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ABSTRACT 

With the rapid development of clean energy technologies, various bottlenecks on supplies 

of related critical materials emerged. Since supply chains of critical materials often involved with 

multiple layers of markets with different characteristics, to better identify bottlenecks and increase 

critical material availability, it is vital to have better understanding and projection on these markets. 

Agent-based modeling is a bottom-up approach that can imitate heterogenous objects in a 

changing environment. Therefore, it is an excellent tool to simulate markets with fierce 

competition and fast revolution. This work demonstrates the application of agent-based modeling 

by discussing three different topics related to critical material demand and supply induced by clean 

energy products.  

The first application focused on LED residential lighting market. LED lighting market 

grew rapidly and introduced potential demand on several critical materials including indium. The 

work modeled consumers as heterogenous and irrational agents in network purchasing new bulbs 

based on their own preferences towards different technologies. Projections of LED market were 

made based on different assumptions reflecting possible policies and events. 

The second model explained the indium refining market. Indium is an important by-product 

metal in LCD display and CIGS photovoltaics manufacturing. Refineries competition on indium 

supply market was modeled based on agent-based modeling and game theory. Since indium is a 

by-product metal, facilities capacities and expansions were also taken into consideration. Multiple 

uncertainties in the market were modeled as scenarios. 

The last work dedicated to end-of-life electric vehicles recycling market. Spent EV 

batteries contain valuable critical materials and are usually sold to recyclers by end-use consumers. 

However, a large portion of EOL EV batteries were sold to illegal recyclers with cost advantages. 

This work established an agent-based model utilizing biding mechanics to identify cost gaps 

between legal and illegal recyclers. Several scenarios representing uncertainties and possible 

policies were explored. 
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 INTRODUCTION 

Clean energy technologies are those technologies linked with sustainable and 

environmental-friendly energy sources, including solar, wind, water, geothermal, bioenergy and 

nuclear. It also includes energy-saving and fossil-fuel replacement technologies, such as light-

emitting diodes (LED) lighting and electric vehicles (EV). In 2013, Department of Energy (DOE) 

listed four clean energy technologies as most promising, including wind power, solar power, LED, 

and EV [1]. These technologies grew rapidly in the last decade. For example, LED lighting 

occupied 15% of total lighting market in 2016, and 30% in 2018 [2]. With the development of 

these technologies, demand for several type of rare material, known as critical materials, increased 

significantly. In 2011, DOE listed 16 materials as critical to clean energy technologies. These 

materials are important to one or several clean energy technologies and are usually facing potential 

supply risk [3]. Meanwhile, EU and China also listed several materials as “critical” or “strategic” 

[4] [5]. To better advance clean energy technologies, it is vital to secure a steady supply of such 

materials to matching the demand.  

1.1 Understanding the Supply and Demand of Critical Materials 

Several methods have been utilized to analysis critical material supplies from an overview 

perspective. Material flow analysis is an excellent tool to track the supply-demand balance of a 

certain moment. Studies have been conducted on Lithium-ion batteries [6], indium [7], and rare 

earth elements [8]. U.S. Geological Survey also provided annual demand and supply data for 

materials, including critical materials listed [9]. Several studies modeled critical material supplies 

as economic models using regression tools [10] [11] [12]. To illustrate the temporal changes on 

supply-demand balance, system dynamics are employed in addition to material flow analysis to 

create a projection critical material supply and demand markets [13] [14]. 

Taking a closer look at the supply chain, the clean energy technologies market often 

involves with a multi-layer market structure [6], as shown in Figure 1.1. Studies can be focused 

on one or more chains of the market to provide a more detailed insight. Economic reports and 

reserve analysis on critical material mines have been conducted [15] [16]. Renewable energy 

markets penetration studies can be used to assess critical material demand [17]. Analysis on EOL 



 

13 

renewable energy products to retrieve critical materials have also been conducted [18] [19] [20]. 

It has been concluded that critical materials can only be recycled when material price is high 

enough, and the EOL product contains viable amount of economic feasible material. Several 

studies are also interested in the adoption of clean energy technologies, including economical 

model [21] and consumer behavior model [22].  

 

 

Figure 1.1. Market layers 

 

Inevitably, competition exists in every layer of the market. Research have been conducted 

trying to establish an economic model for critical metal supply competition [11] [23], clean energy 

market competition [24] and recycler competition for EOL products [25] [26]. 

Riddle et. al. developed an agent-based model on global rare earth market [27] [28] [29]. 

Their model focused on country level behaviors of the market and included multiple layers of 

Miners

Refineries

Manufacturers

Customers
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elements form miners to manufacturers. Their model provided an excellent example of providing 

a bottom-up based view of the markets and connection between multiple market layers.  

1.2 Introduction to Studies 

The studies mentioned above provide abundant views of various clean energy markets and 

critical material supply-demand balance behind them. However, most of these studies are 

conducted with a top-down view of the problem. Also, most study did not provide enough insights 

over the nature of a competing market. Creating a bottom-up, dynamic and competing market 

model will provide new insights on the non-corporative market behaviors, which already be proven 

in various other fields, such as network channel assignment [30] and power markets [31]. These 

existing models are usually based on game theory, multi-agent optimization problem or agent-

based modeling [32]. 

Critical material related markets are usually with high price volatility and uncertainties due 

to limited market sizes and frequent innovations. Therefore, these markets are extremely sensitive 

to policies, situations, and irregular market behaviors [33] [34]. Agent-based modeling (ABM) is 

a flexible tool to address uncertainties and had been applied to model various markets with high 

uncertainties, such as wind-power electricity market [35] and uncertainty of consumer behaviors 

[36]. ABM adopts a bottom-up computational approach with “agents” imitating decision makers 

in real world events. Agents make interactions with each other and with the “environment”, which 

is the representation of corresponding scenarios in the real world [37]. In a competing market 

model, actors are usually heterogeneous suppliers or customers making decisions. 

This study originally focused on indium supply and demand markets. Indium consumption 

was mainly driven by LCD manufacturing industry. However, several new applications of indium, 

including LED and CIGS thin film photovoltaics, may induce further indium demand [38]. 

Meanwhile, as indium is a by-product of host metal mining and refining, especially zinc, indium 

supply may not increase accordingly to maintain supply-demand balance due to economic and raw 

material availability issue [39]. To investigate both the demand and supply potential of indium, 

two separate models were established. In Chapter 2, an agent-based model focusing on LED 

lighting market is presented as LED may become a new demand source of indium. This model 

demonstrates clean energy technology adaption with heterogeneous customers under stochastic 

behaviors. In Chapter 3, ABM is applied to global indium refineries competing in indium supply 
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market facing demand from emerging photovoltaic cell technology. The market is highly volatile, 

and several market uncertainties are modeled as separate scenarios to assess their influence. The 

research also considered about EOL recycling for indium as a secondary supply. However, indium 

EOL recycling is not economically feasible at the moment and little indium EOL recycling data 

are available [40]. To illustrate that this method could be applied to EOL recycling market 

containing critical materials, another emerging market was chosen by the study. In Chapter 4, a 

model of EOL EV batteries recycling in China is discussed. Both regular and irregular recyclers 

bid for waste batteries and the importance for policy maker to get involved in the market is shown. 

In all, this study provides insights on the various ways of implementing ABM on critical 

material and clean energy technology market, while also makes up examples to provide predictions 

and understandings on several interesting markets with different natures. 
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 AGENT-BASED MODELING OF THE ADOPTION OF HIGH-

EFFICIENCY LIGHTING IN THE RESIDENTIAL SECTOR 

Due to the wide use of incandescent lighting, residential sector has much lower energy 

efficiency comparing to commercial sector. However, adoption of compact fluorescent (CFL) and 

light-emitting diode (LED) technology in residential sector has been slow because of several 

obstacles such as high price tag, poor public information, and additional cost to achieve favorable 

lighting features. A deep understanding on consumer’s behavior is needed to support policy 

development in order to speed up the penetration of CFL and LED in the residential sector. Agent-

based modeling (ABM) has been used to capture the dynamics of complex socio-technical systems, 

and represent a suitable tool. Previous work on ABM of consumer adoption of CFL and LED rely 

heavily on multi-criteria decision making of the agents. Since light bulbs are not a significant 

purchase for most households, it is highly possible that customers will not go through complex 

decision making mechanics. This research establishes an ABM of residential lighting purchase and 

usage within a hypothetical community and tries to illustrate possible adoption paths under 

different scenarios. Agents are divided into three groups with different simple decision heuristics 

when making purchase. Energy consumption and greenhouse gas (GHG) emission from each 

scenario are calculated and compared. Results of the simulation show that incandescent lamps will 

eventually fade out of the market even with no policy implemented. After 25 years, annual energy 

consumption can be reduced by roughly 30% compared to Year 2010. Under best case where 

incandescent bulbs are banned, the energy consumption reduction can be up to 70%. Among 

scenarios, incandescent ban and energy saving campaign yield best energy consumption and GHG 

emission reduction results. LED technology advancement can improve market penetration of LED 

lighting but has little effect on incandescent fade out. It is also shown that lighting technology 

retrofitting can achieve higher reduction on electricity consumption and GHG emission than 

electricity grid improvement.  

2.1 Introduction 

Residential and commercial lighting is an important contributor to total electricity 

consumption in U.S. According to U.S. Energy Information Administration [1], in 2014 about 412 
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billion kWh of electricity was consumed by residential and commercial sector in U.S., which is 

roughly 11% of total U.S. electricity consumption. Between them, residential lighting consumed 

150 billion kWh, which is about half the amount of commercial sector consumption. However, a 

report published by U.S. Department of Energy characterizing the lighting market of 2010 pointed 

out that residential sector had similar lamp density and average lamp wattage comparing to 

commercial sector, whereas only 1/6 of average operating hours [2]. The main reason for the low 

energy efficiency in residential sector is the wide usage of incandescent lighting, including 

traditional incandescent lamps and halogen lamps.  

Due to their low efficiency, incandescent lamps consume more electricity and generate 

more greenhouse gas (GHG) emission to deliver the same luminance comparing to other lighting 

technologies. Two types of lighting, compact fluorescent lamp (CFL) and light-emitting diode 

(LED) lamp are considered as “greener” alternatives to incandescent lighting due to their high 

energy efficiency. An estimate suggests that if incandescent lamps are banned globally by year 

2016, up to 0.2 Gt CO2e of greenhouse gas emission can be reduced by 2020 [3], which is 

equivalent to the total carbon footprint of 10,000 cars with each one driving 100,000 km.  To offer 

a comprehensive understanding on the environmental performance of the lighting technologies, 

several life-cycle assessments that compare incandescent lamp with CFL and LED to evaluate 

retrofitting benefits had been carried out recently [4] - [7]. U.S. Department of energy conducted 

a detailed LCA study [4], including a summary to previous studies and a new LCA result to 

compare incandescent, CFL and LED lighting. Shahzada et al. [5] estimated that to produce 20 

million lumen-hours of light, CFL lighting will have 50% reduction on Sustainable Process Index 

(SPI) footprint and carbon footprint comparing to incandescent lighting, whereas LED lighting 

will have 75% reduction on these two impact categories. In another study, Bergesen et al. [6] 

suggests that CFL lighting will have 60% reduction in 13 of 14 impact categories considered 

including GHG emission comparing to incandescent lighting, while LED lighting will have 80% 

reduction. Franz et al. [7] compared environmental impact of incandescent lighting with several 

different assumptions of LED lighting and the worst case results in roughly 70% reduction of GHG 

emission. Despite these environmental advantages, the adoption of CFL and LED in residential 

section is much slower than commercial sector. A market report from National Electrical 

Manufacturers Association shows that during the first quarter of 2015, incandescent lighting, 

including halogen lamps, still accounts for 53.7% of the total consumer lamps market, whereas 
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CFL lighting claims 40% of the market share and LED lighting has only 6.3% [8]. For commercial 

buildings, CFL lighting already owned over 90% of market share.  

This situation did not remain unnoticed. According to NEEA, over half of stores in 

northwest region of U.S. had promotional material on lighting replacements since 2013, and 

various promotions including advertisement flyers, brochures, demonstrations, and websites were 

conducted [9]. Efforts have been made to develop residential sector energy consumption model to 

provide insights on the problem. Richardson, I. et al. [10] presented a time-series based bottom-up 

model to estimate residential lighting energy demand. In their research, an active time series of 

occupancy was used to calculate the number and time of lighting equipment utilized, with 

consideration of outdoor irradiance level. The result was compared to historical data and proved 

to be with high accuracy. Johnson, B. J. et al. [11] used a Markov chain based approach to model 

residential energy consumption. The research established a statistical model to represent the 

activities of different types of occupants during a day and estimated energy consumption 

accordingly. Meanwhile, predictions of future residential market penetration and energy 

consumption level are made by several reports and researches. NEEA report [9] presented a 

residential lighting market share penetration based on expert opinion, predicting that CFL and LED 

lighting in total will have 49% of market share in year 2016, and 69% of market share in year 2018. 

DOE report [12] presented a top-down model to predict market penetration and energy 

consumption. In the model, consumers are cost conscious and the market penetration is calculated 

by logit regression models based on historical and predicted costs with consideration of technology 

diffusion curve. The result showed that energy consumption can be reduced by 37% at year 2020 

and 67% at year 2030. However, it should be noted that consumers may consider factors other than 

cost when making decisions. To address the issue, two groups of researchers tried to characterize 

future residential lighting market with corresponding energy and environmental consequences 

with agent-based modeling (ABM) approach with consideration of different decision making 

criteria [13] - [14]. Residential lighting market consists of multiple parallel households exposed to 

market information and regulations, which are likely to have different criteria to make decision 

and change their decisions over time. Therefore, a self-evolving and bottom-up model is desired 

if one wants to study the long term evolution of the market. ABM adopts a bottom-up 

computational approach with “agents” imitating actors in real world events. Agents make 

interactions with each other and the “environment”, which is the representation of corresponding 
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conditions, restrictions, and situations in the real world [15]. These features make ABM a suitable 

tool to simulate residential lighting market for its bottom-up nature and the ability to evolve 

through agent-to-agent and agent-to-environment interactions.  

Among the two ABM studies on residential lighting, Chappin et al. [13] established a 

network-based agent based model to illustrate energy consumption and GHG emission reduction 

of residential lighting. In their model, agents made decisions by multi-criteria decision making 

process with different weights distribution. Agents will also adjust their weight by recent 

experience and social network information exchange. Detailed lighting products differences were 

considered with difference in technology, light color, slot type, etc. Several scenarios were 

explored to show the effect of possible policies. Their result indicated that incandescent lamps will 

still be the dominant technology after 40 years without policy support, and incandescent ban will 

be the most effective policy to reduce energy consumption and GSG emission. Hicks et al. [14] 

present a grid-based agent based model to illustrate possible rebound effects due to energy saving 

from adopting new technologies. In their model, agents first made random decisions based on a 

utility function coming from multi-criteria decision results. A survey was carried out to support 

the multi-criteria decision weighting data. Agents exchanged their opinion with their grid 

neighbors. Different rates of rebound effect and two possible scenarios were considered. Their 

result indicated that households will swiftly switch to new technologies, but with high rates of 

rebound effect, energy consumption may not be reduced. 

It should be noted that both of the ABM studies on residential lighting (i.e., Chappin, E. J., 

et al. 2013; Hicks, A. L., et al. 2015) rely heavily on multi-criteria decision making from the agents. 

Early in 1979, Olshavsky et al. pointed out that such decision making process may not be realistic 

when facing a purchase that is not important [16]. Later, Hoyer made an experiment to show that 

most customers make very quick in-store choices by simple heuristics on a single criterion when 

purchasing common product like detergents [17]. Since lighting bulbs are not a significant 

purchase for most households, it is highly possible that customers will not go through complex 

decision making mechanics. Meanwhile, Chappin et al. did not consider use phase cost as a 

decision-making criterion. However, CFL and LED equipment is actually cheaper considering use 

phase cost and most CFL and LED lighting products will state this on their package. Also, since 

the research is conducted in Netherland, several parameters including number of lamps per 

household, average hours per lamp were different from U.S. situation. In model created by Hicks 
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et al., although the agents make stochastic decisions, their utility function are pre-determined and 

cannot illustrate possible opinion changes of the public. To address these issues, this research aims 

to establish an ABM of residential lighting purchase and usage within a community and try to 

illustrate possible adoption paths under different scenarios. Agents, divided into groups, are 

applied with simple decision heuristics. The model provides market penetration and total energy 

consumption estimation of three types of lighting bulbs used in residential sector (i.e., incandescent 

lamp, CFL, and LED) over time. 

