify susceptible individuals, and develop effective treatments. Caused by the interaction

between genetic and environmental factors, complex diseases, including various cancers, psychiatric

disorders, cardiovascular diseases and more, predominate public health concerns [1, 2, 3]. However,

due to complexity in their etiologies, elucidating the cause of such disorders has proven rather

challenging compared to Mendelian and monogenic diseases, which are due to variation at a single

genetic [4, 5].

The observation of an aggregation of cases in affected families usually points to the existence

of a genetic basis for a specific disorder. On the other hand, visible variation of incidence over a

short term (i.e. a few generations) implies environmental factors playing a role [3]. The amount

of contribution to disease etiology made by genetic factors in a population is widely measured by

disease heritability. Heritability is typically a value between 0 to 1, defined as the proportion of

phenotypic variation of a particular trait that can be attributed to genetic variation [6, 3]. Concep-

tually, this metric provides an indication of how heritable a phenotype is in a specific population:

the higher heritability a phenotype has, the higher resemblance we can expect between parents

and offspring, and the phenotype can thus be considered more “genetic” in the target population;

Mathematically, it is computed as the ratio of variances: genetic variance divided by phenotypic

variance [6]. Due to differences in approaches to estimate these two variance terms, heritability

for a disease is not always a constant even in the same population. However, there are highly

heritable complex diseases long-known for “running in families”, and psychiatric disorders make

up a predominant category of disorders within this group [7, 8, 9]. For instance, family based

studies showed heritability for attention deficit/hyperactivity disorder (ADHD) can be as high as

0.88 [10].For autism spectrum disorder (ASD) heritability has been estimated at ∼ 0.9 [11, 12],
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and even in relatively less heritable psychiatric disorders, such as major depressive disorder (MDD)

[8, 9], a heritability of > 0.3 can be observed [13, 14]. Psychiatric disorders are also among those

disorders with the greatest impact in terms of both prevalence and patients’ disability-adjusted life

years [15, 16]. Given this significant societal impact and high estimated heritability, elucidating

the genetic components that underlie the etiology of psychiatric disorders has drawn great interest

in the genomics era.

1.2 Genetic variants behind complex diseases

The observed variation in the DNA sequence is the focus of genetic research. Assuming a “linear

structure”, such variation can mainly be divided into two types: point mutations that each takes

place at a specific genomic locus, and structural mutations that can involve segments of the DNA

sequence.

The former, usually known as single nucleotide polymorphisms (SNP) or single nucleotide vari-

ants (SNV), are the simplest form of genetic variation. They represent the occurrence of two

(biallelic), or sometimes more than two (multiallelic), different bases at a certain genomic position

in the population. SNPs are highly abundant, as they are estimated to occur approximately once

in every 1,000 basepairs in the human genome [17, 18]. Most studies on SNPs focus on biallelic

ones, as multiallelic SNPs are not as widely seen and are rather complicated to study [19]. Biallelic

SNPs, as indicated by their name, present with two alleles (possible bases) in the population: usu-

ally the one less commonly observed is called a minor allele, and the other is called a major allele.

Based on the frequency of the different observed minor alleles (MAF, by definition MAF ≤ 0.5) in

a population, SNPs can be classified as rare (MAF < 1%) and common (MAF > 1− 5%) [20].

Examples of structural variation are from the chromosomal abnormalities detectable through

karyotype analysis (i.e. abnormal chromosome numbers, or translocations of large DNA segments

from one chromosome to another) [21, 22], and copy number variants (CNV). CNVs are defined

as gain (insertion) and loss (deletion) of DNA segments ranging from kilobases (kb) to megabases

(Mb) in size [23, 24]. Another type of structural mutation is called copy neutral variation. This

includes behaviors like exchange of DNA segments between two chromosomes (balanced transloca-

tions) and DNA segments reversely inserted in the chromosome (inversions). Unlike CNVs, such

16



structural changes in the DNA sequence do not affect the total number of nucleotides in the chro-

mosome [25, 26]. Similar to SNPs, these structural variants can also be categorized into common

and rare based on their frequencies of occurrence in a population.

Most of the genetic variants are benign. Some may have an impact on phenotype, but not

necessarily deleterious (e.g. genetic variants affecting eye, hair color etc. [27, 28, 29]). However,

variations in the DNA sequence can result in changes in protein sequences (non-synonymous muta-

tions) [30], gene expression [31, 32, 33], and various epigenetic regulatory behaviors [34] that lead

to an altered gene expression, including DNA methylation [35, 36] and transcription factor binding

affinity [37, 38]. Such effects can turn out to be pathogenic and account for disease heritabil-

ity. Several theories have been developed to characterize the relationship between genetic variants

and disease susceptibilities, one of which is the “common disease, common variant” hypothesis

(CD/CV). This hypothesis states that the origin of common diseases can be attributed to effects of

numerous common genetic variants with low to modest penetration. On the other hand, another

theory, known as the “common disease, rare variant” hypothesis (CD/RV) posits the opposite that

rare genetic variants, each with a relatively higher risk, make greater contributes to the disease

etiologies [39, 40, 41, 42]. Evidence has been found in favor of each theory [43, 44, 45]. However,

most studies indicate that the heritability of most complex diseases cannot be explained by solely

common or rare variants, neither can it be attributed just to SNPs or structural variants [46, 47,

48]. Each risk factor has its own role to play as part of the disease mechanism, and the phenotypic

outcome is believed to result from the joint effect of all kinds of genetic variants [20, 49]. Although

the exact genetic architecture for different complex disorders can differ markedly [50], figure 1.1

[20] serves as a classic and well-characterized illustration demonstrating the general relationship

between MAF of a SNP and its genetic effect over disease susceptibilities. Such a model is sup-

ported by results from analyzing the distribution of odds ratios for common and rare variants [42].

The figure was developed to explain the contribution of SNPs to disease. However, common and

rare structural variants can to a great extent behave in a similar manner [20, 51, 52].
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1.3 Genetic architecture of psychiatric disorders

Even though genetic architecture varies from disease to disease, if we look specifically into psychi-

atric disorders, considerable degree of homogeneity can be expected. Most psychiatric disorders,

including the aforementioned ADHD, ASD and MDD, turn out to be highly polygenic: meaning

their genetic risk can involve a large number of common variants with small effects, as well as

some rare variants with large effects and de novo variants [16, 53, 54]. This observation motivates

researchers to dissect the genetic factors underlying etiology of psychiatric disorders from various

angles. Investigating the impact of common SNPs throughout the genome had proven one of the

most successful approaches being used to study the genetic factors underlying psychiatric disor-

ders. It has been reported that a large proportion, usually one third to a half, of the heritability

of psychiatric disease can be attributed to only common genetic variants [54]. When it further

comes down to common SNPs, such ratios will decrease by definition. SNP effects are found to

play a big role in outcomes of lots of psychiatric disorders. A study on 4,408,646 Swedish samples

reports a family-based heritability of 0.38 for obsessive-compulsive disorder (OCD). Meanwhile, the

SNP-based heritability for the same disease is as high as 0.28, indicating more than 70% genetic

liability for OCD can be explained by common SNPs [9]. As an example on the lower end, it was

found that in ASD, although highly heritable, common SNPs only account for around 15% of the

total population observed heritbility [8]. Yet, the importance of SNP effects underlying ASD has

been proved by multiple studies [55, 56, 57]. Accomplishments like these reinforce the rationale for

scanning common SNPs across the genomes to seek for the ones that play a role in the onset of a

psychiatric disorder. This objective can be achieved through carrying out genomewide association

studies (GWAS).

1.4 GWAS and its success in psychiatric disorders

Since its first attempt in 2005 [58], GWAS has become one of the standard approaches to unveil

the relationship between SNP effects and a phenotype. In a GWAS, association of each SNP in the

genome with the phenotype of interest will be examined individually using unrelated samples in a

population. This results in millions of hypothesis tests across the genome for humans. As one form

of correction for these multiple tests, a genomewide significance threshold of p < 0.05/106 = 5×10−8
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is widely accepted as a cutoff to distinguish credible associations in European samples (where

106 is approximately the number of independent genomic regions in Europeans [59]). Typically,

association between a SNP and the trait of interest is evaluated through regressions, with trait

measurement as the dependent variable and presence of the effective allele as the independent

variable. Most of the time, researchers use linear regression for continuous traits and logistic

regression for binary traits, along with appropriate covariates included in the model [60, 61]. The

analysis is computationally efficient, and it allows hypothesis-free, unbiased search throughout the

genome for potentially causative genetic variants [62, 63]. On the other hand, acquiring the data

can be time and cost consuming. As shown in figure 1.1, effect sizes for most common SNPs are

low to modest. Therefore, detection of significant and novel associations in a GWAS often requires

large sample sizes, typically in the thousands or more, depending on the trait [61]. Experiments in

such scale used to be difficult. Thanks to the advancement in technologies, GWAS has been more

and more financially feasible in the past decade.

1.4.1 GWAS using SNP arrays

One of the most cost-effective approaches to access genetic variants on the human genome is through

whole-genome genotyping using SNP arrays [64]. This technology takes advantage of the fact that

SNPs on the genome are not completely independent from each other. Instead, highly dependent

genetic variants in a neighbourhood, namely SNPs in linkage disequilibrium (LD), form blocks of

few haplotypes (ie combinations of alleles along a DNA strand) [65]. The idea behind genotyping is

that, instead of capturing every single variant throughout the genome, based on the LD structures,

arrays are developed to capture only the “tagging SNPs” (tagSNPs) that well-characterize the hap-

lotype blocks [66]. Based on this information, the rest of the variants can subsequently be filled

out with “predictions” through statistical imputation [67]. This procedure requires high quality

reference panels for identifying tagSNPs and accurately imputing the missing SNPs. The former

has been achieved by the International HapMap project, which aimed to provide information on

common patterns in human DNA sequences through studying the frequencies and correlations of

genetic variants across different human populations [68]; As for the latter, the most widely used

public reference panel was made available by the 1000 Genomes Project. The reference panel
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included high-quality haplotypes of 2,504 samples from 26 populations obtained through a com-

bination of sequencing and genotyping techniques, with information of not only SNPs, but also

structural variants available [69]. As a result of recombination and mutations, LD structures are

population specific [70]. Therefore, choosing appropriate reference panel based on the population

distribution of study samples can be crucial [71, 72, 73].

Representing a relatively mature technology, genotyping using SNP arrays has been proven to

be extremely economic and reliable [64, 74]. On top of a highly accurate output of the directly geno-

typed SNPs, pipelines have been developed and refined for stringent quality controls, imputation

and association analyses. All these efforts throughout the past decade led to sets of best-practice

protocols for SNP array based GWAS [75, 76, 77]. However, as a tradeof for their efficiency, draw-

backs for genotyping using SNP arrays are also apparent. First, as mentioned before, the quality

of imputation is highly dependent on the reference genome used. For GWAS on populations with

well-established reference panels, this should not be as big a problem [78]. However, when it comes

to studies on under-represented populations, using a population-specific reference has been demon-

strated to be preferable, but is not always feasible [71, 72, 73]. Second, recall that when using SNP

arrays, only predefined tagSNPs will be directly genotyped. By the nature of this technology, it will

mostly not be able to capture rare variants (MAF < 1%) since they are not likely to be the ones

“characterizing the haplotype” [79, 66, 80], nor can they be reliably imputed using most publicly

available reference genome. Accurate imputation of low-frequency variants requires large sample

size in the panel, since an allele cannot be imputed unless it is first observed in the reference. As

example of a precise but highly population-specific reference, the UK10K Cohorts project recently

constructed a dataset of 3,781 samples with whole genome sequencing (WGS) data, aiming to char-

acterize rare variants with MAF down to 0.1% only in the British population [81]. Meanwhile, the

Haplotype Reference Consortium also created a reference panel of 64,976 human haplotypes, pri-

marily of European ancestries, by unifying WGS data from 20 studies. The panel was also claimed

to permit accurate imputation on SNPs with MAF as low as 0.1% [82]. However, both reference

panels were generated with European samples. This limitation, may eventually bring us back to

the first problem of reference dependency.
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1.4.2 GWAS using WGS

To compensate for some limitations of SNP array-based GWAS, an alternative is using WGS data

instead of tagSNPs and imputation. WGS, as implied by its name, provides a comprehensive collec-

tion of nearly all genetic variants in one’s genome, including both common and rare SNPs, as well as

structural variants and de novo mutations [83]. With the evolution of next-generation sequencing

(NGS) technologies, cost of sequencing a complete human genome has decreased drastically in the

past decade: from ∼$100 million in 2004 to today’s ∼$1000, making a nearly 10,000-fold reduction

[84]. Unlike the traditional Sanger sequencing [85], NGS allows massive sequencing reactions and

base detection to proceed in parallel thus is able to provide high-throughput DNA sequencing [86,

84].

WGS has evident advantages over array genotyping as it captures not only all common SNPs,

but also rare variants [64]. Moreover, it also allows analyses on structural and de novo variants,

which can possibly make up for some “missing heritability” from common SNPs [20, 49]. Therefore,

analyzing WGS data is a promising alternative, not only for SNP array-based GWAS, but for re-

search on genetic variants in general. However, considering the cost, we may realize that $1000 per

sample is not as affordable for many labs, given the large sample size a GWAS typically requires.

On the other hand, the cost of genotyping using SNP array can be as low as < $50 per individual

[64, 86]. Apart from the cost, another fact to be noted is that fast evolving NGS and its workflows

are still facing imperfections, which can lead to a failure in detecting many pathogenic variants

[87]. Due to technical challenges, not all genetic variants can be sequenced in a reliable manner

[88, 89, 90, 91]. On top of that, the human genome contains “dark” regions that create troubles

during sequence assembly or alignments [92, 93]. Another problem for WGS is that, as a relatively

newly emerging technology which is still under development, pipelines for analyzing WGS data are

not as ready-to-use as the ones made for SNP array based analyses, and they usually come with

heavier computational load and higher requirement for bioinformatic proficiency [64].

1.4.3 GWAS in psychiatric disorders

Starting with the first GWAS on bipolar disorder published as one of the seven common diseases

studied by the Wellcome Trust Case Control Center (WTCCC) in 2007 [94], GWAS on psychi-
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atric disorders will soon be celebrating its 15-year anniversary. Most of the GWAS have their

results archived in NHGRI-EBI GWAS Catalog, a publicly available database recording findings

on associations between SNPs and any trait of interest [95]. Taking a systematic look into those

records, we can see that by July 2021, ten reported traits, covering 72 child traits according to

the Experimental Factor Ontology (EFO) hierarchy, for mental or behavioural disorders have

been studied in 873 publications. 10,098 associations have been reported. Out of which, 4,624

reached genomewide significance. Due to various limitations mentioned in the previous sections,

as yet most GWAS studies are still SNP array genotyping-based. These studies elucidate networks

of relationship between common genetic variants and a wide range of phenotypes. Figure 1.2 from

[96] captures the tip of the iceberg for such networks. With growth of sample sizes in psychiatric

GWAS, the pleiotropic nature of more SNPs is being revealed.

GWAS uncovered the role of common SNPs underlying many psychiatric traits. One of most

successful application of GWAS was observed in schizophrenia (SCZ), forfor which more than 200

significant associations in 176 independent genetic loci have been identified as contributing to the

genetic risk of SCZ through GWAS and meta-analyzing GWAS results [97, 98, 99, 100, 101]. Part

of this achievement can be attributed to the highly heritable nature of SCZ (with family based

heritability estimation of ∼ 0.8 [102, 103]), especially when SNPs accounts for a good proportion of

its heritability (estimated SNP heritability 0.23-0.24 [97]). This success is also due to collaborative

efforts and increasing sample sizes. One of the biggest GWAS on SCZ to date included 22,778

cases and 35,362 controls just from East Asia. When meta-analyzed with the European samples,

the total sample size was boosted to 56,418 cases and 78,818 controls [97]. Genetic homogeneity in

SCZ across populations also helped with this process.

Not all psychiatric disorders can replicate such overwhelming success. For instance, MDD, as

mentioned in section 1.1, is not as heritable. One of the most recent GWAS meta-analysis on MDD

comprehensively included results from the three biggest MDD GWAS to date [104, 105, 106], en-

compassing a total of 246,363 cases and 561,190 controls. However, with more than five times the

sample size of SCZ, only 102 independent variants were detected [107]. Being one of the leading

causes of worldwide disability with a soaring population prevalence [108], MDD will never stop

attracting efforts to unravel its genetic and non-genetic risk factors.

Another example is ASD, which is also highly heritable, but not with much heritability con-
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ferred by common SNPs (see section 1.3). By more than doubling the sample size of previous

GWAS meta-analysis on ASD [55], only five gonomewide loci could be found significantly associ-

ated with the trait, with in total 18,381 cases and 27,969 controls used for the analysis [56]. On the

other hand, with a slightly higher sample size (20,183 cases and 35,191 controls), 12 independent

loci were identified for ADHD [109].

Some disorders have been considered rare for a long time and have thus not attracted as large

numbers of researchers and associated increased sample sizes. Tourette’s syndrome (TS) is another

childhood onset neurodevelopmental disorder with estimated 1% prevalence in children and ado-

lescents, a family-based heritability of 0.77 [110] and a SNP-based heritability of 0.21 [111]. The

first GWAS on TS carried out by the Tourette association of America International Consortium

for Genetics (TAAICG) failed to identify any significant association, as only 1,285 cases and 4,964

controls were analyzed [112]. In the second attempt, with most of the samples from the first study

also included, the total sample size reached 4,819 patients and 9,488 controls, which is still much

smaller than most GWAS carried out for adult psychiatric disorders and some for adolescent ones.

However, with an evident disadvantage in sample size, still one genomewide significant locus on

chromosome 13 was picked up [111].

Overall, with its utility demonstrated by hundreds of studies, GWAS has proven to be one of

the most beneficial tools in research on the genetic basis of psychiatric disorders in the past nearly

one and a half decades. Encouraged by all these promising results, plans for further expanding the

sample sizes, meta-analyses, and mega-analyses are on the table. Given the polygenic nature of

psychiatric disorders, very likely what has been discovered so far is merely a tip of the iceberg. We

firmly believe that by standing on the shoulder of giants, more will be achieved in the near future.

1.4.4 Limitations of GWAS

GWAS provides an unbiased and efficient way to interrogate millions of common variants spanning

the genome. But just like any other methods, it has its own limitations. First of all, GWAS orig-

inated on the basis CD/CV hypothesis, although after long years of controversy, most researchers

now agree on the polygenic nature of most, if not all, complex diseases [113]. By adopting a pop-

ulation design, the intention of GWAS mostly aims to test the effect of common SNP alleles that
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present in a considerable proportion of the population. As technology advances, rare variants can

be captured by WGS, and some of them may have relatively larger impact on the trait. However,

with a significant threshold of p < 5×10−8, usually an extremely large sample size will be required

to identify a rare variant as genomewide significant. It is encouraged to study rare variants through

other more focused and powerful approaches [114, 115, 116].

Secondly, the genomewide significance threshold for GWAS findings, although fully reasonable,

can be harsh under many circumstances. Not only for rare variants, but also the detection of

common SNPs with low effect size can also be penalized by such threshold. Moreover, emerging

WGS results in more independent statistical tests across the genome than before, so the bar can

possibly be reset to an even more stringent level [117, 118]. To meet such a rigorous condition of

significance, researchers are trying to include more and more samples to boost the analysis power

and organize large-consortia GWAS. However, such collaborations can create complications in data

sharing, harmonization and merging, especially across multiple ethnicities. Also expanding sample

sizes can be challenging for studies targeting isolated populations with unique genetic structure,

although high genetic homogeneity may be able to make up for some power loss due to low sample

sizes [64, 118, 119, 120].

Last but not least, one of the biggest concerns for GWAS lies in the interpretation of its results.

With constantly increasing sample sizes, more and more SNP-phenotype associations are being

detected. However, association by itself is far from sufficient for concluding a causal relationship

between a trait and SNP effects. Due to LD structures, when a causal mutation is identified by

the association test, usually nearby SNPs highly correlated with the variant will also be picked up,

especially when the GWAS is carried out through array genotyping and imputation. Therefore, as

a downstream step for GWAS, further fine-mapping is required to pinpoint the real causal variant

out of all significant ones in a locus [121]. Another type of interpretation difficulty stems from the

biological aspect. Around 90% of GWAS findings reside in intronic or intergenic regions, whose

functionalities are rather difficult to verify through wetlab experiments [122]. When it comes to

connecting genetic variants to biological etiology for complex disorders, we still have a long way to

go. It is worth mentioning that there have also been attempts to skip the biological interpretation,

and directly utilize results from GWAS in a more practical and data-driven way, such as individual

trait outcome or risk prediction. Such attempts include polygenic risk score (PRS), an individual
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score developed to describe the genetic liability to a trait of interest [123]. However, bounded by

SNP heritability, prediction models built upon merely GWAS results do not often achieve satisfying

performance [124]. The same also applies to PRS, which in most of the time, only captures a very

small amount of phenotypic variance when compared to other risk factors [125, 126, 127].

1.4.5 A peek into the future of GWAS

Despite of all the limitations mentioned in section 1.4.4, it is hard to ignore the huge success it

has achieved, in both psychiatric and non-psychiatric disorders. To date, it is still considered one

of the most efficient ways to scan for underlying genetic variants responsible for a trait. With ad-

vancements in computational power and machine learning techniques, there are researchers calling

for the improvement or replacement of GWAS [128, 129, 130]. However, popularity of this method

is not likely to fade drastically in the near future, or at least not before any proposed alternatives

are proven to be truly sound and more effective.

The pipeline for GWAS is relatively mature, but it will keep evolving to address some of the

aforementioned concerns. To meet the stringent genomewide significance threshold, one trend is

to expand research collaborations, combining data from different sources through meta or mega-

analysis and reach larger sample sizes. Large consortia, such as the Psychaitric Genomics Consor-

tium (PGC) [131], provide the platform for researchers to join forces. Meanwhile, researchers are

also refining phenotypic measurements and selection of samples, in order to achieve higher power

and result replicability by eliminating noise from the analysis.

Another idea trending in the community is to increase ethnic diversity of GWAS. A statistic

done in 2009 showed that by then, more than 95% of GWAS participants are from European an-

cestry [132]. Ten years later, by July 2021, this ratio moved to 88.65% [133] (Figure 1.3), with

the non-European samples predominated by Asians. Due to different LD structures, most GWAS

results have low trans-ancestry portability. Among all variants at a significant genomic locus, SNPs

showing a consistent effect in various populations are more likely to be causal themselves, rather

than being picked up due to being in linkage with the real causal ones [134]. Therefore, more pow-

erful GWAS targeting underrepresented populations are necessary, not only for population specific

gene discovery, but also for further fine-mapping.
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A third trend that can be observed is the growing use of WGS data in GWAS. This is not

surprising, given the cost of NGS has been decreasing drastically in the past decade. In July 2021,

out of in total 5,183 publications recorded in GWAS catalog, 15 are carried out, completely or

partially, using WGS data. Out of those 15 studies, one was published in 2012, one published in

2014, two in 2015, five in 2017, two in 2019, three in 2020 and one in 2021. As discussed in section

1.4.2, currently technology is still not affordable for WGS studies with large sample sizes. However,

with the advancement of NGS, such financial burden will be further reduced. It is reasonable to

expect WGS to become more popular in the next decade or so. As an initiative, the UK biobank,

which is one of the biggest biomedical data bank containing comprehensive phenotypic and genetic

measurements of 502,543 individuals [135], has started their plan on genome sequencing. Last year,

they released their first batch of results, including whole-exome sequences of 49,960 study partici-

pants [136]. As for biobanks in the US, there has also been news reports about the 125,000th whole

human genome sequence being delivered to the Million Veteran Program (MVP) from department

of Veterans Affairs [137] in June 2021. Another emerging effort is the All of Us Research Program.

This program aims at enrolling at least one million participants across the US and creating the

most diverse biomedical database [138]. Such projects make large-scale sequencing studies possible

for more researchers, and create tremendous research opportunities for the scientific community.

1.5 Post-GWAS era and its progress in psychiatric disorders

In recent years, with the emergence of biobanks and increased curated accessibility to individual

level genotype data, GWAS have been more massively carried out than ever. Numerous GWAS

results, namely GWAS summary statistics, are made publicly available, pushing genetic research

on complex diseases into a “post-GWAS era”. As mentioned in section 1.4, GWAS has been

used as a “quick-and-dirty” approach to identify candidate genetic variants underlying disease

etiology, although its results face problems as lack of theoretical interpretability or practical utility.

Therefore, most post-GWAS efforts focus on improvement in the following two directions: 1. fine-

mapping and digging into disease mechanisms implied by genetic findings; 2. exploring applications

of GWAS results through a data-driven manner.
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1.5.1 Annotation, fine-mapping and other biological insights from GWAS results

It is not hard to imagine that knowing the risk genetic variants and their genomic positions, in itself,

is not as helpful, unless we can also learn their roles in the disease etiology. Therefore, appropriate

annotations are necessary as a standard post-GWAS procedure. Genes have long been introduced

as “the smallest unit of heredity”. Despite of the controversy on that, it is obvious that comparing

to individual nucleotide, function of genes have been much thoroughly studied [139, 140, 141].

Thus the most intuitive annotation for a SNP is to annotate it onto a gene by its physical location

in the genome. However, as mentioned in section 1.4.4, most GWAS significant SNPs end up in

non-coding regions. Even for those directly involved in gene coding, not all mutations are non-

synonymous (nsSNPs), meaning many gene-coding SNPs, although can alter mRNA, do not lead to

any changes in protein sequences. nsSNPs directly cause alteration in amino acids and are believed

to have great impacts on subjects’ health [142, 143]. Because of this, they receive more attention

in functional studies, which results in abundant tools for nsSNP annotation and phenotypic effect

prediction [144, 145, 146, 147]. Fortunately, thanks to purifying selection, nsSNPs tend to be rare,

especially the deleterious ones [148, 149]. Since GWAS focus mostly on common SNPs, nsSNPs

are rather unlikely to turn out as genomewide significant hits in the analysis. Synonymous and

non-coding SNPs, on the other hand, are the predominant GWAS findings. There is growing

awareness on important regulatory effects of these SNPs [150, 151, 152]. More databases and tools

are developed to annotate non-coding SNPs by their utilities in modulating gene expression [153,

154, 155]. Once SNPs are mapped onto genes, we can subsequently proceed with gene, and even

tissue or pathway level of analyses, built on top of SNP-based results from GWAS. Some ideas for

gene-based analyses include computing disease-specific gene effects by aggregating the impact of

SNPs annotated to each gene [156, 157], or using SNP effects as instrumental variables to look into

causal relationship between gene expression and trait of interest through Mendelian randomization

[158, 159]. With that, we can further look into disease tissue specificity through studying the

enrichment of differentially expressed genes in each tissue [160, 161]. Similarly, enrichment can also

be tested for genes in predefined biological pathways [162, 163, 164].

