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ABSTRACT

This dissertation broadly focuses on autonomous condition assessment of civil infrastruc-

tures using vision-based methods, which present a plausible alternative to existing manual

techniques. A region-based convolutional neural network (Faster R-CNN) is exploited for the

detection of various earthquake-induced damages in reinforced concrete buildings. Four dif-

ferent damage categories are considered such as surface crack, spalling, spalling with exposed

rebars, and severely buckled rebars. The performance of the model is evaluated on image

data collected from buildings damaged under several past earthquakes taking place in dif-

ferent parts of the world. The proposed algorithm can be integrated with inspection drones

or mobile robotic platforms for quick assessment of damaged buildings leading to expedi-

tious planning of retrofit operations, minimization of damage cost, and timely restoration of

essential services.

Besides, a computer vision-based approach is presented to track the evolution of a damage

over time by analysing historical visual inspection data. Once a defect is detected in a

recent inspection data set, its spatial correspondences in the data collected during previous

rounds of inspection are identified leveraging popular computer vision-based techniques.

A single reconstructed view is then generated for each inspection round by synthesizing

the candidate corresponding images. The chronology of damage thus established facilitates

time-based quantification and lucid visual interpretation. This study is likely to enhance

the efficiency structural inspection by introducing the time dimension into the autonomous

condition assessment pipeline.

Additionally, this dissertation incorporates depth fusion into a CNN-based semantic seg-

mentation model. A 3D animation and visual effect software is exploited to generate a

synthetic database of spatially aligned RGB and depth image pairs representing various

damage categories which are commonly observed in reinforced concrete buildings. A number

of encoding techniques are explored for representing the depth data. Besides, various schemes

for fusion of RGB and depth data are investigated to identify the best fusion strategy. It

was observed that depth fusion enhances the performance of deep learning-based damage

segmentation algorithms significantly. Furthermore, strategies are proposed to manufacture

14



depth information from corresponding RGB frame, which eliminates the need of depth sens-

ing at the time of deployment without compromising on segmentation performance. Overall,

the scientific research presented in this dissertation will be a stepping stone towards realizing

a fully autonomous structural condition assessment pipeline.

15



1. INTRODUCTION

Buildings form an important part of urban infrastructure systems. Damage in buildings

caused by earthquake events not only renders the residents homeless, it brings to a halt

various economic activities which are directly or indirectly dependent on building infras-

tructures. It also disrupts essential service utilities which act as lifelines for the people of

the locality. Therefore, it is of vital importance to ensure that the full functionality of

buildings is quickly restored in the wake of an earthquake event. The ability of a building

to withstand damage and recover in a timely manner following an extreme event is called

structural resilience, which is recognized by the scientific community as a promising research

area owing to its profound impact on life safety and overall economy. However, an expe-

ditious disaster recovery calls for a rapid and comprehensive evaluation of the nature and

extent of damages inflicted by the extreme event on building infrastructure systems. The

existing earthquake reconnaissance practices are predominantly manual. A group of certified

inspectors visit the affected buildings, taking measurements from the damaged areas, post

processing the collected information and finally arriving at the retrofit decision. Needless to

say, this procedure is time consuming and expensive as it requires a lot of manpower. Some-

times it also involves risk as the human inspectors need to visit or go very close to a damaged

structure which is about to collapse, to record an accurate reading. As a viable alternative,

such manual methods can be replaced by inexpensive UAVs or inspection robots which can

cruise autonomously through potentially damaged buildings looking for damages and col-

lecting critical information using on-board vision-based and other types of sensor systems

which will help identify the problem areas requiring immediate attention. An autonomous

engineering assessment like this will identify the risks and mitigate life safety hazards for

human inspectors by preventing them from entering a building which is prone to collapse.

It will also enable quick evaluation of recovery and repair cost and financial loss induced by

downtime. Additionally, reserve capacity for different structural elements can be assessed

from corresponding damage levels and retrofit operations can be planned accordingly.

An exhaustive review of existing literature revealed several research gaps, some of which

are addressed in this dissertation. It was observed that the previous studies on vision-based

16



post-disaster reconnaissance of reinforced concrete buildings focused only on surface cracks

and spalling, whereas more severe damage categories like spalling with exposed rebars and

severely buckled rebars were ignored. This study aimed to fill this information gap by lever-

aging a deep learning-based approach. A region based convolutional neural network (Faster

RCNN) is exploited to detect four different damage types, namely, surface crack, spalling

(which includes facade spalling and concrete spalling), severe damage with exposed rebars

and severely buckled rebars. The performance of the proposed approach is evaluated on

manually annotated image data collected from reinforced concrete buildings damaged under

several past earthquakes such as Nepal (2015), Taiwan (2016), Ecuador (2016), Erzincan

(1992), Duzce (1999), Bingol (2003), Peru (2007), Wenchuan (2008), and Haiti (2010). Sev-

eral experiments are presented to illustrate the capabilities, as well as the limitations, of the

proposed approach for earthquake reconnaissance. The research outcome is a step forward

to facilitate the autonomous condition assessment of buildings where this can be potentially

useful for insurance companies, government agencies and property owners.

Besides, civil infrastructures are observed to undergo deterioration over time owing to

overloading or unfavorable environmental conditions. This calls for periodic inspection of

structures in order to prevent sudden failure or to avoid any untoward human casualties

caused by unserviceable infrastructure conditions. The existing inspection techniques are

predominantly manual, and consequently time consuming, expensive, subjective, and risky.

Numerous studies in recent years focused on autonomous inspection techniques based on

the latest advancements made in the areas of computer vision and deep learning [ 1 ], [ 2 ].

Spencer et al. [  3 ] provides an exhaustive review of available literature on this topic. A

number of investigations explored autonomous damage identification from visual data ex-

ploiting various image processing [ 4 ], machine learning and convolutional neural networks

(CNN) [ 5 ]–[ 7 ] based approaches. Damage quantification also gained some attraction from

the research community [  8 ]–[ 10 ]. However, most of the previous studies found in literature

were invariably agnostic to the time dimension. It is often important to understand how

fast a damage is progressing and how long it may take to reach the limit state of collapse.

However, disregarding the temporal information in the state-of-the-art damage identifica-

tion pipeline makes such information scarce, preventing the inspectors act preemptively to
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minimize the cost incurred due to the damage. It is therefore necessary to address this

knowledge gap existing in this important area of research, which is the focus of this study.

A computer vision-based approach is presented for representing time evolution of structural

damages leveraging a database of inspection images. Spatially incoherent but temporally

sorted archival images captured by robotic cameras are exploited to represent the damage

evolution over a long period of time. An access to a sequence of time-stamped inspection data

recording the damage growth dynamics is premised to this end. Identification of a structural

defect in the most recent inspection data set triggers an exhaustive search into the images

collected during the previous inspections looking for correspondences based on spatial prox-

imity. This is followed by a view synthesis from multiple candidate images resulting in a

single reconstruction for each inspection round. Cracks on concrete surface are used as a case

study to demonstrate the feasibility of this approach. Once the chronology is established,

the damage severity is quantified at various levels of time scale documenting its progression

through time. The proposed scheme enables the prediction of damage severity at a future

point in time providing a scope for preemptive measures against imminent structural failure.

On the whole, it is believed that this study will immensely benefit the structural inspectors

by introducing the time dimension into the autonomous condition assessment pipeline.

The recent advancements in the areas of computer vision and deep learning have unde-

niably broadened the scope of vision-based autonomous condition assessment of civil infras-

tructure. However, a review of available literature suggests that most of the existing vision-

based inspection techniques rely only on color information due to the immediate availability

of inexpensive high-resolution cameras. However, it should be noted that regular cameras

translate a 3D scene to a 2D space which leads to a loss of information vis-à-vis distance

and scale. This imposes a barrier to the realization of the full potential of vision-based tech-

niques. In this regard, the structural health monitoring community is yet to benefit from the

new opportunities that commercially available low-cost depth sensors like Microsoft Kinect

offer. This study aims at filling this knowledge gap by incorporating depth fusion into

an encoder-decoder-based semantic segmentation model. A 3D animation and visual effect

software is exploited to generate a synthetic database of paired RGB and depth images

representing various damage categories that are commonly observed in reinforced concrete

18



buildings, namely, spalling, spalling with exposed rebars, and severely buckled rebars. A

number of encoding techniques are explored for representing the depth data. Additionally,

various schemes for the fusion of RGB and depth data are investigated to identify the best

fusion strategy. Overall, it was observed that depth fusion enhances the performance of deep

learning-based damage segmentation algorithms significantly. In consideration of various

practical challenges of robotic depth sensing, this study also investigates different ways to

dispense with depth sensing at test time without foregoing the dividend of depth fusion.

Moreover, a novel volumetric damage quantification approach is introduced which is robust

against perspective distortion.

Scope

This thesis is organized in the following manner. Chapter  2 presents a deep learning-based

approach for autonomous post disaster reconnaissance of reinforced concrete buildings. A

novel computer vision-based technique is proposed in Chapter  3 to assess the time evolution

of a structural defect exploiting historical inspection data. The study presented in Chapter

 4 explores the utility of depth information in enhancing the performance of traditional deep

learning-based damage segmentation algorithms. Finally, Chapter  5 summarizes the key

findings and outlines the course for future research.
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2. DDEEP LEARNING-BASED MULTI-CLASS DAMAGE

DETECTION FOR AUTONOMOUS POST-DISASTER

RECONNAISSANCE

2.1 Background

 

1
 Buildings form an important part of urban infrastructure systems. Damage in build-

ings caused by earthquake events not only renders the residents homeless, it brings to a

halt various economic activities which are directly or indirectly dependent on building in-

frastructures. It also disrupts essential service utilities which act as lifelines for the people

of the locality. Therefore, it is of vital importance to ensure that the full functionality of

buildings is quickly restored in the wake of an earthquake event. The ability of a building

to withstand damage and recover in a timely manner following an extreme event is called

structural resilience, which is recognized by the scientific community as a promising research

area owing to its profound impact on life safety and overall economy. However, an expe-

ditious disaster recovery calls for a rapid and comprehensive evaluation of the nature and

extent of damages inflicted by the extreme event on building infrastructure systems. The

existing earthquake reconnaissance practices are predominantly manual. A group of certified

inspectors visit the affected buildings, taking measurements from the damaged areas, post

processing the collected information and finally arriving at the retrofit decision. Needless

to say, this procedure is time consuming and expensive as it requires a lot of manpower.

Sometimes it also involves risk as the human inspectors need to visit or go very close to a

damaged structure which is about to collapse, to record an accurate reading. As a viable

alternative, such manual methods can be replaced by inexpensive UAVs or inspection robots

which can cruise autonomously through potentially damaged buildings looking for damages

and collecting critical information using on-board vision-based and other types of sensor

systems which will help identifying the problem areas requiring immediate attention. An

autonomous engineering assessment of this sort will help identifying the risks and mitigate
1The content of this chapter is published as follows: T. G. Mondal and M. R. Jahanshahi, “Deep learn-
ing–based multi–class damage detection for autonomous post–disaster reconnaissance,” Structural Control
and Health Monitoring, 27(4), e2507,  https://doi.org/10.1002/stc.2507 .
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life safety hazards for human inspectors by preventing them from entering a building which

is prone to collapse. It will also enable quick evaluation of recovery and repair cost and

financial loss induced by downtime. Additionally, reserve capacity for different structural

elements can be assessed from corresponding damage levels and retrofit operations can be

planned accordingly.

Several studies in the past focused on improving the resilience of infrastructure systems

by proposing improved techniques for rapid structural inspection and damage assessment

capitalizing on the recent advancements made in fields of computer vision and deep learning.

Image processing-based techniques (IPTs) are exploited by many researchers to this end.

Yamaguchi and Hashimoto [  4 ] proposed a percolation-based image processing technique for

fast and efficient concrete crack detection. German et al. [  11 ] exploited entropy-based

thresholding in conjunction with template matching and morphological operations for rapid

detection and quantification of concrete spalling during post-earthquake safety assessments.

Similar studies related to damage detection in other forms of structural systems include

identification of cracks in bridges [ 12 ], pavement surfaces [ 13 ]–[ 19 ], and underground pipes

and subway tunnels [  20 ], [  21 ]. Several researchers [  22 ]–[ 25 ] in the past also focused on

machine learning based techniques (MLTs) for automatic vision-based damage detection

where the feature vectors are selected manually in these methods.

On the other hand, rapid enhancement in computational capacity in recent times has

triggered a resurgence of deep learning based convolutional neural networks (CNNs) garner-

ing significant attention from the research community cutting across all disciplines. On this

account, a number of studies in the past [ 26 ]–[ 28 ] explored the possibility of applying CNN

for efficient and autonomous detection of various structural damages. However, very few

studies indeed looked into damage types which are relevant to earthquake reconnaissance of

reinforced concrete (RC) building systems, which is the focus of the present study. Cha et

al. [ 29 ] investigated multiple damage categories such as concrete cracks, steel corrosion, bolt

corrosion and steel delamination with the help of region based convolutional neural network

(RCNN). However, the damage categories considered by the authors were not closely corre-

lated and are not applicable to RC buildings on the whole. Cha et al. [  7 ] exploited sliding

window approach for detecting cracks on concrete surfaces. However, it ignored other types
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of damages that are commonly observed in RC buildings post-earthquake events. Yeum et

al. [  30 ] recently proposed an RCNN based approach for spalling recognition in RC buildings.

