
STRUCTURE PRESERVING AND FAST SPECTRAL
METHODS FOR KINETIC EQUATIONS

by

Xiaodong Huang

A Dissertation

Submitted to the Faculty of Purdue University

In Partial Fulfillment of the Requirements for the degree of

Doctor of Philosophy

Department of Mathematics

West Lafayette, Indiana

December 2021

THE PURDUE UNIVERSITY GRADUATE SCHOOL
STATEMENT OF COMMITTEE APPROVAL

Dr. Jingwei Hu, Chair

Department of Mathematics

Dr. Haizhao Yang, Co-chair

Department of Mathematics

Dr. Jie Shen

Department of Mathematics

Dr. Cory Hauck

Oak Ridge National Laboratory

Approved by:

Dr. Plamen D.Stefanov

2

To my parents.

3

ACKNOWLEDGMENTS

Throughout the writing of this dissertation I have received a great deal of support and

assistance.

My deepest gratitude is to my supervisor, Professor Jingwei Hu. Without her guidance

and encouragement, I would not be able to overcome the problems and difficulties in my

research. She has taught me how to ask questions, how to solve problems, and how to think

as an applied mathematician. Her thoughts have deeply influenced me in the past four years.

I would like to acknowledge my colleagues from my internship at Oak Ridge National Lab

for their wonderful collaboration. I would particularly like to my supervisor at Oak Ridge

National Lab, Professor Cory Hauck. Thank for his support and for all of the opportunities

I was given to further my research.

I am grateful to the tremendous support and encouragement I received from other pro-

fessors at Purdue University, especially from Professor Haizhao Yang and Professor Jie Shen.

Last but not least, I would like to thank my parents for their wise counsel and sympathetic

ear. Without their support, my achievements would not be possible.

4

TABLE OF CONTENTS

LIST OF TABLES . 7

LIST OF FIGURES . 8

ABSTRACT . 10

1 INTRODUCTION . 11

1.1 Overview . 11

1.2 Poisson-Nernst-Planck equations . 12

1.3 Boltzmann equation . 15

2 A STRUCTURE PRESERVING SCHEME FOR POISSON-NERST-PLANCK EQUA-

TIONS . 18

2.1 The PNP equations: initial boundary value problem and basic properties . . 18

2.1.1 Non-dimensionalization . 18

2.1.2 Initial and boundary value problem 19

2.1.3 Basic properties . 20

2.2 Numerical schemes . 22

2.2.1 Fully discrete scheme in 1D . 23

Properties of the fully discrete scheme 28

Fixed point iteration to solve the fully discrete scheme 34

Solvability of the semi-discrete scheme 36

2.2.2 Fully discrete scheme in 2D . 37

2.3 Numerical examples . 40

2.3.1 Accuracy test: manufactured solution 40

2.3.2 1D multiple species . 42

2.3.3 2D single species . 46

2.3.4 KcsA model with Space-Dependent diffusion coefficients 46

2.3.5 Gouy-Chapman model . 50

2.4 Conclusion . 52

5

3 A FAST FOURIER-GALERKIN SPECTRAL METHOD FOR BOLTZMANN EQUA-

TION . 54

3.1 The fast Fourier spectral method for Boltzmann equation 54

3.1.1 Limitation of the current algorithm 57

3.2 The new approach for fast algorithm . 58

3.2.1 The parameters (a, b, µ, ν) in new method 62

3.3 Numerical examples . 63

3.3.1 Approximation of weight G(l,m) . 65

3.3.2 Solving Q(f) in Boltzmann equation 68

3.4 Conclusion . 70

4 A FAST PETROV-GALERKIN SPECTRAL METHOD FOR BOLTZMANN EQUA-

TION . 73

4.1 Multi-dimensional mapped Chebyshev functions 73

4.1.1 Mapped Chebyshev functions in Rd 73

4.1.2 Approximation properties . 76

4.2 A Petrov-Galerkin spectral method for the Boltzmann equation 79

4.2.1 Approximation property for the collision operator 81

4.2.2 Approximation property for the moments 86

4.3 Numerical realization . 87

4.3.1 A direct algorithm . 88

4.3.2 A fast algorithm . 90

4.3.3 Comparison of direct and fast algorithms 92

4.4 Numerical examples . 93

4.4.1 2D examples . 94

2D BKW solution . 94

Computing the moments . 97

4.4.2 3D BKW solution . 103

4.5 Conclusion . 104

REFERENCES . 105

6

LIST OF TABLES

2.1 Table of errors with different time step sizes ∆t. This test is performed with fixed
spatial mesh ∆x = 0.001 and tolerance tol = 10−8. 41

2.2 Table of errors with different spatial mesh sizes ∆x. This test is performed with
fixed time step ∆t = 0.0001 and tolerance tol = 10−8. 41

2.3 Table of errors for Case 1) at time t = 0.2 with different tolerance tol = 10−2, 10−3, 10−4, 10−5.
This test is performed with fixed time step ∆t = 0.05 and spatial mesh size
∆x = 10−2. 44

2.4 Table of errors for Case 2) at time t = 0.1 with different tolerance tol = 10−2, 10−3, 10−4, 10−5.
This test is performed with fixed time step ∆t = 0.01 and spatial mesh size
∆x = 10−2. 44

3.1 Relative error in l∞ norm for Nσ = 14, 38, 74, here we choose N = 16. 58

3.2 The scale of MAE on Tgloabl for Fourier methods. 68

4.1 Storage requirement and (online) computational cost of the direct and fast algo-
rithms. N is the number of spectral modes in each dimension of v; Mv = O(N)
is the number of quadrature points in each dimension; Mσ � Nd is the number
of quadrature points on the sphere Sd−1; and ε is the requested precision in the
NUFFT algorithm. The proposed fast algorithm does not require extra storage
other than that storing the computational target, e.g., the gain and loss terms. . 93

4.2 (2D BKW: Test 01) The L2 error of QBKW(f) at time t = 2. The best accuracy
for a given N of each method. 95

4.3 (2D BKW: Test 04) Running time in second for a single evaluation of the gain
term. 98

4.4 (3D BKW) The L∞ error of QBKW(f) at time t = 6.5. 103

7

LIST OF FIGURES

1.1 Role of kinetic theory in multiscale modeling hierarchy. 11

2.1 Time evolution of the ion concentrations c(1), c(2) and the potential ψ. Top row:
Case 1). Bottom row: Case 2). Time step and spatial mesh size are chosen as
∆t = 0.05(for Case 1), 0.01(for Case 2), ∆x = 0.05. 43

2.2 Time evolution of the discrete energy E∆(tn) and the total mass C(1)
∆ (tn), C(2)

∆ (tn).
Top row: Case 1). Bottom row: Case 2). Spatial mesh size is fixed at ∆x = 0.001.
Different time steps are chosen as indicated in the figures. 44

2.3 Time evolution of the discrete entropy functional W∆(t) in semi-log plot. Left:
Case 1). Right: Case 2). Spatial mesh size is fixed at ∆x = 0.001. Different
time steps are chosen as indicated in the figures. For both cases, we consider the
numerical solution at t = 5 as the steady state. 45

2.4 Number of fixed point iterations needed at each time step, the convergence tol-
erance is set as maxj|c(i),(l+1)

j − c(i),(l)
j | ≤ 10−8). Left: Case 1). Right: Case 2).

Spatial mesh size is fixed at ∆x = 0.001. Different time steps are chosen as
indicated in the figures. 45

2.5 Case 1: Time evolution (contour plot) of the ion concentration c. Time step and
spatial mesh size are chosen as ∆x = 0.01 and ∆t = 0.01. 47

2.6 Case 2: Time evolution (contour plot) of the ion concentration c. Time step and
spatial mesh size are chosen as ∆x = 0.01 and ∆t = 0.01. 48

2.7 Time evolution of the discrete free energy E∆(tn). Left: Case 1). Right: Case
2). Spatial mesh size is fixed at ∆x = 0.01. Different time steps are chosen as
indicated in the figures. 49

2.8 Time evolution of the ion concentrations (KcsA). First column: case i). Second
row: case ii). Third column: case iii). Time step and spatial mesh size are chosen
as ∆t = 0.05 and ∆x = 0.05. 50

2.9 Time evolution of the energy (KcsA). Time step and spatial mesh size are chosen
as ∆t = 0.05 and ∆x = 0.05. 51

2.10 Time evolution of the ion concentrations and the electrostatic potential in Gouy-
Chapman model. Time step and spatial mesh size are chosen as ∆t = 0.00125
and ∆x = 0.02. 53

3.1 Left: u(s) function on [0, PN]; Right: u(s) on [0, PN/10]. 59

3.2 Left: profile of ũ, fdamp and unew functions on the whole domain [a, b]; Right:
profile of functions on [− 1, PN/10] which is close to the origin. 60

3.3 The profile of unew function with different parameters. Left: unew on the interval
[− 200, PN/20]. Right: absolute error |unew − u|(s) on interval [0, PN/20]. 64

8

3.4 MAE of the different fast decomposition in estimating the weight G(l,m). Error
is computed on Tglobal, Tcenter and Tnon−center. 67

3.5 (fBKW) Error ‖ Qext(f) − Qnum(f) ‖L∞ of the different fast approaches. The
x-axis corresponds to number of spherical quadrature points (Msph) in the fast
algorithm and number of Fourier basis (M) in approximation to unew. 70

3.6 (fα) Error ‖ Qdirect(f)−Qnum(f) ‖L∞ of the different fast approaches. The x-axis
corresponds to number of spherical quadrature points (Msph) in the fast algorithm
and number of Fourier basis (M) in approximation to unew. 71

3.7 (fβ) Error ‖ Qdirect(f)−Qnum(f) ‖L∞ of the different fast approaches. The x-axis
corresponds to number of spherical quadrature points (Msph) in the fast algorithm
and number of Fourier basis (M) in approximation to unew. 71

3.8 (fdiscon) Error ‖ Qdirect(f) − Qnum(f) ‖L∞ of the different fast approaches. The
x-axis corresponds to number of spherical quadrature points (Msph) in the fast
algorithm and number of Fourier basis (M) in approximation to unew. 72

3.9 (frand) Error ‖ Qdirect(f) − Qnum(f) ‖L∞ of the different fast approaches. The
x-axis corresponds to number of spherical quadrature points (Msph) in the fast
algorithm and number of Fourier basis (M) in approximation to unew. 72

4.1 (2D BKW: Test 01) The L2 error of QBKW(f) at time t = 2. Top: fast Fourier
method. Bottom: fast Chebyshev methods. 96

4.2 (2D BKW: Test 02) The L∞ error of QBKW(f) at time t = 2. Left: L = 8.83;
Right: L = 13.24. 97

4.3 (2D BKW: Test 03) The L∞ error of QBKW(f) at time t = 2. 98

4.4 (2D moments) The time evolution for the absolute error of the momentum flow
P11. Left: the fast Fourier method. Right: the fast Chebyshev-0 method. . . . 100

4.5 (2D moments) The time evolution for the absolute error of the momentum flow
P12. Left: the fast Fourier method. Right: the fast Chebyshev-0 method. . . . 100

4.6 (2D moments) The time evolution for the absolute error of the momentum flow
P22. Left: the fast Fourier method. Right: the fast Chebyshev-0 method. 101

4.7 (2D moments) The time evolution for the absolute error of the momentum flow
q1. Left: the fast Fourier method. Right: the fast Chebyshev-0 method. 101

4.8 (2D moments) The time evolution for the absolute error of the momentum flow
q2. Left: the fast Fourier method. Right: the fast Chebyshev-0 method. 102

9

ABSTRACT

This dissertation consists of three research projects of kinetic models: a structure-

preserving scheme for Poisson-Nernst-Planck equations and two efficient spectral methods

for multi-dimensional Boltzmann equation.

The Poisson-Nernst-Planck (PNP) equations is widely used to describe the dynamics

of ion transport in ion channels. We introduce a structure-preserving semi-implicit finite

difference scheme for the PNP equations in a bounded domain. A general boundary condition

for the Poisson equation is considered. The fully discrete scheme is shown to satisfy the

following properties: mass conservation, unconditional positivity, and energy dissipation

(hence preserving the steady-state).

Numerical approximation of the Boltzmann equation presents a challenging problem due

to its high-dimensional, nonlinear, and nonlocal collision operator. Among the deterministic

methods, the Fourier-Galerkin spectral method stands out for its relative high accuracy and

possibility of being accelerated by the fast Fourier transform. In this dissertation, we studied

the state of the art in the fast Fourier method and discussed its limitation. Next, we proposed

a new approach to implement the Fourier method, which can resolve those issues.

However, the Fourier method requires a domain truncation which is unphysical since

the collision operator is defined in whole space Rd. In the last part of this dissertation, we

introduce a Petrov-Galerkin spectral method for the Boltzmann equation in the unbounded

domain. The basis functions (both test and trial functions) are carefully chosen mapped

Chebyshev functions to obtain desired convergence and conservation properties. Further-

more, thanks to the close relationship of the Chebyshev functions and the Fourier cosine

series, we can construct a fast algorithm with the help of the non-uniform fast Fourier trans-

form (NUFFT).

10

1. INTRODUCTION

1.1 Overview

In multi-scale modeling, kinetic theory serves as a basic building block that bridges mi-

croscopic particle models and macroscopic continuum models. By tracking the probability

density function, kinetic equations describe the non-equilibrium dynamics of the complex

particle systems and have been widely used in disparate fields such as rarefied gas dynamics

[1], plasma physics [2], nuclear reactor modeling [3], chemistry [4], biology, and socioeco-

nomics [5].

Figure 1.1. Role of kinetic theory in multiscale modeling hierarchy.

As presented in Fig 1.1 , the kinetic models lie between the macroscale models and the

quantum models. In kinetic models, the gases would be studied as a larger number of

particles following some ideal assumptions of the interactions between them. The probability

density function is used to describe the thermodynamics behavior of the system that we are

interested in. In many situations, this allows us to think about the physical phenomenon with

more detailed information that macroscopic models cannot capture. In the past century, the

Boltzmann equation [6], [7] and its variants (such as BGK [8], Landau [9] and Fokker-Planck

[10] models) played a key role in the development of kinetic theory. On the mathematical

side, these models usually involve some complicated nonlinear operators which make the

11

numerical approximation to be a challenging task. For numerical schemes solving the kinetic

equations, the following criteria are commonly used to verify their validity.

1. structure preserving: The solutions of kinetic models must follow some basic phys-

ical laws, such as positivity, mass conservative, momentum preserving, and entropy

decay. It is not easy to guarantee all these properties at the discrete level.

2. accuracy and efficiency: Compared to the macroscale models, the numerical ap-

proximation for the kinetic model would be quite expensive especially in the multidi-

mensional setting. For a real-world application, it is quite important to design a fast

algorithm with a balance of accuracy and efficiency.

In this dissertation, we study the numerical approximation of the kinetic models. In

chapter 2 , we start with a coupled continuum model describing the dynamics of ion transport

in membrane channels–the Poisson-Nernst-Planck equations, which is also a Fokker-Planck

type system. A structure preserving semi-implicit finite difference scheme will be developed

for this model. In chapter 3 and 4 , we study the deterministic numerical approximation

of the Boltzmann equation, one of the fundamental equations in kinetic theory. We focus

on developing accurate and efficient spectral methods for solving the Boltzmann equation.

The following of this chapter provides the prerequisite knowledge of Poisson-Nernst-Planck

equations and Boltzmann equation, along with the main results in this dissertation.

1.2 Poisson-Nernst-Planck equations

In Poisson-Nernst-Planck (PNP) equations, the ions satisfy the Nernst-Planck equation:

∂tc
(i) = ∇ ·

{
D(i)

(
∇c(i) + zie

kBT
c(i)∇ψ

)}
, i = 1, . . . ,m, (1.1)

where c(i) = c(i)(t,x) is the local concentration of the i-th ion species, D(i) = D(i)(x) is the

diffusion coefficient, zi is the valence of the ion, e is the unit charge of a proton, kB is the

12

Boltzmann’s constant, T is the absolute temperature, and ψ = ψ(t,x) is the electrostatic

potential related to ion concentrations via the Poisson equation:

−∇ · (ε∇ψ) =
m∑

i=1
zie c(i) + ρ, (1.2)

where ε = ε(x) is the permittivity of the electrolyte and ρ = ρ(x) is the permanent charge

density of the system. The PNP equations (1.1) and (1.2) are usually posed in a bounded

domain with proper boundary and initial conditions (see Section 2.1 for details). Although

termed by Eisenberg et. al [11], [12] in the 1990s to study the ion channels, the PNP equations

have a long history in the broader context to describe charge transport, where they are often

called drift-diffusion-Poisson equations, see for instance in semiconductor modeling [13]. For

a review of recent development of more generalized PNP equations and related models, the

readers are referred to [14].

For completeness, let us mention a few analytical works related to the well-posedness and

long-time behavior of the PNP equations. Using a generalization of the Hopf-Cole variable

transformation, the existence of a global classical solution and convergence to stationary

solution was proved in [15] for a simplified 1D single species PNP model. In [16], the weak

solution of a multi-D single species PNP model was studied and the well-posedness locally

in time was proved. This result is improved to the two species case in [17], where the global

in time existence of the solution was obtained. The long time asymptotic behavior with

exponential convergence to steady states was obtained in [18], [19].

Solutions to the PNP equations satisfy a few important physical properties: mass con-

servation, positivity, energy dissipation, etc. When designing numerical methods, it would

be desirable to maintain the same properties at the discrete level, preferably with a mild

constraint on time step ∆t and spatial size ∆x, so that the long time simulation can be done

accurately and efficiently.

Searching the literature, there have been numerous studies in recent years devoted to

numerical simulation of the PNP equations. Many of them also aim to preserve the structure

of the solutions. Without being exhaustive, we mention a few closely related works. Among

the explicit methods, the finite difference scheme in [20] is able to preserve the positivity

13

under a parabolic CFL condition (∆t = O(∆x2)), and the energy decay can be shown for

the semi-discrete scheme (time is continuous). Later a DG version is developed in [21],

where the positivity and fully discrete energy decay can be achieved still under a parabolic

CFL condition. Among the implicit methods, the finite difference scheme in [22] obtains

second order in time using a combination of the trapezoidal rule and backward differentiation

formula. The scheme is positive, however, under a parabolic CFL condition and an additional

constraint on spatial size. An energy-preserving version is recently presented in [23], where

the energy decay rate is shown to be consistent up to O(∆x2+∆t2). Finally, the finite element

method in [24] employs the fully implicit backward Euler scheme to obtain the discrete energy

decay. We mention that this time discretization only works for certain boundary conditions

and would not work (or require extra conditions) for the general boundaries we considered in

this paper (see Remark 3). From the above discussions, we can see that it is very difficult to

obtain both unconditional positivity and discrete energy decay and that generally requires

one to go from explicit to implicit schemes.

In chapter 2 , we develop a semi-implicit finite difference scheme for the PNP equations

that is first order in time and second-order in space. Our main contribution in this work

is the time discretization, which is inspired by the recent work [25]. For generality, we

consider an inhomogeneous Robin type boundary condition for the Poisson equation which

includes Dirichlet and Neumann boundaries as subcases. The fully discrete scheme is proved

to be mass conservative, unconditionally positive and energy dissipative. As a result of fully

discrete energy decay, the numerical solution would converge to the solution of the (time

independent) Poisson-Boltzmann equation, i.e., the scheme is steady-state preserving. To

solve the nonlinear system resulting from the semi-implicit time discretization, we propose

a simple fixed point iteration. Although we are not able to prove the convergence of the

iterative scheme, we demonstrate numerically its fast convergence using a series of examples.

Moreover, we provide rigorous proof of the solvability of the semi-discrete scheme (space is

continuous). To the best of our knowledge, this is the first numerical method for the PNP

equations that achieves simultaneously unconditional positivity and fully discrete energy

decay, and works for a large class of boundary conditions.

14

1.3 Boltzmann equation

The complete Boltzmann equation includes both particle transport and collisions which

are often treated separately by operator splitting,

∂tf + v · ∇xf = Q(f, f), t > 0, x ∈ Ω ⊂ Rd, v ∈ Rd, d ≥ 2, (1.3)

where f = f(t,x,v) is the probability density function of time t, location x and velocity v,

and Q(f, f) is the collision operator.

Since the collision part is the main difficulty when numerically solving the equation,

we focus on the following spatially homogeneous Boltzmann equation in multi-dimensional

setting:

∂tf = Q(f, f), t > 0, v ∈ Rd, d = 2, 3, (1.4)

where f = f(t,v) is the probability density function of time t and velocity v, and Q(f, f) is

the collision operator whose bilinear form is given by

Q(g, f)(v) =
∫
Rd

∫
Sd−1
B(v,v∗,σ) [g(v′∗)f(v′)− g(v∗)f(v)] dσ dv∗, (1.5)

where the post-collisional velocities (v′,v′∗) are defined in terms of the pre-collisional veloci-

ties (v,v∗) as 
v′ = 1

2(v + v∗) + 1
2 |v − v∗|σ,

v′∗ = 1
2(v + v∗)− 1

2 |v − v∗|σ,
(1.6)

with σ being a vector over the unit sphere Sd−1. The collision kernel B takes the form

B(v,v∗,σ) = B(|v − v∗|, cos θ), cos θ =
〈
v − v∗
|v − v∗|

,σ

〉
, (1.7)

15

i.e., it is a function depending only on the relative velocity |v−v∗| and cosine of the scattering

angle. The collision operator Q(f, f) satisfies many important physical properties, including

conservation of mass, momentum, and energy:

∫
Rd
Q(f, f) dv =

∫
Rd
Q(f, f)v dv =

∫
Rd
Q(f, f)|v|2 dv = 0, (1.8)

and the Boltzmann’s H-theorem:

∫
Rd
Q(f, f) log f dv ≤ 0. (1.9)

In the physically relevant case (d = 3), the collision operator is a five-fold quadratic inte-

gral whose numerical approximation can be extremely challenging. The stochastic methods,

such as the direct simulation Monte Carlo (DSMC) methods proposed by Nanbu [26] and

Bird [27], have been historically popular due to their simplicity and efficiency. However, like

any Monte Carlo method, they suffer from slow convergence and high statistical noise, espe-

cially for low-speed and unsteady flows. In the past two decades, the deterministic methods

have undergone extensive development largely due to the advance in computing powers, see

[28] for a recent review.

Among the deterministic methods for the Boltzmann equation, the Fourier-Galerkin spec-

tral method stands out for its relatively high accuracy and the possibility of being accelerated

by the fast Fourier transform (see, for instance, [29]–[32] for major algorithmic development

and [33]–[36] for stability and convergence analysis). There are some other spectral methods

[37]–[41] for the Boltzmann equation that use other orthogonal polynomial bases in Rd.

In chapter 3 , we study a fast Fourier spectral method [42] developed recently where a low-

rank approximation was introduced for the speedup. Following a similar idea, we propose

a new fast Fourier spectral method solving the spatially homogeneous Boltzmann equation.

These two algorithms are compared in the numerical tests of the 3D variable hard sphere

(VHS) molecule model. The new approach is able to get better accuracy in approximation

to the high-frequency weight where the former method could not approximate very well.

