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ABSTRACT 

Although in conventional models of visual information processing, object identity and spatial 

information are processed separately and independently in ventral and dorsal cortical visual pathways 

respectively, some recent studies have shown that information about both object’s identity (of shape) 

and space are present in both visual pathways. However, it is still unclear whether the presence of 

identity and spatial information in both pathways have functional roles or not. In a recent study (Han 

& Sereno, in press), we have tried to answer this question through computational modeling. Our 

simulation results suggested that two separate cortical visual pathways for identity and space (1) 

actively retain information about both identity and space; (2) retain information about identity and 

space differently; (3) that this differently retained information about identity and space in the two 

pathways may be necessary to accurately and optimally recognize and localize objects. However, in 

these simulations, there was only one object in each image. In reality, there may be more than one 

object in an image. In this master’s thesis, I have tried to run visual recognition simulations with 

two objects in each image. My two object simulations suggest that (1) the two separate cortical visual 

pathways for identity and space (orientation) still retain information about both identity and space 

(orientation) when there are two objects in each image; (2) the retained information about identity 

and space (orientation) in the two pathways may be necessary to accurately and optimally recognize 

objects’ identity and orientation. These results agree with our one object simulation results. 
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INTRODUCTION 

The two-stream hypothesis of the human visual system states that there are two separate 

pathways in the brain that process different aspects of visual information. In general, the ventral 

pathway mainly processes object identity information and the dorsal pathway mainly processes spatial 

information. However, the computational properties of these pathways are still unclear. 

As reviewed by Han and Sereno (in press), "It is widely documented in neuropsychological, 

lesion, and anatomical studies that the human visual system has two distinct cortical pathways 

(Ungerleider & Mishkin, 1982; Mishkin, Ungerleider, & Macko, 1983; Felleman & Essen, 1991). 

Further, the ventral pathway primarily processes information important for object recognition 

(Logothetis & Sheinberg, 1996) while the dorsal pathway primarily processes information related 

to spatial cognition (Colby & Goldberg, 1999). However, some recent studies have challenged this 

idea (Konen & Kastner, 2008; Freud, Rosenthal, Ganel, & Avidan, 2015; Freud, Plaut, & Behrmann, 

2016; Hong, Yamins, Majaj, & DiCarlo, 2016). Some studies have found that representations 

associated with shape and location processing are present in both visual streams (Konen & Kastner, 

2008; Sereno, Lehky, & Sereno, 2020; Hong et al., 2016). However, it remains unclear whether the 

representations of shape in dorsal stream and the representations of location in ventral stream are 

non-task-related or whether they might play a functional rule in spatial cognition and object 

recognition, respectively. Some findings from fMRI and behavioral studies have suggested that spatial 

processing that operates at the level of the scene, presumably within the dorsal visual pathway, can 

contribute to shape processing (Zachariou, Klatzky, & Behrmann, 2014). Another study found that 

correlated activity between ventral and dorsal visual pathways was higher when people were looking 

at objects with impossible spatial structures compared with when they were looking at objects with 

possible structures (Freud et al., 2015), which indicated that dorsal pathway processing might help 

the brain to recognize objects with impossible structures. Furthermore, Hong et al. (2016) found 

in neural recordings that spatial information increases along the ventral stream, consistent with prior 

studies demonstrating spatial properties in later stages of the ventral stream (Nowicka & Ringo, 

2000; Lehky, Peng, McAdams, & Sereno, 2008). In addition, Hong et al. (2016) suggest that it is 

likely that the spatial information in the ventral stream does not come from the dorsal stream, in 

agreement with previous studies arguing that ventral stream spatial representations are distinct and 
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independent from dorsal stream spatial encodings (Sereno & Lehky, 2011; Sereno, Sereno, & Lehky, 

2014). 

The studies mentioned above indicate that distinct and independent representations of shape 

and space may exist in both visual pathways and might have functional roles. Therefore, in a recent 

study (Han & Sereno, in press), we attempted to tackle these questions through explicit hypothesis 

testing using computational models. In our study, we found that identity (of shape) and spatial 

information processing were present in both simulated ventral and dorsal pathways. These simulated 

ventral and dorsal pathways were trained to do straightforward object recognition and spatial cognition 

tasks, respectively. Then, we argued that the possible reason for this is that neural networks need to 

process identity (shape) and spacial information independently and differently in order to accurately 

and optimally recognize and localize objects. 

One of the limitations in our study is that there was only one object in each image, but there 

is usually more than one object to be recognized in real life. In this Master’s thesis, I conduct visual 

pathway simulations with two objects in each image and try to see whether the findings we obtained 

with one object simulations are generalizable to the multiple (two) objects simulations. 

In this thesis, I use similar methods that we used in our previous study to conduct 

simulations (see Han and Sereno (in press)). In order to model the cortical visual pathways and study 

their computational properties, feed-forward multi-layer convolutional neural networks were used to 

simulate the functions of the two visual pathways in the brain and multi-layer perceptrons were used to 

simulate the process of decoding information from recorded neural activities in the brain. All networks 

were trained using supervised learning and backpropagation. When modeling the cortical visual 

pathways, for simplicity and control, it is assumed that the all pathways have the same 

computational structure (the numbers of neurons are the same and the structures of the connections 

between neurons are the same) and receive the same visual input images. The connection weights 

between the neurons in the pathways are allowed to be modified with training. 

There are two artificial neural networks that are used to simulate the ventral pathway (brain 

identity network) and the dorsal pathway (brain orientation network). The primary goal of the brain 

identity network is to distinguish different kinds of objects, whereas the primary goal of the brain 

orientation network is to determine the orientations of objects necessary for interaction (e.g. grasp). 

Black and white images consisting of different kinds of tops, pants, and shoes (Xiao, Rasul, 

& Vollgraf, 2017) were used to randomly construct the images of objects (see Figure 1). Each 
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image of an object consisted of one top, one pant, and one shoe. Each object image was embedded 

in a black background and presented at two different locations  and four different orientations (all 

parts - top, pant, shoe - of the same object were presented with the same orientation, and altogether 

centered at the selected location). One  object is always at the bottom right, and the other object is 

always at the upper left of the image. The four possible orientations of the objects are up, down, left, 

and right. The two objects may have different orientations. 
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Figure 1. Object image locations and orientations. A. The are nine locations labeled from 1 to 9 in the 

background. The two objects are always at the upper left (location 1) and bottom right (location 9). B. 

Four possible orientations of an object image (up, down, left, and right orientations, respectively; going from 

top to bottom images and, for the first row, left to right images). Note that the alignment of parts within an 

image are not randomized, are always in the same alignment, and always constrained to the two directions 

along the long axis. C. An example of a scrambled (S) object with "down" orientation at location 1 and an 

unscrambled (US) object with "up" orientation at location 9. D. An example of a scrambled (S) object with 

"up" orientation at location 1 and an unscrambled (US) object with "right" orientation at location 9. 
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These randomly generated object images with black background were used as visual inputs. 

For each object in the image, there is 50% probability that the top, the pant, and the shoe were in 

the "unscrambled" order. That is, the unscrambled order is the normal order of how people are 

dressed with the pant, but not shoe or top, in the middle. There is 50% probability that the top, the 

pant, and the shoe were in the "scrambled" order, where the order of top, pant, and shoe does not 

follow the normal order (see Methods for additional details). There is 25% probability for each 

object to be in each possible orientations (up, down, left, right). 

Two artificial neural networks networkidentity and networkorientation were trained to do an 

identity task (whether the two objects in the image are scrambled or unscrambled), and a spatial task 

(determine the orientations of the two objects in the image), respectively. The networkidentity was used 

to model the ventral pathway, whereas networkorientation was used to model the dorsal pathway. 

These two networks are considered as the brain networks. These brain networks were used to 

simulate the functions of ventral and dorsal cortical visual pathways in the brain. Various decoder 

networks were then trained to decode different kinds of information from the later processing 

stages of these brain networks. These decoder networks were used to simulate the process of 

decoding information from the recorded neural activities in the brain. It is assumed that if the 

testing accuracy of the decoder network was higher, then the later processing stages of the brain 

networks retained more information related to the decoder network’s decoding goal. 

According to the simulation results, though the networkorientation lost some identity 

information when it was trained to do the orientation task, the later processing stage of the 

networkorientation still retained some of the information that was necessary for object recognition. 

In addition, though the networkidentity lost some spatial information when it was trained to do the 

identity task, it still maintained some information that was necessary for the orientation task. Results 

suggest that object identity information is retained by a network trained to do a spatial (orientation) 

task and spatial (orientation) information is retained by a network trained to do object recognition. 

These results agree with the one object simulation results reported in (Han & Sereno, in press) and 

suggest that aspects of both object identity and spatial properties might be important for successful 

object recognition and spatial tasks regardless of the number of objects in the image. However, the 

information retained was not always sufficient to optimally complete the other goal. Therefore, these 

results indicate that with two objects in each image, it is still true that multiple pathways are 
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necessary in order to achieve highest performance on different goals, such as required by the identity 

task and the orientation task.  
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METHODS 

Object Images 

Similar to the methods we used in our previous study (see Han and Sereno, in press), six 

hundred black and white images were used to train, validate, and test the neural networks. 

Specifically, 400 images were used for training, 100 were used for validating, and 100 were used 

for testing. Black and white images of different kinds of tops, pants, and shoes obtained from the 

tensorflow data set "Fashion − MNIST " were used to construct the images of objects (Xiao et al., 

2017). Each of these object images consists of three parts: a top (1 of 62 possible), a pant (1 of 66 

possible), and a shoe. The shoe could be one of the two following types: sandals (58 possible) and 

closed shoes (61 possible). In each image, two objects were put in a black background at two 

locations (bottom left and upper right). The two objects may have different orientations. These two 

objects images with black background were used as visual inputs. All networks were trained with 200 

epochs unless stated otherwise because these networks can reach the highest performance level at the 

end of training with 200 epochs. Batch size = 256 and the Adam optimization method were used 

while training. 

Object Image Location 

Object image locations and object image orientations are shown and explained in Figure 1. 

In our previous study, the object could be at any of the 9 locations in the background. However, 

in this two objects simulation study, the two objects can only be at two locations. In each image, 

the two objects are always positioned at two places (upper left or location 1 and bottom right or 

location 9) in a 140 × 140 (pixels) black square  background (Figure 1A). Note that the two 

objects never overlap with each other. 

Alignment of the Parts Within an Object Image and Orientation of an Object Image 

Similar to Han and Sereno (in press), the parts within an object image always had the same 

alignment (Figure 2). Further, the alignment of the parts within an object and the orientation of the 

object are always the same (Figure 2). Given an object image, the alignment of the parts within an 

object image was limited to the two directions along the long axis. For example, if the long axis of 
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the object image is vertical, then the alignment of the parts could only be up (Figure 2A) or down 

(Figure 2B). If the long axis of the object image is horizontal, then the alignment of the parts could 

only be left (Figure 2C) or  right (Figure 2D). Hence, the orientations of the object image (as well as 

the alignment of parts within the object) could have four options: up, down, left, right (Figure 2). 

There are 4 possible orientations for each object. 

