
ACCURATE APPROXIMATION OF UNSTRUCTURED GRID
INTO REGULAR GRID WITH COMPLEX BOUNDARY

HANDLING
by

Dana El-Rushaidat

A Dissertation

Submitted to the Faculty of Purdue University

In Partial Fulfillment of the Requirements for the degree of

Doctor of Philosophy

Department of Computer Science

West Lafayette, Indiana

December 2021



THE PURDUE UNIVERSITY GRADUATE SCHOOL
STATEMENT OF COMMITTEE APPROVAL

Dr. Xavier M. Tricoche, Chair

Department of Computer Science

Dr. Christoph M. Hoffmann

Department of Computer Science

Dr. Bharat Bhargava

Department of Computer Science

Dr. David F. Gleich

Department of Computer Science

Approved by:

Dr. Kihong Park

2



My humble effort is dedicated to the memory of my father and my father-in-law, two

strong men who believed in me and taught me to believe in myself.

3



ACKNOWLEDGMENTS

I wish to gratefully acknowledge my advisor who guided me through this long journey,

my thesis committee for their insightful comments, my friend and sister Raine for never

giving up on me, my mother and my sisters for their continuous support, my husband and

my two boys for their patience, help, and love.

4



TABLE OF CONTENTS

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 

1.1 Significance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 

1.2 Research Questions and Proposed Solutions . . . . . . . . . . . . . . . . . . 17 

1.3 Thesis Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 

2 MATHEMATICAL BACKGROUND . . . . . . . . . . . . . . . . . . . . . . . . . 20 

2.1 Grid Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 

2.2 Trilinear Interpolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 

2.3 B-Spline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 

2.4 Scattered Data Approximation Using Rectilinear Grid . . . . . . . . . . . . 25 

2.5 Least-Squares Approximation . . . . . . . . . . . . . . . . . . . . . . . . . . 27 

2.6 Regularization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 

2.7 Error Measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 

2.8 Flow Map and Finite-Time Lyapunov Exponent . . . . . . . . . . . . . . . . 29 

3 FRAMEWORK FORREGULARIZED APPROXIMATIONOF UNSTRUCTURED

DATA WITH RECTILINEAR GRID . . . . . . . . . . . . . . . . . . . . . . . . . 31 

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 

3.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 

3.3 Scattered Data Approximation . . . . . . . . . . . . . . . . . . . . . . . . . 35 

3.4 Regularized Smoothing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 

3.5 Bi-Level Smoothing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 

3.6 Adaptive Grid Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 

3.6.1 Uniform Grid / Image . . . . . . . . . . . . . . . . . . . . . . . . . . 41 

5



3.6.2 Spatial Distribution Driven Meshing . . . . . . . . . . . . . . . . . . 41 

3.6.3 Error-Driven Meshing . . . . . . . . . . . . . . . . . . . . . . . . . . 42 

3.6.4 Proposed Hybrid Solution . . . . . . . . . . . . . . . . . . . . . . . . 42 

3.7 Block-Based Solving . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 

3.8 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 

3.8.1 Adaptive Grid Design Evaluation . . . . . . . . . . . . . . . . . . . . 48 

3.8.2 Bi-level Regularization Approximation Evaluation . . . . . . . . . . 52 

Qualitative Evaluation . . . . . . . . . . . . . . . . . . . . . . 52 

Quantitative Evaluation . . . . . . . . . . . . . . . . . . . . . 59 

Performance of Cell Location . . . . . . . . . . . . . . . . . . 64 

Storage Reduction . . . . . . . . . . . . . . . . . . . . . . . . 65 

3.9 Conclusion and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 

4 BOUNDARY-AWARE RECTILINEARGRID: RECTILINEARGRIDWITH SOLID

BOUNDARY HANDLING CAPABILITIES . . . . . . . . . . . . . . . . . . . . . 68 

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 

4.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 

4.3 Integrating B-spline as an Approximation Kernel . . . . . . . . . . . . . . . 71 

4.4 Boundary-Aware Approximation . . . . . . . . . . . . . . . . . . . . . . . . . 72 

4.5 Boundary-Aware Interpolation . . . . . . . . . . . . . . . . . . . . . . . . . . 78 

4.6 Method Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 

4.6.1 Approximation Quality Evaluation . . . . . . . . . . . . . . . . . . . 85 

4.6.2 Timing Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 

4.7 Conclusion and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 

5 CONCLUSION AND FUTURE WORK . . . . . . . . . . . . . . . . . . . . . . . 97 

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 

VITA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 

6



LIST OF TABLES

3.1 AVG, RMS, NME, and approximation time . . . . . . . . . . . . . . . . . . . . 59 

3.2 Performance of cell location in the unstructured grid and the rectilinear grid for
10M query points. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 

3.3 File storage reduction from the unstructured grid to a rectilinear grid. . . . . . . 65 

4.1 The percentage of the increase in rectilinear grid file size is due to the additional
data arrays. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 

4.2 Comparison between the unstructured input files, the boundary-aware rectilin-
ear grid files, approximation error, and generation time for the corresponding
boundary-aware rectilinear file. . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 

4.3 Comparison of interpolation time (in seconds). . . . . . . . . . . . . . . . . . . . 95 

7



LIST OF FIGURES

1.1 Example of a 3D unstructured grid and its approximation. . . . . . . . . . . . . 16 

2.1 Example grid types; structured:(a),(b),(c) [12 ], and unstructured:(d) [13 ] . . . . 21 

2.2 Interpolation of the query point P in the cuboid cell of the rectilinear grid. . . . 23 

2.3 1D B-spline basis of different degrees using the same uniform knots shown with N. 25 

2.4 2D FTLE generation for Flow about a Cylinder data. . . . . . . . . . . . . . . . 30 

3.1 Volume rendering of a vortex in the original Delta Wing dataset and its ap-
proximation. Our bi-level smoothing scheme produces a much more accurate
approximation compared to uniform smoothing. . . . . . . . . . . . . . . . . . . 39 

3.2 The Flow About a Cylinder original dataset and different approximations using
different smoothing methods. Our bi-level smoothing scheme produces a much
more accurate approximation compared to uniform smoothing. . . . . . . . . . . 40 

3.3 The quadtree was generated using our hybrid method and the corresponding
rectilinear grid. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 

3.4 Example of block-solver divisions. . . . . . . . . . . . . . . . . . . . . . . . . . . 44 

3.5 An increase in the number of blocks reduces the approximation time required (a)
without affecting the RMS error (b). . . . . . . . . . . . . . . . . . . . . . . . . 45 

3.6 The point-wise error-difference between single blocks and the merged blocks for
the points in the overlapped region. The original data points for the flow around
a cylinder dataset are shown in black for reference. . . . . . . . . . . . . . . . . 46 

3.7 Three histograms of the overlapping points between the blocks. . . . . . . . . . 47 

3.8 2D slice of the Delta Wing original data and its approximations using various
grids, colored by velocity magnitude and zoomed at the vortices. The rectilinear
grid generated using our hybrid method provides the best visual result and low
approximation error while maintaining the smallest grid size. . . . . . . . . . . . 49 

3.9 Zoom at vortices of a 2D slice of Delta Wing dataset and its approximations
using various grids, colored by velocity magnitude. The corresponding grids can
be seen in Figure 3.8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 

3.10 The flow around a cylinder original dataset and its approximations using various
grids, colored by velocity magnitude. . . . . . . . . . . . . . . . . . . . . . . . . 51 

3.11 Comparison between the octree with and without the hybrid method and the
resulting rectilinear grid from the octrees. The rectilinear grid using the spatial
method is larger than the rectilinear grid resulting from the hybrid method. . . 52 

3.12 Slice for the forward integration of the flow map for the Delta Wing original data
and our approximation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 

8



3.13 Slice of the forward FTLE field derived from the flowmap for the original un-
structured grid (top) and the rectilinear approximation (bottom). Left: close-up
view of the vortical structures present on the left side of the wing: I: primary, II:
secondary, III: tertiary vortex, A: attachment. . . . . . . . . . . . . . . . . . . . 53 

3.14 Volume rendering of the FTLE field flow map or ∆T = 10 time steps / 0.1s in
the original Delta Wing dataset and our approximation. . . . . . . . . . . . . . 54 

3.15 Volume rendering of LCS in flow map ∆T = 10 time steps / 0.1s for the original
Delta Wing unstructured grid and our approximation. . . . . . . . . . . . . . . 54 

3.16 The progression of the normalized mean difference between the flow map for the
unstructured grid of Delta Wing and the rectilinear approximation. . . . . . . 55 

3.17 The cumulative time required to generate the flow map on the original unstruc-
tured Delta Wing grid and the rectilinear grid. . . . . . . . . . . . . . . . . . . 56 

3.18 Slice of the flow map generated by forwarding integration for the original ICE
unstructured grid and our approximation. . . . . . . . . . . . . . . . . . . . . . 57 

3.19 Slice of the FTLE generated from the forward integration of the flow map for the
original ICE unstructured data and our approximation. . . . . . . . . . . . . . 57 

3.20 Volume rendering of the FTLE generated from the forward integration of the
flow map for the original ICE unstructured data and our approximation. . . . . 58 

3.21 Volume rendering for the unstructured Fish Tank dataset and our approximation. 60 

3.22 The RMS error decreases with the increasing number of grid points used in the
approximation for the Delta wing dataset. . . . . . . . . . . . . . . . . . . . . . 61 

3.23 Two views for the max error in the Delta Wing approximation, which occurs at
the sharp corners of the wing and is very localized. . . . . . . . . . . . . . . . . 61 

3.24 Isosurfaces with different iso-values of the vorticity in the Delta Wing dataset
and the approximation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 

3.25 Three Isosurfaces of the vorticity in the Delta Wing dataset using original data,
our approximation, and naive interpolation. . . . . . . . . . . . . . . . . . . . . 63 

4.1 Comparison between the flow map for the Delta Wing dataset approximation
using kernels of different orders. The inaccuracy in the interpolation close to
solid boundary is more apparent when using high-order kernels. . . . . . . . . . 69 

4.2 The rectilinear grid is cut by the solid boundary of the cylinder and the resulting
cut-cells. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 

4.3 Finite-time Lyapunov exponent (FTLE) for the flow about a cylinder dataset
approximation with different degrees B-spline kernels. The higher-order approx-
imation results in smoother visualization. . . . . . . . . . . . . . . . . . . . . . . 72 

9



4.4 Marching Square approximation (red line) of a solid boundary (black line). Each
grid point is labeled inside (green) or outside (blue) of the boundary. These labels
are used to generate the marching square algorithm look-up code. . . . . . . . 74 

4.5 Rectilinear grid points labels for the ICE Train. Red points are outside the
domain, and blue points are inside the domain. The train geometry is given for
reference in grey, and the rectilinear grid wireframe in black. . . . . . . . . . . . 76 

4.6 Zoom-in view on the rectilinear grid of Delta Wing before refinement and after
two refinement steps based on the double intersection on a grid edge. . . . . . . 77 

4.7 The odd-even rule is used to test whether a query point is inside/outside a cut-
cell. Marching cube triangulations are green. The grid cell vertices are labeled
(red for outside the domain and blue for inside the domain). Two example query
points are shown. One with an odd number of intersections is labeled outside.
The other query point is labeled inside with an even number of intersections. . 79 

4.8 Example of MVC filter applied to the interpolating basis in 4 cut-cells. For the
purpose of enforcing the no-slip boundary condition, the boundaries are set to
be zero. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 

4.9 Comparing B-spline cut-cell interpolation with and without MVC for the Flow
About a Cylinder dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 

4.10 Special interpolation handling for flow visualizations. . . . . . . . . . . . . . . . 83 

4.11 2D and 3D datasets simulate flows with solid boundaries. . . . . . . . . . . . . . 85 

4.12 FTLE generated from the flow map run on the flow past cylinder 2D unstructured
grid, the naive rectilinear grid approximation, and the boundary-aware rectilin-
ear grid approximation. High accuracy in interpolation close to the boundary
using boundary-aware rectilinear gird compared to the discrepancies in the inter-
polation in the naive rectilinear grid. . . . . . . . . . . . . . . . . . . . . . . . . 87 

4.13 Comparison of slices of the FTLE result for the ICE Train dataset, using the orig-
inal unstructured grid, the naive rectilinear approximation, and the boundary-
aware rectilinear grid approximation. . . . . . . . . . . . . . . . . . . . . . . . . 88 

4.14 Comparing volume rendering of the flow map FTLE of the ICE Train dataset,
computed over the original unstructured grid, the naive approximation, and the
boundary-aware rectilinear grid approximation. . . . . . . . . . . . . . . . . . . 89 

4.15 Comparison between slices of the Delta Wing flow map calculated over the un-
structured grid, the naive rectilinear approximation, and the boundary-aware
rectilinear approximation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 

4.16 Comparison of volume rendering of the FTLE generated from the flow map using
Delta Wing unstructured grid, the naive rectilinear grid, and the boundary-aware
rectilinear grid approximation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 

10



4.17 Comparison between slices of the Delta Wing flow map calculated over the un-
structured grid, the decimated unstructured grid , and the rectilinear grid ap-
proximation. The tertiary vortex is missing in the flow map using the decimated
data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 

11



ABSTRACT

Unstructured grids, commonly used in computational fluid dynamics (CFD) simulations,

allow for flexible point distribution and arbitrary boundary geometry. This property makes it

straightforward to model complex domains and apply adaptive mesh refinement techniques.

However, from a post-processing perspective, unstructured grids are expensive to process,

have high storage costs, and do not support smooth data approximation.

Regular grids, in contrast, are grids with implicit connectivity and geometry. They have

a reduced memory footprint while supporting efficient spatial queries and smooth approxi-

mation. However, regular grids lack the flexibility to represent complex geometry due to the

rigidity imposed by their structured nature.

This thesis investigates the problem of creating accurate approximations of unstructured

grids on regular grids. For that, a regular grid must be selected that can accommodate the

varying spatial resolution of the original dataset while being as small as possible. The choice

of the regular grid directly affects the computational and storage cost of the approximation.

The approximation procedure must lend itself to parallel and distributed implementation

to prove effective in the context of the large-scale datasets produced by high-performance

computing. For unstructured grids with solid boundaries, the approximation grid needs to

account for the solid boundary to yield an accurate approximation close to the body.

A customized octree with hybrid refinement criteria is used to obtain the optimal recti-

linear grid. The approximation of the unstructured data, solved in a least-squares fashion,

typically results in an ill-posed system due to the highly non-uniform distribution of the

points in the original unstructured grid. We propose a variable regularization to resolve the

ill-posedness in the approximation system while maintaining low approximation error.

A solid boundary handling is achieved using an approximation of the boundary geome-

try inside each regular grid cell cut by the boundary. The research demonstrates this using

linear kernels and high-order B-spline kernels. The proposed approximation can adapt to

different kernels based on the need of the visualization application. We test the method

using visualization algorithms that rely heavily on interpolation. We demonstrate the effec-

tiveness of this method using several 2D and 3D unstructured simulation datasets with solid
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boundaries. The evaluation shows that we can achieve qualitatively and quantitatively high

accuracy in representing the original unstructured data, at least six times faster query time,

and dramatically reduced file size and memory footprint. The boundary-aware rectilinear

grid approximation can produce accurate visualization near the solid boundary. Results show

that the approximation method proposed in this thesis provides a scalable, accurate approx-

imation for an unstructured grid into a regular grid. Various visualization applications can

benefit from the proposed approximation since the approximation can be easily integrated

into almost any visualization algorithm. The proposed approximation provides high accuracy

while having a smaller file size, allowing for the visualization of complex and large datasets

using devices with limited storage and processing power. Naive rectilinear grids without spe-

cial boundary handling capabilities suffer from a poor ability to present complex geometries.

In contrast, the proposed boundary-aware approximation grid can approximate the solid

boundary inside the regular cells, thus providing support for complex geometry handling

that other regular grids can’t provide. The interesting part of the phenomenon presented in

the simulation happens close to the solid boundary. Therefore, the ability to visualize data

near the boundary is essential for achieving a high-quality visualization analysis.
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1. INTRODUCTION

Numerical simulations often produce datasets defined over complex unstructured meshes,

also referred to as unstructured grids. Two and three-dimensional meshes are essential

means to represent the numerical simulation results, which we are in this thesis interested in

visualizing. The computational domain is discretized into individual elements (e.g., triangles,

prisms, etc.).