16

Although being a method with reasonable efficiency and accuracy tradeoff, the Fourier

spectral method requires a domain truncation which is unphysical since the original collision

operator is defined in the whole space Rd. This truncation changes the structure of the

equation and often comes with an accuracy loss.

In chapter 4 , we develop a Petrov-Galerkin spectral method for the Boltzmann equation

(1.4) using mapped Chebyshev functions in Rd. This is inspired by the recent work [43] where

a spectral method was introduced for the 1D inelastic Boltzmann equation1
 . Both the test

functions and trial functions are carefully chosen to obtain desired approximation properties.

Furthermore, thanks to the close relationship of the Chebyshev functions and the Fourier

cosine series, we are able to construct a fast algorithm with the help of the non-uniform fast

Fourier transform (NUFFT). This speedup is critical as the direct implementation of the

proposed method would require excessive storage for precomputation and significant online

computational cost that soon become a bottleneck for larger N (the number of spectral

modes). Extensive numerical tests in 2D and 3D are performed to demonstrate the accuracy

and efficiency of the proposed method. In particular, the comparison with the Fourier

spectral method in [32] indeed confirms the better approximation properties of the proposed

method. Up to our knowledge, our method is the first with a fast implementation and a

consistency analysis.

1↑ Unlike the inelastic Boltzmann equation which has a non-trivial solution in 1D, the classical Boltzmann
equation (1.4) must be considered at least for d ≥ 2.

17

2. A STRUCTURE PRESERVING SCHEME FOR

POISSON-NERST-PLANCK EQUATIONS

In this chapter, we propose a novel semi-implicit finite difference scheme for the PNP equa-

tions which will preserving the physical features in discrete level. We also discuss the solv-

ability of the semi-discrete scheme and introduce a fixed point iteration to solve the fully

discrete scheme. The numerical tests are performed in both 1D and 2D to verify the accuracy

and structure preserving properties.

In Section 2.1 , we give a brief introduction of the PNP equations in a bounded domain

along with the basic properties. In Section 2.2 , we describe in detail the fully discrete scheme

in 1D and prove its properties: mass conservation, unconditional positivity, and energy

dissipation. In addition, we prove the solvability of the semi-discrete scheme and propose

a simple fixed point iteration to solve the fully discrete scheme. Extension to 2D is also

discussed. Numerical examples are provided in Section 2.3 to demonstrate the convergence

and properties of the proposed scheme. Concluding remarks are given in Section 2.4 .

2.1 The PNP equations: initial boundary value problem and basic properties

In this section, we describe the initial boundary value problem of the PNP equations and

summarize its basic properties.

2.1.1 Non-dimensionalization

To begin with, we first non-dimensionalize the equations (1.1) and (1.2) by introducing

the following rescaled quantities:

ĉ(i) = c(i)

c0
, ψ̂ = ψ

ψ0
, ρ̂ = ρ

ec0
, x̂ = x

x0
, D̂(i) = D(i)

D0
, t̂ = t

x2
0/D0

, ε̂ = ε

ε0
, (2.1)

18

where c0, ψ0, . . . are the characteristic values of the corresponding quantities. Then (1.1)

and (1.2) can be rewritten as

D0

x2
0
∂t̂ĉ

(i) = D0

x2
0
∇ ·

{
D̂(i)

(
∇ĉ(i) + ψ0

zie
kBT

ĉ(i)∇ψ̂
)}

, (2.2)

− ψ0ε0
x2

0
∇ ·

(
ε̂∇ψ̂

)
= ec0

(
m∑

i=1
ziĉ

(i) + ρ̂

)
. (2.3)

Define

χ1 := eψ0

kBT
, χ2 := ec0x

2
0

ψ0ε0
, (2.4)

we obtain the non-dimensionalized PNP equations as (droppingˆfor simplicity):

∂tc
(i) = ∇ ·

(
D(i)

(
∇c(i) + χ1zic

(i)∇ψ
))
, (2.5)

−∇ · (ε∇ψ) = χ2

(
m∑

i=1
zic

(i) + ρ

)
. (2.6)

For more physical background of these dimensionless parameters, we refer the interested

reader to section 2.3 in article [22].

2.1.2 Initial and boundary value problem

When the PNP equations are imposed in a connected bounded domain Ω ⊂ Rd, proper

initial and boundary conditions need to be supplemented.

For the Nernst-Planck equation (2.5), the initial condition is given by

c(i)(0,x) = c(i),0(x), x ∈ Ω, i = 1, . . . ,m, (2.7)

and the initial value of ψ is given by solving the Poisson equation (2.6) subject to (2.7).

For the boundary, one usually assumes the no-flux boundary condition for the Nernst-

Planck equation, i.e.,

D(i)
(
∇c(i) + χ1zic

(i)∇ψ
)
· n = 0, x ∈ ∂Ω, t ≥ 0, i = 1, . . . ,m, (2.8)

19

where n is the unit outward normal at the boundary point x ∈ ∂Ω. Boundary condition for

the Poisson equation can be various. Here we consider a general boundary condition:

αψ + β
∂ψ

∂n
= f, x ∈ ∂Ω, t ≥ 0, (2.9)

where α, β are some constants and f = f(x) is a given function on ∂Ω. Note that

• when α 6= 0, β 6= 0, (2.9) is the Robin boundary condition;

• when α 6= 0, β = 0, (2.9) reduces to the Dirichlet boundary condition;

• when α = 0, β 6= 0, (2.9) reduces to the Neumann boundary condition. Solution

to the Neumann problem can only be unique up to a constant. Also the following

compatibility condition is required:

χ2

∫
Ω

(
m∑

i=1
zic

(i),0 + ρ

)
dx+ 1

β

∫
∂Ω
εf ds = 0. (2.10)

Putting everything together, we have the following initial boundary value problem for

the PNP equations:



∂tc
(i) = ∇ ·

(
D(i)

(
∇c(i) + χ1zic

(i)∇ψ
))
, x ∈ Ω, t ≥ 0, i = 1, . . . ,m, (2.11)

c(i)(0,x) = c(i),0(x), x ∈ Ω, i = 1, . . . ,m, (2.12)

D(i)
(
∇c(i) + χ1zic

(i)∇ψ
)
· n = 0, x ∈ ∂Ω, t ≥ 0, i = 1, . . . ,m, (2.13)

−∇ · (ε∇ψ) = χ2

(
m∑

i=1
zic

(i) + ρ

)
, x ∈ Ω, t ≥ 0, (2.14)

αψ + β
∂ψ

∂n
= f, x ∈ ∂Ω, t ≥ 0. (2.15)

2.1.3 Basic properties

Here we list a few important properties of the problem (2.11)–(2.15), which will serve as

a guidance in designing numerical schemes.

20

1. Mass conservation:

∫
Ω
c(i)(t,x) dx =

∫
Ω
c(i),0(x) dx, ∀t > 0, i = 1, . . . ,m. (2.16)

2. Positivity:

c(i),0(x) ≥ 0 ⇒ c(i)(t,x) ≥ 0, ∀t > 0, x ∈ Ω, i = 1, . . . ,m. (2.17)

3. Energy dissipation:

dẼ
dt = −

m∑
i=1

∫
Ω
D(i)c(i)

∣∣∣∇(log c(i)+χ1ziψ
)∣∣∣2 dx+ χ1

2χ2

∫
∂Ω
ε

(
ψ
∂ψt
∂n
− ψt

∂ψ

∂n

)
ds, (2.18)

where the free energy Ẽ is defined as

Ẽ =
∫

Ω

m∑
i=1

(
c(i) log c(i)

)
dx+ χ1

2

∫
Ω

(
m∑

i=1
zic

(i) + ρ

)
ψ dx. (2.19)

Note that using the boundary condition (2.15) and f does not depend on time, the

last term on the right hand side of (2.18) can be written equivalently as

χ1

2χ2

∫
∂Ω
ε

(
ψ
∂ψt
∂n
− ψt

∂ψ

∂n

)
ds =


χ1

2χ2α

∫
∂Ω
εf
∂ψt
∂n

ds, if α 6= 0,

− χ1

2χ2β

∫
∂Ω
εfψt ds, if β 6= 0.

(2.20)

Therefore, to make (2.18) dissipative, one can choose

E = Ẽ +


− χ1

2χ2α

∫
∂Ω
εf
∂ψ

∂n
ds, if α 6= 0,

χ1

2χ2β

∫
∂Ω
εfψ ds, if β 6= 0.

(2.21)

Then one has

dE
dt = −

m∑
i=1

∫
Ω
D(i)c(i)

∣∣∣∇(log c(i) + χ1ziψ
)∣∣∣2 dx ≤ 0. (2.22)

21

4. Steady state: the energy dissipation implies that the steady state of the system is

achieved when

∇
(
log c(i),∞ + χ1ziψ

∞
)

= 0, i = 1, . . . ,m, (2.23)

which integrates to the equilibrium

c(i),∞ = λie−χ1ziψ∞ , with λi =
∫

Ω c
(i),0 dx∫

Ω e−χ1ziψ∞ dx . (2.24)

Substituting c(i),∞ into the Poisson equation (2.14) leads to

−∇ · (ε∇ψ∞) = χ2

(
m∑

i=1
λizie−χ1ziψ∞ + ρ

)
, x ∈ Ω, (2.25)

which together with the boundary condition (2.15) constitute the (nonlinear) Poisson-

Boltzmann equation.

2.2 Numerical schemes

In this section, we describe the proposed numerical scheme for the initial boundary value

problem (2.11)–(2.15). For simplicity, we assume χ1 = χ2 = 1 in the following.

Before going into detail, we first summarize the key ingredients in our method.

• The first ingredient is to reformulate the Nernst-Planck equation (2.11) as

∂tc
(i) = ∇ ·

(
D(i)M (i)∇

(
c(i)

M (i)

))
, where M (i) = e−ziψ. (2.26)

Accordingly, the no-flux boundary condition (2.13) becomes

∇
(
c(i)

M (i)

)
· n = 0. (2.27)

Note that this is the Scharfetter-Gummel transform widely used in semiconductor

community [44].

22

• The second ingredient is the spatial discretization. As both (2.26) and the Poisson

equation (2.14) are diffusive type equations, it is simple and natural to use the central

finite difference.

• The third ingredient (which is our main contribution) is a semi-implicit time dis-

cretization 
c(i),n+1 − c(i),n

∆t = ∇ ·
(
D(i)M (i),∗∇

(
c(i),n+1

M (i),∗

))
,

−∇ · (ε∇ψn+1) =
m∑

i=1
zic

(i),n+1 + ρ,
(2.28)

where M (i),∗ = e−ziψ∗ and the potential ψ∗ is chosen as

ψ∗ = ψn + ψn+1

2 . (2.29)

2.2.1 Fully discrete scheme in 1D

We now describe in detail the proposed scheme in 1D. Assume the domain Ω = [a, b],

then the PNP system reads



∂tc
(i) =

(
D(i)M (i)

(
c(i)

M (i)

)
x

)
x

, x ∈ [a, b], t ≥ 0, i = 1, . . . ,m, (2.30)

c(i)(0, x) = c(i),0(x), x ∈ [a, b], i = 1, . . . ,m, (2.31)(
c(i)

M (i)

)
x

(t, a) =
(
c(i)

M (i)

)
x

(t, b) = 0, t ≥ 0, i = 1, . . . ,m, (2.32)

−(εψx)x =
m∑

i=1
zic

(i) + ρ, x ∈ [a, b], t ≥ 0, (2.33)

αψ(t, a)− βψx(t, a) = fa, t ≥ 0, (2.34)

αψ(t, b) + βψx(t, b) = fb, t ≥ 0. (2.35)

We partition the interval [a, b] into N uniform cells with mesh size ∆x = (b − a)/N . The

cell centers xj = a + (j − 1/2)∆x, j = 1, . . . , N are chosen as the grid points; and the cell

interfaces are given by xj+1/2 = a + j∆x, j = 0, . . . , N (note that x1/2 = a, xN+1/2 = b). Let

tn = n∆t be the discrete time step and we denote the numerical approximation of a function

u(t, x) at (tn, xj) by unj .

23

We first discretize the Nernst-Planck equation (2.30) in space by a second-order central

difference scheme:

∂tc
(i)
j = 1

∆x2

(
D

(i)
j+ 1

2
M

(i)
j+ 1

2
ĝ

(i)
j+ 1

2
−D(i)

j− 1
2
M

(i)
j− 1

2
ĝ

(i)
j− 1

2

)
, j = 1, · · · , N, (2.36)

where ĝ(i)
j+ 1

2
is defined by

ĝ
(i)
j+ 1

2
=
(
c(i)

M (i)

)
j+1
−
(
c(i)

M (i)

)
j
, j = 1, . . . , N − 1. (2.37)

At the boundary (j = 0, N), due to the no-flux boundary condition (2.32), we set

ĝ
(i)
1
2

= ĝ
(i)
N+ 1

2
= 0. (2.38)

D
(i)
j+ 1

2
is the value of the diffusion coefficient D(i) at xj+ 1

2
. M (i)

j+ 1
2

is an approximation to M (i)

at xj+ 1
2

and we take

M
(i)
j+ 1

2
=
M

(i)
j +M

(i)
j+1

2 , M
(i)
j = e−ziψj , j = 1, . . . , N − 1. (2.39)

Remark 1. We remark that the choice of M (i)
j+ 1

2
is not unique. As long as it is a second

order, positive approximation to M (i) at xj+ 1
2
, all the properties derived in Section 2.2.1 can

be carried over.

For the Poisson equation (2.33), we also use the central difference scheme:

− 1
∆x2

(
εj+ 1

2
ψ̂j+ 1

2
− εj− 1

2
ψ̂j− 1

2

)
=

m∑
i=1

zic
(i)
j + ρj, j = 1, · · · , N, (2.40)

where εj+ 1
2

is the value of the permittivity ε at xj+ 1
2
, and ψ̂j+ 1

2
is defined by

ψ̂j+ 1
2

= ψj+1 − ψj, j = 0, . . . , N. (2.41)

24

To obtain ψ0 and ψN+1, note that the boundary condition (2.34) (2.35) can be discretized

as

α
ψ1 + ψ0

2 − βψ1 − ψ0

∆x = fa, α
ψN+1 + ψN

2 + β
ψN+1 − ψN

∆x = fb, (2.42)

using which we can represent

ψ̂ 1
2

:= ψ1 − ψ0 = 2α∆x
α∆x+ 2βψ1 −

2∆x
α∆x+ 2β fa, (2.43)

ψ̂N+ 1
2

:= ψN+1 − ψN = − 2α∆x
α∆x+ 2βψN + 2∆x

α∆x+ 2β fb. (2.44)

Remark 2. ψ̂ 1
2

and ψ̂N+ 1
2

may not be well-defined in the case of Robin boundary (when

α 6= 0, β 6= 0). In this case, we assume ∆x 6= −2β/α.

For brevity, we write the scheme (2.40) in a matrix vector multiplication form:

PΨ = h, (2.45)

where

P =



p1,1 −ε 3
2

−ε 3
2

(ε 3
2

+ ε 5
2
) −ε 5

2
.

−εN− 3
2

(εN− 3
2

+ εN− 1
2
) −εN− 1

2

−εN− 1
2

pN,N


,Ψ =



ψ1

ψ2
...

ψN


,h =



h1

h2
...

hN


,(2.46)

with


p1,1 = 2α∆x

α∆x+ 2β ε
1
2

+ ε 3
2
,

pN,N = εN− 1
2

+ 2α∆x
α∆x+ 2β εN+ 1

2
,



h1 = ∆x2
(

m∑
i=1

zic
(i)
1 + ρ1

)
+ 2∆x
α∆x+ 2β ε

1
2
fa,

hj = ∆x2
(

m∑
i=1

zic
(i)
j + ρj

)
, j = 2, . . . , N − 1,

hN = ∆x2
(

m∑
i=1

zic
(i)
N + ρN

)
+ 2∆x
α∆x+ 2β εN+ 1

2
fb.

25

Now let us add the time discretization as outlined in (2.28). Define

M
(i),∗
j = e−ziψ∗j , ψ∗j =

ψnj + ψn+1
j

2 , (2.47)

then (2.36) with time discretization reads

c
(i),n+1
j − c(i),n

j

∆t = 1
∆x2

D(i)
j+ 1

2
M

(i),∗
j+ 1

2

(c(i),n+1

M (i),∗

)
j+1
−
(
c(i),n+1

M (i),∗

)
j


−D(i)

j− 1
2
M

(i),∗
j− 1

2

(c(i),n+1

M (i),∗

)
j
−
(
c(i),n+1

M (i),∗

)
j−1

 , j = 2, . . . , N − 1; (2.48)

and for j = 1 and N :

c
(i),n+1
1 − c(i),n

1
∆t = 1

∆x2

{
D

(i)
3
2
M

(i),∗
3
2

[(
c(i),n+1

M (i),∗

)
2
−
(
c(i),n+1

M (i),∗

)
1

]}
, (2.49)

c
(i),n+1
N − c(i),n

N

∆t = 1
∆x2

{
−D(i)

N− 1
2
M

(i),∗
N− 1

2

[(
c(i),n+1

M (i),∗

)
N

−
(
c(i),n+1

M (i),∗

)
N−1

]}
. (2.50)

Rearranging terms in (2.48) yields

[
M

(i),∗
j + ∆t

∆x2

(
D

(i)
j+ 1

2
M

(i),∗
j+ 1

2
+D

(i)
j− 1

2
M

(i),∗
j− 1

2

)](
c(i),n+1

M (i),∗

)
j

− ∆t
∆x2D

(i)
j+ 1

2
M

(i),∗
j+ 1

2

(
c(i),n+1

M (i),∗

)
j+1
− ∆t

∆x2D
(i)
j− 1

2
M

(i),∗
j− 1

2

(
c(i),n+1

M (i),∗

)
j−1

= c
(i),n
j , j = 2, . . . , N − 1.

(2.51)

Similarly, (2.49) (2.50) become

[
M

(i),∗
1 + ∆t

∆x2D
(i)
3
2
M

(i),∗
3
2

](
c(i),n+1

M (i),∗

)
1
− ∆t

∆x2D
(i)
3
2
M

(i),∗
3
2

(
c(i),n+1

M (i),∗

)
2

= c
(i),n
1 , (2.52)[

M
(i),∗
N + ∆t

∆x2D
(i)
N− 1

2
M

(i),∗
N− 1

2

](
c(i),n+1

M (i),∗

)
N

− ∆t
∆x2D

(i)
N− 1

2
M

(i),∗
N− 1

2

(
c(i),n+1

M (i),∗

)
N−1

= c
(i),n
N . (2.53)

The schemes (2.51)-(2.53) can be written in a matrix vector multiplication form:

A(i)g(i) = c(i),n, (2.54)

26

if we define

A(i) =



a
(i)
1,1 a

(i)
1,2

a
(i)
2,1 a

(i)
2,2 a

(i)
2,3

.

a
(i)
N,N−1 a

(i)
N,N


, g(i) =



c
(i),n+1
1 /M

(i),∗
1

c
(i),n+1
2 /M

(i),∗
2

...

c
(i),n+1
N /M

(i),∗
N


, c(i),n =



c
(i),n
1

c
(i),n
2
...

c
(i),n
N


, (2.55)

where the entries of the matrix A(i) are given by


a

(i)
1,1 = M

(i),∗
1 + ∆t

∆x2D
(i)
3
2
M

(i),∗
3
2
,

a
(i)
N,N = M

(i),∗
N + ∆t

∆x2D
(i)
N− 1

2
M

(i),∗
N− 1

2
,



a
(i)
j,j = M

(i),∗
j + ∆t

∆x2

(
D

(i)
j+ 1

2
M

(i),∗
j+ 1

2
+D

(i)
j− 1

2
M

(i),∗
j− 1

2

)
, j = 2, . . . , N − 1,

a
(i)
j,j−1 = − ∆t

∆x2D
(i)
j− 1

2
M

(i),∗
j− 1

2
, j = 2, . . . , N,

a
(i)
j,j+1 = − ∆t

∆x2D
(i)
j+ 1

2
M

(i),∗
j+ 1

2
, j = 1, . . . , N − 1;

Therefore, together with the system (2.45), we obtain the following fully discrete scheme

for the PNP system:


A(i)

(
M(i),∗

)
g(i)

(
c(i),n+1,M(i),∗

)
= c(i),n,

PΨn+1 = h
(
c(i),n+1

)
,

(2.56)

where with a little abuse of notations, the dependence of vectors is indicated.

We state the following lemma which will be useful later.

Lemma 2.2.1. The matrix A(i)
(
M(i),∗

)
as defined in (2.55) is symmetric positive definite

and strictly diagonally dominant, provided M
(i),∗
j+ 1

2
is a second-order, positive approximation

to M (i),∗ at xj+ 1
2
. In particular, the choice

M
(i),∗
j+ 1

2
=
M

(i),∗
j +M

(i),∗
j+1

2 (2.57)

suffices.

27

Proof. By definition, M (i),∗
j = e−ziψ∗j > 0, and M

(i),∗
j+ 1

2
is required to be positive, then the

entries of A(i) satisfy

a
(i)
j,j > 0, a

(i)
j,k ≤ 0, j 6= k. (2.58)

Furthermore, ∣∣∣a(i)
j,j

∣∣∣ >∑
j 6=k

∣∣∣a(i)
j,k

∣∣∣. (2.59)

Hence the conclusion is immediate.

Properties of the fully discrete scheme

In this section, we prove the properties of the fully discrete scheme (2.56). These are

parallel to the theoretical properties listed in Section 2.1.3 .

Define the total mass of the i-th ion species at time step tn as

C
(i)
∆ (tn) = ∆x

N∑
j=1

c
(i),n
j . (2.60)

Then we have

Theorem 2.1. (Mass conservation) The fully discrete scheme (2.56) is always mass

conservative for each ion species:

C
(i)
∆ (tn) = C

(i)
∆ (tn+1), i = 1, . . . ,m. (2.61)

Proof. Using (2.48), (2.49) and (2.50), it is easy to see

C
(i)
∆ (tn+1)− C(i)

∆ (tn) = ∆x
N∑

j=1

(
c

(i),n+1
j − c(i),n

j

)
= 0. (2.62)

This proves the numerical mass conservation.

Theorem 2.2. (Positivity preserving) The fully discrete scheme (2.56) is unconditionally

positivity-preserving, i.e., if c(i),n
j ≥ 0 for all j = 1, . . . , N , then

c
(i),n+1
j ≥ 0, j = 1, . . . , N, (2.63)

28

for each species i = 1, . . . ,m.

Proof. Lemma 2.2.1 implies that the matrix A(i)
(
M(i),∗

)
in the scheme (2.56) is a M-matrix,

i.e., it is inverse positive ((A(i))−1 exists and each entry of (A(i))−1 is non-negative). Therefore,

if c(i),n
j ≥ 0, by solving the first linear system in (2.56), we have g(i)

j ≥ 0. Since M (i),∗
j > 0,

then c
(i),n+1
j = g

(i)
j M

(i),∗
j ≥ 0.