Object Image Order: Unscrambled Versus Scrambled 

Similar to Han and Sereno (in press), the 6 possible orders for a given object image in the 4 

different orientations are illustrated in Figure 2. Despite 6 possible orders, there are only 2 possible 

classifications by the identity network, unscrambled (US) object or scrambled (S) object. The 

object image order depends on the orientation of the object. If the orientation of the object is up, 

then the top part of the object image (order start) is at the top. If the orientation of the object is 

down, then the top part of the object image (order start) is at the bottom. In 50% of the object 

images, the top, the pant, and the shoe parts are in the normal order. These images were labeled as 

unscrambled (images labelled “US” in Figure 2). Just as how people dress themselves and stand up 

in daily life, the normal order means that the top is at the top, the pant is in the middle and the shoe 

is at the bottom. If the object image is rotated to another orientation, the normal order stays 

consistent, just as people sometimes may lie down or do a handstand. In the other 50% of the images, 

the top, the pant, and the shoe have parts that are in a scrambled order (images labelled “S” in 

Figure 2). That is, if the order of top, pant, and shoe does not follow the normal order (e.g., shoe, 

pant, shirt), the object image is labeled as "scrambled" (third image in Figure 2A). In addition, if all 

the parts are rotated so that the orientation of the object is all upside down and the top is at the top, 

the pant is in the middle, and the shoe is at the bottom, the object image is also considered 

“scrambled” (third image in Figure 2B). Thus, with 3 parts in every object image (top, pant, shoe), 

there are 6 possible spatial orders in total for each orientation and only one of them is in the 

unscrambled order. 
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Figure 2. Unscrambled and scrambled object orders. The alignment of the parts within an object 

and the orientation of the object are always the same. For each orientation, there are six possible 

orders of parts. Only the first image for each orientation (first image in each row) is considered as 

an unscrambled object image (labeled "US"). The other images for a given orientation are 

scrambled object images (labeled "S"). A. Up orientation. B. Down orientation. C. Left 

orientation. D. Right orientation. (Adapted from Figure 2 in Han & Sereno (in press)). 
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Neural Networks 

Similar to Han and Sereno (in press), feed-forward multi-layer convolutional artificial 

neural networks were used to build brain networks to model the visual information processing in 

the brain. Each brain neural network consists of several hidden layers, including the convolutional 

layers, the pooling layers, and the fully connected dense layers. ReLu activation function was used 

at each layer except the final output layer in which a softmax activation function was used. Random 

dropout was used as a regularization method to improve the performance of the network (Srivastava, 

Hinton, Krizhevsky, Sutskever, & Salakhutdinov, 2014). These neural networks were implemented 

using tensorflow and were trained using the supervised learning and the back-propagation method 

(Rumelhart, Hinton, & Williams, 1986). Simple multi-layer perceptrons were used to build decoder 

networks (see additional details below). 

Brain Networks: Object Recognition (Identity Task) and Spatial Cognition 

(Orientation Task) with 2 objects 

The structure of the brain networks is shown in Figure 3. The only difference between the 

different brain networks was in their final output layer. All brain networks take the same set of images 

as inputs. However, networkidentity was trained to classify the objects as "scrambled" or 

"unscrambled" (identity task), whereas networkorientation was trained to determine the orientation of 

the two objects (spatial task). Because there are two objects in each image and each object could 

have 2 possible identities and 4 possible orientations, there are 2 × 2 = 4 possible results for the 

identities of objects in the image and 4 × 4 = 16 possible results for the orientations of objects in 

the image. Therefore, the chance level testing accuracy for the two tasks are: identity task: 25.0%, 

orientation task: 6.25%. While training and testing, the activities of the second to last layers of 

networkidentity and networkorientation were recorded. 
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Figure 3. The structure of brain networks. Each neural network consists of several hidden layers, 

including the convolutional layer, the pooling layer, and the fully connected dense layer. The only 

difference between different brain networks is the size of their output layer. The size of the output 

layer depends on the task they were trained to do. (Adapted from Figure 3 in Han & Sereno (in 

press)) 
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Deoder Networks 

In order to analyze the information retained in the later processing stage of the brain 

networks, simple decoder networks consisting of three fully connected dense layers were used. The 

structure of the decoder is shown in Figure 4. The decoder network took the artificial neural 

activities of the second to last layer units of a brain network as inputs and was trained to give different 

kinds of outputs depending on what kind of information it was trying to decode. The second to last 

layer activities of a brain network were different when the input images were different. Therefore, 

during training and testing of a decoder network, the inputs (second to last layer activities) must be 

paired with the corresponding true labels of the training and testing images. The reasons for choosing 

to decode from the second to last layer activities of the brain networks are: First, the last layer is the 

output layer and it only includes information about the final classification decision of the 

corresponding task, which was different and independent for different networks. Second, the layers 

before the second to last layer are closer to the input layer and information may not have been fully 

processed at these layers. As assumed in Han and Sereno (in press), if the decoder is able to use the 

information from the second to last layer activities to do a task with high accuracy, then that 

indicates that there is a large amount of task relevant information contained (and/or retained) in 

the second to last layer activities. 

 

Figure 4. The structure of a decoder network. The input dimension is equal to the number of units in the network 

layer that it was trained to decode from. The output dimension depends on what kind of information it was trained to 

decode. (Adapted from Figure 4 in Han & Sereno (in press)). 



 

20 

Comparing Networks 

We used a similar method as Han and Sereno (in press) in order to compare networks. Each 

network (including the decoders) was trained 10 times and testing accuracies were obtained for each 

of the 10 training sessions. The testing accuracies were obtained by dividing the number of correct 

classifications by the total number of testing samples (100) during the testing session. The accuracies 

that are used to compare different networks in this thesis are always referring to the testing accuracies. 

Unpaired two-samples t-tests were used to compare network accuracies and to determine the 

significance of the differences. 

Baseline Decoder Networks: Getting the Baseline Accuracies 

As we noted in Han and Sereno (in press), it is important to first know the decoding accuracy 

of an untrained network, before trying to decode information from the second to last layer of each 

brain network. Thus, we used a similar method as Han and Sereno (in press) to determine baseline 

accuracies from an untrained network. To get the baseline accuracies, an untrained network is used. 

The untrained network has the same structure as  networkidentity (as the output layer is not important, 

we could have used the structure of networkorientation as well). After all connection weights in the 

untrained network were randomly initialized, training, validating, and testing images were provided 

as inputs to the network for 0 epochs and the activities of the second to last layer units were recorded. 

Because all input data only went through the network once and no training happened during this 

process (trained for 0 epochs), the connection weights were still random initialized. 

Unit activities of the second to last layer of the untrained network served as inputs to the 

decoder networkidentity two objects baseline. Then the decoder networkidentity two objects baseline was trained 

to do the identity task and the accuracy obtained was the baseline accuracy for identity. These unit 

activities of the second to last layer of an untrained network also served as inputs to the decoder 

networkorientation two objects baseline. Then decoder networkorientation two objects baseline was trained to 

determine the orientation information and the accuracy obtained was the baseline accuracy for 

orientation. 

The reason for getting these baseline accuracies is to determine how much information 

about identity and orientation would still be present in the second to last layer of the network if the 

network was not trained at all (i.e. all connection weights are random). 
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Determining the Amount of Information About a Task in the Later Processing  Stage 

of the Brain Network When the Brain Network was Trained to do a Different 

Task 

As we assumed previously (Han & Sereno, in press), it is possible that when the network is 

trained to do one kind of task, it would extract and keep the task relevant information and ignore 

any task irrelevant information. Similar to Han and Sereno (in press), we examine here whether the 

amount of information about a relevant task in the later processing stage of the brain network would 

still be retained when this network was first trained to do a different irrelevant task. 

The inputs and task goals of different decoders are listed in the Table 1. For example, the 

decoder network(identity, orientation) two objects received intermediate processing information about 

identity from the brain identity network (i.e., inputs were artificial neural activities from the second 

to last layer of the brain networkidentity two objects) but then was trained to decode information about 

orientations of the two objects from it. Similar explanations can be applied to the other decoder. 

Determining Whether Performance on the Identity and Orientation Tasks with 2 

objects is Dependent on Whether There is One (Double Sized) Single Pathway 

or Two Separate Pathways 

We tested whether performance was dependent on the number of pathways, similar to what 

we did in our previous study (Han & Sereno, in press). For networkcombine identity and orientation two objects, 

a single pathway takes the images as visual inputs and determines objects’ identity and orientation 

information as 1 of the 64 possible combinations of the two objects’ identities (4 possible) and 

orientations (16 possible). For networkseparate identity and orientation two objects, two brain network 

pathways take the images as visual inputs. The brain identity network pathway determines objects’ 

identity and the brain orientation network pathway determines objects’ orientation. Later, the results 

from the two network pathways are combined to determine objects’ identity and space information 

as 1 of the 64 possible combinations of the two objects’ identities (4 possible) and orientations (16 

possible). 
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The sizes of networkcombine identity and orientation two objects and networkseperate identity and orientation 

two objects are designed to be equal. The only difference is their architectures. In addition, 

networkcombine identity and orientation two objects was trained for 400 epochs and networkseparate identity and 

orientation two objects was trained for 200 epochs because the two brain networks in networkseparate 

identity and orientation two objects had already been trained for 200 epochs in advance. The architectures of 

these networks are shown Figure 5 (networkcombine identity and orientation two objects) and Figure 6 

(networkseparate identity and orientation two objects). 
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Figure 5. The structure of networkcombine identity and orientation two objects, the single network that takes 

the images as visual inputs and determines the two objects’ identities and orientations information 

as 1 of the 64 possible combinations of identities (4 possible) and orientations (16 possible). 
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Figure 6. The structure of networkseparate identity and orientation two objects, the two brain network 

pathways that take the images as visual inputs. The brain identity network pathway determines 

objects’ identity and the brain space network pathway determines space. Later, the results from the 

two networks are combined to determine objects’ identities and orientation information as 1 of the 

64 possible combinations of identities (4 possible) and orientations (16 possible). 
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RESULTS 

Similar to methods established in Han and Sereno (in press), it is necessary to perform 

simulations for multiple times with network weights randomly initialized differently each time to 

make sure the network does not get stuck at local minimums. The networks were always trained for 

10 times and 10 testing accuracies were obtained for each condition after training when obtaining the 

accuracies in each experimental setting. Unpaired two-samples t-tests were used to compare different 

testing accuracies and to determine the significance of the differences. The difference is considered to 

be significant if the corresponding p-value < 0.001 (labeled with ***), or p-value < 0.01 (labeled 

with **), or p-value < 0.05 (labeled with *). The average testing accuracies for different 

experimental settings are shown in Table 2 and Table 3. 

The comparisons of accuracies between different networks are shown in Table 4. Briefly, we 

found that the second to last layer activities of brain networks that were trained to do a given task 

had significantly higher decoding accuracies than the baseline when we tried to decode information 

about a different task. Specifically, we found that a network trained to identify objects’ identities 

actively retained information about objects’ orientations, and likewise, a network trained on the 

orientation task actively retained information about objects’ identities. 

In addition, simulation results from comparing a single combined pathway versus two 

segregated pathways in order to accurately identify the identities of the two objects and accurately 

determine the orientations of the two objects suggest that two separate pathways are advantageous. 

Separate pathways allow the networks to process the same visual input images  in different ways for 

different tasks or goals. The specific comparisons and findings are discussed in more detail in the 

Discussion. 

These two objects simulation results agree with the one object simulation results previously 

reported in Han & Sereno (in press). It suggests that these results are independent of the number 

of objects in each image. 
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DISCUSSION 

In order to better understand whether the presence of identity and spatial properties in 

cortical areas have a functional role or not and whether the number of objects affect the results, I tried 

to simulate the ventral identity network and the dorsal orientation network with two objects in each 

visual input image. Then I compared the two objects simulation results with one object simulation 

results reported in (Han & Sereno, in press). 

I trained networks to do various object and orientation recognition tasks with two  objects in 

each image and the results show that these networks actively retain non-task related information. 

Both the identity network and the orientation network were independent and trained on a single task 

and had no cross connections from the other network. Therefore, any non-task related properties that 

were retained in each of these networks were not coming from the other network. 

In sum, these results suggest that (1) the two separate cortical visual pathways for identity 

and space (orientation) still retain information about both identity and space (orientation) when 

there are two objects in each image; (2) the retained information about identity and space (orientation) 

in the two pathways may be necessary to accurately and optimally recognize objects’ identity and 

orientation. These results agree with our one object simulation results even though the numbers of 

objects in each image are different.  