Unstructured meshes have no inherent structure in the mesh representation, allowing

mesh points to be added, deleted, and/or displaced. In contrast, mesh connectivity is re-

configured to enhance accuracy. When a solid body is present in the simulation data, the

mesh is typically refined close to the body, and a high portion of the mesh resolution is

invested around the body to correctly resolve high gradients associated with the so-called

boundary layer. Though unstructured grids are flexible in data representation and amend-

able to complex geometry, the high storage cost and the complex post-processing analysis of

the unstructured grids made their users’ tasks more complicated.

This thesis seeks an alternative representation for the original unstructured data to ad-

dress the existing significant limitations of the post-processing unstructured grids faced by

end-users, whether engineers or visualization analysts. Processing would be much simpler

for the end-user if the dataset could be reliably approximated to a much smaller form, much

simpler geometrically, much faster to process for all sorts of visualization tasks, and supports

much more smooth derivative computation.

The choice for this approximation of unstructured datasets is regular grids. Regular

grids also referred to as rectilinear grids, are axis-aligned grids. In contrast to unstructured

grids, regular grids are highly space-efficient, faster in locating a cell in the grid and provide

high-order derivatives. Still, they are limited in their flexibility in representing complex

geometry.

We aim to minimize the reconstruction error at the input data point, and we need a

smooth approximation field elsewhere. The approximation problem in hand is solved using

the least-square method. Unfortunately, this optimization system is often large due to the

size of the unstructured grid and ill-posed due to the lack of constraints that comes from

14



the inherent nature of the unstructured grid with a highly non-uniform distribution of the

original data point. The proposed approximated solution is a global one.

The choice of the kernel to be used for the fitting problem is crucial. A low-order kernel

will generate a less smooth result and have limited derivatives, resulting in a more straight-

forward system to solve and interpolate. A high-order interpolation kernel will provide a

smoother approximation, less rank deficiency since the system will become less sparse but

on the cost of a denser system to solve and a slightly higher interpolation cost. The approx-

imation can adapt to kernels with different orders. The choice of the kernel can be seen as

an application-specific choice.

The approximation system uses block-solving to overcome the large dataset size; there-

fore, the size of the approximation system to solve. We solve the system in blocks while

maintaining the smoothness and the accuracy of the approximation.

The proposed approximation is endowed with boundary handling capabilities, That allow

for accommodating challenging boundaries.

The thesis focuses on the unstructured grids resulting from computational fluid dynamics

(CFD) simulations. The datasets used for testing the accuracy of the proposed solution come

from CFD simulations. The visualization tools used throughout the thesis are related to flow

visualization, the group of visualization algorithms that study the flow behavior in datasets

resulting from CFD simulations.

The investigated solution in this thesis discusses the following: given an unstructured

grid (with arbitrary point distribution and often including a solid boundary), construct

an approximation of the data representation by imposing a regular grid over the initial

unstructured dataset. The approximated solution aims to minimize the approximation error

of the given initial data points, and provide an alternative to the original data that is more

memory efficient, easier to interpolate, can provide high-quality derivatives, and is flexible in

geometry representation. Figure 1.1 shows a side-by-side comparison between a 3D original

unstructured grid and its rectilinear approximation grid.

15



(a) Unstructured grid dataset. (b) Approximation into rectilinear grid.

Figure 1.1. Example of a 3D unstructured grid and its approximation.

1.1 Significance

The accurate approximation of a large unstructured dataset with solid boundary into a

regular grid that is computationally feasible and has boundary awareness will benefit many

visualization algorithms that rely heavily on accurate interpolation, particularly close to

the solid boundary. Examples of such applications are isosurface extraction [1 ], [2 ], vol-

ume rendering [3 ], shading [4 ]–[6 ], ridge and valley manifolds extraction [7 ]–[9 ], and feature

detection [10 ], [11 ].

The path to creating an accurate rectilinear approximation faces many challenges. We are

providing an approximation for complex datasets with highly non-uniform point distribution.

The solid boundaries in the dataset make the problem more complex and challenging. Some

of the challenges that face the approximation include the choice of the approximation grid,

the ill-posedness arising from the dataset’s inherent complexity, how to achieve scalability

given the large size of the data, and solid boundaries’ accurate processing. We give more

clarification of those challenges and introduce the proposed solutions in the next section.
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1.2 Research Questions and Proposed Solutions

As listed above, the unstructured grid suffers from high storage cost, slow interpolation,

and inefficient high-order derivative calculation. This thesis discusses the approximation of

a large unstructured dataset with solid boundary into a regular grid with special boundary

handling. The proposed solution addresses the major bottlenecks faced while using unstruc-

tured grids. The approximated regular grid provides fast interpolation, storage cost-saving,

and accurate high-order derivatives. The solution investigates the poor representation of

the regular grid to represent complex geometry compared to an unstructured grid. We pro-

vide additional tools to the regular grid that makes boundary-awareness a property for the

approximation grid.

To obtain the resulting approximation, we faced and answered many research questions,

and here we list the major ones together with the general proposed solutions:

1. How to generate the best rectilinear grid that provides high approximation

accuracy and low storage cost?

This thesis focuses on the approximation of scientific simulation data in the form of

an unstructured grid. Such simulation result is commonly known for the highly non-

uniform point distribution. The unstructured grid flexibility allows for the accurate

presentation of such results. Thus, The straightforward solution of using a uniform

grid for the approximation would be a wrong choice. Therefore, we seek in this thesis

for a grid that can replicate the original data, be sufficient for accurate approximation

of the original data points, and be as small as possible. We came up with a customized

quadtree/octree that will guide the design of the adaptive grid. The carefully designed

adaptive approximation grid allows accurate reproduction of the phenomena associated

with the simulation, together with enjoying the best memory usage.

2. How to resolve the approximation problems related to the rank-deficient

system where the commonly known regularization is not sufficient to con-

strain?
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The approximation problem aims to find the best fit of the approximation values

assigned to the rectilinear grid that reduces the error norm between the scattered

point value and the interpolated value obtained from the approximated rectilinear

grid in a least-square sense, and the fitting problem results in the highly sparse large

rectangular system. The non-uniform distribution of scattered points results in a lack

of constraints for the fitting problem.

We resolve the problem by introducing smoothing/regularization to the fitting system,

adding additional constraints, and solving the approximation system’s rank deficiency.

Unfortunately, the standard regularization was not adequate to resolve the issues en-

countered in the approximation system. We propose an improvement to the uniform

regularization technique commonly used to resolve ill-posedness in approximation sys-

tems. The regularization approach generates a smooth approximation that does not

suffer from either over-smoothing or under-smoothing.

3. How to provide accurate interpolation close to the solid boundary? The

main drawback of using regular grids is its lack of flexibility in representing complex

geometries. Though the lack of boundary flexibility problem exists when using a low-

order approximation kernel, the visual artifacts close to the solid boundary become

more apparent when using a high-order approximation kernel. In this thesis, we aim

to improve the accuracy of interpolation close to the solid boundary. Two methods are

used to aid us in achieving this goal. First, we use the cut-cell method, which allows

for identification and special treatments to the cells cut by the solid boundary to retain

the correct flow close to the solid boundary. Second, the marching cube algorithm is

an algorithm that is mainly used to find the isosurfaces in scalar polygonal meshes

by defining a code for each cell based on it being inside, outside, or partially inside

the isosurface. We use the leading techniques from the marching cube algorithm to

approximate the solid boundary geometry inside the rectilinear grid cells. Together

we equip the resulting approximation grid with additional information that allows for

the on-the-spot generation of the triangulation of the boundary inside the rectilinear

grid cut-cell. The additional information is stored in the same rectilinear grid as
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an extra data array. A boundary-aware rectilinear grid can use the same standard

rectilinear grid with only special knowledge of all data arrays provided. Together all

those methods end up with accurate handling of the cells cut by the solid boundary.

1.3 Thesis Structure

The contents of this thesis are organized as follows. We review the mathematical back-

ground and the related work in Chapter 2 . In Chapter 3 , we introduce the design choice of

the rectilinear grid that we will use for the approximation. Then we demonstrate the bi-level

smoothing and its effect on the approximation quality. Later in the thesis in Chapter 4 , the

boundary-aware rectilinear grid is introduced, and the details of the boundary-awareness

added to the rectilinear grid are discussed. Each chapter ends with a discussion of the re-

sults obtained from each Chapter. We end the thesis with the conclusion and future work

in Chapter 5 .
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2. MATHEMATICAL BACKGROUND

This thesis uses tools from the approximation theory, computational geometry, and scien-

tific visualization. This chapter covers the mathematical concepts, basic definitions, and

terminologies necessary to understand the rest of our work presented in later chapters of

this thesis. Our thesis is based on approximating a grid type into another; we start with an

overview of the grid types and their properties in Section 2.1 . In Section 2.2 and Section 2.3 ,

we review linear and B-spline kernels that we will use as our approximation kernels.

Our work is closely related to a family of approximation tools, namely scattered data

approximation. We introduce this type of approximation and how it is tailored for our

purposes in Section 2.4 . To solve the approximation problem in this thesis, we will use the

least-square scheme together with regularization. We introduce them in Section 2.5 and

Section 2.6 , respectively.

For testing our approximation accuracy numerically against the original data, we use a

list of error measures that we explain in Section 2.7 . Section 2.8 introduces a heavily used

visualization application in visualization literature that we will use throughout the thesis to

measure the performance and quality of our approximation results.

2.1 Grid Types

The data provided by simulations can be in different data representations, also referred to

as mesh or grid interchangeably. The data representation can be structured or unstructured.

The organization of the grid vertices and the connectivity between the vertices can categorize

the mesh type. The mesh type controls its respective properties, such as the storage cost

and interpolation method. We can roughly classify the grids into the following: uniform

(Image), rectilinear, curvilinear, and unstructured. Figure 2.1 shows the different types of

meshes.

1. Uniform grid: An example of a uniform grid can be seen in Figure 2.1a . The uniform

grid enjoys a structured point arrangement with uniform spacing along each axis,

making an implicit relationship between the grid vertices and implicit cell definition.
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(a) Uniform grid. (b) Rectilinear grid.

(c) Curvilinear grid. (d) Unstructured grid.

Figure 2.1. Example grid types; structured:(a),(b),(c) [12 ], and unstructured:(d) [13 ]

The storage requirements for a uniform grid are the origin of the mesh and the spacing

(a single value per axis). No explicit storage of the grid vertex coordinates or the

connectivity (cell information) is needed. Given the point index, origin, and grid

spacing, the point coordinates can be calculated on the fly. For any query point, it

takes O(1) constant time to find the cell enclosing this query point, regardless of where

the query point lies in the grid. The uniform grid is the most commonly used data

representation for images and datasets with uniform point spacing.

2. Rectilinear grid: A rectilinear grid in Figure 2.1b is a type of grid shared with

a uniform grid all properties of being structured but different in that this grid has

variable spacing per axis. This allows for more flexibility in data representation, but

with some extra cost in storage and query processing time.
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For storage, rectilinear grids need to store the same information as uniform grids

except that the grid spacing is not a single uniform value, so axis grid vertices need to

be stored.

3. Curvilinear grid: the curvilinear grid shown in Figure 2.1c is similar to unstructured

geometry in that the points are not axis aligned like the last two grid types, but it still

maintains implicit connectivity between vertices. In a curvilinear grid, the coordinate

lines may be curved. A one-to-one mapping between the curved coordinates and a

corresponding rectilinear grid can be performed. After the mapping is performed, the

interpolation is done in the same manner as any rectilinear grid.

4. Unstructured grid: Figure 2.1d shows an unstructured grid with arbitrary points

and various cell types. Though this offers high flexibility and adaptivity in data rep-

resentation, this comes at the cost of having extra storage overhead and expensive

query time compared to the previous structured grid types. Compared to structured

grids, the unstructured grid has high storage overhead due to the explicit storage of

the points coordinates and the explicit storage of the connectivity information. Those

are implicit in the structured grids.

Interpolation in an unstructured grid requires finding the cell enclosing the query

point; this is an expensive operation due to the arbitrary distribution of points in the

unstructured grid. Since many visualization algorithms entail heavy interpolation, this

is considered a visualization issue, and it is called point location problem.

To overcome this problem, spatial data structures are needed to narrow down the

number of test cells candidates to enclose the query point. The query time in the

unstructured grid then is dependent on the performance of those data structures, and

this measure varies based on the grid complexity and the size of the cell. Octrees

have been used to resolve the point location problem [14 ]. In addition, other methods

used ray tracing where spatial data structures are used to find the nearest cell and

the adjacency list is used to walk to the cell enclosing the point [15 ]. However, such

methods could fasten the point search in the unstructured grid; they are still memory
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intensive due to duplicate cells saving in different branches in those trees that can

reach ten times the number of original cells. One of the state-of-the-art methods

is cell-trees [16 ], a data structure built to find the cell location enclosing a point

using bounding interval hierarchy [17 ], [18 ]. The use of the hierarchy reduces the

storage overhead and reduces the number of cells to be tested for inclusion. This

cell-tree reduces the build time of the tree and the memory overhead compared to the

other data structures. Throughout the thesis, we will compare the performance of our

approximation result with the unstructured grid using a cell-tree.

2.2 Trilinear Interpolation

In this section, we introduce linear interpolation in the context of rectilinear grid.

Figure 2.2. Interpolation of the query point P in the cuboid cell of the rectilinear grid.

Given a query point in a rectilinear grid, we can find the cell enclosing the query point in

O(log(max(grx, gry, grz))), where grx, gry, and grz respectively designate the grid resolution

for x, y, and z axis. The search for the cell is a binary search, given that the grid values per

axis are sorted. The search per axis can be done in parallel, so the search time for the cell

enclosing a query point equals the binary search in the axis with the highest grid resolution
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gr. Within the rectilinear grid cuboid cell enclosing the query point P , trilinear interpolation

is used to interpolate within the cell using the equation:

P = (1 − u)(1 − v)(1 − w)P1 + u(1 − v)(1 − w)P2 + uv(1 − w)P3+

(1 − u)v(1 − w)P4 + (1 − u)(1 − v)wP5 + u(1 − v)wP6 + uvwP7 + (1 − u)vwP8

(2.1)

where Pi is the values at the ith rectilinear grid cell vertex. u, v, and w are the relative

query point position at the x, y, and z axes, respectively. Figure 2.2 shows a rectilinear grid

cell and the trilinear interpolation coefficients.

2.3 B-Spline

Throughout the chapters, we use B-spline kernel with different degrees as an approximat-

ing kernel to solve the problem of approximating unstructured data into a regular grid. Fig-

ure 2.3 shows the basis for linear to cubic B-spline kernels. Below we explain the basis of B-

spline: Givenm+1 control points P0, P1, . . . , Pm and a knot vector U = {u0, u1, . . . , um+p+1},

the B-spline curve of degree p defined by these control points and knot vector U is:

C(u) =
m∑

i=0
Ni,p(u)Pi (2.2)

where, clamping is used for the knot vector U = {u0 = . . . = up, up+1, . . . , um+1 = . . . =

um+p+1}, and Ni,p is the pth degree polynomial function given by the recursive equation:

Ni,p(u) = u− ui

ui+p − ui
Ni,p−1(u) + ui+p+1 − u

ui+p+1 − ui+1
Ni+1,p+1(u) (2.3)

with the base case

Ni,0(u) =


1, ui 6 u 6 ui+1

0, otherwise
(2.4)
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Figure 2.3. 1D B-spline basis of different degrees using the same uniform
knots shown with N.

The 1D B-spline basis can be extended to higher dimensions by tensor product. The

general tensor product formula for The multivariate basis function Ni,p : RD → R is the

tensor product of the 1D basis functions and is given by:

Ni,p(u) =
D∏

d=1
N

(d)
id,p(ud) u = [u1, . . . , uD] (2.5)

Here the index i goes from 1 to ∏D
d=1 nd and covers all combinations of id = 1, . . . , nd for

d = 1, . . . , D.

In a B-spline function, the computation of derivatives is straightforward [19 ], and is given

in Equation (2.6 ).