Define the discrete free energy at time step tn as

E∆(tn) = ∆x
N∑

j=1

m∑
i=1

c
(i),n
j log c(i),n

j + ∆x
2

N∑
j=1

(
m∑

i=1
zic

(i),n
j + ρj

)
ψnj +

ε 1
2
faψ

n
1 + εN+ 1

2
fbψ

n
N

α∆x+ 2β ,

(2.64)

where we assume ∆x 6= −2β/α when both α and β are nonzero. Then we have

Theorem 2.3. (Energy dissipation) The fully discrete scheme (2.56) is unconditionally

energy-dissipative:

E∆(tn+1)− E∆(tn)

≤− ∆t
∆x

N−1∑
j=1

m∑
i=1

D
(i)
j+ 1

2
M

(i),∗
j+ 1

2

(c(i),n+1

M (i),∗

)
j+1
−
(
c(i),n+1

M (i),∗

)
j

log
(
c(i),n+1

M (i),∗

)
j+1
− log

(
c(i),n+1

M (i),∗

)
j


≤0. (2.65)

29

Proof. Using the definition (2.64), we have

E∆(tn+1)− E∆(tn)

=∆x
N∑

j=1

m∑
i=1

(
c

(i),n+1
j log c(i),n+1

j − c(i),n
j log c(i),n

j

)
+ ∆x

2

N∑
j=1

m∑
i=1

zi
(
c

(i),n+1
j ψn+1

j − c(i),n
j ψnj

)

+ ∆x
2

N∑
j=1

ρj
(
ψn+1

j − ψnj
)

+
ε 1

2
fa(ψn+1

1 − ψn1) + εN+ 1
2
fb(ψn+1

N − ψnN)
α∆x+ 2β

=∆x
N∑

j=1

m∑
i=1

[
c

(i),n+1
j log c(i),n+1

j − c(i),n
j log c(i),n

j +
(
c

(i),n
j − c(i),n+1

j

)
log c(i),n+1

j

]

+ ∆x
N∑

j=1

m∑
i=1

(
c

(i),n+1
j − c(i),n

j

) (
log c(i),n+1

j + ziψ
∗
j

)

+ ∆x
N∑

j=1

m∑
i=1

zi

[1
2
(
c

(i),n+1
j ψn+1

j − c(i),n
j ψnj

)
+
(
c

(i),n
j − c(i),n+1

j

)
ψ∗j

]

+ ∆x
2

N∑
j=1

ρj(ψn+1
j − ψnj) +

ε 1
2
fa(ψn+1

1 − ψn1) + εN+ 1
2
fb(ψn+1

N − ψnN)
α∆x+ 2β

=I + II + III, (2.66)

where the three parts are defined as:

I := ∆x
N∑

j=1

m∑
i=1

[
c

(i),n+1
j log c(i),n+1

j − c(i),n
j log c(i),n

j +
(
c

(i),n
j − c(i),n+1

j

)
log c(i),n+1

j

]
,

II := ∆x
N∑

j=1

m∑
i=1

(
c

(i),n+1
j − c(i),n

j

) (
log c(i),n+1

j + ziψ
∗
j

)
,

III := ∆x
N∑

j=1

m∑
i=1

zi

[1
2
(
c

(i),n+1
j ψn+1

j − c(i),n
j ψnj

)
+
(
c

(i),n
j − c(i),n+1

j

)
ψ∗j

]

+ ∆x
2

N∑
j=1

ρj(ψn+1
j − ψnj) +

ε 1
2
fa(ψn+1

1 − ψn1) + εN+ 1
2
fb(ψn+1

N − ψnN)
α∆x+ 2β . (2.67)

For part I,

I =∆x
N∑

j=1

m∑
i=1

c
(i),n
j

(
log c(i),n+1

j − log c(i),n
j

)
= ∆x

N∑
j=1

m∑
i=1

c
(i),n
j log

c
(i),n+1
j

c
(i),n
j

≤∆x
N∑

j=1

m∑
i=1

c
(i),n
j

c(i),n+1
j

c
(i),n
j

− 1
 = 0, (2.68)

30

where log x ≤ x − 1 (x > 0) is used in the inequality and mass conservation is used in the

last equality.

For part II,

II =∆x
N∑

j=1

m∑
i=1

(
c

(i),n+1
j − c(i),n

j

) (
log c(i),n+1

j − logM (i),∗
j

)
= ∆x

N∑
j=1

m∑
i=1

(
c

(i),n+1
j − c(i),n

j

)
log

(
c(i),n+1

M (i),∗

)
j

= ∆t
∆x

N−1∑
j=1

m∑
i=1

D
(i)
j+ 1

2
M

(i),∗
j+ 1

2

(c(i),n+1

M (i),∗

)
j+1
−
(
c(i),n+1

M (i),∗

)
j

 log
(
c(i),n+1

M (i),∗

)
j

− ∆t
∆x

N∑
j=2

m∑
i=1

D
(i)
j− 1

2
M

(i),∗
j− 1

2

(c(i),n+1

M (i),∗

)
j
−
(
c(i),n+1

M (i),∗

)
j−1

 log
(
c(i),n+1

M (i),∗

)
j

= ∆t
∆x

N−1∑
j=1

m∑
i=1

D
(i)
j+ 1

2
M

(i),∗
j+ 1

2

(c(i),n+1

M (i),∗

)
j+1
−
(
c(i),n+1

M (i),∗

)
j

 log
(
c(i),n+1

M (i),∗

)
j

− ∆t
∆x

N−1∑
j=1

m∑
i=1

D
(i)
j+ 1

2
M

(i),∗
j+ 1

2

(c(i),n+1

M (i),∗

)
j+1
−
(
c(i),n+1

M (i),∗

)
j

 log
(
c(i),n+1

M (i),∗

)
j+1

=− ∆t
∆x

N−1∑
j=1

m∑
i=1

D
(i)
j+ 1

2
M

(i),∗
j+ 1

2

(c(i),n+1

M (i),∗

)
j+1
−
(
c(i),n+1

M (i),∗

)
j

 log
(
c(i),n+1

M (i),∗

)
j+1
− log

(
c(i),n+1

M (i),∗

)
j


≤0, (2.69)

where M (i),∗ = e−zjψ∗j is used in the first equality and the schemes (2.48)–(2.50) are used in

the third equality. Using log is a non-decreasing function, we obtained the last inequality.

31

For part III,

III =∆x
N∑

j=1

m∑
i=1

zi

[1
2
(
c

(i),n+1
j − c(i),n

j

) (
ψn+1

j + ψnj
)

+
(
c

(i),n
j − c(i),n+1

j

)
ψ∗j

]

+ ∆x
2

N∑
j=1

[(
m∑

i=1
zic

(i),n
j + ρj

)
ψn+1

j −
(

m∑
i=1

zic
(i),n+1
j + ρj

)
ψnj

]

+
ε 1

2
fa(ψn+1

1 − ψn1) + εN+ 1
2
fb(ψn+1

N − ψnN)
α∆x+ 2β

=∆x
2

N∑
j=1

[(
m∑

i=1
zic

(i),n
j + ρj

)
ψn+1

j −
(

m∑
i=1

zic
(i),n+1
j + ρj

)
ψnj

]

+
ε 1

2
fa(ψn+1

1 − ψn1) + εN+ 1
2
fb(ψn+1

N − ψnN)
α∆x+ 2β

=− 1
2∆x

N∑
j=1

[(
εj+ 1

2
ψ̂nj+ 1

2
− εj− 1

2
ψ̂nj− 1

2

)
ψn+1

j −
(
εj+ 1

2
ψ̂n+1

j+ 1
2
− εj− 1

2
ψ̂n+1

j− 1
2

)
ψnj

]

+
ε 1

2
fa(ψn+1

1 − ψn1) + εN+ 1
2
fb(ψn+1

N − ψnN)
α∆x+ 2β

=0, (2.70)

where ψ∗j = ψnj +ψn+1
j

2 is used to obtain the second equality and the scheme (2.40) is used in

the third one. The last equality is obtained by using the following formula. For a sequence

{φj}Nj=1, one has

N∑
j=1

φj
(
εj+ 1

2
ψ̂j+ 1

2
− εj− 1

2
ψ̂j− 1

2

)
=
(
φNεN+ 1

2
ψ̂N+ 1

2
− φ1ε 1

2
ψ̂ 1

2

)
−

N−1∑
j=1

εj+ 1
2
ψ̂j+ 1

2
(φj+1 − φj)

=− 2α∆x
α∆x+ 2β

(
ε 1

2
φ1ψ1 + εN+ 1

2
φNψN

)
−

N−1∑
j=1

εj+ 1
2
(ψj+1 − ψj)(φj+1 − φj)

+ 2∆x
α∆x+ 2β

(
ε 1

2
φ1fa + εN+ 1

2
φNfb

)
, (2.71)

where the summation by parts is used in the first equality; (2.41), (2.43) and (2.44) are used

in the second equality.

Combing parts I, II, and III, the theorem is proved.

32

Remark 3. If one considers the fully implicit time discretization, i.e., ψ∗j = ψn+1
j , a similar

calculation as above would also show the energy decay property, but based on the additional

assumption that α and β have the same sign.

For instance, the energy estimate of the semi-discrete scheme cloud be presented as,

E(tn+1)− E(tn) ≤ TB −∆t
m∑

i=1

∫
Ω
c(i),n+1

∣∣∣∇ (log c(i),n+1 + ziψ
∗
) ∣∣∣2dx, (2.72)

where the boundary term is given as

TB =


−
∫
∂Ω
ε
β

2α

(
∂ψn+1

∂n
− ∂ψn

∂n

)2

ds, if α 6= 0,

−
∫
∂Ω
ε
α

2β
(
ψn+1 − ψn

)2
ds, if β 6= 0.

(2.73)

This is exactly what proposed in [24]. We point out that α and β come from the physi-

cal boundary condition and their signs are not definite. Therefore, our semi-implicit time

discretization is more general and works for a larger class of boundary conditions.

As a consequence of the fully discrete energy decay, we have the following

Theorem 2.4. (Steady-state preserving) Assume the discrete energy E∆(tn) is bounded

from below, the fully discrete scheme (2.56) is steady-state preserving, i.e., for fixed ∆x,

when time step n → ∞, the numerical solutions c(i),∞
j and ψ∞j become the (second order)

numerical solutions to the limiting Poisson-Boltzmann equation


−(εψ∞x)x =

m∑
i=1

zic
(i),∞ + ρ, x ∈ [a, b],

αψ∞(a)− βψ∞x (a) = fa, αψ∞(b) + βψ∞x (b) = fb,

(2.74)

where

c(i),∞ = λie−ziψ∞ , λi =
∫ b
a c

(i),0 dx∫ b
a e−ziψ∞ dx

. (2.75)

33

Proof. Since the discrete energy sequence {E∆(tn)} is monotonically decreasing and bounded

from below, the limit limn→∞E∆(tn) = E∆(t∞) exists. Taking n→∞ in (2.65), we have

c
(i),∞
j = λiM

(i),∞
j = λie−ziψ∞j , for all i = 1, . . . ,m, j = 1, . . . , N, (2.76)

where λi is some constant depending only on i and can be obtained by

λi =
∑N

j=1 c
(i),∞
j∑N

j=1 e−ziψ∞j
=

∑N
j=1 c

(i),0
j∑N

j=1 e−ziψ∞j
, (2.77)

where we used the mass conservation. Finally substituting c(i),∞
j into the system (2.45), we

have

PΨ∞ = h
(
c(i),∞

)
, (2.78)

which is a second order finite difference discretization to the limiting Poisson-Boltzmann

equation (2.74).

Fixed point iteration to solve the fully discrete scheme

The system (2.56) is implicit and fully coupled. To solve it, we propose a simple fixed

point iteration. The following algorithm describes how the iterations are performed at time

step tn to compute the solutions c(i),n+1
j and ψn+1

j (i = 1, . . . ,m; j = 1, . . . , N) at time step

tn+1.

34

Algorithm 1 Fixed point iteration to solve the system (2.56)

1: procedure Given c
(i),n
j , ψnj . concentration and potential at time tn

2: l = 0, c(i),(0)
j ← c

(i),n
j , ψ(0)

j ← ψnj . . initial guess

3: Define

M
(i),(l)
j = e−ziψ

(l)
j , ψ

(l)
j =

ψnj + ψ
(l)
j

2 , (2.79)

and accordingly the matrix A(i)
(
M(i),(l)

)
. Solve the Nernst-Planck equation

A(i)
(
M(i),(l)

)
g(i)

(
c(i),(l+1),M(i),(l)

)
= c(i),n (2.80)

to obtain g
(i)
j . Then c

(i),(l+1)
j is computed by

c
(i),(l+1)
j = g

(i)
j M

(i),(l)
j . (2.81)

4: Solve the Poisson equation

PΨ(l+1) = h
(
c(i),(l+1)

)
(2.82)

to obtain ψ
(l+1)
j .

5: l = l + 1;

6: repeat Steps 3-5 until ‖c(i),(l+1)
j − c(i),(l)

j ‖ ≤ tol for all 1 ≤ i ≤ m.

7: return c
(i),n+1
j ← c

(i),(l+1)
j , ψn+1

j ← ψ
(l+1)
j . . concentration and potential at time tn+1

8: end procedure

Note that in each iteration, we need to solve two linear systems (2.80) and (2.82).

Both of them can be solved efficiently using sparse linear solvers. Furthermore, the matrix

A(i)
(
M(i),(l)

)
is a M-matrix (by Lemma 2.2.1), hence the solution ci,(l) obtained in internal

steps is guaranteed to be positive. For the Poisson equation, special care is needed for the

Neumann boundary condition since the solution is unique up to a constant. Here we choose

one solution by setting ψ1 = 0.

35

The above fixed point iteration is just one strategy to solve the nonlinear system and

our numerical experiments show that it generally converges in several steps (less than 10).

One could also use Newton’s method to achieve potentially faster convergence. We leave

the convergence studies of different iterative methods to future work (see [45] for a related

study). Nonetheless, to better understand the proposed time discretization, we do provide

in this work a proof of the solvability of the semi-discrete scheme (2.28).

Solvability of the semi-discrete scheme

To prove the solvability of the semi-discrete scheme (2.28), we consider D(i) = ε = 1 for

simplicity and rewrite it as


c(i),n+1 − c(i),n

∆t = ∆c(i),n+1 + 1
2∇ ·

(
zic

(i),n+1∇
(
ψn + ψn+1

))
,

−∆ψn+1 =
m∑

i=1
zic

(i),n+1 + ρ.
(2.83)

The boundary condition is given as


(
∇c(i),n+1 + 1

2zic
(i),n+1∇

(
ψn + ψn+1

))
· n = 0,

∇ψn+1 · n = 0.
(2.84)

Note that the homogeneous Neumann boundary condition is assumed for the Poisson equa-

tion in our analysis, which is a bit less general than what we considered for the rest of the

paper.

Definition 2.2.1. Given
(
{c(i),n}mi=1, ψ

n
)
∈ H1(Ω), we say that

(
{c(i),n+1}mi=1, ψ

n+1
)
∈

H1(Ω) is a weak solution of (2.83)-(2.84), if it satisfies


1

∆t

∫
Ω

(
c(i),n+1 − c(i),n

)
φ dx+

∫
Ω
∇c(i),n+1 · ∇φ dx = −1

2

∫
Ω
zic

(i),n+1∇
(
ψn + ψn+1

)
· ∇φ dx,∫

Ω
∇ψn+1 · ∇φ dx =

∫
Ω

(
m∑

i=1
zic

(i),n+1 + ρ

)
φ dx,

(2.85)

for all test function φ ∈ H1(Ω).

36

We now state the solvability theorem for problem (2.83)-(2.84).

Theorem 2.5. Let Ω be a bounded, open subset of Rd(d ≤ 3), and ∂Ω is C1. Then the semi-

discrete scheme (2.83)-(2.84) has a weak solution
(
{c(i),n+1}mi=1, ψ

n+1
)
, when ∆t is sufficient

small.

The proof of this theorem is provided in the Appendix, which follows a similar line of

the well-posedness theory for the PNP equations [16], [17], [46].

2.2.2 Fully discrete scheme in 2D

The extension of the 1D scheme to multi-D in the rectangular domain is straightforward.

Here for completeness, we briefly present the scheme in 2D.

Consider the domain Ω = [a, b]× [c, d], then the 2D PNP system reads



∂tc
(i) =

(
D(i)M (i)

(
c(i)

M (i)

)
x

)
x

+
D(i)M (i)

(
c(i)

M (i)

)
y


y

, (x, y) ∈ Ω, t ≥ 0,(2.86)

c(i)(0, x, y) = c(i),0(x, y), (x, y) ∈ Ω, (2.87)(
c(i)

M (i)

)
x

(t, a, y) =
(
c(i)

M (i)

)
x

(t, b, y) = 0, y ∈ [c, d], t ≥ 0,(2.88)(
c(i)

M (i)

)
y

(t, x, c) =
(
c(i)

M (i)

)
y

(t, x, d) = 0, x ∈ [a, b], t ≥ 0,(2.89)

−(εψx)x − (εψy)y =
m∑

i=1
zic

(i) + ρ, (x, y) ∈ Ω, t ≥ 0,(2.90)

αψ(t, a, y)− βψx(t, a, y) = fa, αψ(t, b, y) + βψx(t, b, y) = fb, y ∈ [c, d], t ≥ 0,(2.91)

αψ(t, x, c)− βψy(t, x, c) = fc, αψ(t, x, d) + βψy(t, x, d) = fd, x ∈ [a, b], t ≥ 0.(2.92)

We partition Ω into Nx and Ny uniform cells in each dimension with mesh size ∆x =

(b − a)/Nx,∆y = (d − c)/Ny, respectively. The interior grid points are chosen as (a + (j −

1/2)∆x, c + (k − 1/2)∆y), j = 1, . . . , Nx, k = 1, . . . , Ny, and the numerical approximation

of a function u(t, x, y) at this point and time step tn is denoted by unj,k. Cell interface values

are defined similarly as in 1D.

37

The fully discrete scheme for the Nernst-Planck equation (2.86) is given as follows:

c
(i),n+1
j,k − c(i),n

j,k

∆t = 1
∆x2

[
D

(i)
j+ 1

2 ,k
M

(i),∗
j+ 1

2 ,k
ĝ

(i),n+1
j+ 1

2 ,k
−D(i)

j− 1
2 ,k
M

(i),∗
j− 1

2 ,k
ĝ

(i),n+1
j− 1

2 ,k

]
+ 1

∆y2

[
D

(i)
j,k+ 1

2
M

(i),∗
j,k+ 1

2
ĝ

(i),n+1
j,k+ 1

2
−D(i)

j,k− 1
2
M

(i),∗
j,k− 1

2
ĝ

(i),n+1
j,k− 1

2

]
, (2.93)

where

ĝ
(i),n+1
j+ 1

2 ,k
=
c

(i),n+1
j+1,k

M
(i),∗
j+1,k

−
c

(i),n+1
j,k

M
(i),∗
j,k

, ĝ
(i),n+1
j,k+ 1

2
=
c

(i),n+1
j,k+1

M
(i),∗
j,k+1

−
c

(i),n+1
j,k

M
(i),∗
j,k

, (2.94)

M
(i),∗
j+ 1

2 ,k
= 1

2
(
M

(i),∗
j,k +M

(i),∗
j+1,k

)
, M

(i),∗
j,k+ 1

2
= 1

2
(
M

(i),∗
j,k +M

(i),∗
j,k+1

)
, (2.95)

and

M
(i),∗
j,k = e−ziψ∗j,k , ψ∗j,k = 1

2
(
ψnj,k + ψn+1

j,k

)
. (2.96)

At the boundary

ĝ
(i),n+1
1
2 ,k

= ĝ
(i),n+1
Nx+ 1

2 ,k
= 0, ĝ

(i),n+1
j, 1

2
= ĝ

(i),n+1
j,Ny+ 1

2
= 0. (2.97)

For the Poisson equation (2.90), the scheme is given as

m∑
i=1

zic
(i),n+1
j,k + ρj,k =− 1

∆x2

[
εj− 1

2 ,k
ψn+1

j−1,k − (εj− 1
2 ,k

+ εj+ 1
2 ,k

)ψn+1
j,k + εj+ 1

2 ,k
ψn+1

j+1,k

]
− 1

∆y2

[
εj,k− 1

2
ψn+1

j,k−1 − (εj,k− 1
2

+ εj,k+ 1
2
)ψn+1

j,k + εj,k+ 1
2
ψn+1

j,k+1

]
, (2.98)

38

where the boundary terms are defined through

α
ψn+1

1,k + ψn+1
0,k

2 − β
ψn+1

1,k − ψn+1
0,k

∆x = fa, α
ψn+1
Nx+1,k + ψn+1

Nx,k

2 + β
ψn+1
Nx+1,k − ψn+1

Nx,k

∆x = fb,

(2.99)

α
ψn+1

j,1 + ψn+1
j,0

2 − β
ψn+1

j,1 − ψn+1
j,0

∆y = fc, α
ψn+1

j,Ny+1 + ψn+1
j,Ny

2 + β
ψn+1

j,Ny+1 − ψn+1
j,Ny

∆y = fd.

(2.100)

For the 2D scheme, we can also show the following properties: mass conservation, posi-

tivity preserving, and energy dissipation, which we give without proof.

Theorem 2.6. (Mass conservation) The fully discrete scheme (2.93) (2.98) is always

mass conservative:

C
(i)
∆ (tn) = C

(i)
∆ (tn+1), i = 1, . . . ,m. (2.101)

where

C
(i)
∆ (tn) = ∆x∆y

Nx∑
j=1

Ny∑
k=1

c
(i),n
j,k (2.102)

is the total mass of the ith ion species at tn.

Theorem 2.7. (Positivity preserving) The fully discrete scheme (2.93) (2.98) is uncon-

ditionally positivity-preserving, i.e., if c(i),n
j,k ≥ 0 for all j = 1, . . . , Nx, k = 1, . . . , Ny, then

c
(i),n+1
j,k ≥ 0, j = 1, . . . , Nx, k = 1, . . . , Ny, (2.103)

for each i = 1, . . . ,m.

Theorem 2.8. (Energy dissipation) The fully discrete scheme (2.93) (2.98) is uncondi-

tionally energy-dissipative:

E∆(tn+1) ≤ E∆(tn), (2.104)

39

where the discrete free energy at tn is defined as

E∆(tn) =∆x∆y
m∑

i=1

Nx∑
j=1

Ny∑
k=1

c
(i),n
j,k log c(i),n

j,k + ∆x∆y
2

Nx∑
j=1

Ny∑
k=1

ψnj,k

(
m∑

i=1
zic

(i),n
j,k + ρj,k

)

+
Ny∑
k=1

ε 1
2 ,k
faψ

n
1,k + εNx+ 1

2 ,k
fbψ

n
Nx,k

α∆x+ 2β +
Nx∑
j=1

εj, 1
2
fcψ

n
j,1 + εj,Ny+ 1

2
fdψ

n
j,Ny

α∆y + 2β . (2.105)

2.3 Numerical examples

In this section, we perform several numerical tests to demonstrate the convergence and

properties of the proposed scheme. We will consider both 1D and 2D examples, and in par-

ticular, a practical example with physical parameters specifically suited toward the modeling

of ion channels. The tolerance for fixed point iteration will be chosen as tol = 10−8 for all

the tests except the tolerance test in section 4.2.