Another direction toward improving the interpretability of GWAS results is to identify causal

SNPs within each risk genomic region through fine-mapping. By doing this, we can prioritize SNPs
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identified in GWAS for further functional validation through wet-lab experiments. This procedure

assumes in any associated locus, at least one of the SNPs should be truly responsible for the trait

outcome. Other SNPs within the same neighbourhood are also being picked up only because they

are in linkage with the causal SNPs [165]. In general, fine-mapping strategies can be classified into

two big groups: through functional annotation, and through statistical approaches. For the former

strategy, we annotate all candidate SNPs in the region and highlight the functional ones that are

more likely to play a role in disease etiology. For the latter, usually a measurement of “causality”

will be assigned to each SNP in the region. Such measurement, can be a score calculated from

association p-value and regional LD structure [166], coefficient in a penalized multiple regression

[167, 168], or a probability of being the causal SNP [169]. Therefore, a Bayesian framework is

widely used in statistical fine-mapping [170, 171, 172, 173]. It is also worth noting that although I

classified fine-mapping strategies into two big categories, these two branches are not necessarily in

an “either-or” relationship. In fact, most fine-mapping studies nowadays combine both strategies:

looking into the function of credible causal SNPs obtained through statistical approaches [174, 175];

or directly incorporating functional annotation into SNP causality evaluation [176, 177].

Apart from information on specific genomic loci, by viewing the overall GWAS results, we

can also learn valuable lessons regarding biological properties and genetic architecture of a trait.

Methods have been developed to estimate phenotype SNP heritability and partitioned heritability

by annotations from GWAS summary statistics [178, 179, 180]. Similarity in underlying genetic

components between two traits can be evaluated through genetic correlation, which can also be

obtained from GWAS summary statistics [181, 182]. Interrogating multiple disorders at the same

time, we can study their joint genetic architecture by looking into shared latent genetic factors using

structural equation modeling [183]. Furthermore, thanks to the nature of genetic variants, SNPs

can be used as perfect instrumental variables, making it possible to infer causality relationships

between the genetic risk of a exposure and target disorder through Mendelian randomization [184].

Partially due to controversial classification criteria [185, 186, 187], a transdiagnostic approach

is highly encouraged for studying psychiatric disorders [188, 189, 190]. Accordingly, methods

have also been developed to accommodate such demand in genetic studies. One of the goals of

transdiagnostic research is to find common risk factors shared by multiple disorders that show

phenotypic resemblance. In other words, to identify pleiotropic genetic variants which have high
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impact in multiple psychiatric disorders. Looking into shared genetic risk factors guides us to

explore common pathways underlying the etiology of a spectrum of disorders, and provides hints in

developing treatments in a more holistic manner. This can be achieved through cross-disorder meta-

analysis and evaluating the posterior probability of association for each SNP [191], or more stringent

hypothesis testing approaches [192]. Another perspective to view transdiagnostic analysis is that

we can utilize information from closely related traits to help with understanding a specific disorder

of interest. Although strong assumption on homogeneity in cross-disorder SNP effects is required,

such multi-trait joint analysis of GWAS summary statistics indeed provides a great power boost

in return [193]. Besides commonalities, sometimes we are also interested in genetic distinctions

between two psychiatric disorders. Toward that end, we can run a conditional analysis to get the

marginal SNP effects in one disorder conditioned on the effects in the other [184]. An even more

straightforward alternative is to run a case-case GWAS, where the healthy controls are replaced by

patients from another disorder of interest. Recently, a GWAS summary statistics-based method was

also developed for such analysis [194]. However, a weakness of almost all aforementioned methods is

that, just like any regular GWAS, usually their results only provide clues about association, without

further knowledge on causality. A solution to this problem can be multi-trait colocalization-based

methodologies. Such methods combine the idea of variants detection and fine-mapping, and have

been used to study whether a disorder of interest has shared or distinct causal genetic factors with

an intermediate or related trait [195]. This method has recently been extended from two-trait [196]

to multi-trait analysis [197, 195].

1.5.2 Data-driven applications of GWAS findings

Another perspective on interpreting GWAS is to view it as a “feature selection” procedure, where

each genetic variant is considered a candidate predictor. Since in GWAS, regressions are carried out

with phenotype measurements as dependent variables, intuitively the “features” selected through

GWAS will be used to predict individual trait outcomes. A most representative realization of this

idea is polygenic risk score (PRS). It is a personalized score describing an individual’s genetic risk

to develop a certain trait. Typically, PRS is computed as the weighted mean/sum of presence of

risk alleles across one’s genome, where the weights, are usually derived from SNP allelic effects
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obtained from GWAS results on the same or another relevant trait [123]. In this process, GWAS

can be viewed as a discovery, or “training” step if considered from a machine learning point of view,

while the scores will subsequently be computed for another group of subjects whose individual level

genotype is available and assessed by regressing over their phenotypic outcome. The latter, is

equivalent to a validation or “testing” step [198]. As we can easily notice, general protocols for

PRS computation and evaluation adopts a machine learning framework. Therefore, we should also

expect it to be subject to the rules as well as general weaknesses of machine learning. First, like

many machine learning techniques, best practices for PRS are ensured without excessive feature

dependency [199]. To achieve this, we usually extract independent SNPs from GWAS results prior

to PRS computation [200], or re-estimate SNP weights based on the LD structure using penalized

regressions [201] or Bayesian methods [202, 203, 204]. Another principle of machine learning is

that to avoid over-fitting, training samples should not be reused anyhow in the testing step. This

elementary rule has long been a common sense for data scientists. However, in practice, it is

surprisingly difficult to implement for PRS evaluation. The reason is that since “training step” for

PRS is a GWAS, it is usually carried out and published as an independent study by another research

group. In most of the time researchers computing PRS, on the other hand, can only get access to

the GWAS summary statistics. Even though individual-level genotypes for the testing samples are

available, as summary statistics preserves privacy, there is no way to verify if any of their testing

samples also participate in the original GWAS. Such unknown sample overlap can result in inflated

result during performance evaluation [205]. Unfortunately, to the best of my knowledge, there is

still no effective solution to this issue. One more universal pitfall in machine learning is that model

performance to a great extent depends on the homogeneity of distributions for training and testing

data. The statistical learning theory assumes all training and testing data points are independent

and identically distributed [206], whereas such assumption can hardly held outside a lab. Reflection

of this problem in genetics is population stratification. Due to LD, distribution of genetic effects can

vary across populations, leading to low trans-ethnic portability of GWAS results and phenotypic

variance explained by PRS [205, 207]. As one of the most popular research topics recent years,

statistical geneticists have been putting lots of efforts on improving cross-population PRS prediction

performance. Besides GWAS results, most approaches incorporate external information, such as

SNP functional annotations [208] or target population specific information [209, 210]. Leveraging
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fine-mapping is one of the popular ideas toward this aim [211].

PRS is a very special prediction model widely used in genetic epidemiology research. It is

nothing but an additive model that may seem too simple to be functional for any data scientist,

whereas such simplicity brings along superior interpretability and therefore is highly praised. There

are also many other data-driven applications of GWAS aiming at sacrificing such interpretability in

exchange for better prediction performance. Most of them directly adopt readily developed machine

learning techniques, such as support vector machine [212] or random forest [213]. However, most of

such attempts fail to receive as much improvements in prediction accuracy as expected. Nature of

complex diseases is partly to blame for such low predictability. Recall that the amount of phenotypic

variance that can be explained by genetic variables is measured by disease heritability. Therefore,

it makes the upper bound for performance of any trait predictor based entirely on subjects’ genetic

sequences [124, 205]. Consequently, on top of GWAS, some researchers start to integrate additional

information, for instance transcriptional risk factors [214] or association results of other relevant

phenotypes [215], to enhance trait predictability. Even though most GWAS results still cannot be

translated into a clinically reliable prediction model at this moment, genetic markers are promising

predictors for identifying susceptible individuals.

1.5.3 Progress on post-GWAS research in psychiatric disorders

One of the fundamental goals for psychiatric genetic research is to go beyond genetic risk factors

and elucidate biological mechanism, which can hopefully result in clinical insights [216]. This can be

reflected in annotations and gene, tissue, pathway detection [99, 107, 109, 56, 217], or fine-mapping

to unravel possible causal genetic variants [218, 219]. Apart from these standard analyses, many

discoveries in psychiatric genetics origin arise from cross-disorder studies. As mentioned in section

1.5.1, transdiagnostic approaches are highly encouraged in psychiatric research. Psychiatric disor-

ders are highly comorbid [220, 221, 222]. Even disorders being classified into different categories

can show similarities in symptoms and aggregation in families [223]. By using cross-disorder de-

signs, we can systematically profile commonalities and distinctions in etiologies underlying different

psychiatric disorders. The history of genomewide cross-disorder analyses in psychiatric genetics can

be traced back to a decade ago, when three of the most powerful GWAS by that time: in SCZ,
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MDD and bipolar disorder, were combined to find genetic variants playing a role in psychopathol-

ogy [224]. Around the same time, shared genetic factors between ADHD and ASD [225], as well

as OCD and TS [226], also came to researchers’ attention. A few years later, the Cross-Disorder

Group of PGC published results on jointly analyzing five major psychiatric disorders: SCZ, MDD

and bipolar disorder, along with ADHD and ASD. It is still considered one of the biggest and

most impactful genomewide cross-disorder studies to date [227]. Fast forward to the present day,

a more recent example are the PGC efforts to uncover pleiotropic genetic variants across eight

psychiatric disorders [228]. This recent PGC study systematically evaluated pairwise and joint

genetic relationships of eight major psychiatric disorders, using the GWAS summary statistics of

each trait. It sought genomic loci with pleiotropic effects in all or a subset of the eight disorders,

and further investigated shared biological pathways implied by those loci. Another perspective in

the analysis of shared genetic risk across psychiatric disorders is cross-disorder polygenic prediction.

This is usually evaluated by the amount of phenotypic variance in a target disorder explained by

PRS computed using GWAS results from another disorder. One of the earliest realizations of this

idea was applied to bipolar disorder and SCZ, where polygenic risk components of SCZ derived

from its GWAS results were found contributing to risk specifically of bipolar disorders, but not

of many other non-psychiatric traits [229]. Such results provide evidence for shared polygenic ba-

sis across psychiatric disorders. In addition to psychiatric disorders, cross-trait analyses can also

involve non-psychiatric phenotypes. Studies have shown that cross-trait associations can be un-

covered between psychiatric PRSs and certain non-psychiatric traits as well, and vice versa [230].

The recent emergence of biobank data opens up the potential for efficiently studying associations

between genetic risk and various phenotypic measurements, through what is called a phenomewide

association study (PheWAS) [231]. PheWAS on psychiatric disorders using UK biobank samples

have found association between polygenic risk of some major psychiatric disorders associated with

a large variety of traits, including multiple sociodemographic, mental and physical health factors

[232]. On top of that, cross-disorder causality relationship between psychiatric traits and health

risk factors have also been widely reported [184, 233, 234]. Besides focusing on shared etiologies,

investigating differential genomic loci for phenotypically related psychiatric disorders is another

focus. Despite of considerable amount of homogeneity found across psychiatric disorders, they still

show differences in symptoms and classifications. Studying distinctions in their genetic background
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can help our understanding of biological mechanisms underlying symptoms for specific disorders.

Multi-trait conditional analysis has been used to study disorder specific SNPs for bipolar disorder,

MDD, SCZ, ADHD and ASD respectively [235]. In another study, the authors tried to identify

genetic variants differentiating SCZ and bipolar disorder through carrying out a case-case GWAS

[236]. Conventionally such analysis would require the access to individual level genotype data,

which may not always be feasible. However, recently a method was developed to extend case-

case GWAS to summary statistics-based analysis. The author also applied the method to detect

differential SNPs among eight psychiatric disorders [194].

1.6 Dissertation objectives

This dissertation presents discoveries in two “post-GWAS” directions, each constituting one section

respectively: One of them focuses on novel discovery in genetics of complex psychiatric disorders

through a series of systematic analyses, whereas the other describes the development and evaluation

of a new methodological framework that unifies multiple post-GWAS analytical pipelines.

Section 2 presents a cross-disorder analysis on four common childhood-onset neuropsychiatric

disorders including ADHD, ASD, OCD and TS. Using the GWAS summary statistics of each

individual disorder, we identified shared and distinct genetic risk factors across the four disorders,

which further brought about deeper biological insights into their etiologies.

Section 3 presents a novel framework that can be widely adopted by GWAS summary statistics-

based analyses. To demonstrate the utility of the framework, we also put forward three applications

built upon it, including group-wise PRS, which for the first time being computed without accessing

to individual level genotype data. We tested all three applications on both synthetic data as well

as real GWAS data. Powerful and robust results indicated great potentials held by the framework.

The objective of both projects was to contribute to better understanding GWAS and their

results of complex psychiatric disorders. We hope improved knowledge on the genetic basis of these

disorders can provide some directions for further development of advanced therapeutic intervention.
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1.7 Figures

Figure 1.1: General genetic architecture of complex diseases, figure cited from [20].
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Figure 1.2: Network of associations between selected SNPs and phenoypes, figure cited
from [96]. SNPs (in red) in the figure are reported associated (with p < 2×10−8, which is stronger
than a genomewide significance) with at least one psychological/behavioral/cognitive phenotypes
(in yellow) and one other trait, not necessarily psychological (in turquoise color if not).
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Figure 1.3: Total GWAS participants diversity reported by GWAS Diversity Monitor
[133]. The screenshot was captured on July 26th, 2021.

36



2 INVESTIGATING SHARED GENETIC BASIS ACROSS TOURETTE

SYNDROME AND COMORBID NEURODEVELOPMENTAL

DISORDERS ALONG THE IMPULSIVITY-COMPULSIVITY

SPECTRUM

2.1 Abstract

Background: Tourette Syndrome (TS) is often found comorbid with other neurodevelopmental

disorders across the impulsivity-compulsivity spectrum with Attention Deficit/Hyperactivity Dis-

order (ADHD), Autism Spectrum Disorder (ASD), and Obsessive-Compulsive Disorder (OCD) as

most prevalent. This points to the possibility of a common etiological thread along an impulsivity-

compulsivity continuum.

Methods: Investigating the shared genetic basis across TS, ADHD, ASD, and OCD we under-

take an evaluation of cross-disorder genetic architecture and systematic meta-analysis, integrating

summary statistics from the latest genomewide association studies (GWAS) (93,294 individuals,

6,788,510 markers).

Results: As previously identified, a common unifying factor connects TS-ADHD-ASD, while TS-

OCD show the highest genetic correlation in pairwise testing among these disorders. Thanks to a

more homogeneous set of disorders and targeted approach that is guided by genetic correlations,

we are able to identify multiple novel hits as well as regions that seem to play a pleiotropic role

for the specific disorders analyzed here and could not be identified through previous studies. In

the TS-ADHD-ASD GWAS SNP-based and gene-based meta-analysis, we uncover 13 genomewide

significant regions that host SNPs with a high posterior probability for association with all three

studied disorders (m − value > 0.9), 11 of which were not identified in previous cross-disorder

analysis. On the other hand, we also identify two additional pleiotropic regions in TS-OCD meta-

analysis. Through conditional analysis, we highlight genes and genetic regions that play a specific

role in a TS-ADHD-ASD genetic factor versus TS-OCD. Cross-disorder tissue-specificity analysis

implicates the hypothalamus-pituitary-adrenal gland axis.

Conclusions: Our work underlines the value of re-defining the framework for research across

traditional diagnostic categories.
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2.2 Introduction

Tourette Syndrome (TS) is a common childhood-onset neuropsychiatric disorder that is often co-

morbid with other neurodevelopmental disorders along the impulsivity-compulsivity spectrum. In

fact, only 10% of TS patients appear as pure TS, while up to 54.3% are also diagnosed with Atten-

tion Deficit Hyperactivity Disorder (ADHD), 50% have Obsessive Compulsive Disorder (OCD), and

up to 20% have comorbid Autism Spectrum Disorders (ASD) [221, 237, 238]. The high comorbidity

rates among these disorders have led to the hypothesis that TS, OCD, ADHD, and ASD might

actually lie on an impulsivity-compulsivity continuum, sharing overlapping etiologies that converge

in dysfunctional brain circuitries [238]. Here, pursuing a transdiagnostic approach, we seek to iden-

tify the common genetic factors and neural underpinnings across this spectrum of phenotypes.

TS, ADHD, ASD and OCD all have a complex and highly heterogeneous genetic architecture with

both common and rare genetic variants contributing to their etiology [239, 240, 110, 241]). Over

the past few years, twelve genomewide significant loci have been identified for ADHD [109], and five

genomewide significant loci were described for ASD [55, 56]. For OCD no genomewide significant

loci have been detected to date [242], while one genomewide significant locus was recently reported

for TS [111].

Several cross-disorder analyses have previously evaluated the genetic overlap across these disor-

ders revealing broad genetic correlations [228, 243, 244, 245, 227, 246]. Most recently, as part of

the Psychiatric Genomics Consortium (PGC), we presented a data-driven meta-analysis of GWAS

across eight common psychiatric disorders for which large GWAS data was available. Disorders

analyzed included TS, ADHD, ASD, OCD, anorexia nervosa (AN), bipolar disorder (BD), major

depression disorder (MDD), and schizophrenia (SZ) [228]. Exploratory factor analysis revealed

that early-onset disorders including ADHD, ASD, and TS fell in one of the three identified factors

(together with MD which is not typically early-onset). TS was also found weakly correlated in

another factor together with compulsive disorders including OCD and AN. AN was however not

found to be significantly correlated with TS in pairwise analysis and is not observed frequently in

TS patients. This previous eight-disorder GWAS meta-analysis included multiple psychiatric disor-

ders which are not clinically or genetically correlated to TS, thus possibly diluting relevant signals.

Although power is high due to overall sample size, the trade-off is increased heterogeneity and thus
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difficulty to interpret results for one specific set of phenotypes that could be regarded as a group.

Factor analysis, tests of pleiotropy and cross-disorder GWAS meta-analysis are all influenced by

the input datasets and subject to change based on what disorders are analyzed. Therefore, in

order to investigate a specific subset of traits that present with high comorbidity and high genetic

correlation more focused cross-disorder studies are warranted.

Here, we build upon the PGC cross-disorder GWAS results as well as the high comorbidity and

the existing hypotheses for shared etiology across TS and related disorders across the impulsivity-

compulsivity spectrum. Our work highlights variants and genes that may contribute to neurobiol-

ogy across this spectrum of neurodevelopmental phenotypes many of which could not be previously

identified.

2.3 Method

2.3.1 Data sources

Analyses were conducted using summary statistics from GWAS for ADHD, ASD, OCD, and TS

as made available by the PGC. For TS, we combined results from the first GWAS on TS, con-

ducted by Scharf et al. [112] and newly collected cases and controls. In total, 4,232 cases and

8,283 ancestry-matched controls were used for the analysis, which resulted in 8,868,895 variants

overlapping in the meta-analysis. These summary statistics correspond to the GWAS carried out

by Yu et al. [111], excluding samples from the Tic Genetic Consortium. For ADHD, samples were

collected by iPSYCH and PGC, with most of the samples genotyped using the Illumina PsychAr-

ray. Only samples of European ancestry were included in our analyses, comprising 19,099 cases and

34,194 ancestry-matched controls. In total, 8,047,421 variants overlapping across all cohorts after

imputation were analyzed [109]. For ASD, we acquired the summary statistics of 18,382 cases and

27,969 ancestry-matched controls of European ancestry collected by iPSYCH and PGC. Most of

the samples were genotyped with the Illumina PsychChip. After meta-analysis, 9,112,387 variants

overlapping across sample sources were available [56]. For OCD, we used results from a meta-

analysis of GWAS from two consortia: International Obsessive Compulsive Disorder Foundation

Genetics Collaborative (IOCDF-GC) [247] and OCD Collaborative Genetics Association Studies

(OCGAS) [248], which led to a total of 2,688 affected samples and 7,037 ancestry-matched controls
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from Europe. Samples were genotyped with multiple different Illumina’s BeadChip arrays. After

meta-analysis, 8,409,517 variants were found overlap and used for our study [242]. For all data

obtained from the PGC, Ricopili pipeline or comparable quality controls were carried out.

2.3.2 Cross-disorder genetic architecture and GWAS meta-analysis

LD-score regression analysis was carried out using the LDSC package [182]. Only common SNPs

(MAF > 0.01) with an imputation quality (INFO) score > 0.9 and matched with the provided

HapMap3 SNPs reference were analyzed. LD scores estimated for the European samples from the

1000 Genomes phase 3 [69] were used as both the independent variable and the weight for the

regression.

2.3.3 Investigating cross-disorder genetic architecture

In order to test for the presence of a common genetic factor that may underlie all traits of interest,

we tested the common factor model using Genomic SEM for summary statistics of all disorders

showing significant genetic correlation with TS. Prior to that, multivariable LDSC was carried out to

obtain the covariance matrices using SNPs that survived the same quality controls for estimation of

genetic correlation. Disease population prevalence used for the analysis were as follows: TS: 0.008,

ADHD: 0.05, ASD: 0.01, OCD: 0.025. Fitness of model was evaluated using model chi-square,

Akaike Information Criteria (AIC), Comparative Fit Index (CFI), and standardized root mean

square residual (SRMR).

2.3.4 Causal risk factor inference

To estimate the causative association across traits, we carried out bidirectional generalized summary-

data-based Mendelian randomization (GSMR) [184] across all disorders of interest. SNPs that are

strongly associated with the exposure (p < 5×10−6) were used as genetic instruments. This thresh-

old was chosen so that all the diseases could have more than 10 near-independent genetic instru-

ments (r2 > 0.05) for analyses therefore test power could be granted. A heterogeneity in dependent

instrument (HEIDI)-outlier approach was carried out to exclude pleiotropic SNPs (pHEIDI < 0.01)

that affect the outcome through pathways other than the exposure factor. We used each trait as
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the target and the other three as exposures respectively and ran 12 independent tests, which made

the significant threshold for this analysis p < 4.17× 10−3 under Bonferroni correction.

2.3.5 GWAS meta-analysis

To investigate the genetic variants underlying the observed overlap, cross-disorder meta-analysis was

carried out for TS-ADHD-ASD jointly, as well as pairwise between TS and significantly correlated

disorders. SNP-based GWAS meta-analyses was performed using ASSET [249], which takes into

account dependency across studies due to sample overlap [250]). For each study, the variants’ effect

sizes were measured by the logarithm of the odds ratio (OR). The possibility of inflation of results

was investigated through observed λ as well as the sample size -corrected value λ1000. Variants with

meta-analysis p-values below the genomewide significance threshold (p < 5×10−8) were considered

significant. To further highlight SNPs that contribute to risk across multiple phenotypes, we

estimated the posterior probability of association (referred to as the m-value) with each disorder

using a Bayesian statistical framework as implemented by MetaSoft [191]. An m-value threshold

of 0.9 has been recommended to predict with high confidence that a particular SNP is associated

with a given disorder.

2.3.6 Partitioned heritability analysis

We carried out SNP partitioned heritability analysis and cell type specificity analysis for the GWAS

meta-analysis results using the LDSC package as described by Finucane et al. [179]. We investi-

gated the possible enrichment of SNP heritability in 53 non-cell type specific annotation categories

(baseline), including 24 main annotations and 29 extended annotations derived from the main an-

notations as defined in [179]. Even though these annotation categories were not mutually exclusive,

we considered 53 as the number of hypothesis tested rather than 24, which gave us a more conser-

vative significant threshold of p < 9.43× 10−4 after multiple testing correction.

For the cell type specific annotations, we investigated the enrichment of SNP heritability in 13

brain relevant annotations from GTEx using reference created by Finucane et al. while controlling

for the 53 baseline categories as defined in [179]. After multiple testing correction, the significant

threshold for this analysis was p < 3.85 × 10−3. We also looked into the heritability enrichment
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in cell type specific chromatin states using cell type specific annotation made publicly available by

Finucane et al. The annotation reference included for 489 cell type specific chromatin states. The

results were subject to a significant threshold of p < 1.02× 10−4.

2.3.7 SNP-based Conditional analysis

To further dissect the contribution of genetics on different groups of traits, we carried out multi-

trait-based conditional and joint analysis (mtCOJO) [184] to adjust the summary statistics of

TS-ADHD-ASD conditioning on TS-OCD and vice versa. Bidirectional causal effects between

TS-ADHD-ASD and TS-OCD were first estimated using GSMR with strongly associated SNPs

(p < 1×10−5). Genetic correlation, SNP-based heritability and potential covariance due to sample

overlap were estimated through LD score regression, for which 1000Genomes phase 3 EUR subset

was used as reference.

2.3.8 Gene-based cross-disorder GWAS analysis

Gene-based cross-disorder GWAS analysis was carried out using the MAGMA plug-in on the FUMA

GWAS annotation platform [251, 252]. For this analysis, variants were mapped onto genes based on

their exact physical positions without extended windows and aggregated association p-values were

calculated for each gene. Analysis was carried out under a SNP-wise (mean) model. Considering

the sample composition, a European ancestry reference from 1000 Genomes phase 3 was used as

the reference panel. Analysis was done with the summary statistics of each disorder individually

as well as all meta-analysis results obtained. Significance thresholds were set applying Bonferroni

correction for each analysis, corresponding to the number of genes being tested.