C ′(u) =
m−1∑
i=0

Ni+1,p−1(u) Pi+1 − Pi

ui+p+1 − ui+1
(2.6)

2.4 Scattered Data Approximation Using Rectilinear Grid

The work in this thesis is closely related to scattered data approximation. We consider

the problem of approximating the per-point input data values of an unstructured input

dataset through reconstruction kernels over a rectilinear grid. In this section, we introduce

the basics of the approximation used in the coming chapters.
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Let S be the set of input data points, which consist of n data points, {(xi,f i)}i∈I , where

{xi}i∈I are coordinates in Rd, {f i}i∈I are the associated input data values in the data space

Rq, and I is the index set of the input data points. In the following, we consider, without

loss of generality, the case of three-dimensional scalar data (q = 1, d = 3) and vector data

(q = 3, d = 3). Other attribute types (e.g., tensor data) can be handled similarly.

Let {xi}i∈I admit an axis-aligned bounding box (a, b). Let G be an axis-aligned nonuni-

form rectilinear grid with resolution {grd}1≤d≤3 ∈ N spanning the spatial region delimited by

a and b. The spacing of the rectilinear grid along each axis is defined by the grid coordinates

{rrd
i }i=1,...,grd

for each dimension d. G contains gr = ∏3
d=1 grd grid vertices. The vertices are

defined as {pk}k∈K , where pk are the coordinate of each grid vertex, defined as the Cartesian

product of {rrd
i } Here K designates the 3-dimensional index set corresponding to G. Each

cell of the rectilinear grid is an axis-aligned hexahedron (cuboid) with boundaries defined by

the grid coordinates. The interpolation equation given any kernel and a point coordinate x

is given by:

ψ(x) =
∑
k∈K

gkϕk(x) (2.7)

where ϕk is the approximation kernel for the kth grid vertex with coordinate pk. The approx-

imation problem then becomes to find the function values gk corresponding to the rectilinear

grid vertices pk.

To use B-splines as an approximation kernel with the rectilinear grid, we consider the

B-spline kernel from Equation (2.2 ). We define the unique knots of each b-spline basis to be

the rectilinear grid coordinates per axis, that is rrd
i , namely, {up, up+1, . . . , um+1} the unique

knot vector without clamping corresponding to the rectilinear grid {rrd
0, rr

d
1, . . . , rr

d
rg} per

axis.

The choice of the B-spline degree p determines the system’s complexity, the smoothness

of the solution, and its differentiability. If p = 1 the kernel is equivalent to the trilinear

interpolation in the rectilinear grid, and the number of control points matches the number

of rectilinear grid vertices pk. If p = 3, the approximation problem involves cubic B-splines.

The d-dimensional B-spline is the tensor product of d p-degree (one-dimensional) B-spline

basis functions.
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2.5 Least-Squares Approximation

The thesis shows that we aim to acquire an approximation onto the rectilinear grid

using interpolation and regularization. Our approximation should provide accurate results

compared to the original data. The least-square method fits our needs in minimizing the

difference between the original data and the interpolated results. In this section, we introduce

the least-squares method and explain how this fits with our requirements in this thesis.

The least-square method minimizes the sum of the squares of the difference between the

interpolation values of the scattered point ψ(xi) and the input data value fi and is given by

argmin
∑
i∈I

‖ψ(xi) − fi‖2 . (2.8)

Equation (2.8 ) yields a rectangular linear system with n rows (the number of scattered

points) and m columns (the number of unknowns). Each row of the linear system expresses

the fitting constraint of an input data point in terms of a linear function of the unknown

coefficients cj. In practice, this system will often be over-constrained (n > m), extremely

sparse, and can be solved in the least-squares sense.

2.6 Regularization

Rank deficiency can arise when attempting to solve the least-squares system where the

resolution of the rectilinear grid locally exceeds the density of input data points. This

is closely related to the nature of the rectilinear grid and is a natural byproduct of the

refinement procedure used to construct the output rectilinear grid.

Though the extension of the rectilinear grid throughout the domain might be considered

a downside of the rectilinear grid vs. octrees. The extension that can be considered as

wasteful allows for better reconstruction properties. In addition, when the waste of storage

or computational cost in the rectilinear grid due to this extension through the domain is

measured, it is considered very limited compared to the reconstruction properties gained. A

common technique to mitigate this rank deficiency problem is to add a regularization term

that assigns additional constraints to the linear system [20 ]. In this work, we add smoothness
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constraints that we formulate as zero discrete Laplacian of the unknown rectilinear grid point

values (i.e., ∆g = 0) [21 ]. These constraints define so-called harmonic functions, which

have desirable properties in the context of our data approximation problem. In particular,

harmonic functions are smooth functions entirely determined by their boundary conditions

and whose values remain within the range of the boundary values. Here, the role of the

boundary conditions is played by the unknowns for which enough interpolation constraints

are available. Equation (2.9 ) shows the discrete Laplacian used for the regularization:

∆g = ∂2g

∂x2 + ∂2g

∂y2 + ∂2g

∂z2 = 0 (2.9)

The second derivative for the laplacian is obtained using finite difference using 3 stencils

per axis, using the given equation for x-axis:

∂2g

∂x2 = 2
(h1 + h2)h2

gx−1 + 2
(h1 + h2)

( 1
h1

+ 1
h2

)gx + 2
(h1 + h2)h1

gx+1 (2.10)

where h1 is the spacing between the grid points gx and gx+1, and h2 is the spacing between

the grid points gx−1 and gx. Same apply for the other two axes. Practically, we control the

relative contribution of the smoothness constraints to the overall error measure through a

weighting coefficient λ. With the addition of smoothness constraints, we obtain the following

minimization problem:

argmin
{gk}k∈K

∑
i∈I

‖ψ(xi) − f i‖
2 + λ

∑
k∈K

‖∆gk‖2 (2.11)

where ∆gk corresponds to the discrete Laplacian at the grid vertex gk.

It is important to note that the corresponding matrix is highly sparse due to the local

support of both the interpolation kernel and the finite difference Laplacian. The suitable

sparse solver can therefore solve the system of equations. We selected for that purpose the

sparse QR factorization solution implemented in SuiteSparseQR [22 ] and available in Matlab,

which efficiently leverages the available parallelism to compute the solution.

28



2.7 Error Measures

Throughout the thesis, we use different measures to assess our approximation result,

including visual and numerical results. We measure approximation error using normalized

root mean squared error (RMS), normalized average error (AVG), and normalized maximum

error (NME):

RMS = 1
n frng

√∑
i∈I

(ψ(xi) − fi)2 (2.12)

AVG = 1
n frng

∑
i∈I

|ψ(xi) − fi| (2.13)

NME = 1
frng

max
i∈I

|ψ(xi) − fi| (2.14)

where frng = maxi∈I(fi) − mini∈I(fi) is the range of the input data values.

2.8 Flow Map and Finite-Time Lyapunov Exponent

To assess the quality of our approximation of the original data, we use numerical and

visual results. We listed the numerical measures in Section 2.7 .

We also look for a visualization application that relies heavily on interpolation, thus

serving as a diagnostic tool for our method’s approximation quality. We chose for that

purpose the finite-time Lyapunov exponent (FTLE), which is widely used in the visualization

literature to extract flow structures [23 ]–[29 ].

FTLE [30 ]–[33 ] evaluates at each location the rate of separation of nearby trajectories

over a finite time interval under the action of the fluid flow. FTLE is an important tool to

study the flow and its transport behavior. It owes its popularity to its ability to reveal the

presence of so-called Lagrangian coherent structures (or LCS), which act as moving material

boundaries that form barriers to particle transport [34 ].

A time-dependent vector field v defines a dynamical system through following equa-

tion [35 ].

ẋ(t, t0, x0) = v(t, x(t, t0, x0)), (2.15)

29



(a) Grid over which the FTLE values will
be obtained.

(b) Velocity data for the Flow About a
Cylinder dataset.

(c) The resulting FTLE.

Figure 2.4. 2D FTLE generation for Flow about a Cylinder data.

where the dot designates derivation with respect to the time variable t, and x(t, t0,x0) is the

position at time t of a point starting at x0 at time t0. The path x(·, t0,x0) corresponding to

the solution of Equation 2.15 forms an integral curve or streamline. The map φτ : (t0,x0) 7→

x(t0 + τ, t0,x0), which maps each point x0 at t0 to its new position after time τ , is called

flow map.

The variations of the flow map around a given initial position x0 are locally determined

by its spatial derivative, the matrix J(τ, t0,x0) = ∇x0φτ (t0,x0). FTLE corresponds to the

average exponential separation rate Λ(τ, t0,x0), for positive or negative τ and is defined as

Λ(τ, t0,x0) = 1
2|τ |

log ||J(τ, t0,x0)T J(τ, t0,x0)||. (2.16)

Here ||.|| designates the matrix norm corresponding to the maximum eigenvalue. Ridges1
 

of Λ for forward (resp. backward) advection correspond to unstable (resp. stable) Lagrangian

coherent manifolds that strongly repel (resp. attract) nearby particles. An example of FTLE

computation is illustrated in Figure 2.4 .

1↑ Ridges can be thought of as lines and surfaces along which the considered scalar quantity – here FTLE –
is locally maximal.
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3. FRAMEWORK FOR REGULARIZED APPROXIMATION

OF UNSTRUCTURED DATA WITH RECTILINEAR GRID

3.1 Introduction

This chapter considers the problem of approximating complex unstructured datasets with

highly non-uniformly distributed points onto a rectilinear grid.

Our method falls in the general category of the so-called scattered data approximation

problems. Nonetheless, we are primarily interested in the ability of the resulting global

approximation to accurately approximate the native, cell-wise interpolation of the original

unstructured grid.

The choice of the grid is a crucial aspect of the accuracy of the approximation. Given the

vertices and associated input data values of an unstructured grid and a linear approximation

kernel, we look for the most efficient grid that allows for accurate approximation.

We aim for a grid that accurately captures the main aspects of the simulation and is as

small in size as possible.

We generate an adaptive rectilinear grid using a customized hybrid octree method that

balances the point density and the local error to provide the most efficient rectilinear grid.

We aim for an approximation that provides a global solution. Our approximation min-

imizes the reconstruction error at the input data points while yielding a globally smooth

approximated field.

We solve for the coefficients of the approximation kernel of the rectilinear grid by solving

an optimization least-squares problem. Unfortunately, this optimization system is often ill-

posed caused by the lack of constraints due to the non-uniform distribution of the original

data. We introduced regularization to resolve the rank deficiency issue by adding smoothness

constraints to the system. While regularization helps condition the ill-posedness in the

approximation system, naive regularization can cause over-smoothing in the part of the

system that is already well constrained and not enough smoothing where the system needs

the smoothing constraint the most. Therefore, we introduced variable smoothing, which

assigns adequate localized smoothing while providing an accurate approximation.
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To make the approximation solution scalable and work with large unstructured datasets,

we use parallel block-solving. The approximation system is split into blocks by domain. The

size and number of blocks are chosen to maintain a system with a roughly equal number of

unknowns to be solved in parallel to balance the workload of each thread.

We should note that this chapter limits our work to linear approximation kernel and does

not consider solid boundary recognition and handling. We will demonstrate our framework

with a higher-order kernel and add boundary-aware capabilities in the next chapter.

We provide a thorough evaluation of the hybrid octree method used for the meshing

choice. The evaluation involves comparing the approximation quality of other meshing

methods and our hybrid meshing. The approximation method is evaluated over 2D and

3D datasets. We also provide evaluation for our regularized approximation numerically and

visually using interpolation intensive visualization algorithms. We manage to dramatically

increase the performance of visualization post-processing and obtain a visual quality of the

results that faithfully convey the properties of the original dataset.

The chapter is organized as follows. We start with Section 3.2 , where we review various

existing scattered data approximation methods. Section 3.3 explains the approximation

problem we are dealing with and the various challenges involved. In Section 3.4 we explain the

regularization used to constrain the rank-deficient system we are trying to solve. Section 3.5 

introduces our variable regularization scheme. Later in Section 3.6 , we discuss the choice of

the grid to be used for the approximation. We illustrate in Section 3.7 how parallel block-

solving enables solving large systems without deterioration in the approximation quality.

Finally, an evaluation of our methodologies can be found in Section 3.8 .

3.2 Related Work

Many solutions to the problem of scattered data interpolation can be found in the liter-

ature. These solutions can be categorized as mesh-based or mesh-free techniques.

Among the mesh-free techniques, radial basis functions (RBF) [36 ] construct an inter-

polating function as a weighted sum of basis functions centered at the input data points.

Unfortunately, the basis functions that possess the best theoretical guarantees of approxima-
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tion quality (e.g., thin plate) have global support, yielding a dense linear system intractable

for large datasets. RBF functions with local support avoid these problems, but they are

challenging to apply to highly non-uniform point distributions, typical in unstructured com-

putational meshes with adaptive refinement. In addition, while RBF enables a globally

smooth approximation, their evaluation at arbitrary query points can be computationally

expensive.

An alternative mesh-based approach, more closely related to the present work, consists

in interpolating a set of arbitrarily distributed data points on a uniform grid. Arge et

al. [37 ] compute a cell-wise fit over uniform grids, whereby only the vertices of cells con-

taining enough data points are fitted through a linear least-squares system. In contrast,

the value of the rest of the points is subsequently obtained using global extrapolation tech-

niques. Arigovindan et al. [38 ] propose a variational approximation solution expressed as

a regularized optimization problem that combines data fitting and smoothness constraints

to accommodate non-uniform data points distribution. This setup leads to a large sparse

linear least-squares system for which the authors introduce a multi-resolution formulation

that lends itself to a solution via multigrid iterations. The method is restricted to B-spline

kernels and 2D image approximation. Subsequent work by Vuçini et al. [39 ], [40 ] extends

this method to the 3D setting and considers its application in scientific visualization. In

particular, it introduces a scheme to construct the solution on a block-wise basis, which

achieves smoothness across blocks at the expense of a higher approximation error along with

their interface. Vuçini and Kropatsch [41 ] present a strategy to select a target resolution for

the approximation grid based on a per-cell statistical study of the error distribution. Most

recently, Francis et al. [42 ]. Introduced an efficient solution based on roughness minimization

and digital filtering for 2D point sets.

Vuçini and Kropatsch [40 ], [41 ] studied the uniform grid resolution that will reduce the

approximation error. They investigate the strong correlation between the approximation

error and the average standard deviation of points values in the cells. They presented a

strategy that selects a target uniform resolution for the approximation grid based on a per-

cell statistical study of the error distribution. This study, done on a uniform grid, motivates
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us to add a local error measure to aid in obtaining low approximation error in the rectilinear

grid while maintaining the grid size as small as possible.

The common limitation of all these methods is their restriction to uniform grids and

specific interpolating kernels. In contrast, our solution allows for an accurate approximation

over an automatically determined rectilinear grid through arbitrary kernels. As a result, we

can achieve similar or better error bounds with a significantly lower resolution than prior

work.

A different class of numerical analysis methods called adaptive mesh refinement (AMR) [43 ]

uses multiple levels of data refinement. Regions that need higher precision are locally re-

fined in subsequent more refined level patches. This dynamic focus of memory usage allows

AMR to accurately represent mesh data without incurring the cost of a globally fine mesh.

Structured Adaptive Mesh Refinement (SAMR) [44 ], [45 ] is an AMR approach where the

computational grid is implemented as a collection of uniform grid components. It takes

advantage of the simplicity of the uniform grid. However, such methods present several chal-

lenges, especially for parallel computing, such as load balancing, complex synchronization,

maintaining continuity between levels, etc.

To facilitate interpolation in unstructured grids, efficient solutions to the point location

problem have been devised in the visualization literature [16 ], [46 ], [47 ]. These methods use

hierarchical tree data structures to accelerate the cell search process. Despite the significant

speed-up they achieve, these data structures require extra storage, and interpolation in

unstructured grids remains significantly more expensive than in rectilinear grids. Finally, a

large body of research investigates various solutions to the data reduction problem. These

solutions include lossless and lossy data compression techniques, as well as mesh reduction

techniques. Li et al. [48 ] offer a recent overview of the relevant work from a visualization

perspective. In addition, Hoang et al. propose a framework to study the trade-off between

precision vs. resolution [49 ].
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3.3 Scattered Data Approximation

Let S be the unstructured input grid, and let G be the rectilinear grid to be used for

the approximation. Each input vertex xi in S is associated with a input data value fi.