2.3.1 Accuracy test: manufactured solution

We first examine the accuracy of our scheme using a manufactured solution. Consider

the following 1D single-species PNP system with a source term



∂tc = ∂x (∂xc+ c∂xψ) + h, x ∈ [0, 1], t ≥ 0,

c(0, x) = x2(1− x)2, x ∈ [0, 1],

−∂xxψ = c, x ∈ [0, 1], t ≥ 0,

ψ(t, 0) = 0, ψ(t, 1) = − 1
60e−t, t ≥ 0,

∂xc+ c∂xψ = 0, x = 0, 1, t ≥ 0,

(2.106)

where h is given by

h(t, x) =
(9

5x
8 − 36

5 x
7 + 161

15 x
6 − 7x5 + 5

3x
4
)

e−2t −
(
x4 − 2x3 + 13x2 − 12x+ 2

)
e−t.

40

For this system, one can construct the exact solution as

c(t, x) = x2(1− x)2e−t, ψ(t, x) = −
(1

30x
6 − 1

10x
5 + 1

12x
4
)

e−t. (2.107)

We verify the order of the proposed scheme in both space and time. The results are

shown in Table 2.1 and Table 2.2 , where the errors of a numerical solution unj is computed

as

‖ unum−uext ‖l∞ := max
j
|unj −uext(tn, xj)|, ‖ unum−uext ‖l2 :=

∆x
∑

j
|unj − uext(tn, xj)|2

1/2

(2.108)

at time tn = 0.5. These results imply that our scheme can achieve the first order accuracy

in time and the second order in space.

Table 2.1. Table of errors with different time step sizes ∆t. This test is
performed with fixed spatial mesh ∆x = 0.001 and tolerance tol = 10−8.

error ‖cerror‖l∞ ‖cerror‖l2 ‖ψerror‖l∞ ‖ψerror‖l2
∆t = 1/10 2.7880e-03 1.6698e-03 1.0106e-03 4.7973e-04
∆t = 1/20 1.3984e-03 8.3752e-04 5.0512e-04 2.3949e-04
∆t = 1/40 7.0048e-04 4.1952e-04 2.5254e-04 1.1965e-04
∆t = 1/80 3.5072e-04 2.1005e-04 1.2627e-04 5.9794e-05
∆t = 1/160 1.7564e-04 1.0519e-04 6.3133e-05 2.9880e-05

Table 2.2. Table of errors with different spatial mesh sizes ∆x. This test is
performed with fixed time step ∆t = 0.0001 and tolerance tol = 10−8.

error ‖cerror‖l∞ ‖cerror‖l2 ‖ψerror‖l∞ ‖ψerror‖l2
∆x = 1/10 4.1718e-03 3.9332e-03 5.3634e-04 3.9158e-04
∆x = 1/20 1.0469e-03 9.8417e-04 1.3417e-04 9.6947e-05
∆x = 1/40 2.6394e-04 2.4686e-04 3.3355e-05 2.3963e-05
∆x = 1/80 6.8095e-05 6.2541e-05 8.1313e-06 5.7674e-06
∆x = 1/160 1.9127e-05 1.6495e-05 1.8431e-06 1.2613e-06

41

2.3.2 1D multiple species

Next we apply our scheme to solve the 1D two-species PNP system (2.30)-(2.35) and

verify its properties. Two different tests are performed:

Case 1) The Dirichlet boundary value problem in domain [− 1, 1] with D(1) = D(2) = ε = 1,

z1 = 1, z2 = −1, ρ = 0, the initial and boundary conditions are chosen as


c(1)(0, x) = 2− x2, c(2)(0, x) = x2,

ψ(t,−1) = −1, ψ(t, 1) = 1.
(2.109)

Case 2) The Neumann boundary value problem in domain [0, 1] with D(1) = D(2) = ε = 1,

z1 = 1, z2 = −2, ρ = x, the initial and boundary conditions are chosen as


c(1)(0, x) = 2 + x+ sin(2πx), c(2)(0, x) = 1 + x,

∂xψ(t, 0) = ∂xψ(t, 1) = 0.
(2.110)

Figure 2.1 shows the time evolution of the ion concentrations c(1), c(2) and the electrostatic

potential ψ. One can see that the proposed scheme works well with a large time step and

spatial mesh size in both cases.

To verify the energy dissipation and mass conservation, we plot in Figure 2.2 the time

evolution of the discrete free energy E∆(tn) and the total mass C(1)
∆ (tn), C(2)

∆ (tn). Although

not shown here, the positivity of the ion concentrations is also checked and no negative

values are detected.

Next, we check how the tolerance threshold in the fixed point iteration will affect the

accuracy. The time step and spatial mesh size are fixed in this test as above. The numerical

solution with tolerance tol = 10−10 is chosen as a reference solution. For Case 1), we check

the maximum error for the ion concentrations and electrostatic potential {c(1), c(2), ψ} at

time t = 00.2. For Case 2), the numerical error is inspected at time t = 0.01. The results

in Table 2.3 and Table 2.4 indicate that our scheme will achieve better accuracy with lower

tolerance.

42

In [19], the exponential convergence towards the steady states was proved for the PNP

system

W (t) ≤ W (0)e−λt, for λ = λ(Ω), (2.111)

where W (t) is the entropy functional defined as W (t) = Ẽ(t)− Ẽ(t∞). Here we try to verify

such a property for our numerical solution. In Figure 2.3 , the discrete entropy functional

W∆(tn) = E∆(tn)− E∆(t∞) is plotted for both cases, where the exponential convergence is

evident.

-1 -0.5 0 0.5 1

x

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
c(1)

t=0

t=0.1

t=0.2

t=1

-1 -0.5 0 0.5 1

x

0

0.2

0.4

0.6

0.8

1
c(2)

t=0

t=0.1

t=0.2

t=1

-1 -0.5 0 0.5 1

x

-1

-0.5

0

0.5

1

1.5

t=0

t=0.1

t=0.2

t=1

0 0.2 0.4 0.6 0.8 1

x

2

2.5

3

c(1)

t=0

t=0.01

t=0.1

t=1

0 0.2 0.4 0.6 0.8 1

x

1

1.2

1.4

1.6

1.8

2
c(2)

t=0

t=0.01

t=0.1

t=1

0 0.2 0.4 0.6 0.8 1

x

-0.2

-0.15

-0.1

-0.05

0

0.05

t=0

t=0.01

t=0.1

t=1

Figure 2.1. Time evolution of the ion concentrations c(1), c(2) and the poten-
tial ψ. Top row: Case 1). Bottom row: Case 2). Time step and spatial mesh
size are chosen as ∆t = 0.05(for Case 1), 0.01(for Case 2), ∆x = 0.05.

Finally, to demonstrate the convergence of the fixed point iteration, we record the number

of iterations at each time step in Figure 2.4 . We can see that the method converges in less

than 10 iterations, and this number decreases as the solution approaches the steady state.

43

0 2 4 6 8 10

time

1.9995

2

2.0005

2.001

2.0015

2.002

2.0025

E (t
n
)

 t = 1/20

 t = 1/30

 t = 1/40

0 2 4 6 8 10

time

3.33

3.332

3.334

3.336

3.338

3.34

C(1)(t
n
)

 t = 1/20

 t = 1/30

 t = 1/40

0 2 4 6 8 10

time

0.66

0.662

0.664

0.666

0.668

0.67

C(2)(t
n
)

 t = 1/20

 t = 1/30

 t = 1/40

0 0.5 1 1.5 2

time

2.9

2.92

2.94

2.96

2.98

3

E (t
n
)

 t = 1/20

 t = 1/30

 t = 1/40

0 0.5 1 1.5 2

time

2.49

2.495

2.5

2.505

2.51

C(1)(t
n
)

 t = 1/20

 t = 1/30

 t = 1/40

0 0.5 1 1.5 2

time

1.49

1.495

1.5

1.505

1.51

C(2)(t
n
)

 t = 1/20

 t = 1/30

 t = 1/40

Figure 2.2. Time evolution of the discrete energy E∆(tn) and the total mass
C

(1)
∆ (tn), C(2)

∆ (tn). Top row: Case 1). Bottom row: Case 2). Spatial mesh size
is fixed at ∆x = 0.001. Different time steps are chosen as indicated in the
figures.

Table 2.3. Table of errors for Case 1) at time t = 0.2 with different tolerance
tol = 10−2, 10−3, 10−4, 10−5. This test is performed with fixed time step ∆t =
0.05 and spatial mesh size ∆x = 10−2.

error ‖c(1)‖l∞ ‖c(2)‖l∞ ‖ψ‖l∞
tol = 10−2 2.7232e-04 7.0131e-05 5.2871e-05
tol = 10−3 2.0099e-05 3.5110e-06 3.5359e-06
tol = 10−4 6.9042e-07 1.0994e-07 1.1688e-07
tol = 10−5 3.8027e-07 6.2615e-08 5.6451e-08

Table 2.4. Table of errors for Case 2) at time t = 0.1 with different tolerance
tol = 10−2, 10−3, 10−4, 10−5. This test is performed with fixed time step ∆t =
0.01 and spatial mesh size ∆x = 10−2.

error ‖c(1)‖l∞ ‖c(2)‖l∞ ‖ψ‖l∞
tol = 10−2 1.5739e-04 1.9239e-04 1.0790e-04
tol = 10−3 5.9846e-05 7.4411e-05 4.0508e-05
tol = 10−4 5.4075e-06 6.8027e-06 3.7434e-06
tol = 10−5 3.7434e-06 2.9617e-07 2.9617e-07

44

0 0.5 1 1.5 2 2.5 3

time

10
-10

10
-8

10
-6

10
-4

10
-2

W (t
n
)

 t = 1/20

 t = 1/30

 t = 1/40

0 0.05 0.1 0.15 0.2 0.25 0.3

time

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

W (t
n
)

 t = 1/200

 t = 1/300

 t = 1/400

Figure 2.3. Time evolution of the discrete entropy functional W∆(t) in semi-
log plot. Left: Case 1). Right: Case 2). Spatial mesh size is fixed at ∆x =
0.001. Different time steps are chosen as indicated in the figures. For both
cases, we consider the numerical solution at t = 5 as the steady state.

0 2 4 6 8 10

time

1

2

3

4

5

6

7

 t = 1/20

 t = 1/30

 t = 1/40

0 0.5 1 1.5 2

time

1

2

3

4

5

6

7

8

9

10

 t = 1/20

 t = 1/30

 t = 1/40

Figure 2.4. Number of fixed point iterations needed at each time step, the
convergence tolerance is set as maxj|c(i),(l+1)

j − c(i),(l)
j | ≤ 10−8). Left: Case 1).

Right: Case 2). Spatial mesh size is fixed at ∆x = 0.001. Different time steps
are chosen as indicated in the figures.

45

2.3.3 2D single species

We now apply our scheme to solve the 2D single-species PNP system (2.86)-(2.92). Let

Ω = [0, 1]× [0, 1] be the computational domain and D(1) = ε = z1 = 1, ρ = 0. Two different

boundary and initial conditions are considered:

Case 1) c(0, x, y) = 4, α = 0, β = 1, fa = fb = fc = fd = −1;

Case 2) c(0, x, y) = 2, α = 0, β = 1, fa = fb = −1, fc = fd = 0.

Note that the compatibility condition is satisfied in both settings.

The time evolution of the ion concentration in both cases are shown Figure 2.5 and

Figure 2.6 , respectively. The energy dissipation is demonstrated in Figure 2.7 . Finally, the

positivity of the ion concentration is also checked and no negative values are detected.

2.3.4 KcsA model with Space-Dependent diffusion coefficients

In the ion channels, the values of the diffusion coefficients depend on the ion species and

channels. They only affect the rate of evolution of the system. In this section, we apply our

scheme on a simplified KcsA model with space-dependent diffusion coefficients [47] to verify

the impact of diffusion coefficients.

We consider the KcsA model in domain [− 1, 1] with ε = 1, z1 = 1, z2 = −1, ρ = 0, the

initial and boundary conditions are chosen as


c(1)(0, x) = 2− x2, c(2)(0, x) = x2,

ψ(t,−1) = −1, ψ(t, 1) = 1.
(2.112)

Then we seperate the domain into three regions:

a) channel outside(CO): 0.7 ≤ |x| ≤ 1;

b) selectivity filter (SF): −0.1 < x < 0.7;

c) intracellular (IC): −0.7 < x < −0.1.

46

t = 0.01

0.2 0.4 0.6 0.8

X

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Y

3.6

3.8

4

4.2

4.4

4.6

4.8

5

5.2

t = 0.05

0.2 0.4 0.6 0.8

X

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Y

3.6

3.8

4

4.2

4.4

4.6

4.8

5

5.2

t = 0.2

0.2 0.4 0.6 0.8

X

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Y

3.6

3.8

4

4.2

4.4

4.6

4.8

5

5.2

t = 1

0.2 0.4 0.6 0.8

X

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Y

3.6

3.8

4

4.2

4.4

4.6

4.8

5

5.2

Figure 2.5. Case 1: Time evolution (contour plot) of the ion concentration
c. Time step and spatial mesh size are chosen as ∆x = 0.01 and ∆t = 0.01.

47

t = 0.01

0.2 0.4 0.6 0.8

X

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Y

1.8

2

2.2

2.4

2.6

2.8

3

3.2

3.4

3.6
t = 0.05

0.2 0.4 0.6 0.8

X

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Y

1.8

2

2.2

2.4

2.6

2.8

3

3.2

3.4

3.6

t = 0.2

0.2 0.4 0.6 0.8

X

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Y

1.8

2

2.2

2.4

2.6

2.8

3

3.2

3.4

3.6
t = 1

0.2 0.4 0.6 0.8

X

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Y

1.8

2

2.2

2.4

2.6

2.8

3

3.2

3.4

3.6

Figure 2.6. Case 2: Time evolution (contour plot) of the ion concentration
c. Time step and spatial mesh size are chosen as ∆x = 0.01 and ∆t = 0.01.

48

0 0.2 0.4 0.6 0.8 1

time

5.845

5.85

5.855

5.86

5.865

5.87

E (t
n
)

 t = 1/20

 t = 1/30

 t = 1/40

0 0.2 0.4 0.6 0.8 1

time

1.675

1.68

1.685

1.69

1.695

1.7

1.705

1.71

1.715

E (t
n
)

 t = 1/20

 t = 1/30

 t = 1/40

Figure 2.7. Time evolution of the discrete free energy E∆(tn). Left: Case 1).
Right: Case 2). Spatial mesh size is fixed at ∆x = 0.01. Different time steps
are chosen as indicated in the figures.

49

Outside the channel the diffusion coefficients are set as D(1) = D(2) = 1. For this model, we

test three diffusion coefficient profiles:

i) D(i) is reduced to 40% in SF;

ii) D(i) is reduced to 40% in SF and 80% in IC;

iii) D(i) is reduced to 40% both in SF and IC.

The time evolution of the ion concentrations and energy are presented in Fig 2.8 and

Fig 2.9 . These three systems do converge to the same steady state at different rates.

-1 -0.5 0 0.5 1

x

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
c(1)

t=0

t=0.1

t=0.2

t=0.3

t=2

-1 -0.5 0 0.5 1

x

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
c(1)

t=0

t=0.1

t=0.2

t=0.3

t=2

-1 -0.5 0 0.5 1

x

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
c(1)

t=0

t=0.1

t=0.2

t=0.3

t=2

-1 -0.5 0 0.5 1

x

0

0.2

0.4

0.6

0.8

1
c(2)

t=0

t=0.1

t=0.2

t=0.3

t=2

-1 -0.5 0 0.5 1

x

0

0.2

0.4

0.6

0.8

1
c(2)

t=0

t=0.1

t=0.2

t=0.3

t=2

-1 -0.5 0 0.5 1

x

0

0.2

0.4

0.6

0.8

1
c(2)

t=0

t=0.1

t=0.2

t=0.3

t=2

Figure 2.8. Time evolution of the ion concentrations (KcsA). First column:
case i). Second row: case ii). Third column: case iii). Time step and spatial
mesh size are chosen as ∆t = 0.05 and ∆x = 0.05.

2.3.5 Gouy-Chapman model

In this final test, we simulate the so-called Gouy-Chapman model widely used to describe

the double layer structure in ion channels.

50

0 0.5 1 1.5 2

time

1.98

2

2.02

2.04

2.06

2.08

2.1

2.12

e
n

e
rg

y

i)

ii)

iii)

Figure 2.9. Time evolution of the energy (KcsA). Time step and spatial mesh
size are chosen as ∆t = 0.05 and ∆x = 0.05.

51

We consider the 1D two-species PNP system (2.30)-(2.35) in domain [−1, 1] with D(1) =

D(2) = ε = 1, z1 = 1, z2 = −1, and ρ = 0, which is taken from the work [22]. The

dimensionless parameters χ1 and χ2 are chosen as χ1 = 3.1, χ2 = 125.4. A uniform initial

condition is assumed c(i)(x, 0) = 1, i = 1, 2 for all −1 ≤ x ≤ 1 and the boundary condition

for the Poisson equation is given by α = 1, β = 4.63× 10−5, fa = 1, fb = −1.

Figure 2.10 shows the time evolution of the ion concentrations and the electrostatic

potential. Beginning with the linear profile, the electrostatic potential becomes zero in the

bulk region (away from the boundary) and increases drastically in the diffuse layers (close

to the boundary) at the steady state. Notice that the presence of diffuse layers requires a

small spatial mesh size in numerical simulations. The solution will be far away from the thin

layer solution if the mesh size is large, for example, ∆x > 0.05.

2.4 Conclusion

We have introduced a semi-implicit finite difference scheme for the PNP equations in a

bounded domain. A general boundary condition for the Poisson equation which includes

(nonhomogeneous) Dirichlet, Neumann, and Robin boundaries as subcases were considered.

The proposed scheme is first order in time and second order in space. The fully discrete

scheme was proved to be mass conservative, unconditionally positive and energy dissipative

(hence preserving the steady state). The solvability of the semi-discrete scheme was investi-

gated and a fixed point iteration was proposed to solve the fully discrete scheme. Numerical

examples were presented to demonstrate the accuracy and efficiency of the proposed scheme.

Note that the fixed point iteration employed in this work is not necessarily the best method

to solve the implicit scheme. We will investigate different iterative methods such as Newton’s

method in future work. Also, it would be interesting and challenging to develop a high order

in time scheme which preserves the same properties as the first order one.

52

-1 -0.5 0 0.5 1

0

1

2

3

4

5

6

7

8
c(1)

t=0

t=0.01

t=0.05

t=1

-0.8 -0.6 -0.4 -0.2
0

0.5

1

-1 -0.5 0 0.5 1

0

1

2

3

4

5

6

7

8
c(2)

t=0

t=0.01

t=0.05

t=1

-0.8 -0.6 -0.4 -0.2
0

2

4

6

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1

t=0

t=0.01

t=0.05

t=1

Figure 2.10. Time evolution of the ion concentrations and the electrostatic
potential in Gouy-Chapman model. Time step and spatial mesh size are chosen
as ∆t = 0.00125 and ∆x = 0.02.

53

3. A FAST FOURIER-GALERKIN SPECTRAL METHOD FOR

BOLTZMANN EQUATION

In this chapter, we study the fast Fourier method proposed in [42] which uses a special

approximation form of the weight term G(l,m). In section 3.1 , this fast algorithm and its

limitation in the evaluation of the weight term will be discussed in detail. Following the

similar idea, we propose a new approach using a different approximation form of the weight

term G(l,m) in section 3.2 ,. Numerical examples will be provided to verify the efficiency

and accuracy of this new fast Fourier method in Section 3.3 . This chapter is concluded in

Section 3.4 .

3.1 The fast Fourier spectral method for Boltzmann equation

For the Boltzmann equation:

∂f

∂t
+ v · ∇xf = Q(f, f), t > 0, x,v ∈ R3, (3.1)

we consider the σ-representation of the nonlinear Boltzmann collision operator

Q(f, f)(v) =
∫
R3

∫
S2
B(|v − v∗|,σ · ̂(v − v∗))[f(v′)f(v′∗)− f(v)f(v∗)] dσ dv∗. (3.2)

Here the post-collision velocity (v′,v′∗) can be expressed in terms of (v,v∗) :

v′ = v + v∗
2 + |v − v∗|2 σ, v′∗ = v + v∗

2 − |v − v∗|2 σ, (3.3)

where σ is the unit vector along the direction of v′ − v′∗.

By a change of variable g = v − v∗, the collision operator will be written as

Q(f, f)(v) =
∫
R3

∫
S2
B(|g|,σ · ĝ)[f(v′)f(v′∗)− f(v)f(v − g)] dσ dg, (3.4)

with

v′ = v − g2 + |g|2 σ, v′∗ = v − g2 −
|g|
2 σ. (3.5)

54

Assume that f has a compact support in velocity v: suppvf ≈ BS, where BS is a ball

centered at the origin with radius S. We truncate the infinite integral in g to a larger ball

BR with radius R = 2S:

Q(f, f)(v) ≈ QR(f, f)(v) =
∫
BR

∫
S2
B(|g|,σ · ĝ)[f(v′)f(v′∗)− f(v)f(v − g)] dσ dg. (3.6)

In the Fourier spectral method, we choose a computational domain as DL = [− L,L]3,

such that f is approximated by a truncated Fourier series:

f(v) ≈ fN(v) =
N
2 −1∑

k=−N2

f̂kei π

L
k·v, f̂k = 1

(2L)3

∫
DL
f(v)e−i π

L
k·vdv, (3.7)

where L is chosen as L ≥ 3+
√

2
2 S to avoid aliasing (see [48] for detail).

Substituting (3.7) into the collision operator (3.6), the k-th coefficient of the Fourier

expansion is given as:

Q̂k := 1
(2L)3

∫
DL
Q(fN , fN)(v)e−i π

L
k·vdv

=
N
2 −1∑

l,m=−N2

(
1

(2L)3

∫
DL
Q
(
ei π

L
l·v, ei π

L
m·v
)

e−i π

L
k·v
)
f̂lf̂m

=
∑

l+m=k
[G(l.m)−G(m,m)] f̂lf̂m, (3.8)

for −N
2 ≤ l,m, k ≤ N

2 − 1, and weight term G(l,m) is given as

G(l,m) = 1
(2L)3

∫
DL
Q
(
ei π

L
l·v, ei π

L
m·v
)

e−i π

L
k·v

=
∫
BR

∫
S2
B(|g|,σ · ĝ)e−i π

L
l+m

2 ·gei π

L
|g| l−m2 ·σdσ dg. (3.9)

Let Q̂k = Q̂+
k − Q̂−k , where the gain and loss part read as

Q̂+
k =

∑
l+m=k

G(l,m)f̂lf̂m, Q̂−k =
∑

l+m=k
G(m,m)f̂lf̂m. (3.10)

55

Since the loss term Q̂−k is a convolution of functions G(m,m)f̂m and f̂l, it can be computed

via FFT in O(N3 logN) operations.

In [42], an approximation form has been developed for the weight

G(l,m) ≈
Np∑
p=1

αp(l +m)βp(l)γp(m), (3.11)

such that one can express the gain term Q̂+
k as a convolution

Q̂+
k ≈

Np∑
p=1

αp(k)
∑

l+m=k

(
βp(l)f̂l

) (
γp(m)f̂m

)
. (3.12)

The total cost is reduced to O(NpN
3 logN) via FFT for a single evaluation of Q̂+

k .