In our previous study (Han & Sereno, in press), we also had similar findings with one object 

simulations. In addition, in our previous study, the findings did not depend on the specific parameter 

settings of the networks. Because very similar methods were used in this thesis, the findings in this 

thesis should also be independent of the specific parameter settings of the networks. Therefore, these 

findings should also be valid for the biological brain though their parameter settings may not be the 

same as our artificial networks. 

Is There Information About Orientation in the Brain Identity Network? 

The accuracy of the decoder network(identity,orientation) two objects is significantly higher than the 

accuracy of the decoder networkorientation two objects baseline, as shown in Table 4. This result suggests 

that it is possible to decode information about orientation from the activities of the second to last 

layer units of networkidentity two objects. It indicates that even though networkidentity two objects was only 
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trained to identify scrambled/unscrambled objects, its later processing stage still retained 

information about the orientations of the objects. These findings agree with Han and Sereno (in 

press)’s one object simulation results. 

Is There Information About Object Identity (Scrambled/Unscrambled) in the Brain 

Orientation Network? 

The accuracy of network(orientation,identity) two objects is significantly higher than the accuracy 

of networkorientation two objects baseline. This indicates that even though networkorientation two objects was 

trained to determine the orientation of the objects, its later processing stage still retained some 

information that was necessary to do the identity task. 

Comparison Between the Performance of a Single Pathway Network and the 

Performance of a Two Pathways Network 

According to Han and Sereno (in press), two separate pathways are advantageous in order to 

process the same visual inputs in different ways for different tasks or goals so that the network can 

accurately identify objects and accurately determine the location and orientation of objects. In this 

thesis, I tried to investigate whether two separate pathways  are still advantageous when there are 

multiple objects in each image. 

To address this question, the accuracies of networkcombine identity and orientation two objects and 

networkseparate identity and orientation two objects were compared. networkcombine identity and orientation two objects 

was used to simulate the process of doing the identity and orientation tasks using a single 

pathway and networkseparate identity and orientation two objects was used to simulate the process of doing the 

identity and spatial tasks using two separate pathways. As shown in Table 4, the testing accuracy 

of networkseparate identity and orientation two objects is significantly higher than the accuracy of networkcombine 

identity and orientation two objects. It implies that when two pathways are used to determine the two objects’ 

identity and orientation information separately, the neural network has better performance. Our 

findings suggest there are advantages for the brain to use two separate pathways to determine identity 

and spatial (orientation) information. 

In summary, in order to accurately identify objects and accurately determine the spatial 

information (orientations) of objects, these findings suggest that two separate pathways are 

advantageous in order to process the same visual inputs in different ways for different tasks or goals. 
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Processing information differently using multiple separate pathways may cause a binding problem 

(Treisman, 2002). In this thesis, the two objects have always been fixed at the same two locations 

(upper left and bottom right). Therefore, the identities of the two objects can be combined with the 

orientations of the two objects easily according to their fixed locations. However, the binding problem 

is still an important problem because the objects may not always be at the same locations. One 

possible way to solve the binding problem is that the binding problem may be lessened by using the 

spatial information contained in the identity network and object identity information in the spatial 

network. 

Limitations and Future Directions 

According to our one object (Han & Sereno, in press) and two objects simulations, we have 

suggested that object identity and spatial information is processed independently in both ventral and 

dorsal pathways. Further, we suggest it is advantageous to have two separate pathways for object 

recognition and spatial cognition. However, the binding problem caused by processing information 

in multiple pathways independently remains a problem to be resolved. In our previous study, the binding 

problem was not a problem with only one object in each image (Han & Sereno, in press). In this thesis, 

the binding problem is solved by always fixing the two objects at the same locations. It is obviously 

not a valid method to solve the binding problem in the general case. In the future, it is important to 

find a better way to combine the independently processed information from different pathways when 

there are multiple objects in each image. 

Conclusion 

In summary, these simulations imply that with two objects in each image, it is still true that 

both ventral and dorsal cortical visual pathways contain information about both identity (of shape) 

and space (orientation), even when trained with a single identity or orientation task. The modeling 

also suggests that the identity and spatial (orientation) information retained in the two pathways is 

important for accurately accomplishing the identity and spatial (orientation) tasks. These results agree 

with our one object simulation results (Han & Sereno, in press). Therefore, it suggests that these 

results are robust and are not dependent on the number of objects in the visual tasks. 
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accepted for publication in Neural Computation. 

 

Neural Computation homepage:  https://direct.mit.edu/neco 

 

 

 

MODELING THE VENTRAL AND DORSAL CORTICAL VISUAL PATHWAYS USING 

ARTIFICIAL NEURAL NETWORKS 

 

Zhixian Han1 and Anne Sereno1,2 

 

1Department of Psychological Sciences, Purdue University, West Lafayette, IN, USA 47907 

2Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA 47907 

 

  



 

36 

ABSTRACT 

Although in conventional models of cortical processing, object recognition and spatial properties 

are processed separately in ventral and dorsal cortical visual pathways respectively, some recent 

studies have shown that representations associated with both object’s identity (of shape) and space 

are present in both visual pathways. However, it is still unclear whether the presence of identity and 

spatial properties in both pathways have functional roles or not. In our study, we have tried to 

answer this question through computational modeling. Our simulation results show that both a model 

ventral and dorsal pathway, separately trained to do object and spatial recognition, respectively, each 

actively retained information about both identity and space. In addition, we also show that these 

networks retained different amounts and kinds of identity and spatial information. As a result, our 

modeling suggests that two separate cortical visual pathways for identity and space (1) actively retain 

information about both identity and space; (2) retain information about identity and space 

differently; and (3) that this differently retained information about identity and space in the two 

pathways may be necessary to accurately and optimally recognize and localize objects. Further, 

modeling results suggests these findings are robust and do not strongly depend on the specific 

structures of the neural networks. 
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MODELING THE VENTRAL AND DORSAL CORTICAL VISUAL 

PATHWAYS USING ARTIFICIAL NEURAL NETWORKS 

Introduction 

It is widely documented in neuropsychological, lesion, and anatomical studies that the human 

visual system has two distinct cortical pathways (Ungerleider & Mishkin, 1982; Mishkin, Ungerleider, 

& Macko, 1983; Felleman & Essen, 1991). Further, the ventral pathway primarily processes 

information important for object recognition (Logothetis & Sheinberg, 1996) while the dorsal 

pathway primarily processes information related to spatial cognition (Colby & Goldberg, 1999). 

However, some recent studies have challenged this idea (Konen & Kastner, 2008; Freud, Rosenthal, 

Ganel, & Avidan, 2015; Freud, Plaut, & Behrmann, 2016; Hong, Yamins, Majaj, & DiCarlo, 2016). 

Some studies have found that representations associated with shape and location processing are 

present in both visual streams (Konen & Kastner, 2008; A. B. Sereno, Lehky, & Sereno, 2020; 

Hong et al., 2016). However, it remains unclear whether the representations of shape in dorsal stream 

and the representations of location in ventral stream are non-task-related or whether they might play 

a functional rule in spatial cognition and object recognition, respectively. Some findings from fMRI 

and behavioral studies have suggested that spatial processing that operates at the level of the scene, 

presumably within the dorsal visual pathway, can contribute to shape processing (Zachariou, 

Klatzky, & Behrmann, 2014). Another study found that correlated activity between ventral and 

dorsal visual pathways were higher when people were looking at objects with impossible spatial 

structures compared with when they were looking at objects with possible structures (Freud et al., 

2015), which indicated that dorsal pathway processing might help the brain to recognize objects with 

impossible structures. Furthermore, Hong et al. (2016) found in neural recordings that spatial 

information increases along the ventral stream, consistent with prior studies demonstrating spatial 

properties in later stages of the ventral stream (Nowicka & Ringo, 2000; Lehky, Peng, McAdams, 

& Sereno, 2008). In addition, Hong et al. (2016) suggest that it is likely that the spatial information 

in the ventral stream does not come from the dorsal stream, in agreement with previous studies 

arguing that ventral stream spatial representations are distinct and independent from dorsal stream 

spatial encodings (A. B. Sereno & Lehky, 2011; A. B. Sereno, Sereno, & Lehky, 2014). 

The experimental evidence mentioned above indicates that representations of shape and space 

exist in both visual pathways and might have functional roles. Therefore, we attempt here to tackle 
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these questions through explicit hypothesis testing using computational models. In our study, we 

examine whether identity (of shape) and space processing were found to be present in both simulated 

ventral and dorsal streams trained to do straightforward object recognition and localization tasks, 

respectively; we explore possible reasons for why information associated with identity (shape) and 

space processing were found to be present in both simulated ventral and dorsal streams; and finally, 

discuss how this information could elucidate our understanding of the computational properties and 

needs of the two visual streams. Hong et al. (2016) showed with modeling that explicit spatial 

information is present in the ventral pathway. They did not show whether shape information is 

present or retained in the dorsal pathway. They also did not show whether different kinds of shape 

and spatial information are maintained differently in simulations of the ventral and dorsal pathways. 

Their results are not sufficient to suggest why seemingly task-irrelevant information is maintained in 

a neural network. These are computationally tractable questions that are important and timely. 

In order to model the two cortical visual pathways and study their computational properties, 

feed-forward multi-layer convolutional neural networks were used to simulate the functions of the two 

visual pathways in the brain and multi-layer perceptrons were used to simulate the process of decoding 

information from recorded neural activities in the brain. All networks were trained using supervised 

learning. When modeling the two cortical visual pathways, for simplicity and control, it is assumed 

that the two pathways use the same computational structure (the numbers of neurons are the same 

and the structures of the initial connections between neurons are the same) and receive the same 

visual input images. However, we will allow the connection weights between the neurons in the two 

pathways to be modified with training. It is almost certain that the connection weights between the 

two pathways will be different after training because the training networks have to meet different 

goals. Specifically, the primary goal of the ventral pathway is to distinguish different kinds of objects 

by distinguishing different features or different combinations of features, whereas the primary goal of 

the dorsal pathway is to determine the spatial information (e.g. locations and/or orientations) of 

objects necessary for interaction (e.g. reach, grasp, and/or avoidance/navigation). We used the 

back-propagation training method as a tool to capture the computational properties that result from 

these differing goals of the two visual pathways. Back-propagation is currently the best method for 

updating connection weights between neurons in artificial neural networks. In general, artificial 

neural networks trained using the back-propagation method tend to perform better than models trained 

using any other weight-updating methods (Lillicrap, Santoro, Marris, Akerman, & Hinton, 2020). 
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Though biological neural networks are unlikely to be able to perform back-propagation weight 

updates in the same way as artificial neural networks, some researchers have argued that biological 

neural networks could compute back-propagation-like effective synaptic updates by using the 

differences of neural activities induced by feedback connections (Lillicrap et al., 2020; Whittington 

& Bogacz, 2019). Therefore, the back-propagation training method was used to obtain the results 

shown in this paper. 

Black and white images consisting of different kinds of tops, pants, and shoes (Xiao, Rasul, 

& Vollgraf, 2017) were used to construct the images of objects (see Figure 1). Each image of an 

object consisted of one top, one pant, and one shoe. Each object image was put in a black 

background at one of several possible locations and orientations. These object images with black 

background were used as visual inputs. In half of the images, the top, the pant, and the shoe were in 

the "unscrambled" order. In the other half of the images, the top, the pant, and the shoe were in the 

"scrambled" order (see Methods for additional details). 