2.2 Investigative Method 

This research models residential lighting purchase choice within a hypothetical urban 

residential community with 500 households using network based ABM approach. To calculate 

electricity consumption and lifespan of lighting equipment while keeping reasonable simulation 

speed, the time step of the model is one day. The simulation starts at year 2010 and ends after 25 

years (Year 2035, 9125 days), which allows model validation using historical data while capture 

the market penetration process of CFL and LED. The model is implemented under Repast 

Simphony 2.3.1 [18] 

Each household is considered as an agent within a Watts Beta Small World network, which 

imitates social influence network [19]. Following the average data from USDOE [20], each agent 

will have a random number of lighting positions following a triangular distribution between 5 and 

120 with mean 65, each in need of one light bulb. Also, for each specific lighting position, use 

time per day is assigned with a triangular distribution random number between 0 and 6 hours with 

a mean of 2 hours. The range of lighting positions follows the data from USDOE [20], and the 

range of use time per day is assumed to be the maximum range possible of triangular distribution. 

To simplify the model, type of lighting is limited to traditional incandescent lamp, spiral 

CFL lamp, and LED lamp, with the assumption that these lamps are fully substitutable by each 

other when used for lighting. Each lighting bulb is treated as 60W equivalent and with average 

shelf price. The life span of each bulb is a random number following an exponential distribution 

with average corresponding to lighting type (1000 hours for incandescent, 10000 hours for CFL, 

and 25000 hours for LED). Further differences between lighting bulbs are excluded, such as colors, 

brands, and other features. Energy consumption during manufacture phase for the bulbs [4] is also 

included in the model to show the difference between total energy consumption and use phase 
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energy consumption. Since the price and efficiency of incandescent and CFL bulbs are relevantly 

stable comparing to LED since 2010 (60W and $1.39 for traditional incandescent, 14W and $3.70 

for CFL), these parameters are considered as constant for simplification [1], [9]. For LED 

equipment, USEIA report pointed out that both bulb cost and efficiency changed linearly 

(decreasing and increasing, respectively) during 2010-2014 [1]. At the beginning of the simulation 

(year 2010), LED bulbs cost $68.00 with a rating of 16W [4]. At year 5 (year 2014), LED bulbs 

cost $11.14 with a rating of 10W [9]. Both of these parameters are assumed to change linearly at 

an annual basis (-$11.374 and -1.2W, respectively) between 2010 and 2015. Price drop and energy 

efficiency increase of LED bulbs due to technology advancement after 2015 will be discussed in 

scenario analysis. Besides, average U.S. residential electricity price at year 2010 ($0.115 per kWh) 

and a linear increment from historical data ($0.002 per kWh) is applied over simulation period 

[21]. To calculate energy consumption other than use phase, U.S. DOE life cycle assessment data 

(0.53 kWh per incandescent bulb, 15.75 kWh per CFL bulb, 95.27 kWh per LED bulb) are used 

[4].  

In order to address carbon footprint reduction from residential high-efficiency lighting 

adoption, use phase greenhouse gas (GHG) emission and total greenhouse gas emission including 

manufacturing, transport and disposal phase are calculated in a bottom-up manner. All use phase 

GHG emission (0.518 kg carbon dioxide equivalent (kgCO2e) per kWh) from electricity 

consumption is treated as U.S. average electricity grid emission and calculated from U.S. 

Environmental Protection Agency (EPA) electricity grid emission data [22] and all other GHG 

emission (0.968 kgCO2e per incandescent bulb, 9.167 kgCO2e per CFL bulb and 16.269 kgCO2e 

per LED bulb) is calculated from U.S. DOE life cycle assessment data [4]. All GHG emission is 

assessed using 100-year GWP. 

Whenever a bulb burned out, the agent will replace it with a new bulb at the beginning of 

the following day (since time step is one day). When facing the option to choose a bulb, either at 

the beginning of the simulation or when a bulb burns out, agents are divided into three groups: 

cost heuristic (CH), self attitude heuristic (SAH) and network attitude heuristic (NAH). The actions 

an agent takes during each time step is summarized in Figure 2.1. 
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Figure 2.1. Agent flow chart 

 

CH agents calculate the costs for each lighting position with different bulbs considering 

only a limited period of time from now.  A predetermined random number 𝑦𝑐 following a triangle 

distribution between 0 and 20 with mean 10 represents the time period to calculate the costs. 

Taking current electricity price 𝑝𝑒, current bulb price 𝑝𝑗 (j=1 for incandicent, j=2 for CFL, and j=3 

for LED), current bulb efficiency 𝑒𝑗, average bulb life span 𝑙𝑗, and usage per day for position i 𝑡𝑖, 

the calculated cost for lighting position i with bulb type j is: 

 

                                  cij = pj × ⌈yc × 365 × ti ÷ lj⌉ + pe × yc × 365 × ti                                   (1) 

 

To choose a new bulb, a CH agent compares calculated cost of three different lighting types 

for the lighting position and chooses the cheapest one. For a small purchase like this, households 

are unlikely to carry out a more complicated calculation involving the time value of money. Thus, 

discount rate and other possible cost adjustments are not included. 
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SAH and NAH agents choose new bulb based on their attitude towards three different 

lighting types, representing their overall feelings (satisfaction, familiarity, etc.) towards them. 

SAH agents determine their attitudes solely based on their own experience, while NAH agents are 

also influenced by their neighbors. At the beginning of the simulation, each agent (including CH 

agents) is assumed to have an attitude level of 10 to incandescent bulbs, 1 to CFL bulbs and 0 to 

LED bulbs, reflecting the fact that at year 2010, incandescent bulbs were most well-known and 

LED bulbs were still unknown to most households. Every time an agent has a burnt-out bulb, the 

agent will adjust its attitude of that lighting type. It should be noted that CH agents will also adjust 

their attitudes in order to provide information for NAH agents. NEEA report includes a survey 

regarding satisfactory of CFL and LED customers [9]. Based on this, each time an agent adjusts 

their attitude towards CFL or LED bulbs and the adjustment value is randomly determined with 

probability shown in Table 2.1. For incandescent bulbs, the adjustment value is assumed to always 

be 2, as incandescent bulbs have more pleasant features available like various size and shape 

selection, excellent color rendition, and instant turn-on time. Also, this adjustment is divided by 

the number of same-type bulbs currently used by the agent. This is to reflect the fact that the more 

bulbs an agent owns, the more unlikely the agent’s opinion will be built on a single bulb. When 

adjusting attitudes, if an agent with attitude 0 towards LED lighting finds a neighbor using LED 

bulbs, the agent will change its attitude to 1, representing that the agent receives information about 

LED from the neighbor. For NAH agents, an additional adjustment happens every 90 days. For 

each lighting type, an NAH agent adds attitudes from all neighbors together and find out the type 

with highest total neighbor attitude. The agent then adds 1 rank to its attitude towards that type. 

 

Table 2.1. Probability table of attitude adjustments 

Adjustment Value Incandescent CFL LED 

+2 (Very satisfying) 100% 40% 63% 

+1 (Satisfying) 0% 34% 25% 

0 (Somewhat satisfying) 0% 16% 10% 

-1 (Unsatisfying) 0% 10% 2% 
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To choose a new bulb, both SAH and NAH agents make stochastic decisions. Suppose a 

SAH or NAH agent has an attitude of 𝑎1, 𝑎2, and 𝑎3 towards incandescent, CFL, and LED bulbs 

respectively, the probability for the agent to choose type i as the new bulb is: 

 

                                                       pi = ai/(a1 + a2 + a3)                                                      (2) 

 

Since this model is stochastic, multiple runs are required to reduce the effect of randomness. 

To do so, 10 runs are made first to construct a 95% confidence interval and additional runs will be 

made if relative error of the interval is greater than 0.05. The details of simulation technique can 

be found in [23].  

By default, each agent will be assigned to a heuristic group with equal probability, resulting 

roughly equal population for the three heuristic groups. This in conjunction with all parameters 

mentioned above forms the base case of the model. In order to illustrate more possibilities of future 

and explore the effect of several possible policies, 5 scenarios are explored as below: 

1. Cost-conscious community: In this scenario, we start with 60% CH agents and 20% for 

both SAH and NAH agents. This is to show how the model will perform when a different 

population base is provided. 

2. Incandescent lamp ban: Starting from the 10th year (year 2020, 3650 days), no new 

incandescent bulbs can be bought. However, incandescent bulbs already installed can 

still be used until they burn out. 

3. LED technology advancement: According to DOE projection, LED lighting efficiency 

will increase to 200 lumens per watt (4W LED as 60W incandescent equivalent) and 

price will fall to $3.34 at year 2030. In addition to existing adjustment to LED price and 

efficiency, starting from year 5, LED lighting efficiency and price will adjust on an 

annual basis (at the rate of -$0.52 per year for price, and -0.4W per year for wattage) 

until year 20 [1]. Also, a more conservative scenario where LED only advances at half 

speed (-$0.26 and -0.2W per year until year 20) is explored to show the impact of slow 

technology advancement. 

4. Energy-saving campaign: In this scenario, all agents are influenced by a campaign to 

improve their attitude towards CFL and LED bulbs. The campaign will increase their 
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attitudes towards CFL and LED by 1 every year starting in year 5. A more effective 

scenario is also explored where agents’ attitudes increase by 1 every 90 days.  

5. Energy efficient incandescent: According to The Energy Independence and Security Act 

(EISA), 60W equivalent incandescent lamps should improve their efficiency to 43W by 

the start of 2014. In response to this act, incandescent bulb rate in this scenario will be 

reduced to 43W at year 5. 

6. Cleaner electricity grid: To compare the GHG emission reduction effects of residential 

lighting retrofitting and electricity grid retrofitting, this scenario uses projected GHG 

emission data from electricity sector and compares GHG emission with base case. The 

projected GHG emission per kWhr in 2035 of electricity grid is 88% of 2012 data [24]. 

7. Mercury issues with CFL lighting: It is highly possible that mercury content of CFL 

lighting will become a public concern. In this scenario, a $3 CFL mercury tax will be in 

effect and attitude towards CFL will decrease by 1 at year 5. 

8. Rebound effect: As Hicks, A. L., et al pointed out, households may tend to extend their 

lighting hours or increase number of lighting after they switch into a more efficient 

option. In this scenario, after an agent switch to a more cost-efficient option for a lighting 

position, they will extend lighting hours of that position by 10%. Also, they have a 10% 

probability to have a new lighting position. 

2.3 Model Verification and Validation 

Several verification and validation techniques proposed for ABM are employed here to 

verify the model [25]. First, tracing technique is applied by observing the behavior of one single 

agent throughout a test run. This ensures that the model runs as designed. For each heuristic group, 

an agent is followed and no abnormal behavior is found. Secondly, 10 test runs are made with 

arbitrary random seed. The results are used for two purposes. An internal validity is made by 

observing the data range. The result is shown in Table 2.2. Besides, historical data, including EIA 

estimation and DOE estimation are applied to compare with test run results [1] [20]. The results, 

including critical parameters applied, are shown in Table 2.3.  

From the internal validity test, it is apparent to see that the model itself is consistent. For 

the 10 test runs on the base case, no extreme results are observed and standard deviation of the 

output is smaller than 5% of mean value. When compare with historical data, base case results 
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give an average lamp power close to DOE and EIA data at the beginning of the simulation. From 

data provided by EIA, it is also possible to estimate annual average energy consumption per 

household for year 2014. The result is presented as average lamp wattage. The model gives slightly 

lower energy consumption at the beginning but slower energy consumption reduction than EIA 

data. Still, the average wattage power is close to the historical data. 

 

Table 2.2. Internal validity test 

Test data Base case 

2010 Use Phase Energy Consumption (kWh) 

Min 959331 

Max 1034983 

Average 997785 

stdev 28518.51 

2014 Use Phase Energy Consumption 

(kWh) 

Min 852776 

Max 923704 

Average 888965 

stdev 25771.21 

2034 Use Phase Energy Consumption 

(kWh) 

Min 683557 

Max 753723 

Average 718692 

stdev 21213.67 

 

 

Table 2.3. Comparison with historical data 

Result 

Average 

Number 

of 

Lamps 

Average 

Hour of 

Use Per 

Day (h) 

Average 

Energy 

Consumption 

Per Day Per 

Household 

2010(Wh) 

Average 

Lamp 

Power 

2010(W) 

Average 

Lamp 

Power 

2014(W) 

Base case 65 2 5467 42.1 37.2 

DOE data 67 1.6 4679 47.7 N/A 

EIA data 51 1.8 4223 46 39 
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Finally, to address parameter variability, sensitivity analysis is conducted. To begin with, 

a selection of parameters coming from assumption and rough estimation are chosen, as shown in 

Figure 2.2. Each parameter will be modified by ±10%. To compare the sensitivity of parameters 

on the same basis, one run of each possible parameter setting with the same random seed is 

conducted and sensitivity of parameter is measured by changes on use phase annual energy 

consumption in year 2034 (final output). The result of sensitivity analysis shows that the model is 

reasonably robust. Most sensitive parameters are wattage of incandescent lamps, average hour of 

use per lamp, and average number of lamps per household. 

 

 

Figure 2.2. Tornado graph 

2.4 Results and Discussion 

The results for energy consumption, GHG emission, and shares of bulbs by technology of 

base case and each scenario are shown below. Since random effect in this model is relatively small, 

calculation result shows that relative error of confidence interval is smaller than 0.05. Therefore, 

no additional runs are made. Also, the confidence interval is very tight (with half width less than 

5% of the value). Therefore, to better illustrate the result, only mean value is plotted in the graph. 
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Figure 2.3. Base case results 

 

For the base case result in Figure 2.3, annual total energy consumption is reduced by 27% 

and annual use phase energy consumption is reduced by 30% at the end of simulation. Meanwhile, 

annual total GHG emission is reduced by 30%. Incandescent bulbs are reduced to 70% of starting 

number, whereas the number of CFL bulbs remains roughly the same level for the whole 

simulation period. LED bulbs grow rapidly, holding 20% of market share at the end of simulation. 

The result shows that households are slowly adapting to high-efficiency lighting. However, 

without any interference, incandescent will remain the major technology at year 2035. Also, for 

total energy consumption, a spike can be observed around year 6. This is due to much higher 

manufacturing energy consumption from CFL and LED lighting. When incandescent lighting is 

replaced by CFL and LED lighting intensively at year 6, manufacturing energy consumption that 

year will increase greatly, which result in higher total energy consumption that year. 

 

 

Figure 2.4. Cost conscious community 

 

When the community has higher portion of cost heuristic households, CFL lighting 

becomes the leading technology at the beginning of simulation, as it is the most cost-effective 

under most situation. As a result shown in Figure 2.4, the starting energy consumption and GHG 
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emission are roughly 72% of the base case. The trend of energy consumption and GHG emission 

reduction is similar to the base case. At year 2035, total energy consumption is reduced by 24% 

and total GHG emission is reduced by 28%. Reduction rate is slightly smaller than the base case 

due to the fact that fewer inefficient lighting bulbs are installed at the beginning of simulation. It 

is apparent to draw the conclusion that cost-efficient households tend to choose energy-saving 

technologies just like users in commercial sector. 

 

 

Figure 2.5. Incandescent lamp ban 

 

Under incandescent lamp ban scenario in Figure 2.5, a sharp change in trend can be 

observed when ban comes into effect. Annual use phase energy consumption, annual total GHG 

emission and annual use phase GHG emission drastically fall, whereas a spike happens in annual 

total energy consumption. This is due to that fact that manufacturing CFL and LED bulbs is more 

energy intensive than incandescent bulbs. Besides, both CFL and LED bulbs have s-shape curve 

market share increase after incandescent bulbs are banned, but CFL bulbs are replaced by LED 

bulbs afterwards. Under this scenario, total energy consumption in year 2035 is reduced by 65%, 

while use phase energy consumption is reduced by 72%. Meanwhile, total GHG emission is 

reduced by 70%. At the year of incandescent ban, a sudden increase of total energy consumption 

can be observed. As stated before, this is caused by higher manufacturing energy consumption of 

CFL and LED bulbs. However, with longer lifespan and higher use phase efficiency of these 

technologies, total energy consumption quickly falls afterwards.  
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Figure 2.6. LED advancement (EIA case) 

 

If LED technology continues to develop as EIA estimated, as shown in Figure 2.6, LED 

lighting will have 29% market share at year 2035, which is roughly 50% higher than base case. 