To get a suitable low-rank approximation (3.11), the weight G(l,m) is written as

G(l,m) =
∫ R

0

∫
S2
F (l +m, ρ,σ)ei π

L
ρ l2 ·σe−i π

L
ρm2 ·σdσ dρ, (3.13)

where

F (l +m, ρ,σ) = ρ2
∫
S2
B(ρ,σ · ĝ)e−i π

L
ρ l+m2 ·ĝ dĝ. (3.14)

The integral in the radial direction and sphere are computed using a numerical quadrature

G(l,m) ≈
∑
ρ,σ

wρwσF (l +m, ρ,σ)ei π

L
ρ l−m2 ·σ, (3.15)

where ρ and σ are the Gauss-Legendre and spherical quadrature point, wρ and wσ represent

the corresponding quadrature weights.

In the radial direction, the number (Nρ) of quadrature points in ρ must be O(N) because

of the oscillation of the integrand. For the integration on the sphere, we use Nσ quadrature

points, which is much less than N2 (confirmed by numerical tests). Therefore, we have

Np = NρNσ � N3, so that the total cost will be O(NpN
3 logN)� O(N6).

56

Eventually, we get the fast approximation for gain term

Q̂+
k ≈

∑
ρ,σ

ωρωσF (k, ρ,σ)
N
2 −1∑

l,m=−N2
l+m=k

[
ei π

L
ρ l2 ·σf̂l

] [
e−i π

L
ρm2 ·σf̂m

]
, (3.16)

and loss term

Q̂−k =
∑

l+m=k
G(m,m)f̂lf̂m. (3.17)

3.1.1 Limitation of the current algorithm

We consider the model of 3D VHS molecules where B = |g|γ (0 ≤ γ ≤ 1). The weight

G(l,m) is given in a simple form

G(l,m) = 16π
2
∫ R

0
ργ+2 sinc

(
π

L
ρ
|l +m|

2

)
sinc

(
π

L
ρ
|l −m|

2

)
dρ, (3.18)

where sinc(x) = sin(x)
x

.

In the fast algorithm above, we approximate sinc
(

π

L
ρ |l−m|2

)
with Lebedev quadrature

G(l,m) ≈
∫ R

0
F (l +m, ρ)

Nσ∑
j=1

ω
(σ)
j exp(i π

L
ρ
l

2 · σj) exp(i π

L
ρ
−m

2 · σj)dρ, (3.19)

where

F (l +m, ρ) = 4πργ+2 sinc
(

π

L
ρ
|l +m|

2

)
. (3.20)

However, there is some limitation to this approach. Due to the oscillatory nature of the

integrand, one might need a large number of quadrature points to approximate the weight

G(l,m) accurately.

In the following implementation, we compute the weights G(l,m) for all index in two

approaches,

• the direct Fourier method, Gdirect is evaluated via (3.18) with Nρ = N quadrature

points in radial direction.

57

• the fast Fourier method, Gfast is evaluated via (3.19) with Nρ = N quadrature points

in radial direction and Nσ Lebedev quadrature points on the unit sphere.

The parameters in Fourier spectral method are chosen as γ = 0, S = 5.0, R = 2S and

L = 3+
√

2
2 S. The relative error is defined as

‖ Gdirect −Gfast ‖∞
‖ Gdirect ‖∞

. (3.21)

The following table shows that it is hard to get a good approximation to the weight G(l,m)

when a small number of spherical quadrature points (Nσ) are applied in the fast algorithm.

Table 3.1. Relative error in l∞ norm for Nσ = 14, 38, 74, here we choose N = 16.
Quadrature pts Nσ 14 38 74

Relative error 0.5254 0.3015 0.2649

3.2 The new approach for fast algorithm

In this section, we propose a different decomposition for sinc
(

π

L
ρ |l−m|2

)
which leads to a

different low-rank approximation to G(l,m) in the form of (3.11).

First, by change of variable, we consider

u(s) := sinc(
√
s) = sinc

(
π

L
ρ
|l −m|

2

)
, (3.22)

where s is defined as

s = ρ2π2

4L2 |l −m|
2 ∈ [0, PN] , PN = R2π2

4L2 dN
2. (3.23)

For example, if the parameters are chosen as S = 5.0, R = 2S and L = 3+
√

2
2 S, we will get

PN ≈ 6224.07. The profile of u(s) function is presented in Fig 3.1 . One can see that u(s)

function has strong oscillations close to the origin. To guarantee the accuracy in the evalua-

58

tion of collision kernel, one need to approximat u(s) well for small |s|, which corresponding

to sinc
(

π

L
ρ |l−m|2

)
in low frequency region.

0 1000 2000 3000 4000 5000 6000

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

u(s) on [0, PN]

0 100 200 300 400 500 600

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

u(s) on [0, PN/10]

Figure 3.1. Left: u(s) function on [0, PN]; Right: u(s) on [0, PN/10].

So that, an extension of u(s) function is needed to over come the numerical challenge

caused by the oscillations. Notice that hyperbolic sine function satisfies that

sinh(z) = −i sin(iz). (3.24)

Then, for {s < 0 | s ∈ R} ⊂ C, we define the extension function ũ(s) as

ũ(s) = sinc(
√
s) = sin(

√
s)√
s

=
sin(i

√
|s|)

i
√
|s|

=
sinh(

√
|s|)√
|s|

. (3.25)

We extend u(s) to the domain [a, b] and define the extension as

u(s) ≈ ũ(s) :=


sin(
√
s)√
s
, 0 ≤ s ≤ b,

sinh(
√
|s|)√
|s|

, a ≤ s < 0,
(3.26)

which will guarantee the continuity at the origin. The range of domain [a, b] will be decided

later.

59

We wish the target function will have some periodicity on domain [a, b] since it will be

approximated by Fourier basis. Therefore, we multiply ũ with a damping function and define

the target function as

unew(s) := fdamp(s)× ũ(s), a ≤ s ≤ b, (3.27)

where

fdamp(s) = 1
2

[
1 + erf

(
s− µ

50

)] 1
2

[
1 + erf

(
ν − s

50

)]
, (3.28)

with µ, ν are the parameters to be decided.

For example, let the domain [a, b] and parameters µ, ν to be


a = −320, b = PN ≈ 6224.07,

µ = −120, ν = 5000.

The profile of ũ, fdamp and unew functions are presented in Fig 3.2 .

0 1000 2000 3000 4000 5000 6000
0

1

1e6 Domain [-320.00, 6224.07]
u_tilde

0 1000 2000 3000 4000 5000 6000
0.0

0.5

1.0

f_damp

0 1000 2000 3000 4000 5000 6000
0

1000
u_new

0 100 200 300 400 500 600

0

1

Domain [-1.00, 622.41]
u_tilde

0 100 200 300 400 500 600
−0.0004

−0.0002

0.0000
+1

f_damp

0 100 200 300 400 500 600

0

1 u_new
u(s)

Figure 3.2. Left: profile of ũ, fdamp and unew functions on the whole domain
[a, b]; Right: profile of functions on [− 1, PN/10] which is close to the origin.

60

Finally, we consider the Fourier expansion of unew(s) on the interval [a, b],

unew(s) ≈
M/2−1∑
n=−M/2

ûn · ei2πn s−a
b−a , ûn := 1

b− a

∫ b

a
u(t) · e−i 2πn

b−a t dt. (3.29)

Those coefficients will be computed by FFT in the numerical implementation.

Using the identity

|l −m|2 = 2l2 + 2m2 − |l +m|2, (3.30)

we can get the decomposition of n-th Fourier basis

ei2πn s−a
b−a = ei2πn −a

b−a exp(i 2πn

b− a
ρ2π2

4L2 |l −m|
2)

= ei2πn −a
b−a

[hn(ρ, |l|)hn(ρ, |m|)]2

hn(ρ, |l +m|) , (3.31)

where hn is defined as

hn(ρ, |k|) := exp(i π3nρ2

2L2(b− a) |k|
2), (3.32)

for 0 ≤ ρ ≤ R,−M
2 ≤ n ≤ M

2 − 1 and −N
2 ≤ k ≤ N

2 − 1.

To summarize, the sinc term will be numerically approximated as follows

sinc
(

π

L
ρ
|l −m|

2

)
Change of variable (3.22)−−−−−−−−−−−−−−→ u(s) = sinc(

√
s), s ∈ [0, PN]

Domain extension (3.26)−−−−−−−−−−−−−→ u(s) ≈ ũ(s), s ∈ [a, b],
Damping function (3.27)−−−−−−−−−−−−−→ ũ(s) ≈ unew(s), s ∈ [a, b],

Fourier approx (3.29)−−−−−−−−−−−−→ unew(s) ≈ ∑ ûn · ei2πn s−a
b−a , s ∈ [a, b].

Therefore, we get the expansion of sinc term as

sinc
(

π

L
ρ
|l −m|

2

)
≈

M/2−1∑
n=−M/2

ûn · ei2πn −a
b−a

[hn(ρ, |l|)hn(ρ, |m|)]2

hn(ρ, |l +m|) . (3.33)

61

In the new approach, the weight G(l,m) will be approximated by

G(l,m)

≈ 16π
2
M/2−1∑
n=−M/2

ûnei2πn −a
b−a

∫ R

0
ργ+2 sinc

(
π

L
ρ |l+m|2

)
hn(ρ, |l +m|) [hn(ρ, |l|)hn(ρ, |m|)]2 dρ.

(3.34)

where ρi is the Gauss-Legendre quadrature points on [0, R] and ω
(ρ)
i represents the corre-

sponding quadrature weights.

Eventually, the fast approximation for gain term reads as

Q̂+
k ≈

∑
ρ,n

ωρF
′
n(k, ρ)

N
2 −1∑

l,m=−N2
l+m=k

(
[hn(ρ, |l|)]2 f̂l

) (
[hn(ρ, |m|)]2 f̂m

)
, (3.35)

where

F ′n(k, ρ) = 16π
2ûnρ

γ+2 sinc
(

π

L
ρ |k|2

)
hn(ρ, |k|) ei2πn −a

b−a . (3.36)

In this new approach, we use M Fourier basis in the approximation of unew function,

which is less than N2. Therefore, we have N ′p = NρM � N3, so that the total cost will be

O(N ′pN3 logN)� O(N6), which is less than the direct Fourier method.

3.2.1 The parameters (a, b, µ, ν) in new method

One should notice that these parameters need to be treated carefully in the new approach:

1. The domain [a, b] of extension function ũ: First, it must cover [0, PN]. This

interval should not be too large nor too small. The larger [a, b] is, the more Fourier

bases are required to ensure a good approximation of unew function. If domain [a, b]

is very small, meaning that a is close to 0, it would lead to difficulties in treating the

oscillations close to the origin.

2. The parameters µ, ν in the damping function fdamp: Notice that the fdamp

function is used to guarantee the periodicity of unew on interval [a, b]. That means µ

62

and ν cannot be too close to the boundary a and b so that fdamp and unew will vanish

on the boundary. We also notice that unew has a large peak on [a, 0]. This peak will

jeopardize our approximation around the origin if it’s too close to the origin.

Therefore, it’s very important to select suitable domain [a, b] and parameters µ, ν in th

enew approach.

3.3 Numerical examples

In this section, we apply the fast algorithms in computing the weight G(l,m) and solving

Q(f, f) in the Boltzmann equation. We consider the 3D VHS molecule model and let S = 5.0

and L ≈ 11.04 in the Fourier spectral method. We let N = 32 and apply Nρ = 32 Gauss-

Legendre quadrature points in radial direction.

In this section we compare three fast Fourier methods for numerical evaluation:

1. the direct spectral method, Gdirect is computed via (3.18) andQdirect(f) is computed

via (3.10) directly. They will be used as reference solution.

2. the fast algorithm, Gfast is computed via (3.19) using Msph spherical quadrature

points on the unit sphere. Qfast(f) is computed via the fast evaluation (3.16) and

(3.17).

3. the new approach, Gnew is computed via (3.34) using M Fourier approximation of

unew(s) on interval [a, b]. Qnew(f) is computed via the fast evaluation (3.35) and (3.17).

As mentioned in the last section, the parameters (a, b, µ, ν) would affect the performance

of new method dramatically. For comparison, we consider four sets of parameters in the

following numerical tests

(A) :


a = −120, b = PN ≈ 6224.07,

µ = −20, ν = 5000,
(3.37)

63

(B) :


a = −200, b = PN ≈ 6224.07,

µ = −50, ν = 5000,
(3.38)

(C) :


a = −320, b = PN ≈ 6224.07,

µ = −120, ν = 5000,
(3.39)

and

(D) :


a = −500, b = PN ≈ 6224.07,

µ = −200, ν = 5000.
(3.40)

The profile of unew functions in different parameters are plotted in Fig 3.3 .

−200 −100 0 100 200 300

0

5000

10000

15000

20000

25000
u_new(s) on [-200.00, 310.69]

u_new: A
u_new: B
u_new: C
u_new: D

0 50 100 150 200 250 300

10−17

10−14

10−11

10−8

10−5

10−2

|u_new-u|(s) on [0.00, 310.89]
u_new: A
u_new: B
u_new: C
u_new: D

Figure 3.3. The profile of unew function with different parameters. Left: unew

on the interval [− 200, PN/20]. Right: absolute error |unew − u|(s) on interval
[0, PN/20].

In the following numerical tests, we will check the fast algorithm with different spherical

quadrature and the new approach with different parameters:

• the fast algorithm using Lebedev quadrature on the unit sphere.

64

• the fast algorithm using Symmetric Spherical Designs (SSD) on the unit sphere.

• the new approach using Fourier approximation of ueven = sinc(
√
|s|) on the domain

s ∈ [− PN , PN].

• the new approach using Fourier approximation of unew with four different sets of pa-

rameters (a, b, µ, ν).

3.3.1 Approximation of weight G(l,m)

We introduce three sets of index (l,m) for the weight G(l,m).

(1) global testing points: a group of M test = 10026 randomly chosen index

Tglobal =
{

(lα,mα) : −N2 ≤ lα +mα ≤ N

2 − 1
}
. (3.41)

Here we use the python package sobol seq to generate quasi-random index lα and

mα in Tglobal. It’s used to evaluate the approximation of G(l,m) in both low and high

frequency region.

(2) center testing points: M test = 729 sampling points given by

Tcenter = {(lx, 0, lz, 0,my, 0) : −4 ≤ lx, lz,my ≤ 4} . (3.42)

It’s used to evaluate the approximation of G(l,m) in low frequency region.

(3) non-center testing points: M test = 729 sampling points given by

Tnon−center =

(lx, 0, lz, 0,my, 0) :


−16 ≤ lx, lz,my ≤ −12,

or 12 ≤ lx, lz,my ≤ 15.

 . (3.43)

It’s used to evaluate the approximation of G(l,m) in high frequency region.

65

For the two fast approaches, we check their mean absolute error

MAE = 1
M test

∑
1≤α≤Mtest

|G∗(lα,mα)−Gdirect(lα,mα)|, (3.44)

on these three sets of sampling points, where G∗ represents the numerical evaluation Gfast

or Gnew. The numerical results are shown in Fig 3.4 and Table 3.2 . We can observe that:

• For Tcenter, the fast algorithm always performs better than the new approach. Since

the integrands on the unit sphere

exp
(

i π

L
ρ
l −m

2 · σ
)

(3.45)

don’t involve strong oscillation when l,m lie in the low-frequency region. It is easy for

spherical quadrature to achieve good accuracy on those integrals.

• For Tglobal and Tnon−center, when M ≤ 200 the fast algorithm still provide the best

approximation. As M increases, the numerical errors decay much faster in the new

approach with parameter sets (C) and (D). Eventually, the new approach could provide

a better approximation when M ≥ 400. That means when approximating weight

G(l,m) in the high-frequency region, it will cost a large number of spherical quadrature

points to resolve the strong oscillations in the integrals. Meanwhile, the new approach

can always guarantee accuracy with a suitable choice of parameters and adequate

Fourier bases. Therefore, the new approach can approximate high-frequency weight

well with much less computation cost.

66

0 100 200 300 400 500 600

10−7

10−5

10−3

10−1

101

103

105
MAE, fast approx G(l,m) on T-global

fast_2017_Lebedev
fast_2017_SSD
approx_U_even
approx_u_new: A
approx_u_new: B
approx_u_new: C
approx_u_new: D

0 100 200 300 400 500 600

10−12

10−9

10−6

10−3

100

103

106

MAE, ast appro, G(l,m) on T-center

fast_2017_Lebedev
fast_2017_SSD
approx_U_even
approx_u_new: A
approx_u_new: B
approx_u_new: C
approx_u_new: D

0 100 200 300 400 500 600

10−8

10−6

10−4

10−2

100

102

104

MAE, fast appro− G(l,m) on T-Ncenter

fast_2017_Lebedev
fast_2017_SSD
approx_U_even
approx_u_new: A
approx_u_new: B
approx_u_new: C
approx_u_new: D

Figure 3.4. MAE of the different fast decomposition in estimating the weight
G(l,m). Error is computed on Tglobal, Tcenter and Tnon−center.

67

Table 3.2. The scale of MAE on Tgloabl for Fourier methods.
M ≤ 200 200 < M < 300 M ≥ 300

2017 fast Lebedev O(10) O(1) O(1)→ O(10−1)

2017 fast SSD O(10) O(1) O(1)→ O(10−1)

new: ueven O(10) O(10) O(1)

new: unew-(A) O(102)→ O(1) O(1) O(1)

new: unew-(B) O(1)→ O(103)→ O(1) O(1)→ O(10−1) O(10−1)

new: unew-(C) O(1)→ O(104)→ O(10) O(10)→ O(10−2) O(10−3)

new: unew-(D) O(1)→ O(105)→ O(102) O(102)→ O(10−1) O(10−1)→ O(10−8)

3.3.2 Solving Q(f) in Boltzmann equation

We now test the spectral methods for solving the Boltzmann equation. Let us consider

five different initial f , which are defined as

1. BKW solution: Consider the 3D BKW solution:

fBKW(t, v) = 1
2(2πK)3/2 exp

(
− v2

2K

)(5K − 3
K

+ 1−K
K2 v2

)
, (3.46)

where K(t) = 1− exp(−t/6).

For the BKW model, we know the exact Q(f) as

Q(f) =
{(
− 3

2K + v2

2K2

)
f + 1

2(2πK)3/2 exp
(
− v2

2K

)(3
K2 + K − 2

K3 v2
)}

K ′, (3.47)

with K ′ = exp(−t/6)/6, which will be used as reference solution.

2. two Gaussian initial: Consider the initial condition

fα(v) = ρ1

(2πT1)3/2 exp
(
−(v − V1)2

2T1

)
+ ρ2

(2πT2)3/2 exp
(
−(v − V2)2

2T2

)
, (3.48)

with ρ1 = ρ2 = 1/2, T1 = T2 = 1 and V1 = (x1, y1, z1) = (−2, 2, 0), V2 = (x2, y2, z2) =

(2, 0, 0).

68

3. two Gaussian initial: Consider the initial condition

fβ(v) = ρ1

(2πT1)3/2 exp
(
−(v − V1)2

2T1

)
+ ρ2

(2πT2)3/2 exp
(
−(v − V2)2

2T2

)
, (3.49)

with ρ1 = 0.7, ρ2 = 0.3, T1 = T2 = 1 and V1 = (x1, y1, z1) = (−2, 1, 0), V2 =

(x2, y2, z2) = (0, 0,−1).

4. dis-continuous initial: Consider the initial condition

fdiscon(v) =


ρ1

(2πT1)3/2 exp
(
− v2

2T1

)
, vx ≥ 0,

ρ2
(2πT2)3/2 exp

(
− v2

2T2

)
, vx < 0,

(3.50)

where ρ1 = 0.8, ρ2 = 0.5 and T1 = T2 = 1.

5. random initial: Consider a random initial frand generated by python package numpy.random

.

Notice that only the BKW solution has an exact solution that can be used as a reference

solution. For the other four initial conditions f , the numerical solutions will be compared

with the direct spectral method. The numerical results are shown in Fig 3.5 -3.9 . One can

observe that:

• For fBKW, all the Fourier methods can achieve O(1e − 5) accuracy quickly. That

is exactly the approximation error ‖ Qext(f) − Qdirect(f) ‖L∞ in the direct spectral

method.

• For the two Gaussian initial and discontinuous initial, the fast algorithm performs

better than the new approach. That is due to the fact that fast algorithm could

approximate the weight G(l,m) very well for index l,m in the low-frequency region.

This will give the fast algorithm an edge since the Fourier coefficients of initial condition

fα and fβ decay very fast in the high-frequency region.

69

• For the random initial frand, the Fourier coefficients don’t decay like the smooth initial.

The fast algorithm still provides the best accuracy when M ≤ 200. However, the new

approach with parameter set (D) could get better accuracy for M ≥ 300.

• Overall, one can see that the scale of ‖ Qext(f) − Qnum(f) ‖L∞ is much larger than

‖ Qdirect(f)−Qnum(f) ‖L∞ .

0 100 200 300 400 500 600

10−4

10−3

10−2

10−1

100

101

102

103

Linf, Compute Qf_BKW

fast_2017_Lebedev
fast_2017_SSD
app ox_U_even
app ox_u_new: A
app ox_u_new: B
app ox_u_new: C
app ox_u_new: D

Figure 3.5. (fBKW) Error ‖ Qext(f) − Qnum(f) ‖L∞ of the different fast
approaches. The x-axis corresponds to number of spherical quadrature points
(Msph) in the fast algorithm and number of Fourier basis (M) in approximation
to unew.

3.4 Conclusion

We studied the recent development in fast Fourier spectral methods solving the Boltz-

mann equation. By using a different decomposition of the weight term G(l,m), we can

propose a new approach to speed up the Fourier method. Several numerical examples of

3D VHS molecule models have been presented for a comparison between different Fourier

methods. In certain situations, the new approach did gain some improvement in numerical

accuracy and efficiency.

70

0 100 200 300 400 500 600

10−13

10−10

10−7

10−4

10−1

102

Linf, Compu e Qf_ap

fas _2017_Lebedev
fas _2017_SSD
approx_U_even
approx_u_new: A
approx_u_new: B
approx_u_new: C
approx_u_new: D

Figure 3.6. (fα) Error ‖ Qdirect(f) − Qnum(f) ‖L∞ of the different fast ap-
proaches. The x-axis corresponds to number of spherical quadrature points
(Msph) in the fast algorithm and number of Fourier basis (M) in approxima-
tion to unew.

0 100 200 300 400 500 600

10−14

10−11

10−8

10−5

10−2

101

Linf, Compute Qf_beta

fa t_2017_Lebedev
fa t_2017_SSD
approx_U_even
approx_u_new: A
approx_u_new: B
approx_u_new: C
approx_u_new: D

Figure 3.7. (fβ) Error ‖ Qdirect(f) − Qnum(f) ‖L∞ of the different fast ap-
proaches. The x-axis corresponds to number of spherical quadrature points
(Msph) in the fast algorithm and number of Fourier basis (M) in approxima-
tion to unew.

71

0 100 200 300 400 500 600

10−11

10−9

10−7

10−5

10−3

10−1

101

103
Linf, Compute Qf_discon

fast_2017_Lebedev
fast_2017_SSD
app ox_U_even
app ox_u_new: A
app ox_u_new: B
app ox_u_new: C
app ox_u_new: D

Figure 3.8. (fdiscon) Error ‖ Qdirect(f) − Qnum(f) ‖L∞ of the different fast
approaches. The x-axis corresponds to number of spherical quadrature points
(Msph) in the fast algorithm and number of Fourier basis (M) in approximation
to unew.