The corresponding data approximation problem consists in finding the best least-squares

approximation of the data points (xi,fi) in S through a given kernel-based approximation

over G as discussed in Chapter 2 , Equation 2.7 . In this chapter, we are using linear fitting

for simplicity. The kernel indicates that the fitting provides an approximation function

value assigned to each rectilinear grid point. Our approximation method is not limited to

linear fitting, and other kernels can be used. We will explore other kernel types in the next

chapter. the least-squares problem in hand is given by Equation (2.8 ) in Chapter 2 . Given

the linear kernel to be used for the approximation. We are trying to solve for the fitting values

for the rectilinear grid that will minimize the approximation error, which is the difference

between the original function value and the interpolated value from the approximation. The

approximation problem is solving the following linear problem:

Ax ≈ b (3.1)

b is the function values fi that we are trying to minimize the 2-norm difference with the

interpolation value given the specified kernel. The matrix A is rectangular with the number

of rows (i.e., the number of input data points) typically widely exceeding the number of

columns (i.e., the number of control point unknowns). The matrix A is sparse, and the

sparsity depends on the choice of the kernel. The higher the order of the approximation

kernel, the less sparse the A matrix would be.

3.4 Regularized Smoothing

In practice, this linear system is generally rank-deficient, owing to the unavoidable dis-

crepancies between the spatial distributions of the input data points and that of the rectilin-

ear control points. A common technique to mitigate this rank deficiency problem is to add a

regularization term that assigns additional constraints to the linear system [20 ]. In this work,
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we add smoothness constraints that we formulate as zero discrete Laplacian of the unknown

rectilinear grid point values (i.e., ∆g = 0) [21 ]. These constraints define so-called harmonic

functions, which have desirable properties in the context of our data approximation problem.

In particular, harmonic functions are smooth functions entirely determined by their bound-

ary conditions and whose values remain within the range of the boundary values. Here, the

role of the boundary conditions is played by the unknowns for which enough interpolation

constraints are available. Practically, we control the relative contribution of the smoothness

constraints to the overall error measure through a weighting coefficient λ. With the addition

of smoothness constraints, we obtain the following minimization problem:

argmin
{gj}j∈J

∑
i∈I

‖ψ(xi) − f i‖
2 + λ

∑
j∈J

∥∥∥∆gj

∥∥∥2
(3.2)

where ∆gk corresponds to the discrete Laplacian at the grid point gk.

The introduction of the regularization to the initial linear system in Equation (3.1 ) de-

scribed above will provide the A matrix composed of an interpolation part and regularization

part. For the right-hand side, we will have b corresponding to the interpolation rows and

zeros for the rest of the rows given we aim at minimizing the Laplacian. After the addi-

tion of the regularization the initial linear system shown in Equation (3.1 ) will become the

following:  A

∆g

 x ≈

b

0

 (3.3)

Where ∆g corresponds to the discrete Laplacian, obtained by discretizing over the grid using

2nd order finite differences.

It is important to note that the corresponding matrix is extremely sparse due to the local

support of both the interpolation kernel and the finite difference Laplacian. The system of

equations can therefore be solved with a suitable sparse solver. We selected for that purpose

the sparse QR factorization solution implemented in SuiteSparseQR [22 ] and available in

MATLAB, which efficiently leverages the available parallelism to compute the solution. QR

factorization is a decomposition of a matrix A into a product A = QR of an orthogonal
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matrix Q and an upper triangular matrix R. QR decomposition is often used to solve the

linear least-squares problem and is the basis for a particular eigenvalue algorithm [20 ].

3.5 Bi-Level Smoothing

In Chapter 2 , we introduced regularization. The regularization or smoothing term of

Equation (3.2 ) effectively plays two roles. First, it enforces smoothness across the domain

in the solution. Second, it adds constraints on the rectilinear grid point values in the linear

system, which mitigates the potential rank deficiency of the fitting constraints. However, it

can be challenging to find a single regularization weight that proves suitable across the whole

approximation domain. For grid points with a sufficient number of associated interpolation

constraints, an extreme value of λ causes an over-smoothing effect, resulting in loss of detail

and increased approximation error. On the other hand, an extremely low λ value will not

be sufficient to resolve the ill-posedness in the system that we introduced the regularization

to resolve.

This observation led to the use of bi-level smoothing, where each approximation grid point

is assigned one of several possible smoothing coefficients λk. Equation (3.2 ) is modified to

be

argmin
{gk}k∈K

∑
i∈I

‖ψ(xi) − f i‖
2 + λk

∑
k∈K

‖∆gk‖2 (3.4)

Each grid point uses a suitable λk value that corresponds to the grid point ill-posedness

criteria.

Practically, we use two values of λ: A high value λhigh at grid points that lack sufficient

constraints due to few or no surrounding input data points, and a lower value λlow for all

other well-constraint grid points.

Two criteria are used to determine whether a low or high value λ should be used at

any given grid point: 1) The number of input data points surrounding the grid point is

considered to mitigate rank deficiency. Each input data point within the kernel support

provides a constraint to the unknown in the system. With a low uniform smoothing, the

grid points with no interpolating constraints cause rank deficiency. Given a linear kernel, we

consider a grid point with less than eight input data points within its kernel support in 3D
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(4 in 2D) to be insufficiently constrained and assign it a high smoothing coefficient. 2) The

distance of the closest input data points to the grid point is used to judge whether the system

is ill-conditioned or not. Grid points with a sufficient number of input data points within the

kernel support can still cause an ill-conditioned system if those input data points are on (or

close to) the edge of the kernel support where the kernel tapers off. In that case, the column

of the linear system associated with the grid point will have a minimal max norm, resulting

in significant artifacts in the approximation solution. If the linear kernel basis value of the

closest data point is less than 0.4, we consider the grid point to have insufficient interpolation

constraints and apply a higher smoothing coefficient. The specific values of λhigh and λlow

are dependent on the dataset and the approximation kernel and must be chosen based on

several practical considerations. λhigh must be high enough to prevent visible artifacts in

regions with sparse data points, but not too high not adversely to affect the approximation

accuracy. Similarly, the value of λlow must be chosen low enough to achieve an accurate fit

in densely populated regions.

Using our bi-level smoothing scheme, we can achieve an accurate approximation while

maintaining the desired level of overall smoothness in the solution. Figure 3.1 shows the

volume rendering comparison between uniform smoothing and our bi-level smoothing con-

structed with the same rectilinear grid. Our bi-level smoothing accurately captures the

vortices without generating artifacts. In contrast, uniform smoothing either produces spu-

rious structures in low-constraint regions for low values of λ or filters out relevant features

of the dataset for large λ. For reference, the average error and normalized max error AVG

/ NME (Equations (2.13 ) and (2.14 )) in this particular case are 0.0066 / 3.4303 for uniform

low λ, 0.0376 / 0.6980 for uniform high λ, and 0.0065 / 0.4777 with our bi-level smoothing

scheme. We can find the same observation in Figure 3.2 .

To allow for a fixed pair of smoothing coefficients to produce high-quality results, irre-

spective of the specific scale and spatial resolution of the considered dataset, we perform a

normalization of the finite-difference Laplace equation associated with each unknown. Specif-

ically, we express the Laplace equation using a finite-difference formula for the second-order

derivative suitable for arbitrarily spaced samples [50 ] and then normalize the resulting equa-

tion. The coefficient of the considered unknown is 1. With this normalization, the same
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(a) The original unstructured grid dataset. (b) Approximation using our bi-level smooth-
ing with λlow = 1 × 10−9 and λhigh = 1.

(c) Approximation using uniform smoothing
with λ = 1 × 10−9.

(d) Approximation using uniform smoothing
with λ = 1.

Figure 3.1. Volume rendering of a vortex in the original Delta Wing dataset
and its approximation. Our bi-level smoothing scheme produces a much more
accurate approximation compared to uniform smoothing.

λ values can be used across datasets. In Section 3.8 we present the results for the three

datasets that were produced using our bi-level normalized smoothing and the same λhigh = 1

and λlow = 1 × 10−9.

3.6 Adaptive Grid Design

Our solution’s key aspect consists of creating a rectilinear mesh upon which we can

compute an accurate approximation of the underlying irregularly distributed data.

A good approximation needs an approximation grid that is fine enough to capture the

essential features in the original data without unnecessary high grid resolution. The solving

and storage become overly expensive.

We present a hybrid grid design to be used for the approximation. The grid is adaptive

and automatically determined using an octree that is refined based on the original input
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(a) The original unstructured dataset.
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(b) Approximation using bi-level smoothing
with RMS error = 7.9e − 2.
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(c) Approximation with uniform smoothing
λ = 1e − 9 and RMS error = 7.88e − 2.
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(d) Approximation using uniform smoothing
with λ = 1 and RMS error = 1.76e − 1.

Figure 3.2. The Flow About a Cylinder original dataset and different approx-
imations using different smoothing methods. Our bi-level smoothing scheme
produces a much more accurate approximation compared to uniform smooth-
ing.

point density distribution. In addition, motivated by [40 ], [41 ] where the authors use the

standard deviation of the points inside the uniform grid cell as a criterion for how fine the

uniform grid of their choice should be. We follow a similar approach, but with the local fit

error. We refine the grid where the error is high due to the high variation among the points

function values, but we use an adaptive grid instead of a uniform one. As a result, we can

prevent unnecessary refinement and obtain a smaller rectilinear grid.

We considered several approaches for this purpose. First, we explain why We adopted an

adaptive solution instead of a uniform one, which is more straightforward. In the following,

we show our findings before presenting the final adaptive resolution that we adopted for the

approximation.
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3.6.1 Uniform Grid / Image

The simplest type of rectilinear grid is a uniform grid, an axis-aligned grid with constant

spacing along each axis. Unfortunately, uniform grids are ill-suited to approximate most

unstructured datasets, which tend to have a highly non-uniform point distribution. Indeed

increasing the resolution often results in a marginal decrease in the approximation error.

Hence, one needs to reach a prohibitively fine uniform resolution to achieve a prescribed

approximation error threshold, which is inefficient and numerically problematic. To overcome

the issues faced when using a uniform grid, we look into a rectilinear grid as an alternative

that provides an axis-aligned grid but allows for the flexibility of variable grid spacing. The

right choice of grid placements plays an essential role in the approximation quality. The

following section discusses different designs for the rectilinear grid and how we reached our

hybrid octree design.

3.6.2 Spatial Distribution Driven Meshing

In this approach, the goal is to select the grid resolution and the per-axis point distri-

bution in such a way as to achieve a nearly uniform number of data points per cell. Since

this is usually impossible, an alternative objective is to keep the number of data points per

cell under a given threshold. While this approach yields a lower approximation error than

the uniform one, it proves ineffective since high point density per cell does not necessarily

imply high approximation error and vice versa. This occurs when dense regions in the un-

structured grid are smooth yet cause grid refinement without any improvement in the error.

Conversely, regions with few data points but with a vast variance in the per-point value can

benefit from a higher grid resolution, even though the number of the points may be less than

the threshold. Hence a density-based refinement might yield a high resolution that is not

necessarily needed.
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3.6.3 Error-Driven Meshing

The idea of error-driven meshing consists in computing the global approximation error

at intermediate refinement stages and using this information to prioritize the refinement of

regions associated with the more significant error. This method, by design, reduces the error

much more effectively than both previous approaches. Unfortunately, this solution requires

solving the data approximation problem for each intermediate resolution, which amounts to

a costly procedure.

(a) Quadtree generated using our hybrid
method. The quadtree is shown in black
lines, and the input points are shown as
dots for reference.

(b) The resulting rectilinear grid from ex-
tending the quadtree, shown in red.

Figure 3.3. The quadtree was generated using our hybrid method and the
corresponding rectilinear grid.

3.6.4 Proposed Hybrid Solution

We concluded from the observations above that a more efficient and effective way to

adaptively refine a rectilinear grid consists in adopting a hybrid solution that jointly considers

the spatial distribution of the data points and the local approximation error.

Practically, we create an octree (or quadtree for 2D datasets). The recursive subdivision

of each leaf is controlled by two thresholds, namely the number of points in the leaf and

the maximum allowed approximation error over the corresponding cell. In particular, this

procedure will prevent the unnecessary refinement of a dense region if it exhibits a low
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approximation error. In this context, the approximation error is evaluated only locally by

solving a small least-squares system corresponding to the trilinear fitting of the data points

located inside the leaf cell. Indeed, using a low-order (multi-linear) kernel in this meshing

phase offers a conservative estimate of the approximation error that we can subsequently

achieve with a potentially higher-order kernel in the global approximation phase. If the

number of points per leaf is less than a threshold, the points available are not sufficient for

generating a local fit, and the subdivision will stop. Otherwise, the error of the local fit is

calculated, and if it exceeds a chosen error tolerance, the leaf cell is further subdivided.

Once the octree is constructed, it is converted into a rectilinear grid by extending the

bounding box of each leaf onto the individual coordinate axes. The rectilinear grid generated

by the hybrid method is fine enough where needed. This would result in a smaller grid that

will be more efficient in solving, storing, and post-processing. An example is shown in

Figure 3.3 , where a zoom on the slice of the Delta Wing dataset with quadtree generated in

Figure 3.3a with the scattered points drawn for reference. In Figure 3.3b the rectilinear grid

is generated by extending each quadtree leaf.

3.7 Block-Based Solving

After acquiring the rectilinear grid resolution and axis coordinates, the next step is to

solve Equation (3.3 ) for the approximated values at each grid point. For 3D approximations,

as the input data size and approximation grid resolution increase, the memory consumption

of the sparse QR solver follows a cubic growth O(n3), and can become intractable. To

overcome this issue, we partition the rectilinear grid domain into independent blocks by

splitting the cells, such that each block contains about the same number of rectilinear grid

points, i.e., the same number of unknowns in Equation (3.3 ). The partitioning into blocks is

done over the rectilinear grid obtained by extending the octree as illustrated in Section 3.6 .

Each block can then be approximated independently, which effectively distributes the storage

and computational effort. Layers of ghost grid points are added to the boundary of each

block to ensure continuity and smoothness of the solution across block boundaries while

preserving the accuracy of the approximation. The number of layers of ghost grid points
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(a) The rectilinear grid without blocks divi-
sion.

(b) Splitting the rectilinear grid to the left into 4
subdomains with two layers of ghost grid points
in white.

Figure 3.4. Example of block-solver divisions.

added depends on the footprint of the kernel used. For multi-linear interpolation, we find

that two layers of ghost grid points are sufficient to enforce smoothness.

Each block results in a smaller linear system that is solved independently of the other

blocks. In particular, no communication between the blocks is necessary. After obtaining the

approximation solution for each block, we seamlessly join the blocks into a global solution.

The values associated with the ghost points of each block are averaged at the merge stage.

Figure 3.4 shows an example of partitioning a 2D domain into 4 blocks of equal rectilinear

resolution. The block method enables the parallel and distributed computation of the ap-

proximation solution while maintaining its accuracy. This division of labor into independent

blocks dramatically reduces the computation time. For instance, on a 4-core computer, we

parallelize the approximation using MATLAB’s parallel for-loops (parfor) with 4 workers,

each processing a series of blocks. Figure 3.5 shows that increasing the number of blocks

reduces the parallel approximation time without a noticeable difference in the RMS error

for 1M approximation grid points on the Delta Wing dataset. Unsurprisingly, the block

decomposition only decreases the computation time up to a point since the relative overhead

associated with the ghost points increases with the number of blocks.
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Figure 3.5. An increase in the number of blocks reduces the approximation
time required (a) without affecting the RMS error (b).

It is worth mentioning that when we split the system into blocks, we are solving different

least-square systems, given that the system is fully coupled. We extend the block to several

layers of overlapping cells relative to the approximating kernel local support. The addition of

overlapping layers minimizes any discontinuity between the blocks resulting from the system

split by using the same interpolation fitting at the merging locations. In the case of the

linear kernel used here, we extend the block to two voxels (we would use 4 voxels for a cubic

approximation kernel). We expect a slight change in approximation error for the points in

the overlapped region between the blocks compared to the error in the merged solution. We

need to make sure that this difference is small and doesn’t affect the reconstruction quality.

Figure 3.6 shows the error difference for the overlapping points between the error within the

block and the merged solution. We also show in Figure 3.7a the histogram of the distribution

of the error difference between the point-wise error in the block vs. the error in the merged

solution. The figure shows that a very small percentage of the points are affected by the

merge, while most did not see any significant error change. The other two histograms in

Figure 3.7b and 3.7c show the error for the overlapping points in the merged block solution

and in the solution with no blocking, which reveals that the error is in fact a result of the

approximation, not a side effect of the block decomposition. It also shows that the error
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Figure 3.6. The point-wise error-difference between single blocks and the
merged blocks for the points in the overlapped region. The original data
points for the flow around a cylinder dataset are shown in black for reference.
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(c) Error histogram for the no block solution

Figure 3.7. Three histograms of the overlapping points between the blocks.

variations caused by the merge can be neglected given their very low values compared to the

approximation error.