2.3.9 Gene-property analysis for tissue specificity

To investigate phenotypic tissue specificity, a gene-property analysis testing for the relationship

between tissue-specific gene expression and phenotype for associated genes was carried out using

MAGMA for meta-analysis results with both GTEx v7 30 and 53 general tissue type expression atlas

[141]. Significant thresholds for these analyses were p-value < 1.67×10−3 and p-value < 9.43×10−4,

respectively, under Bonferroni correction. The analysis was done for all meta-analyzed results.
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2.3.10 Gene-set analysis

Gene-set analysis was also performed using MAGMA under a default competitive test. Gene sets

and gene ontology (GO) terms tested were obtained from MsigDB v 6.1, which contains 10,655 gene

sets consistent across multiple sources. Bonferroni correction was applied to calculated association

p-values to determine significance.

2.3.11 Results annotation

SNP-based annotation and gene mapping were carried out for significant SNPs with ANNOVAR

[253], including functional predictions for all significant non-synonymous mutations using SIFT

[254] and PolyPhen-2 [255] plug-ins of ANNOVAR. Regional plots for the top-variants were created

for 400 kb windows using the LocusZoom platform [256]. For all significant results from our

SNP-based and gene-based meta-analyses, we looked up previously reported associations in the

GWAS catalog [95]. Aggregate functional information and tissue expression levels of the genes were

acquired from the GeneCards database [139], the GTEx Portal [141], and the Expression Atlas [257].

Annotation of independent genomic risk loci from the FUMA GWAS platform was also adopted

under parameters LD r2 < 0.6 for SNPs with association p < 5 × 10−5 and within 1000 kb away

from the significant lead-SNP (p < 5×10−8). GO-annotation and the over-representation tests were

performed using the R package ClusterProfiler v3.0.4 [258]. Genes were mapped onto GO-terms

based on org.Hs.eg.db [259]. Enrichment of GO-terms was evaluated through a hypergeometric test

[260]. Network plotting was carried out using the built-in function of ClusterProfiler.

2.3.12 Transcriptome-wide association study

Association between the studied disorders and gene expression levels in the brain was evaluated

through summary-data-based Mendelian Randomization. The SMR software was used and analysis

was performed for each individual disorder as well as using results from our GWAS meta-analyses

[159]. We used GWAS summary statistics for each studied disorder (as described above), the LD

structure from from 1000 Genomes European reference panel and summary statistics from brain

expression quantitative trait loci (eQTL) analysis [261], which quantified the effect of SNPs over

gene expression levels in brain tissue [262, 263]. Only variants showing a consistent allele frequency
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(pairwise MAF difference between datasets no more than 0.20) across all three datasets (GWAS

summary statistic, 1000 Genome reference, and eQTL summary statistic) were included in the

analysis. All transcript probes with at least one cis-eQTL site showing peQTL < 5 × 10−8 were

taken into consideration. SNPs affecting the same probe with LD r2 > 0.9 or < 0.05 were pruned

out from the analyses. Significance thresholds were based on Bonferroni correction for the number

of probes tested.

To further verify that the effect of a probe on the trait was mediated by shared causal variants

affecting both its expression and the trait rather than different variants in LD, we also carried out the

HEIDI test to evaluate the heterogeneity in the effect sizes of SNPs over trait and expression for each

probe, evaluated as pHEIDI. As a default of the software, only SNPs with peQTL < 1.5654× 10−3

were taken forward for this analysis. Up to top 20 independent SNPs in the cis-eQTL region were

used for each tested probe to optimize the test power. A pHEIDI > 0.05 indicates the existence

of a shared cause underlying the expression level of a transcript probe and the trait, suggesting

dysregulation of the transcript is functionally relevant to the trait.

2.4 Results

2.4.1 Architecture of genetic correlations across TS, ADHD, ASD, and OCD

Here, we focus analyses on TS and highly comorbid neurodevelopmental disorders along the impulsivity-

compulsivity spectrum. First, to set a foundation for our analysis, we repeated the measurement

of genetic overlap across TS, ADHD, ASD, and OCD using LD-score regression (Table 2.1). Our

analysis replicated the results from [228]. High genetic correlations were observed between all pairs

of disorders, except for ASD and OCD. The highest genetic correlation was found between TS

and OCD (rg = 0.38, p = 2 × 10−4). Interestingly, a negative genetic correlation was observed

between ADHD and OCD (rg = −0.17, p = 0.02), although it was not significant under Bonferroni

correction.

We proceeded with novel analysis that is focused on the specific set of TS-related disorders

across the impulsivity-compulsivity spectrum. All of the tests carried out are influenced by the

input datasets, thus, when compared to the PGC eight-disorder GWAS meta-analysis [228], results

presented here have a direct interpretation for the neurobiology of the specific four disorders of
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interest. Since ADHD, ASD and OCD showed a high genetic correlation with TS, we tested for the

existence of a common genetic factor across these four disorders using Genomic SEM. It should be

noted that analysis with four phenotypes only allows the identification of a single factor. Results

showed positive loads from ADHD, ASD and TS to the common factor, but not OCD (Figure 2.1,

Table 2.4). The highest load was contributed by ADHD. This was in broad concordance with our

previous work with eight disorders [228]. Based on these results, and the identified high genetic

correlation between TS and OCD in pairwise analyses, we proceeded to pursue further analysis

focusing on TS-ADHD-ASD and TS-OCD. In doing so, we aimed to increase homogeneity hoping

to identify most relevant genetic signals.

2.4.2 Inferring causal relationships across TS, ADHD, ASD, OCD

To infer the potential causal relationship across the studied traits, we carried out bidirectional

GSMR for all pairwise combinations across TS, ADHD, ASD and OCD. Results from this analysis

point to broad causality networks across the studied disorders, indicating causal impact of the ex-

posure disorder inducing the outcome disorder while using near-independent SNPs as instruments.

After multiple testing correction, the significant threshold was p < 4.17× 10−3. Under this thresh-

old, our results indicated that being diagnosed with ASD is a causative risk factor for ADHD and

vice versa. TS also showed a significant risk effect over OCD and ADHD turned out to be a risk

factor for TS. Results can be found in Table 2.5 and Figure 2.1.

2.4.3 Cross-disorder GWAS meta-analysis for TS, ADHD, ASD, OCD

We carried out systematic SNP-based GWAS meta-analyses across TS, ADHD, ASD, and OCD

using ASSET [249]. Combining all four datasets described above, 93,294 non-overlapping samples

(51,311 controls) were available. We followed a different approach than the PGC eight-disorder

meta-analysis study [228] and guided all subsequent analysis based on the genetic architecture of

the studied disorders as revealed by Exploratory Factor Analysis rather than analyzing everything

jointly. We first pursued meta-analysis of the TS, ADHD and ASD datasets yielding 6,815,585

overlapping SNPs. No obvious inflation was observed (λTS−ADHD−ASD = 1.20, λ1000 = 1.00). We

identified seven independent regions with high evidence of pleiotropy (m− value > 0.9) across all
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three disorders (Figure 2.2, Table 2.2, Table 2.6, 2.7, 2.8). Despite reduced sample size, thanks

to our more focused approach, we were able to identify here six genomewide significant regions

harboring highly pleiotropic loci across TS-ADHD-ASD which were not identified as either TS-

ADHD-ASD pleiotropic (at m-value threshold > 0.9) or genomewide significant in the PGC eight-

disorder analysis (Table 2.2, Table 2.8, 2.9).

Since OCD was the disorder that was most closely correlated with TS but was not found to lie in

the TS-ADHD-ASD factor, we also pursued pairwise analysis for the TS and OCD GWAS. 8,112,469

overlapping SNPs were available for analysis across TS and OCD (λTS−OCD = 1.00, λ1000 =

1.00). We found 21 genomewide significant variants in a single region (top-result rs140347666

(p = 5.64 × 10−9, mTS = 1, mOCD = 1); Figure 2.2, Table 2.3, Table 2.6, 2.7, 2.9); all significant

SNPs were located in LINC01122 on region 2p16.1 and had the same direction of effect. All 21

SNP showed m − value > 0.9 for both TS and OCD, indicating high homogeneity across both

disorders. This region had not been identified as genomewide significant in the PGC eight-disorder

analysis and could be specific to the TS-OCD correlation. However, the PGC eight-disorder meta-

analysis [228] had also previously identified six additional regions that were genomewide significant

and had m− value > 0.9 in both TS and OCD (Table 2.3, 2.8, 2.9).

2.4.4 SNP-based Conditional analysis between TS-ADHD-ASD and TS-OCD

OCD showed a high genetic correlation with TS which cannot be explained by the same latent ge-

netic factor as the group of TS-ADHD-ASD. Therefore, we tried to further explore the group-specific

difference between TS-OCD and TS-ADHD-ASD through conditional analysis using mtCOJO. We

expected a decreased effect in most of the SNPs after conditioning due to dependency caused by

the fact that both groups include TS. However, we also found some SNPs with stronger effects

after conditioning, which indicated that they play a role more specific to the particular group thus

possibly leading to the differentiation of these two clusters. In the TS-OCD GWAS conditioning on

TS-ADHD-ASD analysis only nine significant SNPs in the top region survived (compared to 21 in

our original meta-analysis) (Table 2.11). None of them showed an increased effect after condition-

ing. On the other hand, in the TS-ADHD-ASD conditioning on TS-OCD analysis, 55 SNPs in six

genomic regions showed a higher effect despite conditioning (including regions 1p34.1, 1p21.3, 4q24,
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5q14.3, 5q21.2, and 10q25.1). These included two extra genomic risk regions that were only now

revealed in TS-ADHD-ASD as independent from TS-OCD (region 1p34.1, gene PTPRF , KDM4A

and ST3GAL3; and region 4q24, gene MANBA) (Table 2.11). Among the six regions, most of

them showed high ADHD-ASD specificity with low m-value for TS. However, we did identify one

region hosting SNPs with an increased effect after conditioning, while also having high m-values

for all three disorders analyzed (region 5q21.2).

2.4.5 Cross-disorder gene-based association analysis

We proceeded to perform gene-based analysis across the TS-ADHD-ASD and the TS-OCD GWAS

meta-analyses as implemented in FUMA [252]. Our gene-based analysis highlighted 18 genes as

significantly associated in the TS-ADHD-ASD meta-analysis (Table 2.12). 14 out of the 18 genes

(including the top-result SORCS3 (p = 4.97 × 10−10) on chromosome 10) can also be picked up

even if we only analyze those SNPs with m − value > 0.9 for all three disorders. Out of these 14

pleiotropic genes, only one is located in a genomewide significant risk region identified as pleiotropic

for all TS, ADHD and ASD from the previous PGC eight-disorder analysis (SORCS3) (Figure 2.3,

Table 2.2, Table 2.9). The rest of the identified regions could thus be of particular importance

for early-onset disorders. On the other hand, for TS-OCD, we tested in total 18,790 genes, out of

which four turned out to be significant. Gene CADM2 on chromosome 3 was the top one (Figure

2.3, Table 2.3, Table 2.9, 2.12). All the genes showed evidence of a pleiotropic effect, as they were

also identified significant when we only analyzed SNPs with m− value > 0.9 for both disorders.

2.4.6 Pathway analysis, tissue enrichment, and partitioned heritability analysis

Partitioned heritability analysis revealed enrichment of the cross-disorder GWAS results in con-

served regions for both TS-ADHD-ASD and TS-OCD (Table 2.10). Furthermore, we identified

significant enrichment in brain frontal cortex cell type in the TS-OCD GWAS. Partitioning heri-

tability by brain-cell-specific chromatin states, we found enrichment in fetal brain, brain germinal

matrix and cortex in TS-ADHD-ASD. On the other hand, enrichment in chromatin states specific

to the anterior caudate and dorsolateral prefrontal cortex were found in TS-OCD GWAS results

(Table 2.10).
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In order to better visualize our results while investigating the pathways and interactions among

the top risk genes across TS, ADHD, ASD, and OCD, we constructed GO-based networks for the

top 200 genes from each gene-based association analysis as well as genes annotated from the SNP-

based GWAS meta-analyses. Results are shown in Figure 2.4 and 2.5. Pathways related to neuronal

development, axonogenesis, and synaptic structure and organization were highlighted among the

most significant in our analysis. These results were further strengthened by tissue specificity analy-

ses, which showed enrichment of our top associated loci in genes expressed in brain tissues (Figure

2.6, 2.7). In the tissue specificity analysis with 53 tissue types (figure 2.6, table 2.13), significant

enrichment was found for genes expressed in various brain regions including frontal cortex, basal

ganglia, hypothalamus, cerebellum, amygdala, and hippocampus for TS-ADHD-ASD and cortex

and frontal cortex for TS-OCD (Figure 2.7). In the 30 tissue types analysis, enrichment in ex-

pression in brain and pituitary arose as significant (Figure 2.6) for TS-ADHD-ASD. Interestingly,

enrichment in genes expressed in the adrenal gland for TS-ADHD-ASD was also highlighted reach-

ing borderline significance (p = 1.89 × 10−3, with a significance threshold of p < 1.67 × 10−3)

(Figure 2.6, 2.7 and Table 2.13).

Next, we incorporated eQTL information into our meta-analyses and performed transcriptome-

wide association analyses, aiming to identify genes with expression levels associated across the

studied disorders. Results for the TS-ADHD-ASD combined transcriptome-wide analysis are re-

ported in detail in supplementary results Table 2.14. Two transcript probes satisfying the pleiotropy

hypothesis were significant, all located on chromosome 17. Among all significant transcripts, the

top-result was from the LRRC37A4P probe (pSMR = 1.38 × 10−6, pHEIDI = 0.10). This corre-

sponds to the transcript of a pseudogene in region 17q21.3, localizing near KANSL1. None of the

probes were found significant for TS-OCD.

2.5 Discussion

Motivated by high comorbidity rates across studied phenotypes and a long-standing hypothesis of

a shared etiological thread across disorders of the impulsivity-compulsivity spectrum, we present a

detailed investigation of the shared genetic basis across TS and often-comorbid ADHD, ASD, and

OCD. Our analysis is guided by the genetic architecture across the studied disorders as revealed
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by exploratory factor analysis as well as genetic correlations. Thus, our findings are not affected

by analyzing jointly with disorders that are not genetically or clinically correlated. We confirm the

existence of a unifying genetic factor across TS, ADHD and ASD and reproduce the high genetic

correlation of TS and OCD that appears to be separate from the TS-ADHD-ASD factor. The iden-

tified negative genetic correlation between ADHD and OCD indicates that genetic variants operate

in opposite directions in the development of these two disorders. From a clinical perspective, this

is quite intuitive since ADHD and OCD may be thought of as lying at opposite extremes of the

impulsivity-compulsivity continuum.

The increased power of a trans-diagnostic approach is once again highlighted by the discov-

ery of novel genetic associations, not previously identified in individual GWAS. Furthermore, our

study also highlights the value of increasing homogeneity across studied as we are able to identify

here multiple novel pleiotropic loci across the disorders of interest that were not identified by the

PGC eight-disorder meta-analysis [228] which included the four disorders of interest here. These

loci could therefore be considered as specific for the four disorders we focused on. For instance,

in the TS-ADHD-ASD meta-analysis, we successfully uncovered 16 LD-independent genomic risk

regions (nine through SNP-based and seven through gene-based analysis), 13 of which are highly

pleiotropic across all disorders analyzed. 11 were not previously identified as genomewide signifi-

cant or pleiotropic by the eight-disorder meta-analysis, suggesting a specific role for the disorders

that are the focus of our analysis.

The top-significant genomic risk locus showing also high probability for association across TS-

ADHD-ASD was in gene LINC00461 on chromosome 5. This gene is highly expressed in brain and

visual cortex, and has been previously involved in tumorigenesis [264]. Gene MIR9-2 is also located

within gene LINC00461. The expression of this microRNA is almost brain-exclusive and has been

found crucial during neuronal differentiation [265, 266]. LINC00461 was recently reported with

high pleiotropic effects across five psychiatric traits [267]. Moreover, in the same study, behav-

ior tests of expression knockdown mice confirmed the critical role it plays in neurodevelopment

processes [267]. Interestingly, although this top region on chromosome 5 has also been previously

highlighted as genomewide significant by the ADHD individual GWAS as well as results from the

PGC eight-disorder GWAS, it was not reported among the most broadly pleiotropic ones and did

not have high m-value for TS in that study. This is because of the nature of m-value computation
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and highlights the importance of fine-resolution cross-disorder comparisons. Since m-value mea-

sures the posterior probability of the SNP effect existing in a given disorder, it is subject to the

result of meta-analysis, which, is further subject to the data input. Hence, if a SNP effect from the

meta-analysis is significantly driven by one or a few disorders which are highly heterogeneous from

the others, we may not capture evidence of such effect existing in other disorders even though the

overall analysis has an increased power.

Gene-based meta-analysis also proved extremely powerful and led to the identification of multi-

ple novel hits not previously identified by individual GWAS or the PGC eight-disorder meta-analysis

[228]. From our TS-ADHD-ASD gene-based analysis, we identified 12 novel genes that could not

be identified using the individual disorder summary statistics alone. The top result was SORCS3.

The effect of this gene remained significant even if we analyze only SNPs with high m-values in

all three disorders, indicating a potential pleiotropic effect. This gene encodes a member of the

vacuolar protein sorting 10 (V PS10) receptor family, which controls intracellular protein signaling

in neurons and regulates neuronal viability through many pathways [268]. It is highly expressed in

brain tissues [262], and it has been previously implicated in neurological disease including ADHD

and ASD etiology [109, 56]. Multiple studies indicate a relationship between SORCS3 and the

accumulation of amyloid, which is linked to Alzheimer disease [269, 270]. It is also associated with

major depression in individuals of European descent [105]. Moreover, its interaction with post-

synaptic proteins, such as PICK1, indicates that the product of SORCS3 regulates glutamate

receptor function [271, 272]. As one of the major neurotransmitters in the human brain, the gluta-

mate pathway has long been hypothesized to underlie abnormalities in ADHD, ASD, and TS and

is a possible therapeutic target for these disorders [273, 274, 275, 276].

In the case of TS-OCD meta-analysis, we identified three (one through SNP-based analysis

and two through gene-based analysis) genomic risk regions, and all of them show pleiotropic effect

across TS and OCD. Two of them were not identified by the PGC eight-disorder meta-analysis.

On the other hand, the broader study reported six additional risk regions to be pleiotropic across

TS and OCD but also other disorders highlighting the trade-off between power and homogeneity

and the importance of combining different approaches. We found multiple significant hits on gene

LINC01122 in chromosome 2 that showed evidence of pleiotropic effect in both disorders. Note

that in the original TS GWAS carried out by Yu et al. [111], SNPs in this region were at borderline
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of genome-wide significance (∼ 10−7).

Observing a structure that breaks up the studied TS-related phenotypes in a TS-ADHD-ASD

and TS-OCD correlations, we also tried to identify group-wise differentiating effects through a con-

ditional analysis. An intergenic region in 5q21.2 seems of particular importance: not only does this

region host SNP with an increased effect in TS-ADHD-ASD conditioning on TS-OCD, but it also

shows high posterior probability of association in all three disorders, indicating a group-specific

pleiotropic effect. Duplication of the 5q21.2 region has been previously reported as a clinically

significant copy number variation (CNV) in schizophrenia [277].

Among the top genes that we found associated in the TS-ADHD-ASD GWAS meta-analysis,

we observed enrichment for genes expressed in the brain. Our results provide further support

for the involvement of the basal ganglia across all disorders analyzed here. Dysfunction of the

basal ganglia has been observed in all four studied disorders [278, 279, 280, 281]. Interestingly,

we found significant enrichment in pituitary and hypothalamus expression, and, furthermore, the

enrichment of adrenal gland expression was also borderline significant. This observation implicates

the involvement of the hypothalamus-pituitary-adrenal (HPA) axis, in accordance with previous

clinical studies implicating this system in multiple childhood-onset psychiatric traits including TS

and ADHD [282, 283, 284, 285, 286]. The HPA axis plays a critical role in human stress response

through the regulation of cortisol secretion [287]. Low-cortisol responsivity to stress was proposed

as a biomarker for certain types of ADHD, indicating a possibly altered HPA axis activity in this

disorder [288]. Altered cortisol levels among TS individuals have also been reported, with a negative

correlation between evening cortisol and patients’ tic severity and higher cortisol levels in response

to stress [289].

Our analysis provides clues to potential biological distinctions between the studied subgroups of

disorders along the impulsivity-compulsivity continuum. while the role of frontal cortex and basal

ganglia was highlighted for both TS-ADHD-ASD and TS-OCD, support for HPA axis involvement

and significant enrichment of chromatin states in fetal brain cell types was only observed in TS-

ADHD-ASD. Our findings thus point to more significant contributions of neurodevelopment and

stress-related processes in the TS-ADHD-ASD dimension in comparison to TS-OCD.

Although we provide results on combined datasets of very large size across TS, ADHD, ASD,

and OCD, available datasets varied in size for each of the studied disorders. The unbalanced sam-

51



ple size across the studied datasets is one of the limitations of our study. In order to mitigate

this problem, we placed emphasis on investigating and reporting the SNP posterior probability of

association (m-value) for each disorder providing higher confidence for shared effect across multiple

disorders. Existing overlap across the studied samples was relatively small (< 6% case overlap in

the datasets that we studied) and we used ASSET, which takes into account known sample overlap,

to control the inflation in meta-analysis results.

In conclusion, through a series of systematic genomewide association meta-analyses we uncov-

ered multiple loci that may underlie biological mechanisms across the TS and its highly comorbid

neurodevelopmental disorders along the impulsivity-compulsivity spectrum (ADHD, ASD, OCD).

Despite the trade-off in power compared to the PGC earlier meta-analysis across eight disorders

[228], we show that, increasing homogeneity when motivated by clinical observations we can identify

many additional genomic risk loci that could play a more specific role across clinically correlated

phenotypes. The existing evidence for a common genetic background across these highly comorbid

disorders highlights what seems to become a recurrent theme across the studies on neuropsychi-

atric disorders: the importance of thinking across diagnostic boxes when attempting to understand

neurobiology. Most importantly moving towards genomic analysis of symptom dimensions across

diagnostic categories may prove extremely powerful but would require availability of very large and

well-characterized cohorts of patients as well as the harmonization of existing clinical databases

spanning the disorder spectrum.
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2.7 Tables

*For large Tables 2.4 - 2.13, only legends are presented in this section. Those tables can be down-

loaded together as spreadsheets from this link.

Table 2.1: Pairwise genetic correlation. LD score regression analysis showing pairwise genetic
correlation across ADHD, ASD, OCD, and TS. #SNPs = number of overlapping SNPs used in the
analysis; Rg = genetic correlation; SE, P = standard error and p-value for Rg; Intercept (SE) =
Intercept for genetic correlation and corresponding standard error.

Disorder pairs
ADHD/ASD ADHD/OCD ADHD/TS ASD/OCD ASD/TS OCD/TS

#SNPs 1042563 1030018 1062415 1012959 1044625 1100873
Rg 0.35 -0.17 0.26 0.12 0.18 0.38
SE 0.05 0.07 0.06 0.08 0.06 0.1
P 1.33× 10−11 0.022 2.05× 10−05 0.15 0.0055 0.0002
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Table 2.4: Full results for joint genetic architecture analysis using GenomicSEM. Includ-
ing model fitness, standardized and unstandardized results. Also see Figure 2.1.

View through this link.

Table 2.5: Full results for the causality inference using GSMR. #snps denotes the number
of SNPs used for the analysis. Also see Figure 2.2.

View through this link.

Table 2.6: Summary statistics for all significant results from SNP-based GWAS meta-
analyses across TS, ADHD, ASD and OCD. m-value = Posterior probability for association
for each individual disorder; SIFT/Poly1/Poly2 = functional prediction for nonsynonymous exonic
SNPs; HetISq = heterozygosity I2 statistic; HetChiSq = heterozygosity chi-square statistic; HetP-
Val = heterozygosity test p-value; disorder-OR/P = odds ratio statistic and p-value in the original
individual disorder GWAS study.

View through this link.

Table 2.7: Full annotation of top genomic risk regions from SNP-based GWAS meta-
analyses. An asterisk (*) indicates novel LD regions not been reported associated with corre-
sponding traits in published GWAS. rsID = rsID of the leading SNP of the region; p = p-value of
the leading SNP from the meta-analysis; Study = Previous studies reporting significant association
at this locus; trait = trait reported associated with the locus by the study; reported gene = gene
reported by the study; mapped gene = gene mapped onto the reported region.

View through this link.

Table 2.8: Comparison of statistics for matching SNPs from our TS-ADHD-ASD and
TS-OCD SNP-based GWAS meta-analysis results with PGC eight-disorder GWAS
meta-analysis. Table includes leading SNPs in regions with genomewide significant pleiotropic
SNPs identified by the SNP-based analysis or the eight-disorder cross-disorder analysis from PGC
(corresponds to selected light blue and clear rows in table 2). Red font denotes SNPs found
genomewide significant and pleiotropic, and test statistics (p-value, OR and m-values for disorders
analyzed) for the same SNP are reported for both studies if available.

View through this link.
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Table 2.9: Detailed results comparison between TS-ADHD-ASD, TS-OCD SNP and
gene-based GWAS meta-analysis and PGC eight-disorder GWAS meta-analysis [228].
Regions satisfying at least one of the three following criteria are included: 1. hosting genomewide
significant SNPs in the TS-ADHD-ASD, TS-OCD SNP-based analysis; 2. genomewide significant
genes from the TS-ADHD-ASD, TS-OCD gene-based analysis; 3. hosting genomewide significant
SNPs that also have m − value > 0.9 across the disorders of interest here (ie TS-ADHD-ASD,
TS-OCD) in the 8-disorder analysis. For each region, the following are shown: region basepair
position, number of genomewide significant SNPs with m − value > 0.9 in all disorders analyzed,
leading SNP, leading SNP p-value, OR and m-values for all disorders of interest from SNP based
analysis and Cross-Disorder Group of the Psychiatric Genomics Consortium et al., 2019; significant
genes from the gene-based analysis, p-values and whether the gene is still significant when analyzing
using only SNPs with m − value > 0.9 in all disorders of interest; leading SNP, p-value and OR
from the original individual GWAS analyses. Asterisk (*) indicates the region is also highlighted
by the TWAS analysis.

View through this link.

Table 2.10: Partitioned heritability analysis. Baseline results included 53 non-cell type specific
annotations; brain cell types included 13 brain relevant cell type specific annotations; chromatin
included results for 489 cell type specific annotation of chromatin states, as described by [179].
Asterisk (*) in the significant column denotes the annotation categories significantly enriched under
multiple testing correction.