Five artificial neural networks networkidentity, networkshoes, networkspace, networklocation, and 

networkorientation were trained to do an identity task (whether the image is scrambled or 

unscrambled), a shoe task (determine whether the shoe in the image is a sandal or closed shoe), and 

three spatial tasks (determine the location and orientation, location alone, or the orientation alone of 

the image), respectively. Both networkidentity and networkshoes were used to model the ventral 

pathway, whereas networkspace, networklocation, and networkorientation were used to model the dorsal 

pathway. These five networks are considered the brain networks. These brain networks were used to 

simulate the functions of ventral and dorsal cortical visual pathways in the brain. Various additional 

nonlinear and linear decoders were then trained to decode different kinds of information from the later 

processing stages of these brain networks. These decoders were used to simulate the process of 

decoding information embedded in the recorded neural activity signals in the brain. It is assumed that 

if the testing accuracy of the decoder was higher, then the later processing stages of the brain 

networks retained more information needed by the decoder’s decoding goal. 

According to the simulation results, though the networkspace lost some identity information 

when it was trained to do the space task, the later processing stage of the networkspace still retained 

some of the information that was necessary for distinguishing different kinds of objects 

(combinations of features). In addition, though the networkidentity lost some spatial information when 

it was trained to do the identity task, it still maintained some information that was necessary for the 
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spatial task. Specifically, although networkidentity maintained both location and orientation 

information, it maintained more information about orientations of the object images. Results 

suggest that object information is retained by a network trained to do a spatial task and spatial 

information is retained by a network trained to do object recognition, suggesting that aspects of both 

object and spatial properties might be important for successful object recognition and spatial tasks. 

However, the information retained was not always sufficient to optimally complete the other goal. 

Therefore, the results indicate that a reason for why there are two visual pathways in the brain might 

be that multiple pathways are necessary in order to achieve highest performance on different goals, 

such as required by the identity, the spatial, and the shoe tasks. More importantly, it also suggests that 

these multiple pathways retain different aspects and amounts of both object and spatial information 

to achieve highest performance on spatial and object tasks respectively. 

Our main modeling goal is to gain a better understanding of computational issues rather than 

identifying the specific response features that are similar to the real neural responses of ventral and 

dorsal cortical areas. That is, a proof of computational concept more than an accurate model of the 

real human brain. Indeed, known differences in the structure of the two pathways (e.g., different 

number of areas within each stream, already evident in (Felleman & Essen, 1991)) would complicate 

direct and controlled comparisons of such biologically accurate models. 

Given that our goal is proof of computational concept, we repeated some of the simulations 

with slightly different brain network structures (different number of filters, different kernel sizes) to 

test if our findings are dependent on the specific conditions or structures of the artificial neural 

networks. Because our findings do not depend on the specific structures we have used or particular 

parameters chosen, the findings suggest they may reflect more general computational processes. 

Specifically, our findings may also be valid for the biological brain even though the structures of our 

artificial neural networks and the structures of the biological brain networks are not the same. 

Methods 

Object Images 

Black and white images consisting of different kinds of tops, pants, and shoes (Xiao et al., 

2017) were used to construct the images of objects (see Figure 1). Images of different kinds of tops, 

pants, and shoes obtained from the tensorflow data set "Fashion-MNIST" were used to construct 
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the images of objects (Xiao et al., 2017). Each of these object images consists of three parts: a top 

(1 of 62 possible), a pant (1 of 66 possible), and a shoe. The shoe could be one of the two following 

types: sandals (58 possible) and closed shoes (61 possible). Each object image was embedded in a 

black background and presented  at  different locations and orientations  (all parts - top, pant, shoe  

- of the object were presented with the same orientation, and altogether centered at the selected 

location). 

These object images with black background were used as visual inputs. In half of the 

images, the top, the pant, and the shoe were in the "unscrambled" order. That is, the unscrambled 

order is the normal order of how people are dressed with the pant, but not shoe or top, in the middle. 

In the other half of the images, the top, the pant, and the shoe were in the "scrambled" order, where 

the order of top, pant, and shoe does not follow the normal order. 

Six hundred black and white images were used to train, validate, and test the neural networks. 

Specifically, 400 images were used for training, 100 were used for validating, and 100 were used for 

testing. We have used a small dataset in our simulations and did not use image augmentation because 

our goal is not to maximize the performance of the artificial neural networks but rather to compare 

the performance of different neural networks in order to clarify differences in the kinds of 

information that are retained as well as how much information is retained. Using a very large 

dataset (60,000 images) caused the testing accuracy of networkidentity to be above 98% and the 

accuracy of networkspace to be 100%. The reason they could reach such high accuracies may be 

because training images and tasks were simple and the number of possible variations was limited. It 

is difficult to examine and identify performance differences between different networks if most of the 

networks have almost 100% accuracies. Nevertheless, to test if dataset size would alter any findings, 

we repeated some simulations with a larger dataset (1200 images) and found that the size of the dataset 

did not affect our major findings. All networks were trained with 200 epochs and all of these 

networks had reached the highest performance level at the end of training with 200 epochs. For some 

conditions where testing accuracies approached 100%, we added Gaussian noise to the images 

(including both object and background) to increase task difficulty so that we could better compare 

performance differences of the different networks. An example of the noisy image is shown in Figure 

1D. Batch size = 256 and the Adam optimization method were used while training. The initial learning 

rate of Adam optimization was 0.001. 
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Object Image Location 

Object image locations and object image orientations are shown and explained in Figure 1. 

The object images were put at different places in a 140 × 140 (pixels) black square background. 

Specifically, the centers of each object image could have 9 possible locations (Figure 1A). 

Alignment of the Parts within an Object Image and Orientation of an Object Image 

The parts within an object image always had the same alignment (Figure 2). Further, the 

alignment of the parts within an object and the orientation of the object are always the same (Figure 

2). Given an object image, the alignment of the parts within an object image was limited to the two 

directions along the long axis. For example, if the long axis of the object image is vertical, then the 

alignment of the parts could only be up (Figure 2A) or down (Figure 2B). If the long axis of the 

object image is horizontal, then the alignment of the parts could only be left (Figure 2C) or right 

(Figure 2D). Hence, the orientations of the object image (as well as the alignment of parts within 

the object) could have four options: up, down, left, right (Figure 2). With 9 possible center locations 

and 4 possible orientations, there were 36 spatial combinations of locations and orientations in total. 

Object Image Order: Unscrambled versus Scrambled 

The six possible orders for a given object image in the four different orientations are illustrated 

in Figure 2. Despite 6 possible orders, there are only 2 possible classifications by the identity network, 

unscrambled (US) object or scrambled (S) object. The object image order is determined by the 

orientation of the object. If the orientation of the object is up, then the top part of the object image 

(order start) is at the top. If the orientation of the object is down, then the top part of the object 

image (order start) is at the bottom. In half of the object images (300 out of 600), the top, the pant, 

and the shoe parts are in the normal order. These images were labeled as unscrambled (images 

labelled “US” in Figure 2). Just as how people dress themselves and stand up in daily life, the normal 

order means that the top is at the top, the pant is in the middle and the shoe is at the bottom. If the 

object image is rotated to another orientation, the normal order stays consistent, just as people 

sometimes may lie down or do a handstand. In the other half of the images (300 out of 600), the top, 

the pant, and the shoe have parts that are in a scrambled order (images labelled “S” in Figure 2). 

That is, if the order of top, pant, and shoe does not follow the normal order (e.g., shoe, shirt, pant), 
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the object image is labeled as "scrambled" (second image in Figure 2A). In addition, if all the parts 

are rotated so that the orientation of the object is all upside down and the top is at the top, the pant is 

in the middle, and the shoe is at the bottom, the object image is also considered “scrambled” (third 

image in Figure 2B). Thus, with 3 parts in every object image (top, pant, shoe), there were 6 

possible spatial orders in total for each orientation and only one of them is the unscrambled order. 

We chose to use the scrambled-unscrambled or identity task because it is a common task used 

to identify ventral regions in human fMRI studies (e.g., (Kourtzi & Kanwisher, 2000; Grill-Spector, 

Kourtzi, & Kanwisher, 2001)). It is an object recognition task that includes information about the 

relations between parts. The shoe identity task is a task that is sensitive to the ability to discriminate 

shape information of parts. Much work in animals (e.g., with respect to faces, (Perrett, Hietanen, 

Oram, & Benson, 1992)) as well as humans (e.g., (Hoffman & Haxby, 2000)) have demonstrated 

the importance of ventral regions in discriminating lower level visual features (see also, (Bracci, 

Ritchie, & de Beeck, 2017)). 

Neural Networks 

Feed-forward multi-layer convolutional artificial neural networks were used to build brain 

networks to model the visual information processing in the brain. Each neural network consists of 

several hidden layers, including the convolutional layers, the pooling layers, and the fully connected 

dense layers. ReLu activation function was used at each layer except the final output layer in which 

a softmax activation function was used. Random dropout was used as a regularization method to 

improve the performance of the network. Random dropout regularization method is a neuroscience-

inspired regularization method that is commonly used in the deep learning community (Srivastava, 

Hinton, Krizhevsky, Sutskever, & Salakhutdinov, 2014). These neural networks were implemented 

using tensorflow and were trained using the supervised learning and the back-propagation method 

(Rumelhart, Hinton, & Williams, 1986). Simple multi-layer perceptrons were used to build decoder 

networks (see additional details below). 
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Brain Networks: Global Recognition (Identity Task), Spatial Cognition (Spatial 

Task, Location Task, Orientation Task) and Feature Recognition Networks (Shoe 

Task) 

The structure of the brain networks is shown in Figure 3. All brain networks share the same 

structure. The only difference between the different brain networks was in their final output layer. To 

test whether our findings were dependent on the specific brain network structure (number of filters, 

kernel sizes), we also repeated some simulations with different brain network structures (different 

number of filters, different kernel sizes), and show in the results section that our main conclusions did 

not change when the brain network structures were modified. 

All brain networks take the same set of images as inputs. However, networkidentity was 

trained to classify the input images as "scrambled" or "unscrambled" (identity task), whereas 

networkspace was trained to determine the location and the orientation of the images (spatial task). 

A third network, networkshoes was a variant of networkidentity. It was identical to networkidentity but 

trained instead to classify the type of shoes in both scrambled and unscrambled images as either a 

“closed shoe” or “sandal”. Two additional networks were variants of networkspace: networklocation 

was a variant of networkspace and trained instead to only determine the locations of the images and 

networkorientation was a variant of networkspace and trained instead to only determine the orientations 

of the images (both networks only differing from networkspace in their final output layer). The 

chance level testing accuracy for the various tasks are: identity task: 50.0%, spatial task: 2.8%, 

shoes task: 50.0%, location task: 11.1%, orientation task: 25.0%. While training and testing, the 

activities of the second to last layers of networkidentity, networkspace, networkshoes, networklocation, 

and networkorientation were recorded. 

Decoders 

In order to analyze the information contained in the later processing stage of the 

convolutional networks, two kinds of decoders were used: nonlinear decoder networks and linear 

decoders. 

A nonlinear decoder network consisting of three fully connected dense layers was used. The 

structure of the decoder is shown in Figure 4. We used nonlinear decoders because we were trying 

to simulate the process of decoding information from the brain, where nonlinear decoders have been 

used (Xu et al., 2019). The decoder network took the artificial neural activities of the second to last 
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layer units of a brain network as inputs and was trained to give different kinds of outputs depending 

on what kind of information it was trying to decode. While training the decoder networks, only the 

parameters in the decoder network were adjusted. 

The linear decoders we used were linear support vector machines (linear SVMs). The 

parameters were set as follows. Loss function: squared hinge. Regularization: L2 regularization 

with regularization strength = 1. The linear decoders also took the artificial neural activities of the 

second to last layer units of a brain network as inputs and was trained to give different kinds of 

outputs depending on what kind of information it was trying to decode. 

The second to last layer activities of a brain network are different when the input images 

are different. Therefore, during training and testing of a decoder network, the inputs (second to last 

layer activities) must be paired with the corresponding true labels of the training and testing images. 