3.8 Evaluation

We use 2D and 3D datasets for evaluating our resulting rectilinear approximation. We

also compare our hybrid grid design with other grid designs by comparing the approximation

quality of various grid designs. Below are short descriptions of the four datasets used to

evaluate our hybrid grid design and bi-level regularized approximation.
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1. Flow around a cylinder: 2D viscous flow around a solid cylinder boundary. Fluid is

injected to the left of a channel bounded by solid walls with a slip boundary condition.

2. Delta Wing: Navier-Stokes simulation of wind flow around a delta-shaped wing at

low speed and high angle of attack. The dataset is comprised of 3M points and 12M

cells. The point distribution was adaptively refined to resolve multiple vortices present

above the wing, with high point density near the wing and sparse point distribution

elsewhere. This makes it a challenging dataset to process due to the extreme non-

uniformity of the point distribution.

3. ICE Train: Simulation of a high-speed train traveling at a velocity of about 250

km/h with the wind blowing from the side at an angle of 30 degrees. The vortices

resulting from the wind are used to study the effects of the train’s track holding. The

data consists of 1.1M points and 2.7M cells. The point distribution for this dataset is

adaptively refined around the train body.

4. Fish Tank: Simulation of turbulent mixing of hot and cold air in a box-shaped domain,

generated by the Nek5000 solver [51 ]. The dataset contains 22M points and 23M cells.

The spatial distribution of the data points is relatively uniform and close to structured.

3.8.1 Adaptive Grid Design Evaluation

Using our proposed bi-level regularized approximation, we test the various designs for

the adaptive grid.

Due to the highly non-uniformly distributed nature of the simulation data, the approxi-

mation results achieved with a uniform grid are significantly inferior to those produced with

a rectilinear grid. Figures 3.8 , 3.9 , and 3.10 show that using a uniform grid with highly

non-uniformly distributed data points is not the optimal solution. The resolution will be

wasted where it is not needed and missing where it is required.

For the given observation, one considers the more general case of rectilinear grids, in

which the cells are axis-aligned, but the spacing along each axis can be arbitrary.
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(a) The original Delta Wing dataset show-
ing the two vortices, with 23K points.
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(b) Approximation on a uniform grid with
resolution of 61 × 61 (= 3721 points) and
RMS error of 2.93 × 10−1.
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(c) Approximation using rectilinear grid
created with spatial method only with a
resolution of 123 × 49 (= 6027 points) and
RMS error of 6.82 × 10−2.
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(d) Approximation on rectilinear grid cre-
ated with our hybrid adaptive resolution
with 107 × 34 (= 3638 points) and RMS
error of 6.82 × 10−2.

Figure 3.8. 2D slice of the Delta Wing original data and its approximations
using various grids, colored by velocity magnitude and zoomed at the vortices.
The rectilinear grid generated using our hybrid method provides the best visual
result and low approximation error while maintaining the smallest grid size.
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(a) The original dataset scattered points.
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(b) Approximation using uniform resolution
(RMS error 2.93e − 01).
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(c) Approximation using only spatial point
distribution (RMS error 6.82e − 02).
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(d) Approximation using the hybrid method
(RMS error 6.82e − 02).

Figure 3.9. Zoom at vortices of a 2D slice of Delta Wing dataset and its
approximations using various grids, colored by velocity magnitude. The cor-
responding grids can be seen in Figure 3.8 .

The use of the hybrid solution stops the refinement if the local error is low, even if

the points are dense. This occurs when the variation in the function values of the dense

points is slight. We add the depth of the quadtree/octree as other criteria to stop the

subdivision. Hence, you obtain a reasonable resolution and prevent the grid from over-

refinement, which would lead to issues related to the rank deficiency that we will discuss in

the next chapter. The hybrid method allows for obtaining a smaller grid while maintaining

the same approximation quality. Figure 3.11 shows that the number of points is small, the

max level for the quadtree was reached, or the local error is low. This last criterion leads

to a smaller grid without deteriorating the approximation quality. The main benefit of the

hybrid method is generating a smaller grid and, therefore, faster to solve and interpolate

while maintaining visually and numerically the same approximation quality as shown in

Figure 3.9 . The resulting grid from the hybrid method has resolution 107 × 34 (= 3, 638

points), and the grid resolution resulting from only using the spatial point distribution is
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(a) The original dataset, with around 22K
points.
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(b) Approximation on a uniform grid with
42 × 23 (= 966 points) and RMS error of
6.9 × 10−2.
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(c) Approximation on rectilinear grid cre-
ated with spatial method only 43 ×
27 (= 1161 points) and RMS error of
1.71 × 10−2.
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(d) Approximation on rectilinear grid cre-
ated with our hybrid adaptive resolution
with 40 × 23 (= 920 points) and RMS er-
ror of 1.71 × 10−2.

Figure 3.10. The flow around a cylinder original dataset and its approxima-
tions using various grids, colored by velocity magnitude.

123×49 (= 6, 027 points), about 40% (1 : 1.6) fewer points to solve while the approximation

maintained the same RMS error level.

The same observation can be drawn from Figure 3.10 . The Figure shows the original 2D

flow dataset on the top 3.10a . The bottom images of the Figure compare the approximation

results using a uniform grid, an adaptive grid without a hybrid method, and an adaptive

grid using the hybrid method. Using the hybrid method, we can obtain an 18% smaller grid

(920 vertices without hybrid octree: 1,161 vertices with hybrid octree) while maintaining

the same RMS error. Notice that the Delta Wing dataset has a lower reduction in the grid

resolution size due to the higher sparsity in the point distribution compared to the flow

around a cylinder dataset.
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Point Limit Reached

Max Depth Reached

(a) Octree using only the spatial distribu-
tion.

Point Limit Reached

Max Depth Reached

Error Thresh Reached

(b) Octree with our hybrid method.

(c) The resulting grid using only the spa-
tial distribution(123 × 49) of input points.
The red lines represent the extra reso-
lution in the resulting grid using spatial
meshing compared to our hybrid method.

(d) The resulting grid using our hybrid
method (107 × 34).

Figure 3.11. Comparison between the octree with and without the hybrid
method and the resulting rectilinear grid from the octrees. The rectilinear grid
using the spatial method is larger than the rectilinear grid resulting from the
hybrid method.

3.8.2 Bi-level Regularization Approximation Evaluation

Qualitative Evaluation

Our evaluation of the Delta Wing and the ICE Train datasets focus on the flow map’s

computation, in other words, the flow-induced transport, which is the computational basis

of a wide range of highly popular flow visualization algorithms. A fundamental challenge in

the approximation of fluid flow datasets is that this integration-based data processing leads

52



(a) The original unstructured grid. (b) Our approximation.

Figure 3.12. Slice for the forward integration of the flow map for the Delta
Wing original data and our approximation.

I
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I
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A

Figure 3.13. Slice of the forward FTLE field derived from the flowmap for the
original unstructured grid (top) and the rectilinear approximation (bottom).
Left: close-up view of the vortical structures present on the left side of the
wing: I: primary, II: secondary, III: tertiary vortex, A: attachment.

to an accumulation of the local approximation error over thousands of integration steps.

Therefore, we are interested in studying the impact of this cumulative error on the quality

of the results that we can achieve with our approximation.

The timing for flow map generation was performed on a computer with Intel i7-3930K

3.20GHz 6 cores processor, with 12MB cache and 32GB RAM. We did other timing exper-
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(a) The original unstructured grid. (b) Our approximation.

Figure 3.14. Volume rendering of the FTLE field flow map or ∆T = 10 time
steps / 0.1s in the original Delta Wing dataset and our approximation.

(a) The original dataset. (b) Our approximation.

Figure 3.15. Volume rendering of LCS in flow map ∆T = 10 time steps /
0.1s for the original Delta Wing unstructured grid and our approximation.

iments on a laptop computer with an Intel i7-8550U 1.80 GHz 4 core processor with 8MB

cache and 16GB RAM.

Specifically, the flow map is computed in the original unstructured datasets and their

rectilinear approximation. The Delta Wing dataset is known to exhibit a vortex breakdown

phenomenon [52 ] characterized by the presence of recirculation bubbles on each of the primary

vortices. Starting from a dense set of initial positions distributed over an axis-aligned box

around the wing, trajectories are integrated over space and time using the Dormand-Prince

4/5 Runge-Kutta scheme [53 ]. Practically, the numerical integration was performed over

10 time steps for a corresponding integration time of 0.1s of the simulation, during which

flow particles seeded at the front of the wing are advected past the unstable portion of the

primary vortex. Figure 3.12 shows a slice of the flow map corresponding to the Delta Wing

dataset. Using the computed flow map, we calculate the corresponding finite-time Lyapunov
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Figure 3.16. The progression of the normalized mean difference between
the flow map for the unstructured grid of Delta Wing and the rectilinear
approximation.

exponent [30 ] (FTLE), which measures the separation rate of neighboring particles and the

flow. The significance of FTLE in the analysis of fluid flows stems from its ability to reveal

so-called Lagrangian coherent structures (LCS), which are surfaces that act as material

boundaries and control the behavior of the flow. Practically, LCS can be identified as ridge

surfaces of FTLE, whereby ridges correspond to extremal surfaces that form the skeleton

of the FTLE field. Their characterization involves the first and second-order derivative of

FTLE. Figure 3.13 compares a cross-section of the FTLE field that corresponds to the cross-

section of the flow map shown in Figure 3.12 . As can be seen in the closeup views on the

left, the main flow structures (primary, secondary, and tertiary vortices and boundary layer

attachment below and above the wing) are accurately reproduced by the proposed data

approximation method. Figure 3.14 offers a three-dimensional view of the FTLE field by

volume rendering, and Figure 3.15 shows the volume rendering of LCS in the flow map.

Essential features such as the recirculation bubbles and the vortex boundaries are captured

in the approximation dataset as clearly as the original.

Figure 3.16 plots the progression of the normalized flow map approximation error as a

function of the integration time. As expected, the error increases as the integration pro-
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Figure 3.17. The cumulative time required to generate the flow map on the
original unstructured Delta Wing grid and the rectilinear grid.

gresses. Interestingly, however, the slope of the error evolution decreases noticeably after

6-time steps, down to 0.06% per time step. Another important observation is that the con-

sidered integration length (10 time steps, 0.1s) amounts to the longest sensible advection

time in this dataset since the flow transports tracers from the wing close to the domain

outer boundary during that time. As such, the maximum measured error of 1.4% can be

seen as a rather satisfactory upper bound.

A timing comparison for the generation of flow maps between the original unstructured

grid and the rectilinear approximation is shown in Figure 3.17 . The total integration time

for 10-time steps for the unstructured grid is 161.2 CPU hours, compared to 24.2 CPU hours

with our rectilinear grid approximation, achieving a 6.7× speedup.

Generating the rectilinear approximation for the 10 time steps took 19.3 minutes. Our

rectilinear approximation significantly reduced computational time while preserving the

salient features in the flow map visualization.

For the ICE Train dataset, we compare our rectilinear approximation with the origi-

nal unstructured dataset using the same visualization tools that we applied to the Delta

Wing dataset, namely the visualization of the flow map and the corresponding FTLE field.

Though the ICE Train dataset is not a time-dependent dataset (it corresponds to a Reynolds-

averaged numerical simulation), we can use the flow map to study the flow structure and its
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(a) The original unstructured grid. (b) Our approximation.

Figure 3.18. Slice of the flow map generated by forwarding integration for
the original ICE unstructured grid and our approximation.

(a) The original unstructured grid. (b) Our approximation.

Figure 3.19. Slice of the FTLE generated from the forward integration of
the flow map for the original ICE unstructured data and our approximation.

interaction with the train’s body. In particular, we are interested in the vortices known to

form on the lee side of the train. These vortices are associated with regions of low pressure

that can affect the lateral stability of the train. Figure 3.18 shows a slice of the resulting flow

map. The FTLE field calculated from the flow map reveals the presence of several vortices,

as expected. Figures 3.19 and 3.20 show a slice of the FTLE field and a volume rendering, re-

spectively, corresponding to the original unstructured dataset and our approximation. While

the resulting flow map and FTLE of our approximations capture the major vortex structures

of interest, there are visible inaccuracies around and leading from the boundary of the train.
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(a) The original unstructured dataset.

(b) Our approximation.

Figure 3.20. Volume rendering of the FTLE generated from the forward
integration of the flow map for the original ICE unstructured data and our
approximation.
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Table 3.1. AVG, RMS, NME, and approximation time
Data

Num. Unstr.
Points

Approx.
Resolution

Num. Grid
Points RMS AVG NME Solving Time

Delta Wing 3.0M

30 × 31 × 28 26K 5.7 × 10−2 3.4 × 10−2 9.3 × 10−1 18.2s
44 × 48 × 39 82K 4.9 × 10−2 2.8 × 10−2 6.0 × 10−1 28.2s
66 × 76 × 56 281K 4.2 × 10−2 2.1 × 10−2 5.5 × 10−1 35.0s

108 × 130 × 73 1.02M 3.4 × 10−2 1.5 × 10−2 5.1 × 10−1 118s

Fish Tank 20M
57 × 63 × 57 205K 4.6 × 10−2 2.2 × 10−2 6.4 × 10−1 180s

101 × 120 × 71 860K 3.5 × 10−2 1.9 × 10−2 5.7 × 10−1 210s
146 × 186 × 72 1.96M 3.0 × 10−2 1.7 × 10−2 5.5 × 10−1 280s

ICE Train 1.1M
16 × 41 × 19 59K 2.0 × 10−2 1.5 × 10−2 3.9 × 10−1 11s
142 × 49 × 30 208K 1.4 × 10−2 6.6 × 10−3 3.8 × 10−1 41s
170 × 66 × 54 606K 8.9 × 10−3 3.5 × 10−3 3.2 × 10−1 176s

Such inaccuracies can also be seen in the Delta Wing dataset close to the boundary of the

wing. Those inaccuracies directly result from the geometric limitation of rectilinear grids

compared to the flexibility of unstructured grids for defining arbitrary boundary shapes. As

described in the conclusion section later, one of our ongoing researches is to capture these

types of boundaries more accurately while maintaining the advantages of using rectilinear

grids such that these boundary inaccuracies are reduced.

The approximation of the ICE Train took 176 seconds. The calculation of the flow

map over the unstructured grid took 171.32 CPU hours. In comparison, the flow map

generation over our rectilinear approximation took 31.04 CPU hours, which is a speedup of

5.5× compared to the unstructured flow map calculation.

For the Fish Tank dataset, we compare the volume rendering result of the original un-

structured grid and the rectilinear approximation in Figure 3.21 . As can be seen, despite

the highly turbulent nature of the flow, the results are virtually indistinguishable.

Quantitative Evaluation

In this subsection, we evaluate the accuracy of our approximation. Table 3.1 summarizes

the resulting approximation error of the 3D test datasets. Figure 3.22 shows the decreasing

trend of RMS error of the Delta Wing dataset with the increase in approximation resolution.

Our approximation achieves low RMS and AVG errors. While the normalized max error

(NME) of our approximation tends to be high for these datasets, all the highest error values
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(a) The unstructured original dataset.

(b) Our approximation.

Figure 3.21. Volume rendering for the unstructured Fish Tank dataset and
our approximation.
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Figure 3.22. The RMS error decreases with the increasing number of grid
points used in the approximation for the Delta wing dataset.

(a) Points with normalized error above
0.1. The size of the points are scaled by
its error for visibility.

(b) A vertical planar slice across the location
of the highest error.

Figure 3.23. Two views for the max error in the Delta Wing approximation,
which occurs at the sharp corners of the wing and is very localized.

occur near the boundaries of the unstructured grid due to the data values changing rapidly

to adhere to the boundary conditions. For the Delta Wing dataset, the highest error occurs

at the corner of the wing where the pressure value changes dramatically from above to below

the wing and where the mesh boundary condition at the wing causes a rapid change in the

velocity vector. Cells at the wing boundary are tiny and flat, making these boundary values

challenging to capture in the approximation with the enforced smoothness of the rectilinear

grid without requiring prohibitively high resolution. Figure 3.23 shows at the left the location
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(a) The original unstructured grid. (b) The approximation.