This study also does not take into account other damage types that may possibly result in

when such buildings are subjected to seismic vibrations. Kim et al. [  31 ] capitalized on image

binarization and CNN to distinguish crack from crack-like noncrack noise patterns (e.g. dark

stains, shades, dust, lumps, holes etc.) on concrete surfaces. Therefore, this study also had

limited scope in terms of varieties of damage types considered. Chen and Jahanshahi [ 32 ]

proposed a CNN-based approach to detect cracks on nuclear reactors. The false detections

were discarded using Naive Bayes data fusion by aggregating information from successive

frames in inspection videos. However, this study was also exclusively focused on identifi-

cation of cracks and other types of damages were ignored. Hoskere et al. [ 33 ] harnessed

pixel-wise classification of images using deep CNN to identify multiple damage classes in

civil infrastructure systems. However, only two (concrete crack and concrete spalling) out

of six damage categories considered in this study were relevant to RC buildings and the rest

corresponded to deterioration in steel structures and asphalt pavements. For instance, some

important damage types such as buckling of column rebars caused by severe earthquake

vibrations were not considered in this study. Additionally, it involved expensive training

data preparation process like pixel-wise labeling of images. It should be noted that ignoring

severe damage categories such as exposed and buckled rebars may have adverse safety ram-

ifications, as it may lead to underestimation of the damage severity and falsely encourage

the human inspectors to enter a building which is on the verge of collapse, resulting in fatal

injuries. This underlines the necessity of including multiple damage categories representing

the entire spectrum of severity in the autonomous damage detection pipeline. Recently,

Gao and Mosalam [ 34 ] presented a CNN based approach for structural damage classifica-

tion. Although, this study considered a range of damage categories and various classification

modalities, namely, component type identification, spalling condition check, damage level

estimation, and damage type determination, it did not focus on localizing the damage in the

images. This is an important limitation which was recommended as a part of the further

works by the authors.
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2.1.1 Scope and Contribution

It is important that the application of deep CNN is extended to multiple damage cate-

gories which will immensely benefit earthquake reconnaissance and safety evaluations. The

present study aims at filling this gap by proposing a Faster RCNN based detection tech-

nique taking into account multiple damage types that may be caused in RC buildings when

subjected to earthquake ground motion. Four different damage categories are considered in

this study which are – surface crack, spalling (which includes façade spalling and concrete

spalling), severe damage (i.e., spalling with exposed rebars) and severely buckled exposed re-

bars. The CNN architectures that were exploited to this end are Inception v2 [ 35 ], ResNet-50

[ 36 ], ResNet-101 [  36 ] and Inception-ResNet-v2 [  37 ]. The efficiency of the proposed algorithms

is evaluated with the help of earthquake reconnaissance data collected after several past

earthquakes such as Nepal (2015), Taiwan (2016), Ecuador (2016), Erzincan (1992), Duzce

(1999), Bingol (2003), Peru (2007), Wenchuan (2008), and Haiti (2010). It is observed that

Inception-ResNet-v2 performed significantly better than other architectures considered in

this study producing a mean average precision value of 63.78%. It is believed that this study

will help enhance autonomous post-disaster reconnaissance of RC buildings.

The datasets used in this study for training and evaluation of detection algorithms were

collected from different countries representing wide variation in local construction practices

and design specification. Therefore, the images contained damages in various shapes, sizes

and aspect ratios. This poses a challenge of dealing with this scale variation and devising

a detection algorithm which is scale agnostic. This research challenge was addressed in this

study by modifying the region proposal network (RPN) [  38 ]. Typically, a 3 x 3 sliding

window is applied to the feature map generated by the last convolutional layer in the RPN.

At each sliding window location, a number of anchor boxes having different scales and aspect

ratios are considered as region proposals to account for scale variability of objects. In the

default configuration of faster RCNN proposed by Ren et al. [  38 ], a total of 9 anchor boxes

were proposed with 3 different scales and 3 different aspect ratios. However, in this study,

seven different scales and eight different aspect ratios were used leading up to 56 anchor

boxes, which improved detection accuracy significantly.
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Research on robot-based autonomous inspection and condition assessment has many

facets. A number of researchers in the past focused on developing advanced robotic systems

and path planning algorithms with an eye to futuristic inspection operations. Simultaneously,

recent advances in the fields of computer vision and deep learning evoked profound interests

in vision-based damage diagnosis which is investigated in this study. The scope of this work

is limited to visual data analysis for autonomous multi-class seismic damage identification.

Hands-on experiment with real physical robot is not considered here and is a part of future

work. The chapter has been arranged in the following order. Section  2.2 discusses the

Faster RCNN approach for object detection. Various CNN architectures considered in this

study are briefly described in Section  2.3 . Image dataset used for evaluation of the proposed

approach is presented in Section  2.4 . The training scheme and other implementation details

are summarized in Section  2.5 . The detection results are presented and discussed in Section

 2.6 . Finally, conclusions are summarized in Section  2.7 .

2.2 Faster RCNN

The inception of Faster RCNN can be traced back to introduction of Regions with CNN

features RCNN by Girshick et al. [ 39 ]. In RCNN, around 2000 category-independent region

proposals are extracted from the input image using selective search algorithm. Each region

proposal is then sent to a CNN to generate a fixed-length feature vector. Finally, category-

specific linear SVMs are used to classify each region proposals. At the end, greedy non-

maximum suppression is employed to get rid of the redundant detections. However, RCNN

is slow during training and testing since features are extracted from each region proposal in

each image and written to the disk. Girshick [  40 ] addressed this shortcoming by replacing

the multi-stage training pipeline of RCNN with a single-stage algorithm. In this refined

approach called Fast RCNN, an input image together with a set of object proposals is input

to a series of convolutional and max pooling layers to obtain a feature map. Then, a region

of interest (RoI) pooling layer is invoked to extract a fixed-length feature vector from the

feature map for each of the object proposals. Each of the feature vectors is then fed into a

sequence of fully connected layers which eventually bifurcate into two collateral output layers
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constituting a softmax classifier and a bounding box regressor. Fast RCNN is significantly

faster than RCNN during training and testing owing to computation and memory sharing

across the RoIs from the same image. It also offered higher accuracy compared to RCNN.

However, the region proposal computation was a bottleneck, elimination of which was likely

to further speed up the testing process. This was materialized by Ren et al. [ 38 ], who

proposed a Region Proposal Network (RPN) drastically reducing the cost of region proposal

computation at the test time.

2.2.1 Region Proposal Network (RPN)

RPN is a fully convolutional network trained to predict object bounds along with object-

ness scores. The region proposals generated by RPN are used by Fast RCNN for accurate

detection. The RPN and the Fast RCNN modules are unified into a single network enabling

sharing of convolutional layers (Figure  2.1 ). An n × n sliding window is applied to the

feature map generated by the last shared convolutional layer mapping it down to a lower

dimension (Figure  2.2 ). At each sliding window location, a set of k anchor boxes having

different scales and aspect ratios are considered as region proposals. The lower dimensional

feature is fed into two collateral fully connected layers, namely a box-regression layer and a

box-classification layer. The box-regression layer has 4k outputs denoting the coordinates

of k bounding boxes. On the other hand, the box-classification layer produces 2k outputs

representing the objectness score of each bounding box. For more details about the training

scheme and other implementation details, the readers may refer to the original paper by Ren

et al. [  38 ].

On the whole, a CNN is used at first to generate a feature map from the input image. In

this study, four different network architectures are exploited to this end which are described

in the following section. Subsequently, RPN is used to generate regions proposals; following

which Fast RCNN module is utilized for classifying the RoIs and refining the bounding box

coordinates. In a way, RPN incorporates ‘attention’ mechanism telling the classifier where

to look. More details about the implementation scheme are provided in Section  2.5 .
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Figure 2.1. Faster RCNN architecture

Figure 2.2. Region proposal network
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2.3 Network Architectures

2.3.1 Inception v2

Prior to the introduction of Inception network [ 41 ], it was a common trend to stack

additional convolutional layers to increase the accuracy of the network, leading to a very

deep network. Such a deep network is fraught with numerous limitations such as overfitting,

vanishing gradients, and expensive computational cost. On the other hand, wide variation in

the object size makes it challenging to estimate the most optimum kernel size for convolution

operations. Large kernel size is preferred when salient information are globally distributed in

the image. On the other hand, locally distributed information call for smaller kernels. These

limitations pertaining to prevailing CNN architectures led to the development of a series of

Inception networks. Szegedy et al. [  41 ] proposed Inception v1 by stacking filters of various

sizes on the same level, making the network wider rather than deeper. The outputs from

different filters are concatenated and sent to the next layer. Additionally, 1 × 1 convolutions

are introduced aiming at reducing the dimension of input channels and thereby reducing

the computational cost. Szegedy et al. [  35 ] proposed Inception v2 by implementing a set

of iterative improvements over Inception v1. The authors factorized a 5 × 5 convolution

layer to two 3 × 3 convolution layers, which reduced the computational cost significantly.

The cost was further reduced by replacing a n × n convolution with a 1 × n convolution

followed by a n × 1 convolution. Additionally, the filter banks were expanded to curtail the

representational bottleneck (loss of information due to excessive reduction in dimension).

More details about the Inception v2 network can be found in [ 35 ].

2.3.2 ResNet-50 and ResNet-101

Very deep neural networks are cursed with the problem of vanishing gradients. As a result,

the performance of the network saturates and eventually starts degrading with increase in

depth. He et al. [ 36 ] introduced the idea of ‘skip connection’ which enables the activation

of one layer to be fed directly to another layer much deeper in the network bypassing one or

many intermediate layers. This eventually led to the development of residual block which
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facilitates training of very deep neural networks without any appreciable loss of performance.

The objective in residual network is to ensure that a deep network does not produce higher

training error than its shallower counterpart. Skip connection introduces an identity mapping

which is easier for the residual block to learn pushing the residual function to zero. This

ensures that addition of extra layers does not adversely impact the accuracy of the network,

and the deep network performs at least at par with its shallower counterpart. On top of that,

if the added layers manage to learn something useful then the deep residual network can even

outperform its non-residual version. Exploiting this notion of residual block, a series of deep

networks are developed. ResNet-50 and ResNet-101, having 50 and 101 convolutional layers

respectively, are investigated in this study. The details of the ResNet architectures can be

found in [ 36 ].

2.3.3 Inception-ResNet-v2

Inception-ResNet-v2 network [ 37 ] incorporates Residual connections proposed by He et

al. [  36 ] in combination with latest developments in the Inception architecture [ 35 ]. Residual

connections add the convolution outputs of the Inception module to the input. Residual block

requires that input to and output from the convolution module have the same dimension.

1×1 convolutions are used to compensate for the dimensionality reduction induced by the

Inception blocks. The pooling operations inside the original inception modules were replaced

in favor of the residual connections and the same was retained in the reduction blocks. The

residual activations were scaled by a factor ranging from 0.1 to 0.3 to get rid of vanishing

gradients. A detailed discussion on Inception-ResNet-v2 is beyond the scope of the present

study and can be found elsewhere [ 37 ].

2.4 Datasets and Experimental Program

Images of buildings damaged by earthquakes experienced in the recent past in different

parts of the world (Nepal, Taiwan, Ecuador, Erzincan, Duzce, Bingol, Peru, Wenchuan,

and Haiti) are used in this study for evaluation of the proposed approach. The data were

acquired from the Datacenterhub of Purdue University, USA [  42 ]–[ 45 ]. Diversity in training
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Figure 2.3. Illustrative examples of images depicting wide variation in light-
ing condition and data quality
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data is necessary for reducing model variance, which is a measure of sensitivity of the model

to specific observations. A learning algorithm with high variance performs well on training

data. However, the performance declines when the model encounters data which is not

used for training. The problem of high variance can be alleviated by introducing variations

in the training data. Learning models trained with data collected from various sources

are supposed to be more robust when tested on previously unseen data. The images used

in this study for training of the detection algorithms represent wide variations in image

resolution, lighting condition, blurring and degree of distortions. Specifically, the database

comprises images with 69 different resolutions. The sample images presented in Figure  2.3 

are illustrative of the wide-ranging lighting conditions encountered in the dataset. The

database is enriched with diversity which resulted in better generalization capability of the

learning models. All the damages observed under the said earthquakes were subdivided into

four categories. The first damage category (Damage-1) denoted surface cracks. Spalling,

which includes facade spalling and surface spalling, constituted the second damage category

(Damage-2). The third damage category (Damage-3) was composed of spalling with exposed

rebars. Severely buckled rebars formed the fourth damage category (Damage-4). Some

example images representing the four damage categories are shown in Figure  4.2 . The

images were manually annotated and were divided into training set and validation set. 4-

fold cross validation was conducted to examine how well the detection models generalize

to independent datasets. The distribution of training and validation data at each round

of cross-validation is shown in Table  2.1 . Ten percent of all available data was used for

validation at each cross-validation round, and the remaining 90% was used for training. No

sample was used twice for validation. The evaluation metrics obtained from all 4 rounds of

cross-validation were averaged to produce a single estimation. It is evident from Table  2.1 

that the training data has uneven representation from different classes, which can potentially

make the predictor biased towards the over-represented classes. To mitigate this problem

of class imbalance, class specific weights are assigned to the loss function so as to impose

additional penalty for misclassifying an under-represented class [ 38 ].
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(a)

(b)

(c)

(d)

Figure 2.4. Damage categories considered for detection - (a) Damage-1:
Surface crack, (b) Damage-2: Spalling, (c) Damage-3: Spalling with exposed
rebars, (d) Damage-4: Severely buckled rebars.
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Table 2.1. Category-wise sample size used for training and validation.
Cross-validation round Damage 1 Damage 2 Damage 3 Damage 4