0 100 200 300 400 500 600

10−10

10−8

10−6

10−4

10−2

100 Linf, Compute Qf_rand

fa t_2017_Lebedev
fa t_2017_SSD
approx_U_even
approx_u_new: A
approx_u_new: B
approx_u_new: C
approx_u_new: D

Figure 3.9. (frand) Error ‖ Qdirect(f) − Qnum(f) ‖L∞ of the different fast
approaches. The x-axis corresponds to number of spherical quadrature points
(Msph) in the fast algorithm and number of Fourier basis (M) in approximation
to unew.

72

4. A FAST PETROV-GALERKIN SPECTRAL METHOD FOR

BOLTZMANN EQUATION

In this chapter, we propose a Petrov-Galerkin spectral method for the spatially inhomoge-

neous Boltzmann equation

∂tf = Q(f, f), t > 0, v ∈ Rd, d ≥ 2. (4.1)

In Section 4.1 , we introduce the mapped Chebyshev functions in Rd along with their

approximation properties. In Section 4.2 , we construct the Petrov-Galerkin spectral method

for the Boltzmann equation using the mapped Chebyshev functions as trial and test func-

tions. The approximation properties for the collision operator and moments are proved as

well. The numerical realization including the fast algorithm is described in detail in Sec-

tion 4.3 . In Section 4.4 , several numerical tests in 2D and 3D are performed to demonstrate

the accuracy and efficiency of the proposed method. This chapter is concluded in Section 4.5 .

4.1 Multi-dimensional mapped Chebyshev functions

In this section, we introduce the mapped Chebyshev functions in Rd and discuss their

approximation properties. These functions are extension of the one-dimensional mapped

Chebyshev functions introduced in [43] based on tensor product formulation [49], [50]. Later

in Section 4.2 , they will serve as the trial functions and test functions in the Petrov-Galerkin

spectral method for the Boltzmann equation.

4.1.1 Mapped Chebyshev functions in Rd

To define the mapped Chebyshev functions in Rd, we start with the one-dimensional

Chebyshev polynomials on the interval I = (−1, 1):

T0(ξ) = 1, T1(ξ) = ξ, Tk+1(ξ) = 2ξTk(ξ)− Tk−1(ξ), k ≥ 1. (4.2)

73

Define the inner product (·, ·)ω as

(F,G)ω :=
∫
I
F (ξ)G(ξ)ω(ξ) dξ, ω(ξ) = (1− ξ2)− 1

2 , (4.3)

then {Tk(ξ)}k≥0 satisfy the orthogonality condition

(Tk, Tl)ω = ckδk,l, ∀ k, l ≥ 0, (4.4)

where c0 = π and ck = π/2 for k ≥ 1.

We then introduce a one-to-one mapping ξ → v(ξ) (its inverse is denoted as v → ξ(v))

from I to R such that

dv
dξ = S

(1− ξ2)1+ r
2

:= ω(ξ)
[µ(ξ)]2 , v(±1) = ±∞, (4.5)

where S > 0 is a scaling parameter, r ≥ 0 is the tail parameter, and the function µ is given

by

µ(ξ) = (1− ξ2) 1+r
4

√
S

. (4.6)

With this mapping we define two sets of mapped Chebyshev functions in R as

T̃k(v) := [µ(ξ(v))]4
√
ck

Tk(ξ(v)), T̂k(v) := [µ(ξ(v))]−2
√
ck

Tk(ξ(v)). (4.7)

Define the inner product (·, ·)R as

(f, g)R :=
∫
R
f(v)g(v) dv, (4.8)

then it is easy to check that {T̃k(v)}k≥0 and {T̂k(v)}k≥0 satisfy the orthonormal condition:

(T̃k, T̂l)R = δk,l, ∀ k, l ≥ 0. (4.9)

Remark 4. Two one-to-one mappings between I and R often used in practice are

74

• logarithmic mapping (r = 0):

v = S

2 ln
(

1 + ξ

1− ξ

)
, ξ = tanh

(
v

S

)
, µ(ξ) = 1√

S
(1− ξ2) 1

4 , (4.10)

• algebraic mapping (r = 1):

v = Sξ√
1− ξ2 , ξ = v√

S2 + v2
, µ(ξ) = 1√

S
(1− ξ2) 1

2 . (4.11)

In the multi-dimensional case, we denote the multi-vector as v = (v1, . . . , vd) and multi-

index as k = (k1, . . . , kd), where kj is a non-negative integer for each j = 1, . . . , d; 0 ≤ k ≤ N

means 0 ≤ kj ≤ N for each j = 1, . . . , d. We define the mapped Chebyshev functions in Rd

using (4.7) via the tensor product as

T̃k(v) :=
d∏

j=1
T̃kj(vj), T̂k(v) :=

d∏
j=1

T̂kj(vj). (4.12)

The inner products (·, ·)ω in Id = (−1, 1)d and (·, ·)Rd in Rd are defined, respectively, by

(F,G)ω :=
∫
Id
F (ξ)G(ξ)ω(ξ) dξ, (f, g)Rd :=

∫
Rd
f(v)g(v) dv, (4.13)

with the weight function ω(ξ) := ∏d
j=1 ω(ξj). Then we have

(
T̃k, T̂l

)
Rd

=
d∏

j=1

(
T̃kj , T̂lj

)
R

=
d∏

j=1
δkj,lj =: δk,l. (4.14)

Therefore, any d-variate function f(v) can be expanded using {T̃k(v)}k≥0 as

f(v) =
∑
k≥0

f̃kT̃k(v) =
∑
k≥0

f̃k
[µ(ξ)]4
√
ck

Tk(ξ), (4.15)

and the expansion coefficients {f̃k}k≥0 are determined by

f̃k =
(
f, T̂k

)
Rd

= 1
√
ck

(
[µ(ξ)]−4f(v(ξ)),Tk(ξ)

)
ω
, (4.16)

75

where

µ(ξ) :=
d∏

j=1
µ(ξj), ck :=

d∏
j=1

ckj , Tk(ξ) :=
d∏

j=1
Tkj(ξj), (4.17)

and v(ξ) is the mapping from Id to Rd such that each component ξj is mapped to vj via the

1D mapping (4.5). The inverse mapping ξ(v) is understood similarly.

In Section 4.2 , we will introduce the Petrov-Galerkin spectral method for the Boltzmann

equation in Rd, where the trial function space and test function space are chosen, respectively,

as

T̃dN := {T̃k(v)}0≤k≤N , T̂dN := {T̂k(v)}0≤k≤N . (4.18)

The choice of these functions is motivated by their decay/growth properties at large |v|. The

following result is a straightforward extension of the 1D result in [43].

Lemma 4.1.1. For any k ≥ 0 and |v| � 1, we have

∣∣∣T̃k(v)
∣∣∣ ∼


e−

2
S

(
∑d

j=1|vj|), r = 0,∏d
j=1|vj|−4, r = 1;

∣∣∣T̂k(v)
∣∣∣ ∼


e

1
S

(
∑d

j=1|vj|), r = 0,∏d
j=1|vj|2, r = 1,

(4.19)

where r = 0 corresponds to the logarithmic mapping (4.10) and r = 1 to the algebraic

mapping (4.11).

4.1.2 Approximation properties

We describe below some approximation properties of the mapped Chebyshev functions

in Rd.

For a function f(v) defined in Rd, the transform v(ξ) maps it to a function in Id. Hence,

we introduce the linked function pair (f, F) such that f(v) = f(v(ξ)) ≡ F (ξ). In addition,

we introduce another function pair (f̂α, F̂α) as

f̂α(v) := f(v)[µ(ξ(v))]−α = F (ξ)[µ(ξ)]−α =: F̂α(ξ). (4.20)

76

We define the approximation space in Rd with a parameter α as

Vα,d
N (Rd) := span {T α

k (v) := [µ(ξ(v))]αTk(ξ(v)), 0 ≤ k ≤ N} . (4.21)

Therefore, the trial function space T̃dN and test function space T̂dN introduced in the previous

section correspond to V4,d
N and V−2,d

N , respectively.

In the following, the L2 space with a given weight w is equipped with norm

‖ f ‖L2
w(Id)=

(∫
Id
|f(ξ)|2w(ξ) dξ

)1/2
or ‖ f ‖L2

w(Rd)=
(∫

Rd
|f(v)|2w(v) dv

)1/2
, (4.22)

depending on the domain of interest.

Let PdN(Id) denote the set of d-variate polynomials in Id with degree ≤ N in each direc-

tion, and Πd
N : L2

ω(Id)→ PdN(Id) be the Chebyshev orthogonal projection operator such that

(
Πd
NF − F, φ

)
ω

= 0, ∀φ ∈ PdN(Id). (4.23)

Then we define another projection operator π
α,d
N : L2

µ2−2α(Rd)→ Vα,d
N (Rd) by

π
α,d
N f := µαΠd

N(Fµ−α) = µαΠd
N F̂

α. (4.24)

One can verify using the definition that

(
π
α,d
N f − f,µ2−2αT α

k

)
Rd

=
∫
Rd

(π
α,d
N f − f)µ2−αTk(ξ(v)) dv

=
∫
Id

[
µαΠd

N F̂
α − µαF̂α

]
Tk(ξ)µ2−αω(ξ)

µ2 dξ

=
(
Πd
N F̂

α − F̂α,Tk
)
ω

= 0, ∀ 0 ≤ k ≤ N. (4.25)

Next, we introduce the function space Bm
α (Rd) equipped with the norm

‖ f ‖Bmα (Rd)=
 ∑

0≤k≤m
‖Dk

α,vf ‖2
L2

$
k+ 1+r

2 1
(Rd)

1/2

, (4.26)

77

and semi-norm

|f |Bmα (Rd) =
 d∑

j=1
‖ Dm

α,vjf ‖
2
L2

$
meeej+ 1+r

2 1
(Rd)

1/2

, (4.27)

where 1 is an all-one vector, eeej = (0, . . . , 1, . . . , 0) with 1 in the j-th position and 0 elsewhere,

and

Dk
α,vf := Dk1

α,v1 · · ·D
kd
α,vd

f, $k :=
d∏

j=1
(1− ξ(vj)2)kj , (4.28)

with

Dkj
α,vjf := a(vj)

∂

∂vj

(
a(vj)

∂

∂vj

(
. . .

(
a(vj)

∂f̂α

∂vj

)
. . .

))
︸ ︷︷ ︸

kj times derivatives

= ∂kjF̂α

∂ξj
, (4.29)

where a(vj) := dvj
dξj

is determined by the mapping.

We have the following approximation result.

Theorem 1.1. Let α ∈ R, r ≥ 0. If f ∈ Bm
α (Rd), we have

‖ π
α,d
N f − f ‖L2

µ2−2α (Rd)≤ CN−m|f |Bmα (Rd). (4.30)

Proof. Note that

‖ π
α,d
N f − f ‖2

L2
µ2−2α (Rd) =

∫
Rd

(π
α,d
N f − f)2µ2−2α dv

=
∫
Id

[
µαΠd

N F̂
α − µαF̂α

]2
µ2−2αω(ξ)

µ2 dξ

= ‖ Πd
N F̂

α − F̂α ‖2
L2
ω(Id) .

By the multi-variate (full tensor product) Chebyshev approximation result (Theorem 2.1

in [51]), we know

‖ Πd
N F̂

α − F̂α ‖L2
ω(Id)≤ CN−m

 d∑
j=1
‖ ∂mξj F̂

α ‖2
L2

$
meeej−

1
2 1

(Id)

1/2

.

78

Hence,

‖ π
α,d
N f − f ‖L2

µ2−2α (Rd)=‖ Πd
N F̂

α − F̂α ‖L2
ω(Id)

≤ CN−m

 d∑
j=1
‖ ∂mξj F̂

α ‖2
L2

$
meeej−

1
2 1

(Id)

1/2

≤ CN−m

 d∑
j=1
‖ Dm

α,vjf ‖
2
L2

$
meeej+ 1+r

2 1
(Rd)

1/2

= CN−m|f |Bmα (Rd).

4.2 A Petrov-Galerkin spectral method for the Boltzmann equation

We consider the initial value problem


∂tf(t,v) = Q(f, f), t > 0, v ∈ Rd,

f(0,v) = f 0(v),
(4.31)

where Q(f, f), in a strong form, is given by (1.5). To construct the Petrov-Galerkin spectral

method, the following weak form of the collision operator is more convenient:

(Q(f, f), φ)Rd =
∫
Rd
Q(f, f)(v)φ(v) dv =

∫
Rd

∫
Rd

∫
Sd−1
B(v,v∗,σ)f(v)f(v∗)[φ(v′)−φ(v)] dσ dv dv∗,

(4.32)

where φ(v) is a test function.

We look for an approximation of f in the trial function space T̃dN as

f(t,v) ≈ fN(t,v) =
∑

0≤k≤N
f̃k(t)T̃k(v) ∈ T̃dN . (4.33)

79

Substituting fN into (4.31) and requiring the residue of the equation to be orthogonal to the

test function space T̂dN , we obtain

(
∂tfN −Q(fN , fN), T̂k

)
Rd

= 0 for all T̂k ∈ T̂dN . (4.34)

By the orthogonality condition (4.14), we find that the coefficients {f̃k(t)} satisfy the fol-

lowing ODE system 
d
dt f̃k(t) = QNk ,

f̃k(0) = f̃ 0
k ,

0 ≤ k ≤ N, (4.35)

where

QNk :=
(
Q(fN , fN), T̂k

)
Rd

=
∫
Rd

∫
Rd

∫
Sd−1
B(v,v∗,σ)fN(v)fN(v∗)

[
T̂k(v′)− T̂k(v)

]
dσ dv dv∗, (4.36)

and

f̃ 0
k :=

(
f 0, T̂k

)
Rd

= 1
√
ck

(
[µ(ξ)]−4f 0(v(ξ)),Tk(ξ)

)
ω
. (4.37)

Note that we used the weak form (4.32) in (4.36).

Remark 5. An equivalent way of writing the ODE system (4.35) is


∂tfN(t,v) = π

4,d
N Q(fN , fN),

fN(0,v) = π
4,d
N f 0(v),

(4.38)

where π
4,d
N is the projection operator defined in (4.24) (with α = 4). Indeed, for any f ∈

L2
µ−6(Rd),

π
4,d
N f =

∑
0≤k≤N

(
f, T̂k

)
Rd
T̃k(v) ∈ V4,d

N (Rd) = T̃dN . (4.39)

80

4.2.1 Approximation property for the collision operator

In this subsection, we establish a consistency result of the spectral approximation for the

collision operator. We will show that if f and Q(f, f) have certain regularity, the proposed

approximation of the collision operator π
4,d
N Q(π

4,d
N f, π4,d

N f) enjoys spectral accuracy. We will

only prove this result under the algebraic mapping (4.11) with S = 1, that is in 1D,

v = ξ√
1− ξ2 , ξ = v√

1 + v2
, µ =

√
1− ξ2 = 1√

1 + v2
. (4.40)

The reason of this choice is strongly motivated by the existing regularity result of the Boltz-

mann collision operator under an exponentially weighted Lebesgue norm:

‖ f ‖Lp
k
(Rd)=

(∫
Rd
|f(v)|p(1 + |v|2)kp/2 dv

)1/p
, k ∈ R, 1 ≤ p <∞. (4.41)

Specifically, we write the collision operator (1.5) as Q(g, f) = Q+(g, f)−Q−(g, f), where

the gain part and loss part are given by

Q+(g, f)(v) =
∫
Rd

∫
Sd−1
B(v,v∗,σ)g(v′∗)f(v′) dσ dv∗,

Q−(g, f)(v) =
∫
Rd

∫
Sd−1
B(v,v∗,σ)g(v∗)f(v) dσ dv∗.

(4.42)

Then we have the following regularity result for the gain operator Q+(g, f) established in

[52].

Theorem 2.1 (Theorem 2.1, [52]). Let k, η ∈ R, 1 ≤ p <∞, and let the collision kernel B

satisfy certain cut-off assumption1
 . Then the following estimate holds

‖ Q+(g, f) ‖Lpη(Rd)≤ Ck,η,p(B) ‖ g ‖L1
|k+η|+|η|(R

d)‖ f ‖Lpk+η(Rd), (4.43)

where Ck,η,p(B) is a constant that depends only on the kernel B and k, η and p.
1↑ To avoid technicality, we do not spell out the condition here and only mention that most of the collision
kernels used in numerical simulations satisfy this assumption.

81

To obtain a similar estimate for the loss operator Q−(g, f), we restrict ourselves to

the variable hard sphere (VHS) collision model [53]. Note that this kernel falls into the

assumption in Theorem 2.1 . We have the following result.

Proposition 2.1. Let η ∈ R, 1 ≤ p < ∞, and let the collision kernel takes the form

B = Cλ|v − v∗|λ, where 0 ≤ λ ≤ 1 and Cλ is a positive constant. Then the following

estimate holds

‖ Q−(g, f) ‖Lpη(Rd)≤ Cλ ‖ g ‖L1
λ

(Rd)‖ f ‖Lpλ+η(Rd) . (4.44)

Proof. Note that

|v − v∗| ≤ |v|+ |v∗| = (|v|2 + |v∗|2 + 2|v||v∗|)1/2 ≤
(
1 + |v|2

)1/2 (
1 + |v∗|2

)1/2
.

Then

Q−(g, f)(v) = Cλf(v)
∫
Rd
g(v∗)|v− v∗|λ dv∗

≤ Cλf(v)
(
1 + |v|2

)λ/2 [∫
Rd
g(v∗)

(
1 + |v∗|2

)λ/2
dv∗

]
= Cλf(v)

(
1 + |v|2

)λ/2
‖ g ‖L1

λ
(Rd) .

Therefore, for any η ∈ R, 1 ≤ p <∞,

‖ Q−(g, f) ‖Lpη(Rd)≤ Cλ ‖ g ‖L1
λ

(Rd)‖ f ‖Lpλ+η(Rd) .

Combining the previous two results, we can obtain the following theorem.

Theorem 2.2. Let the collision kernel takes the form B = Cλ|v − v∗|λ, where 0 ≤ λ ≤ 1

and Cλ is a positive constant. Then the collision operator Q(g, f) satisfies

‖ Q(g, f) ‖L2
3d(Rd)≤ Cd(B) ‖ g ‖L1

λ+6d(Rd)‖ f ‖L2
λ+3d(Rd), (4.45)

where Cd(B) is a constant that depends only on the kernel B and the dimension d.

82

Proof. Choosing k = λ, η = 3d, p = 2 in (4.43), we have

‖ Q+(g, f) ‖L2
3d(Rd)≤ Cλ,3d,2(B) ‖ g ‖L1

λ+6d(Rd)‖ f ‖L2
λ+3d(Rd) .

Choosing η = 3d, p = 2 in (4.44), we have

‖ Q−(g, f) ‖L2
3d(Rd)≤ Cλ ‖ g ‖L1

λ
(Rd)‖ f ‖L2

λ+3d(Rd) .

Combining both, we obtain

‖ Q(g, f) ‖L2
3d(Rd)≤ Cd(B) ‖ g ‖L1

λ+6d(Rd)‖ f ‖L2
λ+3d(Rd) .

Before we proceed to the consistency proof, we need the following lemmas.

Lemma 4.2.1. Under the algebraic mapping (4.11) with S = 1, we have

‖ f ‖L2
η(Rd)≤‖ f ‖L2

µ−2η (Rd)≤‖ f ‖L2
dη

(Rd) for any η ≥ 0. (4.46)

Proof. Note that

1 +
d∑

j=1
|vj|2 ≤

d∏
j=1

(1 + |vj|2) ≤ (1 +
d∑

j=1
|vj|2)d.

Then we have

‖ f ‖L2
µ−2η (Rd) =

(∫
Rd
|f(v)|2µ−2η dv

)1/2

=
∫

Rd
|f(v)|2

d∏
j=1

(1 + |vj|2)η dv
1/2

≥

∫
Rd
|f(v)|2

1 +
d∑

j=1
|vj|2

η dv
1/2

=‖ f ‖L2
η(Rd) .

83

Also,

‖ f ‖L2
µ−2η (Rd) =

∫
Rd
|f(v)|2

d∏
j=1

(1 + |vj|2)η dv
1/2

≤

∫
Rd
|f(v)|2

1 +
d∑

j=1
|vj|2

dη dv


1/2

=‖ f ‖L2
dη

(Rd) .

Lemma 4.2.2. For any η ≥ 0, there exist ε > 0 and Cε > 0 such that

‖ f ‖L1
η(Rd)≤ Cε ‖ f ‖L2

η+ 1+ε
2

(Rd) . (4.47)

Proof. Note that

‖ f ‖2
L1
η(Rd) =

(∫
Rd
|f(v)|(1 + |v|2)

η
2 dv

)2

≤
∫
Rd
|f(v)|2(1 + |v|2)η+ 1+ε

2 dv
∫
Rd

(1 + |v|2)− 1+ε
2 dv

≤ Cε

∫
Rd
|f(v)|2(1 + |v|2)η+ 1+ε

2 dv

= Cε ‖ f ‖2
L2
η+ 1+ε

2
(Rd),

where we used the Cauchy-Schwarz inequality.

We are ready to present a consistency result.

Theorem 2.3. Let the collision kernel takes the form B = Cλ|v − v∗|λ, where 0 ≤ λ ≤ 1

and Cλ is a positive constant. Then under the algebraic mapping (4.11) with S = 1, we have

‖ Q(f, f)− π
4,d
N Q(π

4,d
N f, π4,d

N f) ‖L2
3(Rd)

≤Cd,ε(B)N−m
(
|f |Bm

λ+6d+ 3+ε
2

(Rd) ‖ f ‖L2
λ+3d(Rd) +|f |Bm

λ+3d+1(Rd) ‖ f ‖L1
λ+6d(Rd) +|Q(f, f)|Bm4 (Rd)

)
,

(4.48)

84

where m is a positive integer, d is the dimension, ε > 0 is a constant, and Cd,ε(B) is a

constant depending only on the kernel B, d and ε.

Proof. By the triangle inequality

‖ Q(f, f)− π
4,d
N Q(π

4,d
N f, π4,d

N f) ‖L2
3(Rd)

≤ ‖ Q(f, f)− π
4,d
N Q(f, f) ‖L2

3(Rd) + ‖ π
4,d
N Q(f, f)− π

4,d
N Q(π

4,d
N f, π4,d

N f) ‖L2
3(Rd) .

For the first term, by Lemma 4.2.1 and Theorem 1.1 , we have

‖ Q(f, f)− π
4,d
N Q(f, f) ‖L2

3(Rd)≤‖ Q(f, f)− π
4,d
N Q(f, f) ‖L2

µ−6 (Rd)≤ CN−m|Q(f, f)|Bm4 (Rd).