The reasons for choosing to decode from the second to last layer activities are: First, the last layer is 

the output layer and it only includes information about the final classification decision of the 

corresponding task, which was different for different networks. Second, the layers before the second 

to last layer are closer to the input layer and information may not have been fully processed at these 

layers. The assumption is that if the decoder is able to use the second to last layer activities to do a 

task with high accuracy, then that indicates that there is a large amount of task relevant information 

contained (and/or retained) in the second to last layer activities. 

Comparing Networks 

In order to compare networks, each network (including the decoders) was trained 10 times and 

testing accuracies were obtained for each of the 10 training sessions. The testing accuracies were 

obtained by dividing the number of correct classifications by the total number of testing samples 

(100) during the testing session. The accuracies that are used to compare different networks in this 

paper are always referring to the testing accuracies. Unpaired two-samples t-tests were used to 

compare network accuracies and to determine the significance of the differences. 

Baseline Decoder Networks: Getting the baseline accuracies 

Before trying to decode information from the second to last layer of each brain network, it 

is important to know the accuracy of decoding from an untrained network. To get the baseline 
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accuracies, an untrained network is used. The untrained network has the same structure as 

networkidentity (as the output layer is not important, we could have used  the structure of networkspace 

as well). After all connection weights in the untrained network were randomly initialized, training, 

validating, and testing images were provided as inputs to the network for 0 epochs and the activities 

of the second to last layer units were recorded. Because all input data only went through the network 

once and no training happened during this process (trained for 0 epochs), the connection weights 

were still random. 

Unit activities of the second to last layer of the untrained network served as inputs to the 

decoder networkidentity baseline. Then the decoder networkidentity baseline was trained to do the identity 

task and the accuracy obtained was the baseline accuracy for identity. These unit activities of the 

second to last layer of an untrained network also served as inputs to the decoder networkspace baseline. 

Then decoder networkspace baseline was trained to  determine the spatial information and the accuracy 

obtained was the baseline accuracy for space. When these activities of an untrained network served 

as inputs to the decoder networkshoes baseline, the decoder networkshoes baseline was trained to determine 

the type of shoes and the accuracy obtained was the baseline accuracy for the classification of shoes. 

The reason for getting these baseline accuracies is to determine how much information 

about identity, space and shoes would still be present in the second to last layer of the network if the 

network was not trained at all (i.e. all connection weights are random). 

Determining the Amount of Information About a Task in the Later Processing  Stage 

of the Brain Network When the Brain Network was Trained to do a  Different Task 

It is possible that when the network is trained to do one kind of task, it would extract the 

task relevant information and throw away task irrelevant information. We examine here whether 

the amount of information about a relevant task in the later processing stage of the brain network 

would increase or decrease when this network was first trained to do a different irrelevant task. 

The inputs and task goals of different decoders are listed in Table 1. For example, the decoder 

network(space,identity) received intermediate processing information about space from the brain space 

network (i.e., inputs were artificial neural activities from the second to last layer of the brain 

networkspace) but then was trained to decode information about identity from it. Similar arguments 

can be applied to other decoders. 
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Determining the Amount of Information About a Task in the Later Processing Stage 

of the Brain Network When the Brain Network was Trained to do the Same  Task 

Using decoder networks to decode information from the brain networks is similar to adding 

more layers to the brain network and then training it for more epochs. The network’s testing 

accuracy could increase or decrease simply because it was trained for more epochs or it has more 

layers. Training for more epochs or having more layers may increase testing accuracy by extracting 

more statistical information from the training samples, whereas it could also decrease testing 

accuracy by over-fitting. Therefore, if we want to determine whether training with a task helps or 

hurts the network’s ability to do another (different) task, we need to determine the accuracy of the 

decoder network when the brain network was trained again to do the same task. 

The inputs and task goals of the relevant decoders are also listed in Table 1. For example, 

decoder network(identity,identity) received the intermediate processing information of the brain 

networkidentity as inputs (i.e., inputs were artificial neural activities from the second to last layer of 

the brain networkidentity) and then was trained to decode information about identity from it. Decoder 

network(space,space) received the intermediate processing information of networkspace and then was 

trained to decode spatial information from it. 

Determining Whether Performance on the Identity and Spatial Tasks is Dependent on 

Whether There is One (Double Sized) Single Network or Two Separate Networks 

For networkcombine identity and space, a single network takes the images as visual inputs and 

determines objects’ identity and space information as 1 of the 72 possible combinations  of identity (2 

possible) and space (36 possible). For networkseparate identity and space, two brain networks take the 

images as visual inputs. The brain identity network determines objects’ identity and the brain space 

network determines space. Later, the results from the two networks are combined to determine 

objects’ identity and space information as 1 of the 72 possible combinations of identity (2 possible) 

and space (36 possible). 

The sizes of networkcombine identity and space and networkseparate identity and space are designed to 

be equal. The only difference is their architectures. In addition, networkcombine identity and space was 

trained for 400 epochs and networkseparate identity and space was trained for 200 epochs because the 

two brain networks in networkseparate identity and space had already been trained for 200 epochs in advance. 
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The architectures of these networks are shown in Figure 5 (networkcombine identity and space) and Figure 

6 (networkseparate identity and space). 

Results 

It is necessary to perform training, validation, and testing for multiple times with network 

weights randomly initialized differently each time to make sure the network did not get stuck at local 

minimums. When obtaining the accuracies in each experimental setting, the networks were always 

trained for 10 times and 10 testing accuracies were obtained for each condition after training. Unpaired 

two-samples t-tests were used to compare different accuracies and to determine the significance of the 

differences. The difference is considered to be significant if the corresponding p-value < 0.05. The 

level of significance is marked with * (p-value < 0.05), ** (p-value < 0.01), and *** (p-value 

< 0.001). The average testing accuracies for different experimental settings are shown in Table 2 

and Table 3. One possible reason for the baseline accuracies to be higher than the corresponding 

chance levels is that although the connection weights were initialized randomly, some information 

contained within the input images themselves can still be passed on to the second to last layer units 

and this sensory-driven information was decoded by the decoder networks. The comparisons of 

accuracies between different networks are shown in Table 4. 

Briefly, we found that the second to last layer activities of brain networks that were trained to 

do a given task had higher decoding accuracies than the baseline when we tried to decode 

information about a different task. That is, we found that a network trained to identify images 

actively retained information about space, and likewise, a network trained on a spatial task actively 

retained information about identity. In addition, the decoding accuracies were lower from the brain 

networks that were trained to do a different task than from brain networks that were trained to do the 

same task. Additional modeling to better understand why networks retained seemingly task irrelevant 

information suggest that this information is retained and preserved uniquely in service of improving 

the accuracy of the “irrelevant” task. For example, the identity network actively maintained more 

information about orientation than location because in order to determine whether the object is in 

the unscrambled or scrambled order, the network needs to determine the object orientation. 

Finally, simulation results from comparing a single combined pathway versus two 

segregated pathways in order to accurately identify objects and accurately determine the location and 

orientation of objects suggest that two separate pathways are advantageous in order to process the 
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same input (visual information) in different ways for different tasks or goals. The specific comparisons 

and findings are discussed in more detail in the Discussion. 

One additional comparison, not illustrated in Table 4, was made to compare the difference 

in the amount of accuracy decrease in percentage from network(location,location) to network(identity,location) 

versus from network(orientation,orientation) to network(identity,orientation). We found that the accuracy of 

brain network(location,location) stayed around 100% when this network was trained with more epochs 

(e.g., 200 epochs) and suggest that the accuracy of this brain network saturates when trained for 200 

epochs. Since we are using the accuracies of the decoders to assess the amount of different kinds of 

information contained in the second to last layer brain network activities, when the accuracy 

saturates, it is possible that with additional training the amount of information retained has changed 

but the accuracy stays the same (around 100%), making it difficult to evaluate whether the amount of 

information retained has changed or not and difficult to compare these networks’ performance with 

other brain and decoder networks. Therefore, we increased the difficulty for the location and 

orientation tasks by adding Gaussian white noise to the input images. 

With noisy input images, the accuracy of network(location,location) was still very high (97.0%) 

but did not reach 100%. The range of the accuracy of the location task is from 11.1% (chance level) 

to 100.0%, or 88.9%. The range of the accuracy of the orientation task is from 25.0% (chance level) 

to 100.0%, or 75.0%. Given the differences in ranges for these networks, the change of accuracy in 

percentage was normalized by these respective ranges. Namely, the normalized change of accuracy 

was obtained by dividing the amount of change in accuracy by the size of the range of the accuracy 

of the corresponding task. The accuracy of network(identity,location) is lower than network(location,location) 

by (97.3 − 29.9)/88.9 = 75.8% and the accuracy of network(identity,orientation) is lower than 

network(orientation,orientation) by (84.1 − 34.5)/75.0 = 66.1%. After the network had been trained to 

do the identity task, the accuracy of determining location decreased more in normalized percentage 

than did the accuracy of determining orientation. This difference in the amount of accuracy decrease 

is significant (p-value < 0.001). 

We repeated the simulations about whether there is information about space in networkidentity 

and whether there is information about identity in networkspace with some different settings. The 

comparisons of accuracies between different networks when different sample sizes, or different network 

parameter settings were used are shown in Table 5 and Table 6. We repeated the simulations for the 

following three alternative settings: (1) with 1200 images used as dataset; (2) with the number of 
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filters in each convolutional layer in brain networks doubled from the first layer to the last layer (64, 

128, 256 filters); (3) with the kernel sizes for the first, second, third convolutional layers in brain 

networks were reduced to 5 × 5, 2 × 2, 2 × 2 respectively; (4) with decoder networks which have 2 

hidden layers; and (5) with decoder networks which have 50 units in each hidden layer. Only one 

setting (size of dataset, or number of filters, kernel sizes for brain networks, number of hidden 

layers, or number of units in hidden layers for decoder networks) was changed at a time. The results 

with these different settings are consistent with the results we obtained with regular settings. 

We also repeated the decoding simulations using linear decoders. When obtaining the 

accuracies in each experimental setting, the linear decoders were always trained for 10 times and 10 

testing accuracies were obtained for each condition after training (10 training and testing episodes). 

The input images were permuted each time and different sets of input images were selected from 

the whole dataset for training and testing during each episode. Unpaired two-samples t-tests were used 

to compare different accuracies and to determine the significance of the differences. 

The average testing accuracies for different experimental settings are shown in Table 7. The 

comparisons of accuracies between different linear decoders are shown in Table 8. According to these 

results, unlike the results obtained using nonlinear decoders, the difference between the accuracies 

of network(location,identity), network(orientation,identity) and network(space,identity) are not significant. 

Though the accuracy of network(space,shoes) is significantly higher than the baseline (p-value = 

0.003) and it is different from the nonlinear decoder result, the accuracy of network(space,shoes) is still 

significantly lower than network(space,identity) and it is consistent with the nonlinear decoder result. 

All of the other results shown in Table 8 are consistent with the results obtained using nonlinear 

decoders. 

One additional comparison, not illustrated in Table 8, was made to compare the difference 

in the amount of accuracy decrease in percentage from network(location,location) to network(identity,location) 

versus from network(orientation,orientation) to network(identity,orientation). Again, we increased the 

difficulty for the location and orientation tasks by adding Gaussian white noise to the input images. 

With noisy input images, the accuracy of network(identity,location) is lower than 

network(location,location) by (98.9 − 15.8)/88.9 = 93.5% and the accuracy of network(identity,orientation) 

is lower than network(orientation,orientation) by  (94.4 − 28.7)/75.0 = 87.6%. After the network had 

been trained to do the identity task, the accuracy of determining location decreased more in 

normalized percentage than did the accuracy of determining orientation. This difference in the amount 
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of accuracy decrease is significant (p-value < 0.05). This result is consistent with the result obtained 

using nonlinear decoders. 