Training Validation Training Validation Training Validation Training Validation
1 865 97 1751 272 554 148 473 126
2 868 94 1791 232 547 155 437 162
3 773 189 1685 338 622 80 563 36
4 863 99 1811 212 479 223 490 109

2.5 Implementation Details

The Faster RCNN algorithm was implemented using TensorFlow open-source software

library [ 46 ] and was run on two NVIDIA Titan X (Pascal) GPUs. Faster RCNN is designed

to work with variable image size and aspect ratio. However, previous studies indicated that

resizing the images enhances the performance. Therefore, the input images were resized in

this study to a minimum dimension of 600 pixels and maximum dimension of 1024 pixels

keeping the aspect ratio intact. In other words, if the longer dimension of the input image

is less than 1024 pixels, then the shorter dimension is resized to 600 pixels, and the longer

dimension is modified proportionally keeping the aspect ratio same. On the other hand, if the

longer dimension of the input image is greater than 1024 pixels, then the longer dimension is

resized to 1024 pixels, and the shorter dimension is resized appropriately to keep the aspect

ratio unchanged. The input images were horizontally flipped randomly with a probability

of 0.5 as part of the data augmentation. Then features are extracted from the input image

using a sequence of convolutional layers which were a part of CNN architectures considered

in this study. As for Inception-ResNet-v2, a set of atrous filters are slid over this feature

map to carry out atrous convolution [ 47 ]. This enables object encoding at multiple scales

by extending the receptive field without increasing the number of parameters and number

of operations. In order to generate region proposals using RPN, Ren et al. [  38 ] proposed 9

anchor boxes (k = 9) with 3 different scales and 3 different aspect ratios. However, a wider

range of scales and aspect ratios leading to a higher value of k was found to enhance the

detection accuracy significantly in this study. Various scales used in this study for anchor

box generation include 0.125, 0.25, 0.5, 1.0, 2.0, 4.0 and 8.0. The aspect ratios had the

values of 0.125, 0.5, 1.0, 2.0, 4.0, 6.0, 8.0 and 10.0. The minimum of input height and width
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was considered as base anchor size. The anchor boxes were strided by 8 pixels both along

the height and the width. Three hundred region proposals were generated per image calling

for elimination of multiple detections. To filter all the duplicate boxes, a greedy procedure

called non-maximum suppression (NMS) [  48 ] was employed, where all candidate boxes are

first sorted in the order of their objectness score. The best scoring box was selected and all

other boxes having an intersection-over-union (IoU ) greater than 0.7 with the selected box

were discarded. IoU is an evaluation metric which is defined as the ratio of area of overlap to

the area of the union between a ground-truth box and a predicted box. The remaining boxes

were then classified and refined using a Fast RCNN module. The IoU threshold used for

NMS at this stage was 0.6. The weights of the Inception-ResNet-v2 network were initialized

by a model pretrained on MSCOCO dataset and fine-tuned thereon. MSCOCO [  49 ] is a large

repository of images (328k) containing 90 different objects that are commonly encountered

in everyday life. The said model had 90 neurons in the last layer representing 90 classes.

Therefore, this layer was replaced by one with only 4 neurons in this study. The weights for

last layer was initialized from a uniform distribution as suggested by Glorot and Bengio [ 50 ].

All the weights are subsequently updated using Stochastic Gradient Descent (SGD) [ 51 ] with

a momentum value of 0.9. The problem of exploding gradient is commonly encountered while

training a very large neural network. The gradients shoot off exponentially during successive

back propagation through the network layers, rendering the learning process highly unstable.

This problem can be averted by clipping the gradients by a preset threshold. A threshold of

10 was set for the gradient norm to this end. The initial learning rate was set to 0.003 and

was gradually reduced thereafter with training steps.

2.6 Results and Discussions

The performance of the proposed approach was evaluated on the validation data described

in Section  2.4 . The test images were input to the trained network and bounding boxes were

predicted with respective object class as shown in Figure  2.6 . The predicted boxes were

compared with the ground truth boxes, and any prediction having an IoU greater than a

threshold of 0.5 was considered to be true positive. If multiple boxes are predicted for a
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Figure 2.5. Intersection over Union (IoU): It is the ratio of area of intersection
to the area of overlap between two boxes.
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(a)

(b)

(c)

(d)

Figure 2.6. Sample detection results - (a) Damage-1: Surface crack, (b)
Damage-2: Spalling, (c) Damage-3: Spalling with exposed rebars, (d) Damage-
4: Severely buckled rebars.

35



single ground truth box, then only the highest scoring box is considered to be true positive

and rest all are dubbed as false positive. If a ground truth box does not possess any pre-

dicted box associated with it, it is designated as false negative. The detection performance

of the proposed algorithm with four different CNN architectures are measured in terms of

precision and recall values. Precision is defined as the ratio of true positive to the sum total

of true positive and false positive. In other words, it tells us what percentage of the over-

all detections are correct detections. The mean and standard deviation of precision values

obtained from four rounds of cross-validation are reported in Table  2.2 . For instance, the

precision values obtained from Inception-ResNet-v2 architecture for four classes considered

in this study had the mean values of 65.5%, 50.0%, 52.0%, and 53.8%, respectively, while

the corresponding standard deviation values were estimated as 7.9%, 9.5%, 5.6% and 5.5%,

respectively. It means that 65.5% of all predicted boxes classified as Damage-1 belong to

the correct detections in average sense. Similar interpretations can likewise be extended to

other damage classes and CNN architectures. Another evaluation metric which is often used

alongside precision score is recall. It is the ratio of true positive to the sum total of true

positive and false negative. It indicates what percentage of the actual ground truth objects

have been successfully identified by the detection network. The mean recall values that the

trained network produced for four classes with Inception-ResNet-v2 architecture were 78.8%,

65.3%, 62.5%, and 59.5%, respectively (Table  2.3 ). Corresponding standard deviations were

evaluated as 8.2%, 16.0%, 4.2%, and 7.8%, respectively. In other words, 78.8% of all dam-

ages annotated as Damage-1 were correctly predicted on the average, and likewise for other

classes and CNN architectures. The said precision and recall values are considerably higher

in comparison to that reported by Yeum et al. [  30 ] for single class (spalling) detection (Pre-

cision: 40.48%, Recall: 62.16 %) on similar dataset. Minor cracks in concrete are typically

hard to detect due to potential noise infusion [ 32 ]. However, the earthquake induced cracks

used in this study were, by and large, distinct and easily detectable. On the other hand, the

other three damage categories were all related to spalling and therefore contained significant

visual correlation, which made them less distinguishable from each other resulting in a lot

of classification error. This potentially led to relatively high detection performance vis-à-vis

damage-1 as compared to rest of the damage categories.
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(a) (b)

(c) (d)

Figure 2.7. Precision - recall curves - (a) Inception v2, (b) ResNet-50, (c)
ResNet-101, and (d) Inception ResNet v2.
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Precision and recall values are inversely related. Setting the detection threshold to a

low value will allow the network to predict most of the objects in the image. However, it

will generate a large number of false positives at the same time. On the other hand, a high

value of the detection threshold will produce very few false positive. However, it will result in

numerous missed detections. It is therefore customary not to rely entirely on either of the two

decision metrics for the sake of comparison among different detection models. Alternatively,

the entire precision-recall curve (Figure  2.7 ) is looked into and the area under the curve is

used as an evaluation metric. This parameter, also known as the average precision (AP),

sums up the precision-recall curve to a single number. Higher values of AP indicate better

performance of the detector. The AP values are calculated from the precision-recall curves for

all four damage types and all four CNN architectures considered in this study and the mean

and standard deviation values (averaged over four rounds of cross-validation) are reported

in Table  2.4 . Figure  2.8 presents more detailed information with regard to the dispersal

of all the evaluation metrics (precision, recall and AP) for different CNN architectures and

damage categories. The variation range formed by one standard deviation on either side of

the mean value is represented by a rectangular box in this figure.

A careful analysis of the information presented in Table  2.4 indicates that no consis-

tent pattern exists in the performance hierarchy of the four CNN architectures evaluated

with respect to the mean AP value. For instance, ResNet-50 produced a higher mean AP for

Damage-1, Damage-2 and Damage-3 in comparison with the Inception v2 architecture. How-

ever, the trend was reversed for Damage-4 where Inception v2 outperformed the ResNet-50

architecture in terms of the same evaluation metric. Similarly, ResNet-101 performs better

than ResNet-50 in terms of mean AP in identifying Damage-1 and Damage-4. However,

when it comes to the detection of Damage-2 and Damage-3, ResNet-50 turns out to be more

efficient. This anomaly can be resolved by averaging the AP values over all object classes.

The evaluation metric thus generated is called mean average precision (MAP), which is typi-

cally used to compare the efficiency of different detection algorithms. The mean MAP values

(averaged over four rounds of cross-validation) for all four CNN architectures are shown in

Figure  2.9 . It is evident from the figure that Inception v2 architecture afforded the lowest

accuracy with a mean MAP value of 51.0%. A 3.0% increase in the mean MAP value was
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Table 2.2. Mean (µ) and standard deviation (σ) of precision for different
CNN architectures

Architecture Damage 1 Damage 2 Damage 3 Damage 4
µ σ µ σ µ σ µ σ

Inception v2 0.576 0.110 0.432 0.079 0.410 0.061 0.497 0.092
ResNet-50 0.532 0.121 0.405 0.091 0.448 0.068 0.403 0.111
ResNet-101 0.613 0.089 0.435 0.096 0.423 0.045 0.458 0.103

Inception ResNet v2 0.655 0.079 0.500 0.095 0.520 0.056 0.538 0.055

Table 2.3. Mean (µ) and standard deviation (σ) of recall for different CNN architectures
Architecture Damage 1 Damage 2 Damage 3 Damage 4

µ σ µ σ µ σ µ σ

Inception v2 0.750 0.112 0.628 0.118 0.553 0.043 0.507 0.116
ResNet-50 0.750 0.153 0.598 0.125 0.572 0.068 0.545 0.087
ResNet-101 0.770 0.108 0.638 0.131 0.565 0.040 0.578 0.098

Inception ResNet v2 0.788 0.082 0.653 0.160 0.625 0.042 0.595 0.078

Table 2.4. Mean (µ) and standard deviation (σ) of AP for different CNN architectures
Architecture Damage 1 Damage 2 Damage 3 Damage 4

µ σ µ σ µ σ µ σ

Inception v2 0.566 0.096 0.455 0.028 0.490 0.090 0.528 0.023
ResNet-50 0.577 0.102 0.505 0.036 0.568 0.057 0.508 0.113
ResNet-101 0.658 0.107 0.494 0.056 0.529 0.094 0.538 0.131

Inception ResNet v2 0.681 0.080 0.554 0.068 0.627 0.089 0.570 0.088

observed when ResNet-50 was employed. Invoking ResNet-101 rendered a further increase

of 1.5% to the same. However, the best performance was observed with Inception-ResNet-v2

architecture which produced a mean MAP value of 60.8%.

Apart from accuracy, another parameter which is often taken into account while com-

paring various detection algorithms is the computational cost. The computational cost is

measured in this study in terms of average processing time for a single image. It was observed

that the architectures that exhibited higher MAP values actually had slower processing speed

(Figure  2.10 ). This led to the conclusion that detection accuracy and processing speed are

inversely related, and the selection of a suitable detector is a trade-off between the two.
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(a) (b)

(c) (d)

Figure 2.8. Variation of evaluation metrics over all rounds of cross-validation
for - (a) Damage-1, (b) Damage-2, (c) Damage-3, and (d) Damage-4. IV2:
Inception v2, R50: ResNet-50, R101: ResNet-101, IRV2: Inception ResNet
v2, P: Precision, R: Recall, AP: Average Precision, SD: Standard deviation.
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However, the values presented in Figure  2.10 are highly subjective and are dependent on the

image resolution and specific GPU architecture used, and therefore, should not be taken in

the absolute sense. However, in relative terms, it can be inferred that Inception v2 is the

fastest of all architectures considered in this study. ResNet-50 and ResNet-101 take about

1.2 and 1.7 times the time taken by an Inception v2 architecture to process an image of the

same resolution. However, Inception ResNet v2 was identified as the slowest of all considered

architectures taking about 5.6 times the time taken by Inception v2 to accomplish the same

task.

The ultimate objective of developing damage detection algorithm is to integrate it with

robotic systems for autonomous inspection. A major challenge that is encountered to this

end is wide-ranging camera specifications leading to huge variations in image resolution and

quality which may potentially affect the performance of the proposed neural network-based

approach. However, it should be noted here that the images used in this study for training

and validation of the neural networks were collected from nine different past earthquakes,

and the resulting datasets contained huge variations in image resolution, lighting condition,

blurring and other distortions. This enriched the database with diversity and made the

neural network robust against previously unseen data and also added to its generalization

ability. Relatively large dispersal in the evaluation metrics as observed in Figure  2.8 and

Tables  2.2 - 2.4 are a direct consequence of this diversity. Damage detection on a number of

images captured by an UAV-mounted camera in the aftermath of Taiwan earthquake (2016)

is presented in Figure  2.11 . The damages were detected by the trained Faster RCNN algo-

rithm with Inception-ResNet-v2 as backbone architecture. Limited computation capability

of on-board processing units is another bottleneck in robot-based real-time damage diagno-

sis. Commercially available portable power-efficient embedded AI computing devices such as

NVIDIA Jetson TX2 can provide a viable solution to this problem and is a scope for future

research. Future studies should also focus on making the network smaller, faster and conse-

quently more suitable for on-board real-time computation by pruning of redundant neurons

which do not contribute significantly to the network outputs, as demonstrated by [ 52 ].
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Figure 2.9. Comparison of mean average precision (MAP) for different CNN
architectures.