For the second term, using again Lemma 4.2.1 , Theorem 1.1 , and Lemma 4.2.2 , Theo-

rem 2.2 , we have

‖ π
4,d
N Q(f, f)− π

4,d
N Q(π

4,d
N f, π4,d

N f) ‖L2
3(Rd)≤‖ π

4,d
N Q(f, f)− π

4,d
N Q(π

4,d
N f, π4,d

N f) ‖L2
µ−6 (Rd)

≤ ‖ Q(f, f)−Q(π
4,d
N f, π4,d

N f) ‖L2
µ−6 (Rd)≤‖ Q(f, f)−Q(π

4,d
N f, π4,d

N f) ‖L2
3d(Rd)

≤ ‖ Q(f − π
4,d
N f, f) ‖L2

3d(Rd) + ‖ Q(π
4,d
N f, f − π

4,d
N f) ‖L2

3d(Rd)

≤Cd(B)
(
‖ f − π

4,d
N f ‖L1

λ+6d(Rd)‖ f ‖L2
λ+3d(Rd) + ‖ π

4,d
N f ‖L1

λ+6d(Rd)‖ f − π
4,d
N f ‖L2

λ+3d(Rd)

)
≤Cd(B)

(
‖ f − π

4,d
N f ‖L1

λ+6d(Rd) (‖ f ‖L2
λ+3d(Rd) + ‖ f − π

4,d
N f ‖L2

λ+3d(Rd))+ ‖ f ‖L1
λ+6d(Rd)‖ f − π

4,d
N f ‖L2

λ+3d(Rd)

)
≤Cd,ε(B) ‖ f − π

4,d
N f ‖L2

λ+6d+ 1+ε
2

(Rd)

(
‖ f ‖L2

λ+3d(Rd) + ‖ f − π
4,d
N f ‖L2

λ+3d(Rd)

)
+ Cd(B) ‖ f ‖L1

λ+6d(Rd)‖ f − π
4,d
N f ‖L2

λ+3d(Rd)

≤Cd,ε(B) ‖ f − π
4,d
N f ‖L2

µ
−2(λ+6d+ 1+ε

2)
(Rd) (‖ f ‖L2

λ+3d(Rd) + ‖ f − π
4,d
N f ‖L2

µ−2(λ+3d) (Rd))

+ Cd(B) ‖ f ‖L1
λ+6d(Rd)‖ f − π

4,d
N f ‖L2

µ−2(λ+3d) (Rd)

≤Cd,ε(B)N−m|f |Bm

λ+6d+ 3+ε
2

(Rd)

(
‖ f ‖L2

λ+3d(Rd) +CN−m|f |Bm
λ+3d+1(Rd)

)
+ Cd(B)N−m ‖ f ‖L1

λ+6d(Rd) |f |Bm
λ+3d+1(Rd)

≤Cd,ε(B)N−m
(
|f |Bm

λ+6d+ 3+ε
2

(Rd) ‖ f ‖L2
λ+3d(Rd) +|f |Bm

λ+3d+1(Rd) ‖ f ‖L1
λ+6d(Rd)

)
.

85

Combining the above inequalities, we arrive at the desired result.

4.2.2 Approximation property for the moments

For the Boltzmann equation, the moments or macroscopic observables are important

physical quantities. Still, under the algebraic mapping (4.11), we can show that the spectral

method (4.35) preserves mass and energy.

Theorem 2.4. If using the algebraic mapping (4.11) with N ≥ 2, the spectral method (4.35)

preserves mass and energy, i.e., ρ(t) and E(t) defined by

ρ(t) :=
∫
Rd
fN(t,v) dv, E(t) =

∫
Rd
fN(t,v)|v|2 dv (4.49)

remain constant in time. Furthermore,

ρ(t) ≡
∫
Rd
f 0(v) dv, E(t) ≡

∫
Rd
f 0(v)|v|2 dv. (4.50)

Proof. In 1D, the first few Chebyshev polynomials read

T0(ξ) = 1, T1(ξ) = ξ, T2(ξ) = 2ξ2 − 1.

With the algebraic mapping (4.11), we have

T0(ξ(v)) = 1, T1(ξ(v)) = v√
v2 + S2

, T2(ξ(v)) = v2 − S2

v2 + S2 , µ(ξ(v)) =
√
S√

v2 + S2
.

Then

T̂k(v) = [µ(ξ(v))]−2
√
ck

Tk(ξ(v)) = v2 + S2
√
ckS

Tk(ξ(v)).

Specifically,

T̂0(v) = v2 + S2
√
c0S

, T̂1(v) = v
√
v2 + S2
√
c1S

, T̂2(v) = v2 − S2
√
c2S

.

Therefore,

1 =
√
c0

2S T̂0(v)−
√
c2

2S T̂2(v), v2 =
√
c0S

2 T̂0(v) +
√
c2S

2 T̂2(v).

86

Hence we can replace (T̂0(v), T̂2(v)) by (1, v2) as basis functions, namely,

T̂1
N = span{1, T̂1, v

2, T̂3, T̂4, · · · , T̂N}.

In d dimensions, it is easy to see

1, v2
1, v

2
2, . . . , v

2
d ∈ T̂dN for N ≥ 2.

In other words, we have shown that 1, |v|2 ∈ T̂dN for N ≥ 2.

On the other hand, by (4.49) and (4.34), we have

d
dtρ(t) =(∂tfN(t,v), 1)Rd = (Q(fN , fN), 1)Rd = 0;
d
dtE(t) =(∂tfN(t,v), |v|2)Rd =

(
Q(fN , fN), |v|2

)
Rd

= 0,

where in the last equality we used the conservation property (1.8) of the collision operator.

It remains to show

∫
Rd
fN(0,v) dv =

∫
Rd
f 0(v) dv,

∫
Rd
fN(0,v)|v|2 dv =

∫
Rd
f 0(v)|v|2 dv.

Note that fN(0,v) = π4,df 0, it suffices to show

(π
4,df 0 − f 0, 1)Rd = (π

4,df 0 − f 0, |v|2)Rd = 0,

which is true by (4.25) (with α = 4).

4.3 Numerical realization

To implement the proposed spectral method, one needs to solve the ODE system (4.35).

For time discretization, one can just use the explicit Runge-Kutta methods. Hence, the key

is the efficient evaluation of QNk as defined in (4.36).

In this section, we introduce two algorithms to compute QNk . The first one is a direct

algorithm that treats QNk as a matrix/tensor-vector multiplication. Since the weight ma-

87

trix/tensor does not depend on the numerical solution fN , it can be precomputed and stored

for repeated use. This approach is simple but will soon meet a bottleneck when N increases

since the memory requirement as well as the online computational cost can get extremely

high. To alleviate this, we propose a fast algorithm, where the key idea is to recognize the

gain term of the collision operator as a non-uniform discrete Fourier cosine transform to be

accelerated by the non-uniform FFT (NUFFT). Note that this is possible because we are

using the mapped Chebyshev functions as a basis, which is related to the Fourier cosine

series.

4.3.1 A direct algorithm

To derive the direct algorithm, we substitute (4.33) into (4.36) to obtain

QNk =
∑

0≤iii,jjj≤N
f̃iiif̃jjj

∫
Rd

∫
Rd

∫
Sd−1
B(v,v∗,σ) T̃iii(v)T̃jjj(v∗)[T̂k(v′)− T̂k(v)] dσ dv dv∗

=
∑

0≤iii,jjj≤N
f̃iiif̃jjj

[
Ĩ1(iii, jjj, k)− Ĩ2(iii, jjj, k)

]
, 0 ≤ k ≤ N, (4.51)

where

Ĩ1(iii, jjj, k) :=
∫
Rd

∫
Rd

∫
Sd−1
B(v,v∗,σ) T̃iii(v)T̃jjj(v∗)T̂k(v′) dσ dv dv∗, (4.52)

Ĩ2(iii, jjj, k) :=
∫
Rd

∫
Rd

∫
Sd−1
B(v,v∗,σ) T̃iii(v)T̃jjj(v∗)T̂k(v) dσ dv dv∗. (4.53)

Since the tensors Ĩ1(iii, jjj, k) and Ĩ2(iii, jjj, k) do not depend on coefficients {f̃k}0≤k≤N , a straight-

forward way to evaluate QNk is to precompute Ĩ1(iii, jjj, k) and Ĩ2(iii, jjj, k), and then evaluate

the sum in (4.51) directly in the online computation. This is what we refer to as the direct

algorithm. We observe that this algorithm requires O(N3d) memory to store the tensors Ĩ1

and Ĩ2; and to evaluate (4.51), it requires O(N3d) operations. Both the memory requirement

and online computational cost can be quite demanding especially for d = 3 and large N .

We give some details on how to approximate Ĩ1(iii, jjj, k) and Ĩ2(iii, jjj, k), though this step can

be completed in advance and does not take the actual computational time. We first perform

88

a change of variables (v,v∗)→ (v(ξ),v∗(η)) to transform the integrals of (v, v∗) ∈ Rd ×Rd

into integrals of (ξ,η) ∈ Id × Id, using the mapping introduced in Section 4.1.1 :

Ĩ1(iii, jjj, k) =
∫
Id

∫
Id
Gk(ξ,η)Tiii(ξ)Tjjj(η)

√
ciiicjjj

ω(ξ)ω(η) dξ dη, (4.54)

Ĩ2(iii, jjj, k) =
∫
Id

∫
Id
Lk(ξ,η)Tiii(ξ)Tjjj(η)

√
ciiicjjj

ω(ξ)ω(η) dξ dη, (4.55)

where

Gk(ξ,η) := [µ(ξ)µ(η)]2
∫
Sd−1
B(v(ξ),v∗(η),σ)

Tk
(
ζ(ξ,η,σ)

)
√
ck[µ

(
ζ(ξ,η,σ)

)
]2

dσ, (4.56)

Lk(ξ,η) := Tk(ξ) [µ(η)]2
√
ck

∫
Sd−1
B(v(ξ),v∗(η),σ) dσ. (4.57)

Notice that in (4.56), ζ(ξ,η,σ) ∈ Id is the value transformed from

v′ = 1
2(v(ξ) + v∗(η)) + 1

2 |v(ξ)− v∗(η)|σ ∈ Rd

under the same mapping. To approximate the above integrals in ξ, η, and σ, we choose Mv

Chebyshev-Gauss-Lobatto quadrature points in each dimension of Id for both ξ and η; and

Mσ quadrature points on the unit sphere Sd−1 (for d = 2, this can be the uniform points

in polar angle; for d = 3, this can be the Lebedev quadrature [54]). Therefore, for each

fixed index k, (4.54) and (4.55) are forward Chebyshev transforms of the functions Gk(ξ,η)

and Lk(ξ,η), respectively. Thus, they can be evaluated efficiently using the fast Chebyshev

transform.

89

4.3.2 A fast algorithm

To introduce the fast algorithm, we take the original form (4.36) and split QNk into a gain

term and a loss term as QNk = QN,+k −QN,−k , where

QN,+k =
∫
Rd

(∫
Rd

∫
Sd−1
B(v,v∗,σ)fN(v∗) T̂k(v′) dσ dv∗

)
fN(v) dv, (4.58)

QN,−k =
∫
Rd

(∫
Rd

∫
Sd−1
B(v,v∗,σ)fN(v∗) dσ dv∗

)
fN(v) T̂k(v) dv. (4.59)

We propose to evaluate QN,+k and QN,−k following the above expressions. To this end,

given the coefficients {f̃k}0≤k≤N at each time step, we first reconstruct fN as in (4.33) at

Mv Chebyshev-Gauss-Lobatto quadrature points in each dimension of v (for an accurate

approximation we choose Mv = N + 2). This can be achieved by the fast Chebyshev

transform in O(Md
v logMv) operations.

To evaluate the gain term QN,+k , we change the integrals of (v, v∗) ∈ Rd × Rd into

integrals of (ξ,η) ∈ Id× Id in (4.58) (similarly as in the previous subsection for Ĩ1(iii, jjj, k)):

QN,+k =
∫
Id

∫
Id

∫
Sd−1
B(v(ξ),v∗(η),σ)fN(v∗(η))

Tk
(
ζ(ξ,η,σ)

)
√
ck
[
µ
(
ζ(ξ,η,σ)

)]2 ω(η)
[µ(η)]2

dσ dη

 fN(v(ξ)) ω(ξ)
[µ(ξ)]2 dξ

=
∫
Id

(∫
Sd−1

Fk(σ, ξ) dσ
)
fN(v(ξ)) ω(ξ)

[µ(ξ)]2 dξ,

(4.60)

where

Fk(σ, ξ) :=
∫
Id
B(v(ξ),v∗(η),σ)fN(v∗(η))

Tk
(
ζ(ξ,η,σ)

)
√
ck
[
µ
(
ζ(ξ,η,σ)

)]2 ω(η)
[µ(η)]2

dη. (4.61)

Suppose Mv quadrature points are used in each dimension of v and v∗ and Mσ points

are used on the sphere Sd−1, a direct evaluation of (4.61) would require O(MσM
2d
v N

d)

operations. Given Fk(σ, ξ), a direct evaluation of (4.60) would takeO(MσM
d
vN

d) operations.

Therefore, the major bottleneck is to compute Fk(σ, ξ), which is prohibitively expensive

without a fast algorithm. Our main idea is to recognize (4.61) as a non-uniform discrete

90

Fourier cosine transform so it can be evaluated by the non-uniform fast Fourier transform

(NUFFT). We will see that the total complexity to evaluate Fk(σ, ξ) can be brought down

to O(MσM
2d
v |log ε| + MσM

d
vN

d logN), where ε is the requested precision in the NUFFT

algorithm.

Applying the Chebyshev-Gauss-Lobatto quadrature (ηjjj, wjjj)1≤jjj≤Mv , (4.61) becomes

Fk(σ, ξ) ≈
∑

1≤jjj≤Mv

wjjj
B(v(ξ),v∗(ηjjj),σ)fN(v∗(ηjjj))√

ck[µ(ζ(ξ,ηjjj,σ))]2[µ(ηjjj)]2
Tk(ζ(ξ,ηjjj,σ))

=
∑

1≤jjj≤Mv

wjjj
B(v(ξ),v∗(ηjjj),σ)fN(v∗(ηjjj))√

ck[µ(ζ(ξ,ηjjj,σ))]2[µ(ηjjj)]2
d∏
l=1

cos
(
kl arccos(ζ(ξ,ηjjj,σ),l)

)

= 1
√
ck

∑
1≤jjj≤Mv

qjjj

d∏
l=1

cos (klzjjj,l) , (4.62)

where ζ(ξ,ηjjj,σ),l is the l-th component of ζ(ξ,ηjjj,σ), and

qjjj := wjjj
B(v(ξ),v∗(ηjjj),σ)fN(v∗(ηjjj))

[µ(ζ(ξ,ηjjj,σ))]2[µ(ηjjj)]2
, zjjj,l := arccos(ζ(ξ,ηjjj,σ),l). (4.63)

Note that qjjj and zjjj depend on σ and ξ. (4.62) is almost like a non-uniform discrete Fourier

cosine transform. Indeed, we propose to evaluate Fk(σ, ξ) as follows.

For each fixed σ and ξ, we compute

F̃K :=
∑

1≤jjj≤Mv

qjjj exp(iK · zjjj), −N ≤K ≤ N, (4.64)

which is a non-uniform discrete Fourier transform mapping non-uniform samples zjjj ∈ [0, π]d

into frequencies K ∈ [− N,N]d. This can be done efficiently using the NUFFT. In recent

years, various NUFFT algorithms have been developed. In our numerical realization, we

employ an efficient algorithm called FINUFFT [55]. The general idea is to apply an interpo-

lation between non-uniform samples and an equispaced grid, and then perform the uniform

FFT on the new grid. This algorithm only costs O(Md
v |log ε|+Nd logN) operations in com-

puting (4.64) with the requested precision ε. Once we obtain F̃K , Fk(σ, ξ) can be retrieved

as

91

• in 2D

Fk(σ, ξ) = 1
√
ck

1
2Re

(
F̃(k1,k2) + F̃(−k1,k2)

)
; (4.65)

• in 3D

Fk(σ, ξ) = 1
√
ck

1
4Re

(
F̃(k1,k2,k3) + F̃(−k1,k2,k3) + F̃(k1,−k2,k3) + F̃(k1,k2,−k3)

)
. (4.66)

This procedure needs to be repeated for every σ and ξ, hence the overall computational cost

for getting Fk(σ, ξ) is O(MσM
2d
v |log ε|+MσM

d
vN

d logN).

To evaluate the loss term QN,−k , we change the integrals of (v, v∗) ∈ Rd × Rd into

integrals of (ξ,η) ∈ Id× Id in (4.59) (similarly as in the previous subsection for Ĩ2(iii, jjj, k)):

QN,−k =
∫
Id

(∫
Id

∫
Sd−1
B(v(ξ),v∗(η),σ)fN(v∗(η)) ω(η)

[µ(η)]2
dσ dη

)
fN(v(ξ)) Tk(ξ)ω(ξ)

√
ck [µ(ξ)]4

dξ.

(4.67)

Then one can just evaluate the terms in the parentheses directly with complexityO(M2d
v Mσ).

The outer integral in ξ can be viewed as the Chebyshev transform of some function thus can

be evaluated efficiently by the fast Chebyshev transform in O(Md
v logMv). In particular, if

we consider the Maxwell kernel, i.e., B(v,v∗,σ) ≡ constant, terms in the parentheses only

requires O(Md
v) complexity.

4.3.3 Comparison of direct and fast algorithms

To summarize, we list the storage requirement and (online) computational complexity

for both the direct and fast algorithms in Table 1. Note that we only list the dominant

complexity for each term. It is clear that the main cost of the fast algorithm comes from

evaluating the gain term. Compared with the direct algorithm, the fast algorithm is generally

faster as Mσ can be chosen much smaller than Nd in practice (see Section 4.4). Most

importantly, the fast algorithm does not require any precomputation with excessive storage

requirement and everything can be computed on the fly.

92

Table 4.1. Storage requirement and (online) computational cost of the direct
and fast algorithms. N is the number of spectral modes in each dimension of v;
Mv = O(N) is the number of quadrature points in each dimension; Mσ � Nd

is the number of quadrature points on the sphere Sd−1; and ε is the requested
precision in the NUFFT algorithm. The proposed fast algorithm does not
require extra storage other than that storing the computational target, e.g.,
the gain and loss terms.

direct algorithm fast algorithm

storage (online) operation (online) operation

gain term O(N3d) O(N3d) O(MσM
2d
v |log ε|+MσM

d
vN

d logN)

loss term O(N3d) O(N3d) O(MσM
2d
v)

4.4 Numerical examples

In this section, we perform extensive numerical tests to demonstrate the accuracy and

efficiency of the proposed Petrov-Galerkin spectral method in both 2D and 3D.

Recall that the main motivation of the current work is to obtain better accuracy by con-

sidering approximations in an unbounded domain. To illustrate this point, we will compare

three methods to solve the Boltzmann equation:

(1) Fast Fourier-Galerkin spectral method proposed in [42]: this method can achieve

a good accuracy-efficiency tradeoff among the current deterministic methods for the

Boltzmann equation. However, it requires the truncation of the domain to [− L,L]d,

where L is often chosen empirically such that the solution is close to zero at the bound-

ary.

(2) Fast Chebyshev-0 method: the method proposed in this chapter using the logarith-

mic mapping (4.10), where r = 0 and the scaling parameter S needs to be properly

chosen.

(3) Fast Chebyshev-1 method: the method proposed in this chapter using the algebraic

mapping (4.11), where r = 1 and the scaling parameter S needs to be properly chosen.

93

In all three methods, the choice of truncation or mapping/scaling parameters has a great

impact on numerical accuracy. In the following tests, we first determine L in the Fourier

spectral method. Then for the two Chebyshev methods, we propose an adaptive strategy

to determine the scaling parameter S: for example, in 1D, the Chebyshev-Gauss-Lobatto

quadrature points on the interval [− 1, 1] are given by

−1 = ξ1 < ξ2 < . . . < ξN = 1. (4.68)

We choose S such that the two quadrature points ξ2 and ξN−1 are mapped to the boundary

of [− L,L], i.e.,

v(ξ1) = −∞, v(ξ2) = −L, v(ξN−1) = L, v(ξN) = −∞. (4.69)

Note that this S is adaptive in the sense that different N will correspond to different S.

4.4.1 2D examples

2D BKW solution

We consider first the 2D BKW solution. This is one of the few known analytical solutions

to the Boltzmann equation and a perfect example to verify the accuracy of a numerical

method.

When d = 2 and the collision kernel B ≡ 1/(2π), the following is a solution to the initial

value problem (4.31):

fBKW(t,v) = 1
2πK2 exp

(
− v

2

2K

)(
2K − 1 + 1−K

2K v2
)
, (4.70)

where K = 1− exp(−t/8)/2. By taking the time derivative of fBKW(t,v), we can obtain the

exact collision operator as

QBKW(f) =
{(
− 2
K

+ v2

2K2

)
fBKW + 1

2πK2 exp
(
− v

2

2K

)(
2− 1

2K2v
2
)}

K ′, (4.71)

94

where K ′ = exp(−t/8)/16. This way we can apply the numerical method to compute

QBKW(f) directly and check its error without worrying about the time discretization.

In the fast Fourier spectral method, we take Nρ = N quadrature points in the radial

direction and Nθ = 8 quadrature points on the unit circle (see [42] for more details). In

the fast Chebyshev methods, we take Mv = N + 2 quadrature points for each dimension

of (v,v∗) and Mσ = N quadrature points on the unit circle. The precision in NUFFT is

selected as ε = 1e−14. The numerical error of QBKW(f) is estimated on a 200×200 uniform

grid in the rectangular domain [− 6.3, 6.3]2 at time t = 2.

Test 01: In this test, we examine thoroughly the numerical errors concerning different

truncation parameters L in the Fourier method, and scaling parameters S in the Chebyshev

methods. The L2 errors of QBKW(f) for three methods are presented in Figure 4.1 . It is

obvious that the accuracy is not good when L and S are too small or too large. When L

and S are chosen appropriately, the accuracy is close to the machine precision. In Table 4.2 ,

we record the best accuracy for a given N of each method. One can see that the fast

Chebyshev-0 method can always achieve the best accuracy.

Table 4.2. (2D BKW: Test 01) The L2 error of QBKW(f) at time t = 2. The
best accuracy for a given N of each method.

fast Fourier fast Chebyshev-0 fast Chebyshev-1
N = 8 8.9223e-03 2.2289e-03 4.1388e-03
N = 16 1.0989e-04 2.2033e-05 2.9713e-04
N = 24 3.2104e-06 1.9843e-07 1.5004e-05
N = 32 9.4720e-08 3.0082e-09 5.3946e-07
N = 40 1.9836e-09 2.5434e-11 1.6120e-08
N = 48 6.1797e-11 1.6255e-13 6.0320e-10
N = 56 1.4315e-12 2.1482e-14 2.5213e-11

Test 02: In this test, we fix the computational domain and examine the numerical errors

concerning different N . In the Fourier method, we test L = 8.83 and L = 13.24. In the

Chebyshev methods, we use the same L to select the scaling parameter S accordingly. The

L∞ errors of QBKW(f) for three methods are presented in Figure 4.2 . Among these three

methods, the fast Chebyshev-0 method can achieve the best accuracy when N is small.