View through this link.

Table 2.11: Significant results from conditional analyses (TS-ADHD-ASD conditioned
on TS-OCD and vice versa), compared with original meta-analyses results. Including
SNPs that are genomewide significant in either the original meta-analysis results or the conditioned.
b, se, pval correspond to beta, standard error and p-value in the original meta-analyses results
respectively; bC , bCse, bCpval correspond to conditioned beta, standard error and p-value. diff =
increment (+) or decrement (-) of effect (in terms of z-score) after conditioned.

View through this link.

Table 2.12: Significant genes from gene-based GWAS analyses. P -values from individual
disorder gene-based analyses are also shown.

View through this link.

Table 2.13: Significant results from cross-disorder tissue specificity analysis, testing 53
tissue types from GTEx v7 tissue expression atlas. The significance threshold is set following
Bonferroni correction (p < 9.43× 10−4).

View through this link.
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https://docs.google.com/spreadsheets/d/1luaY-bNmMUdUNTxOhYV_r6eKpmUnSWdZ/edit?usp=sharing&ouid=116048419064873774204&rtpof=true&sd=true
https://docs.google.com/spreadsheets/d/1bUzJnSA3rsQkS5F2zYPSJUPxfT4qpHyP/edit?usp=sharing&ouid=116048419064873774204&rtpof=true&sd=true
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Table 2.14: Transcriptome-wide analysis. Significant results from transcriptome-wide analysis,
using SMR.

CHR Gene
TS-ADHD-ASD

Beta SE pSMR PHEIDI

17 LRRC37A4P -0.0353 0.0073 1.38× 10−06 9.57× 10−02

17 RP11-707O23.5 0.0335 0.0069 1.26× 10−06 6.93× 10−02
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2.8 Figures

Figure 2.1: Genetic architecture and causality relationships across disorders of interest.
A. Investigating the existence of a common factor F across all four disorders using Genomic SEM.
Path graph shows loads and corresponding standard errors in parenthesis. Circular arrows denote
the residual genetic variance not explained by the common factor. Also see table S1. B. Network
plot indicating the causality across four disorders estimated using GSMR. Solid arrows indicate a
significant causality relationship while dash arrows indicate insignificant relationships. Numbers
on the arrow indicate effect size and estimation standard error (in parenthesis). Also see table S2.
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Figure 2.2: Manhattan plots and QQ plots for cross-disorder GWAS meta-analyses. An
asterisk (*) indicates genes hosting SNPs with m− value > 0.9 in all disorders analyzed, and a red
circle denotes novel region that was not previously reported associated with disorder of interest. A.
TS-ADHD-ASD GWAS meta-analysis; B. TS-OCD GWAS meta-analysis. See also Table S3, S4.
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Figure 2.3: Manhattan plots for gene-based GWAS meta-analyses. An asterisk (*) indicates
genes stay significant when only analyzing SNPs with m-value ¿ 0.9 in all disorders analyzed, and red
circle denotes novel genes that could not be picked up though gene-based analysis using summary
statistics from individual disorders alone. A. TS-ADHD-ASD gene-based analysis; B. TS-OCD
gene-based analysis. See also Table S9.
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Figure 2.4: Top ten gene networks from top 200 genes annotated from SNP-based
GWAS meta-analyses results. A. TS-ADHD-ASD SNP-based network plot; B. TS-OCD SNP-
based network plot.
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Figure 2.5: Gene networks plot (gene-based). Top ten gene networks from top 200 genes from
gene-based analysis results. A. TS-ADHD-ASD gene-based network plot; B. TS-OCD gene-based
network plot.
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Figure 2.6: Tissue specificity analyses (30 tissue types). Cross-disorder tissue specificity
analysis testing 30 general tissue types from GTEx v7 tissue expression atlas. Red bar indicates
significant enrichment of gene expression in corresponding tissue under Bonferroni correction (p <
1.67 × 10−3). Panel on top right corner of each figure shows detailed statistics for significantly
enriched tissue. A. TS-ADHD-ASD cross-disorder tissue specific expression enrichment; B. TS-
OCD cross-disorder tissue specific expression enrichment. See also Table S9 and Figure S3
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Figure 2.7: Tissue specificity analysis (53 tissue types). Tissue specificity analysis, testing
53 tissue types from GTEx v7 tissue expression atlas. Red bar indicates significant enrichment of
gene expression in corresponding tissue under Bonferroni correction (p ¡ 9.43 x 10-4). Panel on top
right corner of each figure shows detailed statistics for significantly enriched tissue. A. TS-ADHD-
ASD cross-disorder tissue specific expression enrichment; B. TS-OCD cross-disorder tissue specific
expression enrichment.
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3 RECONSTRUCTING SNP ALLELE AND GENOTYPE FREQUENCIES

FROM GWAS SUMMARY STATISTICS

3.1 Abstract

Motivation: The emergence of genomewide association studies (GWAS) has led to the creation

of large repositories of human genetic variation, creating enormous opportunities for genetic re-

search and worldwide collaboration. Methods that are based on GWAS summary statistics seek

to leverage such records, overcoming barriers that often exist in individual-level data access while

also offering significant computational savings.

Results: We propose a novel framework to reconstruct allelic and genotypic frequencies and counts

for each SNP from case-control GWAS summary statistics and show how it can broaden the scope

of summary statistics based method development. Our framework is simple and efficient with min-

imal underlying assumptions and can be used to unify common tasks related to GWAS. To this

end, we propose here three summary-statistics-based applications implemented in a new software

package (ReACt): GWAS meta-analysis (with and without sample overlap), case-case GWAS, and,

for the first time, group polygenic risk score (PRS) estimation. We evaluate our methods against

the current state-of-the-art on both synthetic data and real genotype data and show high perfor-

mance in power and error control. Our novel group PRS method based on summary statistics

could not be achieved prior to our proposed framework, and we demonstrate here the potential

applications and advantages of this approach. Our work further highlights the great potential of

summary-statistics-based methodologies towards elucidating the genetic background of complex

disease and opens up new avenues for research.

Availability and Implementation: An implementation for ReACt can be found on our github

page: https://github.com/Paschou-Lab/ReAct.

3.2 Introduction

Genomewide association studies (GWAS) have emerged as a powerful tool, leading to the identifi-

cation of thousands of common genetic variants that underlie human complex disorders and traits.
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They also led to the creation of large repositories of human genetic variation creating enormous op-

portunities for further analysis. However, sharing and transferring of individual-level genotype data

is often restricted due to privacy concerns as well as logistical issues. On the other hand, GWAS

summary statistics, typically including information such as odds ratio (OR)/effect size (beta), stan-

dard error (SE), p-values, and case/control sample sizes for each SNP being analyzed, are often

readily accessible [290]. The availability of such alternative sources of information has spurred

intense interest into the development of methodologies seeking to leverage such records effectively

in order to retrieve as much information as possible. Besides overcoming barriers in individual-level

data access, summary-statistics-based methods also offer advantages in computational costs, which

do not scale as a function of the number of individuals in the study [291].

Summary statistics methodologies have been developed to allow a wide array of statistical

analyses, including effect size distribution estimation [292, 293]; GWAS meta-analysis and fine

mapping [294, 295, 228, 165, 296]; allele frequency and association statistic imputation [297, 298];

heritability and genetic correlation estimation [299, 300, 301, 179]; case-case GWAS [194]; and poly-

genic prediction [302, 303, 123]. Many of these methods have to incorporate additional information

from publicly available sources, such as linkage disequilibrium (LD) statistics from a reference pop-

ulation [299, 297, 183]. Most of the existing methodologies analyzing GWAS summary statistics use

the summary statistics (OR, SE, p-value) from the input “as is”, often via relatively complicated

estimation and modeling.

In our work, we propose a novel framework that leverages the simple observation that summary

statistics information can be expressed as a functions of case/control allele frequencies for each

SNP. This allows us to recover case/control allele frequencies from summary statistics by solving a

non-linear system of equations. Additionally, if one assumes that the SNPs satisfy Hardy-Weinberg

Equilibrium (HWE), the allele frequencies can be used to infer genotype counts. This simple ob-

servation allows us to use information from case-control GWAS summary statistics to develop a

simple, user-friendly alternative to summary-statistics-based methods for fixed effect meta-analysis

and cc-GWAS.

Furthermore, using our framework, we are able to compute group-wise polygenic risk score

(PRS) from summary statistics of both a base and a target population. While there have been

summary statistics based methods estimating the variance explained by SNPs using results from
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existing PRS associations [304, 305], to the best of our knowledge, no existing method could return

reliable estimates of PRS without any access to individual-level data in the validation cohort prior

to our work.

In the remainder of the paper, We describe the mathematical foundations of our framework and

its application to fixed effect meta-analysis, cc-GWAS, and group-wise PRS estimation. We demon-

strate the performance of the proposed methods using simulated and real data and we compare

our approach against current state-of-the-art. Our methods are implemented in a new software

package: Reconstructing Allelic Count (ReACt).

3.3 Results

3.3.1 Mathematical foundations

Our framework is motivated by the fact that the summary test statistics from publicly available

GWAS can be expressed as a function of allele counts of the effect and the non-effective allele in

cases and controls; as a result, the allele counts can be exactly recovered by solving a system of

non-linear equations. Interestingly, this rather straight-forward observation has not received much

attention in prior work. Additionally, assuming that SNPs included in GWAS studies are in Hardy-

Weinberg Equilibrium (HWE), we can also reconstruct the structure of the genotype vectors for

publicly available GWAS studies from just summary statistics. We can leverage this information in

multiple applications, including: (i) the computation of the joint effect of a SNP in a meta-analysis

involving multiple studies; (ii) to obtain the mean polygenic risk score of cases and controls in a

population; and (iii) to investigate the genetic differences between traits using a case-case GWAS.

All of these can be done using only summary statistics, which circumvents the hassle of individual

level data sharing and, as an added bonus, considerably reduces the necessary computational time.

We start by introducing some notation that will be useful in this section. Let a and u represent

effective and non-effective allele counts respectively; let superscripts cse and cnt represent cases and

controls respectively; and let OR, SE, and N be the odds ratio, standard error (of log(OR), as

presented in most of the GWAS summary statistics), and sample sizes obtained from the summary

statistics. Thus, for SNP i, ucnti represents the count of the non-effective allele in controls for SNP

i; similarly, acsei represents the count of the effective allele in cases for SNP i; N cse represents the
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number of cases, etc. We now note that the allelic effect of SNP i in case-control GWAS summary

statistics can be expressed as follows:

ORi =
acsei · ucnti

acnti · ucsei

,

SEi =

√
1

acsei

+
1

ucsei

+
1

acnti

+
1

ucnti

.

Additionally, sample sizes can be expressed as:

2N cse = acsei + ucsei , and

2N cnt = acnti + ucnti .

Therefore, solving the system of the above four non-linear equations allows us to recover the allelic

counts of SNP i for effective and non-effective alleles in cases and controls, by solving for the four

unknowns acsei , acnti , ucsei , and ucnti . Using these counts, we can trivially obtain allele frequencies

in case and control groups and, importantly, by further assuming that the SNPs strictly follow

HWE, we can even compute the genotypic counts for each genotype from these frequencies. Note

that this reverse engineering scheme applies to GWAS summary statistics generated using a χ2

test or logistic regression, but it does not apply to GWAS summary statistics generated by other

methodologies. Furthermore, these frequencies will be different from those observed from individual

level data due to model covariates; the recovered frequencies correspond to the allele counts after

corrections have been applied. See Section 3.5.1 and 3.7.1 for details.

3.3.2 Fixed effect meta-analysis

Our approach Armed with allelic and genotypic counts, we can provide a new perspective

on fixed-effect GWAS meta-analysis. Instead of the conventional inverse-variance weighted meta-

analysis, we can now compute the joint effect of a SNP in a meta-analysis using multiple studies

by combining the reconstructed allele and genotype counts from each study and run a complete

logistic regression on each SNP. Thus, we can essentially proceed with the analysis in exactly the

same way as standard GWAS (see Section 3.5.2 for details).
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As mentioned in Section 3.3.1, we can obtain genotypic counts for any SNP over cases and

controls from GWAS summary statistics. Then, combining these counts for all available input

studies, along with the trait status, we can carry out a logistic regression for this SNP as follows

[306]:

Pr(yj = 1|gj , sj) = S(β0 + β1gj + β2sj).

In the above yj denotes the binary trait for the jth individual, gj denotes the respective genotype,

and S(·) stands for the standard sigmoid function used in logistic regression. Solving for the

coefficients β0, β1, and β2 we get the overall SNP effect from the meta-analysis. In order to take

into account between-study stratification, we introduce an additional variable sj as a covariate,

using the overall allele frequencies of each study to estimate it. (See Section 3.5.2 for details.)

Performance evaluation First, we tested the performance of the proposed fixed-effect meta-

analysis approach on synthetic data under various conditions. The simulation was carried out

using the Balding-Nichols model [307], assuming a minor allele frequency of 0.3. For each set-

ting, we predefined the risk for effective alleles of the causal SNPs by setting r = 1.15/1.2/1.3 as

well as the level of population stratification between cohorts included in the meta-analysis setting

Fst = 0.01/0.05/0.1. Apart from meta-analyzing mutually exclusive datasets, we also tested the

performance of our approach under different extents of sample overlap between the input studies:

When generating input summary statistics, we evaluated scenarios where the input studies shared

Nshr cases and Nshr controls, with the value of Nshr set to zero, 100, and 500 (see Section 3.6.1

for details). Ideally, the overlapping sample sizes are expected to be input as a parameter by the

user (ReACt(Exact) in figures 3.1, 3.2). However, such information is not always available. In

those cases, we adopted the approach of estimating unknown sample overlap via Z-scores in input

GWAS summary statistics from [308] (ReACt(Est.) in figures 3.1, 3.2). We compared power and

type I error rates of our approach vs. state-of-the-art tools that are currently widely used for

fixed-effect meta-analysis, namely METAL [309] and ASSET [310]. Since the latest stable release

of METAL does not include an implementation for sample overlap correction, we used the GitHub

version of METAL from [308]. The performance comparison on the meta-analysis of two studies
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with even case/control sample sizes is plotted in Figures 3.1, 3.2 and Table 3.15. Performance on

meta-analyzing two studies with uneven sample sizes (Table 3.14 in supplementary text) as well

as meta-analyzing multiple studies (Table 3.16 in supplementary text) are also tested. Results

on synthetic data indicated that our approach has comparable performance with the conventional

inverse-variance weighted methods ASSET and METAL, namely

∣∣PowerReACt − PowerASSET/METAL

∣∣ ≤ 0.012,

when there is no sample overlap. In scenarios where there were samples shared across input studies,

our method (regardless of whether the exact size of the sample overlap is known or is estimated)

always showed higher power compared to ASSET, namely

0.014 ≤ PowerReACt − PowerASSET ≤ 0.219

and comparable power to METAL, namely

|PowerReACt − PowerMETAL| ≤ 0.005.

Our advantage in power compared to ASSET was more visible under higher Fst values and larger

sample overlaps. In terms of type I error rates, we observed that all methods showed good control

on the error rates, while ASSET tended to produce more conservative results. Similar observations

can also be made when we meta-analyzed multiple studies; see Table 3.16 for details.

Beyond power and type I error, we also analyzed the running time of the different methods (see

Table 3.13 in supplementary text). Our C implementation of our method in the ReACt software

package has not been highly optimized and yet it has a running time that is comparable to METAL

and is much faster than ASSET. We further tested the performance of our method on real genotype

data using the UK biobank dataset [135] and analyzing for depressive episode trait. The dataset

included a total of 18,368 cases, 312,849 controls, with 640,756 SNPs after quality control (see

Section 3.6.1 for details). In this experiment, we treated the top 7 SNPs with p-value stricly less

than 10−6 from the overall GWAS as “ground truth” and assessed whether various meta-analysis

method could pick up these 7 SNPs. Each experiment was carried out over ten iterations: in each

72



iteration, we split the dataset in two equal sized subsets, generated GWAS summary statistics from

each of the subsets, and meta-analyzed the resulting summary statistics. We reported average

true positive and false positive SNPs counts captured by each method over the ten iterations.

Table 3.7 reports our findings and we note that, perhaps due to the lack of stratification, the

differences in performance were not as visible as what we observed using synthetic data. We found

ReACt(Exact) showing comparable performance with ASSET, whereas ReACt(Est) showed

comparable performance with METAL.

3.3.3 Group PRS

Our approach Even though we still cannot compute individual level PRS without access to

raw genotypes, we observe that, under the additive model, the mean and standard deviation of PRS

for a population are just functions of SNP allele frequencies in the target group (see Section 3.5.3

for details). Therefore, our proposed framework, which returns estimates of allele frequencies

for cases and controls using GWAS summary statistics, also allows us to estimate means and

standard deviations of PRS for case and control groups using the GWAS summary statistics of the

target study. With such information (and a fair assumption of normality in the underlying PRS

distribution), we can further run a t-test in order to get a p-value comparing the difference of PRS

between cases and controls.

More specifically, in the additive model, the mean and variance of PRS for a population can be

expressed as follows:

mean(PRS) =

∑M
i=1 Sipi
M

, and

Var(PRS) =

∑M
i=1 S

2
i piqi

2M2
.

In the above Si is the weight of SNP i inferred from the base summary statistics (typically Si =

log(ORi)
SEi

), M is the total number of SNPs used in the PRS computation, and pi and qi = 1 − pi

are allele frequencies of the effective allele and the non-effective allele for SNP i. Therefore, we can

simply use the allele frequencies of cases and controls that were computed in Section 3.3.1 in order

to get the mean and variance of PRS in cases and controls. See Section 3.5.3 for details.
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Performance evaluation We first tested our methods on synthetic data without any con-

founding factors (ie., no stratification). After generating GWAS summary statistics for synthetic

base and target datasets, we compared the estimated group means and standard deviations using

our method (which operates on summary statistics) with the real group means and standard de-

viations of PRS computed from the individual level genotypes using PRSice2 [311]. The results

successfully proved that in this scenario our method is extremely accurate. See Table 3.8 which

shows typical representative results from our experimental evaluations; essentially identical results

were observed in all our experiments on synthetic data.

We further tested our method on real GWAS data, using GWAS summary statistics for MDD

[312] as the base study and assessing its predicting power on 18,368 independent depressive episode

cases and 312,849 ancestry-matched controls in UK biobank. We did not choose the latest MDD

GWAS to be a base study because the latest one has included samples from UK biobank. To

run ReACt, we generated GWAS summary statistics for the target dataset as described. We

compared the estimated PRS statistics using our methods with the real PRS statistics computed

using PRSice2. The results are shown in Table 3.9; note that since real GWAS datasets are subject

to within study population stratification, we did not expect our method to be as accurate as it was

on synthetic data without such stratification. There was, however, very high concordance between

the results returned by our methods and ground truth.

Finally, we applied our methods on summary statistics of eight psychiatric disorders. We evalu-

ated their pairwise PRS predictive power by estimating t-test p-values. For this experiment, we took

into account potential sample overlap between all pairs of base and target studies; see Section 3.7.2

for details of our sample overlap correction procedure. Results are shown in Table 3.10 and we

observe that, in general, our results coincide with pairwise genetic correlation between disorders as

discussed in [228].

3.3.4 cc-GWAS

Our approach Similar to our proposed approach for meta-analysis of multiple GWAS datasets

using summary statistics, we can also carry out cc-GWAS using regression by simply swapping the

labels of the phenotypes. Perhaps the biggest challenge in cc-GWAS is the separation of the differ-
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ential genetic effects from between-study stratification. To circumvent this issue, we leverage the

difference of SNP effects in control groups to estimate the extent of stratification (see Section 3.5.3

for details). Therefore, with a slight modification of the pipeline for meta-analysis of Section 3.5.2,

we introduce an alternate approach for cc-GWAS using our framework.

The underlying theory is quite straightforward and allows us to estimate the genetic differences

between two traits of interest using their GWAS summary statistics. Using the genotypic counts

we can proceed with logistic regression using only the cases from the two studies:

Pr(ycse
j = 1|gcsej ) = S(βcse

0 + βcse
1 gcsej ).

In the above, ycse
j is the binary indicator variable denoting which trait case j carries and gcsej is

the genotype of this case. We note that in an additive model, the coefficient βcse
1 that is part of

the output of this regression is a combination of both genetic effects and stratification:

βcse
1 = βg + βs,

where βg and βs are the genetic effect and stratification coefficients. We are only interested in the

genetic effect βg and therefore we need to remove βs. Towards that end, we estimate βs using the

control samples from the input studies; see Section 3.5.3 for details.

Performance evaluation We first tested the performance of our methods on synthetic data.

Simulated data were again generated under the Balding-Nichols model, with predefined risks for

effective allele of the causal SNPs and the extent of the stratification. Inspired by Peyrot et al. [194]

we simulated three types of SNPs: (i) trait differential SNPs (ii) null SNPs; and (iii) stress SNPs

(see Section 3.6.1 for details). We expect our method to pick up type (i) SNPs and leave the

other two. Therefore, in our performance evaluation, we report the power for detecting the type (i)

SNPs and type I error rates for picking up type (ii) and (iii) SNPs. Moreover, since we also expect

the performance of our method, especially in terms of error control, to vary with sample size, the

evaluation was done under different sample sizes in each input study (2,000 cases and 2,000 controls

as well as 5,000 cases and 5,000 controls). Power and type I error rates for each type of SNP from

75



the simulation model under each setting are shown in Table 3.11. The method’s performance was

evaluated for p-values strictly less than 5 · 10−5. For this threshold, our method showed high power

and well-controlled type I errors, especially under for lower values of Fst. On the other hand, as

expected, as stratification increases between two input studies, the power of our method drop and

the type I error rates increased for null SNPs. However, as a general trend, we also see a decrease

in such error rates when we increase the control sample size. Meanwhile, slightly higher type I

error rates for the stress SNPs are observed.

Next, we evaluated the performance of our method on real GWAS summary statistics and

compared our method with the recently released method of [194]. We analyzed BIP [313] and

SCZ [314] datasets, for which case-case GWAS with individual level data was available [236]. We

filtered out SNPs that showed untrustworthy estimates of the stratification effect (SEs > 0.05, see

Section 3.5.3 for details). This reduced our output size from 8,983,436 SNPs being analyzed to

7,110,776 SNPs. Out of those, our analysis revealed a total of 18 genome-wide significant risk loci,

including the two regions identified by [236], namely regions 1q25.1 and 20q13.12). We compared

our statistics for SNPs that were also analyzed in [194] and results for this comparison are shown

in Table 3.12. The two cc-GWAS methods are mostly comparable. By definition, both we and

Peyrot et al. [194] only used summary statistics as input, and could not apply the individual level

quality control steps of [236]. As a result, both methods identified additional significant loci showing

divergent genetic effects between BD and SCZ compared to [236], mainly due to a much larger

effective sample size. Results for all genomewide significant risk loci are shown in Table 3.18.

3.4 Discussion

Extracting as much information as possible from easily accessible GWAS summary statistics can

help accelerate research that aims to elucidate the genetic background of complex disease, allowing

fast sharing of results and datasets while alleviating privacy concerns. Here, we present a simple

novel framework to convert SNP statistics from any case-control GWAS back into allelic counts.

When summary statistics are generated through simple χ2 tests, without any correction for model

covariates (e.g., stratification) the counts will be exact. In practice however, this backward recon-

struction framework returns “pseudocounts” that correspond to corrected SNP effects after, for
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example, stratification correction. Therefore, results will not be subject to within-study stratifica-

tion effects, assuming that the input summary statistics have been generated after quality controls.

Moreover, given this is just a rewrite of the GWAS results and no real allele frequencies will be

recovered, our framework does not affect the differential privacy established by sharing GWAS

summary statistics [315]. Our framework simplifies and unifies GWAS meta-analyses, group PRS

estimates, and cc-GWAS, both theoretically and experimentally. We implemented the aforemen-

tioned three applications in a readily available software package called ReACt.

As one of the most intuitive applications of our framework, we noticed that reconstructing the

allelic counts for each SNP allows us to run a full logistic regression model instead of doing the

conventional inverse-variance weighted fixed-effect meta-analysis, under the assumption of HWE.

As a standard quality control step for GWAS, SNPs severely deviating from HWE should have be

filtered out from the input summary statistics. Our approach shows increased power in experi-

ments on synthetic data, especially in cases where there is larger Fst difference between the input

studies, and provides robust results in real GWAS settings. It should be noted that corrections

of sample overlap can now be done in a theoretically more straightforward manner compared to

previous methods [250]. Our methods are always comparable (both in accuracy and speed) to the

top performing conventional method demonstrating how the reconstructed allelic frequencies can

be utilized in various types of analyses, and help reconsider some of the existing problems unify-

ing multiple different applications under a single framework (GWAS meta-analysis, cc-GWAS and

group PRS possibilities are presented here).

We further propose a novel perspective on case-case association studies (cc-GWAS), allowing

analysis without the need for complicated assumptions or side information apart from sample sizes.

To the best of our knowledge, the only publication on summary statistics based case-case GWAS

was recently contributed by Peyrot et al [194], who also touched the idea of comparing allele fre-

quencies. In our work, we achieve this objective in a straightforward manner: we directly compare

the reconstructed allele frequencies of each SNP in two groups of cases, without the requirement to

estimate heritabilities or prevalence of disorders as does the method of [194], which are not always

possible to obtain for all GWAS results, especially when only a subset of the results are made avail-

able. Further, we do not need any extra assumptions on the distribution of SNP effects. ReACt

analyzes each SNP independently and, as a result, the analysis is not affected by LD structure
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or number of causal SNPs underlying each disorder. We evaluated our method on a very general

simulation model, which accounts for more universal scenarios and is not subjective to disease

prevalence or heritability. The robustness of our approach is demonstrated by its performance on

synthetic data in various scenarios. Similar to the existing cc-GWAS analysis tools [194], ReACt

showed good control of type I errors in null SNPs (type II SNPs) given sufficiently large control

sample sizes for both input studies. It also shows slightly higher, but under-controlled, type I errors

in the stress test SNPs (type III SNPs). As also pointed out by [194], we do not expect the existence

of stress SNPs to be particularly common in practice. We further note that all our experiments

on synthetic data were carried out under different levels of population stratification. As expected,

our results indicate that the performance of case-case GWAS can be greatly affected by the ex-

tent of stratification between the two input studies. We tested the performance of our method for

Fst = 0.1, which is a very high-end estimate of genetic variation across homo sapiens [316]. Even

so, our method still showed good power and type I error rates. For higher confidence in results, we

suggest larger sample sizes for both cases and controls, especially when there is higher heterogeneity

between the population groups of the two studies. A notable difference between our method and

the work of [194] is that we do not filter for SNPs showing association due to differential tagging

effects. While analyzing such SNPs, our method behaves more like a direct case-case GWAS using

individual level data. We note that, just like the other recently described cc-GWAS method, we ex-

pect the user to input sample overlaps for cases and controls respectively for more accurate results.