However, as most replacement comes from CFL lighting, the total number of incandescent bulbs 

at year 2035 remains the same level with base case. Therefore, only slight improvements on energy 

consumption and GHG emission reduction are observed. Under this scenario, annual total energy 

consumption is reduced by 29%, and use phase energy consumption is reduced by 34%. For annual 

total GHG emission the reduction rate is 33%.  

 

 

Figure 2.7. LED advancement (conservative case) 

 

For a more conservative LED technology advancement scenario, the result shown in Figure 

2.7 is very close to the base case. At year 2035, LED lighting will have 23% market share, which 

is 15% better than base case. However, energy consumption and GHG emission reduction rates 

are nearly the same as the base case. Comparing with EIA case, it is apparent to see that the 

advancement of LED technology still has a positive effect in increasing the market share of LED 
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lighting. However, it is not able to push the fade out of incandescent, since in this model most 

incandescent users are not cost sensitive. 

 

 

Figure 2.8. Energy saving campaign (slower case) 

 

Under energy saving campaign scenario, the constant increase of attitudes toward high-

efficiency lightings causes incandescent lamps to fade out, as shown in Figure 2.8. At Year 2035, 

annual total energy consumption is reduced by 53% and annual use phase energy consumption is 

reduced by 60%. Also, annual total GHG emission is reduced by 58%. Although in reality, it is 

very hard to directly improve public opinion steady and fast like this, the scenario still shows that 

information plays a key role in residential lighting retrofitting process and further study should be 

focused on this. 

 

 

Figure 2.9. Energy saving campaign (faster case) 

 

Under faster attitudes changes favoring high-efficiency lightings, the fade-out of 

incandescent becomes faster and more thoroughly, as shown in Figure 2.9. At year 2035, total 

energy consumption is reduced by 62% and use phase energy consumption is reduced by 68%. 
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Similarly, annual total GHG consumption is reduced by 66%. With even faster improvements of 

households’ attitude towards CFL and LED lighting, the result is very close to incandescent ban 

scenario.  

 

 

Figure 2.10. Energy efficient incandescent 

 

With energy efficient incandescent, although market share is similar with base case 

scenario, the reduction rates of energy consumption and GHG emission are higher. At year 2035, 

Total energy consumption is reduced by 41% and use phase energy consumption is reduced by 44% 

as shown in Figure 2.10. Besides, annual total GHG emission is reduced by 43%. Although energy 

efficient incandescent still consume much more energy than CFL and LED lighting, such policy 

can reduce a significant amount of energy consumption and GHG emission provided that 

incandescent fade out is slow.  

 

 

Figure 2.11. Base case GHG emission vs. cleaner electricity grid  
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The annual GHG Emission with cleaner electricity grid is shown in Figure 2.11 as reference 

line. The line is calculated by combining cleaner electricity grid emission data (2035 projection) 

with lighting market share data from corresponding year. As stated above, when applying market 

share data from year 2010, cleaner electricity grid alone can reduce GHG emission by 12%. With 

base case, the reduction from high-efficiency lighting technologies will exceed this after 5 years. 

The result shows that high-efficiency lighting retrofitting plays an important role in reducing GHG 

emission from residential lighting sector. GHG emission reduction from incandescent fade out is 

greater than the reduction from electricity grid improvement.  

 

 

Figure 2.12. Mercury tax 

 

If mercury tax is applied and the public become more concern about mercury in CFL 

lighting, more households will stay with incandescent lamps, as shown in Figure 2.12. In this 

scenario, incandescent lamps stay with 5% more market share at year 2035. Meanwhile, only 25% 

reduction of energy consumption and GHG emission is observed. 

 

 

Figure 2.13. Rebound effect 
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If rebound effect is considered, it is apparent to see that both energy consumption reduction 

and GHG emission reduction will be hindered. The result shows the same market penetration with 

the base case along the simulation. However, due to increased lighting time and lighting position, 

only 20% reduction can be observed on energy consumption and GHG emission. Therefore, if 

rebound effect happens in residential lighting market, it should be considered as an important 

negative factor to affect energy and GHG emission reduction. 

2.5 Conclusion and Future Work 

In this study, an agent-based model is implemented to simulate the adoption of high-

efficient lighting in a residential community. The result shows that a 30% of energy consumption 

and GHG emission reduction can be achieved by year 2035 with no policy applied. Furthermore, 

if there is an incandescent ban, the model projects 65% reduction of energy consumption and 70% 

reduction of GHG emission, which is the best among all scenarios. The result also shows that aside 

from direct ban of incandescent, it is more important to improve market share of high-efficiency 

lighting than improve the efficiency of them. Therefore, proper way of marketing campaign can 

accelerate the reduction of energy consumption and GHG emission. Also, some factors, including 

health concerns and rebound effects, may have a negative effect in energy and GHG emission 

reduction. Finally, the model shows the importance of residential lighting retrofitting. There is a 

significant potential of energy saving and GHG emission reduction and the efficiency is better than 

mere improvement of electricity grid. 

This model is very crude in the aspect of agent classification and behaviors. In fact, several 

possible factors can be detailed to improve model design.  New smartphone applications will help 

households to calculate total lighting cost more precisely and may increase the number of rational 

users. CFL and LED lighting may have health issues, like emitting more blue light that is harmful 

before bedtime. Also, more cultural and political factors should be considered, as households with 

different backgrounds may response differently to new technology or government policies. Further 

study of the topic requires survey data on the customers, such as the one carried out by Hicks, A. 

L. et al. Deeper understanding of customer behavior can help improving the model and increasing 

its validity. Also, the model can be expanded in several ways. Commercial sectors can be 

integrated into the model and may affect the adoption process with its influence towards residential 

customers. Critical material consumption of the adoption process can be analyzed with expansion 
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of the model. More detailed classification of lighting equipment, like the inclusion of halogen 

lamps and linear fluorescent bulbs can also be considered.  
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 AGENT-BASED MODELING FOR BY-PRODUCT METAL SUPPLY—

A CASE STUDY ON INDIUM 

With rapid development and deployment of clean energy technology, demand for certain 

minor metals has increased significantly. However, many such metals are by-products of various 

host metals and are economically infeasible to extract independently. Meanwhile, by-product 

metals present in the mined ores may not be extracted even if they are sent to smelters along with 

host metal concentrates if it is not economically favorable for the producers. This dependency 

poses potential supply risks to by-product metals. Indium is a typical by-product metal, mainly 

from zinc mining and refining, and is important for flat panel displays, high efficiency lighting, 

and emerging thin-film solar panel production. Current indium supply–demand forecast models 

tend to overlook the volatile and competitive nature of minor metal market and are mostly based 

on top-down approaches. Therefore, a bottom-up agent-based model can shed new light on the 

market dynamics and possible outcome of future indium supply–demand relationship. A multi-

layered model would also be helpful for identifying possible bottlenecks of indium supply and 

finding solutions. This work takes indium as an example of minor metal market and sets up an 

agent-based model to predict future market situation and supply–demand balance. The market is 

modeled as a Cournot competition oligopolistic market by refineries with capacity restriction 

based on host metal production. The model maintains active Nash equilibrium each year to 

simulate competitions between suppliers. The model is validated and verified by historical data 

and sensitivity analysis. Several scenarios are also explored to illustrate possible uncertainties of 

the market. 

3.1 Introduction 

Energy is a fundamental element of economic growth. Global primary energy consumption 

has increased by 2.9% in 2018, which is the fastest for the decade [1]. To avoid dependency on 

fossil fuels, which still count for 64% of world energy generation [1], non-fossil resources, 

especially renewable energy from wind and solar power, have been heavily promoted by 

governments. Between 2005 and 2015, the US government spent $51.2 billion US dollars on 

incentives to solar and wind power industries, including tax, credit, and R&D grants [2]. As a 
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result, renewable energy consumption has increased by four times between 2008 and 2018, to a 

total of 561.3 million tons oil equivalent [1]. With an imminent need for renewable energy 

development and technology advancement, minor metals have become increasingly important. 

The US Department of Energy has identified 14 materials as critical to the clean energy economy 

[3]. Meanwhile, Joint Research Centre of European Commission addressed 32 significant 

materials toward clean energy sector [4]. One major issue for these materials is the potential supply 

risk caused by the increasing demands. 

Many of the so-called critical materials are by-product metals. By-product metals are those 

minor metals that are mined mostly or solely as companion of other major metals [5]. For example, 

only 15% of cobalt is mined and produced as primary product, whereas the rest is a by-product of 

nickel and copper; indium is a secondary product mostly from zinc processing [6]. Other by-

product metals that are critical to renewable energy include cadmium, gallium, germanium, 

selenium, and tellurium [6]. To satisfy the increasing demands of such metals, it is usually not 

economically feasible to directly mine them due to their scarcity. Instead, further supplies may be 

found through increased host metal production, additional processing circuits to recover by-

product metals, improved recovery efficiency, and recycling [5,6]. 

Again, these measurements are only implementable if they are economically profitable for 

related mines and smelters. According to Indium Corporation, only indium with 100 ppm or higher 

concentration in zinc ore is recovered as a by-product. The final amount of indium metal produced 

by the smelters only counts for roughly 30% of total indium mined [7]. The unit production cost 

for by-product indium was assessed to be 1549.55 CNY per kg by a Chinese smelter during 2006 

[8]. Meanwhile, NREL deducted that the average production cost for indium from the proposed 

Mount Pleasant, Canada, mining project would be $288 USD/kg with an extra capital cost of $90 

USD/kg per year over a 10-year production period [9]. Therefore, to address the issue of by-

product metal supply, it is crucial to not only consider by-product metal production capacity but 

also economical concerns of individual suppliers. 

Since each of the by-product metals has its own dependency and criticality, rather than 

creating a generalized model, this research focuses its efforts on indium. The indium market is a 

typical by-product metal market with volatile price and relatively low global consumption level 

compared to the host metal market. During 2016, global indium consumption is estimated to be 

1430 t [10], and the leading consumption is the production of indium-tin oxide (ITO). Indium is 
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also used for alloys, semiconductor materials, and CIGS solar cells. Since indium has a small 

market, the price of indium is easily impacted by supply–demand balance. Before 2003, indium 

price stayed low at $200 USD/kg due to cheap supply from China matching the demand of ITO 

production [3]. However, as Chinese mines and smelters reduced their production due to new 

environmental regulations, indium price was pushed to 1000 $/kg during the 2005. The market is 

also fragile in regard to investment operations. Beginning in 2011, Fanya Metal Exchange tried to 

manipulate indium prices by stocking large amounts of indium [10]. This resulted in increases of 

both indium price and indium supply [11]. However, after Fanya’s collapse, a stock of roughly 

3,600t indium metal was obtained by the Chinese government, and the international indium price 

collapsed from $705 to $345 USD/kg, and the price has remained low since then [11]. 

Meanwhile, with the rapid development of solar cells, CIGS thin film had become a 

noticeable source of indium consumption. USGS suggested that a total of 40 t indium was used 

for CIGS production in 2016 and the total CIGS market size was 1.5 GW [12]. Although CIGS 

accounts for only 2% of the global PV module market share, the annual addition of solar PV is 

projected to be 360 GW in 2050 by IRENA [13]. Even if CIGS maintains its current market share, 

the annual indium demand would be 200 t under such projection. Thus, CIGS production would 

induce new indium demand in addition to the ITO industry. 

Such a situation certainly draws the attention of various researchers. A brief literature 

review is provided in the following chapter to summarize existing efforts and identify research 

gaps. 

3.2  Literature Review 

To illustrate the nature of indium market, research was conducted focusing on market of 

by-product metals. Several efforts were made to understand price change trends of by-product 

metal markets [14,15,16,17]. Fizaine et al. discussed the relationship between by-product metal 

and host-metal production using regression and various statistical test tools. Afflerbach et al. 

established a two-stage competition market model for various host metals and by-product minor 

metals. Redlinger et al. discussed by-product metal price velocities using a regression model. Fu 

et al. established an ARDL regression model for indium and other minor metals to link indium 

supply with various economic parameters. These reports provided insights on the behaviors of by-

product metal prices using various optimization or regression models and linked them with various 
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factors, especially with production and price of primary metals. The NREL indium report also 

provided economic assessments of indium production cost, price, and supply curve based on the 

Monte Carlo method [9]. 

Some researchers also dealt with minor metal reserves. Both USGS and NREL reports 

provided estimations on indium reserves of roughly 15,000 t [9,12]. A three-part research report 

summarized current assessment of minor metal reserves and specifically applied a new 

investigative method to assess indium reserves [18,19,20]. The research estimated total indium 

reserves to be as much as 356,000 t (without assessing economic feasibility). 

Meanwhile, research was conducted to assess the impact of photovoltaics technology on 

by-product metal demand. Several reports focused on projections of by-product metal demands 

induced by CIGS solar panels [21,22,23]. Kavlak et al. discussed indium demand projection for 

CIGS indium consumption based on least square regression over historical growth rate. Nassar et 

al. discussed projected U.S. CIGS demand for indium based on future parameter estimation. Stamp 

et al. discussed different indium demands under various energy scenarios using system dynamics 

modeling. Moreover, to deal with the price change caused by possible supply deficit, the price 

impact of indium on both ITO and solar PV industries was reported. It is reported that flat panel 

industry is unlikely to be impacted by Indium price increase [24]. Candelise et al. discussed critical 

metal price impact on thin-film solar panels using cost analysis [25]. A system dynamics model 

with price elasticities and a mixed integer linear programming model that optimized global 

production cost were also employed to analyze the indium supply–demand balance [26,27]. 

Currently, end-of-life recycling of indium is not feasible due to economic constraints. 

Research has been conducted to explore the possibility of recovering indium from waste LCDs 

[28,29,30]; however, economic assessments performed on indium recycling from LCDs show that 

the result is not favorable under current indium price and recycling cost [31,32]. 

The recycling of thin-film photovoltaic wastes was also discussed by several researchers. 

Marwede et al. discussed the potential cost of CIGS thin-film recycling [33]. McDonald et al. 

discussed the possibility of offsetting recycling cost by charging the waste handling cost to 

producers or end users [34]. Liu et al. discussed the cost–benefit analysis to recycle photovoltaic 

model in China including CIGS model [35]. Several recent lab phase indium end-of-life recycling 

methods are also being developed [36,37,38]. 
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It should be noted that most of the works mentioned analyzing indium supply–demand 

balance are conducted from a top-down point of view. However, the by-product metal market is 

in fact a competing market, and individual supplier decision may impact the overall by-product 

metal supply and price [14]. Thus, a bottom-up approach to model indium market competition 

sheds new light on the supply–demand balance of the material. 

Additionally, although research has been conducted on indium supply potential, few works 

are driven by cost–benefit analysis. In fact, the current primary indium recovery efficiency is 

projected to be 17%, as large portions of indium material were either not sent to smelters or not 

refined by smelters due to economic considerations [9]. Therefore, research focused on the profit-

driven behavior of indium producers would help to better understand the market and the supply of 

indium under different price and demand conditions. 

3.3 Model Description 

3.3.1 Model Objective and Implementation 

This model aims at simulating a competitive oligopolistic indium metal market based on 

Cournot equilibrium between 2008 and 2050 with dynamic indium demand inputs. To demonstrate 

the heterogeneous nature of indium producers in the market, this research employs agent-based 

modeling as a tool. Agent-based modeling is comprised of autonomous, interreacting agents that 

act under certain environmental setting [39]. Numerous studies have already adopted the method 

to investigate similar cases, such as metal networks [40], electricity markets [41], and rare earth 

markets [42]. 

The time step for the simulation model is 1 year. During the simulation, while ITO still 

remains a major demand of indium, the emerging demand from CIGS solar PV technology requires 

additional indium supply. This model presents simulation result of dynamic supply–demand 

balance under different assumptions of future market and possible uncertainty factors. The result 

demonstrate potentials for possible bottleneck of indium supply and identify whether the economic 

considerations of producers are the key factor for such a supply shortage. For this purpose, global 

model boundary and assumptions are first determined. Then, the behavior of agents, including 

multiple supply agents imitating indium smelters and a demand agent deriving future demands, 

are defined. After that, the necessary parameters are either derived from historical data or 
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calibrated to fit the model to historical results. Meanwhile, verification and validation of the model 

are conducted. Finally, different scenarios are implemented to illustrate uncertainties of the future. 

The Repast Simphony toolkit based on JAVA was used to implement the model [43]. 