Discussion 

Using a computational modeling approach, we aimed to better understand whether the 

presence of identity and spatial properties in cortical areas important for space and object 

recognition have a functional role or not. We trained networks to do various object and spatial 

recognition tasks. We show that these networks actively retain non-task related information. 

Specifically, these networks retain different amounts of identity and spatial information (as shown 

for example by the amount of identity information retained by networks identity versus space; or 

that the space network retains more scrambled/unscramble identity information than type of shoe 

information) and different kinds of identity and spatial information (as shown for example by the 

greater retention of orientation than location information by the identity network). Each of these 

networks was independent and trained on a single task and had no cross connections from other 

networks. Hence, any non-task related properties that were retained in each of these networks were 

not coming from other networks. We repeated some simulations with different neural network 

parameters and the results were still consistent with our findings. It implies that our findings are robust 

and do not depend on specific parameter settings of the neural networks. In sum, based on our results, 

we (1) suggest that this different retained information about identity and space in the two pathways 

is functional, (2) demonstrate that this task irrelevant information need not come from another 

cortical stream or external source, and (3) show that in some cases the task irrelevant information 

may be necessary to accurately and optimally recognize and localize objects. Because our findings 

do not depend on specific parameter settings, they should also be valid for the biological brain though 

their structures may not be the same as our artificial networks. 

Is There Information About Space in the Identity Network? 

According to both the nonlinear decoder and linear decoder results, the accuracy of the decoder 

network(identity,space) is significantly higher than the accuracy of the decoder networkspace baseline when 

both of them were trained to decode information about space. This finding suggests it is possible to 

decode information about space from the activities of the second last layer units of networkidentity. It 
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indicates that even though networkidentity was only trained to identify scrambled/unscrambled images, 

its later processing stage still had information about space when it was processing the input images in 

order to identify scrambled/unscrambled images. Furthermore, the accuracy of network(identity,space) 

is significantly lower than the accuracy of network(space,space). This may be because as information 

goes from the input layer to the second to last layer, some information about space may be lost 

because it is not useful to have very precise information about space for networkidentity’s task 

(identifying scrambled/unscrambled images). 

However, an important question is why the activities of the second to last layer units of 

networkidentity still contained spatial information. Was this spatial information actively kept by the 

network or was it just passively left in the network? While the network was processing input 

information in order to do a task, it would extract useful information from the inputs and eliminate 

useless information in the inputs. As a result, some information would be retained, and some 

information would be lost. "Actively kept by the network" means the network chose to keep spatial 

information when it was eliminating other useless information. "Passively left in the network" means 

the network did not choose to keep spatial information, the network just did not actively eliminate all 

spatial information. If the network did not choose to actively keep the spatial information, then 

whatever, if any, spatial information was passively left in the network should be equivalent across 

trained networks and there should be no difference in the spatial information retained in 

networkidentity and networkshoes. 

In order to answer this question, the accuracy of network(shoes,space) is compared with the 

accuracy of network(identity,space). The result is that the accuracy of network(shoes,space) is significantly 

lower than the accuracy of network(identity,space), which means that there was significantly less space 

information retained in the activities of the second to last layer units of networkshoes. This result is 

the same for both nonlinear and linear decoders. It is likely because when identifying a feature 

(feature recognition; or the types of the shoes) does not need as much spatial information compared to 

identifying scrambled/unscrambled images (global recognition; or identifying combinations of 

features). These findings indicate that the space information was actively maintained by networkidentity 

even though it was trained to do the identity task. Though most studies assume spatial information 

in the ventral stream is coming from the dorsal stream, our results indicate the information may be 

retained/built up within the ventral stream. 
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These findings agree with Hong et al. (2016)’s computational modeling results. They also used 

hierarchical convolutional neural networks (HCNN) to model the ventral visual cortical pathway. 

They trained the HCNN to do category estimation tasks. They took the neural activities of the top 

hidden layer of their HCNN while training and used these artificial hidden layer neural activities and 

a decoder to perform category-orthogonal estimation tasks. They found the network performance on 

category-orthogonal estimation tasks improved as training proceeds. It suggests that the category-

orthogonal information was extracted by the HCNN when the HCNN was trained to do category 

estimation tasks, which is similar to what we found. 

What Kind of Spatial Information was Actively Maintained More in the Identity 

Network? 

There are different kinds of spatial information, including the locations of the object images 

(defined as the location of the center of the object), the orientations of the object images, and the 

spatial alignments and orders of the parts of the object images and so forth. Two kinds of spatial 

information were examined in this study: object location and part/object orientation. According to 

the results presented in the results section, the accuracy of determining object location decreased 

significantly more than the accuracy of determining part/object orientation after the network had 

been trained to do the identity  task when noisy input images were used. The amounts of accuracy 

decrease are comparable because they have been normalized according to their different chance level 

accuracies (see Results section). These findings suggest that the information loss about part/object 

orientation is smaller than the information loss about object location in the identity network. That 

is, these findings indicate that the identity network in our study actively maintained more 

information about part/object orientation than object location. 

Why the Identity Network Actively Maintained More Information About 

Orientation? 

To answer why the identity network actively maintained more information about part/object 

orientation, the accuracies of network(location,identity) and network(orientation,identity) were compared. The 

assumption is networklocation would retain more information about object location in its second to 

last layer while networkorientation would retain more information about part/object orientation in its 

second to last layer. 
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According to the nonlinear decoder results, the accuracy of network(orientation,identity) is 

significantly higher than the accuracy of the network(location,identity). These findings suggest that 

part/object orientation information is more important for the identity task. It could be because in 

order to tell whether the object images are in the unscrambled order or not, the network needs to 

determine the part/object orientation. This is because the definition of the order of parts depends on 

the part/object orientation, as explained in the methods section. However, information about object 

location is less important for our identity task because in our task, the location of the object image 

is irrelevant for identifying the scrambled/unscrambled object image. This suggests that spatial 

information is preserved along the ventral pathway because it is behaviorally useful. 

Likewise, given that some object recognition tasks can require an ability to disambiguate the 

same or similar objects in different locations (Garcia & Buffalo, 2020; Suzuki, Miller, & Desimone, 

1997; Byun & Lee, 2010), we would expect that if our identity network was trained with such an 

object recognition task, spatial location information would be preserved to a greater extent than 

what we report in our study. Our findings suggest that spatial information is preserved along the 

ventral pathway when this information is behaviorally useful for the identification task. 

When linear decoders are used, the difference between the accuracies of 

network(orientation,identity) and network(location,identity) are not significant, but in a similar direction as the 

nonlinear decoders. It is possible that the current methods and experiments are not sensitive enough 

to detect a small difference using linear decoders. Alternatively, it is possible that the amount of 

linearly decodable information about identity in networklocation and networkorientation is not 

significantly different. However, it is important to point out that the question we were trying to 

answer is whether the question of which of the orientation or location is more important for doing 

the identity task. The brain is the subject who does the identity task and the brain is nonlinear. 

Therefore, we feel the results obtained using nonlinear decoders is most relevant to understanding 

neural decoding. Nevertheless, future work is needed to better understand and test the reliability of this 

difference between nonlinear and linear decoders. 

Is There Information About Object Identity (Scrambled/Unscrambled or Type of 

Shoes) in the Space Network? 

The accuracy of network(space,identity) is significantly higher than the accuracy of 

networkidentity baseline when both of them were trained to identify scrambled/unscrambled images (the 
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identity task). This indicates that even though networkspace was trained to determine the location 

and orientation of the parts/images, its later processing stage still had some information that was 

necessary to do the identity task. It may be because the dorsal pathway processes parts/objects or face 

representation information in order to better recognize the object/face’s configural identity (Freud et 

al., 2016). For example, though face recognition is believed to be mainly processed by the ventral 

pathway (Grill-Spector, Weiner, Gomez, Stigliani, & Natu, 2018), in a same–different face detection 

task, configural but not featural processing of faces was found in the posterior dorsal pathway 

(Zachariou, Christine V. Nikas, Gotts, & Ungerleider, 2016). TMS centered on the parietal regions 

impaired performance on configural but not featural face difference detection (Zachariou et al., 2016), 

which suggested that the dorsal pathway processing is important for the intact perception of object 

configural information. 

Furthermore, the accuracy of network(space,identity) is significantly lower than the accuracy 

of network(identity,identity). Likely, as information goes from the input layer to the second to last layer, 

some information about scrambled/unscrambled identity may be lost because it is not useful to have 

very precise information about scrambled/unscrambled identity for networkspace’s task (identifying 

locations and orientations). 

On the other hand, according to the nonlinear decoder results, the accuracy of 

network(space,shoes) is not significantly higher than the accuracy of networkshoes baseline. According to 

the linear decoder results, although the accuracy of network(space,shoes) is significantly higher than the 

accuracy of networkshoes baseline, the accuracy of network(space,shoes) is still significantly lower than 

network(space,identity). Together, these findings indicate that networkspace’s later processing stage retains 

less information about the identity of shoes (whether it is a sandal or a closed shoe). The reason that 

the space network contains information about object scrambled/unscrambled identity may be 

because the global object recognition information (scrambled/unscrambled) retained is relevant to the 

networkspace’s task, but the specific feature recognition information (the identity of shoes) is not 

relevant. 

When the space network was determining object orientation or location, it did not need to 

know object identity (scrambled/unscrambled). So what might be the benefit of retaining this 

information? The reason may be relevant to some studies about tool processing. Recent studies 

found that tool sensitivity undergoes further refinement between the ages of 4 and 8 years, which 

indicated that sensitivity to objects in the dorsal pathway may require more motor experience and 
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learning during childhood (Kersey, Clark, Lussier, Mahon, & Cantlon, 2016; Freud et al., 2016). 

Young children are more likely to categorize objects based on their physical features (e.g., material 

of the object) rather than their function-related features (Smith, Jones, & Landau, 1996; Landau, 

Smith, & Jones, 1998). These studies indicate that the dorsal pathway may retain object function-

related features (including the spatial relation of parts, important in scrambled/unscrambled) when 

it is trained to do spatial tasks during motor learning (for tasks that require localization and 

orientation) and such motor training can help people learn how to categorize different kinds of 

tools based on these function-related features. The shoe identity may be more similar to an object 

physical feature (and does not require spatial relation of parts), and thus it is not retained by the 

dorsal pathway. These arguments would need to be confirmed by future studies. 

Independence not Interactions: What These Simulations Imply About the Ventral 

and Dorsal Cortical Visual Pathways 

Some previous studies (A. B. Sereno & Lehky, 2011; A. B. Sereno et al., 2020) have found 

that the ventral pathway had representations about space, but these spatial representations were 

different from the spatial representations in the dorsal pathway. The spatial representations in the 

ventral pathway were topological (“categorical”) whereas the spatial representations in the dorsal 

pathway were precise and accurate (“coordinate”). They have suggested that it might be that objects’ 

shape and spatial information are differently and independently constructed within each pathway in 

order to achieve different functions (object recognition or spatial recognition). In addition, Freud et 

al. (2015) also suggested that object representations in the dorsal pathway can be computed 

independently from those in the ventral pathway. According to our simulation results using nonlinear 

decoders, the spatial information retained in networkidentity had more explicit information about 

orientation than location. Information about orientation is more useful for identifying 

scrambled/unscrambled images. Nevertheless, given that networkidentity is used to model the ventral 

pathway and networkspace is used to model the dorsal pathway, these results agree with previous 

experimental findings as well as the interpretation that objects’ identity and spatial information are 

differently and independently constructed within each pathway in order to achieve different 

functions as opposed to the idea that these “crossed” signals are coming from the other stream 

(Zachariou et al., 2014; van Polanen & Davare, 2015). Hong et al. (2016) found that spatial 

information increased along the ventral stream, and their computational modeling also suggested 
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that spatial information that is present within the pathway is extracted along the ventral pathway, so 

it becomes more explicit at the later processing stages of the ventral pathway. 