In our implementation, we do provide a complementary estimation using Z-scores as proposed by

[308]. However, as in reality one can usually expect more controls overlapping than cases, this

estimation can lead to a loss in power. Overall, our work can be considered an alternative to [194],

offering novel theory and a simpler implementation.

Our framework also introduces a novel perspective on case-control PRS. Conventionally, PRS

for a target study is only accessible from individual level genotype data. However, even though

getting scores for each individual is not feasible, we notice that if we only focus on the differen-

tiation between cases and controls, the group means and standard errors of PRS can in fact be

estimated using only summary statistics of both the base and target studies. With such statistics

available, a t-test can be carried out instead place of logistic regression, which is commonly used for

predictability evaluation when the individual level PRS are available. It is worth noting that, for
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case-control studies, t-tests and logistic regression are testing the same hypothesis: whether scores

generated from the SNP effect of a base study can differentiate individuals in the target study, or,

equivalently, whether the base study can predict the case/control status of samples in the target

study. We applied our method to summary statistics of eight psychiatric disorders from PGC for

predicting group PRS and found the results in general concordance with the genetic correlation

obtained by the work of Lee et al [228]. In our work, all evaluations of PRS are based on the

simplest p-value based clumping and thresholding (PC+T) approach, which may make the result

appear like nothing more than viewing the genetic correlation from another perspective. However,

note the methodology underlying the ReACt group PRS can be easily adapted to any other PRS

computation model, e.g., [317] (SBLUP [215], LDpred [318] , PRS-CS [202], SBayesR [203] etc).

To date, most PRS improvements target the selection and prioritization of SNPs or the adjusting

of the weights to build a better prediction model using the base study. Our work contributes from

a different direction: it allows the user to evaluate the performance of all those models without

access to individual level geontype data. Therefore, in order to apply our methodology to different

PRS models, one just needs to update the input summary statistics for the base study with the

pre-selected SNPs and the updated SNP weights. Moreover, results from group PRS using our ap-

proach can be further connected with [305] to quantify the predisposition to a particular disorder

that is explained by a certain SNP set.

As discussed earlier in our work, our framework is robust against within-study stratification

effects, which means that the group means and standard errors returned are corrected for strat-

ification and can be used directly for within-study comparisons. However, we would like to note

that the method is still vulnerable to the common weaknesses of conventional PRS, including

differences in population structure between the base and target studies [319]. Users should also

keep in mind that general rules of thumb for conventional PRS also apply to our method. For

instance, the SNPs used for PRS computations are expected to be independent to a certain ex-

tent (clump/prune/LASSO shrink the summary statistics) [123] and as can be observed from the

experiments on real data, the predicting power of output PRS will be subject to the power of the

base study [304] and the p-value threshold chosen by the user. Practices that are not recommended

when running conventional PRS (e.g., using results from a GWAS with really small sample size as

the base study [304]) are also not recommended in our setting.
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We would like to note future research directions that could further extend our methods. First,

the reconstruction scheme that our framework is built upon is based on input summary statistics

that are generated using a logistic regression or a χ2-test. While this is a most common setting,

we have not yet explored how to potentially adapt our framework to operate on summary statistics

from other models. There exist summary statistics-based methods transforming GWAS results ob-

tained from linear mixed model association to odds ratio [320], and it will be interesting to further

explore how such methods could interface with our approach although this is beyond the scope of

our present study. Also, in this paper, we presented immediate applications of our framework to

common tasks in GWAS analyses. An interesting topic for future work would be to incorporate

information beyond GWAS summary statistics. For example, one could consider incorporating

external information such as LD structure using LD reference maps; such information could for

instance be used to attempt to improve the accuracy of sample overlap estimation and extend the

group-PRS applications. Furthermore, we could conceivably move towards haplotype reconstruc-

tion opening up new possibilities for research.

In conclusion, we introduce a simple and mathematically elegant framework that may be used

to reconstruct allelic counts and genotypes from GWAS summary statistics. This novel framework

highlights the power of summary-statistics-based methodology. Future work could lead to addi-

tional applications opening up new possibilities in the quest to identify the genetic background of

complex disease.

3.5 Theory in details

3.5.1 Our framework

Notation Prior to introducing our methods, we discuss notational conventions. We will

reserve the subscript i to denote SNP number: given, say, M SNPs, i will range between one and

M . Similarly, we will reserve the subscript ℓ to denote the study number: given L studies from

which summary statistics will be meta-analyzed, ℓ will range between one and L. We assume that

all L studies released summary statistics on a common set of M SNPs. For simplicity, we will first

describe our methods for the case L = 2 (i.e., when exactly two studies are jointly meta-analyzed)
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and we will generalize our approach in Section 3.5.2 for L > 2.

We will use the three-letter shorthand cse for cases and the three-letter shorthand cnt for

controls. We reserve the variable a to represent counts of the effective allele and the variable u to

represent counts of the non-effective allele. We also reserve the variable N to represent counts for

the number of cases or controls. Given the above conventions, we now present the following table

of allele counts (effective and non-effective allele) for SNP i (i = 1 . . .M) in study ℓ (ℓ = 1 . . . L).

Table 3.1: Table of allele counts for SNP i (i = 1 . . .M) in the ℓ-th GWAS (ℓ = 1 . . . L).
The total number of cases for the ℓ-th study is Ncse

ℓ and the total number of controls for the ℓ-th
study is Ncnt

ℓ . Clearly, the total number of cases and controls in a study is the same for all SNPs,
which is why the variable N does not depend on i. The total number of alleles in cases and controls
is equal to twice the number of cases and controls, respectively.

A1 (effective allele) A2 (non-effective allele) Number of alleles

Cases acseiℓ ucseiℓ 2N cse
ℓ

Controls acntiℓ ucntiℓ 2N cnt
ℓ

Using the above table, we can also compute the frequencies of the effective or non-effective allele

in cases and controls. Table 3.2 summarizes frequency notation for SNP i (i = 1 . . .M) in study ℓ

(ℓ = 1 . . . L). Obviously,

Table 3.2: Notations and definitions of (effective or non-effective) allele frequencies in
cases and controls. The subscripts i and ℓ indicate SNP number and study number, respectively.

pcseiℓ =
acseiℓ

acseiℓ +ucse
iℓ

frequency of the effective allele A1 in cases

pcntiℓ =
acntiℓ

acntiℓ +ucnt
iℓ

frequency of the effective allele A1 in controls

qcseiℓ =
ucse
iℓ

acseiℓ +ucse
iℓ

frequency of the non-effective allele A2 in cases

qcntiℓ =
ucnt
iℓ

acntiℓ +ucnt
iℓ

frequency of the non-effective allele A2 in controls

pcseiℓ + qcseiℓ = 1

pcntiℓ + qcntiℓ = 1.
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Reconstructing allele counts Using Table 3.1, notice that the odds ratio (OR) and its

corresponding standard error (SE) for SNP i in study ℓ are given by the following formulas:

ORiℓ =
acseiℓ · ucntiℓ

acntiℓ · ucseiℓ

, (1)

SEiℓ =

√
1

acseiℓ

+
1

ucseiℓ

+
1

acntiℓ

+
1

ucntiℓ

. (2)

Additionally,

2N cse
ℓ = acseiℓ + ucseiℓ , and (3)

2N cnt
ℓ = acntiℓ + ucntiℓ . (4)

By solving the system of non-linear eqns. (1), (2), (3), and (4), we can recover acseiℓ , ucseiℓ , acntiℓ , and ucntiℓ

for SNP i in study ℓ. Notice that ORiℓ, SEiℓ, N
cse
ℓ , and N cnt

ℓ are available from summary statistics.

See Appendix 3.7.1 for details on solving the aforementioned system of non-linear equations.

Reconstructing genotype counts Given the reconstructed allele counts of Section 3.5.1,

we can now reconstruct genotype counts for SNP i in the ℓ-th study. In order to do this, we

need to assume that SNP i is in HWE in both case and control groups of study ℓ. Note that a

well-performed GWAS should have SNPs drastically violating HWE filtered out. More precisely,

assume that for SNP i in study ℓ we have reconstructed its allele table count (Table 3.1). Then, by

assuming that this SNP is in HWE in study ℓ, we can compute the number of cases and controls

that exhibit a particular genotype. Recall that there are three possible genotypes: A1A1, A1A2,

and A2A2. We will represent each genotype by counting the number of copies of the effective allele

in each genotype. Thus, A1A1 will correspond to two, A1A2 will correspond to one, and A2A2 will

correspond to zero.

Following our notational conventions from Section 3.5.1, we can now compute the entries in

Table 3.3 of genotype counts for SNP i in study ℓ. It is worth noting that
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Table 3.3: Genotype counts for cases and controls for SNP i in study ℓ. Using the above
formulas, we can reconstruct the genotype counts for cases and controls for each of the three possible
genotypes.

A1A1 (two copies of A1) A1A2 (one copy of A1) A2A2 (zero copies of A1)

Cases N cse
iℓ (2) = (pcseiℓ )2Ncse

ℓ N cse
iℓ (1) = 2pcseiℓ qcseiℓ Ncse

ℓ N cse
iℓ (0) = (qcseiℓ )2Ncse

ℓ

Controls N cnt
iℓ (2) = (pcntiℓ )2Ncnt

ℓ N cnt
iℓ (1) = 2pcntiℓ qcntiℓ Ncnt

ℓ N cnt
iℓ (0) = (qcntiℓ )2Ncnt

ℓ

N cse
ℓ = N cse

iℓ (0) +N cse
iℓ (1) +N cse

iℓ (2), (5)

N cnt
ℓ = N cnt

iℓ (0) +N cnt
iℓ (1) +N cnt

iℓ (2). (6)

Next, we reconstruct the genotype vector for SNP i in study ℓ as follows:

giℓ =

[
0 . . . 0︸ ︷︷ ︸
Ncse

iℓ (0)

1 . . . 1︸ ︷︷ ︸
Ncse

iℓ (1)

2 . . . 2︸ ︷︷ ︸
Ncse

iℓ (2)

0 . . . 0︸ ︷︷ ︸
Ncnt

iℓ (0)

1 . . . 1︸ ︷︷ ︸
Ncnt

iℓ (1)

2 . . . 2︸ ︷︷ ︸
Ncnt

iℓ (2)

]
.

Using eqns. (5) and (6), it is easy to conclude that the vector giℓ has a total of

N cse
ℓ +N cnt

ℓ

entries, which is equal to the number of samples (cases plus controls) included in the ℓ-th study.

We can also form the response vector yℓ for the ℓ-th study, indicating whether a sample is a case

(i.e., one) or a control (i.e., zero) as follows:

yℓ =

[
1 . . . 1︸ ︷︷ ︸
Ncse

ℓ

0 . . . 0︸ ︷︷ ︸
Ncnt

ℓ

]
. (7)

Note that the vectors yℓ and giℓ have the same dimensions (same number of entries). It should be

clear that the vector yℓ is the same for all SNPs in the ℓ-th study and hence does not depend on

the SNP number i.

We conclude the section by discussing the construction of an indicator vector s that will denote

the study from which a particular sample in our meta-analysis originated. For the sake of simplicity,

assume that we meta-analyze summary statistics from two studies (L = 2). Then, following the
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above discussion, we can construct the genotype vectors gi1 and gi2 and concatenate them to

construct the overall genotype vector for the i-th SNP in both studies:

gi = [gi1 gi2] .

Similarly, we can construct the overall response vector y for both studies:

y = [y1 y2] .

Notice that the vectors gi and y have the same dimensions (number of entries), equal to the number

of samples (cases plus controls) in both studies, i.e., equal to

N = N cse
1 +N cnt

1 +N cse
2 +N cnt

2 .

We can now construct the indicator vector s as follows:

s =

[
0 . . . 0︸ ︷︷ ︸

Ncse
1 +Ncnt

1

1 . . . 1︸ ︷︷ ︸
Ncse

2 +Ncnt
2

]
.

Note that a value of zero in s indicates that the corresponding sample belongs to the first study

while a value of one in s indicates that the corresponding sample belongs to the second study.

3.5.2 Fixed-effect meta-analysis

Logistic regression We run logistic regression for each SNP separately; recall that we number

SNPs in our meta-analysis from one up to M . For notational convenience and since we run logistic

regression in an identical manner for each SNP, without loss of generality we focus on a single

SNP. Let the genotype vector for the selected SNP be denoted by g; let s be the study indicator

vector; and let y be the response vector, as discussed in the previous section. Recall that all three

vectors have the same dimensions (same number of entries), equal to N , namely the total number

of cases and controls in both studies. Notice that we dropped the subscript i from the vector g for

notational convenience, since our discussion in this section will focus on a fixed SNP i, without
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loss of generality.

Using notation from the previous section, while dropping the subscript i from the genotype

vector g, allows us to formulate logistic regression as follows:

Pr(yj = 1|gj , sj) = S(β0 + β1gj + β2sj), (8)

where S(x) = (1 + e−x)−1 is the sigmoid function; yj denotes the jth entry of the vector y; sj

denotes the jth entry of the vector s; and β0, β1, and β2 are the unknown coefficients of the logistic

regression formulation. Here β0 corresponds to the constant offset, β1 corresponds to the genotype,

and β2 corresponds to the study-of-origin. We also highlight that gj denotes the jth entry of the

vector g; recall once again that we dropped the subscript i from the genotype vector in this section.

The range for all subscripts j for the above vectors is between one and N .

In order to further describe how logistic regression was implemented in our experiments, it will

be convenient to introduce additional notation. Let β be the vector

βT = [β0 β1 β2],

and let x be the vector

xT
j = [1 gj sj ].

Thus, β is the vector of the (unknown) logistic regression coefficients, while xT
j for all j = 1 . . . N is

the vector representing the constant offset, the genotype, and the study origin for the jth sample

in our meta-analysis. This allows us to rewrite eqn. (8) as follows:

Pr(yj = 1|gj , sj) = S(βT · xj).
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We can now compute the negative log-likelihood (NLL) function for β as follows:

NLL(β) = −
N∑
j=1

log(Pr(yj)) = 1|xj)

= −
N∑
j=1

yj logS(β
T · xj) + (1− yj) log(1− S(βT · xj)).

Thus, β can be estimated using the Iterative Re-weighted Least Squares (IRLS) algorithm [321] as

follows:

Algorithm 1: IRLS for maximum likelihood estimate of logistic regression coefficients

Initialize β0 = [log( ȳ
1−ȳ ) 0 0]T , where ȳ is the average of all elements of the vector y;

repeat

ηj = (βt)Txj , j = 1 . . . N ;

ϕj = S(ηj), j = 1 . . . N ;

dj = ϕj(1− ϕj), j = 1 . . . N ;

zj = ηj +
yj−ϕj

dj
, j = 1 . . . N ;

D = diag(d1, d2, . . . , dN );

βt+1 = (XTDX)−1XTDz;

until convergence;

In the IRLS algorithm, we let D denote the diagonal N ×N matrix whose diagonal entries are

d1, d2, . . . , dN ; we let X denote the N × 3 matrix whose rows are the vectors xT
j for j = 1 . . . N ;

and we let z denote the vector whose entries are the zj for j = 1 . . . N . Using this notation, the

matrix H = XTDX is the 3× 3 Hessian matrix of this logistic regression problem. The algorithm

iterates over t = 0, 1, 2, . . . and terminates when our convergence criterion, namely the difference

∥βt+1 − βt∥1 1 drops below the threshold 10−4, which is the same threshold as the one used by

PLink [322] for logistic regression.

Note that a drawback for logistic regression is that it can produce anti-conservative results

under imbalance, which in our case, includes unbalanced sample sizes in cases and controls, as well

as unbalanced sample sizes among input studies. We apply Firth bias-corrected logistic regression

test [323, 324] to correct for the estimate under input imbalance (triggered when either the total

1This is simply the sum of the absolute values of the three entries of the vector βt+1 − βt.
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case/control ratio, or maximum/minimum input sample size ratio is greater or equal to 5 by default).

This approach has been reported with stable performance in both balanced and unbalanced studies,

as well as with rare SNPs [325].

We conclude this section by discussing how to compute a p-value for the logistic regression

formulation of eqn. (8). First, it is well-known that the standard error for the three coefficients

of the logistic regression formulation can be computed by using the inverse of the Hessian matrix

H. In particular, the standard error for β0 is equal to SE0 =
√
(H−1)11; the standard error for β1

is equal to SE1 =
√
(H−1)22; and the standard error for β2 is equal to SE2 =

√
(H−1)22. As is

typical in association studies, we focus on SE1, the standard error for the vector of genotypes, and

compute the respective p-value for the SNP-under-study using the Wald test. More specifically, we

find the corresponding p-value of a Z-distribution for the parameter
∣∣∣ β1

SE1

∣∣∣.
Correcting for sample overlap (two studies) Sample overlap between studies can lead

to an under-estimation of test statistics variance and results in an inflated test p-value. To prevent

this from happening, we will use an “effective sample size” correction as follows. Assume that we

are given Table 3.4, which details the number of overlapping samples between the two studies.

Table 3.4: Number of overlapping cases and controls between the two studies. For
example, the first cell of the table indicates the number of shared cases between the two studies. In
practice, the off-diagonal cells of this table are close to zero, since they indicate cases in one study
that became controls in the other study and vice-versa. Large numbers in these off-diagonal cells
would indicate high heterogeneity across the two studies, in which case a fixed effect meta-analysis
is not recommended.

Overlapping Study 2: Case Study 2: Control

Study 1: Case Ncse-cse
shr Ncnt-cse

shr

Study 1: Control Ncse-cnt
shr Ncnt-cnt

shr

Using the counts in Table 3.4, the number of shared cases between the two studies is equal to:

Ncse
shr = Ncse-cse

shr +
Ncse-cnt

shr +Ncnt-cse
shr

2
. (9)
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Notice that if the off-diagonal entries in Table 3.4 are equal to zero then the above number reduces,

obviously, to Ncse-cse
shr . Similarly, we have the number of shared controls equal to:

Ncnt
shr = Ncnt-cnt

shr +
Ncnt-cse

shr +Ncse-cnt
shr

2
. (10)

Then, the correction is simply carried out by multiplying the case/control sample size of each input

study by a “deflation factor” defined as follows:

λcseℓ =
Ncse

ℓ

Ncse
ℓ +Ncse

shr

λcntℓ =
Ncnt

ℓ

Ncnt
ℓ +Ncnt

shr

.

We multiply the sample size for cases (respectively, controls) in each study ℓ by λcseℓ (respectively,

λcntℓ ) before proceeding with the logistic regression described in Section 3.5.2. See [326] for a similar

correction strategy. We finally note that in practice the exact number of overlapping samples

between two studies is usually not know. In this case, we followed the approach proposed in [308]

to estimate the overlapping sample size.

Meta-analyzing multiple datasets We now extend our approach to meta-analyze more

than two datasets. The main difference with our previously described approach is the handling

of the indicator variable for multiple datasets. We can still reconstruct the genotype count for

each input study in exactly the same way as in Table 3.3 as well as the response vector following

eqn. (3.5.1). Therefore, when multiple studies are meta-analyzed, gi and y become

gi = [gi1 . . .giL] ,

y = [y1 . . .yL] .

The indicator vector s cannot be binary anymore. Intuitively, one may consider using L binary

vectors, each to encode samples from each input study. However, this approach would necessitate up

to L(L−1)/2 vectors to encode pairwise sample overlap. This increases the computational complexity

by O(L2). A simpler alternative is to use categorical variable as the source study indicator. Note
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that in this case, different rankings of the studies can lead to completely different results. A

straightforward idea is to encode the studies using their population allele frequencies, which can be

computed via Table 3.1 as follows:

Iiℓ =
acseiℓ + acntiℓ

acseiℓ + acntiℓ + ucseiℓ + ucntiℓ

Note this is encoding also controls for population stratification across multiple sample sources.

Then, when analyzing L studies, the indicator vector s becomes:

s =

 I1 . . . I1︸ ︷︷ ︸
Ncse

1 +Ncnt
1

. . . IL . . . IL︸ ︷︷ ︸
Ncse

L +Ncnt
L

 .

We can now proceed with the logistic regression as in Section 3.5.2 . In order to handle sample

overlap across multiple studies, we use the subscript (·)ℓ1ℓ2 to denote properties of shared samples

between two studies ℓ1 and ℓ2. Then, generalizing eqns. (9) and (10), we get, for each pair of input

studies ℓ1 and ℓ2,

Ncse
ℓ1ℓ2 = Ncse-cse

ℓ1ℓ2 +
Ncse-cnt

ℓ1ℓ2
+Ncnt-cse

ℓ1ℓ2

2
,

Ncnt
ℓ1ℓ2 = Ncnt-cnt

ℓ1ℓ2 +
Ncnt-cse

ℓ1ℓ2
+Ncse-cnt

ℓ1ℓ2

2
.

Finally, for any study ℓ1 = 1 . . . L, the sample size correction is

λcseℓ1 =
Ncse

ℓ1

Ncse
ℓ1

+
∑L

ℓ2 ̸=ℓ1
Ncse

ℓ1ℓ2

,

λcntℓ1 =
Ncnt

ℓ1

Ncnt
ℓ1

+
∑L

ℓ2 ̸=ℓ1
Ncnt

ℓ1ℓ2

.

We can now apply λcseℓ1
to correct the sample size for cases in study ℓ1 and we can apply λcntℓ1

to

correct the sample size for controls and proceed with logistic regression.
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3.5.3 PRS and cc-GWAS

Mean PRS for cases and controls Recall that the PRS for the t-th individual in the study

is computed as:

PRSt =
M∑
i=1

Si · git
2M

, (11)

where git is the genotype of the i-th SNP for the t-th individual and Si is the weight for SNP i,

which is usually defined as

Si = log(ORbase
i ),

where ORbase
i is the odds ratio of SNP i in the base summary statistics. Recall from Section 3.5.1

that M is the total number of SNPs. Then, in order to compute the average PRS for, say, cases, we

simply need to sum up the individual PRS and average over the number of cases. More precisely,

PRScse =
1

2MNcse

∑
t∈cse

M∑
i=1

Si · git.

where Ncse is the number of cases in the target study. The above equation can be rewritten as

PRScse =
1

2MNcse

M∑
i=1

Si

∑
t∈cse

git.

Notice that in an additive model,
∑

t∈cse git/2Ncse is the allele frequency of SNP i over all cases in

the target study, which can be computed using only the summary statistics as shown in Section

3.5.1 and Table 3.2. Thus, the mean PRS under an additive model for cases and controls can be

computed as follows:

PRScse =

∑M
i=1 Sip

cse
i

M
,

PRScnt =

∑M
i=1 Sip

cnt
i

M
.
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Table 3.5: The probability distribution of git for SNP i. In this table, pcsei denotes the allele
frequency of A1 in cases and qcsei = 1− pcsei .

git = 2 (two copies of A1) git = 1 (one copy of A1) git = 0 (zero copies of A1)

(pcsei )2 2pcsei qcsei (qcsei )2

All relevant information for this computation can be easily obtained from the summary statistics

of the base and/or target study.

Estimating the standard deviation of the PRS for cases and controls Interestingly,

we can also estimate the standard deviation of the PRS for cases and controls, even Without

individual level genotype information, under mild assumptions. First, from eqn. (11), we compute

the variance of an individual’s PRS as follows:

Var(PRSt) = Var(
M∑
i=1

Si · git
2M

)

=
1

4M2
Var(

M∑
i=1

Si · git). (12)

Recall that as a general step prior to the computation of PRS, it is recommended to prune or

clump the SNPs used for the PRS computation. Therefore, our first assumption is that the git’s

are pairwise independent. Then, eqn. (12) can be simplified as follows:

Var(PRSt) =

∑M
i=1Var(Si · git)

4M2

=

∑M
i=1 S

2
i Var(git)

4M2
. (13)

Notice that under an additive model, git is a discrete random variable that only takes the value

zero, one, and two. Consider all cases and, as in Section 3.5.1 , assume that the SNPs are in

HWE. Then, the distribution of git in the cases is presented in Table 3.5. We can now compute the
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variance of git in cases as follows:

Var(git) = E(g2it)− (Egit)
2

= (2pcsei qcsei + 4(pcsei )2)− (2pcsei qcsei + 2(pcsei )2)2

= (2pcsei qcsei + 4(pcsei )2)− (2pcsei (pcsei + qcsei ))2

= 2pcsei qcsei + 4(pcsei )2 − 4(pcsei )2 = 2pcsei qcsei .

Substituting into eqn. (13), we get

Var(PRScse) =

∑M
i=1 S

2
i (2p

cse
i qcsei )

4M2
.

Similarly, we can compute the estimated variance PRScnt for controls and PRS for the overall

population of the target study. To summarize, our estimates are

Var(PRScse) =

∑M
i=1 S

2
i p

cse
i qcsei

2M2
,

Var(PRScnt) =

∑M
i=1 S

2
i p

cnt
i qcnti

2M2
,

Var(PRS) =

∑M
i=1 S

2
i piqi

2M2
.

Here pi is the frequency of allele A1 for SNP i in all samples of the target study, and can be

computed as:

pi =
Ncsepcsei +Ncntpcnti

Ncse +Ncnt
,

qi = 1− pi.

We can now apply a t-test in order to obtain a p-value for the difference between the PRS distri-

butions in cases and controls. Given the estimated group means and standard deviations for cases

and controls, we can further assume that the individual level PRS follow a normal distribution in
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each group and use the t-test statistic as follows:

t =
PRScse − PRScnt√

Var(PRS) ·
√

1
Ncse +

1
Ncnt

.