The fast Chebyshev-1 method doesn’t provide a good approximation. This is because the

95

2 4 6 8 10 12 14 16
L

10−16

10−14

10−12

10−10

10−8

10−6

10−4

10−2

fast Fourier

N=8
N=16
N=24
N=32
N=40
N=48
N=56

1 2 3 4 5 6 7 8 9
S

10−16

10−14

10−12

10−10

10−8

10−6

10−4

10−2

fast_Chebyshev_r0

N=8
N=16
N=24
N=32
N=40
N=48
N=56

1 2 3 4 5 6 7 8 9
S

10−16

10−14

10−12

10−10

10−8

10−6

10−4

10−2

fast_Chebyshev_r1

N=8
N=16
N=24
N=32
N=40
N=48
N=56

Figure 4.1. (2D BKW: Test 01) The L2 error of QBKW(f) at time t = 2. Top:
fast Fourier method. Bottom: fast Chebyshev methods.

96

quadrature points in Chebyshev-1 method are much more clustered near the origin compared

to Chebyshev-0 method and apparently points located far away from the origin play an

important role in the unbounded domain problem.

10 20 30 40 50 60 70 80
N

10−16

10−14

10−12

10−10

10−8

10−6

10−4

10−2

100 2D BKW, t uncation on [-8.83, 8.83]

fast_Fourier
fast_Chebyshev_r0
fast_Chebyshev_r1

10 20 30 40 50 60 70 80
N

10−16

10−14

10−12

10−10

10−8

10−6

10−4

10−2

100 2D BKW, t uncation on [-13.24, 13.24]

fast_Fourier
fast_Chebyshev_r0
fast_Chebyshev_r1

Figure 4.2. (2D BKW: Test 02) The L∞ error of QBKW(f) at time t = 2.
Left: L = 8.83; Right: L = 13.24.

Test 03: In this test, we examine the numerical errors of the Chebyshev methods with a

fixed scaling parameter: S = 4 in the fast Chebyshev-0 method; S = 5 in the fast Chebyshev-

1 method. These two values are selected based on the results in Figure 4.1 . The L∞ errors of

QBKW(f) for both methods are presented in Figure 4.3 . As a comparison, results of the fast

Fourier method are also plotted. Again for small N , the fast Chebyshev-0 method provides

the best accuracy among the three methods.

Test 04: In this test, we report the computational time of the direct (Chebyshev)

algorithm and the fast (Chebyshev) algorithm. The computations were done on Intel(R)

Core(TM) i7-6700 CPU in a single thread. Table 4.3 shows the running time of the direct

and fast algorithms concerning different N . Note that the direct algorithm is left out when

N ≥ 32 due to the memory constraint.

Computing the moments

We next consider the time evolution problem and check the accuracy for moments ap-

proximation. Since the fast Chebyshev-0 method performs generally better than the fast

97

10 20 30 40 50 60 70 80
N

10−16

10−14

10−12

10−10

10−8

10−6

10−4

10−2

2D BKW

fas _Fourier, L=6.62
fas _Fourier, L=8.83
fas _Fourier, L=11.04
fas _Fourier, L=14.35
fas _Chebyshev_r0, S=4.0
fas _Chebyshev_r1, S=5.0

Figure 4.3. (2D BKW: Test 03) The L∞ error of QBKW(f) at time t = 2.

direct algorithm fast algorithm
online (sec) precomputation (sec) online (sec)

N = 8 0.0047 1.5956 0.194955
N = 16 0.1207 62.7991 2.036821
N = 32 - - 24.779492
N = 64 - - 4.937722e+02
N = 128 - - 1.331576e+04

Table 4.3. (2D BKW: Test 04) Running time in second for a single evaluation
of the gain term.

98

Chebyshev-1 method, we will restrict to the former in the following tests. The comparison

with the fast Fourier method will still be considered.

In (4.31), we choose the collision kernel B ≡ 1/(2π) and the initial condition as

f 0(v) = ρ1

2πT1
exp

(
−(v − V1)2

2T1

)
+ ρ2

2πT2
exp

(
−(v − V2)2

2T2

)
, (4.72)

where ρ1 = ρ2 = 1/2, T1 = T2 = 1 and V1 = (x1, y1) = (−1, 2), V2 = (x2, y2) = (3,−3).

Then for the momentum flow and energy flow defined as

Pij =
∫

R2
fvivj dv, (i, j = 1, 2), qi =

∫
R2
fvi|v|2 dv, (i = 1, 2), (4.73)

we have their exact formulas

P11 = −9
8e−t/2 + 57

8 , P12 = P21 = −5e−t/2 − 1
2 , P22 = 9

8e−t/2 + 51
8 , (4.74)

and

q1 = 1
4
(
11e−t/2 + 103

)
, q2 = −1

8
(
89e−t/2 + 103

)
. (4.75)

In the fast Fourier method, we take Nρ = N quadrature points in the radial direction and

Nθ = N quadrature points on the unit circle. The truncation domain [− L,L]2 is selected

as L = 14.35. In the fast Chebyshev-0 method, we take Mv = N + 2 quadrature points for

each dimension of (v,v∗) and Mσ = N quadrature points on the unit circle. The precision

in NUFFT is selected as ε = 1e−14. The scaling parameter S is adaptively chosen based on

L. For both methods, we use the 4th-order Runge-Kutta method with ∆t = 0.02 for time

integration.

The absolute errors of the moments are presented in Figure 4.4 –4.8 . The fast Chebyshev-

0 method clearly provides a better approximation in comparison to the Fourier method for

fixed N .

99

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
10−9

10−7

10−5

10−3

10−1

101
fast Fourier, L = 14.35

N=8
N=16
N=24
N=32

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
10−9

10−7

10−5

10−3

10−1

101
fast Cehsbyshev-r0, L = 14.35

N=8, S=8.27
N=16, S=6.03
N=24, S=5.19
N=32, S=4.71

Figure 4.4. (2D moments) The time evolution for the absolute error of the
momentum flow P11. Left: the fast Fourier method. Right: the fast Chebyshev-
0 method.

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
10−8

10−6

10−4

10−2

100

fast Fourier, L = 14.35

N=8
N=16
N=24
N=32

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
10−8

10−6

10−4

10−2

100

fast Cehsbyshev-r0, L = 14.35

N=8, S=8.27
N=16, S=6.03
N=24, S=5.19
N=32, S=4.71

Figure 4.5. (2D moments) The time evolution for the absolute error of the
momentum flow P12. Left: the fast Fourier method. Right: the fast Chebyshev-
0 method.

100

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
10−8

10−6

10−4

10−2

100

fast Fourier, L = 14.35

N=8
N=16
N=24
N=32

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
10−8

10−6

10−4

10−2

100

fast Cehsbyshev-r0, L = 14.35

N=8, S=8.27
N=16, S=6.03
N=24, S=5.19
N=32, S=4.71

Figure 4.6. (2D moments) The time evolution for the absolute error of the
momentum flow P22. Left: the fast Fourier method. Right: the fast Chebyshev-
0 method.

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
10−7

10−5

10−3

10−1

101

103 fast Fourier, L = 14.35

N=8
N=16
N=24
N=32

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
10−7

10−5

10−3

10−1

101

103 fast Cehsbyshev-r0, L = 14.35

N=8, S=8.27
N=16, S=6.03
N=24, S=5.19
N=32, S=4.71

Figure 4.7. (2D moments) The time evolution for the absolute error of the
momentum flow q1. Left: the fast Fourier method. Right: the fast Chebyshev-0
method.

101

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
10−6

10−5

10−4

10−3

10−2

10−1

100

101

102

103 fast Fourier, L = 14.35

N=8
N=16
N=24
N=32

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
10−6

10−5

10−4

10−3

10−2

10−1

100

101

102

103 fast Cehsbyshev-r0, L = 14.35

N=8, S=8.27
N=16, S=6.03
N=24, S=5.19
N=32, S=4.71

Figure 4.8. (2D moments) The time evolution for the absolute error of the
momentum flow q2. Left: the fast Fourier method. Right: the fast Chebyshev-0
method.

102

4.4.2 3D BKW solution

We finally consider the 3D BKW solution. When d = 3 and the collision kernel B ≡

1/(4π), the following is a solution to the initial value problem (4.31):

fBKW(t,v) = 1
2(2πK)3/2 exp

(
− v

2

2K

)(5K − 3
K

+ 1−K
K2 v2

)
, (4.76)

where K = 1− exp(−t/6). As in 2D, we can obtain the exact collision operator as

QBKW(f) =
{(
− 3

2K + v2

2K2

)
fBKW + 1

2(2πK)3/2 exp
(
− v

2

2K

)(3
K2 + K − 2

K3 v2
)}

K ′,

(4.77)

with K ′ = exp(−t/6)/6.

Here we again compare the fast Fourier spectral method with the fast Chebyshev-0

method. In the former, we take domain L = 6.62, Nρ = N quadrature points in the

radial direction and Mσ = 38 Lebedev quadrature points on the unit sphere. In the latter,

we choose S adaptively based on L, Mv = N + 2 quadrature points for each dimension of

(v,v∗) and Mσ Lebedev quadrature points on the unit sphere. The precision in NUFFT is

selected as ε = 1e − 14. The L∞ error of QBKW(f) is estimated on a 30 × 30 × 30 uniform

grid in the rectangular domain [− 6.3, 6.3]3 at time t = 6.5.

Table 4.4. (3D BKW) The L∞ error of QBKW(f) at time t = 6.5.
fast Fourier (Mσ = 38) fast Chebyshev-0

N = 12 2.36e-03 1.61e-02 (Mσ = 14)

N = 16 4.37e-04 2.72e-03 (Mσ = 38)

N = 20 3.62e-05 3.08e-06 (Mσ = 86)

N = 24 3.61e-06 3.10e-08 (Mσ = 146)

N = 28 1.64e-07 1.58e-08 (Mσ = 170)

N = 32 3.82e-08 7.16e-10 (Mσ = 230)

103

The results are reported in Table 4.4 . Unlike the Fourier method for which Mσ = 38 is

enough (we have tested that larger values of Mσ would not further increase the accuracy),

we observe that more quadrature points on the sphere are needed to get the best accuracy

in the Chebyshev method. As soon as N ≥ 20, the Chebyshev method can always obtain

better accuracy than the Fourier method.

4.5 Conclusion

We introduced a Petrov-Galerkin spectral method for the spatially homogeneous Boltz-

mann equation in multi-dimensions. The mapped Chebyshev functions in Rd were carefully

chosen to serve as the trial functions and test functions in the approximation. In the case of

the algebraic mapping, we established a consistency result for approximation of the collision

operator as well as the conservation property for the moments. Thanks to the close relation

between the Chebyshev functions and the Fourier cosine series, we proposed a fast algorithm

to alleviate the memory constraint in the precomputation and accelerate the online compu-

tation in the direct implementation. Through a series of numerical examples in 2D and 3D,

we demonstrated that the proposed method can provide better accuracy (at least one or two

digits for small N) in comparison to the popular Fourier spectral method.

104

REFERENCES

[1] C. Cercignani, Rarefied Gas Dynamics: From Basic Concepts to Actual Calculations.
Cambridge University Press, Cambridge, 2000.

[2] C. K. Birdsall and A. B. Langdon, Plama Physics via Computer Simulation. CRC Press,
2018.

[3] S. Chandrasekhar, Radiative Transfer. Dover Publications, 1960.

[4] V. Giovangigli, Multicomponent Flow Modeling. Springer Science & Business Media,
1999.

[5] G. Naldi, L. Pareschi, and G. Toscani, Eds., Mathematical Modeling of Collective Be-
havior in Socio-Economic and Life Sciences. Birkhäuser Basel, 2010.

[6] C. Cercignani, The Boltzmann Equation and Its Applications. Springer-Verlag, New
York, 1988.

[7] C. Villani, “A review of mathematical topics in collisional kinetic theory,” in Handbook
of Mathematical Fluid Mechanics, S. Friedlander and D. Serre, Eds., vol. I, North-Holland,
2002, pp. 71–305.

[8] P. L. Bhatnagar, E. P. Gross, and M. Krook, “A model for collision processes in gases. i.
small amplitude processes in charged and neutral one-component systems,” Physical review,
vol. 94, no. 3, p. 511, 1954.

[9] L. D. Landau, “The transport equation in the case of Coulomb interactions,” Collected
papers of LD Landau, pp. 163–170, 1936.

[10] H. Risken, “Fokker-Planck equation,” in The Fokker-Planck Equation, Springer, 1996,
pp. 63–95.

[11] D. Chen and R. Eisenberg, “Poisson-Nernst-Planck (PNP) theory of open ionic chan-
nels,” Biophys. J., vol. 64, A22, 1993.

[12] R. Eisenberg, “Ion channels in biological membranes: Electrostatic analysis of a natural
nanotube,” Contemp. Phys., vol. 39, p. 447, 1998.

[13] P. A. Markowich, C. Ringhofer, and C. Schmeiser, Semiconductor Equations. New York:
Springer Verlag Wien, 1990.

[14] G.-W. Wei, Q. Zheng, Z. Chen, and K. Xia, “Variational multiscale models for charge
transport,” SIAM Rev., vol. 54, pp. 699–754, 2012.

105

[15] A. Krzywicki and T. Nadzieja, “A nonstationary problem in the theory of electrolytes,”
Quart. Appl. Math., vol. 50, pp. 105–107, 1992.

[16] P. Biler, “Existence and asymptotics of solutions for a parabolic-elliptic system with
nonlinear no-flux boundary conditions,” Nonlinear Anal., vol. 19, pp. 1121–1136, 1992.

[17] P. Biler, W. Hebisch, and T. Nadzieja, “The Debye system: Existence and large time
behavior of solutions,” Nonlinear Anal., vol. 23, pp. 1189–1209, 1994.

[18] A. Arnold, P. Markowich, and G. Toscani, “On large time asymptotics for drift-diffusion-
Poisson systems,” Transport Theory Statist. Phys., vol. 29, pp. 571–581, 2000.

[19] P. Biler and J. Dolbeault, “Long time behavior of solutions to Nernst-Planck and Debye-
Hückel drift-diffusion systems,” Ann. Henri Poincaré, vol. 1, pp. 461–472, 2000.

[20] H. Liu and Z. Wang, “A free energy satisfying finite difference method for Poisson-
Nernst-Planck equations,” J. Comput. Phys., vol. 268, pp. 363–376, 2014.

[21] H. Liu and Z. Wang, “A free energy satisfying discontinuous Galerkin method for one-
dimensional Poisson-Nernst-Planck systems,” J. Comput. Phys., vol. 328, pp. 413–437, 2017.

[22] A. Flavell, M. Machen, B. Eisenberg, J. Kabre, C. Liu, and X. Li, “A conservative
finite difference scheme for Poisson-Nernst-Planck equations,” J. Comput. Electron., vol. 13,
pp. 235–249, 2014.

[23] A. Flavell, J. Kabre, and X. Li, “An energy-preserving discretization for the Poisson-
Nernst-Planck equations,” J. Comput. Electron., vol. 16, pp. 431–441, 2017.

[24] M. Metti, J. Xu, and C. Liu, “Energetically stable discretizations for charge transport
and electrokinetic models,” J. Comput. Phys., vol. 306, pp. 1–18, 2016.

[25] R. Bailo, J. Carrillo, and J. Hu, “Fully discrete positivity-preserving and energy-decaying
schemes for aggregation-diffusion equations with a gradient flow structure,” Communications
in Mathematical Sciences, vol. 18, pp. 1259–1303, 2020.

[26] K. Nanbu, “Direct simulation scheme derived from the Boltzmann equation. I. Mono-
component gases,” J. Phys. Soc. Jpn., vol. 49, pp. 2042–2049, 1980.

[27] G. A. Bird, Molecular Gas Dynamics and the Direct Simulation of Gas Flows. Clarendon
Press, Oxford, 1994.

[28] G. Dimarco and L. Pareschi, “Numerical methods for kinetic equations,” Acta Numer.,
vol. 23, pp. 369–520, 2014.

106

[29] L. Pareschi and G. Russo, “Numerical solution of the Boltzmann equation I: Spectrally
accurate approximation of the collision operator,” SIAM J. Numer. Anal., vol. 37, pp. 1217–
1245, 2000.

[30] C. Mouhot and L. Pareschi, “Fast algorithms for computing the Boltzmann collision
operator,” Math. Comp., vol. 75, pp. 1833–1852, 2006.

[31] I. Gamba and S. Tharkabhushanam, “Spectral-Lagrangian methods for collisional mod-
els of non-equilibrium statistical states,” J. Comput. Phys., vol. 228, pp. 2012–2036, 2009.

[32] I. Gamba, J. Haack, C. Hauck, and J. Hu, “A fast spectral method for the Boltzmann
collision operator with general collision kernels,” SIAM J. Sci. Comput., vol. 39, B658–B674,
2017.

[33] L. Pareschi and G. Russo, “On the stability of spectral methods for the homogeneous
Boltzmann equation,” Transport Theory Statist. Phys., vol. 29, pp. 431–447, 2000.

[34] F. Filbet and C. Mouhot, “Analysis of spectral methods for the homogeneous Boltzmann
equation,” Trans. Amer. Math. Soc., vol. 363, pp. 1947–1980, 2011.

[35] R. Alonso, I. Gamba, and S. Tharkabhushanam, “Convergence and error estimates
for the Lagrangian-based conservative spectral method for Boltzmann equations,” SIAM J.
Numer. Anal., vol. 56, pp. 3534–3579, 2018.

[36] J. Hu, K. Qi, and T. Yang, “A new stability and convergence proof of the Fourier-
Galerkin spectral method for the spatially homogeneous Boltzmann equation,” SIAM J.
Numer. Anal., vol. 59, no. 2, pp. 613–633, 2021.

[37] E. Fonn, P. Grohs, and R. Hiptmair, “Polar spectral scheme for the spatially homoge-
neous Boltzmann equation,” Research Report, vol. 2014, 2014.

[38] I. M. Gamba and S. Rjasanow, “Galerkin–Petrov approach for the Boltzmann equation,”
Journal of Computational Physics, vol. 366, pp. 341–365, 2018.

[39] G. Kitzler and J. Schöberl, “A polynomial spectral method for the spatially homoge-
neous Boltzmann equation,” SIAM Journal on Scientific Computing, vol. 41, no. 1, B27–B49,
2019.

[40] Z. Hu and Z. Cai, “Burnett spectral method for high-speed rarefied gas flows,” SIAM
J. Sci. Comput., vol. 42, B1193–B1226, 2020.

[41] Z. Hu, Z. Cai, and Y. Wang, “Numerical simulation of microflows using Hermite spectral
methods,” SIAM J. Sci. Comput., vol. 42, B105–B134, 2020.

107

[42] I. M. Gamba, J. R. Haack, C. D. Hauck, and J. Hu, “A fast spectral method for the
Boltzmann collision operator with general collision kernels,” SIAM Journal on Scientific
Computing, vol. 39, no. 4, B658–B674, 2017.

[43] J. Hu, J. Shen, and Y. Wang, “A Petrov-Galerkin spectral method for the inelastic
Boltzmann equation using mapped Chebyshev functions,” Kinetic & Related Models, vol. 13,
no. 4, 2020.

[44] D. L. Scharfetter and H. K. Gummel, “Large signal analysis of a silicon read diode,”
IEEE Transactions on Electron Devices, vol. 16, pp. 64–67, 1969.

[45] A. Bousquet, X. Hu, M. Metti, and J. Xu, “Newton solvers for drift-diffusion and elec-
trokinetic equations,” SIAM J. Sci. Comput., vol. 40, B982–B1006, 2018.

[46] M. Schmuck, “Analysis of the Navier-Stokes-Nernst-Planck-Poisson system,” Math. Mod-
els Methods Appl. Sci., vol. 19, pp. 993–1015, 2009.

[47] S. Furini, F. Zerbetto, and S. Cavalcanti, “Application of the Poisson-Nernst-Planck
theory with space-dependent diffusion coefficients to KcsA,” Biophysical journal, vol. 91,
no. 9, pp. 3162–3169, 2006.

[48] L. Pareschi and G. Russo, “Numerical solution of the Boltzmann equation I: Spec-
trally accurate approximation of the collision operator,” SIAM journal on numerical analysis,
vol. 37, no. 4, pp. 1217–1245, 2000.

[49] J. Shen, T. Tang, and L.-L. Wang, Spectral methods: algorithms, analysis and applica-
tions. Springer Science & Business Media, 2011, vol. 41.

[50] J. Shen, L.-L. Wang, and H. Yu, “Approximations by orthonormal mapped Chebyshev
functions for higher-dimensional problems in unbounded domains,” Journal of Computa-
tional and Applied Mathematics, vol. 265, pp. 264–275, 2014.

[51] J. Shen and L.-L. Wang, “Sparse spectral approximations of high-dimensional problems
based on hyperbolic cross,” SIAM Journal on Numerical Analysis, vol. 48, no. 3, pp. 1087–
1109, 2010.

[52] C. Mouhot and C. Villani, “Regularity theory for the spatially homogeneous Boltzmann
equation with cut-off,” Arch. Rational Mech. Anal., vol. 173, pp. 169–212, 2004.

[53] G. A. Bird and J. Brady, Molecular gas dynamics and the direct simulation of gas flows.
Clarendon press Oxford, 1994, vol. 42.

[54] V. Lebedev, “Quadratures on a sphere,” USSR Computational Mathematics and Math-
ematical Physics, vol. 16, no. 2, pp. 10–24, 1976.

108

[55] A. H. Barnett, J. Magland, and L. af Klinteberg, “A parallel nonuniform fast Fourier
transform library based on an “exponential of semicircle” kernel,” SIAM Journal on Scientific
Computing, vol. 41, no. 5, pp. C479–C504, 2019.

109

	TITLE PAGE
	COMMITTEE APPROVAL
	DEDICATION
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	ABSTRACT
	INTRODUCTION
	Overview
	Poisson-Nernst-Planck equations
	Boltzmann equation

	A STRUCTURE PRESERVING SCHEME FOR POISSON-NERST-PLANCK EQUATIONS
	The PNP equations: initial boundary value problem and basic properties
	Non-dimensionalization
	Initial and boundary value problem
	Basic properties

	Numerical schemes
	Fully discrete scheme in 1D
	Properties of the fully discrete scheme
	Fixed point iteration to solve the fully discrete scheme
	Solvability of the semi-discrete scheme

	Fully discrete scheme in 2D

	Numerical examples
	Accuracy test: manufactured solution
	1D multiple species
	2D single species
	KcsA model with Space-Dependent diffusion coefficients
	Gouy-Chapman model

	Conclusion

	A FAST FOURIER-GALERKIN SPECTRAL METHOD FOR BOLTZMANN EQUATION
	The fast Fourier spectral method for Boltzmann equation
	Limitation of the current algorithm

	The new approach for fast algorithm
	The parameters (a, b, µ, ν) in new method

	Numerical examples
	Approximation of weight G(l,m)
	Solving Q(f) in Boltzmann equation

	Conclusion

	A FAST PETROV-GALERKIN SPECTRAL METHOD FOR BOLTZMANN EQUATION
	Multi-dimensional mapped Chebyshev functions
	Mapped Chebyshev functions in Rd
	Approximation properties

	A Petrov-Galerkin spectral method for the Boltzmann equation
	Approximation property for the collision operator
	Approximation property for the moments

	Numerical realization
	A direct algorithm
	A fast algorithm
	Comparison of direct and fast algorithms

	Numerical examples
	2D examples
	2D BKW solution
	Computing the moments

	3D BKW solution

	Conclusion

	REFERENCES