Figure 3.24. Isosurfaces with different iso-values of the vorticity in the Delta
Wing dataset and the approximation.

of all the points with the normalized error above 0.1, which constitutes 2.8% of the total

points in the dataset. The error value scales the size of each point for better visibility. As

the Figure shows, high error points are confined to the sharp corner of the wing. Figure 3.23 

shows a planar slice of the Delta Wing approximation error at the right, cutting through the

point with the highest normalized error (0.51). As can be seen, the error stays in the thin

cell and is very localized.

Similarly, the Fish Tank dataset has the highest error occurring at the mesh boundary

where the tank and the pipe boundaries are defined. The boundary conditions cause the

data values to decrease to zero sharply.

However, these localized high errors do not noticeably affect the results of the visualiza-

tion, and they tend to correspond to a smoothing effect. Figures 3.24 compare 3 isosurfaces

of the vorticity between the original unstructured grid and the approximation. The points

with extreme values that cause significant approximation errors can be seen in the isosur-
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(a) The original unstructured
grid.

(b) The approximation. (c) Naive interpolation

Figure 3.25. Three Isosurfaces of the vorticity in the Delta Wing dataset
using original data, our approximation, and naive interpolation.

face constructed for the original unstructured grid (left) as the faint line that delineates the

triangular shape of the Delta Wing. It is not present in the isosurface generated from the

rectilinear approximation (right). Refer to Subsection 3.8.2 for additional comparisons.

The naive approach to sampling onto a grid is to use the interpolation of the unstructured

mesh to determine values at the vertices of the rectilinear grid. Using the same rectilinear

grid, this naive approach results in a higher error and noticeably worse visualization results

when compared to our solution. We use MATLAB’s griddata function to interpolate data

onto a Cartesian grid linearly. We try this on the Delta Wing dataset and compare interpo-

lating grid values with our least-square approximation, using the same grid generated using

our octree method. RMS error of the interpolated grid is 0.0036, while our solution gives

an RMS error of 0.0013. We also compare the isosurface visualization in Figure 3.25 , where

the isosurface generated from naive interpolation of the grid (right) fails to capture the thin

vortices near the front of the wing due to the loss of detail in the interpolation process. In

contrast, our method (middle) successfully captures those thin vortices. In summary, our
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Table 3.2. Performance of cell location in the unstructured grid and the
rectilinear grid for 10M query points.

Dataset
Unstructured
Search Time

Cell-tree
Build Time

Total Unstructured
Search Time

Rectilinear Grid
Search Time

Unstr. Avg.
Query Time

per Point

Rect. Avg.
Query Time

per Point
Delta Wing 27.2s 7.3s 34.5s 9.7s 3.5 × 10−6 9.7 × 10−7

Fish Tank 18.1s 10.6s 28.7s 15.2s 2.9 × 10−6 1.5 × 10−6

ICE Train 30.9s 1.6s 32.5s 13.7s 3.3 × 10−5 1.4 × 10−5

approximation method outperforms naive interpolation in terms of approximation error and

visualization results.

Performance of Cell Location

Many visualization algorithms and data analysis techniques require interpolation at ar-

bitrary locations within the dataset, including determining the query location’s cell. As

unstructured grid cells can be arbitrary, cell location constitutes a bottleneck for visualiza-

tion algorithms, despite using dedicated data structures to reduce search time.

This subsection presents a performance comparison of cell location operations between

the original unstructured grid and our rectilinear grid approximation. We utilize the Cell-

tree data structure [16 ] available in VTK [54 ]. The cell-tee data structure is a specialized

boundary volume hierarchy tree structure for the cell location of the unstructured grid. It is

arguably the state-of-the-art in cell location in terms of balancing performance and memory

footprint.

We select random points in the dataset domain as query points. The unstructured grid

distribution determines the random query points distribution, so more query points are

selected in regions with higher point density. We then measure the time to interpolate the

value at the point in the two grids. All computations use VTK’s available data structures and

data representation. A Cell-tree is used in the unstructured case, whereas no additional data

structure is needed for interpolating in the approximation grid. You can find the performance

summary for the three datasets in Table 3.2 . We used the highest approximation resolution

listed in Table 3.1 for the respective datasets. The cell-tree data structure is built once for

each dataset in a preprocessing step for the unstructured grid case. As shown in the Table,
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query time using our rectilinear grid is less than that of the unstructured grid. For 1M

points, taking into account the building time of the cell-tree, the Delta Wing dataset has a

3.6× speedup, the ICE Train dataset has a 2.4× speed up, and the Fish Tank dataset has

a 1.9× speedup. The Delta Wing and the ICE Train datasets see a higher speedup due to

their highly uneven point distribution.

Table 3.3. File storage reduction from the unstructured grid to a rectilinear grid.

Dataset
Unstructured

File size
Rectilinear

File Size Reduction Resolution RMS

Delta Wing 425 MB

814 KB 534 : 1 30 × 31 × 28 5.7 × 10−2

2.5 MB 170 : 1 44 × 48 × 39 4.9 × 10−2

8.6 MB 50 : 1 66 × 76 × 56 4.2 × 10−2

31.5 MB 14 : 1 108 × 130 × 73 3.4 × 10−2

Fish Tank 1.33 GB
4.7 MB 291 : 1 57 × 63 × 57 4.6 × 10−2

19.6 MB 69 : 1 101 × 120 × 71 3.5 × 10−2

44.7 MB 31 : 1 146 × 186 × 72 3.0 × 10−2

ICE Train 148MB
1.8 MB 105 : 1 76 × 41 × 19 2.0 × 10−2

6.3 MB 23 : 1 142 × 49 × 30 1.4 × 10−2

18.0MB 8 : 1 170 × 66 × 54 8.9 × 10−3

Storage Reduction

Storage reduction indicates storage space saved by using our approximation compared to

the original input unstructured dataset. Unstructured grids need to store vertex coordinates

and cell connectivity information explicitly. A large part of data reduction for rectilinear

grids comes from the implicit nature of both vertex locations and cell definitions. Since a

rectilinear grid is constructed as a Cartesian product in 2D/3D space, the only geometric

information needed is the grid coordinates for each spatial dimension. That reduces the

bulk of the storage for unstructured grids. In addition to the geometric information, we

must store the values associated with each vertex. The footprint of that information in the

approximation depends on the chosen resolution, which in our experiments never amounted

to more data points than that of the original unstructured mesh.
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We use the Visualization Toolkit (VTK) XML file format [54 ] for storage space compar-

isons. We used the same compression method in each case. Table 3.3 summarizes the file size

comparison of the three datasets in the original unstructured grid and various resolution rec-

tilinear approximation. The highest storage reduction we obtain for the Delta Wing dataset

is 534× with an RMS error of 5.7 × 10−2. For the Fish Tank dataset, we achieve 291×

storage reduction with an RMS error of 4.6 × 10−2. Similarly, for the ICE Train dataset, we

achieve 105× storage reduction with an RMS error of 2.0 × 10−2.

More generally, assuming that an unstructured grid contains N vertices and 3N cells,

and assuming an equal resolution distribution across all 3 dimensions of the approximation

grid, approximation using the same number of data points amounts to a data reduction of

order 5N2/3. This memory reduction can be seen as a means of lossy compression for large

scientific datasets.

3.9 Conclusion and Future Work

In this chapter, we introduced a framework for approximating unstructured data with

a non-uniform rectilinear grid. We first proposed a hybrid octree refinement method to

obtain an efficient rectilinear grid for approximation. We need the grid to be fine enough

to capture the data features at locations where the data points are dense and vary in input

data values. Refinement happens when we have dense scattered points with high variation in

their functional value. The results show that with our hybrid method, we obtained a smaller

approximation grid with the high resolution needed to capture the features of the original

data without unnecessary refinement elsewhere. A smaller grid means a smaller system to

solve, less storage cost, and faster interpolation. Additional criteria such as maximum octree

depth can be used to achieve more fine-grained control of the octree refinement, thereby

limiting the resolution of the octree.

Given the rectilinear grid obtained using the hybrid octree method, we aim to find the

approximation values corresponding to the rectilinear grid that minimizes the L2-norm of

the difference between the input point values and the interpolation value obtained from the

approximation. This fitting is solved with a linear least-square system. Unfortunately, the

66



resulting fitting system has two major problems; first, the system is often rank-deficient,

causing artifacts in the global solution. Second, the system can be too large concerning

RAM usage for direct solvers to handle. To overcome the first problem, we introduced

smoothing/regularization to the fitting system where additional constraints are added. Ap-

plying the same smoothing weights to all parts in the approximation system can yield a low

approximation quality due to over-smoothing the well-constrained part of the system and/or

under-smoothing for the under-constrained part of the system. We introduced our bi-level

smoothing scheme, which provides adequate regularization by setting the local regularization

weight using a heuristic method based on local point distribution. Our bi-level smoothing

avoids the common problems of over-smoothing and under-smoothing by setting just the

right amount of smoothing that makes the system well-constrained while maintaining low

approximation error. To solve the system’s second problem, which is too significant and

causes a shortage of RAM when using direct solvers, we use a block method to split the

system into blocks with an equal number of unknowns and solve them in parallel. Each

block is padded with extra cells (ghost cells) to maintain continuity between solutions.

We showed that our approximation was about 6 times faster in generating flow maps

than the original unstructured data, with a reduction in the approximation file size that is

a minimum of 8 times less than the original unstructured data file size. Together, those

techniques with the right choice of the adaptive grid offer a means to construct high-quality

approximations of large and complex simulation datasets at a fraction of their original storage

cost and significantly increased performance for visualization algorithms that rely heavily on

interpolation.
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4. BOUNDARY-AWARE RECTILINEAR GRID:

RECTILINEAR GRID WITH SOLID BOUNDARY HANDLING

CAPABILITIES

4.1 Introduction

The previous chapter presented a framework for accurately approximating unstructured

datasets over rectilinear grids using linear approximation kernel. In this chapter, we ex-

pand upon the basic framework of the previous chapter by exploring the boundary handling

capabilities of rectilinear grids using high-order B-spline kernels.

Many post-processing applications would benefit from using a higher-order approxima-

tion kernel because of the smooth approximation and efficiency in calculating high-order

derivatives. These applications include edge detection [55 ], topological segmentation [56 ],

curvature computation [57 ], ridge and valley extraction [9 ], and correct illumination for vol-

ume rendering [3 ] are all applications that use derivatives for their calculation and would

benefit from a smooth approximation.

In Section 3.8 , We discussed the inaccuracies of interpolation close to the boundary when

visualizing the FTLE. The inaccuracies are intrinsic to the structured nature of rectilinear

grids. Higher-order approximation kernels exacerbate those inaccuracies. This is demon-

strated in Figure 4.1 where we compare linear kernel with cubic kernel in terms of flow map

visualization used in Chapter 3 . Though the linear approximation lacks smoothness and

produces inaccurate results around the boundary, the cubic B-spline approximation of the

flow map blends the solid boundary with the rest of the domain. This happens due to the

cubic B-spline kernel spanning multiple grid cells, the thin body of the Delta Wing compared

to the grid resolution, and the lack of boundary-handling capability of the rectilinear grid.

The most interesting part of studying in the simulation is where the flow patterns are

formed (i.e., vortices), which mostly happens close to the solid boundary. This motivates

the development of boundary-aware rectilinear grids, which are rectilinear grids with the

capability to approximate arbitrary boundaries and handle near-boundary interpolations.
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(a) Approximation using linear kernel

(b) Approximation using cubic B-spline kernel

Figure 4.1. Comparison between the flow map for the Delta Wing dataset
approximation using kernels of different orders. The inaccuracy in the in-
terpolation close to solid boundary is more apparent when using high-order
kernels.

We first demonstrate in this chapter that the approximation method presented in the

previous chapter can be extended to high-order kernels, specifically to cubic B-spline kernels.

We then tackle the challenge of representing solid boundaries using rectilinear grids.

To achieve the boundary-awareness, we propose a grid-based boundary approximation.

We use cut-cells where each grid cell has a boundary approximation. A 2D example of

cut-cells can be seen in Figure 4.2 , in which the cut-cells are shown in green. At query

time, the boundary approximation in these cut-cells determines the interpolation behavior

near the boundaries. The approximated grid is endowed with pre-calculated additional data
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arrays (i.e., the intersection of the boundary with the approximated grid). The additional

data array is any information necessary to approximate the solid boundary at query time.

Marching cube aids in generating the boundary approximation at query time efficiently.

The evaluation shows that the proposed solution accommodates challenging boundaries

while supporting high-order reconstruction kernels with a much-reduced memory footprint.

As such, our data representation enjoys all the benefits of conventional rectilinear grids while

addressing their fundamental geometric limitations.

(a) The rectilinear grid cut by the solid
boundary (in purple), grey is for the
area inside the domain.

(b) The cut-cells (in green) resulting
from the solid boundary cutting the do-
main, blue is for pure-cells inside the
domain.

Figure 4.2. The rectilinear grid is cut by the solid boundary of the cylinder
and the resulting cut-cells.

4.2 Related Work

B-spline approximation has been widely used for design purposes in many computer

graphics and industrial applications. A high order B-spline can be used to approximate

datasets defined over unstructured grids and point clouds with a guarantee of smooth-

ness [58 ]. Peterka et al. [59 ] proposed using tensor-product B-splines to represent scien-

tific data as a means of easier post-processing and storage saving. Their work is limited

to approximating structured data and does not consider unstructured data. Yeh proposed
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an efficient adaptive knot placement method for arbitrary order B-spline data approxima-

tion [60 ]. Their method estimates the high order derivative of the input data, which does

not handle datasets with arbitrary boundaries well due to the numerical instability in the

derivative estimation.El-Rushaidat et al. proposed an accurate approximation of the un-

structured data using a customized regularized smoothing least-square. Still, their work was

limited to linear kernels and did not handle the representation of complex boundaries [61 ].

In the computational fluid dynamic community, cut-cells are widely utilized for repre-

senting flexible boundary representation within the framework of structured grids. A cut-cell

is a cuboid cell in a Cartesian grid that intersects with the geometry of some solid boundary.

The computational science community applied the concept of cut-cell for meshing [62 ], [63 ]

and in simulations of viscous flows [64 ]–[66 ]. Bouchon et al. presented a second-order cut-cell

method for these simulations [67 ]. Their method considers two-dimensional two-phase flows

with a solid boundary embedded in the domain. The three-dimensional case was recently

considered [68 ], whereby level sets are used to specify the geometry of the boundary, which

is then approximated by a marching cubes triangulation to calculate the area and volume of

the cut-cell.

Marching cubes is a computer graphics algorithm first proposed by Lorensen and Cline [69 ],

[70 ] for generating a polygonal approximation of an isosurface from a three-dimensional scalar

field defined over a voxel grid. The algorithm uses a look-up table to obtain a triangulation

approximating the boundary, making it highly efficient. A 2D example of cut-cells can be

seen in Figure 4.2 , in which the cut-cells are shown in green.

4.3 Integrating B-spline as an Approximation Kernel

In the previous chapter, we used only a linear kernel for our approximation, equivalent

to using degree 1 B-splines. However, the resulting trilinear kernel suffers from a lack of

smoothness. In this chapter, we extend our reconstruction kernel to the cubic B-spline. The

choice of B-spline provides a highly flexible grid-based kernel due to the knot definition; the

rectilinear grid defines the unique knots for the B-spline kernel.
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Using a cubic B-spline as a reconstruction kernel significantly improves the smoothness

of our approximation over to the linear case. This is clearly shown in Figure 4.3 , which

compares the finite-time Lyapunov exponent (FTLE) calculated using the flow past the

cylinder dataset approximation using linear kernel vs. cubic B-spline.

(a) Approximation using linear kernel

(b) Approximation using cubic B-spline kernel

Figure 4.3. Finite-time Lyapunov exponent (FTLE) for the flow about a
cylinder dataset approximation with different degrees B-spline kernels. The
higher-order approximation results in smoother visualization.

4.4 Boundary-Aware Approximation

The approximation of the field values of datasets defined over unstructured grids through

a rectilinear grid exhibits poor accuracy at locations close to the boundary. The limited cell

structure of the rectilinear grid makes it hard to represent the boundary’s geometry accu-

rately. This is why we propose a rectilinear grid with a different cell structure that offers

a good geometric approximation of the boundary surface. When designing an interpola-
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tion scheme applicable to a cut-cell, the following properties should be satisfied. First, the

interpolation should yield a low approximation error. It should smoothly connect to the

reconstruction scheme of the surrounding cells, ideally up to the same degree. In addition,

the cut-cell reconstruction should possess other application-specific properties, such as no-

slip boundary conditions, whereby the velocity value at the boundary is equal to zero. The

decrease of the velocity of the flow to zero occurs in a thin layer adjoining the boundary.