Finally, the degrees of freedom are given by df = Ncse +Ncnt − 2.

cc-GWAS using summary statistics cc-GWAS is a straight-forward approach to inves-

tigate the genetic differences between two traits. However, in practice, it is usually challenging

and time consuming, due to restrictions in individual level data sharing. Recently, a method for

cc-GWAS that relies only on summary statistics has been proposed in [194]. We propose an al-

ternative perspective on summary-statistics-based cc-GWAS framework, using the foundations of

Section 3.5.1.

One of the biggest challenges of cc-GWAS is the differentiation of the genetic effects from

trait-trait difference and population stratification. Assume that for a fixed SNP, we run logistic

regression focusing only on the cases of the two studies. Let ycse
j = 1 denote that sample j is a

case from the first study and let ycse
j = 0 denote that j is a case from the second study. Let gcsej

be the genotype of the j-th case. Then,

Pr(ycse
j = 1|gcsej ) = S(βcse

0 + βcse
1 gcsej ). (14)

The effect size βcse
1 that is the output of logistic regression will include effects from the real genetic

differences between trait 1 and trait 2 (βg) as well as from population stratification (βs). We can

assume that these two effects are independent of each other:

βcse
1 = βg + βs.

Assume that the control samples from studies one and two do not carry the traits of interest.

Then, we can estimate the effect of population stratification by running another logistic regression,
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focusing only on controls from the two studies, as follows:

Pr(ycnt
j = 1|gcntj ) = S(βcnt

0 + βsg
cnt
j ). (15)

In the above, ycnt
j = 1 denotes that sample j is a control from study one, ycnt

j = 0) denotes that j is

a control from study two, and gcntj denotes the the genotype for the j-th control sample. From this

logistic regression, we can get an estimate of the stratification effect βs. Note that along with βs,

we will also get a standard error for the estimate of stratification SEs, which essentially corresponds

to the sample size of controls in the two input studies. If we do not have a good amount of controls,

SEs will turn out to be large, indicating that the estimate for stratification effect is not reliable

and the results from the cc-GWAS should be be interpreted carefully.

If SEs is small enough, then it is reasonable to assume that the estimate of the stratification

effect is credible and we can subsequently treat βs as a fixed value. Then, the genetic effect from

the trait-trait difference that we are interested in is

βg = βcse
1 − βs. (16)

It now follows that the standard error of βg is

Var(βg) = Var(βcse
1 ) =⇒ SEg = SE1, (17)

using the derivations of Section 3.5.1. Logistic regressions on cases (eqn. (14)) and controls

(eqn. (15)) can be carried out as discussed in Section 3.5.2, with minor changes (include only

the designated samples; relabel the dependent variable; and remove the indicator variable). By

running these two logistic regressions, we can compute βcse
1 , βs, SE

cse
1 , and SEs. Then, using

eqns. (16) and (17), we can compute βg and SEg for each SNP. Similarly, we can also compute the

corresponding p-value using a Z-distribution for
∣∣∣ βg

SEg

∣∣∣.
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3.6 Experiments in details

3.6.1 Data

Synthetic data. We used the Balding-Nichols model [307, 327] for synthetic genotype gen-

eration, assuming a minor allele frequency (MAF) of 0.3 for each SNPs and a relative risk r (r =

1.15/1.2/1.3) for the effective alleles of the causal SNPs in each population. The simulation was

carried out under a range of Fst values (Fst = 0.01/0.05/0.1). For the fixed-effect meta-analysis, we

simulated 1,000 cases and 1,000 controls for each input study. A total of 100,000 SNPs were gener-

ated, out of which 1,000 are causal SNPs with the predefined risk for the effective alleles. Moreover,

on top of the independent populations, we also evaluated the performance of ReACt under the

presence of sample overlap by introducing a predefined amount of samples shared between each

pair of input studies (100 cases, 100 controls overlap; or 500 cases, 500 controls overlap).

For the cc-GWAS, inspired by [194], we used the same simulation model but introduced three

types of SNPs for a thorough evaluation of the method’s robustness: (i) SNPs with non-zero effect

in only one of the studies and zero effect in the other; (ii) SNPs with zero effect in both input

studies; and (iii) SNPs with the same non-zero effect size (predefined r) in both input studies.

All of the three types of SNPs would suffer from population stratification at a predefined value of

Fst. In total, 100,000 SNPs were generated, with 1,000 (for each input study) from type (i), 49,000

from type (ii), and 49,000 from type (iii). To investigate the effect of study sizes, we evaluated

the method performance on input studies with 2,000 cases and 2,000 controls each, as well as on

studies with 5,000 cases and 5,000 controls each.

Individual level genotype data. We tested the performance of our fixed-effect meta-

analysis method and group PRS method on the depressive episode trait in UK biobank dataset

[135]. Only independent European ancestry samples identified through PCA and IBD check are

included for the analysis. We applied basic quality control filters on those samples, including

removing SNPs and samples with a missing rate exceeding 2% or violating the Hardy-Weinberg

equilibrium (pHWE < 10−6). As a result, 640,756 SNPs and 331,217 samples (18,368 cases and

312,849 controls) survived and were used for the experiment. For the evaluation of the fixed-effect
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meta-analysis method, we ran a standard GWAS with all samples and treated SNPs with p < 10−6

from the results as the “true signals” to be captured. For all GWAS on UB biobank samples, we

correct for age, gender, sample collection batch and top 10 PCs obtained using software TeraPCA

[328].

Generating summary statistics. For synthetic data and individual level genotypes, sum-

mary statistics were generated using PLink [322], correcting for the top ten principal components

(PCs) in the case of admixed datasets. For real individual level genotype data, we divided the

samples randomly into two equal sized subsets and ran a GWAS on each subset separately to

obtain summary statistics for each subset. We performed ten such random iterations in our ex-

perimental evaluations. For the fixed-effect meta-analysis, on top of two independent subsets, we

also introduced 100/500 sample overlap to investigate the performance of our methods under more

challenging scenarios.

Publicly available summary statistics. As part of the performance evaluation for our

group PRS method, we used a MDD GWAS summary statistics published in 2013 [312] as the base

study, in order to avoid sample overlap with the UK biobank target population. The summary

statistics contains in total 1,235,109 SNPs on genome build hg18. After liftover [329] to hg19,

1,234,855 remained for the analysis.

For group PRS and cc-GWAS, we demonstrated the applicability of our methods using publicly

available summary statistics. We chose the summary statistics of eight neuropsychiatric disorders

made available by the Psychiatric Genomics Consortium (PGC), since the underlying relationships

between this set of disorders has been relatively well-studied. Information on the eight summary

statistics can be found in Table 3.6.

3.6.2 Evaluation metrics

Fixed-effect meta-analysis. For synthetic experiments, results after performing the meta-

analysis were compared with the predefined causal variants. Power and type I error rate under
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Table 3.6: Information on summary statistics for the eight psychiatric disorders used in
the experiments. Note that we used summary statistics only for samples of European ancestry.
For MD, we used the summary statistics generated by UK biobank, excluding the 23andMe samples;
for BIP, we used the summary statistics including all three patient sub-types.

Disorder #Cases #Controls Total #SNPs Reference

obsessive-compulsive disorder (OCD) 2,688 7,037 9,725 8,409,516 [242]
Tourette syndrome (TS) 4,819 9,488 14,307 8,947,432 [111]
eating disorder (ED) 3,495 10,982 14,477 10,641,224 [330]
autism spectrum disorder (ASD) 18,382 27,969 46,351 9,112,386 [56]
bipolar disorder (BIP) 20,352 31,358 51,710 13,413,244 [313]
schizophrenia (SCZ) 36,989 113,075 150,064 9,075,843 [314]
attention-deficit/hyperactivity disorder (ADHD) 19,099 34,194 53,293 8,094,094 [109]
major depression (MD) 69,232 161,009 230,241 9,874,289 [106]

each experimental condition were reported as an average of ten independent repetitions. For real

genotype data, in each iteration, we meta-analyzed summary statistics of two subsets using the

proposed methods and standard approaches and compared results with the GWAS results on the

complete dataset. We again reported results averaged over ten iterations (random splits) showing,

on average, how many times a SNP reported as a “true signal” in the overall GWAS got picked up by

each meta-analysis method (true positive) as well as how many extra SNPs each method identified

(false positive). The performance on real genotype data was also evaluated under 0/100/500 sample

overlap. Sample size for each subset under different conditions was 482 cases, 993 controls with no

sample overlap; 532 cases, 1043 controls with 100 cases and 100 controls overlap; and 732 cases,

1243 controls with 500 cases and 500 controls overlap.

We compared the performance of ReACt in terms of accuracy as well as running time with

METAL [309] and ASSET [310], which are both widely used tools for fixed-effect meta-analysis.

Note that the latest stable release of METAL does not have the sample overlap correction functionality

implemented. Therefore, for performance comparison, we used the development version available

on GitHub [308].

Group PRS. In order to show that our method outputs reliable estimates of the group-wise

statistics for PRS without accessing individual level genotypes, we compared the output of our

method to the true group mean and standard deviation computed from the individual level PRS on

synthetic data, as described in Section 3.6.1. Performance was evaluated under with a fixed 0.05
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Fst between the base and target studies. For a pair of base and target studies , we estimated the

mean PRS for case/control groups as well as their standard deviation using SNPs with p-values

strictly less than 5 · 10−5 in the summary statistics. We also computed the individual level PRS

using PRSise to obtain the true group mean and standard deviation. Our experiments show

that our estimates are numerically close to the real values. Next, we evaluated the performance

of ReACt on real GWAS datasets, where the individual level genotype of the target study was

available. For this experiment, we used an earlier GWAS summary statistics of MDD [312] as the

base study (see Section 3.6.1 for details) and cases and matching controls of depressive episode

trait in UK biobank as the target population [135]. We clumped the base summary statistics using

the European samples from 1000 Genome Project as reference, under parameters --clump-p1 1

--clump-kb 250 --clump-r2 0.1. We tested the method and reported results under a range of p-

value thresholds (0.1, 0.01, 0.001, 10−4). For each threshold, we used only independent SNPs with a

p-value smaller than the respective threshold from the base summary statistics for PRS calculation,

using both ReACt and PRSice2 [311]. We reported the mean PRS of cases and controls, as well

as the resulting p-value from t-test. In the case of PRSice2, we also reported the regression r2

value and p-value for the PRS predictor with and without correcting for covariates (ie., the top five

principal components).

Finally we applied ReACt to summary statistics of eight neuropsychiatric disorders (OCD,

TS, ED, ADHD, ASD, BIP, SCZ and MDD, see Section 3.6.1 for details) and reported the pairwise

PRS prediction power in terms of t-test p-values for the difference between case/control group

PRS means. Prior to the group PRS computation, each base summary statistics was clumped

using PLink [322] using parameters --clump-p1 1 --clump-kb 250 --clump-r2 0.1, with the

European samples from 1000 Genome Project as a reference. All PRS values were estimated using

independent SNPs with p-values strictly less than 10−5 from the base summary statistics.

cc-GWAS. Out of the three types of SNPs generated for the cc-GWAS evaluation (see Sec-

tion 3.6.1), we expect ReACt to pick up only type (i) SNPs as they have been designed to be the

trait differential SNPs. Therefore, we reported the power of ReACt based on the number of type

(i) SNPs that were identified as well as type I error rates for type (ii) SNPs and type (iii) SNPs.
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Since the randomness introduced by the simulation could lead to false positives that were not due to

the method itself, we filtered out type (iii) SNPs showing extreme differences in effect size between

studies, by removing type (iii) SNPs with |ORi1 −ORi2| ≥ 0.1 from performance evaluation. Here

ORi1 corresponds to the odd ratio for the ith SNP in the first study and ORi2 corresponds to the

odd ratio for the ith SNP in the other study. Since all three types of SNPs suffered from population

stratification, we evaluated the performance of ReACt under a challenging scenario. Besides sim-

ulation, experiments using summary statistics for schizophrenia (SCZ) [314] and bipolar disorder

(BIP) [331] were also carried out. These two disorders were chosen due to the existence of case-case

association study using the individual level genotypes [236]. We tested ReACt using the summary

statistics and compared the results with the existing case-case association study between SCZ and

BIP to see whether it could detect possible genetic differences between the two disorders. Since

no individual level quality control could be carried out, we expected our results to correspond to a

case-case GWAS including 36,989 cases from SCZ and 20,352 cases from all three sub-types of BIP

(type 1, type 2, and schizoaffective bipolar disorder). For the analysis, we excluded SNPs on the

X-chromosome, MHC region (chr6: 25,000,000 - 35,000,000BP), and the inversion on chromosome

8 (chr8: 7,000,000 - 15,000,000BP). As a result, a total of 8,983,436 SNPs shared between both

summary statistics were used for the analysis. The results were compared in detail with the results

reported by the cc-GWAS in [194].

3.7 Appendix notes

3.7.1 Solving the non-linear system of equations of Section 3.3.1

For notational simplicity, let a = acseiℓ , b = ucseiℓ , c = acntiℓ , and d = ucntiℓ . We rewrite eqns. (1)-(4) as

1

a
+

1

b
+

1

c
+

1

d
= w, with w = SE2

iℓ, (18)

a+ b = x, with x = 2N cse
ℓ , (19)

c+ d = y, with y = 2N cnt
ℓ , and (20)

a · d
c · b

= z, with z = ORiℓ. (21)
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Our goal is compute values for the four unknowns a, b, c, and d. Combining eqns. (19) and (20),

we get

a = x− b, and (22)

c = y − d. (23)

Substituting eqn. (22) and eqn. (23) into eqn. (21), we get (x − b)d = zb(y − d), which can be

rewritten as

b =
xd

yz − zd+ d
. (24)

Substituting eqn. (24) into eqn. (22), we get

a = x− xd

yz − zd+ d
=

xyz − xzd

yz − zd+ d
. (25)

We now note that all four unknowns can be written as functions of d and other known quantities.

Substituting eqn. (23), eqn. (24), and eqn. (25) into eqn. (18), we get

1
xyz−xzd
yz−zd+d

+
1
xd

yz−zd+d

+
1

y − d
+

1

d
= w.

Simplifying the above equation, we get

yz − zd+ d

xz(y − d)
+

yz − zd+ d

xd
+

1

y − d
+

1

d
= w,

which can be further simplified to

(wxz + (1− z)2) · d2 + (2yz(1− z)− wxyz) · d+ (yz(x+ yz)) = 0. (26)

Eqn. (26) is a quadratic equation on d; its real roots (if they exist) are

{d1, d2} =
−(2yz(1− z)− wxyz)±

√
(2yz(1− z)− wxyz)2 − 4(wxz + (1− z)2)(yz(x+ yz))

2(wxz + (1− z)2)
.
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Given d, we can immediately compute a, b, and c using eqns. (23), (24), and (25). In order to

determine whether d is equal to d1 or d2, we first check whether d1 or d2 guarantee that a, b, c,

and d are all positive numbers. If both d1 and d2 satisfy this constraint, then we choose the largest

of the two roots, as it solves the following trivial minimization problem:

min
d∈{d1,d2}

a+ c

a+ b+ c+ d
.

The above choice is based on the assumption that in summary statistics A1 (whose frequency is

equal to the above fraction) typically denotes the effective (minor) allele. Additionally, our code

performs a sanity check for allele alignment across studies given the solution d1 or d2.

For the sake of completeness, we also prove that it is not possible for both d1 and d2 to be negative.

First, note that

d1 + d2 = −2yz(1− z)− wxyz

wxz + (1− z)2
=

yz

wxz + (1− z)2
· (wx− 2 + 2z). (27)

Using x = a+ b > 0 and w = 1
a + 1

b +
1
c +

1
d > 1

a + 1
b > 0, we get

wx > (a+ b) · (1
a
+

1

b
) =

(a+ b)2

ab
=

a2 + 2ab+ b2

ab
> 2, (28)

which implies that wx − 2 + 2z > 0. Combining with eqn. (27), we conclude that d1 + d + 2 is

non-negative; recall that w, x, y, and z are all non-negative. Additionally,

d1 · d2 =
yz(x+ yz)

wxz + (1− z)2
> 0,

which implies that d1 and d2 must have the same sign, and since their sum is non-negative, they

must both be positive. It is a simple exercise to prove that as long as root(s) exist, at least one of

them will guarantee that all values for a, b and c will be positive.

One important exception arises when the discriminant in eqn. (26) is negative. In that case,

no real roots exist for the quadratic equation. We do note that, theoretically, this should never

happen, since the underlying unknown quantities are positive real numbers. However, stratification

correction and genotype missingness could force the discriminant to fall below zero. To address this
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issue, we inflate w (i.e., the square of the standard error for the respective SNP) and recompute

the discriminant. More specifically, we iteratively multiply w by 1.001 (a 0.1% inflation) until a

non-negative discriminant is obtained or until 50 iterations are reached. The maximum inflation

we allow (after the full 50 iterations) is 1.00150 − 1 ≈ 5%. If after 50 iterations we have failed to

find a non-negative discriminant we omit this particular SNP from further analyses. Empirically,

for most input SNPs, a real root can be found after at most ten iterations.

3.7.2 Correction for sample overlap between the base/target studies for group PRS

The existence of shared samples in base (discovery) and target populations can lead to inflation in

association between PRS and the trait of interest in the target population [205, 123]. In our case,

such overlap will cause higher levels of significance in the t-test comparing the case and control

PRS distribution. So far, for conventional PRS, the most widely accepted approach to address

this problem is simply to identify the overlapping individuals and remove them from the target

population. However, in practice, this is not always possible since it usually requires additional

access to the individual level data of the base population. In this section, we introduce a correction

for sample overlap between the base and target populations implemented in ReACt that could

alleviate such issues.

In the following, we will use the case group as an example. Assume that the sample size for

cases of the target population is Ncse
target, out of which Ncse

shr are also cases in the base population

(overlap). If the probability of each sample being shared between the base and target studies is

uniformly distributed in both base and target studies, we would expect the observed mean PRS in

target cases PRScseobs to be a weighted sum of the mean PRS in base cases PRScsebase and the mean

PRS of cases that only exist in the target population PRScsetarget as follows:

PRScseobs =
Ncse

shr

Ncse
target

· PRScsebase +

(
1− Ncse

shr

Ncse

)
· PRScsetarget.

Therefore, the mean PRS for cases only in the target population is:

PRScsetarget =

(
PRScseobs −

Ncse
shr

Ncse
target

PRScsebase

)
·

Ncse
target

Ncse
target −Ncse

shr

,
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where PRScseobs is the uncorrected group mean computed as described in Section 3.5.3. PRScsebase can

be obtained by simply setting the target population to be the same as the base population, using

base summary statistics to compute group PRS for the target population. Similarly, we can adjust

the variance computation as follows:

Var(PRScseobs) =

(
Ncse

shr

Ncse
target

)2

·Var(PRScsebase) +

(
1− Ncse

shr

Ncse
target

)2

·Var(PRScsetarget). (29)

Therefore, the corrected variance will be

Var(PRScsetarget) =

(
Var(PRScseobs)−

(
Ncse

shr

Ncse
target

)2

·Var(PRScsebase)

)
·
(

Ncse
target

Ncse
target −Ncse

shr

)2

(30)

Similarly,

PRScnttarget =

(
PRScntobs −

Ncnt
shr

Ncnt
target

PRScntbase

)
·

Ncnt
target

Ncnt
target −Ncnt

shr

(31)

and

Var(PRScnttarget) =

(
Var(PRScntobs)−

(
Ncnt

shr

Ncnt
target

)2

·Var(PRScntbase)

)
·
(

Ncnt
target

Ncnt
target −Ncnt

shr

)2

(32)

for controls. Then, the corrected p-value will be based on a t-test using the corrected mean and

variance and an adjusted degree of freedom:

dftarget = Ncnt
target +Ncse

target − (Ncnt
shr +Ncse

shr )− 2.

This is a straightforward correction on the target PRS using the scores of the base population that

one would use if there were no stratification between the base and target populations. In practice,

this idealized scenario does not hold. In order to deal with the stratification between the base

and target populations, prior to any correction, we shift the scores for base cases and controls by
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aligning the base population PRS means to the target population as follows:

PRScse*base = PRScsebase − (PRSbase − PRStarget),

PRScnt*base = PRScntbase − (PRSbase − PRStarget).

In the above, PRSbase and PRStarget are mean PRS for the base and target populations respectively:

PRSbase =
Ncnt

base · PRScntbase +Ncnt
base · PRScntbase

Ncse
base +Ncnt

base

,

PRStarget =
Ncnt

target · PRScnttarget +Ncnt
target · PRScnttarget

Ncse
target +Ncnt

target

.

In practice, we use PRScse*base and PRScnt*base instead of PRScsebase and PRScntbase in equations (29)-(32) for

correction. We evaluated the performance of this correction scheme by introducing sample overlaps

between the base and target populations using the same simulation model as the one we used

to evaluate the performance of our group PRS approach. We computed the real individual level

PRS using PRSice2, from which we obtained the inflated PRS descriptive statistics (group mean,

standard deviation, and t-test p-value) for all target samples, including the ones that are shared with

the base population. We also computed PRS statistics for samples that are present only in the target

population as the ground truth. We compared results from our corrected group PRS method to the

PRS statistics for the samples that are exclusive to the target population computed using PRSice2.

Results on synthetic data demonstrated that our correction can drastically alleviate the inflation

in p-values that is the result of sample overlap the between base and target populations. See

Table 3.17, which shows representative results from our experimental evaluations. If the number

of overlapping samples is unknown to the user, we apply the approach proposed in [308] to get an

estimate of the overlapping sample size and we correct the output statistics accordingly. Note that

this correction approach is based on the assumption that all samples having an equal probability

of being shared between the base and target populations, which might be unrealistic in certain

settings.
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3.7.3 Speeding up the logistic regression computation

Recall that in section 3.5.2 for any SNP i, if we try to formulate the computation of elements in

H and G in one iteration, they will be:

Huv =

N∑
j=1

dj ·XjuXjv (33)

and

Gu =

N∑
j=1

dj · zj ·Xju (34)

where u, v ∈ {0, 1, 2}.

Same as in section 3.5.2, we dropped the subscript i from dj, zj and X. If we follow these equations,

when the sample size
∑L

ℓ=1Nℓ increases, the computational burden will increase linearly. However,

in practice this step can be achieved with an O(L) complexity, as long as we take advantage of

the fact that all elements of X are discrete values involving only 0, 1, 2 and study indicators Iiℓ.

This indicates that both dj ·XjuXjv and dj · zj ·Xju can only take a few possible values. In fact,

since there are only 3 ·L possibilities for Xj∗ (3 different genotypes · L different studies), there are

also only 6 possible values for dj . We denote them as dℓn, with ℓ ∈ {1, . . . , L} and n ∈ {0, 1, 2}.

Therefore, as an example, d10 will be the value of dj for a sample j if it belongs to study 1 and has

a genotype of A2A2. Similarly, for zj , since yj is involved in this computation, we need to consider

in total 3L · 2 = 6L possible values as y is binary indicator for the phenotypes. We denote those

6 · L possible values as zcseℓn for cases and zcntℓn for controls respectively. Then zcnt10 will represent

the value of zj for a sample j if it belongs to study 1, has a genotype of A2A2 and meanwhile is a

control. Then we only need to plug in the element of X based on the u, v values of interest.

Noticing this, if we just count the occurrence of those values, the summation can be found out

easily. This can be done using the genotype counts that we have already computed in section 3.5.1.

Therefore, for any SNP i with occurrence N cnt
iℓ (n) of each genotype n and indicator Iiℓ for each

input study, in an iteration of the IRLS, we can compute all dℓn and zcntℓn needed for this SNP as

described in 1. Then for this iteration, we shall have:

H00 =
L∑

ℓ=1

2∑
n=0

dℓn · (N cnt
iℓ (n) +N cse

iℓ (n)) (35)
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H01 = H10 =
L∑

ℓ=1

2∑
n=0

n · dℓn · (N cnt
iℓ (n) +N cse

iℓ (n)) (36)

H02 = H20 =
L∑

ℓ=1

2∑
n=0

Iiℓ · dℓn · (N cnt
iℓ (n) +N cse

iℓ (n)) (37)

H11 =

L∑
ℓ=1

2∑
n=0

n2 · dℓn · (N cnt
iℓ (n) +N cse

iℓ (n)) (38)

H12 = H21 =

L∑
ℓ=1

2∑
n=0

n · Iiℓ · dℓn · (N cnt
i1 (n) +N cse

i1 (n)) (39)

H22 =
L∑

ℓ=1

2∑
n=0

I2iℓ · dℓn · (N cnt
i1 (n) +N cse

i1 (n)) (40)

and

G0 =

L∑
ℓ=1

2∑
n=0

dℓn · (zcntℓn ·N cnt
iℓ (n) + zcseℓn ·N cse

iℓ (n)) (41)

G1 =
L∑

ℓ=1

2∑
n=0

n · dℓn · (zcntℓn ·N cnt
iℓ (n) + zcseℓn ·N cse

iℓ (n)) (42)

G2 =
L∑

ℓ=1

2∑
n=0

Iiℓ · dℓn · (zcntℓn ·N cnt
iℓ (n) + zcseℓn ·N cse

iℓ (n)) (43)

Eqn. (35)-(43) grant us fast update of w = H−1G in each iteration. We can do this repeatedly in

the IRLS until convergence to get the final result w̃.
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Table 3.8: Estimated and real group mean and standard deviation of PRS for a synthetic
target population. We compared group mean and standard deviation of PRS estimated by ReACt
from summary statistics of synthetic base and target studies to the real group mean and standard
deviation of individual level PRS obtained using summary statistics of the base and individual level
genotype of the target computed by PRSice2. Est stands for estimated. Note that the synthetic
data is not subject to clumping since the simulation model does not generate LD structure.

risk group
Our Method (ReACt) PRSice2

est. group mean est. group sd real group mean real group sd

1.15
cases 0.0009 0.0078 0.0009 0.0076

controls -0.0037 0.0078 -0.0036 0.0081

1.2
cases 0.0016 0.0060 0.0016 0.0059

controls -0.0065 0.0060 -0.0064 0.0061

1.3
cases 0.0021 0.0041 0.0021 0.0040

controls -0.0125 0.0041 -0.0125 0.0040
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Table 3.10: Using our method to perform PRS comparisons across eight neuropsychi-
atric disorders. We further applied our method to the summary statistics of eight neuropsy-
chiatric disorders from PGC (see table 3.6 for details). For each disorder, we used PGC GWAS
summary statistics to compute the group mean and standard deviation of PRS for the other seven
disorders. All group PRS were estimated using independent SNPs with p < 10−5in the base sum-
mary statistics. We report p-values from a t-test comparing the group mean PRS of cases against
controls in the target study, and cells with deeper blue colors correspond to lower p-values. The
threshold of significance under multiple testing correction is p < 8.93 · 10−4.