Some previous studies also found the dorsal pathway had representations about objects’ shapes 

(A. B. Sereno & Maunsell, 1998; M. E. Sereno, Trinath, Augath, & Logothetis, 2002; Konen & 

Kastner, 2008) and some have argued that these representations of objects’ shapes are different from 

the object representations in the ventral pathway (Lehky & Sereno, 2007; Janssen, Srivastava, 

Ombelet, & Orban, 2008). According to our simulation results, the identity information retained in 

networkspace had more information about the scrambled/unscrambled identity (global recognition) 

than it did about shoes identity (feature recognition). These findings likely occurred because 

networkspace extracted spatial information about the arrangements of features from the inputs and this 

extracted spatial information was useful for the scrambled/unscrambled (or global) identity task but 

did not help with the shoe identity (feature recognition) task. 

What Might be a Reason for why There are Two Relatively Segregated Visual 

Pathways in the Brain? 

Suppose the ventral pathway in the brain works similar to networkidentity and the dorsal 

pathway works similar to networkspace. There are two possible ways to determine an object’s identity 

and spatial information. One way is to use a single pathway to process visual inputs and determine 

the object’s identity and spatial information (e.g. location and orientation) at the same time. Another 

way is to segregate these goals (identity and space) and use two separate pathways to process visual 

inputs. In this dual stream method, one pathway processes the visual inputs and is critical for object 

identity, whereas the other pathway processes the same visual inputs and is important for spatial 

information and visuomotor control; with separate cortical regions/streams responsible for the 

object’s identity and spatial information. Experimental evidence has shown that the brain is using 

the second way to determine object’s identity and spatial information (Ungerleider & Mishkin, 

1982), but why? 

 

To address this question, the accuracies of networkcombine identity and space and 

networkseparate identity and space were compared. networkcombine identity and space was 

used to simulate the process of doing the identity and spatial tasks using a single pathway and 

networkseparate identity and space were used to simulate the process of doing the identity and spatial tasks 
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using two separate pathways. The testing accuracy of networkseparate identity and space is significantly 

higher than the accuracy of networkcombine identity and space. It implies that when two pathways are 

used to determine an object’s identity and spatial information separately, the neural network has 

better performance. Our findings suggest there are advantages for the brain to use two separate 

pathways to determine identity and spatial information. 

On the other hand, according to the results discussed in previous sections, if there is only a 

single combined pathway and this pathway processes space information first, then at a later time point 

processes identity, there would be less information about object identity. As a result, this single 

pathway structured brain wouldn’t be able to do object recognition accurately. In addition, if a single 

pathway processed object identity first, then this pathway would lose information about space and 

wouldn’t be able to accurately determine the locations and orientations of the objects. 

In summary, in order to accurately identify objects and accurately determine the location 

and orientation of objects, these findings suggest that two separate pathways are advantageous in order 

to process the same input (visual information) in different ways for different tasks or goals. However, 

in some tasks or conditions, the goal may require coordination of the information from these 

segregated pathways (e.g., reaching for objects only if they are edible). In these cases, processing 

information differently using multiple separate pathways may cause a binding problem (Treisman, 

2002). We suggest here, that the binding problem may be lessened by using the spatial information 

contained in the identity network and object identity information in the spatial network. 

We are not aware of any published study examining exactly how much information and what 

kinds of information are extractable from neural networks solving these different tasks jointly or 

separately. These are computationally tractable questions that are important and timely. Our 

simulations using CNNs ignore a lot of details of real world tasks and real biological neural networks 

(e.g., different cell types and connectivity or the fact that ventral stream has more cortical areas than 

dorsal). These simplifications are important and necessary to make direct computational comparisons 

possible. Our intent is not to claim that the simulation findings emulate physiological conditions of 

these brain pathways. Our claims concern whether or not there could be a computational need for 

properties retained in distinct pathways or computational need for separate pathways for recognition 

and non-recognition tasks. 

We repeated the simulations of decoding space information from networkidentity and decoding 

identity information from networkspace with some different parameter settings in brain networks or 
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decoder networks. Because our findings do not strongly depend on specific parameter settings of the 

brain networks or decoder networks, our findings may also be valid for the brain though the structures 

of biological neural networks may be different. In sum, our computational findings are adequately 

supported by the results shown above and certainly have relevance to better understanding of the 

computational constraints of neural computation. 

Limitations and Future Directions 

First, we constrained the alignments of the three parts in each object image to always be 

the same, and we defined object orientation according to alignment of parts. In this case, the identity 

of an object (scrambled/unscrambled) depends on the simple 1D order of parts and the 1D order of 

parts depend on the alignment of parts. However, in reality, the identity of an object may not be 

dependent on the 1D order or alignment of parts. In other words, the dependency between object 

identity and the alignment of parts is just one simple example of the possible dependency between 

object identity and spatial information of parts. These dependencies in real life could be different and 

more complex. For example, an object may be unscrambled, even when different parts of an object 

do not have the same alignment (e.g. the yoga pose of Uttanasana, standing forward bend, where the 

head is upside down, but the feet are right-side up). In this case, the identity of an object 

(scrambled/unscrambled) no longer depends on the alignment of parts, but it may still depend on 

other 2D or 3D spatial information of parts (such as the relative distance between parts, relative 

locations of parts, and other topological information) that affect object identity recognition. A 

previous study has found that object recognition accuracy can be improved by taking into account 

the spatial distribution of object parts. They found this via mathematical modeling and did not use 

artificial neural networks (Morales-González & García-Reyes, 2013). Many objects are different 

not because they have different physical features like color or texture, but because they have different 

spatial relations between parts. Therefore, it is very likely that in general, the identity artificial 

neural network retains some spatial information of parts because this information increases object 

recognition accuracy. In our current study, we demonstrated that the identity network retains some 

spatial information when object identity is dependent on the alignment of parts. In addition, we 

ran simulations where the image order was only dependent on the order of parts and found no 

differences in the major findings we report. We used relatively simple object images to make sure the 

variables used in the simulated experiments are well defined and controlled (e.g. all objects consist 
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of three parts, objects’ orientations and locations are clearly defined). If more complex and realistic 

images were used, then the objects in the images would have much more variations and it would 

be more difficult to define and control the variables that might increase or affect the computational 

differences we report. In the future, it is important to examine object recognition accuracy in more 

general settings where more realistic images are used and the object identity is based on other higher 

dimensional or topological spatial information. 

In addition, motion is also an important property of both the ventral and dorsal cortical visual 

pathways (M. E. Sereno et al., 2002). As our goal was proof of computational concept, we did not 

use more complex stimuli and models which could complete tasks using motion. In the future, it would 

be interesting to use more complex artificial neural network models to test whether our findings still 

hold when the networks are more elaborate and can respond to more complex moving stimuli, scenes, 

and tasks. However, given the vast known variety, for example in cell type, receptors, connectivity, or 

modules, as well as variety of stimuli, tasks and experiences and training that a single brain 

encounters by the age of 20, even a CNN model that generalized to more complex stimuli, multiple 

tasks as well as predicted neural responses in visual cortical areas, would still remain disputable as 

an accurate model of a real human brain. 

Finally, we used a supervised learning rule. Many researchers think the brain is mainly using 

unsupervised learning and reinforcement learning to learn how to accomplish different tasks (Hinton 

& McClelland, 1988). Although previous work has argued that supervised learning may be 

biologically plausible (Lillicrap et al., 2020; Whittington & Bogacz, 2019), it would be interesting 

to examine whether more biologically plausible learning rules affect any of the findings we report. 

Future studies should also try to localize objects more accurately (give more accurate coordinates 

when localizing objects). In addition, the current study can only localize one object at a time. It 

would be interesting in future work to use more realistic and biologically plausible networks which 

can localize and identify multiple objects at the same time. 

Conclusion 

In summary, our simulations imply that both ventral and dorsal cortical visual pathways 

contain information about both identity and space, even when trained with a single identity or 

location task. We have also shown that the ventral pathway does not contain all types of spatial 

information equally and the dorsal pathway does not contain all types of object identity information 
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equally. In our simulations and tasks, there was more orientation information than location 

information retained in the ventral pathway. 

Likewise, we found that in the dorsal pathway there was more information retained about the 

whole object (global recognition) than the information about individual features (feature 

recognition). These modeling findings suggest that the object information retained in the dorsal 

pathway and spatial information retained in the ventral pathway are not the same properties 

respectively retained in the ventral and dorsal pathways themselves. The retained object and spatial 

information in the dorsal and ventral pathway, respectively, appear to be those aspects of identity 

and space that are most needed to accomplish spatial and identity tasks, respectively. As a result, 

the modeling suggests that the identity and spatial information retained in the two pathways needs 

to be different in order to accurately accomplish different kinds of tasks. Furthermore, we show that 

two separate pathways are needed in order to process visual information in different ways so that the 

brain can accomplish different kinds of visual tasks more accurately. Using a computational approach, 

we provide a framework to test the properties and functional consequences of two independent visual 

pathways (with no cross connections) and show that the findings can provide insight into recent 

contradictory findings in systems neuroscience. 
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Table 1. Inputs and task goals of different decoders when the brain network was trained with 

a different or same task. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Decoder Name Take the second to last layer 

activities from 

To do the task 

network(space,identity) 

network(location,identity) 

network(orientation,identity) 

networkspace 

networklocation 

networkorientation 

identity 

identity 

identity 

network(identity,space) 

network(shoes,space) 

networkidentity 

networkshoes 

space 

space 

network(identity,location) 

network(identity,orientation) 

networkidentity 

networkidentity 

location 

orientation 

network(identity,shoes) 

network(space,shoes) 

network(space,identity,shoes) 

networkidentity 

networkspace 

network(space,identity) 

shoes 

shoes 

shoes 

network(identity,identity) 

network(space,space) 

networkidentity 

networkspace 

identity 

space 
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Table 2. Average testing accuracies in percentage (%) ± standard deviations (%) for brain 

networks and nonlinear decoder networks. The column headers are the names of the brain 

networks. The row headers are the kinds of information that decoder networks were trying 

to decode. The data are accuracies obtained by various decoder networks except for the 

data in the row labeled with “Brain”. The row header “Brain” means there is no decoder 

and it is the accuracy obtained by the brain network. Definitions of decoder networks are 

listed in Table 1 and Table 2. The data for simulations that were not conducted are labeled 

“NA”. 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Brain 

Decoders 
Identity Space Shoes Orientation Location 

Baseline Accuracy 

(Decode from the 

untrained brain 

network) 

60.7 ± 2.0 48.0 ± 

3.9 

60.7 ± 

2.4 

38.2 ± 1.1 

(noisy inputs) 

44.2 ± 4.8 

(noisy inputs) 

No Decoder (Brain 

Network Accuracy) 

80.2 ± 1.8 85.7 ± 

3.1 

73.4 ± 

1.9 

82.6 ± 2.3 

(noisy inputs) 

97.0 ± 1.1  

(noisy inputs) 

Identity 81.6 ± 0.8 71.2 ± 

2.8 

NA 72.2 ± 1.2 65.0 ± 2.0 

Space 75.8 ± 2.9 86.5 ± 

1.2 

61.0 ± 

1.6 

NA NA 

Shoes NA 57.5 ± 

2.1 

NA NA NA 

Orientation 34.5 ± 3.9 

(noisy inputs) 

NA NA 84.1 ± 0.7 

(noisy inputs) 

NA 

Location 29.9 ± 4.1 

(noisy inputs) 

NA NA NA 97.3 ± 0.5 

(noisy inputs) 
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Table 3. Average testing accuracies for networkcombine identity and space and networkseparate identity 

and space. The networkcombine identity and space and the networkseparate identity and space are used to 

simulate object identification and localization with one pathway or two separate pathways. 