3.3.2 Assumptions and Boundary of the Model 

Although agent-based modeling is by nature microscopic, it is not possible to include all 

details of system and agents. Therefore, it is vital to define a proper boundary for the model. 

The model defines each time step of the indium metal supply market as a competitive 

oligopolistic market with complete information. Each agent in the model resembles a primary 

indium metal producer and is rational for determining the production. The model assumes that all 

agents are also myopic and determine their production only based on maximum profit of current 

time step. Meanwhile, it is assumed that all production exceeding demand is sold at current price 

to a global dealer and is stocked for possible future demand. Secondary production of indium metal, 

mostly coming from in-process recycling of off-target ITO, is considered as a reduction of primary 

indium demand as per the opinion from Lokanc et al. [9]. At the same time, the model assumes 

that each zinc metal producer retains their market share for the duration of simulation. 

For the demand side, this model considers ITO as a major consumer, which currently 

accounts for 83% of global indium consumption [44]. CIGS thin-film solar PV, although 

accounting for only 1% of current global indium consumption, is projected to have a major growth 

in the future and is modeled as a potential source of indium demand. 

It should be noted that two rapid growing markets involving indium consumption, LED, 

and InP semiconductors are not modeled in detail by this model. Based on reports from USGS, 

total global LED production in 2014 consumed 85 kg of indium [45]. According to DOE forecast, 

the total of LED lighting systems installed in U.S. during 2014 was 215 million and will be roughly 

7500 million by 2035 [46,47]. Based on both estimations, indium consumption by LED will be 

roughly 3 t by 2035, assuming that LED global production growth is on par with U.S. LED lighting 

market. Meanwhile, although InP wafer market is projected to grow from $77m to $162m between 

2018 and 2024 [48], the amount of indium consumed by the semiconductor is estimated to be less 

than 1 t [49]. Therefore, together with other applications of indium, these portions of indium 

consumption are modeled as a constant. 
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3.3.3 Model Formulation 

A total of 25 supply agents representing active indium metal producers listed by USGS 

indium minerals yearbook are included in the model [12]. A global demand agent is also created 

to manage demand, stock, and price changes. This agent represents a centralized indium market 

that adjusts global indium price based on supply–demand balance at each time step and exchanges 

decision-critical information with the rest of the model. The data dependency chart is shown in 

Figure 3.1. 

 

 

Figure 3.1. Data dependency chart 

 

The simulation starts at 2008, and the first 11 years are used as a warm-up period and for 

model validation. Since minimum resolution of indium data available is at annual level, the 

simulation time step is set to 1 year. The simulation ends by 2050. Specific agent behaviors and 

parameter setting are discussed in the following sections. 

For each time step, global agent follows processes shown in Figure 3.2. Variables are first 

generated based on input data including zinc total production, projected zinc price, and GDP 

growth rate. After that, indium demand of current time step is generated, and a long-term indium 
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price forecast is made based on zinc production, zinc price, indium demand, and economic growth 

rate. Indium capacity is also adjusted if a supply agent is zinc based and its zinc production changes. 

After that, a Cournot market competition problem for current time step is generated based on given 

data. 

 

 

Figure 3.2. Model flow chart 

 

To ensure the existence of the Nash equilibrium, the model assumed a decreasing marginal 

revenue and an increasing marginal cost for all agents. The formulation for time step t is shown 

below: 

 

max𝑃𝑡(𝑞−𝑖𝑡 + 𝑞𝑖𝑡)𝑞𝑖𝑡 − 𝐶𝑖𝑡(𝑞𝑖𝑡)     𝑓𝑜𝑟 𝑖 = 1,2, … , 𝑛 

𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡: 

0 ≤ 𝑞𝑖𝑡 ≤ 𝑘𝑖𝑡   𝑓𝑜𝑟 𝑖 = 1,2, … , 𝑛 

 

where 𝑞𝑖𝑡 is the production of agent i at time t; q−it is the total production of all other agents 

at time t; 𝑃𝑡(𝑞−𝑖𝑡 + 𝑞𝑖𝑡)  is the global price function at time t; 𝐶𝑖𝑡(𝑞𝑖𝑡) is the cost function for agent 

i at time t; and 𝑘𝑖𝑡  is the production capacity for agent i at time t. This model assumes a quadratic 

production cost function and a fixed unit capital cost. Detailed parameter setting is listed in 

Appendix: Detailed Model Formulation. 

It is assumed that indium price is both influenced by long-term predictions and short-term 

supply–demand ratio. The price function can be formulated as follows: 
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𝑃𝑡(𝑞−𝑖𝑡 + 𝑞𝑖𝑡) = 𝑒−𝛽𝑙𝑛𝑟𝑡𝑝𝑓𝑡  

𝑤ℎ𝑒𝑟𝑒 𝑟𝑡 =
𝑞−𝑖𝑡 + 𝑞𝑖𝑡 + 𝑖𝑡−1

𝑑𝑡
 

where 𝑝𝑓𝑡 is the long-term predicted price and r is the current supply–demand ratio calculated by 

current production level 𝑞−𝑖𝑡 + 𝑞𝑖𝑡  inventory level 𝑖𝑡−1, and demand 𝑑𝑡  at time t. β > 0 is the 

impact parameter of supply–demand ratio over the price and is calibrated based on historical data. 

Long-term predicted price is based on input from historical data utilizing ARDL regression. The 

predicted price is determined by zinc production, zinc price, current indium demand, GDP growth, 

and indium price from previous years. 

Once the Nash equilibrium problem is solved, the model calculates current global inventory 

level based on total production and demand, which is: 

 

𝑖𝑡 = max(𝑖𝑡−1 + 𝑞𝑡𝑜𝑡𝑎𝑙𝑡 − 𝑑𝑡, 0) 

 

The model then continues to the next time step after agent behaviors are determined. 

3.3.4 Indium Demand Projection 

The demand projection is divided into three parts: ITO, CIGS, and others. ITO demand 

projection is assumed to follow a logistic curve based on year-wise deduction after 2018: 

 

𝑑𝑖𝑡𝑜_𝑡𝑜𝑡𝑎𝑙(𝑡) =
𝐾

1 + 𝑒−𝐺(𝑡−𝑡0)
 

 

where the curve parameters K, G, and 𝑡0 are determined by non-linear regression from existing 

ITO production and projection data between years 2011 and 2020 [50]. Since the USGS report 

estimated ITO production has remained the same in recent years [12], the model assumes that the 

market is near a saturation state. 

Meanwhile, a large amount of secondary indium is reclaimed by recycling ITO off target 

during the spurring process and is returned into ITO production loop. USGS assumed that a total 

of 1200 t/year of secondary indium was recovered from ITO recycling during 2016 [12]. However, 

based on the opinion from NREL, this number contains indium recovered from multiple loops [9]. 

Thus, calculation is conducted to determine the percentage of primary indium needed, which 
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utilizes the same approach from NREL report. The ITO spurring loop data is shown in Table 3.1. 

A 30% efficiency for the spurring process and a 90% efficiency for the recovery process are 

assumed here [51]. 

As a result, to recover 1200 t of indium, 705.45 t of primary indium should be fed into the 

loop. Thus, a deduction factor of 2.70 is applied to total indium demand from ITO, indicating that 

only 37% of total indium consumption by ITO comes from primary production. 

 

Table 3.1. ITO Loop Table 

Cycle 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Tota

l 

Units 

available (t) 

705.

45  

444

.43  

279

.99  

176

.40  

111

.13  

70.

01  

44.

11  

27.

79  

17.

51  

11.

03  

6.

95  

4.

38  

2.

76  

1.

74  

1.

09  

190

4.76  

Units 

deposited (t) 

211.

64  

133

.33  

84.

00  

52.

92  

33.

34  

21.

00  

13.

23  

8.3

4  

5.2

5  

3.3

1  

2.

08  

1.

31  

0.

83  

0.

52  

0.

33  

571.

43  

Units for 

recycling (t) 

493.

82  

311

.10  

196

.00  

123

.48  

77.

79  

49.

01  

30.

88  

19.

45  

12.

25  

7.7

2  

4.

86  

3.

06  

1.

93  

1.

22  

0.

77  

133

3.33  

Units 

recycled (t) 

444.

43  

279

.99  

176

.40  

111

.13  

70.

01  

44.

11  

27.

79  

17.

51  

11.

03  

6.9

5  

4.

38  

2.

76  

1.

74  

1.

09  

0.

69  

120

0.00  

Units lost (t) 49.3

8  

31.

11  

19.

60  

12.

35  

7.7

8  

4.9

0  

3.0

9  

1.9

5  

1.2

3  

0.7

7  

0.

49  

0.

31  

0.

19  

0.

12  

0.

08  

133.

33  

 

For CIGS demand, three different parameter sets are generated to represent different 

projections on thin-film solar PV market [52,53]. Historical data are then fed into the three 

scenarios to generate separate logistic demand curves similar to ITO demand. The parameters are 

listed in Table 3.2. 

 

Table 3.2. CIGS Scenarios 

Parameter Pessimistic Base Optimistic 

Layer thickness by 2020 (μm) 1.2 1.0 0.8 

Layer thickness by 2050 (μm) 0.8 0.8 0.8 

Annual production by 2050 (GW) 17 54 105 

Efficiency by 2020 14% 15.9% 16.8% 

Efficiency by 2050 22.9% 22.9% 22.9% 
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A layer thickness of 1.6 μm and efficiency at 11.2% in 2008 were previously reported [52]. 

The model assumes that these two parameters will shift linearly toward the 2020 assumption listed 

in the table under three different scenarios and then shift toward 2050 assumption under different 

rates. The report also gave an indium consumption estimate of 83 kg per GW of CIGS 

manufactured in 2008, which decreases accordingly due to reduce layer thickness and improve 

efficiency. 

For other demands of indium, the simulation assumes that the demand remains constant at 

2012 level as reported by NREL [9]. 

3.3.5 Supply Agent Behaviors 

The supply agents include 25 primary indium producers listed by USGS, except for 

producers who have already terminated their operations [12]. Agents are assigned with several 

attributes. Detailed discussion on the value and deduction of such attributes is presented in the 

Appendix. Based on USGS information, there are three types of indium producers. Out of the 25 

producers in the model, three agents produce indium based on primary metal other than zinc. Five 

agents produce indium from secondary source (mine residues, primary metal refinery residues, 

etc.) and purchase indium-containing materials from a third party. The remaining seventeen agents 

are zinc based. 

For each time step, supply agents make several decisions following the flow chart in Figure 

3.3. First, the agents calculate any production cost and capital cost changes, either due to inflation 

or expansion. After that, zinc-based agents decide their zinc production of the current step. The 

total amount of zinc capacity taken into consideration by this study is only 1/3 of global primary 

zinc capacity [54]. The zinc market is therefore treated as a market with perfect competition and 

optimized accordingly [15]. The formulation of the optimization problem is listed as below: 

 

max 𝑝𝑧𝑡𝑞𝑧𝑗𝑡 − (𝑐𝑧𝑗𝑡𝑞𝑧𝑗𝑡
𝑎𝑧) 𝑞𝑧𝑗𝑡   𝑓𝑜𝑟 𝑗 = 1,2, … , 17 

𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡: 

0 ≤ 𝑞𝑧𝑗𝑡 ≤ 𝑘𝑧𝑗𝑡   𝑓𝑜𝑟 𝑗 = 1,2, … ,17 

https://www.mdpi.com/2071-1050/13/14/7881/htm#B52-sustainability-13-07881
https://www.mdpi.com/2071-1050/13/14/7881/htm#B9-sustainability-13-07881
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Figure 3.3. Supply agent flow chart 

 

Each agent calculates its actual indium capacity for each time step based on both facility 

capacity and indium content delivered to the facility. Non-zinc-based primary producers have their 

available indium raw material increasing each year in accordance with GDP growth. Zinc-based 

primary producers calculate their indium content based on zinc production and unit indium content 

of zinc-concentrate. Secondary producers have no indium content limit as they can always adjust 

the amount of raw material they bought. 

The agents then decide whether they want to expand their indium production capacity by 

comparing possible profit against capital cost. The agent only expands their capacity if they have 

already utilized 90% of their current capacity. Total projected profit is calculated using a moving 

average of price in 3 years (pavg) and a deduction rate (rdiscount) of 8% [58] over a 10 year period. 

The agent solves the following local optimization problem: 

 

max∑
𝑝𝑎𝑣𝑔𝑞𝑖𝑡 − 𝐶𝑖𝑡(𝑞𝑖𝑡)

(1 − r𝑑𝑖𝑠𝑐𝑜𝑢𝑛𝑡)𝑖

10

𝑖=1

−𝑐𝑒𝑖𝑡𝑘𝑖𝑡
∗     𝑓𝑜𝑟 𝑖 = 1,2, … , 𝑛 

𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡: 

0 ≤ 𝑞𝑖𝑡 ≤ 𝑘𝑖𝑡 + 𝑘𝑖𝑡
∗     

0 ≤ 𝑘𝑖𝑡
∗ ≤ 𝑘𝑖,𝑚𝑎𝑥𝑡 − 𝑘𝑖𝑡    𝑓𝑜𝑟 𝑖 = 1,2, … , 𝑛 
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where 𝑞𝑖𝑡 is the projected production, 𝐶𝑖𝑡(𝑞𝑖𝑡) is the cost function, and one year of construction 

period is assumed based on refinery report [58]. 𝑐𝑒𝑖𝑡  is the unit expansion cost, 𝑘𝑖,𝑚𝑎𝑥𝑡  is the 

maximum possible capacity calculated based on indium content, and 𝑘𝑖𝑡
∗  is the capacity expanded. 

After an expansion, the expansion cost is averaged to a 10 year period as an increased fixed cost, 

and the indium capacity is increased after the construction period to reflect the expansion. 

3.3.6 Validation and Verification 

The verification and validation of agent-based model is vital [59]. Verification is to prove 

that the model itself is valid and correctly runs as intended, and validation is to prove that the 

model correctly and robustly reflects situations in the real world. 

To verify the model, each subsystem of the model is tested individually to ensure that they 

work as proposed. Codes are carefully examined to ensure they work as intended. A dynamic test 

of the whole system with a different set of parameters is also conducted, which also serves as a 

sensitivity analysis for validation of the model. 

To validate the model, several approaches are made. First, the model runs under a real-

world dataset between 2007 and 2018, and several outputs are compared with the corresponding 

historical data. The result is shown in Table 3.3. 

 

Table 3.3. Historical data validation 

Output Historical Data 
Modeled 

Result 
Reference 

Stock after investment (t) 3629.6 3200.4 [44] 

Price between 2016 and 2019 ($/kg) 240,225,291,210 283,268,267,276 [60] 

Production between 2016 and 2019 (t) 759,680,714,741 851,694,598,646 [60] 

 

The model also runs under a set of extreme parameters, including large demand, zero 

demand, and a large stock. The extreme test was used to ensure that the model reflects correctly 

under such conditions. 

Finally, a sensitivity analysis is conducted to ensure the robustness of the model. The 

tornado graph of such analysis is shown in Figure 3.4 
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Figure 3.4. Sensitivity analysis 

 

Overall, the model correctly reflects historical production and price trends, while 

maintaining a good robustness considering parameter inaccuracy. 

3.4 Results and Discussions 

The result under the base case is shown in Figure 3.5, Figure 3.6 and Figure 3.7. Under the 

base case, the smelters are able to provide enough supply for future primary indium demand in a 

competitive market. With enough demand, the existing stock is gradually decreased to the level of 

annual indium production. Indium price is mostly pushed by the inflation rate, as the final price is 

equivalent to 452 $/kg in 2016 dollar. Although usually increasing, indium capacity decrease 

between years can be observed mainly due to decreased zinc primary production. 
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Figure 3.5. Supply–demand balance, base case 

 

 

Figure 3.6. Indium price, base case 
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Figure 3.7. Indium production capacity, base case 

 

For pessimistic and optimistic CIGS projection scenarios, the results are shown in Figure 

3.8, Figure 3.9, Figure 3.10, Figure 3.11, Figure 3.12 and Figure 3.13, respectively. The lack of 

demand increase in the pessimistic case makes it difficult for the high stock level to be consumed. 