Target
OCD TS ED ASD BIP ADHD SCZ MD

B
a
se

OCD - 5.71·10−1 1.26·10−1 7.83·10−2 9.51·10−2 2.64·10−1 4.44·10−1 6.81·10−1

TS 5.17·10−2 - 2.31·10−1 7.78·10−1 3.05·10−1 3.57·10−2 4.50·10−1 5.40·10−3

ED 2.95·10−1 3.31·10−1 - 4.83·10−1 4.29·10−4 6.28·10−4 1.89·10−2 3.27·10−3

ASD 9.95·10−1 7.40·10−3 9.00·10−1 - 1.77·10−1 8.12·10−4 1.17·10−1 3.98·10−13

BIP 3.54·10−3 5.82·10−1 9.84·10−13 4.03·10−7 - 1.29·10−13 1.08·10−79 1.15·10−19

ADHD 2.15·10−1 1.08·10−8 2.32·10−3 2.62·10−45 9.58 ·10−2 - 1.37·10−10 2.88·10−52

SZC 3.23·10−7 9.36·10−1 4.88·10−1 1.28·10−24 1.68·10−133 2.11·10−1 - 7.36·10−94

MD 5.09·10−2 4.48·10−1 3.43·10−1 2.08·10−26 5.35·10−9 6.05·10−21 6.10·10−45 -
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Table 3.11: Performance of cc-GWAS as implemented in ReACt with different sample
sizes. Three types of SNPs have been simulated: (i) trait differential SNPs; (ii) null SNPs; and
(iii) stress SNPs. . Under each condition, we simulated individual level genotype with these three
types of SNPs for N cases and N controls in each study (N = 2, 000 and N = 5, 000) and generated
GWAS summary statistics for each study. and generated GWAS summary statistics for each study
respectively. We subsequently used the summary statistics to run cc-GWAS in ReACt. We reported
the power for detecting type (i) SNPs, and false positive rates for picking up type (ii) SNPs (Type
I err.(ii)) and type (iii) SNPs (Type I err.(iii)) under a significance threshold p < 5 · 10−5.

risk Fst
2,000 cases, 2,000 controls 5,000 cases, 5,000 controls

Power Type I err.(ii) Type I err.(iii) Power Type I err.(ii) Type I err.(iii)

1.15
0.01 3.67·10−2 2.65·10−5 3.16·10−4 3.51·10−1 1.84·10−5 1.87·10−4

0.05 3.49·10−2 9.80·10−5 5.26·10−4 3.23·10−1 6.33·10−5 3.58·10−4

0.1 2.81·10−2 2.43·10−4 5.02·10−4 2.85·10−1 1.94·10−4 5.21·10−4

1.2
0.01 1.54·10−1 4.69·10−5 2.47·10−4 7.16·10−1 3.47·10−5 2.03·10−4

0.05 1.34·10−1 1.04·10−4 5.14·10−4 6.62·10−1 8.57·10−5 3.77·10−4

0.1 1.23·10−1 2.33·10−4 5.83·10−4 6.03·10−1 1.65·10−4 5.27·10−4

1.3
0.01 5.85·10−1 1.63·10−5 1.57·10−4 9.68·10−1 1.43·10−5 5.46·10−4

0.05 5.41·10−1 5.31·10−5 4.45·10−4 9.21·10−1 7.35·10−5 5.79·10−4

0.1 4.85·10−1 2.63·10−4 6.18·10−4 8.71·10−1 1.67·10−4 6.84·10−4
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Table 3.12: Comparison of genomic regions showing significant divergent genetic effects
between BD and SCZ as detected by ReACt and ccGWAS by Peyrot et al [194].
We carried out cc-GWAS with ReACt using summary statistics of BD and SCZ and compared our
results with the results from Peyrot et al. Only SNPs that are analyzed in both studies are included
for the comparison. Genomic regions that are identified to show significant divergent genetic effects
between BD and SCZ in either result are shown. CHR, Start and End are chromosomal and base-
pair ranges for the region; SNP, BP and p-value (ordinary least squares p-values, POLS , for ccGWAS
by Peyrot et al.) are properties of the leading SNP (if the regions is reported genomewide significant)
or statistics for the matching SNP (if the region is not reported as genomewide significant, but is
detected by the other method); p-values in red are leading SNPs that are reported genomewide
significant by each method; Regions with CHR, Start and End in red are two loci that were also
identified by the case-case GWAS using individual level data [236].

Region Our method (ReACt) ccGWAS

CHR Start End SNP BP p-value SNP BP p-value(POLS)

1 50826176 51118253 rs6682989 50826176 3.08 ·10−8 - - 6.10 ·10−7

1 98325796 98559093 rs2660304 98512127 4.20 ·10−9 - - 2.20 ·10−9

1 173867252 174643725 rs6701877 174015259 4.02 ·10−8 - - 5.80 ·10−10

2 27498734 27752296 rs113954968 27696207 2.93·10−8 - - 1.10·10−6

3 62563175 62583180 rs1993149 62572944 2.10·10−8 - - 8.10·10−7

3 135807609 136597120 rs9866687 94828190 6.55·10−7 - - 4.00·10−8

3 135807609 136597120 rs7372313 135872958 1.02·10−8 rs1278493 135814009 1.20·10−8

7 28453906 28484317 rs2192303 28478332 3.57·10−8 rs7790864 28478625 2.20·10−8

8 27406353 27453579 rs11778040 27419807 5.39·10−7 - - 4.80·10−8

9 23345347 23362311 rs12554512 23352293 3.58·10−10 - - 4.10·10−8

9 36894685 36963222 rs2039142 36963222 1.95·10−8 - - 2.10·10−6

10 353306 418676 rs35198327 354301 7.69·10−9 - - 1.10·10−7

12 108596308 108633649 rs3764002 108618630 3.28·10−9 - - 6.30·10−11

12 110294902 111212762 rs28637922 110819139 5.11·10−10 - - 8.10·10−12

16 79386766 79463881 rs6564668 79457393 1.86·10−8 rs9319540 79458022 3.70·10−8

19 1812521 1866427 rs1054972 1852582 6.43·10−8 - - 1.80·10−8

20 47511792 47938833 rs6095394 47625544 1.43·10−9 rs11696888 47753265 1.40·10−9
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Table 3.13: Average running time in seconds for fixed effect meta-analysis for ReACt,
METAL, and ASSET. All experiments were performed at Purdue’s Snyder cluster on a dedicated
node which features a Haswell processor running at 2.6 GHz with 512 GB of RAM and a 64-bit
CentOS Linux 7 operating system. We report average running time in seconds over ten iterations
using ReACt, METAL, and ASSET. In the case of METAL we evaluated the performance of the latest
release in GitHub [308]. In each iteration, two or four sets of summary statistics (for 100,000
SNPs) were meta-analyzed. Recall that all methods scale as a function of the number of SNPs and
is independent of the number of samples, since only summary statistics are used.

ReACt METAL ASSET

2 input studies 2.2s 1.8s 696s
4 input studies 3.1s 3.3s 3715s
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Table 3.14: Performance of fixed-effect meta-analysis with two input studies with uneven
case/control sample sizes under different conditions. We compare power and type I error
rate (T1E) of our method meta-analyzing two studies with uneven case/control sample sizes vs.
ASSET/METAL for a significance threshold p < 5 · 10−5. Study one contains 1500 cases and 500
controls, and study two contains 500 cases and 1500 controls.

risk Fst
ReACt METAL/ASSET

Power T1E Power T1E

1.15
0.01 4.89E-02 4.24E-05 4.97E-02 4.65E-05
0.05 5.07E-02 4.65E-05 5.13E-02 4.95E-05
0.1 4.35E-02 4.04E-05 4.37E-02 4.55E-05

1.2
0.01 1.79E-01 4.75E-05 1.80E-01 5.05E-05
0.05 1.66E-01 6.36E-05 1.67E-01 6.77E-05
0.1 1.64E-01 4.44E-05 1.65E-01 4.55E-05

1.3
0.01 6.28E-01 4.24E-05 6.30E-01 4.44E-05
0.05 5.99E-01 4.85E-05 6.00E-01 4.55E-05
0.1 5.63E-01 4.65E-05 5.64E-01 4.85E-05
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Table 3.15: Performance of fixed-effect meta-analysis with two input studies under
different conditions. We compare power and type I error rate (T1E) of our method meta-
analyzing two studies vs. ASSET/METAL for a significance threshold p < 5 · 10−5. METAL dev
refers to the latest release in GitHub [308]. Two variants of ReACt are tested: Exact and Est,
indicating whether the sample overlap was exactly known as part of the input or whether it was
estimated, respectively. Sample overlap indicates the number of cases and controls that were shared
between two input studies. I.e. a sample overlap equal to 100 means that there are 100 cases and
100 controls shared between two input studies. Total sample sizes for each input study, including
the shared samples, are equal to 2000 when the sample overlap is equal to zero; 2400 when the
sample overlap is equal to 100; and 4000 when the sample overlap is equal to 500. In each case,
the sample is equally split to cases and controls. Also see figure 3.1 and 3.2.

risk Fst overlap
ASSET ReACt (Exact) ReACt (Est.) METAL (dev)

Power T1E Power T1E Power T1E Power T1E

1.15

0.01
0 1.04E-01 4.95E-05 1.03E-01 4.85E-05 - - 1.04E-01 4.95E-05

100 1.13E-01 4.34E-05 1.27E-01 5.25E-05 1.30E-01 4.85E-05 1.31E-01 5.15E-05
500 1.69E-01 1.11E-05 2.79E-01 4.75E-05 2.80E-01 4.85E-05 2.80E-01 4.65E-05

0.05
0 9.66E-02 5.25E-05 9.31E-02 5.25E-05 - - 9.66E-02 5.25E-05

100 9.68E-02 3.43E-05 1.19E-01 4.14E-05 1.17E-01 4.14E-05 1.17E-01 4.65E-05
500 1.53E-01 4.04E-06 2.68E-01 3.84E-05 2.69E-01 3.74E-05 2.67E-01 3.74E-05

0.1
0 8.65E-02 4.34E-05 8.19E-02 4.04E-05 - - 8.65E-02 4.34E-05

100 7.75E-02 3.33E-05 1.05E-01 4.44E-05 1.09E-01 4.65E-05 1.08E-01 5.15E-05
500 1.24E-01 9.09E-06 2.39E-01 4.65E-05 2.42E-01 4.95E-05 2.41E-01 5.15E-05

1.2

0.01
0 3.21E-01 3.84E-05 3.18E-01 3.74E-05 - - 3.21E-01 3.84E-05

100 3.41E-01 3.54E-05 3.82E-01 4.04E-05 3.85E-01 4.04E-05 3.85E-01 4.14E-05
500 4.95E-01 7.07E-06 6.44E-01 4.04E-05 6.47E-01 4.24E-05 6.46E-01 4.14E-05

0.05
0 3.13E-01 4.24E-05 3.06E-01 3.94E-05 - - 3.13E-01 4.24E-05

100 2.96E-01 4.65E-05 3.59E-01 5.35E-05 3.66E-01 5.35E-05 3.65E-01 5.76E-05
500 4.47E-01 8.08E-06 6.09E-01 4.85E-05 6.14E-01 5.15E-05 6.11E-01 5.25E-05

0.1
0 2.83E-01 4.85E-05 2.71E-01 4.44E-05 - - 2.83E-01 4.85E-05

100 2.45E-01 4.44E-05 3.28E-01 4.34E-05 3.27E-01 4.55E-05 3.23E-01 4.55E-05
500 3.95E-01 8.08E-06 5.76E-01 4.75E-05 5.83E-01 4.85E-05 5.80E-01 4.65E-05

1.3

0.01
0 8.00E-01 3.23E-05 7.99E-01 3.23E-05 - - 8.00E-01 3.23E-05

100 6.80E-01 3.84E-05 7.36E-01 4.65E-05 7.43E-01 5.15E-05 7.42E-01 5.45E-05
500 4.90E-01 4.04E-06 6.40E-01 2.42E-05 6.98E-01 5.35E-05 6.97E-01 5.05E-05

0.05
0 7.82E-01 4.95E-05 7.77E-01 4.44E-05 - - 7.82E-01 4.95E-05

100 6.32E-01 3.94E-05 7.48E-01 4.55E-05 7.55E-01 5.25E-05 7.52E-01 5.45E-05
500 4.99E-01 1.01E-06 6.67E-01 1.31E-05 7.18E-01 4.04E-05 7.16E-01 3.64E-05

0.1
0 7.32E-01 4.95E-05 7.20E-01 4.44E-05 - - 7.32E-01 4.95E-05

100 6.01E-01 3.84E-05 7.67E-01 4.24E-05 7.71E-01 4.65E-05 7.62E-01 5.15E-05
500 5.49E-01 1.01E-06 7.30E-01 1.31E-05 7.67E-01 3.43E-05 7.63E-01 3.94E-05
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Table 3.16: Performance of fixed-effect meta-analysis with four input studies under
different conditions. We compare power and type I error rate (T1E) of our method meta-
analyzing four studies vs. ASSET/METAL for a significance threshold p < 5 · 10−5. METAL dev
refers to the latest release in GitHub [308]. Two variants of ReACt are tested: Exact and Est,
indicating whether the sample overlap was exactly known as part of the input or whether it was
estimated, respectively. Sample overlap indicates the number of cases and controls that were shared
between two input studies. I.e. a sample overlap equal to 100 means that there are 100 cases and
100 controls shared between two input studies. Total sample sizes for each input study, including
the shared samples, are equal to 2000 when the sample overlap is equal to zero; 2400 when the
sample overlap is equal to 100; and 4000 when the sample overlap is equal to 500. In each case,
the sample is equally split to cases and controls.

risk Fst overlap
ASSET ReACt (Exact) ReACt (Est.) METAL (dev)

Power T1E Power T1E Power T1E Power T1E

1.15

0.01
0 4.31E-01 4.75E-05 4.31E-01 4.75E-05 - - 4.31E-01 4.75E-05

100 3.19E-01 2.93E-05 4.00E-01 5.15E-05 4.03E-01 5.45E-05 4.03E-01 4.85E-05
500 2.36E-01 1.01E-06 5.20E-01 4.85E-05 5.27E-01 5.25E-05 5.23E-01 4.85E-05

0.05
0 4.13E-01 4.34E-05 4.08E-01 4.24E-05 - - 4.13E-01 4.34E-05

100 2.49E-01 3.33E-05 3.83E-01 5.25E-05 3.85E-01 5.66E-05 3.78E-01 5.56E-05
500 2.06E-01 2.02E-06 5.03E-01 5.56E-05 5.14E-01 6.46E-05 5.04E-01 5.25E-05

0.1
0 3.72E-01 5.35E-05 3.64E-01 4.85E-05 - - 3.72E-01 5.35E-05

100 1.90E-01 2.42E-05 3.46E-01 4.55E-05 3.53E-01 5.66E-05 3.41E-01 5.45E-05
500 1.60E-01 2.02E-06 4.56E-01 5.15E-05 4.66E-01 5.45E-05 4.61E-01 5.35E-05

1.2

0.01
0 7.87E-01 5.15E-05 7.85E-01 5.15E-05 - - 7.87E-01 5.15E-05

100 6.48E-01 4.14E-05 7.59E-01 4.85E-05 7.64E-01 5.45E-05 7.59E-01 4.95E-05
500 6.14E-01 0.00E+00 8.43E-01 5.05E-05 8.49E-01 5.96E-05 8.48E-01 5.25E-05

0.05
0 7.61E-01 3.43E-05 7.57E-01 3.23E-05 - - 7.61E-01 3.43E-05

100 5.26E-01 1.82E-05 7.32E-01 3.54E-05 7.41E-01 4.85E-05 7.33E-01 4.65E-05
500 5.36E-01 1.01E-06 8.19E-01 2.93E-05 8.28E-01 3.54E-05 8.23E-01 3.23E-05

0.1
0 7.21E-01 5.15E-05 7.11E-01 5.15E-05 - - 7.21E-01 5.15E-05

100 4.22E-01 3.43E-05 6.88E-01 5.35E-05 6.86E-01 5.15E-05 6.76E-01 6.16E-05
500 4.65E-01 1.01E-06 7.86E-01 4.65E-05 7.91E-01 5.25E-05 7.88E-01 5.15E-05

1.3

0.01
0 9.83E-01 5.45E-05 9.83E-01 5.45E-05 - - 9.83E-01 5.45E-05

100 8.59E-01 2.02E-05 9.45E-01 3.23E-05 9.54E-01 4.95E-05 9.50E-01 4.85E-05
500 6.30E-01 0.00E+00 8.53E-01 5.05E-06 9.12E-01 6.46E-05 9.10E-01 6.87E-05

0.05
0 9.71E-01 4.65E-05 9.70E-01 4.44E-05 - - 9.71E-01 4.65E-05

100 7.68E-01 2.22E-05 9.49E-01 3.23E-05 9.55E-01 5.15E-05 9.50E-01 4.85E-05
500 6.10E-01 0.00E+00 8.73E-01 1.01E-05 9.23E-01 7.07E-05 9.21E-01 6.67E-05

0.1
0 9.54E-01 5.66E-05 9.52E-01 4.65E-05 - - 9.54E-01 5.66E-05

100 6.91E-01 2.32E-05 9.45E-01 4.04E-05 9.47E-01 4.65E-05 9.40E-01 5.15E-05
500 6.21E-01 0.00E+00 8.93E-01 1.01E-05 9.27E-01 4.04E-05 9.24E-01 4.55E-05

116



Table 3.17: Performance of sample overlap correction for estimating PRS using our
method. Assuming 100 cases and 100 controls shared between base and target studies, we com-
pared the corrected PRS statistics estimated using our method with the real statistics of individual
level PRS obtained using PRSice2. Comparison was carried out under various levels of stratifica-
tion between base and target population (Fst = 0, 0.05, and 0.1) and p-value thresholds (denoted
by P -thres in the table) for SNP selection. For both methods, mean PRS represents the estimated
group mean PRS for cases and controls; and p-val are the t-test p-values comparing the resulting
PRS distribution in cases and controls. For PRSice2, we computed these statistics for all the
samples in the target population, including the samples shared with the base population (denoted
by All samples), as well as only for samples that are present exclusively in the target population
(denoted by Non-overlapping Samples).

Fst P -thres trait
Our method (ReACt) PRSice2

Corrected statistics All samples Non-overlapping Samples
mean PRS p-val mean PRS p-val mean PRS p-val

0a

0.05
cases 0.0003

4.07E-05
0.0012

1.09E-54
0.0003

3.59E-07
controls 0.0000 -0.0009 0.0000

0.005
cases 0.0034

1.28E-04
0.0050

6.02E-39
0.0034

1.20E-04
controls 0.0024 0.0008 0.0025

5 · 10−4 cases -0.0030
2.44E-01

-0.0008
8.96E-12

-0.0028
1.47E-01

controls -0.0041 -0.0063 -0.0040

5 · 10−5 cases 0.0441
7.52E-01

0.0471
2.31E-02

0.0449
5.46E-01

controls 0.0450 0.0419 0.0464

0.05b

0.05
cases 0.0000

5.57E-54
0.0002

3.55E-111
0.0001

8.64E-88
controls -0.0005 -0.0007 -0.0006

0.005
cases 0.0001

4.21E-62
0.0001

5.56E-110
0.0000

3.30E-91
controls -0.0019 -0.0025 -0.0024

5 · 10−4 cases -0.0063
1.51E-50

-0.0067
1.72E-77

-0.0069
3.61E-70

controls -0.0112 -0.0124 -0.0124

5 · 10−5 cases -0.0234
4.88E-21

-0.0229
3.21E-32

-0.0232
3.04E-29

controls -0.0298 -0.0304 -0.0305

0.1c

0.05
cases 0.0001

7.32E-35
0.0004

8.05E-90
0.0004

7.52E-68
controls -0.0003 -0.0004 -0.0003

0.005
cases 0.0004

2.14E-52
0.0007

8.82E-98
0.0006

3.03E-79
controls -0.0014 -0.0017 -0.0015

5 · 10−4 cases -0.0048
3.74E-41

-0.0048
6.51E-60

-0.0047
1.32E-52

controls -0.0091 -0.0100 -0.0096

5 · 10−5 cases 0.0109
6.04E-15

0.0087
7.62E-22

0.0088
2.47E-19

controls 0.0054 0.0021 0.0025

a tested with 550 cases and 550 controls from base and target studies respectively

b tested with 1,200 cases and 1,200 controls from base and target studies respectively

c tested with 1,200 cases and 1,200 controls from base and target studies respectively
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Table 3.18: Using ReACt to run cc-GWAS cross eight neuropsychiatric disorders. We
applied our method for cc-GWAS to the summary statistics of eight neuropsychiatric disorders
from PGC. Each spreadsheet reports the genomewide significant trait differential regions for a pair
of disorders analyzed. For each genomic region, statistics and annotation for the leading SNP are
reported.

This table is large and can be viewed through this link.
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3.9 Figures

(a) Power comparison for fixed-effects meta-analysis between
our method and ASSET/METAL assuming no sample overlap
between two studies (1,000 cases and 1,000 controls in each
study).

(b) Power comparison for fixed-effects meta-analysis between
our method and ASSET/METAL assuming 100 control and
100 case overlap (out of 1,200 cases and 1,200 controls in each
study) between two studies.

(c) Power comparison for fixed-effects meta-analysis between
our method and ASSET/METAL assuming 500 control and
500 case overlap (out of 2,000 cases and 2,000 controls in each
study) between two studies.

Figure 3.1: Power of fixed-effect meta-analysis with two input studies under different conditions. We compare
the power of our method vs. ASSET/METAL for a significance threshold p < 5 · 10−5. METAL dev refers to the latest release
in GitHub [308]. Two variants of ReACt are tested: Exact and Est, indicating whether the sample overlap was exactly known
as part of the input or whether it was estimated from the Z-scores [308], respectively. Sample overlap indicates the number
of cases and controls that were shared between two input studies, ie., a sample overlap equal to 100 means that that there are
100 cases and 100 controls shared between two input studies. Total sample sizes for each input study, including the shared
samples, are equal to 2,000 when the sample overlap is equal to zero; 2,400 when the sample overlap is equal to 100; and 4,000
when the sample overlap is equal to 500. In each case, the sample is equally split to cases and controls.
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(a) Type I error comparison for fixed-effects meta-analysis be-
tween our method and ASSET/METAL assuming no sample
overlap between two studies (1,000 cases and 1,000 controls in
each study).

(b) Type I error comparison for fixed-effects meta-analysis be-
tween our method and ASSET/METAL assuming 100 controls
and 100 cases overlap (out of 1,200 cases and 1,200 controls in
each study) between two studies.

(c) Type I error comparison for fixed-effects meta-analysis be-
tween our method and ASSET/METAL assuming 500 controls
and 500 cases overlap (out of 2,000 cases and 2,000 controls in
each study) between two studies.

Figure 3.2: Type I error rate of fixed-effect meta-analysis with two input studies under different conditions.
We compared the type I error rate of our method vs. ASSET/METAL for a significance threshold p < 5 · 10−5. METAL dev
refers to the latest release in GitHub [308]. Two variants of ReACt are tested: Exact and Est, indicating whether the sample
overlap was exactly known as part of the input or whether it was estimated from the Z-scores [308], respectively. Sample
overlap indicates the number of cases and controls that were shared between two input studies, ie., a sample overlap equal to
100 means that there are 100 cases and 100 controls shared between two input studies. Total sample sizes for each input study,
including the shared samples, are equal to 2,000 when the sample overlap is equal to zero; 2,400 when the sample overlap is
equal to 100; and 4,000 when the sample overlap is equal to 500. In each case, the sample is equally split to cases and controls.
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4 CONCLUSION

For almost two decades, GWAS has served as one of the most effective tools for uncovering common

genetic risk factors underlying complex psychiatric disorders, and the trend is not slowing down.

With increased availability of genetic data and massive executions of GWAS, it is time to dig deeper

into the biological significance and clinical utility beyond those association results. In this disserta-

tion, we presented in details two ”post-GWAS” related projects. One of them focused on unveiling

disease mechanism implied by GWAS results, whereas the other is introduced a promising frame-

work that can facilitate various future GWAS summary statistics-based analysis. We demonstrated

in this dissertation how much we can already accomplish through using only summary statistics of

GWAS, and the potential to achieve even more.

4.1 Summary

In section 2, motivated by high comorbidity rates and symptomatic similarities, we investigated the

shared and distinct genetic basis across four common childhood-onset neuropsychiatric disorders.

Through analyzing genetic correlation and disease architectures, we found genetic risk factors shared

across ADHD, ASD and TS, as well as in between OCD and TS. We subsequently identified those

shared genetic factors through systematic meta-analyses and evaluation of posterior probability of

association (m − value) at SNP, gene and tissue specificity three different levels. Moreover, we

looked into the differences in genetic components between these two groups of disorders through

conditional analysis. As a results, for each group of disorders, we successfully detected multiple

novel genomic regions and genes with pleiotropic effects. Furthermore, our results implied the

involvement of HPA-axis, a pathway serving as human central stress response system.

Inspired by the previous project, in section 3, we proposed a novel framework ReACt that can

convert the summary statistics of GWAS into the form of SNP allelic frequencies by case control

groups. The motivation for this conversion is that in population genetics, many statistics, if not all

of them, can be expressed as functions of population SNP allelic/genotypic frequencies, whereas not

as many can be written as a function of SNP GWAS statistics in a straightforward manner. To prove

the utility of this framework, we put forward three applications: including meta-analysis, case-case

GWAS and the one we named group PRS, which was a novel method that could not be achieved
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before the birth of ReACt. We evaluated the performance of all methods on both synthetic and

real GWAS data, and made the implementation publicly available for future improvements.

4.2 Future work

The objective of this dissertation is to contribute to better understanding and utilizing GWAS

results for complex psychiatric disorders. We hope that our work can serve as a stepping stone for

future researchers going along a similar path.