Figure 2.10. Comparison of processing speed for different CNN architectures.
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Figure 2.11. Damage detection results for images captured by a UAV post
Taiwan earthquake (2016). Predicted boxes for Damage-1 (surface crack),
Damage-2 (spalling), Damage-3 (spalling with exposed rebars), and Damage-4
(severely buckled rebars) are shown in different colors.
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2.7 Conclusions

Faster RCNN algorithm is used in this study to detect multiple damage categories in rein-

forced concrete buildings. Four different CNN architectures, namely, Inception v2, ResNet-

50, ResNet-101 and Inception-ResNet-v2 are exploited to this end. A pretrained model

was used for initialization of the network weights which were subsequently fine-tuned by

stochastic gradient descent optimization approach with momentum. The networks were

trained using image data collected from several past earthquakes, namely, Nepal (2015),

Taiwan (2016), Ecuador (2016), Erzincan (1992), Duzce (1999), Bingol (2003), Peru (2007),

Wenchuan (2008), and Haiti (2010). Four different damage categories were considered in this

study, namely, surface crack, spalling, spalling with exposed rebars, and severely buckled re-

bars. The performance of the trained networks was evaluated on the validation dataset. It

was observed that Inception-ResNet-v2 significantly outperforms the other networks consid-

ered in this study producing a MAP value of 60.8%. It was also noted that processing speed

of the detection algorithms reduces with increase in accuracy. It is believed that this study

will broaden the scope for vision based autonomous inspection of civil infrastructures.
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3. AUTONOMOUS VISION-BASED DAMAGE

CHRONOLOGY FOR SPATIOTEMPORAL CONDITION

ASSESSMENT OF CIVIL INFRASTRUCTURE USING

UNMANNED AERIAL VEHICLE

3.1 Background

This chapter 

1
 presents a novel comprehensive approach to health monitoring of civil in-

frastructures by introducing a time dimension into the vision-based condition assessment

pipeline. It is shown that useful information can be extracted from an archive of inspection

images by employing computer vision-based algorithms. Identification of a damage during

the course of a recent inspection initiates an exhaustive search into the historical data col-

lected during the previous rounds of inspection. Corresponding images are identified and

synthesized to generate a reconstructed view of the scene pertaining to each inspection round.

Regions of interest are subsequently extracted from the reconstructed scenes leveraging a

CNN-based detection model. This is followed by damage segmentation and quantification

exploiting state-of-the-art morphological and image processing techniques paving the way for

time-based evaluation of damage severity and cognizant decision making. The methodology

presented in this work is robust against noise intrusion and changes in illumination condi-

tion. It does not assume any prior knowledge about damage locations and provides a great

deal of flexibility with regard to camera poses and orientations. The proposed approach can

be applied to data collected by human inspectors using hand-held cameras (e.g. smartphone

camera). However, it is most appropriate for autonomous inspection assisted by vision sys-

tems mounted on mobile robots including UAVs. Cracks on concrete surface is used as a

case study to demonstrate the feasibility of this approach. However, it can be extended to

other defect categories such as spalling and corrosion, with appropriate modifications.
1The content of this chapter is published as follows: T. G. Mondal and M. R. Jahanshahi, “Autonomous
vision–based damage chronology for spatiotemporal condition assessment of civil infrastructure using un-
manned aerial vehicle,” Smart Structures and Systems, 25(6), 733-749, 2020,  https://doi.org/10.12989/sss.
2020.25.6.733 
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3.1.1 Related Works

A number of studies in the past explored time-based evaluation of structural defects.

Digital image correlation (DIC) is exploited by many researchers ghorbani2015full in the past

to measure full-field displacement and strain. However, this technique relies on static camera,

and therefore can only be used in situations where the damage location is known a priori.

Moreover, it necessitates painting of speckle patterns on the structure under investigation to

produce distinct visual features, which is not feasible in large structures like buildings and

bridges and in situations where the surface of the structure is physically inaccessible. The

approach presented in the current study is free from all such limitations. A movable (hand-

held) SLR camera and a camera mounted on an unmanned aerial vehicle (UAV) are used

for data collection which eliminated the need of prior knowledge about damage locations.

Besides, this method is contactless in true sense of the term, as it does not require any speckle

pattern to be pained on the surface to be inspected. Kong and Li [  53 ] used image overlapping

technique to detect fatigue cracks in civil infrastructures. The authors relied on differential

image features engendered by crack breathing as indicators for crack identification. This

approach will inherently fail when the background undergoes visual changes over time owing

to accumulation of dirt, rust, stains, etc. Moreover, it requires all images to be captured from

similar camera poses and lighting conditions, which imposes a serious constraint on extensive

use of this technique. Detection of fatigue crack in steel bridges was also studied by Kong

and Li [ 54 ] exploiting video-based feature tracking. Movement of each feature was tracked

through a video stream and the presence of a crack was indicated by differential movement

pattern exhibited by the feature points inside a localized circular region. However, optical

flow-based feature tracking process is fraught with many limitations. It assumes brightness

constancy. So, it does not perform well in situations that involve change in illumination

condition. It cannot effectively deal with scale variation and viewpoint changes. Besides,

it works well only under small displacements, and therefore not suitable for large motion.

These limitations are dispelled in the current study in many ways. The approach presented in

this study is scale invariant, and robust against noise intrusion and changes in illumination

condition. It can detect large motion. Moreover, it affords the flexibility of capturing
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images from varied camera positions and orientations, which is a major advantage of this

approach. Jahanshahi et al. [ 55 ] proposed a vision-based approach for estimating damage

evolution through multi-image stitching and scene reconstruction. However, the camera was

constrained in this study in regard to translation. In the present study, this constraint

is relaxed enabling the camera to rotate and translate without any restrain. Besides, the

approach presented in this study [  55 ] is not fully autonomous in the sense that a human

inspector needs to compare the current scene with its previous condition and deduce the

damage evolution manually. In other words, the proposed technique relied on inspector’s

judgment vis-à-vis evolution of the damage. This makes the entire procedure tedious, labour-

intensive, subjective and qualitative. The present study addresses this limitation by including

an autonomous localization and quantification module in the damage diagnosis pipeline

making the entire process faster and more efficient. Additionally, quantitative and time-

based evaluation of damage severity makes it possible to predict residual life of a structure

and to take precautionary measures, if necessary.

3.1.2 Scope

The remaining of the chapter is arranged in the following order. Section  3.2.1 presents

an overview of the test protocol and data collection procedure. Section  3.2.2 deals with

various components of the correspondence identification technique adopted in this study.

The details of damage detection approach are presented in Section  3.2.3 . The necessary

theoretical background for damage quantification is presented in Section  3.2.4 . The results

are presented and discussed in Section  3.3 . Finally, conclusions are summarized in Section

 3.4 .

3.2 Methodology

As a case study, cracks on concrete surface are used to illustrate the nuts and bolts of

this approach. A reinforced concrete beam was tested in the laboratory subjecting it to a

gradual load increment in order to simulate a progressive damage. Cracks appearing on the

beam surface were photographed after every stage of load increment and the images were
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(a)

(b)

Figure 3.1. The layout of the proposed approach - (a) Correspondence iden-
tification from the preceding data set based on spatial proximity, registration
of the best correspondences onto the plane of the current reference image, and
repetition of the same procedure over all previous data sets to generate a tem-
porally ordered set of 2D reconstructions of the concerned damaged area. (b)
Detection of damage on the reconstructed views from the past, extraction of
interest area to remove nonessential background, damage segmentation, fol-
lowed by quantification and time-based visualization.
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(a)

(b) (c)

Figure 3.2. Experimental setup for data collection - (a) Experimental setup,
(b) Loading protocol, (c) Data collection.
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(a)

(b)

(c)

(d)

(e)

Figure 3.3. Data collection path of a hand-held SLR camera for different
inspection rounds - (a) round-1, (b) round-2, (c) round-3, (d) round-4, and (e)
round-5. The prisms denote the camera poses and orientations, and the point
clouds denote the 3D scene reconstructions of the beam for each inspection
round. It should be noted that the data collection path was not constant and
it varied over inspection round.
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time-stamped and saved in specific folders. This was accomplished by a hand-held SLR cam-

era and a camera mounted on a UAV to emulate actual robot-based data collection where

camera positions and orientations are not fully controllable. After the final round of load in-

crement, the entire data set representing time evolution of concrete cracks were available for

further analysis. Figure  3.1 presents an overview of the proposed algorithm. Identification

of damage in the most current data set engenders an exhaustive search in the immediately

preceding image set looking for correspondences. Speeded up robust features (SURF) [ 56 ]

algorithm is used to identify interest points in the current inspection image and also in every

single image in the previous data set. Feature matching is carried out based on Euclidean

distance between two descriptor vectors and the candidates with large number of matched

features are designated as potential correspondences. Homography transformation is com-

puted for each selected correspondence through linear least square method and subsequent

nonlinear refinement using Levenberg-Marquardt algorithm [ 57 ], [ 58 ], which is followed by

registration of the corresponding images onto the plane of the current reference image. The

warped images are then stitched to form a complete 2D reconstructed view of the concerned

damage region from the immediately preceding data set. This procedure is repeated for

all the previous data sets captured at different points in time considering the reconstructed

view from the immediately succeeding data set as the reference. Temporally ordered set of

2D reconstructions thus produced chronicles the evolution of a damage in a manner con-

ducive to time-based reasoning and lucid visual interpretation, and forms the basis for the

next stage of the proposed algorithm, namely, damage identification and quantification. A

notable detection algorithm called Faster RCNN [  38 ] is leveraged to this end to localize the

cracked area in the reconstructed images. The relevant portion of the images containing the

cracks are then cropped out to get rid of the remaining nonessential background (undam-

aged), inclusion of which may have debilitating effect on the performance of the subsequent

segmentation and quantification processes due to noise infusion. The cropped pixels are then

segmented using a morphological approach, forming the basis for crack thickness quantifi-

cation using distance transform method ([  59 ], [  60 ]). The approach presented in this study

can be extended to other defect categories such as spalling and corrosion, with appropriate

modifications. Availability of an inspection database which is complete in terms of coverage
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of the damaged areas and that affords adequate overlap with adjacent images is a prerequi-

site for this approach. Besides, the algorithm may not perform well in absence of adequate

visual features in the inspection images. In such situations, IMU and GPS information can

be exploited for accurate scene reconstruction which is a scope for future research.

3.2.1 Experimental Setup and Data Collection

The database required for validation of the proposed approach was generated by testing

a reinforced concrete T-beam in the laboratory under gradually increasing load in four-point

bending configuration as shown in Figure  3.2a . The beam was tested in displacement control

mode, and the applied displacement is shown in Figure  3.2b as a function of loading step.

After every step of displacement increment, an intermission was appropriated during which

the entire span of the beam was photographed using a hand-held SLR camera as well as a

camera mounted on a UAV to capture the cracks that appeared on the surface (Figure  3.2c ).

The SLR camera was displaced laterally to photograph different segments along the span and

depth of the beam ensuring adequate overlap between successive images (Figure  3.3 ). The

camera movement was not controlled, and the data collection path varied over inspection

round as evident from Figure  3.3 . An archive of time-stamped images representing various

levels of degradation was thus produced mimicking time-evolution of damage in concrete

structures. This data set formed the basis for subsequent analyses which are described in

the following sections.

3.2.2 Correspondence Detection and Alignment

Theoretical formulation of this algorithm presupposes the availability of a comprehensive

visual data set built perennially through collection of images over several rounds of routine

inspection by a human inspector or by an inspection robot ([  61 ]–[ 63 ]). If a defect is detected

during the inspection of a structure, it becomes necessary to know the history of evolution

of the defect. That necessitates probing in to the data collected during previous rounds

of inspection. The first challenge that is confronted to this end is identifying the relevant

images corresponding to the defective region from a large database of archival images [ 64 ],
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[ 65 ]. This can be achieved through a sequence of widely used computer vision algorithms such

as feature detection, feature matching and image registration, as explained in the following

sections.

Feature Detection

The first step in the correspondence identification pipeline is the detection of features or

interest points (Figure  3.4b ). Features are unique patterns which can be easily tracked and

compared across several images. There are a number of techniques available in literature for

detecting interest points in images. SURF algorithm is one such technique which is lever-

aged in this study. This algorithm locates high-variance interest points in an image which

are invariant to scale, viewpoint and illumination changes. A local dominant direction is as-

sociated with each interest point and a 64 element normalized descriptor vector representing

the local gray level variations with respect to the dominant direction is computed at each

such point. The reader may refer to the original paper by Bay et al. [  56 ] for more detailed

discussion about this algorithm.