As a result, indium price remains low. In addition, the capacity of indium smelters is not expanded 

as indium demand can already be satisfied. For the optimistic case, a supply deficiency is predicted 

after 2040. Although indium price is high, the expansion of current facilities is at their limit under 

current indium recovery rate. 
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Figure 3.8. Supply–demand balance, pessimistic CIGS 
 

 

Figure 3.9. Indium capacity, pessimistic CIGS 
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Figure 3.10. Indium capacity, pessimistic CIGS 
 

 

Figure 3.11. Supply–demand balance, optimistic CIGS 
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Figure 3.12. Indium price, optimistic CIGS 
 

 

Figure 3.13. Indium capacity, optimistic CIGS 
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It is also interesting to see how indium extracting efficiency affects the supply. Two 

scenarios are set up to study such situations. The first scenario assumes that indium concentration 

in delivered ores starts to deteriorate over time. This scenario is established on the basis of the 

base-case scenario. This assumption follows Werner’s indium reserve assessment [20]. The 

assessment includes many indium-containing resources with low indium ppm. Thus, in this 

scenario, after the proposed current reported deposits of 76,000 t is consumed, the average indium 

ppm deteriorates linearly to 100 (reported minimum economic feasible value) until a total 356,000 

t of indium is mined. This reduces the maximum indium capacities for smelters and raises unit 

production cost. An overall indium ore-to-metal efficiency of 17% is assumed following Lokanc 

et al.’s estimation [9]. 

Another scenario assumes a possible indium recovery efficiency increase. This can include 

improved technology to recover more indium from ores into host-metal concentrates at mines, 

better recovery rate at smelters, or higher percentage of indium-containing concentrates sent to 

indium smelters. For the scenario setup, an efficiency of 68% is achieved at the end of simulation 

[9]. The efficiency increases linearly from 17% over time for each smelter after 2020. This 

increases the maximum indium capacity for smelters. The unit production costs for the smelters 

are also reduced. To better reflect the result, this scenario is set up based on optimistic CIGS 

scenario, where a supply shortage happens. 

The results for both scenarios are shown in Figure 3.14, Figure 3.15, Figure 3.16 and Figure 

3.17, respectively. It is apparent that efficiency of smelters is vital to indium supply. If the primary 

supply of indium-containing ore could not maintain current quality, supply shortage occurs. 

Meanwhile, improvements on indium overall efficiency are extremely effective, and indium 

supply with improved efficiency is sufficient to meet the optimistic CIGS projection demand. 
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Figure 3.14. Supply–demand balance, decreased indium concentration 

 

 

Figure 3.15.Indium price, decreased indium concentration 
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Figure 3.16. Supply–demand balance, improved indium efficiency 
 

 

Figure 3.17. Indium price, improved indium efficiency. 
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Figure 3.18. Supply–demand balance, ITO phase out 

 

Another possible scenario would be the phase out of ITO technology. Since ITO might be 

substituted with carbon nanotube and graphene (Bernhardt, 2019), in this scenario, an ITO phase 

out will start happening at 2025 following a reversed S-curve. The result based on optimistic CIGS 

case is shown in Figure 3.18. A more apparent supply shortage is observed around 2040. Due to 

the phase out of ITO, the producers are not fully expanding their capacities until more demand 

from CIGS emerges, which causes temporary shortage before indium price is raised to attract 

facility expansion. 

The above simulation result shows several interesting trends. The competition between 

producers helps to stabilize indium price at the cost of supply–demand gaps. The producers are 

unwilling to utilize full indium production capacities at a lower price even if there is surplus 

demand. Meanwhile, when the market is relatively stable, the production roughly meets the 

demand. Moreover, it may not be profitable for producers to continually expand indium production 

due to increasing marginal cost for indium production under this model. 
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The primary supply result from this research is also compared with previous predictions 

on indium demand, as shown in Figure 3.19. The demand outlooks from different research vary 

mainly because of different CIGS market penetrations. Under most cases, there is a gap between 

primary indium supply predicted by this model and predicted indium demands from other research. 

Part of the gap can be filled with secondary indium supply, mainly from in-process ITO production, 

which is roughly 1400 t by the end of simulation. However, for even higher indium demand 

penetration, as shown in the optimistic CIGS case from this research, it may be difficult to fulfill 

the gap solely with primary indium production. 

 

 

Figure 3.19. Primary indium supply vs. total demands 
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3.5 Conclusions and Future Research 

Overall, this work established a competitive oligopolistic indium metal market model 

based on Cournot equilibrium using agent-based modeling method. Under base-case and low CIGS 

demand case of the model, supply–demand balance can be maintained by current market suppliers. 

However, if faced with higher demand from CIGS manufacturing, current suppliers are not willing 

to continue expanding their indium production due to increased marginal cost even with a supply 

shortage. There is also a delay between increased demand and increased indium capacities. The 

suppliers often wait until indium price is high enough before they expand their indium capacities. 

This can also cause temporary supply shortage. As a conclusion, the economic concerns of indium 

producers largely influence the indium supply–demand balance. 

On the other hand, the availability of raw material with high indium concentration is vital 

to indium supply. If unit indium production costs increase due to the deterioration of raw material, 

the producers would not be willing to expand their production but rather try to maintain a high 

indium price to compensate the increased cost. A way to reduce such costs is to increase overall 

indium recovering efficiency, but it may require additional research and capital costs, which is not 

modeled in this work. 

Current base model assumes that smelters can always acquire sufficient raw materials. 

However, this may not be true. As reported by Werner et al., current indium primary resource 

inferred is 356,000 t [20]. Although this seems sufficient to support demand described by the 

model, economic feasibility of each site for indium remains questionable. 

Current work did not include other layers of indium supply chain. Important questions 

regarding indium-containing ores—if they hold sufficient indium, economic feasibility in their 

recovery, and complementary sources of indium supply—are still left unanswered. 

Another possible source of indium supply is the recycling of end-of-life indium products. 

Currently, recycling mainly happens within the ITO production cycle. For end-of-life recycling, 

flat panel display is projected to be the largest source, for which cost-effective recycling methods 

are currently being developed [61]. According to the current literature review, ITRI technology 

developed a pilot recycling system with a cost of $2000 per ton of e-scrap processed [62]. However, 

only 750 grams of indium can be extracted from 1 ton of waste flat panel display, and the profit of 

indium is the lowest comparing to other products. Thus, indium is still a by-product in the end-of-
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life recycling process. As discussed prior, CIGS waste flow will become significant in the future 

since the average lifespan of current product is about 10–15 years [63]. 

3.6 Appendix: Detailed Model Formulation 

3.6.1 Global Parameters and Variables 

Global parameters are input parameters from outside of the model and are applied to each 

agent including demand agent and indium producer agents. Detailed description of each parameter 

is listed in Table 3.4. Average CPI and GDP growth are assumed based on respective values for 

recent years [64,65]. Indium primary production cost quadratic factor and indium price elasticity 

are calibrated by running the model from 2008 to 2018 with different parameter pairs (𝛼 ∈

[0,0.02] (𝑠𝑡𝑒𝑝 = 0.001), 𝛽 ∈ [0,1] (𝑠𝑡𝑒𝑝 = 0.1)) . Modeled indium primary production and 

modeled indium price are compared with historical production and price data. Parameter pairs with 

least normalized squared error are selected as final model parameters. 

 

Table 3.4. Global parameters 

Parameter Name Description Data source 

Indium primary production 

cost quadratic factor 

(𝛼) 

Quadratic factor for indium primary production cost 

function.  

𝛼 = 0.005 

Calibrated 

[8,44,58] 

Indium price elasticity 

(𝛽) 

Indium price change factor in response to supply–demand 

ratio 

𝛽 = 0.6 

Calibrated. 

[44] 

GDP 

(GDP) 

Global GDP annual nominated growth. (Data before 2020 

are historical growth) 

𝐺𝐷𝑃 = 3% 

[64] 

Assumption 

Inflation 

(CPI) 

Most cost increases proportionally by inflation rate each 

time step. 

𝐶𝑃𝐼 = 2% 

[65] 

Assumption 

Predicted zinc production 

(𝑞𝑧,𝑡𝑜𝑡𝑎𝑙𝑡) 

Predicted total annual primary zinc production. (Data 

before 2020 are historical data) 
[56,57] 

Predicted zinc price 

(𝑝𝑧𝑡) 

Predicted zinc price. (Data before 2020 are historical data, 

prediction extended from 2030 to 2050) 
[55] 
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Global variables are variables aggregated among agents each time step. Detailed 

description of each variable is listed in Table 3.5. Global inventory each step is calculated by the 

following equation: 

 

𝑖𝑡 = max(𝑖𝑡−1 + 𝑞𝑡𝑜𝑡𝑎𝑙𝑡 − 𝑑𝑡, 0) 

 

Table 3.5. Global variables 

Variable Name Description Data source 

Inventory 

(𝑖𝑡) 

Global indium inventory level at time t. Initial value equals to 2008’s 

total primary production capacity. 
[12] 

Indium primary 

production 

(𝑞𝑡𝑜𝑡𝑎𝑙𝑡) 

Annual total indium primary production at time t. Initial value equals 

to 2008’s total primary production capacity. 
[12] 

Indium predicted 

price 

(𝑝𝑓𝑡) 

Long-term prediction of indium price based on ARDL regression at 

time t. 
[44,55,57,60] 

Indium price 

(𝑝𝑡) 

Modeled indium price after competition at time t. Initial value equals 

to 2008’s historical price. 
[60] 

Indium demand 

(𝑑𝑡) 

Modeled indium primary demand at time t. Initial value equals to 

2008’s historical primary demand. 
[44] 

Supply–demand 

ratio 

( 𝑟𝑡) 

Modeled supply–demand ratio at time t. Calculated 

 

Indium primary production at time step 𝑡 is calculated by the sum of primary production 

from all indium supply agents: 

 

𝑞𝑡𝑜𝑡𝑎𝑙𝑡 =∑𝑞𝑖𝑡

𝑛

𝑖=1

 

 

Indium demand at time step t is calculated by the sum of ITO demand, CIGS demand, and 

other demand: 
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𝑑𝑡 = 𝑑𝐼𝑇𝑂,𝑡 + 𝑑𝐶𝐼𝐺𝑆,𝑡 + 𝑑𝑜𝑡ℎ𝑒𝑟 

 

Indium long-term predicted price 𝑝𝑓𝑡 at time step t is calculated by the following regressed 

equation: 

 

𝑙𝑛𝑝𝑓𝑡 = 0.8𝑙𝑛𝑝𝑡−1 − 0.392𝑙𝑛𝑝𝑡−2 + 0.3416𝑙𝑛𝑝𝑧𝑡 − 0.0038𝑞𝑧,𝑡𝑜𝑡𝑎𝑙𝑡 + 0.194𝑙𝑛𝑑𝑡 + 0.051𝐺𝐷𝑃 

 

The long-term predicted price is regressed using corresponding data between year 1974 

and 2017 with ARDL regression [17]. The long-term predicted price explains most variance of the 

data (R-squared 0.74). Short -term supply-–demand ratio is also an important factor to the market 

price [42]. Due to lack of data, it is not possible to include supply-–demand ratio into long-term 

regression. Instead, the model calibrated the impact factor β as mentioned before. Final indium 

market price is calculated as a function of total production and supply-–demand ratio: 

 

𝑃𝑡(𝑞𝑡𝑜𝑡𝑎𝑙𝑡 , 𝑟𝑡) = 𝑒
−𝛽𝑙𝑛𝑟𝑡𝑝𝑓𝑡 

 

where supply-–demand ratio 𝑟𝑡 is calculated by: 

 

𝑟𝑡 =
𝑞𝑡𝑜𝑡𝑎𝑙𝑡 + 𝑖𝑡−1

𝑑𝑡
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3.6.2 Demand Agent Parameters and Variables 

Input parameters for indium demand prediction is listed in Table 3.6. 

 

Table 3.6. Demand agent parameters 

Parameter Name Details Data source 

ITO recycling factor 

(𝑟𝑒𝑐) 

Ratio between total ITO demand and ITO primary 

production 

𝑟𝑒𝑐 = 2.7 

Calculated 

[9] 

ITO indium content 

factor 

(𝑤𝑖𝑡𝑜) 

Indium content in ITO 

𝑤𝑖𝑡𝑜 = 0.74 

Calculated by 

molecular weight. 

[66] 

ITO demand logistic 

parameters 

(𝐾𝑖𝑡𝑜, 𝐺𝑖𝑡𝑜 ,  𝑡0𝑖𝑡𝑜) 

Logistic curve parameters regressed using historical 

and prediction data 

(𝐾𝑖𝑡𝑜 , 𝐺𝑖𝑡𝑜,  𝑡0𝑖𝑡𝑜) = (3000,−0.298, 6.722) 

Assumption 

[12,50] 

CIGS efficiency 2008 

(𝑒𝑐𝑖𝑔𝑠0) 

Known CIGS module energy efficiency by 2008 

𝑒𝑐𝑖𝑔𝑠0
= 11.2% 

[52] 

CIGS indium layer 

thickness 2008 (μm) 

(𝑙𝑐𝑖𝑔𝑠0) 

Known CIGS module indium-contained layer 

thickness by 2008 

𝑙𝑐𝑖𝑔𝑠0
= 1.6 

[52] 

CIGS indium content 

(𝑤𝑐𝑖𝑔𝑠) 

Indium content (t) per MW of CIGS installation, with 

indium layer thickness of 1.6 μm 

𝑤𝑐𝑖𝑔𝑠 = 0.083 
[6,13,52,53] 

CIGS scenarios 

parameters 

See table A1-4 

Logistic curve parameters regressed using historical 

and prediction data 

Other indium demand 

(𝑑𝑜𝑡ℎ𝑒𝑟𝑠) 

Demand from other minor indium applications 

𝑑𝑜𝑡ℎ𝑒𝑟𝑠 = 269.12 
[9,12,44] 

 

ITO recycling factor is calculated as described in the Model Formulation section of the 

article. ITO demand logistic parameters are the parameters of the logistic growth function, defined 

as: 

𝑑𝑖𝑡𝑜_𝑡𝑜𝑡𝑎𝑙(𝑡) =
𝐾𝑖𝑡𝑜

1 + 𝑒−𝐺𝑖𝑡𝑜(𝑡− 𝑡0𝑖𝑡𝑜)
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where 𝑑𝑖𝑡𝑜_𝑡𝑜𝑡𝑎𝑙(𝑡) is the total ITO demand at time t. The parameter 𝐾𝑖𝑡𝑜, which is the saturated 

market size of ITO, is assumed based on the prediction from USGS and ResearchInChina [12,50], 

with an additional 20% relaxation for a higher estimation of ITO demand. The other two 

parameters are then regressed based on historical ITO demand data calculated from historical 

primary indium demand data for ITO, with the recycling factor and indium content factor taken 

into consideration. Thus, total ITO demand projection each year can be generated by the function. 

Meanwhile, since CIGS is an evolving technology, its material efficiency and energy 

efficiency will be improved over time. The decrease in indium-contained layer thickness and 

increased photovoltaic efficiency results in decreased indium consumption per GW of CIGS 

installation. To reflect this fact, based on the prediction from DOE and recent CIGS photovoltaic 

development information on market share and lab energy efficiency, three scenarios based on 

different technology projection are developed [6,52,53]. Here, final technological advancement by 

year 2050 on layer thickness and energy efficiency for all scenarios are the same. Layer thickness 

follows the data from DOE projection, and energy efficiency follows the latest reported lab 

efficiency. On the other hand, different advancement speed and market projection are selected for 

each scenario. Advancement speed is based on the scenarios provided by DOE projection [13,52]. 

Market size projection by year 2050 are calculated from market share projection from latest 

photovoltaic report and total solar power generation market size [13,53]. Similarly, a logistic 

growth function is then regressed based on historical CIGS production and final CIGS market size 

for each scenario, from which CIGS annual installation projection for each scenario is generated. 

Finally, indium consumption from other minor usages is modeled as constant either 

because the application is a long-existing one with a saturated market, or the application does not 

consume significant amount of indium, as discussed in the article. 

Demand agent variables are described in detail in Table 3.7. Demand agent variables. 