This is called the boundary layer, and it is characterized by the presence of considerable

velocity gradients.

Within each cut-cell, boundaries are approximated using the marching cubes algorithm.

Similar to the original marching cubes algorithm, which labels each grid point with respect

to a given isovalue, in this implementation, we label each grid point with a binary label that

indicates whether the vertex is inside or outside of the solid boundary domain.

Similar to the trade-off between using the original CFD simulation and the rectilinear

approximation. The small error associated with the approximation that does not affect

the flow structures and the overall flow behavior can be neglected with the performance

improvement, and the storage-saving achieved. The adaptive rectilinear grid was designed

using the hybrid method s high resolution close to the solid boundary. The same applies to

the use of boundary approximation instead of the original geometry. The use of the grid-

based boundary approximation has performance improvement and storage-saving that allows

neglecting the small loss of accuracy in the geometry representation. The loss in accuracy in

representing the boundary geometry will be further minimized. This grid-based boundary

approximation also takes advantage of the fast access and reduced storage that comes with

rectilinear grids.

The triangulation specified by the marching cube triangulation lookup table is combined

with points along the edges of the grid cell to form the surface. In the marching cube

algorithm, these points along the edges are where the chosen iso-value is linearly interpolated

by the grid points connecting the edge. In our case, as each grid point is merely a binary

label indicating whether the grid point is inside the domain or out, we acquire these vertices

along the cut-cell edge by finding the intersection of each edge with the solid boundaries. In

a pre-processing step, each triangle in the boundary mesh is tested against the rectilinear
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Rectilinear Grid

Solid Boundary

Marching Square Boundary Approximation

Outside Grid Point

Inside Grid Point

Figure 4.4. Marching Square approximation (red line) of a solid boundary
(black line). Each grid point is labeled inside (green) or outside (blue) of the
boundary. These labels are used to generate the marching square algorithm
look-up code.

grid cells edges, we make this efficient by checking only the grids in the bounding box of the

specified triangle. All the intersections per edge are then recorded in the rectilinear grid.

. The edge-intersection points and the grid point labels are exported with the rectilinear

grid, along with the weights of the approximation kernel to complete the boundary-aware

solution.

Figure 4.4 illustrates how a 2D marching squares works within our framework. The

figure shows a solid boundary (black line). Each rectilinear grid point is labeled as inside or

outside of the solid boundary. The figure shows that this approach yields a piecewise linear

approximation of the actual boundary geometry (in red). The accuracy of this approximation

depends on the geometric complexity of the body and the available rectilinear grid resolution

used for the approximation. The resolution used is coarse to demonstrate the concept. In

practice, the grid would be much more refined, and approximate the solid boundary more

closely. This high resolution close to the boundary is guaranteed because of the hybrid

method we use to generate the adaptive grid, where we refine if both the input points
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density and the variation between the input points field values are high, which is the exact

case close to boundary.

The original (“naive”) marching cubes algorithm uses a simple lookup table that suffers

from ambiguity. This ambiguity is the result of the non uniqueness of the triangulation

solution for the same MC code. Thus, using this table can result in cracks and incon-

sistent topology for the approximated isosurface. Improvements and optimization to the

original MC algorithm can resolve the ambiguity problem. One of the efficient solutions is

the Chernyaev’s technique [71 ] that expands the MC table to require extra testing for the

ambiguous cases to ensure a topologically correct result. Lewiner et al. [72 ] provide the

full implementation for Chernyaev’s technique. The ambiguity is resolved by expanding the

lookup table to include subcases for the ambiguous cases along with different triangulations

and corresponding additional tests (faces to test or additional internal points) needed to

decide which triangulation result in a correct topology.

Though we use the basic MC algorithm for approximating our boundary in the cut-

cell and the ambiguous cases can arise, the disambiguation solutions cannot be used in our

implementation since we have no scalar values to test against. In contrast to the isosurface

extraction setup, the original geometry is available in our boundary-aware method. Hence, if

we encounter an ambiguous case during pre-processing we can always determine the correct

triangulation based on the original geometry. If the grid is sufficiently refined around the

boundary, ambiguous cases should be limited. If ambiguous cases occur repeatedly, this is

an indication that the grid is not refined enough and additional refinement steps are needed.

Starting from the labeled cut-cell points, we propagate the labels until all rectilinear

grid points are labeled. The propagation proceeds from the labeled cut-cell to its neighbors,

the neighbor cell is partially labeled, the rest of the neighbor cell points are then labeled

according to those partially labeled ones. This is repeated for the neighbors of the newly

labeled cells until all grid cells are labeled. Figure 4.5 shows the ICE Train with the labeling

of the rectilinear grid points. Grid points colored in red are outside the domain, and blue

grid points are inside the domain.

After each grid point is labeled and the intersection is calculated on each grid cell edge,

there may be cases where the marching cube approximation of the boundary does not capture
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Figure 4.5. Rectilinear grid points labels for the ICE Train. Red points are
outside the domain, and blue points are inside the domain. The train geometry
is given for reference in grey, and the rectilinear grid wireframe in black.

the topology of the input boundary. This can occur when the grid resolution is too coarse.

We detect this by checking if a grid edge has multiple intersections. Those values are recorded

in the step where we find the intersection of each edge with the solid boundaries. A simple

check to the recorded value would indicate if the edge has multiple intersections. If it does,

we further refine the grid by increasing the grid resolution along the dimension of the edges

with multiple intersections until no edge has more than one point of intersection with the

input boundary.

Figure 4.6 shows a 2D slice of the Delta Wing solid boundary and the rectilinear ap-

proximation grid. In this particular example, the double intersections at the vertical edges

indicate that the grid is not fine enough to capture the boundary geometry. If the refinement

is not performed, we might miss part of the boundary. Thus the Y-dimension grid resolution

is refined. A simple refinement procedure is followed. We recursively split all edges with

multiple intersections with boundaries into equal halves and reevaluate the newly refined

edges until no more edges with multiple intersections exist. As a result, the new grid can

capture flat wing geometry.

The boundary-aware rectilinear grid solution contains the approximation kernel weights,

the inside/outside grid point label, and the relative intersections of the cell edges with the

boundary. We should note that even though volume and boundary approximations are
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(a) Before refinement

(b) After first refinement

(c) After second refinement

Figure 4.6. Zoom-in view on the rectilinear grid of Delta Wing before re-
finement and after two refinement steps based on the double intersection on a
grid edge.
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separate, we can easily save both results in one cohesive rectilinear grid with multiple data

arrays, each corresponding to specific aspects of the solution.

4.5 Boundary-Aware Interpolation

This section explains the interpolation procedure in the boundary-aware rectilinear grid

and how it depends on the nature of the cell that contains the query point. Given a query

point, we first find the rectilinear grid cell that contains the point, which is a straightforward

binary search, as previously explained in Section 2.1 . At interpolation time, we determine

if the enclosing grid cell is a cut-cell by checking whether the vertex labels of the grid cell

vary.

The binary label is used to calculate the marching cubes look-up code into a table that

stores the triangulation of the boundary within the cut-cell. After obtaining the marching

cubes code, each cell can be categorized into one of three cases: entirely outside the domain,

entirely inside the domain, and a cut-cell. Each query point is handled differently depending

on the type of cell that includes it.

If the query point falls in a cell entirely inside the domain, the B-spline interpolation is

performed normally. If the query point falls in a cell entirely outside the domain, the resulting

interpolation should be a value appropriate for an out of domain location. Otherwise, if the

query point falls in a cut-cell, special handling is needed.

The following should be performed when interpolating in a cut-cell; first, we construct

an approximation of the solid boundary using marching cubes, an algorithm chosen for its

simplicity and efficiency. Specifically, from the information exported from the boundary-

aware rectilinear grid in Section 4.4 , we calculate the marching lookup code from the grid

cell vertex labels, retrieve the triangulation from the lookup table, and construct the triangles

using the edge-intersection information also exported in Section 4.4 .

For any query point that falls in a cut-cell, we first need to decide if the query point

is inside or outside the domain. The test can be done using the odd-even rule [73 ], a test

commonly used in computer graphics to determine if a point is inside or outside a polygon.

We chose a cut-cell vertex with a given inside/outside label. Then we shoot a ray from
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Figure 4.7. The odd-even rule is used to test whether a query point is
inside/outside a cut-cell. Marching cube triangulations are green. The grid
cell vertices are labeled (red for outside the domain and blue for inside the
domain). Two example query points are shown. One with an odd number of
intersections is labeled outside. The other query point is labeled inside with
an even number of intersections.

the query point to that specified cell vertex. The number of intersections between the ray

and the triangles is counted. We consider the query point to share the same in/out label

with the selected cell vertex if the number is even. Otherwise, we consider the query point

label to be the opposite of the selected cell vertex label. Figure 4.7 shows an example of

the odd-even test in a cut-cell. The figure shows the marching cubes triangulation and two

query points. A query point is considered inside if an even number of triangle intersections

is found, outside if that number is odd.

The interpolation of a query point that is both in a cut-cell and inside the domain

is performed in an arbitrary polygonal cell, instead of regular rectilinear grid cells (i.e.,

rectangular cuboids). The arbitrary polygonal cell is constructed from the marching triangles

and the cut-cell. this is illustrated in Figure 4.2 , where the interpolation in the cut-cells (in

green) is not performed in the rectangular-shaped cells.

CFD simulations, which are the main focus of this thesis, have a set of properties that

an interpolation scheme should follow. First, the interpolation should be smooth inside the

cut-cell, as well as a smooth transition across the cell bounds to maintain a certain level
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of continuity between cells. Second, the interpolation in the cut-cell should maintain the

no-slip boundary condition [74 ], according to which, at a solid boundary, a viscous fluid will

have zero velocity relative to the boundary.

A straightforward solution to interpolate in a cut-cell would be to interpolate using nor-

mal B-spline for points inside the domain, otherwise, perform no interpolation outside the

domain. This solution is simple but has the drawback that there is no guarantee that the

no-slip boundary condition is preserved. The solution would be either to find another inter-

polation scheme in the cut-cell that preserves the previously listed properties for interpolation

close to the boundary or use the straightforward solution with special handling to maintain

the no-slip boundary condition. We explored interpolation in the cut-cell using Mean Value

Coordinates (MVC) [75 ]–[77 ]. Figure 4.8 shows an example interpolation using MVC. The

smoothness is guaranteed inside each cell.

Figure 4.8. Example of MVC filter applied to the interpolating basis in 4
cut-cells. For the purpose of enforcing the no-slip boundary condition, the
boundaries are set to be zero.

MVC is a particular instance of generalized barycentric coordinates [78 ] commonly used

for interpolation in arbitrarily shaped polygonal cells. We considered MVC as an option

for cut-cell interpolation because it provides smooth interpolation within the cut-cell, and

guarantees a smooth transition to a zero interpolated value near the cut-cell boundary, this
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(a) The original unstructured dataset.

(b) Reconstruction using straight forward in-
terpolation

(c) Reconstruction using B-spline with MVC
within a cut-cell.

Figure 4.9. Comparing B-spline cut-cell interpolation with and without MVC
for the Flow About a Cylinder dataset.

can be seen in Figure 4.8 , where the approximated boundaries resulting from the MC are

set to be zero, thereby maintaining the no-slip condition along the solid boundary.

We integrate the MVC interpolation scheme inside a cut-cell by applying it as a filter

over the B-spline basis in the interpolation Equation (2.7 ) from Section 2.4 

ψ(x) = C(x)M(x) (4.1)
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where C is the B-spline basis, and M is the MVC filter function in a cut-cell that transitions

from 1 to 0 within the cut-cell, and 1 for a non-cut-cell otherwise, so as to leave the B-spline

basis unchanged.

Our attempt, however, did not produce a desirable interpolation result. Figure 4.9 com-

pares the result of using the MVC interpolation scheme versus without the added MVC

filter. In Figure 4.9b , the straightforward solution with just B-splines interpolation produces

a much smoother approximation compared to overlaying the interpolation kernel with MVC

in Figure 4.9c . It turns out that integrating MVC in the approximation kernel causes inac-

curacies at the boundary of the cell, due to the discontinuity between the cells interpolated

using MVC and the neighboring cells interpolated using the B-spline kernel. In compari-

son, the straightforward B-spline solution provides, by construction, a much smoother and

more natural interpolation result between grid cells, than the MVC solution. The cubic

B-spline kernel guarantees a smooth approximation that is C2 continuous everywhere, while

the MVCs are continuous everywhere and smooth on the interior of the triangular meshes,

but they are linear on the triangles of the mesh and can reproduce linear functions on the

interior of the mesh.

Whilst our interpolation scheme with only B-spline provides a smooth solution, it still

does not maintain the essential property of the no-slip boundary condition in CFD datasets.

We, therefore, consider alternative solutions that keep the B-spline interpolation basis but

mimic the no-slip condition at interpolation time, which is able to reproduce the correct flow

structures close to the boundary.

As mentioned earlier in the chapter the velocity of the flow decreases until it reaches zero

at the boundary. This decrease occurs in a thin layer called the boundary layer. This layer

adjoining the boundary is characterized by the presence of considerable velocity gradients

in it. and the velocity value for the points in the boundary layer should point the flow to

move parallel to the solid boundary, which keeps propagating close to the boundary until

they circulate to make the vortices.

The special handling is application-dependent to the CFD simulation data we are using

in this thesis, each application can require its own special handling based on the boundary

conditions of the application in hand. In approximating CFD flow data, problems occur
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when a streamline close to the boundary exits the domain due to small approximation

inaccuracies near the boundary. To mimic the no-slip boundary behavior, if a streamline

travels outside the domain, we project the interpolated velocity vector of that point onto the

closest boundary such that the vector runs parallel to the boundary and does not continue

moving away from the domain. Figure 4.10 illustrates the projection of the interpolated

vector into the boundary.

(a) Interpolated vector exiting the do-
main. The Blue arrow is the interpolated
vector.

(b) Interpolated vector projected onto the
boundary. The green arrow is the pro-
jected vector.

Figure 4.10. Special interpolation handling for flow visualizations.

There are two primary motivations for using grid-based boundary approximation instead

of the exact geometry from the input boundary data. First, efficiency; accessing the exact

boundary at query time can be expensive. Auxiliary data structures such as the celltree [16 ]

are used to speed up queries in unstructured grids. Efficiently finding all the boundary tri-

angles intersecting a given grid cell would require pre-processing the boundary triangulation

to find which triangles intersect each cell. We would need to maintain bookkeeping of the

triangle indices. This could possibly result in a large number of triangles per grid cell. At

query time, we would then need to access the geometry of all the intersecting triangles. This

information is necessary to decide if the point is inside or outside the volume, which will

determine the correct interpolation. The total number of triangulations in the boundary

approximation has an upper bound of 5 times the number of cut-cells which is dependent

on the rectilinear grid resolution. The marching cubes triangulation in each cut-cell has an

upper bound of 5 triangles.
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Table 4.1. The percentage of the increase in rectilinear grid file size is due to
the additional data arrays.

Original unstructured grid Rectilinear grid

Dataset File size
Boundary
file size

Naive (no-boundary)
file size

Boundary array
size

File size percentage
increase for
boundary data

Flow about a cylinder 2.4 MB 16.8 KB 53 KB 3 KB 5%
Delta Wing 279 MB 41.9 MB 23.611 MB 6.7 KB 0.02%
ICE Train 86.9 MB 3.30 MB 21.9 MB 0.2 MB 9.1%

Second, storage-saving, if we use the input boundary at query time, we need to keep the

solid boundary triangulation at all times, which can be expensive. In contrast, we only save

extra data arrays within the same rectilinear grid file for the grid-cell-based boundary. Ta-

ble 4.1 shows that the percentage of file size increase for the boundary-aware rectilinear grid

compared to the naive rectilinear grid is a maximum of 9%. The files are using compressed

VTR (VTK XML rectilinear grid format) file format. The ICE Train has the largest bound-

ary mesh compared to the other datasets, which causes the file size percentage increase to

be maximum in this case.