Feature Matching

Feature detection is followed by feature matching (Figure  3.4c ), the objective of which

is to identify the best match for a feature in one image from all the features in another

image. Number of matched features is an indication of degree of resemblance between two

images. Brute-Force matcher is used in this study, where the Euclidean distance between

two descriptor vectors is used for similarity comparison. Two best matches are drawn for

each feature in the first image. On occasion, the second best match is found to be very close

to the best match owing to noise or other reasons. Such anomalies are tackled by computing

the ratio of the closest distance to the second closest distance, and discarding all matches

where this ratio is greater than 0.75 as suggested by Lowe [  66 ]. This eliminates 95% of the

false matches as shown in Figure  3.5 . However, a small number of outliers are retained at

this stage.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

(m) (n) (o)

Figure 3.4. Illustrative diagrams outlining the steps for generating recon-
structed view from previous data set: (a) Raw data, (b) Feature detection, (c)
Feature matching, (d) Best correspondence, (e) Warping, (f) Registration, (g)
Revised search region, (h) Next best correspondence, (i) Warping, (j) Regis-
tration, (k) Revised search region, (l) Next best correspondence, (m) Warping,
(n) Registration, and, (o) Final reconstruction.
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(a)

(b)

Figure 3.5. Feature detection and matching: (a) Initially matched features,
(b) Matched features after applying Lowe’s ratio test.
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Image Registration

The image in the immediately previous data set having the largest number of matched fea-

tures vis-à-vis the reference image in the current data set is designated as the best correspon-

dence (Figure  3.4d ). Damage chronology can only be established when the corresponding

images from previous data sets are aligned to the plane of the reference image. This requires

estimation of the homography matrix between the reference image and the correspondences

in the immediately preceding data set. It may be noted here that the homography is a

3×3 transformation matrix which maps the points in one image to the corresponding points

in another image. Linear least square method is exploited in combination with an outlier

rejection algorithm called RANdom SAmple Consensus (RANSAC) [  67 ] to obtain an initial

estimate for the homography matrix. This is followed by a nonlinear refinement of the esti-

mated homography matrix using Levenberg-Marquardt algorithm based on the inlier points

alone. The estimated homography matrix is then used to warp (Figure  3.4e ) and register

(Figure  3.4f ) the best correspondence on the plane of the reference image. Following this,

the matched features corresponding to the best correspondence are eliminated from the list

of available features for the reference image (Figure  3.4g ), and the next best correspondence

is determined based on the revised list of matched features (Figure  3.4h ). This next best

correspondence is then registered on the plane of the reference image (Figures.  3.4i and  3.4j )

in a similar fashion following the same procedure mentioned previously in this section. This

process of correspondence identification and alignment is continued until the number of resid-

ual matched points corresponding to the reference image drops below a predefined threshold

(100 in this study) or the number of identified correspondences reaches a preset value (which

is set to 10 in this study). Upon completion of this process, all the warped correspondences

are stitched together producing a complete 2D reconstruction (Figure  3.4l ) depicting the

prior condition of the scene in the reference image (Figure  3.6 ). The reconstructed view acts

as a reference image for the next round of iteration, where the correspondences are identified

from the immediately preceding data set. Eventually, an ordered set of reconstructed views

are obtained portraying the evolution of a scene through time. One round of correspondence

identification and alignment takes six minutes of processing time approximately.
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(a) (b) (c)

(d) (e) (f)

(g)

Figure 3.6. (a)-(f) Warping and registration of correspondences, (g) View
synthesis producing complete 2D reconstruction.
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3.2.3 Damage Detection

This section describes the process for autonomous segmentation of damages in the chrono-

logically ordered reconstructed views of the scene under consideration. Previous studies pri-

marily focused on two approaches for detecting cracks in images, namely, edge-based tech-

niques and morphological techniques. Jahanshahi et al. [  68 ] compared the pros and cons

of the two approaches and concluded that morphological techniques outperform edge-based

techniques in presence of non-crack edges. Therefore, morphological approach is adopted in

this study for extracting cracks from the images. However, presence of surface irregularities

may produce false positives leading to inaccurate segmentation [ 8 ]. This can be averted by

secluding the damaged region of interest from the remaining image. Deep learning-based

approaches have been used by several researchers in the past [  6 ], [  7 ], [  69 ] to localize defects

in images. This study leverages Faster RCNN algorithm to this end. This eliminates a large

part of the nonessential background significantly diminishing the scope of noise infusion in

the morphology-based segmentation process.

Damage Localization using Faster RCNN

In Faster RCNN, a CNN is first used to generate a feature map from the input image.

Inception-ResNet-v2 network [ 37 ], which incorporates Residual connections [ 36 ] and Incep-

tion module [  35 ], is used to this end in this study. Thereafter, Region Proposal Network

(RPN) [  38 ] is used to generate region proposals. RPN is a fully convolutional network trained

to predict object bounds and objectness scores. Following this, Fast RCNN [  40 ] module is

utilized to classify the region proposals and to refine the bounding box coordinates. The

RPN and the Fast RCNN modules are unified into a single network enabling sharing of

convolutional layers (Figure  3.7 ). The details of Faster RCNN algorithm can be found in

[ 38 ].

The Faster RCNN algorithm is implemented using TensorFlow open-source library. The

input images are horizontally flipped randomly with a probability of 0.5 to execute data

augmentation. Subsequently, features are extracted from the input image using a sequence

of convolutional layers which are a part of the Inception-ResNet-v2 network. A 3 × 3 sliding
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Figure 3.7. Faster RCNN architecture
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window is applied to the feature map generated by the last shared convolutional layer map-

ping it down to a lower dimension. At each sliding window location, a set of 9 anchor boxes

having different scales and aspect ratios are considered as region proposals. The anchor boxes

are strided by 8 pixels along the height and the width. A large number of region proposals

are generated for each image leading to multiple detections. Duplicate boxes are eliminated

using a greedy technique called non-maximum suppression (NMS) [  48 ]. The weights of the

Inception-ResNet-v2 network are initialized by a model pretrained on MSCOCO data set

[ 49 ] and fine-tuned thereon using Stochastic Gradient Descent (SGD) algorithm [ 51 ] with a

momentum value of 0.9. Gradient clipping is employed to avert the problem of exploding

gradient. The initial learning rate is set to 0.003 and is gradually reduced thereafter with

training steps.

The network is trained on 686 images containing 1023 crack instances. The training data

is generated by loading a T-beam as shown in Figure  3.2 and taking pictures of the resulting

cracks by means of a movable (hand-held) SLR camera and a camera mounted on a UAV.

The performance of the trained network is evaluated on the test data comprising 100 images

and 255 crack instances. The test data is produced by loading another T-beam with slightly

different cross-section and reinforcement distribution, and photographing the evolving cracks

in a similar manner. The predicted bounding boxes (Figure  3.8 ) are compared with ground

truth boxes and the results are reported in terms of precision and recall. The proposed

algorithm produces a precision of 95.5 %, which means that 95.5 % of all predicted boxes

classified as crack can be designated as correct detections. On the other hand, the recall

value is evaluated as 98.6%, indicating that 98.6% of all annotated cracks are correctly

detected. It takes roughly about 0.95 seconds at this stage to process a single image of

5184 × 3456 resolution using a NVIDIA Titan X (Pascal) GPU. It is important to ensure

that the predicted bounding boxes enclose respective damage regions completely. This calls

for rigorous training of the detection algorithm with stringent requirement imposed on the

predicted boxes vis-à-vis overlap with ground truth boxes.
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(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure 3.8. Damage chronology produced by successive view synthesis and
alignment of correspondences from previous inspection data sets. Cracks de-
tected by Faster RCNN algorithm are highlighted by rectangular bounding
boxes.
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Damage Segmentation using Morphological Techniques

Morphological approach for image segmentation is motivated by the developments in

the fields of set algebra [  70 ] and topology [  71 ]. Dilation and erosion are two rudimentary

operations which all morphological methods are based upon. Dilation expands the bright

portions of an image, while erosion shrinks the same. These operations applied sequentially

form important building blocks for morphological noise removal. Erosion followed by dilation

is called morphological opening, which removes bright sharp details from the image. On the

other hand, the same operations when applied in the reverse order constitute morphological

closing which seeks to remove dark details from an image. Salembier [  72 ] integrated these

morphological concepts with bottom-hat transform to propose an algorithm for identification

of dark defects in images. The following equation shows a slightly modified version of the

algorithm [ 73 ] which is used in this study.

T = max[ (I ◦ S{0◦,45◦,90◦,135◦}) • S{0◦,45◦,90◦,135◦}, I] − I (3.1)

where, ‘◦’ and ‘•’ denote morphological opening and closing operations, respectively. I is

the gray-scale image and S is a structuring element. A structuring element is a matrix

that decides which neighbourhood pixels are included in the morphological operations. The

structuring element should be suitably chosen as it determines the shape and size of the

cracks that can be extracted from an image. Jahanshahi et al. [  73 ] proposed an adaptive

approach for estimating an appropriate structural element size based on crack size, cam-

era parameters and camera-to-object distance. A linear structuring element (a structuring

element which is line-shaped) with four different orientations ( 0◦, 45◦, 90◦, 135◦) is used in

this study to make the filter invariant to crack orientation. The crack map so generated (T )

was subjected to Otsu’s thresholding [ 74 ], followed by a series of post-processing and noise

removal strategies (Figure  3.9 ) to obtain the final binary segmentation mask as shown in

Figure  3.10 . The post-processing scheme involves removing small areas, filling small holes,

bridging unconnected pixels, and removing spur pixels and isolated pixels. The entire crack

region is segmented in this approach, unlike edge detection-based techniques where only the
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crack boundaries are extracted. Apart from that, morphological approaches are divested of

the time-consuming and tedious data annotation and training processes which are required

by typical deep learning-based semantic segmentation algorithms.

3.2.4 Damage Quantification

Thickness is an effective indicator for severity of cracks. This section presents the crack

thickness quantification algorithm that is used in this study. Some researchers in the past [ 75 ]

resorted to boundary-to-boundary approach to visually measure the crack thickness. In this

approach, the crack thickness at a boundary point is evaluated as the distance to the nearest

point on the other boundary. However, the limitation of this approach is that the crack

thickness line is usually not normal to the centerline. Moreover, the thickness measured at a

boundary point may not be identical to the same measured at the corresponding thickness

point located on the other boundary of the crack. These limitations can be redressed by

employing centerline-based techniques such as orthogonal line method [  8 ], [  73 ] and distance

transform method [  59 ], [  60 ]. The latter approach is adopted in this study. This method

begins by finding the centerline of the crack. Researchers in the past exploited various

methods for locating the crack centerline in an image. Jahanshahi et al. [  10 ] used fast

marching algorithm which was originally proposed by Uitert and Bitter [  76 ]. A number of

studies [ 8 ], [  73 ], on the other hand, employed morphological thinning operation on binary

crack maps, which is followed in this study. The thickness at a given centerline point is given

by twice the shortest distance to any of the boundaries. Quasi-Euclidean distance transform

is used in this study to find the closest pixel on the boundaries. The effectiveness of the

segmentation and quantification approach adopted in this study was previously established

by Jahanshahi et al. [  73 ] and the same is not repeated here. Each of the black circles on the

tape as observed in Figure  3.8 had a diameter of 5 mm and was represented by 92 pixels in

the image. This information is exploited in this study to convert the unit of crack thickness

from pixels to mm.
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(a) (b) (c)

(d) (e)

Figure 3.9. Steps involved in the segmentation process - (a) Grayscale image
(I), (b) Result of max[ (I ◦ S{0◦,45◦,90◦,135◦}) • S{0◦,45◦,90◦,135◦}, I] , (c) Crack
map (T ) generated by Equation  3.1 , (d) Binary image obtained by applying
Otsu’s threshold to T , and, (e) Final segmentation mask obtained after post-
processing a noise removal.
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Figure 3.10. Illustrative examples of original image and generated segmen-
tation mask for a crack at different points in time.
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3.3 Results and Discussions

The damage evolution dynamics for five different cracks scattered along the span of the

tested beam was studied and is shown in Figure  3.11 . The distribution of crack thickness

evaluated at several points along the centerline of the cracks is plotted against time which is

characterized by inspection round. The rectangular boxes denote the range between the first

and the third quartiles. The horizontal lines inside the boxes represent the second quartile,

also known as the median. The small solid squares inside the boxes symbolize the mean

values whereas the whiskers protruding out from the boxes signify one standard deviation

on either side of the mean value. All the parameters discussed above are indicators of damage

severity and its evolution with time. However, the one parameter which is of highest interest

to the inspectors is the maximum thickness. It is represented by small triangles, which are

connected by straight lines for better depiction of its evolution with time. It was observed

that the maximum as well as the mean crack thickness increases almost monotonically with

increase in load. The segmentation algorithm used in this study presumes that the cracks

are darker compared to the background. However, this hypothesis is violated at times when

light penetrates inside thick cracks making a portion of the crack interior appear bright.

This leads to inaccurate segmentation and therefore underestimation of crack thickness as

indicated by abrupt dip in the maximum thickness value (Figure  3.11b ). However, similar dip

observed at lower stages of loading (Figure  3.11a ) can be attributed to the debilitating effect

of image noise on segmentation of very thin cracks. Increase in load also resulted in higher

dispersal in the thickness values due to increase in crack thickness as well as appearance

of new branches. Besides, increase in loading intensity increased the difference between the

maximum and mean thicknesses.

Many a time, evolution of old crack is accompanied by appearance of new branches,

which are not accounted for by the maximum thickness. Therefore, total crack thickness

together with total area of the cracks, which take into account the main crack as well as its

branches, are plotted against time (characterized by inspection round) in Figure  3.12 . Total

crack thickness is estimated as the summation of crack thicknesses at different locations.

On the other hand, the area of a crack is measured by evaluating the number of pixels in a
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region enveloped by an 8-connected component in the binary crack map. This figure (Figure

 3.12 ) presents an overall estimate of how fast the crack is growing as a whole.