Primary indium demand from ITO at time t is calculated based on logistic function for annual total 

ITO demand as: 

 

𝑑𝑖𝑡𝑜𝑡 =
𝑤𝑖𝑡𝑜
𝑟𝑒𝑐

× 𝑑𝑖𝑡𝑜𝑡𝑜𝑡𝑎𝑙(𝑡) =
𝑤𝑖𝑡𝑜
𝑟𝑒𝑐

×
𝐾𝑖𝑡𝑜

1 + 𝑒−𝐺𝑖𝑡𝑜(𝑡− 𝑡0𝑖𝑡𝑜)
 

 

where total ITO demand is firstly deducted by recycling factor to determine ITO produced from 

primary indium, and primary indium consumption is then calculated by applying ITO indium 

content factor.  
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Table 3.7. Demand agent variables 

Variable Name Details Data source 

ITO indium 

demand 

(𝑑𝑖𝑡𝑜𝑡) 

Predicted primary indium demand from ITO at time t. 
Logistic curve 

parameters regressed 

CIGS efficiency 

(𝑒𝑐𝑖𝑔𝑠𝑡) 
Linearized yearly result for CIGS efficiency under 

corresponding scenario 
Calculated 

CIGS indium 

layer thickness 

(𝑙𝑐𝑖𝑔𝑠𝑡) 

Linearized yearly result for indium-contained layer 

thickness in CIGS under corresponding scenario 
Calculated 

CIGS indium 

demand 

(𝑑𝑐𝑖𝑔𝑠𝑡) 

Predicted primary indium demand from CIGS at time t. 
𝑑𝑐𝑖𝑔𝑠𝑡

 
Logistic curve 

parameters regressed 

Total indium 

demand 

(d𝑡) 

d𝑡 = 𝑑𝑖𝑡𝑜𝑡 + 𝑑𝑐𝑖𝑔𝑠𝑡
+ 𝑑𝑜𝑡ℎ𝑒𝑟𝑠  

 

The model assumed that CIGS technology advancement is linear between scenario-wise 

checkpoints. For example, under the base case, layer thickness changes linearly between 2008 and 

2020, from 1.6 to 1.0 μm and then follows another linear change between 2020 and 2050, from 

1.0 to 0.8 μm. Primary indium demand from CIGS at time t is similarly calculated based on logistic 

function for annual CIGS installation in GW as: 

 

𝑑𝑐𝑖𝑔𝑠𝑡
= 𝑤𝑐𝑖𝑔𝑠 ×

𝑙𝑐𝑖𝑔𝑠𝑡
𝑙𝑐𝑖𝑔𝑠0

×
𝑒𝑐𝑖𝑔𝑠0
𝑒𝑐𝑖𝑔𝑠𝑡

×
𝐾𝑐𝑖𝑔𝑠

1 + 𝑒
−𝐺𝑐𝑖𝑔𝑠(𝑡− 𝑡0𝑐𝑖𝑔𝑠)

 

 

Finally, total indium demand is calculated by: 

 

d𝑡 = 𝑑𝑖𝑡𝑜𝑡 + 𝑑𝑐𝑖𝑔𝑠𝑡
+ 𝑑𝑜𝑡ℎ𝑒𝑟𝑠 

 

To ensure that the uncertainties of model data and assumption do not impact model result too much, 

an uncertainty analysis has been conducted, as described in the Validation and Verification section 

of the article. 
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3.6.3 Supply Agent Parameters and Variables 

Input parameters for each supply agent is listed in Table 3.8 

 

Table 3.8. Supply agent parameters 

Parameter Name Details Data source  

Indium capacity, 2016 

(𝑘𝑟𝑒𝑓,𝑖) 
Indium capacity for supply agent i at 2016 [12] 

Initial indium capacity factor 

(w𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦) 

Factor converting indium capacity of 2016 into 2008 

w𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 =
𝑝2008
𝑝2016

= 0.487 

Assumption 

[60] 

Average indium content in respect 

of host metal content (ppm) 

(ppm𝑎𝑣𝑔) 

Average indium content in zinc concentrates that are 

processed by indium refineries 

ppm𝑎𝑣𝑔 = 243 

[9] 

Manufacturing cost index 

(MCI) 

Relative manufacturing cost between different 

countries, US=100 
[67] 

Discount rate 

( r𝑑𝑖𝑠𝑐𝑜𝑢𝑛𝑡) 
r𝑑𝑖𝑠𝑐𝑜𝑢𝑛𝑡 = 0.08 [58] 

Indium reference variable cost 

(c𝑣,𝑟𝑒𝑓) 

Indium production unit variable cost from refinery 

report 

c𝑝,𝑟𝑒𝑓 = 190.43 

[8] 

Converted to 

2008 dollar 

Indium reference fixed cost 

(c𝑓,𝑟𝑒𝑓) 

Indium production unit fixed cost from refinery 

report 

c𝑓,𝑟𝑒𝑓 = 36.48 

Indium reference expansion cost 

(c𝑒,𝑟𝑒𝑓) 

Indium production unit capital cost over 10 years 

from refinery report, used as unit expansion cost 

c𝑒,𝑟𝑒𝑓 = 36.18 

Indium refinery efficiency 

(e𝑖𝑛𝑑𝑖𝑢𝑚) 

Overall indium refinery efficiency to recover indium 

metal from zinc concentrates 

e𝑖𝑛𝑑𝑖𝑢𝑚 = 60.65% 

[8] 

Zinc refinery efficiency 

(Zinc agents only) 

(e𝑧𝑖𝑛𝑐) 

Zinc refinery efficiency to recover zinc metal from 

zinc concentrates 

e𝑧𝑖𝑛𝑐 = 79.42% 

[58] 

Zinc market factor 

(Zinc agents only) 

(𝑎𝑧) 

The marginal cost factor of increased zinc 

production. Calculated from two refinery reports 

𝑎𝑧 = −0.15 Calculated 

[8,14,58] Zinc reference cost 

(Zinc agents only) 

(c𝑧,𝑟𝑒𝑓) 

Zinc production base cost, calculated from two 

refinery reports 

c𝑧,𝑟𝑒𝑓 = 6838.19 

Indium residue price factor 

(𝑤𝑟𝑎𝑤) 

Indium-containing residue material cost, modeled as 

percentage of current indium price 

𝑤𝑟𝑎𝑤 = 15% 

[58] 
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Indium capacity for each agent at the beginning of simulation is assumed to have same 

proportion as 2016, thus the initial capacity for agent i can be calculated as: 

 

𝑘𝑖0 = 𝑘𝑟𝑒𝑓,𝑖 ×w𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 

 

As described in the article, zinc market is formulated as a perfect market. Based on two 

known refinery reports from Canada and China with different zinc production capacity and cost, 

marginal cost factor and base cost are assessed by exponential regression with marginal cost 

formulation as: 

 

𝐶𝑧(𝑞𝑧) = 𝑐𝑧,𝑟𝑒𝑓𝑞𝑧
𝑎𝑧 

 

Here, all cost data are normalized into U.S. dollar 2008 with MCI of 96 (China). 

Indium supply agents are divided into three categories. Three agents produce indium based 

on host metal other than zinc. Five agents produce indium from secondary sources (mine residues, 

primary metal refinery residues, etc.) and purchase indium-containing raw materials. The 

remaining seventeen agents are zinc based. Detailed information is provided in Table 3.9. Several 

smelters listed by USGS are already terminated, thus excluded from the model. 

All variables used to model supply agents are presented in  

Table 3.10. For each time step, current indium maximum capacity is firstly calculated. This 

represents maximum possible indium-containing raw material available to each agent and is 

calculated as: 

 

𝑘𝑖,𝑚𝑎𝑥𝑡 =

{
 
 

 
 

∞, 𝑖𝑓 𝑎𝑔𝑒𝑛𝑡 𝑖 𝑖𝑠 𝑠𝑒𝑐𝑜𝑛𝑑𝑎𝑟𝑦
𝑘𝑖,𝑚𝑎𝑥𝑡−1 × 𝐺𝐷𝑃, 𝑖𝑓 𝑎𝑔𝑒𝑛𝑡 𝑖 𝑖𝑠 𝑛𝑜𝑛 𝑧𝑖𝑛𝑐 𝑏𝑎𝑠𝑒𝑑 𝑝𝑟𝑖𝑚𝑎𝑟𝑦

𝑘𝑖,𝑚𝑎𝑥𝑡−1 ×
𝑘𝑧𝑗𝑡
𝑘𝑧𝑗𝑡−1

, 𝑖𝑓 𝑎𝑔𝑒𝑛𝑡 𝑖 𝑖𝑠 𝑧𝑖𝑛𝑐 𝑏𝑎𝑠𝑒𝑑

 

 

The initial value of 𝑘𝑖,𝑚𝑎𝑥𝑡 for non-zinc-based primary agents are equal to their initial 

capacity 𝑘𝑖0. The initial value of 𝑘𝑖,𝑚𝑎𝑥𝑡 for zinc-based primary agent j is calculated as: 

 

𝑘𝑗,𝑚𝑎𝑥0 = max (𝑘𝑗0, ppm𝑎𝑣𝑔 ∙ 𝑘𝑧𝑗0) 

 

For zinc-based agents, current zinc production capacity is modeled as: 
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𝑘𝑧𝑗𝑡 =
𝑞𝑧𝑡

𝑞𝑧𝑡−1
𝑘𝑧𝑗𝑡−1  
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Table 3.9. Supply agent details 

Agent 
Location 

and MCI 

Initial 

indium 

Capacity 

2016 (t) 

Type or Zinc 

production 

Capacity 

Reference (All links last accessed on Nov. 17, 2020) 

1 
Belgium 

123 
50 Lead based https://pmr.umicore.com/en/metals-products/minor-metals/ 

2 
Canada 

115 
75 295000 https://www.teck.com/products/zinc/ 

3 
China 

96 
85 Secondary http://www.atk.com.cn/enterprise/index.shtml?id=199044 

4 Do. 7 
Antimony 

based 
http://www.hksts.com/about.asp 

5 Do. 60 290000 http://pdf.dfcfw.com/pdf/H2_AN201904221321181861_1.pdf 

6 Do. 40 10000 http://www.chinaindium.org/2013/0117/13142.html 

7 Do. 80 60000 
http://www.camining.org/index.php?homepage=user010&file=introduc

e 

8 Do. 20 110000 https://liuxingx.company.lookchem.cn/about/ 

9 Do. 150 Secondary http://cnge.com.cn/product.aspx 

10 Do. 50 Secondary https://www.tianyancha.com/company/2350518552 

11 Do. 25 165000 http://www.nonfemet.com/about/gsyw.php?aid=13 

12 Do. 75 Secondary http://www.114best.com/gs43/433136689.html 

13 Do. 40 Secondary http://www.intaitech.com/gywm 

14 Do. 20 250000 http://www.ygzn.com.cn/cn/about.aspx?TypeId=10718 

15 Do. 10 Tin based http://www.yhtin.cn/intro/1.html 

16 Do. 60 102184 http://www.ynhlxy.com/ 

17 Do. 20 93000 
http://vip.stock.finance.sina.com.cn/corp/view/vCB_AllBulletinDetail.p

hp?stockid=002114&id=5156491 

18 Do. 60 70000 http://218.63.105.198/ch/About.asp 

19 Do. 60 550000 http://www.torchcn.com/ 

20 
France 

124 
48 155000 https://www.nyrstar.com/ 

21 
Japan 

111 
70 200000 https://www.dowa.co.jp/en/products_service/metalmine.html 

22 
Korea 

102 
160 656000 https://www.koreazinc.co.kr/english/product/page/productMain.aspx 

23 Do. 35 400000 http://www.ypzinc.co.kr/eng/company/menu_05.html 

24 
Peru 

92.5 
50 610600 http://relatoriovmetais.com.br/2016/en/performance/ 

25 
Russia 

99 
15 180000 

https://www.marketscreener.com/CHELYABINSKIY-TSINKOVYI-Z-

4006531/news/PJSC-Chelyabinsk-Zinc-Plant-Final-Results-26232821/ 
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Table 3.10. Supply agent variables 

Variable Name Details 
Data 

source 

Indium capacity 

(𝑘𝑖𝑡) 
Indium capacity for supply agent i at time t 

Initial 

value 𝑘𝑖0 

Indium maximum capacity 

(𝑘𝑖,𝑚𝑎𝑥𝑡) 

Maximum possible indium capacity for supply agent i at time 

t 
 

Indium production 

(𝑞𝑖𝑡) 

Indium production decision variable for supply agent i at time 

t 
 

Indium production 

expansion 

(𝑘𝑖𝑡
∗ ) 

Indium production capacity expansion decision variable for 

supply agent i at time t 
 

Indium variable cost 

(c𝑣,𝑖𝑡) 

Indium production variable cost parameter for supply agent i 

at time t 
 

Indium fixed cost 

(c𝑓,𝑖𝑡) 
Indium production unit fixed cost for supply agent i at time t  

Indium expansion cost 

(c𝑒,𝑖𝑡) 

Indium production unit capital cost for supply agent i at time 

t over 10 years 
 

Indium total expansion cost 

(c𝑒_𝑡𝑜𝑡𝑎𝑙,𝑖𝑡) 

Indium total expansion cost for supply agent i at time t, 

formulated as additional fixed cost 

c𝑒_𝑡𝑜𝑡𝑎𝑙,𝑖𝑡 = ∑ c𝑒,𝑖𝑠 ∙ 𝑘𝑖𝑠
∗ ∙ 𝐶𝑃𝐼𝑡−𝑠

𝑡−1

𝑠=𝑡−10

 

 

Zinc production base cost 

(Zinc agents only) 

(𝑐𝑧𝑗𝑡) 

Zinc marginal cost parameter for zinc-based supply agent j at 

time t 
 

Zinc production 

(Zinc agents only) 

(𝑞𝑧𝑗𝑡) 

Zinc production decision variable for zinc-based supply agent 

j at time t 
 

Zinc capacity 

(Zinc agents only) 

(𝑘𝑧𝑗𝑡) 

Zinc capacity for zinc-based supply agent j at time t  

Indium content in respect of 

zinc content 

(Zinc agents only) 

(ppm𝑗𝑡
) 

Indium content density in respect of zinc content for zinc-

based supply agent j at time t 
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Based on perfect market competition [14], each zinc-based agent j can be optimized 

separately by the following optimization problem: 

 

max 𝑝𝑧𝑡𝑞𝑧𝑗𝑡 − (𝑐𝑧𝑗𝑡𝑞𝑧𝑗𝑡
𝑎𝑧) 𝑞𝑧𝑗𝑡   𝑓𝑜𝑟 𝑗 = 1,2, … , 17 

𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡: 
0 ≤ 𝑞𝑧𝑗𝑡 ≤ 𝑘𝑧𝑗𝑡   𝑓𝑜𝑟 𝑗 = 1,2, … ,17 

 

Here, 𝑐𝑧𝑗𝑡 = 𝑐𝑧𝑗𝑡−1 ∙ 𝐶𝑃𝐼, and 𝑐𝑧𝑗0 = c𝑧,𝑟𝑒𝑓 ∙
𝑀𝐶𝐼𝑗

𝑀𝐶𝐼𝐶ℎ𝑖𝑛𝑎
 

 

Once solved, current indium capacity for agent i can be represented as: 

 

𝑘𝑖𝑡 = min (𝑘𝑖𝑡−1, 𝑘𝑖,𝑚𝑎𝑥𝑡) 

 

Meanwhile, the cost function of agent i at time t is modeled as: 

 

𝐶𝑖𝑡(𝑞𝑖𝑡) =  𝛼𝑞𝑖𝑡
2 + (c𝑣,𝑖𝑡 − 20𝛼) 𝑞𝑖𝑡 + c𝑓,𝑖𝑡

+ c𝑒_𝑡𝑜𝑡𝑎𝑙,𝑖𝑡 

 

The quadratic function is formulated so that it fits the known production cost from refinery report 

(Gu, 2006) with 20 t of annual indium production. 

 

Here, c𝑣,𝑖𝑡 = c𝑣,𝑖𝑡−1 × 𝐶𝑃𝐼, c𝑓,𝑖𝑡
= c𝑓,𝑖𝑡−1

× 𝐶𝑃𝐼, 

c𝑣,𝑖0 = c𝑣,𝑟𝑒𝑓 ×
𝑀𝐶𝐼𝑖

𝑀𝐶𝐼𝐶ℎ𝑖𝑛𝑎
, and c𝑓,𝑖0

= c𝑓,𝑟𝑒𝑓 ×
𝑀𝐶𝐼𝑖

𝑀𝐶𝐼𝐶ℎ𝑖𝑛𝑎
 

 

c𝑒_𝑡𝑜𝑡𝑎𝑙,𝑖𝑡 is the total expansion cost for current time step t, which is formulated as: 

 

c𝑒_𝑡𝑜𝑡𝑎𝑙,𝑖𝑡 = ∑ c𝑒,𝑖𝑠 × 𝑘𝑖𝑠
∗ × 𝐶𝑃𝐼𝑡−𝑠

𝑡−1

𝑠=𝑡−10

 

 

After all parameters are determined, the Nash equilibrium problem can be formulated as: 

 

max𝑃𝑡(𝑞−𝑖𝑡 + 𝑞𝑖𝑡)𝑞𝑖𝑡 − 𝐶𝑖𝑡(𝑞𝑖𝑡)     𝑓𝑜𝑟 𝑖 = 1,2, … , 𝑛 

𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡: 

0 ≤ 𝑞𝑖𝑡 ≤ 𝑘𝑖𝑡   𝑓𝑜𝑟 𝑖 = 1,2, … , 𝑛 
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Here,  

𝑃𝑡(𝑞−𝑖𝑡 + 𝑞𝑖𝑡) = 𝑒
−𝛽𝑙𝑛

𝑞−𝑖𝑡+𝑞𝑖𝑡+𝑖𝑡−1
𝑑𝑡 𝑝𝑓𝑡  

 

This is a potential game and can be solved using the best-response scheme. 