4.6 Method Evaluation

In this section, we evaluate our method in terms of approximation quality and perfor-

mance.

As done in the previous chapter, we take advantage of the open-source Visualization

Toolkit library [54 ] and its XML rectilinear grid format for our implementation. All the

kernel weights, vertex labels, and edge intersection arrays are stored as data arrays in the

rectilinear grid file.

We use the same three CFD datasets for our evaluation as in previous chapters. Fig-

ure 4.11a shows the 2D viscous flow around a solid cylinder body. The solid cylinder bound-

ary is colored white. Figure 4.11b shows the 3D Delta Wing with the wing solid boundary

colored in gray. The wing boundary is considered a challenging one due to its small z-

direction bounds. Figure 4.11c shows the ICE unstructured grid zoomed close to the train

solid boundary.
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(a) 2D flow about a cylinder. The cylinder bound-
ary is a circle toward the left of the dataset.

(b) 3D Delta Wing. The solid boundary
is a wing in the middle of the flow, colored
with light gray.

(c) 3D ICE. The train body embedded in
the airflow of the ICE dataset.

Figure 4.11. 2D and 3D datasets simulate flows with solid boundaries.

4.6.1 Approximation Quality Evaluation

This subsection offers a quantitative comparison between the visualization results ob-

tained with the original unstructured grid and those achieved with our rectilinear grid ap-

proximation.

Like the previous chapter, our evaluation of the three CFD datasets focuses on the

computation of the flow map, in other words, the flow-induced transport, which is the

computational basis of a wide range of prevalent flow visualization algorithms.

Specifically, the flow map is computed in the original unstructured datasets and two

versions of their rectilinear approximation, one without boundary handling and one with

boundary handling capabilities. With proper boundary handling, no erroneous interpolation
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Table 4.2. Comparison between the unstructured input files, the boundary-
aware rectilinear grid files, approximation error, and generation time for the
corresponding boundary-aware rectilinear file.

Dataset
Unstructured grid Boundary-aware rectilinear grid Approximation quality and timing
file
size
(MB)

# of
points

file
size
(MB)

# of
points

grid
resolution

max
error

RMS
error

Approxim-
ation time
(s)

Boundary
process
time (s)

Flow Around Cylinder 3.0 21K 0.085 2,145 55×39 6.45e-02 6.57e-03 0.27 0.079
Delta Wing 820 3.08M 18.2 704,123 119×97×61 6.51e-01 1.06e-01 374.07 5.19
ICE Train 180 1.07M 24 717,500 25×70 ×41 8.61e-01 1.08e-01 329.43 11.97

query is performed outside the domain. Hence, better flow map results should be expected

close to the solid boundary using the boundary-aware rectilinear grid.

We use cubic B-spline kernels to generate the approximations used in this chapter. The

high-order kernel provides a smooth approximation compared to the linear kernels. Un-

fortunately, the artifacts close to the boundary resulting from the rectilinear grid lacking

awareness of the solid boundary exacerbate.

Table 4.2 presents information on the input data and our boundary-aware rectilinear grid

approximation on each dataset. The Table also shows the approximation used for each tested

dataset, the approximation’s accuracy, the time is taken to obtain it, and the resulting file

size.

To demonstrate the accuracy of our approximation, we compare visual results obtained

from the FTLE of the flow map of each dataset and show the difference between the original

unstructured grid, the naive approximation without boundary handling, and the result using

our boundary-aware interpolation method explained in this chapter.

Figure 4.12 shows the FTLE computation over the flow map of the 2D flow dataset.

There is a noticeable difference around the cylinder boundary between the naive approxi-

mation and the unstructured grid. The naive rectilinear grid has no information of what

rectilinear grid points are inside or outside the domain and would still interpolate the out-

side query points, which will cause the FTLE around the solid boundary to be inaccurate.

In contrast, when comparing the FTLE results of our boundary-aware approximation, the

result is visually identical to the unstructured input grid. Our boundary handling approach

accurately reproduced the flow behavior around the cylinder.
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(a) Unstructured grid

(b) Naive rectilinear grid

(c) Boundary-aware rectilinear grid

Figure 4.12. FTLE generated from the flow map run on the flow past cylin-
der 2D unstructured grid, the naive rectilinear grid approximation, and the
boundary-aware rectilinear grid approximation. High accuracy in interpola-
tion close to the boundary using boundary-aware rectilinear gird compared to
the discrepancies in the interpolation in the naive rectilinear grid.
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(a) Unstructured grid

(b) Naive rectilinear grid

(c) Boundary-aware rectilinear grid

Figure 4.13. Comparison of slices of the FTLE result for the ICE Train
dataset, using the original unstructured grid, the naive rectilinear approxima-
tion, and the boundary-aware rectilinear grid approximation.
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(a) Unstructured grid

(b) Naive rectilinear grid

(c) boundary-aware rectilinear grid

Figure 4.14. Comparing volume rendering of the flow map FTLE of the
ICE Train dataset, computed over the original unstructured grid, the naive
approximation, and the boundary-aware rectilinear grid approximation.
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Figure 4.13 and 4.14 shows a comparison of the FTLE result obtained with the origi-

nal unstructured grid input and our rectilinear approximation with and without boundary-

awareness for the ICE Train dataset. Approximation without the boundary handling capa-

bility results in the nonphysical behavior of a flow crossing into the border, leaving no visual

indication of the boundary. On the other hand, using our boundary-aware interpolation

method, the resulting FTLE clearly outlines the boundary of the train body and closely

matches the FTLE results of the input dataset around the boundary.

Figure 4.15 compares the flow map result of the original Delta Wing unstructured

grid dataset against the approximation with and without boundary awareness. The figure

shows that our boundary-aware approximation accurately captured the boundary given this

dataset’s challenging nature. The Delta Wing is very thin in the z-direction. Our approxi-

mation with the refinement method accurately handled the boundary and generated correct

interpolations around it. Some artifacts can be seen as tiny dots around the wing-body.

Those artifacts can not be avoided and are also present even in the original unstructured

data flow map.

The same observation for the Delta Wing dataset can be seen in Figure 4.16 where the

volume rendering of the FTLE using our boundary-aware rectilinear grid resulted in a visu-

alization that captures the original data in all aspects. As before, the naive approximation

was not able to capture the solid boundary.

Our goal in this work is to achieve smaller file size while improving the visualization algo-

rithms performance and the quality of the reconstruction. One could think of an alternative

way to reduce the data size without the need for a least squares fit consists in extracting

a decimated version of the original unstructured dataset, thereby retaining a subset of the

original data points at which the value is known. To allow comparison with our approach,

we decimate the original unstructured grid into a smaller grid that is equal in storage size

to the rectilinear grid that we use to generate the results in this chapter. We then use this

decimated data to study the flow structures. We perform this comparison on the Delta Wing

dataset where we preserved all the boundary points, and the file size of the decimated data

is 7% of the size of the original data. The resulting points were then re-meshed using a

3D Delaunay triangulation. We tested the performance and the accuracy of the decimated
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(a) Unstructured grid

(b) Naive rectilinear grid

(c) Boundary-aware rectilinear grid

Figure 4.15. Comparison between slices of the Delta Wing flow map calcu-
lated over the unstructured grid, the naive rectilinear approximation, and the
boundary-aware rectilinear approximation.
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(a) Unstructured grid

(b) Naive rectilinear grid

(c) Boundary-aware rectilinear grid

Figure 4.16. Comparison of volume rendering of the FTLE generated from
the flow map using Delta Wing unstructured grid, the naive rectilinear grid,
and the boundary-aware rectilinear grid approximation.
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unstructured grid by generating a flow map and compare that result with the original un-

structured grid and the rectilinear grid approximation. Figure 4.17 compares the slice of

flow map for the original data and the decimated data. The results show that while the

decimation approach is reducing the storage cost, it does so at the expense of the accuracy

of the reconstruction and the efficiency of the visualization processing. Indeed, the quality of

the decimated grid is poor, owing to the highly non-uniform vertices distribution; the tetra-

hedras have high aspect ratio and wide differences exist in local cell sizes. The bad quality

of the decimated grid significantly deteriorates the cell-tree performance in this case, which

leads to a poor interpolation performance that is even worse than that of the large original

dataset. Running the flow map takes 3h 31m using the original unstructured data, 4h 36m

using the decimated data, and 44m using the boundary-aware rectilinear grid for the same

resolution. The accuracy of the flow map using the decimated data is also poor. First, the

interpolation close to the wing is not accurate. This is due to the fact that the original data

has an extremely high point density in the direct vicinity of the wing and decimating that

grid therefore requires to remove a large number of data points in that region. In addition

the Tertiary vortex on the right side of the flow map is missing as can be seen in the zoomed

part of Figure 4.17 .

A more carefully designed decimation procedure that considers the local spatial density

of the resulting point set and the significance of a given vertex might yield better results,

but that is an open research problem that is beyond the scope of this thesis.

4.6.2 Timing Comparison

To test the interpolation speedup achieved using our boundary-aware rectilinear grid

compared to the original unstructured dataset using the cell-tree, we interpolated one million

random points in the original unstructured grid and our cubic B-spline interpolation using

the different datasets, and we can find the results in Table 4.3 .

Cell-tree is a specialized boundary volume hierarchy tree structure for cell location across

the unstructured grid. It is arguably the state-of-the-art in cell location in terms of balancing

performance and memory footprint. We utilize the Cell-tree data structure as implemented
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(a) Unstructured grid

(b) Decimated unstructured grid

(c) Rectilinear grid

Figure 4.17. Comparison between slices of the Delta Wing flow map calcu-
lated over the unstructured grid, the decimated unstructured grid , and the
rectilinear grid approximation. The tertiary vortex is missing in the flow map
using the decimated data.
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in VTK. As previously stated and used in the thesis, we will compare the interpolation using

our approximation with the interpolation in the original unstructured grid that uses a cell

tree. The Cell-tree data structure is built once for each dataset pre-processing and used in

all subsequent interpolation calls.

The rectilinear grid used in Table 4.3 is the same approximation used for the flow map

computation.

Table 4.3. Comparison of interpolation time (in seconds).

DataSet
Cell-tree
build time

Unstructured
Grid

Cubic B-spline
Rectilinear Grid

Speed Up

Cylinder 0.01 5.31 0.69 7.7×
Delta 16.16 8.36 1.35 18.1×
ICE 1.97 9.15 1.45 7.7×

As can be seen from Table 4.3 , the B-spline rectilinear approximation for 1 million points

takes a fraction of the time for the same 1 million points in the unstructured grid even with

the Cell-tree speedup.

4.7 Conclusion and Future Work

We presented in this chapter a method enabling the accurate approximation of datasets

defined over unstructured grids with complex solid boundaries through a simple tensor prod-

uct B-spline approximation over specialized boundary-aware rectilinear grids. Our solution

allows for automatic refinement of the rectilinear mesh around solid boundaries. We can

obtain a piecewise linear approximation of the corresponding geometry within the simple

rectilinear grids using cut-cells. As our experimentation with several CFD datasets showed,

the resulting approximation makes it possible to explore the properties of large datasets

through the much more efficient visualization of a significantly reduced and smoother rep-

resentation with smooth derivatives. Our work utilizes VTK XML rectilinear grid without

generating a new reader or writer to utilize the integration with currently available VTK

applications and their existing pipeline. Several interesting avenues exist for future work.

Among them, a more flexible, piecewise nonlinear boundary model could be applied in cut-
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cells instead of the current linear model to improve the rectilinear approximation accuracy

further.
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5. CONCLUSION AND FUTURE WORK

This thesis considers a framework to address the problems encountered when using an un-

structured grid with highly non-uniformly distributed points and solid boundaries. These

grids are commonly used in computational fluid dynamics for their flexibility and adaptivity

but suffer from expensive storage and expensive post-processing visualizations. The pro-

posed solution lies in the approximation of the input data into a rectilinear grid that can

accurately represent the original unstructured data with superior performance and without

the shortcomings of unstructured grids.

At the beginning of the thesis, we considered the choice of the rectilinear grid to be

used for the approximation. The choice of the grid is a crucial aspect of the accuracy of

the approximation. We proposed a customized quadtree/octree that aids in the adaptive

subdivision of the domain based on the spatial distribution of the unstructured grid points

and the local fit error in the tree nodes. This results in an adaptive grid that can accurately

capture the main aspects of the simulation and is as small in size as possible.

Our evaluations show that, using the grid resulting from our customized hybrid quadtree/oc-

tree we can achieve the same high-quality approximation with a much smaller grid than a

uniform grid or a grid obtained from naive quadtree/octree subdivision-based only on point

distribution. A smaller grid means a smaller approximation system to solve and more efficient

usage of storage space.

We continue in Chapter 3 our framework by investigating a numerical problem encoun-

tered while solving for the least-square fitting solution. The fitting least-squares system is

often rank-deficient due to having insufficient constraints to solve the system. This lack of

constraints is mainly due to the mismatch of the point distribution in the original data and

the approximating rectilinear grid, where some grid points lack sufficient fitting constraints

due to having few or no surrounding input data points within its basis support. The fitting

solution of a system that is rank-deficient could complicate linear solvers or generate visual

artifacts in the solution.

We adopt a regularization method where we use discrete Laplacian to add smoothness

constraints. In this method, picking the regularization weight is critical. Using a high
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regularization weight can cause the smoothness constraint to overtake the interpolation con-

straint and increase the resulting approximation error. On the other hand, using a low

regularization weight might not be sufficient to overcome the rank deficiency in the system.

We propose a variable-smoothing approach, where we apply the right value of regularization

weight per unknown, thus providing the right amount of smoothing constraint only where

needed. Evaluations show that our variable-smoothing approach provides a high-quality

approximation compared to the traditional approach using a singular regularization weight.

To ensure the system’s scalability to large datasets, we use a block-based division of the

domain to split the problem into smaller sub-problems such that larger datasets do not cause

memory issues when solving the linear system. To maintain continuity between the blocks,

we pad each block with overlapping ghost-cells. We showed that our block-based solution

allowed for handling larger systems without a degradation in the approximation quality.

In Chapter 4 , we consider the problem of lack of flexibility in representing complex

geometry in rectilinear grids. The naive rectilinear grid has no notion of inside/outside the

domain. This causes inaccurate interpolation in the rectilinear grid close to the boundary.

The problem becomes more apparent when high-order kernels are demonstrated with cubic

B-spline. To resolve the boundary problem faced, we supplement the approximation grid

with a boundary approximation capability. This boundary-aware rectilinear grid is equipped

with the information necessary to approximate a solid boundary, and at query time, handles

near the boundary interpolation, thus enjoying all the benefits of conventional rectilinear

grids while addressing their fundamental geometric limitations.

Though our thesis covers many aspects of the approximation problem, there remain

interesting avenues for future work. Some avenues for future work can be creating a hierarchy

of approximation resolutions. It can be beneficial to display the approximation result of

scientific simulation data in a fine to coarse hierarchical fashion. The availability of a low-

resolution approximation with acceptable accuracy can be helpful when processing using low-

resource hardware or become a bootstrap for more refined resolution approximations. This

could face many research challenges regarding how the hierarchical structure will adapt to

the grid’s nature, primarily if a rectilinear grid is used. Additional problems could arise given

that the coarse grid solving system would be tall and skinny (i.e., number of input points
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is higher than the number of unknowns), which makes the solving complex. Optimization

algorithms like the Lancsoz algorithm, an algorithm used to break down the complexity of

the problems, could be beneficial.

There are two types of time-dependent flow visualizations simulations; the Eulerian sim-

ulations and the Lagrangian simulations. In the Eulerian simulations, the underlying mesh

remains constant while the field values at the mesh points change. Which is the type of

simulations we deal with in this thesis. On the other hand, the Lagrangian simulations un-

derlying mesh changes over the time steps. Another avenue that would be useful for large

time-dependent simulations would be the creation of a streaming approach. Suppose an

Eulerian time-dependent data set, having the whole time steps ready at the time of solving

will improve the performance, given that the approximation matrix would be generated once

and factorized once, and the right-hand side would be the aggregate of all time steps.

For Lagrangian time-dependent simulations, the streaming method would include an

extra overhead of updating the approximation grid efficiently ( without the construction of

the octree) to adapt the edits in the data points’ locations.

Other venues for future work can be figuring out ways to improve the approximation

to run on large parallelized clusters/supercomputers and develop a high-performance imple-

mentation of this method on GPU/CPU.
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