The deterioration rate (rate of change in crack thickness) is plotted against time (in-

spection round) in Figure  3.13 . It is nothing but the first derivative of crack thickness with

respect to time. It is evident from the figure that rate of change in thickness is not monotonic,

in contrast with thickness itself. This indicates that the growth rate is not proportional to

the applied load. An illustration of this sort will make it possible to single out the two

inspection rounds in between which a crack has grown at the fastest pace. For instance, it

can be inferred from Figure  3.13 that the crack-5 suffered the worst degradation in between

the fourth and the fifth rounds of inspection. Similar conclusions can likewise be drawn for

other cracks as well. Such information may prove to be crucial for chronologically connecting

the extent of degradation with extreme events from the past such as seismic vibration, fire,

mechanical overload, etc. This will facilitate zeroing in on the most probable reason for

damage among several possibilities which are otherwise equally likely.

There are occasions when the inspectors are privy to the data recorded by accelerometers

or displacement sensors installed in different floors of a building or at different places along

the span of a bridge, in addition to images captured by visual sensors. This provides a

scope for correlating component level damage severity with peak acceleration or displacement

experienced by the structure. Figure  3.14 , which shows the variation of crack thickness with

the displacement induced by the actuators at loading points, illustrates this concept. The

abscissa in this figure should be suitably chosen so as to serve the specific need of the problem

at hand. Peak seismic ground motion, mid-span deflection of a bridge or top storey deflection

of a building are some of the possible alternatives, to name a few. An analysis as such will

enable the structural engineers to anticipate the possible damage in a structure that may be

induced by a future earthquake of any given intensity.

All the figures presented in this section provide a clear picture of how fast the crack is

growing and thereby facilitate an informed decision making with regard to any immediate

follow-up action where necessary. The state-of-the-art approaches for autonomous condition

assessment of civil infrastructures are deprived of this crucial time dimension which prohibits

any rationale prognostication about an imminent structural failure. However, inclusion of
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(a) Crack 1 (b) Crack 2

(c) Crack 3 (d) Crack 4

(e) Crack 5

Figure 3.11. Time evolution of crack thickness distribution for five different
cracks. The rectangular boxes denote the range between the first and the third
quartiles. The horizontal lines inside the boxes represent the second quartile,
also known as the median. The small solid squares inside the boxes symbolize
the mean values whereas the whiskers protruding out from the boxes signify
one standard deviation on either side of the mean value. The small triangles
outside the rectangular boxes represent the maximum values.
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(a) (b)

Figure 3.12. Time evolution of total crack thickness and area - (a) Total
thickness, and, (b) Total area.

(a) (b)

(c)

Figure 3.13. Rate of change of (a) maximum crack thickness, (b) total crack
thickness, and (c) total crack area during the intervening time between suc-
cessive inspections.
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precious chronological intelligence, as suggested in this study, into the condition assessment

and monitoring framework, will significantly narrow down this limitation, making it possi-

ble to estimate the residual life of a structural component and take preemptive measures

as needed. It will also be instrumental in recommending any requisite adjustment in the

frequency of future routine inspections.

Civil infrastructures undergo visual changes with time due to accumulation of dirt, rust,

stains, etc. Even though SURF algorithm is used for feature detection which is invariant to

illumination changes, however, the performance of the correspondence identification process

can be affected by contamination of visual features leading to reduction in the number of

matched points. In extreme cases, this may result in the failure of feature matching and

image alignment exercises if there are not sufficient features to estimate the homography

matrix accurately. However, in presence of adequate interest points, as in the case of present

study, the proposed algorithm will perform reasonably well without any appreciable loss of

accuracy. The detection algorithm can be made robust against such surface irregularities

by diversifying the training data with regard to all possible noise intrusion and illumination

conditions. A lot of noises will be disposed of at this stage by rejection of nonessential

background. Finally, proper execution of post-processing strategies in the segmentation

module will in effect make the images noise free.

The beam specimens considered in this study were subjected to flexural failure. There-

fore, most of the cracks that appeared on the surface were predominantly vertical. However,

inspectors often run into situations where structural elements fail in shear giving rise to

cracks that are primarily diagonal. In such cases, the Faster RCNN algorithm will predict

a larger bounding box enhancing the scope for noise ingression. However, an appropriate

post-processing in the segmentation stage will ensure that the noises are duly identified and

eliminated. Moreover, linear structuring element with different orientations (Equation  3.1 )

renders the segmentation technique invariant to crack orientation. It is not uncommon to

encounter situations where two initially unconnected cracks intersect and become insepa-

rable with increase in load. In such situations, it is recommended that the pair of cracks

should be treated as a single entity and evaluated jointly. Cracking in concrete is used as

a case study to validate the efficacy of the proposed approach. However, the same tech-
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niques can be extended to any other defect category or to multiple defect categories with

appropriate modifications. The data sets used for training and validation of the detection

algorithm should be suitably updated to include instances from all the defects being investi-

gated. Defect-specific segmentation and quantification algorithms should be invoked to put

in place a comprehensive condition assessment pipeline.

3.4 Conclusion

This study was motivated by the observation that most of the published works in the

area of vision-based autonomous structural inspection and health monitoring are agnostic to

the time dimension. Ignoring vital historical information, which can otherwise be a key to

time-based analysis of damage growth, makes it impossible for inspectors to act preemptively

to avert any imminent structural failure and consequent human and financial losses. This

study aimed at filling this research gap by proposing a novel computer vision-based approach

to leverage from the crucial chronological intelligence embedded in archival images captured

by mobile inspection robots or UAVs. Strategies are proposed for autonomous exploration

into the erstwhile inspection data looking for correspondences, view synthesis from multiple

correspondences and alignment to the current scene under consideration, localizing damage

in the reconstructed scenes from the past, segmenting damage, and finally quantifying the

damage to extract necessary information and derive meaningful conclusions, after a dam-

age is detected in the current data set. Time history of damage is graphically presented

facilitating easier interpretation in addition to predictive and quantitative evaluations. The

proposed framework will also enable a transition from the current schedule-based inspec-

tion process, where a structure is inspected at regular time interval, to a condition-based

inspection paradigm where the frequency of inspection can be adjusted based on the current

state of an infrastructure system. Cracks on concrete surface are used as a case study to

demonstrate the feasibility of this approach, which can be potentially extended to any type

of structural defects, namely, spalling and corrosion (Appendix  A ). However, effective im-

plementation of the proposed algorithm makes it necessary to have complete coverage of the

damaged areas and adequate overlap between successive images at each batch of inspection
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(a) (b)

(c)

Figure 3.14. Variation of (a) maximum thickness, (b) total thickness, and
(c) total area of cracks with respect to induced displacement.
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data. Besides, this algorithm will fail if there are insufficient visual features or if the struc-

ture under investigation is not planer. Incorporation of IMU and GPS information may lead

to more robust scene reconstruction in such situations, which is a scope for further research.
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4. MULTI-SENSOR FUSION FOR DEEP LEARNING-BASED

AUTONOMOUS DAMAGE DIAGNOSIS EXPLOITING

SYNTHETIC TRAINING DATA

4.1 Background

Convolutional neural networks (CNN) are widely used by the computer vision commu-

nity for object recognition and semantic segmentation from visual data. The state-of-the-art

algorithms in this area largely rely on photometric measurement of colors due to immediate

availability of inexpensive high resolution cameras. However, regular cameras translate 3D

scenes into 2D spaces leading to a loss of information vis-à-vis distance and scale. This

imposes various limitations which come in the way of realizing the full potential of vision-

based techniques. Therefore, arrival of commercially available low-cost depth sensors such

as Microsoft Kinect was believed to unlock the next level of computer vision applications

which propelled the scientific community to explore various utilities of depth measurement.

A number of investigations to this end revealed that integration of depth information sig-

nificantly enhances the performance of state-of-the-art detection and segmentation models.

Schwarz et al. [ 77 ] demonstrated that infusion of depth data improves the efficiency of CNN-

based robotic scene understanding and manipulation in disaster response scenario. Hazirbas

et al. [  78 ] proposed an encoder-decoder architecture called FuseNet for semantic segmenta-

tion of indoor scenes and observed that fusion of depth information significantly augments

the segmentation accuracy. Similar observations are recorded by Li et al. [  79 ] who invoked

long short-term memory (LSTM) netowrk for multi-modal indoor scene labelling. Wang et

al. [ 80 ] proposed a novel feature transformation network for fusion of multi-modal sensor

data. It connects a set of convolution and deconvolution layers which have the same struc-

ture for different modalities. The feature transformation network extracts common features

which are shared between different modalities as well as modality specific features which

capture visual patterns visible only in one modality. Park et al. [  81 ] demonstrated that fu-

sion of depth features enhances the accuracy of indoor semantic segmentation by proposing

a multi-level feature fusion network called RDFNet taking advantage of residual learning
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and skip connections. Locally sensitive deconvolution network was exploited by Cheng et

al. [ 82 ] for semantic segmentation of indoor scenes. The authors introduced gated fusion

layer which effectively combines features from various sensor modalities. The proposed ap-

proach increased the segmentation accuracy significantly. Xu et al. [  83 ] adopted shared

weights strategy and parameter-free correlation of modality-correlated and modality-specific

features for multi-modal object detection. The authors noticed an overall improvement in

detection accuracy owing to multi-sensor fusion. Ophoff et al. [  84 ] exploited single-pass CNN

architecture to fuse depth and visual sensor data for real-time pedestrian detection leading

to an improvement in accuracy. It may be noted here that contrary to standard practice

of boosting model accuracy by increasing model complexity, depth fusion seeks to provide

a less expensive alternative for enhancing model performance by enriching the information

content of input data. Other notable works in this area include [  85 ]–[ 88 ].

Aging civil infrastructures require periodic inspection in order to prevent sudden failure

which causes loss of lives and economic setbacks. The existing inspection techniques are

by and large manual and therefore time consuming, subjective and risky. Computer vision-

based algorithms have been explored in recent times to investigate the prospect of robotic

inspection as a viable alternative to such manual techniques. A number of studies ([ 5 ]–[ 7 ],

[ 30 ], [  33 ], [  69 ], [  89 ]) exploited deep learning (DL)-based methods to this end for autonomous

defect detection in civil infrastructures. However, the previous studies relied solely on the

photometric data for identifying damages in videos and images. Only a few studies in the

past focused on investigating the effect of depth fusion on the performance of RGB-based

DL algorithms vis-à-vis damage detection in civil infrastructure systems. Zhou and Song

[ 90 ] probed into the fusion of intensity and range images to train a CNN for classification

of roadway cracks. In separate studies, the authors [  91 ], [  92 ] relied on fully convolutional

encoder-decoder networks for semantic segmentation of concrete roadway cracks based on

range images alone. A number of studies ([  73 ], [  93 ], [  94 ]), on the other hand, exploited depth

measurement for quantifying different types of defects such as concrete cracks, spalling, etc.

However, there is no study till date which leveraged depth perception for semantic segmenta-

tion of various damages that commonly occur in RC structures subjected to extreme loading.

Depth information may prove to be crucial for distinguishing between actual damage and
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damage-like artifacts having similar visual features. It can also serve as a force multiplier

when it comes to damage detection under poor lighting condition. Jahanshahi et al. [  95 ] pro-

posed a pavement defect segmentation technique by fitting a plane to depth values measured

by inexpensive depth sensors and detecting the defective area by thresholding the relative

depth evaluated with respect to the fitted plane. This unsupervised approach is fraught with

many limitations and may fail in situations where the inspection surface is not planar. More-

over, it is not endowed with the capability of distinguishing between multifarious damage

categories. This leaves an information gap in the existing knowledge base which the present

study aims to fill. This study incorporates depth fusion into a fully convolutional network

(FCN) for semantic labelling of different damage types relevant to RC structures. Fusion of

depth data was observed to enhance the segmentation performance significantly.

The single biggest factor that deterred the scientific community from exploring the util-

ity of depth data with regard to vision-based autonomous condition assessment of civil

infrastructure is the scarcity of a publicly available damage data set that contains depth

information. This shortcoming is overcome in this study by using state-of-the-art computer

graphics techniques [  96 ] to generate a database of synthetic damage containing spatially

aligned RGB and depth information following guidelines from ACI 318 [  97 ]. Recent stud-

ies [  98 ] have shown that DL algorithms trained on synthetic data perform reasonably well

on real data. Synthetic data in the past has been exploited by Hoskere et al. [  99 ], [  100 ]

for semantic segmentation of cracks and corrosion in a meter gate, and by Narazaki et al.

[ 101 ] for recognition of bridge components and damage severity levels in high-speed railway

viaducts. The authors of these studies superimposed surface textures of damage on the

graphics models of various structural elements to impersonate a photo-realistic appearance

of damage. The present study, on the other hand, relied on reconstructed 3D models of real

buildings and induced pit-like depressions on the surface akin to the spalling of concrete in

RC structures. Three different damage categories are considered in this study for semantic

labelling, namely, spalling, spalling with exposed rebars, and severely buckled rebars (Figure

 4.2 ). An extensive discussion on the data generation process is included in Section  4.2 .

Representing the depth information in a proper way is paramount for getting the most

out of depth fusion. The quest for a suitable strategy for representing depth data has led
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to the emergence of various encoding techniques such as Absolute Depth-based Encoding

(ADE) and Surface Normal-based Encoding (SNE). Apart from these two existing encod-

ing techniques, this study also proposes a novel two-stage approach based on depth values

measured relative to a fitted plane. This encoding technique is referred to as Relative Depth-

based Encoding (RDE) in the current study. The central ideas behind all three encoding

techniques are elaborated in Section  4.3 . A comparative performance evaluation revealed

that SNE outperforms other two encoding techniques in terms of accuracy and robustness.