Finally, each agent needs to consider about indium capacity expansion if they utilize up 

90% of current capacity. This process is conducted via solving the following heuristic local 

optimization problem for 𝑘𝑖𝑡
∗  from Canada refinery report [58]: 

 

max∑
𝑝𝑎𝑣𝑔𝑞𝑖𝑡 − 𝐶𝑖𝑡(𝑞𝑖𝑡)

(1 − r𝑑𝑖𝑠𝑐𝑜𝑢𝑛𝑡)𝑖

10

𝑖=1

−10𝑐𝑒𝑖𝑡𝑘𝑖𝑡
∗     𝑓𝑜𝑟 𝑖 = 1,2, … , 𝑛 

𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡: 

0 ≤ 𝑞𝑖𝑡 ≤ 𝑘𝑖𝑡 + 𝑘𝑖𝑡
∗  

0 ≤ 𝑘𝑖𝑡
∗ ≤ 𝑘𝑖,𝑚𝑎𝑥𝑡 − 𝑘𝑖𝑡    𝑓𝑜𝑟 𝑖 = 1,2, … , 𝑛 

 

Here, 𝑝𝑎𝑣𝑔 is the indium price average in the recent 3 years,  

 

𝑐𝑒𝑖𝑡 = 𝑐𝑒𝑖𝑡−1 ∙ 𝐶𝑃𝐼 and c𝑒,𝑖0 = c𝑒,𝑟𝑒𝑓 ∙
𝑀𝐶𝐼𝑖

𝑀𝐶𝐼𝐶ℎ𝑖𝑛𝑎
. 
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 AGENT-BASED MODELING FOR ELECTRIC VEHICLE BATTERIES 

RECYCLING IN CHINA 

Accompanied with the rapid growth of electric vehicles (EV) market in China, 

management of end-of-life (EOL) EV batteries has raised serious concerns as most EV batteries 

will last less than ten years. Due to relative high material values, most EV batteries have the 

potential to be recycled economically. Meanwhile, EOL EV batteries are in general still functional 

but at reduced capacity, thus can be repurposed into other applications, especially stationary energy 

storage. As a result, EOL EV batteries are usually sold to the recyclers by EV consumers, which 

forms a recycling market. The Chinese government had made efforts to impose policies and 

regulations on the market, as well as introduce entry permit to enforce environmental and safety 

requirements. However, many illegal recyclers still exist and dominate the market due to cost 

advantage coming from lack of environmental and safety protection.  

To better understand the situation and identify possible policies that can be utilized by the 

government, this work sets up an agent-based model for EOL EV battery market. The core 

mechanism of the model is a cost-benefit based bidding competition between legal and illegal 

recyclers. This bottom-up approach attempts to elaborate the advantages of illegal recyclers and 

explore several scenarios to find possible solutions to the situation. 

4.1 Introduction 

An electric vehicle (EV) is a vehicle that uses one or more electric motors for propulsion. 

It can be powered by a collector system, with electricity from extravehicular sources, or it can be 

powered autonomously by a battery (sometimes charged by solar panels, or by converting fuel to 

electricity using fuel cells or a generator) [1]. Battery-based electric vehicles have a long history 

in China. During 1990s, low-speed electricity-propelled scooters and electrical power 

supplemented bicycles grew rapidly due to the ban of gasoline powered motorcycles in urban areas 

by the government [2]. Chinese government started an 863 project to invest in domestic production 

of electric cars during 2000s, providing funding of 880 million RMB to the industry during the 

tenth Five-year Plan period and another 1.2 billion RMB during the eleventh plan [3] [4]. As a 

result, China had become the leading producer as well as consumer for EVs [5].  
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Currently, battery electric vehicles, hybrid electric vehicles and plug-in hybrid electric 

vehicles are most commercialized types and these EVs rely heavily on different types of electric 

vehicle batteries to operate [6]. According to several research reports [7] [8], battery chemistry for 

BEV battery cathode is constantly changing and largely different in different regions. While 

lithium iron phosphate (LFP) battery is fading out in US [7], it still counts for 38% of total EV 

battery market share in China [8]. Meanwhile, lithium nickel manganese cobalt oxide (NMC) is 

the dominating EV battery chemistry in China, occupying another 54% of market share [8]. 

Since EV batteries have a limited lifespan of around 5-10 years [7] [8], it is projected that 

a large amount of EV batteries will reach end of life (EOL) during the next five years. Assuming 

that LFP batteries have a 5-year life span and NMC batteries have a 6-year lifespan, Tan et al. 

predicts that the total EOL EV batteries in China will reach 26.3 GWh by year 2021 and 126.0 

GWh by year 2025[8]. Due to the relatively high material value and the possibility to reuse these 

batteries on other energy storage application, EOL EV battery recycling can be economically 

viable which in turn could lessen the demand of critical materials such as Lithium and Cobalt. As 

EV batteries generate multiple potential environmental risks during EOL disposal or recycling 

phase [9], Chinese government started to enforce EOL regulations and establish an entry permit 

system for EV battery recycling industry [10]. Currently, a total of 22 companies are officially 

permitted to recycle or repurpose EOL EV batteries [11].  

However, as reported by Xinhua News Agency, many illegal recyclers for EV batteries 

exists due to high material values of used EV batteries and they often offer higher buying price, 

taking their advantages of low operating cost due to lack of necessary environmental protection 

measures [12]. Meanwhile, legal recyclers tend to collect EOL EV batteries from local dealers and 

transport these batteries to centralized recycling facilities, whereas illegal recyclers are mostly 

local. Since legal recyclers are less cost competitive, it is vital for the government to support legal 

recyclers by regulations and policies such as subsidy. Event with these measures, it is still not clear 

if these companies are profitable and willing to compete with each other on recycling EOL EV 

batteries.  

Research have been conducted on methodology, environmental impact, cost-profit analysis, 

and policy making of EOL EV batteries recycling. Detailed literature review will be provided in 

the next section. Meanwhile, few research considered EOL batteries market where competition 

exists among multiple recyclers by an agent-based model simulation. This research aims at setting 
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up a competitional EOL EV batteries market between legal and illegal recyclers. Governments can 

utilize several policies to intervene the competition and target at increasing overall battery 

recycling rate of legal recyclers. This model will shed light on the market dynamics and help the 

government to make further policy decisions. 

4.2 Literature Review 

Research had been focused on various EOL EV batteries recycling processes. An overview 

from Melin at al. discussed the overall number of research available on EV batteries, including 

recycling processes, reuse processes, and battery types [13]. For recycling processes, most studies 

and reviews focus on hydrometallurgical processes with mechanical or mechanochemical methods 

working as pre-process steps [14] [15] [16] [17]. Other recycling processes, such as 

pyrometallurgy processes [18], regeneration and direct recycling of cathode [19] [20] are also 

discussed. These studies show high recycling rate (over 90%) of cathode materials. For EV 

batteries reuse, many studies focus on EOL batteries status assessment [21] [22].  

Economic performance of EOL EV batteries recycling and reuse are also discussed. 

Pagliaro et al. and Richa et al. assessed EV batteries recycling and reuse from a circular economy 

point of view [23] [24]. Several reports focused on providing a cost and profit analysis of various 

EV battery types [7] [25] [26]. NREL developed a cost assessment tool for EV batteries reuse in 

2015 [27]. Dai et al. from Argonne National Lab (ANL) developed a closed-loop battery recycling 

model to assess recycling cost as well as environmental impacts [28].  

Environmental impacts of EOL EV batteries recycling and reuse are addressed by several 

studies. Several studies assessed environmental impacts of EOL EV batteries along with economic 

benefits [26] [28] [29]. Life cycle assessment have been utilized to analyze environmental impact 

and benefits comparing to the original production process [30] [31] [32].  

Meanwhile, several studies utilized dynamic modeling tools to provide more insights on 

EOL EV batteries collection market. Ziemann et al. utilized dynamic material flow analysis 

technique to discuss the impacts of EV batteries recycling on lithium supply-demand balance [33]. 

Blumberga et al. and Li et al. created system dynamics model to provide a temporal view of the 

market [34] [35]. Liu et al. created an agent-based model to analyze the importance of EV batteries 

recycling based on battery life and technology renovation [36]. 
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To address the nature of a competing recycling market, either game-theory-based models 

or simulation-based models can be utilized. Tang et al. modeled EV batteries recycling market as 

a Stackelberg game and discussed different collection mechanisms [37]. Liu et al. discussed WEEE 

recycling with a dual channel model where competitors can choose to stay legal and receive 

subsidy form the government or become illegal and have reduced costs [38]. Murata et al. created 

a simulation model for global EV batteries reuse [39].  

EOL EV batteries recycling market in China have some notable characteristics. First, two 

major types of EOL EV batteries exist (LFP and NMC) along with different recycling processes 

and costs, as well as potential profit from recycled materials [8]. Secondly, most recyclers are 

operating far under their capacities and the recycling market is a seller’s market [40]. Finally, the 

geological distribution of EOL EV batteries impose an increased cost on battery collection and 

recycling, as EOL batteries are considered hazardous by regulation and need to be transported by 

special vehicles [41]. Besides, due to the difference on processes of EV battery recycling and reuse, 

recyclers may not be able to handle all battery types for recycling and reuse [11]. Meanwhile, it is 

vital to understand how policy makers can influence the market. To establish a market model based 

on these conditions, agent-based modeling (ABM) is a promising tool to address the heterogenicity 

and uncertainty of the system. Various studies based on this technique had been applied to 

competing markets, including electricity grids [42], e-waste recycling [43], and Freight transport 

markets [44]. Although Liu et al. [36] have already established an agent-based model on EV 

recycling, their model was purely based on demand of EV batteries and did not consider economic 

factors of EOL EV recycling process. 

4.3 Model Description 

4.3.1 Model Objectives and Implementation 

This work is dedicated to creating a bottom-up model for EOL EV batteries recycling 

market using ABM as a tool and provides insight to the market nature and possible government 

measurements to increase recycling rate. The model simulated EOL EV batteries recycling 

collection market, where potential recyclers compete for spent EV batteries as raw material of 

recycling or reuse.  
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The model simulated the market between Jan. 2021 and Dec. 2025 in a monthly time step 

basis. Recyclers, modeled as agents, repeatedly receive spent EV battery offers and bids for them. 

Bidding model is commonly used in seller’s market and had already been utilized to describe 

similar recycling market [45] [46]. Meanwhile, policy makers can utilize several tools to influence 

the market, such as regulations and subsidies. Recycled material and reused battery pack prices 

can also influence the willingness of recyclers. These uncertainties are modeled as different 

scenarios. 

The following sections will first introduce general assumptions and system boundaries of 

the model, then goes into details about agent behaviors and parameter settings. Finally, details on 

possible scenarios are introduced, as well as validation and verification process. The Repast 

Simphony toolkit based on JAVA was used to implement the model [47]. 

4.3.2 Model assumptions and boundaries 

Due to model scope and data availability, it is not possible to include every detail of the 

market into the model. Therefore, it is important to define the model properly so that it can properly 

imitates real world activities without being too complicated. 

This model includes the recycling and reuse market of two major battery types in China, 

LFP and NMC. These two types of batteries cover more than 92% of current installed EV batteries 

in China [11]. Currently, NMC batteries are usually recycled due to relatively low EOL reuse value 

and high recycled material value [48]. Meanwhile, LFP batteries have relatively low material value, 

and can be reproposed into other applications based on EOL battery health [49] [50]. Therefore, 

this model did not include possibilities of NMC reuse nor the recycling and reuse of battery types 

other than LFP and NMC. 

Legal recyclers from Chinese government list are modeled as agents [11]. The model 

assumes that each agent collects all batteries they acquired nationwide and transport them to one 

centralized processing facilities at their registered province. To simplify the model, the model 

assumes that the transportation distance for each EOL battery equals to the road distance between 

the capitals of two provinces. Meanwhile, an agent representing illegal recyclers is created to 

compete for EOL batteries. This agent resembles the collection of all local illegal recyclers. As 

this model assumes that all illegal recyclers have homogeneous recycling cost without considering 

transportation cost, only local illegal recyclers are most cost effective in the competition. Therefore, 
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one agent is enough to resemble the behavior of illegal recyclers as it always represents a local 

illegal recycler in the competition. 

The amount of EOL EV batteries and types available each time step (month) are direct 

input data from the report [50]. Meanwhile, following the survey result from Tang et al. [26], the 

model assumes that each EOL battery seller has a personal preference on the choice of recyclers 

and are not purely profit-driven. This preference is determined stochastically during the simulation. 

4.3.3 Model Formulation 

The model included 20 legal recyclers as agents following the list from Chinese 

government [11]. The original list contained two pairs of recyclers belonging to a same company, 

but with different recycling technologies or methods (recycling or reuse). Thus, they are combined 

into one agent correspondingly. Meanwhile, an illegal recycler agent is created to imitate all local 

illegal recyclers in the market. A seller agent is also created to provide EOL EV batteries for 

recycler agents to bid. The model flow chart is shown in Figure 4.1 to demonstrate model scheme. 

During each time step, global variables such as subsidy amount and recycled material 

prices are first updated if necessary. After that the amount and types of available EOL EV batteries 

are determined from report data [50]. The model then started its auction process, first determine 

battery location and seller type stochastically based on known probability distribution [26] [51]. 

To simplify the process, spent batteries are auctioned in one ton unit and independence of 

probability distribution is assumed. Since this market is an open price competition, the winner 

need only to pay more than all its competitors. Therefore, the model assumed that second-price 

auction is used in the market, and each agent reserves a portion of their revenue as minimum gross 

margin based on historical data [50] [52]. For each auction, the recycler with highest bidding price 

wins the bid, and pays the seller with second-highest price. If no recyclers are willing to pay, the 

unit of battery will not be recycled. After all batteries are auctioned, the time step ends. 
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Figure 4.1. Model flow chart 

4.3.4 Recycler Agents 

The 20 plus 1 recycler agents are modeled to make decisions on each auction in each time 

step. Their parameters inputs are shown in Table 4.1Error! Reference source not found.. By 

comparing projected EOL EV batteries available with known recycler capacities, it is unlikely that 

the recycler capacities will be fully utilized by year 2025 [50]. Thus, the model did not impose 

capacity restrictions on recycler agents.  

Meanwhile, the model assumes that all legal agents utilize similar recycling process and 

have same base cost towards a certain type of batteries. For illegal agent, environmental and tax 

costs are deducted from the total costs. The model assumes a recovery efficiency of 90%, following 

the Guangda report setting [50]. Since the data source does not provide reuse cost for LFP, data 

from another report on battery dismantle cost is utilized [53].  

Since for a second price open auction, the dominant strategy is to bid until one’s auction 

value or maximum willingness to pay is reached [56]. For each auction, the recycler agents add up 

their base cost for that battery type with transportation cost, and calculate their auction value which 

can be summarized into the following formula: 

 

𝑣𝑖 = 𝑟𝑖 × 𝜌 − (𝑐𝑏𝑎𝑠𝑒,𝑖 + 𝑐𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡 × 𝑑𝑖,𝑏𝑎𝑡𝑡𝑒𝑟𝑦) 

Start of Time Step
Renew global 

variables

Determine EOL EV 
batteries amount and 

types available

Determine battery 
location and seller 

utility for each unit of 
battery stochastically

Deliver information to 
agents and finish 

auctions
End of Time Step
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here 𝑣𝑖 is the value and the maximum bidding price for agent 𝑖, 𝑟𝑖 is the revenue from recycling or 

reusing the sold EOL battery, 𝑐𝑏𝑎𝑠𝑒,𝑖 is the base recycling or reuse cost, and 𝑑𝑖,𝑏𝑎𝑡𝑡𝑒𝑟𝑦 is the road 

distance between the battery and the recycler. As mentioned above, a portion of gross margin 𝜌 is 

reserved. For each auction, after bidding price for each agent is calculated, the agent with highest 

bidding price wins the auction and the payment is equal to the second highest bidding price. 