 

 

 

 

 

 

 

 

 

  

Network Average 

Accuracy(%) 

Chance Level 

(%) 

Standard 

Deviation (%) 

networkcombine identity and space 72.8 1.4 2.1 

networksseparate identity and space 76.8 1.4 1.5 
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Table 4. Comparisons of testing accuracies between different networks. The first two 

sections examine whether there is information about space in the identity network and why 

there is information about space in the identity network. The next section examines whether 

there is information about identity and what kind of identity information is in the space 

network. The final section compares testing accuracies of a network doing the identity and 

spatial tasks using two separate pathways with a network doing the identity and spatial tasks 

using a single pathway. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Comparisons of testing accuracies between different networks 

Network 1 Network 2 Average 

Difference 

in Accu- 

racy  (%) 

(∗: p < 

0.05,  ∗  

∗: 

p  < 0.01, 

∗ ∗ ∗: p < 

0.001) 

p-value 

network(identity,sace)  

network(identity,space) 

network(identity,space) 

networkspace baseline 

network(space,space) 

network(shoes,space) 

27.8 ∗ ∗ ∗ 

-10.7 ∗ ∗ ∗ 

14.8 ∗ ∗ ∗ 

< 0.001 

< 0.001 

< 0.001 

network(location,identity) 

network(orientation,identity) 

network(location,identity) 

network(space,identity) 

network(space,identity) 

network(orientation,identity) 

-6.2 ∗ ∗ ∗ 

1.0 

-7.2 ∗ ∗ ∗ 

< 0.001 

0.324 

< 0.001 

network(space,identity) 

network(space,identity) 

network(space,shoes) 

networkidentity baseline 

network(identity,identity) 

networkshoes baseline 

10.5 ∗ ∗ ∗ 

-10.4 ∗ ∗ ∗ 

-3.2 ∗ ∗ 

< 0.001 

< 0.001 

0.005 

networksseparate identity and space networkcombine identity and space 4.0 ∗ ∗ ∗ < 0.001 
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Table 5. Average testing accuracies for the some networks with different settings (different 

dataset size, or different number of filters, or different kernel sizes). Only one setting was 

changed at a time. Definitions of decoder networks are listed in Table 1 and Table 2. If 

labeled with "1200 samples", then 1200 images were used as dataset. If labeled with "increase 

filters", then the number of filters in each convolutional layer doubled from the first layer to 

the last layer (64, 128, 256 filters). If labeled with "different kernel sizes", then the kernel 

sizes for the first, second, third convolutional layers were reduced to 5 × 5, 2 × 2, 2 × 2 

respectively. If labeled with "2 layer decoder", then the decoder with 2 hidden layers was used. 

If labeled with "50 units decoder", then the decoder with 50 units in each hidden layer was 

used. For the other networks, 600 images and regular parameter settings shown in Figure 3 

and Figure 4 were used. 

 

Network Average 

Accuracy(%) 

Chance Level 

(%) 

Standard De- 

viation (%) 

networkidentity baseline 

networkspace baseline 

60.7 

48.0 

50.0 

2.8 

2.0 

3.9 

networkidentity baseline 1200samples 77.7 50.0 2.1 

networkidentity baseline increase filters 69.5 50.0 2.0 

networkidentity baseline different kernels 67.3 50.0 2.1 

networkspace baseline 1200samples 57.6 2.8 2.1 

networkspace baseline increase filters 62.4 2.8 2.7 

networkspace baseline different kernels 50.4 2.8 2.9 

networkidentity baseline 2layer decoder 59.4 50.0 2.1 

networkspace baseline 2layer decoder 48.9 2.8 3.7 

networkidentity baseline 50units decoder 60.0 50.0 2.5 

networkspace baseline 50units decoder 41.4 2.8 5.9 

network(identity,space) 75.8 2.8 2.9 

network(identity,space) 1200samples 79.3 2.8 2.0 

network(identity,space) increase filters 67.5 2.8 1.9 

network(identity,space) diff erent kernels 69.5 2.8 4.0 

network(space,identity) 71.2 50.0 2.8 

network(space,identity) 1200samples 87.4 50.0 0.9 
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Table 5 continued 

network(space,identity) increase filters 75.5 50.0 2.5 

network(space,identity) different kernels 80.8 50.0 1.4 

network(identity,space) 2layer decoder 75.4 2.8 1.8 

network(space,identity) 2layer decoder 70.4 50.0 1.3 

network(identity,space) 50units decoder 73.1 2.8 3.3 

network(space,identity) 50units decoder 69.8 50.0 3.4 
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Table 6. Comparisons of testing accuracies between different networks. The first section 

examines whether there is information about space in the identity network and whether there is 

information about identity in the space network when number of samples = 1200. The second 

and third sections examine whether there is information about space in the identity network 

and whether there is information about identity in the space network when different network 

parameter settings were used. The fourth and fifth sections examine whether the results would 

change when decoders with different number of hidden layers or different number of units 

were used. If labeled with "1200 samples", then 1200 images were used as dataset. If labeled 

with "increase filters", then the number of filters in each convolutional layer doubled from the 

first layer to the last layer (64, 128, 256 filters). If labeled with "different kernel sizes", then 

the kernel sizes for the first, second, third convolutional layers were reduced to 5 × 5, 2 × 2, 2 

× 2 respectively. If labeled with "2 layer decoder", then the decoder with 2 hidden layers was 

used. If labeled with "decoder 50 units", then the decoder with 50 units in each hidden layer 

was used. For the other networks, 600 images and regular parameter settings shown in Figure 

3 and Figure 4 were used. 

 

Comparisons of testing accuracies between different networks 

Network 1 Network 2 Average 

Difference  in 

Accuracy (%) 

(∗ ∗ ∗: p  < 

0.001) 

p-value 

network(identity,space) 

1200samples 

networkspace baseline 1200samples 21.8 ∗ ∗ ∗ < 0.001 

network(space,identity) 

1200samples 

network(identity baseline) 

1200samples 
9.8 ∗ ∗ ∗ < 0.001 

network(identity,space) increase 

filters 

networkspace baseline increase 

filters 
5.1 ∗ ∗ ∗ < 0.001 

network(space,identity) increase 

filters 

network(identity baseline) increase 

filters 
6.0 ∗ ∗ ∗ < 0.001 

network(identity,space) different 

kernels 

network(space baseline) different 

kernels 
19.1 ∗ ∗ ∗ < 0.001 

network(space,identity) different 

kernels 

network(identity baseline) different 

kernels 
13.5 ∗ ∗ ∗ < 0.001 

network(identity,space) 2layer 

decoder 

network(space baseline) 2layer 

decoder 
26.5 ∗ ∗ ∗ < 0.001 

network(space,identity) 2layer 

decoder 

network(identity baseline) 2layer 

decoder 
11.0 ∗ ∗ ∗ < 0.001 

network(identity,space) 50units 

decoder 

network(space baseline) 50units 

decoder 
31.7 ∗ ∗ ∗ < 0.001 

network(space,identity) 50units 

decoder 

network(identity baseline) 50units 

decoder 
9.8 ∗ ∗ ∗ < 0.001 
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Table 7. Average testing accuracies in percentage (%) ± standard deviations (%) for linear 

decoders. The column headers are the names of the brain networks. The row headers are 

the kinds of information that linear decoder were trying to decode. The data are accuracies 

obtained by various decoder networks. Definitions of decoders are listed in Table 1 and 

Table 2. The data for simulations that were not conducted are labeled “NA”. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Brain 

Decoders 
Identity Space Shoes Orientation Location 

Baseline Accuracy 

(Decode from the 

untrained 

brain network) 

52.0 ± 5.1 2.8 ± 1.2 53.3 ± 3.5 24.0 ± 5.3  

(noisy inputs) 

10.9 ± 5.2  

(noisy inputs) 

Identity 93.6 ± 1.9 63.2 ± 4.3 NA 63.0 ± 4.2 61.4 ± 6.5 

Space 76.1 ± 4.1 96.1 ± 1.7 68.8 ± 6.0 NA NA 

Shoes NA 58.7 ± 3.7 NA NA NA 

Orientation 28.7 ± 3.4 

(noisy inputs) 

NA NA 94.4 ± 2.1 

(noisy inputs) 

NA 

Location 15.8 ± 5.9 

(noisy inputs) 

NA NA NA 98.9 ± 0.9 

(noisy inputs) 
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Table 8. Comparisons of testing accuracies between different linear decoders. The first two 

sections examine whether there is information about space in the identity network and why 

there is information about space in the identity network. The next section examines whether 

there is information about identity and what kind of identity information is in the space 

network. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Comparisons of testing accuracies between different linear decoders 

Network 1 Network 2 Average 

Difference 

in Accu- 

racy (%) 

(∗: p < 

0.05, ∗ ∗: 

p < 0.01, 

∗ ∗ ∗: p < 

0.001) 

p-value 

network(identity,space) 

network(identity,space) 

network(identity,space) 

networkspace baseline 

network(space,space) 

network(shoes,space) 

73.3 ∗ ∗ ∗ 

-20.0 ∗ ∗ ∗ 

7.3 ∗ ∗ 

< 0.001 

< 0.001 

0.006 

network(location,identity) 

network(orientation,identity) 

network(location,identity) 

network(space,identity) 

network(space,identity) 

network(orientation,identity) 

-1.8 

-0.2 

-1.6 

0.47 

0.92 

0.52 

network(space,identity) 

network(space,identity) 

network(space,shoes) 

network(space,shoes) 

networkidentity baseline 

network(identity,identity) 

networkshoes baseline 

network(space,identity) 

11.2 ∗ ∗ ∗ 

-30.4 ∗ ∗ ∗ 

5.4 ∗ ∗ 

-4.5 ∗ 

< 0.001 

< 0.001 

0.003 

0.02 
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Figure 1. Object image locations and orientations. A. Nine possible locations of the center of an 

object image. B. Four possible orientations of an object image (up, down, left, and right 

orientations, respectively; going from top to bottom images and, for the first row, left to right images). 

Note that the alignment of parts within an image are not randomized, are always in the same alignment, 

and always constrained to the two directions along the long axis. C. An example of an unscrambled 

(US) image with "down" orientation at location 7. D. An example of a noisy scrambled (S) image 

with "right" orientation at location 5.  
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Figure 2. Unscrambled and scrambled object orders. The alignment of the parts within an object 

and the orientation of the object are always the same. For each orientation, there are six possible 

orders of parts. Only the first image for each orientation (first image in each row) is considered as 

an unscrambled object image (labeled "US"). The other images for a given orientation are scrambled 

object images (labeled "S"). A. Up orientation. B. Down orientation. C. Left orientation. D. Right 

orientation.  



 

77 

 
 

Figure 3. The structure of brain networks. Each neural network consists of several hidden layers, 

including the convolutional layer, the pooling layer, and the fully connected dense layer. The only 

difference between different brain networks is the size of their output layer. The size of the output 

layer depends on the task they were trained to do. 

  



 

78 

 
 

Figure 4. The structure of a decoder network. The input dimension is equal to the number of units 

in the network layer that it was trained to decode from. The output dimension depends on what 

kind of information it was trained to decode.  
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Figure 5. The structure of networkcombine identity and space, the single network that takes the images as 

visual inputs and determines objects’ identity and space information as 1 of the 72 possible 

combinations of identity (2 possible) and space (36 possible).  



 

80 

 
 

Figure 6. The structure of networkseparate identity and space, the two brain networks that take  the 

images as visual inputs. The brain identity network determines objects’ identity and the brain space 

network determines space. Later, the results from the two networks are combined to determine 

objects’ identity and space information as 1 of the 72 possible combinations of identity (2 possible) 

and space (36 possible). 