Encrypted depth (ED) is a general term used in this study to describe absolute depth

(AD), surface normal (SN), and relative depth (RD) for respective encoding techniques.

Stacking the RGB and ED images right at the beginning and processing the resulting multi-

channel image is a time-honored fusion strategy. However, previous studies indicate that an

early fusion as such does not always lead to the optimum performance. This study therefore

explores various other fusion strategies as described in Section  4.4 . It is observed that the

best fusion strategy is dependent on the depth encoding technique. Several experiments are

conducted in this study for comparative assessment of different depth encoding techniques

and fusion strategies. The results are presented and discussed at length in Section  4.5 .

Despite proven advantages of depth fusion, it is not to be forgotten that depth sensors

are not yet as pervasive and ubiquitous as RGB cameras. Moreover, practical application of

depth sensing during real robotic inspection has many challenges. The traditional lidar-based

depth sensors are generally large and weighty, and therefore not suitable to be integrated with

mobile robotic platforms. The recent consumer-grade depth sensors, on the other hand, have

the advantages of being lightweight and low-cost. However, many of these sensors exploit

laser scanning techniques which are susceptible to interference by sunlight, leading to a poor

outdoor performance. Besides, depth sensors may lead to increased energy consumption

reducing the operating life of UAVs, which rely on on-board batteries as primary energy

sources. This reduces the efficiency of robotic inspection by enhancing the inspection time

and costs. In view of these practical constraints, it will be ideal to forego depth sensing

at test time without foregoing the benefits of depth fusion. This study will aim to achieve

this research objective by leveraging two important advances in the area of multi-modal

sensing, namely modality hallucination [  102 ], [ 103 ] and single view depth estimation [ 104 ],
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[ 105 ]. These surrogate techniques enable us to simulate depth maps or hallucinate mid-level

convolutional depth features from single-frame RGB images. This eliminates the need of

depth sensing at test time without considerably undermining the segmentation performance,

as illustrated in Section  4.6 . In the end, the conclusions of this study are summarized in

Section  4.7 .

4.2 Generation of Synthetic Data

4.2.1 Basic theory

Houdini [ 106 ] is a 3D animation and visual effects software developed by SideFx which

is used in this study for the generation of the synthetic data. What makes Houdini distinct

from other commercially available computer graphics software is its procedural generation

capability [ 107 ] through Procedural Dependency Graph (PDG). It enables parallelization

of sequential workflows enabling automation and scaling of the entire pipeline. Complex

dependencies are described visually with nodes and transformed into a set of actionable,

schedulable tasks, which are then distributed with the help of a scheduler and computed in

parallel. Synthetic damages are induced by Boolean subtraction of a solid geometry from

baseline objects. The baseline objects (Figure  4.1 (a)) considered in this study are 3D re-

constructions of real buildings obtained from Matterport3D dataset [ 108 ]. Matterport3D

is a large-scale RGB-D dataset that comprises 10800 panoramic views from 194400 RGB-

D images of 90 building-scale scenes with precise global alignment. The geometry that is

subtracted from the baseline structure can be something as simple as a solid sphere (Fig-

ure  4.1 (b)). However, to create an appearance of real damage, Simplex noise is applied

to the sphere (Figure  4.1 (e)) prior to Boolean subtraction. Simplex noise is a procedural

texture primitive very similar to Perlin noise [ 109 ] but with fewer directional artifacts and

lower computational overhead in higher dimensions. The shape and size of the sphere and

various noise parameters can be randomized for different iterations. A region of interest,

where a damage is intended to be induced, is manually demarcated and dissociated from

the remaining model (Figure  4.1 (d)). The solid geometry is then placed on the isolated

wall section so as to ensure that they intersect each other (Figure  4.1 (g)). The portion of
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the wall intercepted by the solid geometry is then cut out (Boolean subtraction) leading

to a configuration shown in Figure  4.1 (h). This modified wall section is then merged with

the rest of the structure to retrieve the entire building model (Figure  4.1 (k)). To assign

photo-realistic material using principled shader, a real image of concrete spalling (Figure

 4.1 (j)) is projected on the damaged part of the building model as shown in Figure  4.1 (l).

The reinforcement bars (Figure  4.1 (f)) are modelled using polywire nodes which are used to

create complex tubular geometries with smooth bends and intersections. The reinforcement

bars are textured (Figure  4.1 (i)) and placed on the damaged part of the building result-

ing in a realistic scene of concrete spalling with exposed rebars. As a whole, 629 of such

scenes are generated containing complex realistic backgrounds and three different damage

categories, namely, spalling, exposed rebars, and severely buckled rebars (Figure  4.2 ). Each

scene is rendered from different camera positions and orientations using a ray tracing [ 110 ]

or physically based rendering [  111 ] engine resulting in 1789 pairs of RGB and depth images

synchronized in space and time. A histogram of camera-to-damage distance for all such

images is presented in Figure  4.3 . The figure indicates that most of the images are rendered

from a distance of 4-5 meters, which is consistent with real robotic inspections.

4.2.2 Automatic Labelling

DL-based segmentation models require manual labelling of the training and test data

which is an arduous task. Also, any inaccuracy in the manual labelling adversely impact the

segmentation performance. However, synthetic data generated by computer graphics soft-

ware can be labelled automatically which enhances the speed and accuracy of the annotation

process. Houdini has a special feature which assigns a unique identification number to each

material in a model. This enables the pixel coverage for each material to be readily available

based on this identification number. The damaged regions in each scene are identified in this

manner and labelled according to the severity of the damage.
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Figure 4.1. Synthetic damage data generation pipeline using computer graphics tool
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(a)

(b)

(c)

Figure 4.2. Damage categories considered in this study - (a) Spalling, (b)
Spalling with exposed rebars, (c) Severely buckled rebars.
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Figure 4.3. Histogram of the distance between the camera to the center of a damage
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4.3 Depth Data Encoding

The value stored at each pixel of a raw depth map (Figure  4.4a ) represents the absolute

distance between the camera and a physical point in the 3D space, projected on the optical

axis of the camera. Conventionally, it is the Z coordinate of a 3D point with respect to a

coordinate system having its origin at the camera center and its Z axis aligned with the

principle axis of the camera. The brighter pixels in the depth image are away from the

camera and the darker pixels are closer to the camera. Normalized depth map has been

used by many researchers in the past as input to neural networks needing no preprocessing

of data. This encoding technique is referred to as Absolute Depth-based Encoding (ADE)

in this study. A number of studies, on the other hand, applied image processing techniques

to extract useful features from the depth map, which were then input to neural network

models. One of the features that are widely used in this regard is based on SN vectors which

reveal the shape of a 3D object. Knowing the focal length of the camera and the depth value

at each pixel, the 3D position for each point in the scene can be ascertained using a pinhole

camera model. This is followed by fitting of a local plane at each physical point with the

help of its neighbouring points. The size of the neighbourhood is generally hand-engineered

based on the level of noise in depth measurement. The equation of the fitted plane can

be used to deduce the SN vector at each point. A SN map (Figure  4.4b ) is thus produced

having three channels representing the three components of the SN vector estimated at each

pixel of the depth map. This approach for representing depth data is categorized as Surface

Normal-based Encoding (SNE) in the present study. The generated SN map looks like a

texture, where all points lying on a plane, having the same SN vector, are represented by

the same color. However, different points in a damaged region have different SN vectors.

Therefore, the uniformity in the texture is lost in this region. This provides a informative

cue about the presence of a damage in the scene.

The depth of a damage is usually small compared to the camera to object distance.

Therefore, in presence of noisy data, the additional depth due to a damage may not make

a mark when an image is captured from a relatively large distance. Therefore, this study

proposes a novel two-staged encoding technique based on RD. In this technique, the potential
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(a) Absolute depth map (b) Surface normal map

Figure 4.4. Various depth encoding techniques - (a) Absolute depth-based
encoding (ADE), (b) Surface normal-based encoding (SNE).
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damage areas are first identified using a RGB-based detection model. A region-based CNN

popularly known as Faster R-CNN [  38 ] is exploited in this study to this end. In Faster

R-CNN, the input image is first passed through a series of convolutional layers. The feature

map generated by the last convolutional layers is sent to a region proposal network for

generating regions of interest, which are finally refined and classified using a Fast R-CNN

[ 40 ] module. The classification of interest regions at this stage is binary (presence or absence

of a damage) and agnostic to the severity of damage. The geometry of the detected interest

regions is then estimated with the help of a pinhole camera model utilizing the depth map

and the focal length of the camera. Following this, a plane is fitted to the 3D points which

represents the undamaged surface encircling a damaged region. A RANSAC-based [  67 ] plane

fitting technique suggested by Jahanshahi et al. [  95 ] is adopted to this end in this study.

The distance of all points in the damaged region from the fitted plane represents the relative

damage depth as shown in Figure  4.5 . However, the use of this technique is limited only to

situations where the damage is located on a planar surface such as walls, roofs, etc. It will fail

to fit a plane if the damage is located at the corner of a room or at the intersection between

two structural members. This encoding technique is referred to as Relative Depth-based

Encoding (RDE) in the current study.

4.4 Fusion Strategies

A fully convolutional encoder-decoder network (Figure  4.6 ) proposed by Hazirbas et al.

[ 78 ] is used in this study as a baseline model to investigate the effect of depth fusion. The

encoder part, which extracts features from the input image, resembles a VGG-16 architecture

[ 112 ] without the fully connected layers. It is pre-trained on ImageNet dataset [ 113 ] and fine-

tuned thereon. The decoder part, on the other hand, upsamples the feature maps back to

the original input resolution using memorized unpooling [  114 ]. Various fusion techniques are

explored in this study to identify the best strategy. A pure RGB-based network, as shown in

Figure  4.6a , is used as a benchmark to assess the benefit from depth fusion. The architecture

shown in this figure (Figure  4.6a ) is also valid for a network trained solely with ED data.

Figure  4.6b depicts early fusion (EF), where the RGB and ED images are stacked and the
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Figure 4.5. Relative depth-based encoding (RDE) - Flowchart depicting the
process of relative depth map generation
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resulting multi-channel image is sent to the FCN to generate an output segmentation mask.

In late fusion (LF) presented in Figure  4.6c , the RGB and ED images are passed through two

separate encoder and decoder pairs, and the classification score maps produced by the last

decoder layers are added up to produce the final semantic labels. Additionally, a number

of intermediate fusion (IF) strategies are investigated which entail separate encoders but

a shared decoder for RGB and ED channels. The feature maps from the ED branch of

the encoders are fused (element-wise summation) to respective feature maps in the RGB

branch at different levels. A collection of 31 different fusion strategies can be put in place by

considering all possible combinations of five IF levels. Examining the efficacy of all potential

fusion strategies is an arduous task and therefore beyond the scope of the present study.

Alternately, a small number of fusion schemes are hand-picked from the larger group of

31 fusion strategies, and are investigated in this study. The selected fusion strategies are

denominated by numbers indicating the constituent fusion levels (FL). Figure  4.6d presents

an illustrative example of IF strategies where features from the RGB and ED branches are

fused at all intermediate levels.

4.5 Results and Discussions

Several experiments are conducted in this study for comparative analysis of different

depth encoding techniques and fusion strategies. Five-fold cross validation is conducted to

estimate the robustness of various fusion schemes. The size of training and test data used

for each cross-validation round is shown in Figure  4.7 . It should be noted that there was

no overlap between the test data used in different rounds of cross-validation. The depth

data generated by computer graphics software are generally noiseless. However, practical

depth sensors invariably contain some sensor noise. Therefore, a zero-mean Gaussian noise

is added to the actual depth values to mimic a real world depth sensing. The noise was

assumed to be a random variable having zero mean and standard deviation varying with

the sensor-to-object distance. This variation in standard deviation with sensor-to-object

distance was experimentally measured by Zennaro et al. [  115 ] for the first generation Kinect

sensor (Kinect v1) as shown in Figure  4.8 . A quadratic fit to the observed data is used in this
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(d)

Figure 4.6. Various fusion strategies considered in this study - (a) No fu-
sion, (b) Early fusion (EF), (c) Late fusion (LF), (d) Illustrative example of
intermediate fusion (IF). 88



Figure 4.7. Category-wise training and test data size for different cross-validation rounds

Figure 4.8. Sensor noise in depth measurement by Kinect v1 [ 115 ]
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study, without a loss of generality, to predict the noise level at a given depth. At each pixel

of a depth map, the noise level is computed by random sampling from a zero-mean normal

distribution, the standard deviation of which is dictated by the quadratic fit presented in

Figure  4.8 . The estimated noise is then added to the actual depth value to obtain the noisy

AD data. Subsequently, SN maps and RD maps are computed based on this noisy depth

data following the procedures described Section  4.3 .

The performance of the models is evaluated in terms of intersection over union (IoU) of

the predicted and ground truth damage regions. The variation range of overall IoU, which

is the average of class-specific IoUs, as obtained from the cross-validation is shown in Figure

 4.9 . In this figure, the small squares inside the rectangular boxes denote the mean values.