 

Table 4.1. Recycler agents’ parameters 

Parameters Value References 

Transportation Cost 2.39 CNY/km [28] 

Base Recycling Cost, NMC 8300 CNY/t [50] 

Base Recycling Cost, LFP 7800 CNY/t [50] 

Base Reuse Cost, LFP 4964 CNY/t [50] [53] 

Base Energy Density, LFP 2.4kg/kWh [50] 

Base Price Reduction, LFP 30% [50] 

Base Environmental Cost, NMC 470 CNY/t [50] 

Base Environmental Cost, LFP 400 CNY/t [50] 

LFP Reuse Failure Rate 10% [50] 

 

Based on recycler information, five types of agents exist and are listed in Table 4.2. For 

recycler agents with only recycling process, LFP battery revenue is evaluated only by recycling 

process. For reuse only agents, LFP battery revenue is calculated by reuse process. Since the 

predicted probability for LFP battery failure is 10% [50], reuse only agents will have another 10% 

reduction in their revenue as they need to resell the battery. For all-purpose agents and illegal 

agents, the profits for LFP battery recycling and reuse are compared, and the agents only utilize 

the more profitable process unless they encounter a failed LFP battery. 

 

Table 4.2. Recycler type table 

Recycler Type EOL battery bid Available process 

Reuse only LFP Reuse 

Recycle only LFP, NMC Recycling 

NMC only NMC Recycling 

All-purpose LFP, NMC Recycling, Reuse 

Illegal LFP, NMC Recycling, Reuse 
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The revenue of recycler agents, on the other hand, depends on current material prices and 

new battery prices. The price setting on sellable products is listed in Table 4.3Error! Reference 

source not found.. For critical material prices, as they are highly volatile, historical high price and 

low price are also listed and scenarios are created based on different price estimation. It should be 

noted that LFP battery expected price is adjusted by lithium price, since cathode cost count for 

roughly 20% of total LFP manufacturing cost [48]. 

 

Table 4.3. Recycling or reuse product price table 

Product Current Price Reference 

Lithium 930000 CNY/t (historical 

high: 935000, historical low: 

390000) 

[50] [54] 

Nickle 146000 CNY/t (historical 

high: 154000, historical low: 

64200) 

[50] [54] 

Cobalt 404200 CNY/t (historical 

high: 664200, historical low: 

194200) 

[50] [54] 

Manganese 43800 CNY/t (historical high: 

43800, historical low: 9300) 

[50] [54] 

Other Materials, total, NMC 3540 CNY per ton of battery [55] 

Other Materials, total, LFP 2703 CNY per ton of battery [55] 

LFP battery expected price 

(With lithium price at 

495000) 

0.71 CNY/Wh to 0.55 

CNY/Wh 

[50] 

 

By taking a 90% recovery efficiency and a 40% (roughly 30% for LFP) cathode mass 

percentage in EV batteries, the recycled material weights deducted from the report are listed in 

Table 4.4 [50] [55]. Therefore, corresponding recycling revenue and profit can be calculated. 

When participating in an auction, a recycler will always bid for its maximum willingness to pay, 

as it is a dominant strategy of the auction [56]. 
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Table 4.4. Recycled product mass table, per ton of batteries 

Battery Type Li (kg) Ni (kg) Co (kg) Mn (kg) Reference 

LFP 24.2 0 0 0 [48] [50] 

NMC 333 25.9 73.0 73.3 68.3 [50] 

NMC 532 25.9 109.4 43.9 61.4 [50] 

NMC 622 25.9 130.8 43.8 40.1 [50] 

NMC 811 25.7 173.8 21.8 20.3 [50] 

4.3.5 Seller Agent 

The seller agent mainly provides EOL EV batteries for auction. During each time step, 

available batteries is read from input data [50]. Then for each tonnage of batteries, a collection 

location is stochastically determined based on known distribution [51], and an auction is initiated. 

The seller agent repeatedly open auctions until all EOL EV batteries are cleared out for current 

time step. 

The total amount of batteries available and their type is shown in Table 4.5. Within the 

same year, the number of batteries assigned to a single month is evenly distributed. As Tang et. al 

pointed out, some EOL battery sellers are more aware of factors other than selling price [26]. As 

a result, for each auction, a seller’s preference tied to the survey result is stochastically assigned 

[26]. The probability distribution of seller preferences and their actual influence on the model is 

shown in Table 4.6. 

 

 Table 4.5. EOL EV batteries available by type (t)  

Type 2021 2022 2023 2024 2025 

NMC 333 15750 32000 24250 3750 2250 

NMC 532 14500 37500 106250 133250 119500 

NMC 622 0 6000 19250 30500 36500 

NMC 811 0 0.00 2500 7500 35000 

LFP 52000 48200 55200 54100 68600 
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Table 4.6. Seller preferences 

Preference Probability Weight Sells to 

Recycling convenience 207 Legal, illegal 

Recycling price 239 Legal, illegal 

Environmentally friendly 146 Legal only 

Formal channel 78 Legal only 

4.3.6 Scenarios 

To address uncertainties and policy influence over the market, several scenarios are created 

and listed below: 

1. Metal price change: the base case model utilized current price of recycled products to 

predict revenues. However, price may drastically change during the 5-year simulation 

period. Since current metal prices are already at peak level comparing to historical data 

[50] [54], scenario with higher predicted price is not considered. 

2. Government recycling subsidies: According to news report, local government in China 

had issued a 10 CNY/kWh subsidy to EV batteries recycling enterprises [58]. This 

scenario explores the possibility of a nation-wide subsidy to enhance the 

competitiveness of legal recyclers. 

3. Banning of LFP reuse: Chinese government had imposed a new regulation to ban large 

energy storage plants from utilizing reused EV batteries [57]. This may further impact 

demand of repurposed EV batteries. To simulate this situation, a scenario is created 

that for each tonnage of EOL LFP battery, there is a 50% chance that it cannot be reused 

due to lack of demand and must be recycled, representing a shrink in LFP reuse demand. 

4.3.7 Model Verification and Validation 

A model needs to be verified and validated before putting into use. To verify that the model 

itself is valid and runs as intended, an internal validity test and an extreme condition test are 

conducted to prove that the base model properly functions. The internal validity test is conducted 

by running the model repeatedly, to identify whether the model is robust. The extreme condition 

test on cost, profit for illegal and legal recyclers and metal prices shows no abnormal behaviors 

for the model. 
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To validate the model, maximum possible recycling price is compared with current 

recycling price on a legal platform [59]. Also, a test run using historical price provided by the 

report [50] is conducted to compare maximum recycling price with estimated battery cost. 

The internal validity test result is shown in   It can be seen that the model properly 

converges with no apparent outlier situation. 

 

Table 4.7  It can be seen that the model properly converges with no apparent outlier 

situation. 

 

Table 4.7. Internal validity test, 50 runs 

Variable Average (in 1000 CNY) Standard Deviation 

Average LFP called price, 

month 60, legal 

4.462 0.0136 

Average LFP called price, 

month 60, illegal  

4.958 0.00936 

Average NMC called price, 

month 60, legal 

28.049 0.336 

Average NMC called price, 

month 60, illegal  

28.818 0.00773 

 

The comparison of modelled result with historical data or assumption is listed in Table 4.8.  

 

Table 4.8. Comparison with historical data 

Data Modeled result, 

average of 10 runs 

Historical data Reference 

EOL NMC battery 

collection price, 2021 

28526 CNY 22230-28080 

(*1.17 for tax) 

[59] 

EOL LFP battery 

collection price, 2021 

7825 CNY 6552-7254 

(*1.17 for tax) 

[59] 

4.4 Results and Discussion 

The baseline model result is shown in Figure 4.2. Under current price peak for EV battery 

raw material, both LFP reuse and NMC recycling processes are profitable. However, due to the 

cheaper cost for illegal recyclers, only 31% of all EOL batteries are legally recycled. Meanwhile, 
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the change of monthly average collection price is shown in Figure 4.3. As LFP reuse has better 

return than direct recycling, all LFP batteries are bought to reuse. Since new LFP batteries become 

cheaper during the simulation, reused LFP battery price falls correspondingly. On the other hand, 

due to the static price of raw material metals, EOL NMC buying price remains steady. Therefore, 

the change of NMC chemistry will not impact recycling revenue too much under current price 

levels. During the last year of simulation period, as the market share of NMC811 increased, 

average buying price of NMC batteries dropped by roughly 600 CNY/t due to lower recycling 

value of the chemistry. Illegal recycler holds an average price advantage of 652 CNY/t comparing 

to legal recyclers on NMC collection, and an advantage of 492 CNY/t on LFP collection price.  

Under such biding market setting, illegal competitors with cost advantage can dominate 

the market unless the sellers have preference other than maximum profit. 

 

 

Figure 4.2. Recycling rate, baseline case 
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Figure 4.3. Biding price, baseline case 

 

 

 

Figure 4.4. Biding price, low-price scenario 
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Under a historical low-price scenario, the illegal recycler still holds a price advantage over 

legal recyclers, thus making no difference in recycling rate. On the other hand, the average NMC 

battery bid price significantly falls for both types of recyclers, as shown in Figure 4.4. This results 

from the heavy dependency for NMC recycling price on raw material metal price. If the sellers are 

willing to hold the battery and wait for a high bid price to sell, the recyclers will have to either 

raise their bids by losing profit or waiting for a better raw material price. Since LFP reuse value is 

more connected to new LFP battery price and only indirectly influenced by lithium price, it is less 

impacted by the raw material price change than NMC recycling process. 

For government subsidy scenario, considering a 2.4 kg/kWh cathode energy density for 

LFP battery and 30% LFP cathode mass percentage in a whole battery, the 10 CNY/kWh subsidy 

issued by Shenzhen local government is equivalent to a 1,250 CNY/t subsidy [50] [58]. To better 

illustrate the effect of subsidies, a series of runs are conducted with different subsidy values. The 

result is shown in Figure 4.5. It is implied that for a subsidy of 1,670 CNY/t or more, the cost 

advantage between illegal and legal recyclers on local NMC battery recycling is denied. However, 

to cover the additional inter-province transportation cost, additional subsidy needs to be applied.  

 

 

Figure 4.5. Subsidy effect 
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Finally, by impose an LFP reuse maximum share, the LFP bid price for both type of agents 

is shown in Figure 4.6. The total amount of batteries recycled did not change due to the high 

lithium price, but LFP bid price is reduced by one third comparing to the baseline case. With a 

low-price projection however, LFP recycling will no longer be profitable under current gross 

margin reserve. 

 

 

Figure 4.6. LFP reuse restriction, 50% maximum share 

4.5 Conclusion and Future Work 

In this study, EOL battery recycling market is modelled as an agent-based auction system, 

which captures the fact that illegal recyclers are dominating the market due to cost advantage. For 

government facing the situation, aside from directly eliminate illegal recyclers, subsidy would be 

a useful measure to improve the competitiveness of legal recyclers. On the contrary, any 

regulations that reduce the profit of illegal recyclers are likely to also harm the legal ones. 

Meanwhile, it may be important to create a complete reverse supply chain, as discussed by 

Alamerew et al. [60]. Except for cost-benefit driven methods solely depending on recyclers, 

manufacturers can utilize several mechanics, such as battery renting contracts, to ensure the legal 

recycling of batteries [61]. 
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This study is still crude and can undergo several improvements. Firstly, cost data from 

Chinese report are largely distinct with those reported by studies from other regions [7]. It may be 

worthwhile to identify the reason of the gap. Secondly, this work did not separate third party 

recyclers from battery manufacturers taking part in EOL battery recycling. Since manufacturers 

can achieve a closed-loop recycling via supply chain optimization, manufacturing scheme, and 

policies [28] [62], it is interesting to integrate such considerations into the model. Finally, it is 

valuable to include more layers of elements into the model. For instance, instead of one single sell 

agent, the model can incorporate a group of agents imitating EV customers in the real world. By 

modeling customer behavior, the model would become more realistic and provide more insights 

on the recycling market. 
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 CONCLUSION 

The above works demonstrate three different applications of agent-based modeling, each 

exploring a different layer of a clean energy related market. The objective of the study is to better 

understand and give projections to different layers of clean energy technology markets, utilizing 

agent-based model in conjunction with other tools to provide bottom-up views of a market in 

question, which is seldom done by other methods. This is especially useful to identify the nature 

of emerging markets with fierce competitions or technology innovations. Since these markets are 

usually directly or indirectly involved with supply and demand of raw materials that are critical to 

clean energy development, this study focus its effort on catching the core characteristic of these 

markets, make projections, and identify possible bottlenecks created by demand from clean energy 

products and supply of critical material itself. 

The initial work focuses its effort on LED lighting market in residential lighting sector. 

This market directly tied clean energy products to consumers. Understanding the growth of the 

market can help to make projections on LED lighting development and provide insights on demand 

increase over related critical materials, especially Gallium and Germanium [1]. Since most 

domestic consumers are not fully rational, the adoption of LED lighting involves utilities aside 

from cost-benefit analysis. This work utilizing agent-based modeling to operate a network of 

irrational customers, with several different schemes to change their opinions between incandescent 

CFL and LED. By construct several real-world related scenarios, the work identified possible 

measurements to promote LED adoption while reducing GHG emission and total energy 

consumption. In the process, possible bound effect created by overuse of LED is also identified, 

and projections of the market are properly given. 

The second study directly explores a vital process of critical material supply. Indium is a 

by-product metal that cannot be solely mined due to economic concerns. Meanwhile, the emerge 

of CIGS photovoltaic technology may incur a significant increase in demand to the limited market. 

The task is to address the competitive and profit-driven nature of the refineries defines a non-

cooperative market with high uncertainties. To better imitate these characteristics, the study 

employed agent-based modeling along with other powerful tools, such as mathematical regression 

and equilibrium theory to imitate the complicated market. The study successfully set up an agent-

based model for indium refining market. The model is built on historical data and covers most 
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real-world characteristics of the market. From the model, indium supply and demand projections 

can be given under various conditions. 

The most recent work addresses a newly arose problem, which is the recycling of EOL 

electric vehicle batteries. Specifically, the situation in China is vastly different comparing to other 

countries due to the existence of dominating illegal recyclers. The research aims at understanding 

the market advantage of illegal recyclers and promoting the recycling rate via possible policies. 

To accomplish this, an agent-based model inspired by online auction is created to explain the 

situation. Cost-benefit analysis is done to identify the gap between illegal and legal recyclers. 

Projections on the recovery of important raw materials, such as lithium, cobalt and manganese are 

taken into considerations. The work successfully identifies the collection cost gap between 

recyclers and makes projections about the effects of certain policies and uncertainties. 

In all, these works aim at understanding different layers of clean energy markets, try to 

establish novel bottom-up views towards them. In the process, either the supply and demand of 

critical material is directly discussed, or relevant markets are discussed to expose potential supply 

and demand changes. The study employs agent-based modeling to better demonstrate the 

competing and innovative nature of clean energy related markets and look around with possible 

scenarios to explore possible futures of the market. 
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 FUTURE WORK 

Although much has been done by numerous researches including this work, there are still 

many topics left to be explored. This work shows the possibility and adaptability of agent-based 

modeling, but it could also be used to connect multiple layers of the market and provide a compete 

view of dynamic critical material flows in the market.  

Taking the indium model as an example, an additional layer of agents could be added to 

the model, representing indium-containing mines. Although indium is normally not suitable for 

direct mining, it may become economic feasible to do so when supply shortage occurs and indium 

price rises. Besides, old mine tails may contain rich indium concentrations. It is possible to expand 

existing models based on fresh data and identify economical or technical requirements of 

expanding indium supply. Meanwhile, recycling of indium only happens in-process. Research 

have been done on EOL indium recycling, including economical assessment. It may be possible 

to also expand the model on recycling perspective and identify possible secondary supply of 

indium. 

Another thought is about EV market. This work narrows its effort on EOL recycling. 

However, it is still possible to incorporate multiple layers of agents into the model, from 

manufacturers to EV consumers. One biggest challenge would be data collecting, since clean 

energy markets are relatively new and evolves quickly. It may be possible to cooperate with 

insiders of the market and extend existing models based on close-informed data. 
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