Our cross-disorder analysis revealed the genetic relationship across TS, ADHD, ASD, and OCD. It

will be interesting to further connect those genetic commonalities and distinctions in genetic com-

ponents with symptom measurements. Instead of categorical diagnosis, symptom-based analyses

could be a direction to consider for a refined genetic etiology mapping.

The framework ReACt we proposed is simple in theory, which is part of its advantages and beauty.

Moreover, such simplicity also leaves space for further expansion. In this dissertation, we only put

forward three ready-to-use, external-support-free applications of this framework, whereas we be-

lieve there are numerous more awaiting. A few to be considered includes haplotype-based analysis

by integrating LD reference, gene-based analysis and enrichment analysis by incorporating gene

annotations and genesets, etc. We look forward to seeing all kinds of creative applications built

upon ReACt.

122



REFERENCES

[1] Jonathan Rees. “Complex disease and the new clinical sciences”. In: Science 296.5568 (2002),
pp. 698–700.

[2] Anne V Buchanan, Kenneth M Weiss, and Stephanie M Fullerton. “Dissecting complex
disease: the quest for the Philosopher’s Stone?” In: International Journal of Epidemiology
35.3 (2006), pp. 562–571.

[3] Greg Gibson. “Decanalization and the origin of complex disease”. In: Nature Reviews Ge-
netics 10.2 (2009), pp. 134–140.

[4] Stylianos E Antonarakis and Jacques S Beckmann. “Mendelian disorders deserve more at-
tention”. In: Nature Reviews Genetics 7.4 (2006), pp. 277–282.

[5] David Botstein and Neil Risch. “Discovering genotypes underlying human phenotypes: past
successes for mendelian disease, future approaches for complex disease”. In: Nature genetics
33.3 (2003), pp. 228–237.

[6] Peter M Visscher, William G Hill, and Naomi R Wray. “Heritability in the genomics
era—concepts and misconceptions”. In: Nature reviews genetics 9.4 (2008), pp. 255–266.

[7] E Bleuler. “Mendelianism in Psychoses, Especially in Schizophrenia”. In: The Journal of
Nervous and Mental Disease 49.4 (1919), pp. 362–366.

[8] Bart ML Baselmans et al. “Risk in relatives, heritability, SNP-based heritability, and genetic
correlations in psychiatric disorders: A review”. In: Biological Psychiatry 89.1 (2021), pp. 11–
19.

[9] E Pettersson et al. “Genetic influences on eight psychiatric disorders based on family data
of 4 408 646 full and half-siblings, and genetic data of 333 748 cases and controls”. In:
Psychological medicine 49.7 (2019), pp. 1166–1173.

[10] Henrik Larsson et al. “The heritability of clinically diagnosed attention deficit hyperactivity
disorder across the lifespan”. In: Psychological medicine 44.10 (2014), pp. 2223–2229.

[11] Beata Tick et al. “Heritability of autism spectrum disorders: a meta-analysis of twin studies”.
In: Journal of Child Psychology and Psychiatry 57.5 (2016), pp. 585–595.

[12] Sven Sandin et al. “The heritability of autism spectrum disorder”. In: Jama 318.12 (2017),
pp. 1182–1184.

[13] Patrick F Sullivan, Michael C Neale, and Kenneth S Kendler. “Genetic epidemiology of
major depression: review and meta-analysis”. In: American journal of psychiatry 157.10
(2000), pp. 1552–1562.

[14] Francis J McMahon. Population-based estimates of heritability shed new light on clinical
features of major depression. 2018.

[15] Spencer L James et al. “Global, regional, and national incidence, prevalence, and years lived
with disability for 354 diseases and injuries for 195 countries and territories, 1990–2017: a
systematic analysis for the Global Burden of Disease Study 2017”. In: The Lancet 392.10159
(2018), pp. 1789–1858.

[16] Patrick F Sullivan and Daniel H Geschwind. “Defining the genetic, genomic, cellular, and
diagnostic architectures of psychiatric disorders”. In: Cell 177.1 (2019), pp. 162–183.

[17] Ann-Christine Syvänen. “Accessing genetic variation: genotyping single nucleotide polymor-
phisms”. In: Nature Reviews Genetics 2.12 (2001), pp. 930–942.

123



[18] Barkur S Shastry. “SNPs: impact on gene function and phenotype”. In: Single Nucleotide
Polymorphisms (2009), pp. 3–22.

[19] Ian M Campbell et al. “Multiallelic positions in the human genome: challenges for genetic
analyses”. In: Human mutation 37.3 (2016), pp. 231–234.

[20] Teri A Manolio et al. “Finding the missing heritability of complex diseases”. In: Nature
461.7265 (2009), pp. 747–753.
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[204] Bjarni J Vilhjálmsson et al. “Modeling linkage disequilibrium increases accuracy of polygenic
risk scores”. In: The american journal of human genetics 97.4 (2015), pp. 576–592.

[205] Naomi R Wray et al. “Pitfalls of predicting complex traits from SNPs”. In: Nature Reviews
Genetics 14.7 (2013), pp. 507–515.

[206] Ulrike Von Luxburg and Bernhard Schölkopf. “Statistical learning theory: Models, concepts,
and results”. In: Handbook of the History of Logic. Vol. 10. Elsevier, 2011, pp. 651–706.

[207] Laramie Duncan et al. “Analysis of polygenic risk score usage and performance in diverse
human populations”. In: Nature communications 10.1 (2019), pp. 1–9.

[208] Tiffany Amariuta et al. “Improving the trans-ancestry portability of polygenic risk scores by
prioritizing variants in predicted cell-type-specific regulatory elements”. In: Nature genetics
52.12 (2020), pp. 1346–1354.

[209] Carla Márquez-Luna et al. “Multiethnic polygenic risk scores improve risk prediction in
diverse populations”. In: Genetic epidemiology 41.8 (2017), pp. 811–823.

[210] Marc A Coram et al. “Leveraging multi-ethnic evidence for risk assessment of quantitative
traits in minority populations”. In: The American Journal of Human Genetics 101.2 (2017),
pp. 218–226.

[211] Omer Weissbrod et al. “Leveraging fine-mapping and non-European training data to improve
trans-ethnic polygenic risk scores”. In: medRxiv (2021).

[212] Malgorzata Maciukiewicz et al. “GWAS-based machine learning approach to predict dulox-
etine response in major depressive disorder”. In: Journal of psychiatric research 99 (2018),
pp. 62–68.

[213] Vincent Botta et al. “Exploiting SNP correlations within random forest for genome-wide
association studies”. In: PloS one 9.4 (2014), e93379.

[214] Urko M Marigorta et al. “Transcriptional risk scores link GWAS to eQTLs and predict
complications in Crohn’s disease”. In: Nature genetics 49.10 (2017), pp. 1517–1521.

[215] Robert M Maier et al. “Improving genetic prediction by leveraging genetic correlations
among human diseases and traits”. In: Nature communications 9.1 (2018), pp. 1–17.

134



[216] Danielle M Dick et al. “Post-GWAS in psychiatric genetics: a developmental perspective on
the “other” next steps”. In: Genes, Brain and Behavior 17.3 (2018), e12447.

[217] Laramie E Duncan, Michael Ostacher, and Jacob Ballon. “How genome-wide association
studies (GWAS) made traditional candidate gene studies obsolete”. In: Neuropsychophar-
macology 44.9 (2019), pp. 1518–1523.

[218] Eva C Verbeek et al. “A fine-mapping study of 7 top scoring genes from a GWAS for major
depressive disorder”. In: PLoS One 7.5 (2012), e37384.

[219] Hywel J Williams et al. “Fine mapping of ZNF804A and genome-wide significant evidence
for its involvement in schizophrenia and bipolar disorder”. In: Molecular psychiatry 16.4
(2011), pp. 429–441.

[220] JP Lepine et al. “Prevalence and comorbidity of psychiatric disorders in the French general
population”. In: L’encephale 31.2 (2005), pp. 182–194.

[221] Matthew E Hirschtritt et al. “Lifetime prevalence, age of risk, and genetic relationships of
comorbid psychiatric disorders in Tourette syndrome”. In: JAMA psychiatry 72.4 (2015),
pp. 325–333.

[222] Steven R Pliszka. “Comorbid psychiatric disorders in children with ADHD.” In: Attention-
deficit hyperactivity disorder: A handbook for diagnosis and treatment (2015), pp. 140–168.

[223] Joanne L Doherty and Michael J Owen. “Genomic insights into the overlap between psy-
chiatric disorders: implications for research and clinical practice”. In: Genome medicine 6.4
(2014), pp. 1–13.

[224] Jie Huang et al. “Cross-disorder genomewide analysis of schizophrenia, bipolar disorder, and
depression”. In: American Journal of Psychiatry 167.10 (2010), pp. 1254–1263.

[225] Nanda NJ Rommelse et al. “Shared heritability of attention-deficit/hyperactivity disorder
and autism spectrum disorder”. In: European child & adolescent psychiatry 19.3 (2010),
pp. 281–295.

[226] Marco A Grados. “The genetics of obsessive-compulsive disorder and Tourette syndrome:
an epidemiological and pathway-based approach for gene discovery”. In: Journal of the
American Academy of Child & Adolescent Psychiatry 49.8 (2010), pp. 810–819.

[227] Cross-Disorder Group of the Psychiatric Genomics Consortium et al. “Identification of risk
loci with shared effects on five major psychiatric disorders: a genome-wide analysis”. In: The
Lancet 381.9875 (2013), pp. 1371–1379.

[228] Phil H Lee et al. “Genomic relationships, novel loci, and pleiotropic mechanisms across eight
psychiatric disorders”. In: Cell 179.7 (2019), pp. 1469–1482.

[229] International Schizophrenia Consortium. “Common polygenic variation contributes to risk
of schizophrenia that overlaps with bipolar disorder”. In: Nature 460.7256 (2009), p. 748.

[230] Rachel L Kember et al. “Polygenic risk of psychiatric disorders exhibits cross-trait associ-
ations in electronic health record data from european ancestry individuals”. In: Biological
Psychiatry 89.3 (2021), pp. 236–245.

[231] Eva Krapohl et al. “Phenome-wide analysis of genome-wide polygenic scores”. In: Molecular
psychiatry 21.9 (2016), pp. 1188–1193.

[232] Beate Leppert et al. “A cross-disorder PRS-pheWAS of 5 major psychiatric disorders in UK
Biobank”. In: PLoS genetics 16.5 (2020), e1008185.

135



[233] Fernando Pires Hartwig et al. “Body mass index and psychiatric disorders: a Mendelian
randomization study”. In: Scientific reports 6.1 (2016), pp. 1–11.

[234] Xue Gao et al. “The bidirectional causal relationships of insomnia with five major psychiatric
disorders: a Mendelian randomization study”. In: European Psychiatry 60 (2019), pp. 79–85.

[235] Enda M Byrne et al. “Conditional GWAS analysis to identify disorder-specific SNPs for
psychiatric disorders”. In: Molecular psychiatry (2020), pp. 1–12.

[236] Douglas M Ruderfer et al. “Genomic dissection of bipolar disorder and schizophrenia, in-
cluding 28 subphenotypes”. In: Cell 173.7 (2018), pp. 1705–1715.

[237] Iordanis Karagiannidis et al. “The genetics of Gilles de la Tourette syndrome: a common
aetiological basis with comorbid disorders?” In: Current Behavioral Neuroscience Reports
3.3 (2016), pp. 218–231.

[238] Elena Cravedi et al. “Tourette syndrome and other neurodevelopmental disorders: a compre-
hensive review”. In: Child and adolescent psychiatry and mental health 11.1 (2017), pp. 1–
12.

[239] Peristera Paschou et al. “Genetic susceptibility and neurotransmitters in Tourette syn-
drome”. In: International review of neurobiology 112 (2013), pp. 155–177.

[240] Heidi A Browne et al. “Genetics of obsessive-compulsive disorder and related disorders”. In:
Psychiatric Clinics 37.3 (2014), pp. 319–335.

[241] Jacob AS Vorstman et al. “Autism genetics: opportunities and challenges for clinical trans-
lation”. In: Nature Reviews Genetics 18.6 (2017), pp. 362–376.

[242] Paul D Arnold et al. “Revealing the complex genetic architecture of obsessive-compulsive
disorder using meta-analysis”. In: Molecular psychiatry 23.5 (2018), pp. 1181–1181.

[243] Verneri Anttila et al. “Analysis of shared heritability in common disorders of the brain”. In:
Science 360.6395 (2018).

[244] Mark J Taylor et al. “Association of genetic risk factors for psychiatric disorders and traits
of these disorders in a Swedish population twin sample”. In: JAMA psychiatry 76.3 (2019),
pp. 280–289.

[245] Mohamed Abdulkadir et al. “Investigation of previously implicated genetic variants in chronic
tic disorders: a transmission disequilibrium test approach”. In: European archives of psychi-
atry and clinical neuroscience 268.3 (2018), pp. 301–316.

[246] S Hong Lee et al. “Genetic relationship between five psychiatric disorders estimated from
genome-wide SNPs”. In: Nature genetics 45.9 (2013), pp. 984–995.

[247] S Evelyn Stewart et al. “Genome-wide association study of obsessive-compulsive disorder”.
In: Molecular psychiatry 18.7 (2013), pp. 788–798.

[248] Manuel Mattheisen et al. “Genome-wide association study in obsessive-compulsive disorder:
results from the OCGAS”. In: Molecular psychiatry 20.3 (2015), pp. 337–344.

[249] Samsiddhi Bhattacharjee et al. “A subset-based approach improves power and interpretation
for the combined analysis of genetic association studies of heterogeneous traits”. In: The
American Journal of Human Genetics 90.5 (2012), pp. 821–835.

[250] Dan-Yu Lin and Patrick F Sullivan. “Meta-analysis of genome-wide association studies with
overlapping subjects”. In: The American Journal of Human Genetics 85.6 (2009), pp. 862–
872.

136



[251] Christiaan A de Leeuw et al. “MAGMA: generalized gene-set analysis of GWAS data”. In:
PLoS computational biology 11.4 (2015), e1004219.

[252] Kyoko Watanabe et al. “Functional mapping and annotation of genetic associations with
FUMA”. In: Nature communications 8.1 (2017), pp. 1–11.

[253] Kai Wang, Mingyao Li, and Hakon Hakonarson. “ANNOVAR: functional annotation of
genetic variants from high-throughput sequencing data”. In: Nucleic acids research 38.16
(2010), e164–e164.

[254] Prateek Kumar, Steven Henikoff, and Pauline C Ng. “Predicting the effects of coding non-
synonymous variants on protein function using the SIFT algorithm”. In: Nature protocols
4.7 (2009), pp. 1073–1081.

[255] Ivan Adzhubei, Daniel M Jordan, and Shamil R Sunyaev. “Predicting functional effect of
human missense mutations using PolyPhen-2”. In: Current protocols in human genetics 76.1
(2013), pp. 7–20.

[256] Randall J Pruim et al. “LocusZoom: regional visualization of genome-wide association scan
results”. In: Bioinformatics 26.18 (2010), pp. 2336–2337.

[257] Irene Papatheodorou et al. “Expression Atlas: gene and protein expression across multiple
studies and organisms”. In: Nucleic acids research 46.D1 (2018), pp. D246–D251.

[258] Guangchuang Yu et al. “clusterProfiler: an R package for comparing biological themes among
gene clusters”. In: Omics: a journal of integrative biology 16.5 (2012), pp. 284–287.

[259] Marc Carlson. org.Hs.eg.db. 2021. url: https://bioconductor.org/packages/release/
data/annotation/manuals/org.Hs.eg.db/man/org.Hs.eg.db.pdf.

[260] Elizabeth I Boyle et al. “GO:: TermFinder—open source software for accessing Gene Ontol-
ogy information and finding significantly enriched Gene Ontology terms associated with a
list of genes”. In: Bioinformatics 20.18 (2004), pp. 3710–3715.

[261] Ting Qi et al. “Identifying gene targets for brain-related traits using transcriptomic and
methylomic data from blood”. In: Nature communications 9.1 (2018), pp. 1–12.

[262] Alexis Battle et al. “Genetic effects on gene expression across human tissues.” In: Nature
550.7675 (2017), pp. 204–213.

[263] Bernard Ng et al. “An xQTL map integrates the genetic architecture of the human brain’s
transcriptome and epigenome”. In: Nature neuroscience 20.10 (2017), pp. 1418–1426.

[264] Lifeng Dong et al. “LINC00461 promotes cell migration and invasion in breast cancer through
miR-30a-5p/integrin β3 axis”. In: Journal of cellular biochemistry 120.4 (2019), pp. 4851–
4862.

[265] Pietro Laneve et al. “A minicircuitry involving REST and CREB controls miR-9-2 expression
during human neuronal differentiation”. In: Nucleic acids research 38.20 (2010), pp. 6895–
6905.

[266] Lorenzo F Sempere et al. “Expression profiling of mammalian microRNAs uncovers a subset
of brain-expressed microRNAs with possible roles in murine and human neuronal differen-
tiation”. In: Genome biology 5.3 (2004), pp. 1–11.

[267] Sha Liu et al. “Identifying common genome-wide risk genes for major psychiatric traits”.
In: Human genetics 139.2 (2020), pp. 185–198.

137

https://bioconductor.org/packages/release/data/annotation/manuals/org.Hs.eg.db/man/org.Hs.eg.db.pdf
https://bioconductor.org/packages/release/data/annotation/manuals/org.Hs.eg.db/man/org.Hs.eg.db.pdf


[268] Thomas EWillnow, Claus M Petersen, and Anders Nykjaer. “VPS10P-domain receptors—regulators
of neuronal viability and function”. In: Nature Reviews Neuroscience 9.12 (2008), pp. 899–
909.

[269] Scott A Small and Gregory A Petsko. “Retromer in Alzheimer disease, Parkinson disease
and other neurological disorders”. In: Nature Reviews Neuroscience 16.3 (2015), pp. 126–
132.

[270] Scott A Small et al. “Model-guided microarray implicates the retromer complex in Alzheimer’s
disease”. In: Annals of Neurology: Official Journal of the American Neurological Association
and the Child Neurology Society 58.6 (2005), pp. 909–919.

[271] Tilman Breiderhoff et al. “Sortilin-related receptor SORCS3 is a postsynaptic modulator of
synaptic depression and fear extinction”. In: PloS one 8.9 (2013), e75006.

[272] Gitte B Christiansen et al. “The sorting receptor SorCS3 is a stronger regulator of glu-
tamate receptor functions compared to GABAergic mechanisms in the hippocampus”. In:
Hippocampus 27.3 (2017), pp. 235–248.

[273] Kaushik Chakrabarty et al. “Glutamatergic dysfunction in OCD”. In: Neuropsychopharma-
cology 30.9 (2005), pp. 1735–1740.

[274] Harvey S Singer, Christina Morris, and Marco Grados. “Glutamatergic modulatory therapy
for Tourette syndrome”. In: Medical hypotheses 74.5 (2010), pp. 862–867.

[275] Paromita Roy Choudhury, Sanjukta Lahiri, and Usha Rajamma. “Glutamate mediated sig-
naling in the pathophysiology of autism spectrum disorders”. In: Pharmacology Biochemistry
and Behavior 100.4 (2012), pp. 841–849.

[276] Stefanos Maltezos et al. “Glutamate/glutamine and neuronal integrity in adults with ADHD:
a proton MRS study”. In: Translational psychiatry 4.3 (2014), e373–e373.

[277] Danielle S Rudd et al. “A genome-wide CNV analysis of schizophrenia reveals a potential
role for a multiple-hit model”. In: American Journal of Medical Genetics Part B: Neuropsy-
chiatric Genetics 165.8 (2014), pp. 619–626.

[278] Sara Calderoni et al. “Basal ganglia and restricted and repetitive behaviours in Autism Spec-
trum Disorders: current status and future perspectives”. In: Epidemiology and psychiatric
sciences 23.3 (2014), pp. 235–238.

[279] Philip Shaw et al. “Mapping the development of the basal ganglia in children with attention-
deficit/hyperactivity disorder”. In: Journal of the American Academy of Child & Adolescent
Psychiatry 53.7 (2014), pp. 780–789.

[280] Ricardo Oliveira Horta Maciel et al. “Executive dysfunction, obsessive–compulsive symp-
toms, and attention deficit and hyperactivity disorder in Systemic Lupus Erythematosus:
Evidence for basal ganglia dysfunction?” In: Journal of the neurological sciences 360 (2016),
pp. 94–97.

[281] Daniele Caligiore et al. “Dysfunctions of the basal ganglia-cerebellar-thalamo-cortical system
produce motor tics in Tourette syndrome”. In: PLoS computational biology 13.3 (2017),
e1005395.

[282] Stephanie HM Van Goozen et al. “Hypothalamic-pituitary-adrenal axis and autonomic ner-
vous system activity in disruptive children and matched controls”. In: Journal of the Amer-
ican Academy of Child & Adolescent Psychiatry 39.11 (2000), pp. 1438–1445.

138



[283] Nestor L Lopez-Duran, Maria Kovacs, and Charles J George. “Hypothalamic–pituitary–
adrenal axis dysregulation in depressed children and adolescents: A meta-analysis”. In: Psy-
choneuroendocrinology 34.9 (2009), pp. 1272–1283.

[284] Benjamin L Hankin et al. “Hypothalamic–pituitary–adrenal axis dysregulation in dysphoric
children and adolescents: Cortisol reactivity to psychosocial stress from preschool through
middle adolescence”. In: Biological psychiatry 68.5 (2010), pp. 484–490.

[285] Davide Martino, Antonella Macerollo, and James F Leckman. “Neuroendocrine aspects of
Tourette syndrome”. In: International review of neurobiology 112 (2013), pp. 239–279.

[286] Corinna Reichl et al. “Hypothalamic-pituitary-adrenal axis, childhood adversity and adoles-
cent nonsuicidal self-injury”. In: Psychoneuroendocrinology 74 (2016), pp. 203–211.

[287] Constantine Tsigos and George P Chrousos. “Hypothalamic–pituitary–adrenal axis, neu-
roendocrine factors and stress”. In: Journal of psychosomatic research 53.4 (2002), pp. 865–
871.

[288] Dirk Van West, Stephan Claes, and Dirk Deboutte. “Differences in hypothalamic–pituitary–
adrenal axis functioning among children with ADHD predominantly inattentive and com-
bined types”. In: European child & adolescent psychiatry 18.9 (2009), pp. 543–553.

[289] BA Corbett et al. “Examining cortisol rhythmicity and responsivity to stress in children
with Tourette syndrome”. In: Psychoneuroendocrinology 33.6 (2008), pp. 810–820.

[290] David W Craig et al. “Assessing and managing risk when sharing aggregate genetic variant
data”. In: Nature Reviews Genetics 12.10 (2011), pp. 730–736.

[291] Bogdan Pasaniuc and Alkes L Price. “Dissecting the genetics of complex traits using sum-
mary association statistics”. In: Nature Reviews Genetics 18.2 (2017), p. 117.

[292] Ju-Hyun Park et al. “Estimation of effect size distribution from genome-wide association
studies and implications for future discoveries”. In: Nature genetics 42.7 (2010), pp. 570–
575.

[293] Yan Zhang et al. “Estimation of complex effect-size distributions using summary-level statis-
tics from genome-wide association studies across 32 complex traits”. In: Nature genetics 50.9
(2018), pp. 1318–1326.

[294] Zhiyu Yang et al. “Investigating shared genetic basis across Tourette Syndrome and comor-
bid neurodevelopmental disorders along the impulsivity-compulsivity spectrum”. In: Biolog-
ical Psychiatry (2021).

[295] Fotis Tsetsos et al. “Meta-analysis of Tourette syndrome and attention deficit hyperactivity
disorder provides support for a shared genetic basis”. In: Frontiers in neuroscience 10 (2016),
p. 340.

[296] Christian Benner et al. “FINEMAP: efficient variable selection using summary data from
genome-wide association studies”. In: Bioinformatics 32.10 (2016), pp. 1493–1501.

[297] Bogdan Pasaniuc et al. “Fast and accurate imputation of summary statistics enhances evi-
dence of functional enrichment”. In: Bioinformatics 30.20 (2014), pp. 2906–2914.

[298] Sina Rüeger, Aaron McDaid, and Zoltán Kutalik. “Evaluation and application of summary
statistic imputation to discover new height-associated loci”. In: PLoS genetics 14.5 (2018),
e1007371.

[299] Brendan K Bulik-Sullivan et al. “LD Score regression distinguishes confounding from poly-
genicity in genome-wide association studies”. In: Nature genetics 47.3 (2015), pp. 291–295.

139



[300] Brielin C Brown et al. “Transethnic genetic-correlation estimates from summary statistics”.
In: The American Journal of Human Genetics 99.1 (2016), pp. 76–88.

[301] Jie Zheng et al. “LD Hub: a centralized database and web interface to perform LD score
regression that maximizes the potential of summary level GWAS data for SNP heritability
and genetic correlation analysis”. In: Bioinformatics 33.2 (2017), pp. 272–279.

[302] Robert A Power et al. “Polygenic risk scores for schizophrenia and bipolar disorder predict
creativity”. In: Nature neuroscience 18.7 (2015), pp. 953–955.

[303] Ali Torkamani, Nathan E Wineinger, and Eric J Topol. “The personal and clinical utility of
polygenic risk scores”. In: Nature Reviews Genetics 19.9 (2018), pp. 581–590.

[304] Frank Dudbridge. “Power and predictive accuracy of polygenic risk scores”. In: PLoS Genet
9.3 (2013), e1003348.

[305] Luigi Palla and Frank Dudbridge. “A fast method that uses polygenic scores to estimate the
variance explained by genome-wide marker panels and the proportion of variants affecting
a trait”. In: The American Journal of Human Genetics 97.2 (2015), pp. 250–259.

[306] Michael P LaValley. “Logistic regression”. In: Circulation 117.18 (2008), pp. 2395–2399.

[307] David J Balding and Richard A Nichols. “A method for quantifying differentiation between
populations at multi-allelic loci and its implications for investigating identity and paternity”.
In: Genetica 96.1-2 (1995), pp. 3–12.

[308] Sebanti Sengupta. METAL, unpublished Material and Methods. https://genome.sph.
umich.edu/w/images/7/7b/METAL_sample_overlap_method_2017-11-15.pdf. 2017.
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