The horizontal lines inside the boxes represent the median values. The lower and upper sides

of the boxes signify one standard deviation on either side of the mean values. The whiskers

protruding out of the boxes indicate the minimum and maximum values of overall IoU. This

figure reveals that depth fusion, regardless of the encoding technique, significantly enhances

the performance of traditional RGB-based segmentation models, which produced a mean

overall IoU of 0.690. The EF exhibited the highest accuracy for ADE producing a mean

overall IoU of 0.890, which implies a 20% increase in accuracy compared to the baseline

RGB-based model. On the other hand, for SNE, the optimum performance was rendered

by IF-3, which produced a mean overall IoU of 0.938, indicating a whopping 25% jump in

accuracy. Similarly, in the case of RDE, IF-12 was found to exceed other fusion strategies

with a mean overall IoU of 0.909, which is 21% higher than the single-modality RGB-based

model. It is worth noting that several fusion schemes considered in this study outperform

IF-1234 which was identified as the best fusion strategy by Hazirbas et al. [ 78 ]. The values

of precision and recall averaged over five rounds of cross-validation for Faster RCNN-based

regions of interest detection in RDE were 0.987 and 0.995, respectively.

Training based on AD data alone did not converge and therefore produced no mean-

ingful results. This is because of the inconsequentiality of the additional depth due to a

damage as compared to the much larger sensor-to-object distance and the diminution in its

discriminating ability in presence of sensor noise. This also triggered non-convergence of the

network with LF. This implies that AD can provide complementary information, but cannot
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(a) (b)

(c)

Figure 4.9. The overall IoU produced by cross-validation for - (a) Absolute
depth-based encoding (ADE), (b) Surface normal-based encoding (SNE), (c)
Relative depth-based encoding (RDE).
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(a) (b)

(c)

Figure 4.10. Coefficient of variation (CV) of overall IoU for - (a) Absolute
depth-based encoding (ADE), (b) Surface normal-based encoding (SNE), (c)
Relative depth-based encoding (RDE).

92



substitute RGB data in presence of sensor noise. On the other hand, the network trained

solely with SN data produced an accuracy higher than pure RGB-based model. This implies

that SN data can not only provide complementary information, it can even be a substitute

to RGB data. Therefore, in absence of proper lighting where RGB-based algorithms may

fail, SN-based models can be leveraged for semantic segmentation of damage based entirely

on geometric features without recourse to any kind of photometric information. Similar

deductions can extended to RD data, however with significantly reduced efficiency.

The overall IoU of a robust fusion strategy should not only have a high mean, but it

should have a small variance also. Therefore, the relative efficacy of various fusion strategies

are evaluated in terms of the coefficient of variation (CV) given by the ratio of the standard

deviation to the mean of a population. A lower value of CV indicates higher robustness. As

observed in Figure  4.10 , IF-1 exhibits the lowest CV for ADE, and therefore, it is designated

as the most robust fusion strategy for this encoding technique. In the same way, IF-1 and

IF-12 can be identified as the most robust fusion strategies for SNE and RDE, respectively.

Therefore, it can be inferred that different evaluation criteria lead to different results vis-à-

vis selection of the best fusion strategy. It can also be noticed that depth fusion does not

always improve the robustness of RGB-based models. Overall, SNE performs better than

RDE in terms of accuracy and robustness as observed in Figures  4.9 and  4.10 . ADE, on the

other hand, is the least accurate and robust of all the encoding techniques considered in this

study.

However, the overall IoU does not provide a class-wise estimate of the performance of

a learning algorithm. Therefore, the most robust fusion strategy identified for each depth

encoding technique is exploited to evaluate the class-specific IoU values as shown in Figure

 4.11 . It is observed that a pure RGB-based model does reasonably well in segmenting

a normal spalling. However, the performance drops significantly as the damage severity

increases. This is further evidenced by the sample test cases presented in Figures  4.12 and

 4.13 . It is noticed that several pixels depicting concrete spalling with exposed rebars were

wrongly labeled by the RGB-based network as buckled rebars, and vice versa. However, these

mistakes were greatly minimized by using fusion-based approaches. It should be recalled that

an RGB-based model relies only on color information. What depth fusion brings to the table
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Figure 4.11. Class-wise IoU produced by fusion strategies exhibiting the
least coefficient of variation (Figure  4.10 ) for different encoding techniques
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is the crucial structural information that is necessary for distinguishing between straight and

buckled rebars. Besides, it’s worth noting that the damaged concrete surfaces in the backdrop

of exposed and buckled rebars are texture-wise very similar. Therefore, any prediction based

solely on the local context may err in correctly classifying the concrete (damaged) pixels in

presence of exposed or buckled rebars. The depth fusion becomes helpful in such situations

in better learning the global context as evidenced by Figures  4.12 and  4.13 . This explains

the greater dividend furnished by depth fusion in the case of more severe damage categories.

Additionally, it should be noted that a pure SN-based model performs slightly better than

an RGB-based model, which is also indicated by the overall IoU values reported in Figure

 4.9 . In this case, the discrepancies in the predicted label for pixels representing the damage

boundaries can be attributed to the intricacies in fitting a local plane at the boundary points

which is necessary for estimating the surface normals. In other words, a SN-based model

does not predict the damage boundary very accurately. On the other hand, the semantic

labels produced by networks incorporating a fusion of heterogeneous data are evidently far

more accurate corroborating the favorable outcome of multi-sensor fusion.

Interpretability of DL algorithms is critical to scientific understanding and reliability of

predictions. Therefore, recently there has been a heightened interest in the field of explain-

able AI, which seeks to justify model predictions in a human interpretable way. In the same

spirit, this study aimed at obtaining a more granular view into the RGB-D fusion by probing

the activation maps from the intermediate layers (Figure  4.14 ). A couple of activation maps

from the first Conv+BN+ReLU block are shown in this figure for IF-1. It was observed that

the RGB branch highlights certain features in the activation maps (bright regions). How-

ever, it also suppresses other features as denoted by the dark regions. On the other hand,

the SN branch highlights those features that are largely suppressed by the RGB branch and

suppresses those highlighted by the RGB branch. It is also noticed that the fused activa-

tions highlight more features than what is done by any single modality. This shows that

RGB and depth data provide complementary information, which explicates the considerable

performance boost afforded by the fusion of two modalities. It should be noted here that SN

is only used as a test case in this illustration. However, the conclusions evenly hold true for

other encoding techniques as well.
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Figure 4.12. Qualitative segmentation results. The ground truth damage
category is exposed rebars. Magenta color denotes spalling, yellow color de-
notes exposed rebars, cyan color denotes buckled rebars.
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Figure 4.13. Qualitative segmentation results. The ground truth damage
category is buckled rebars. Magenta color denotes spalling, yellow color de-
notes exposed rebars, cyan color denotes buckled rebars.
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Figure 4.14. Visualization of features from the first Conv-BN-ReLU layers
for IF-1. This figure shows that the fusion of RGB and depth activations high-
lights more features of the scene than what any single modality operating indi-
vidually can do. In other words, RGB and depth data provide complementary
information, the fusion of which leads to improved segmentation performance.
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Validation of these important findings with real data was not practicable due to the lack

of a publicly available damage database that contains depth information. Acquisition of

real data was further inconvenienced by the scarcity of seismically damaged RC buildings

in the local vicinity. As a makeshift arrangement, a first-generation HoloLens (Figure  4.15 )

was used to photograph a few damaged RC specimens, which were visually not quite com-

parable with the damage scenarios considered for training. The HoloLens [  116 ] developed

by Microsoft is a head-mounted augmented reality device which is equipped with RGB and

depth sensors. Therefore, it is a perfect platform for collecting multi-modal inspection data.

However, it should be noted that the RGB and depth images recorded by the HoloLens have

different resolutions and fields of view. Therefore, an image alignment algorithm had to be

invoked to synchronize the RGB and depth frames. The predictions of the trained models

on these real data are presented in Figure  4.16 , which reaffirm the superior performance of

fusion-based models compared to the baseline RGB-based network. The overall poor per-

formance of the models on real data can be attributed to the mismatch between the test

specimens in real data and those in the synthetic data which were used for training of the

networks. A more extensive study based on real RGB-D data is scope for future work.

Another increasingly important parameter in this age of edge computing and cloud com-

puting is the processing time. The unmanned aerial systems used for inspection are often

incapacitated by limited payload capacity to carry high-powered computing devices. There-

fore, a real-time damage diagnosis requires that the chosen segmentation model is compu-

tationally less expensive. The computational cost is measured in this study in terms of the

processing time needed to process a single image as shown in Figure  4.17 . It should be noted

here that the processing time depends greatly on the image resolution and specifications of

the processing unit used for computation. An NVIDIA Quadro RTX 8000 GPU was used

in this study, and the image resolution was 768 pixel × 432 pixel. It is observed that ADE

is the least expensive of all encoding techniques regardless of the fusion strategy. The SNE

requires a relative higher processing time, which can be attributed to the need of estimating

SN map from the corresponding AD data as a part of data preprocessing. However, RDE

requires the maximum processing time. This is due to the multi-stage approach of RDE.

The first stage, which entails detecting a damaged region using the Faster RCNN algorithm,
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Figure 4.15. First generation Microsoft HoloLens. It is a head-mounted
augmented reality device capable of RGB-D sensing.
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Figure 4.16. Qualitative segmentation results for real data collected by Mi-
crosoft HoloLens. The ground truth damage category is exposed rebars and is
denoted by yellow color.
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takes around 0.1265 seconds on an average to process a single image. The following stage,

which seeks to fit a plane using the RANSAC algorithm and estimate the RD, consumes the

maximum amount of time which is estimated to be 0.397 seconds per image on an average.

It should be noted that this piece of computation relied solely on the CPU, and no GPU

was used at this stage. The remaining inference time for RDE concerned semantic labelling

of damages using the proposed FCN similar to ADE and SNE. Therefore, RDE is the least

recommended for real-time condition assessment of civil infrastructures.

4.5.1 Damage Quantification

One of the advantages of semantic segmentation is that it lays the foundation for damage

quantification. Depth sensors have been used in the past for quantification of concrete

cracks [ 73 ] and spalling [ 94 ]. However, the volumetric quantification approach presented by

Beckman et al. [  94 ] did not incorporate perspective correction. Therefore, the technique

proposed in this study will yield inaccurate results when the sensor plane is not parallel to

the structural surface being investigated. The present study introduces a novel approach for

volumetric quantification of concrete spalling which is robust against perspective distortion.

In this approach, the damaged area is first identified using the Faster RCNN algorithm.

The equation of the plane representing the unbroken surface surrounding a damaged region is

then determined (Figure  4.18a ) using a RANSAC-based plane fitting algorithm as described

in Section  4.3 of this chapter, and a RD map is obtained. Each pixel in the depth map

is then back-projected on the object plane. To this end, a line is drawn passing through

the optical center of the depth camera and the four corners of a pixel under consideration

(Figure  4.18b ). The equations of these lines can be easily obtained by utilizing the known

coordinates of the pixel corners and the camera center, through which the lines pass. This

is followed by the estimation of the intersection points of these four lines with the object

plane forming a quadrilateral as shown in Figure  4.18b . This quadrilateral may not have

the same shape as the pixel due to perspective distortion. The area of this quadrilateral

multiplied by the RD at the pixel location yields the volume of damage at the given pixel.

The summation of volumes calculated at all pixels will produce the total estimated volume
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Figure 4.17. Processing time for different depth encoding techniques
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of damage. An identical approach was followed to compute the actual volume, except that

in this case ground truth information was used to identify the damaged regions without

recourse to the Faster RCNN algorithm. The estimated damage volumes for different test

cases compared favorably with the actual values as shown in Figure  4.19 .

The existing condition assessment approaches do not involve measuring damage volume

due to limitations in sensing capabilities. However, barrier-free access to low-cost consumer-

grade depth sensors in recent years has increased the viability of volumetric quantification

of damage, which will potentially lead to more accurate and robust decision-making in the

future. In all probability, this will drive the emergency management agencies to update the

existing inspection manuals to reap the benefits of such valuable technological advancements.

4.6 Addressing Practical Challenges of Depth Sensing

Depth fusion is not an unmixed blessing. Alongside the advantages, depth sensing also

presents many practical challenges. Therefore, the feasibility of doing away with depth

sensing at test time without compromising the segmentation performance is investigated in

this study with the help of two recent developments in the field of vision-based multi-modal

sensing, namely modality hallucination (MH) and monocular (single view) depth estimation

(MDE).

4.6.1 Modality Hallucination

In MH, ED is used at training time as side information to produce a more informed

test-time RGB only network. This technique is implemented in this study by developing on

the same encoder-decoder network used earlier in this chapter. In this technique, an access

to paired RGB and ED images is presumed at the training time. Apart from the usual RGB

and ED branches, a third encoder, known as the hallucination branch, is also introduced

(Figure  4.20a ), which takes RGB images as input. A regression-based hallucination loss

is introduced between paired hallucination and ED mid-level activations to facilitate an

efficient information sharing between the two modalities. This loss is minimized alongside

a standard supervised loss over the class labels, ensuring that the mid-level convolutional
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Figure 4.18. Volumetric damage quantification
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Figure 4.19. Comparison of estimated and actual damage volumes
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features learned by the hallucination and ED branches mirror each other. In consequence,

the ED branch becomes redundant at the end of the training process. Because the same

mid-level features, which were hitherto generated by the ED branch, can now be hallucinated

by the hallucination branch using RGB data as network input. Thus, at test time, the ED

branch can be discarded, and the mid-level activations from the hallucination branch can be

fused to the RGB branch to emulate a multi-modal fusion (Figure  4.20b ). This gives rise to

a more informed test-time RGB-based network which significantly outperforms a standard

benchmark model trained solely on RGB data. This eliminates the need for depth sensing

at test time without any appreciable loss of segmentation accuracy.

4.6.2 Monocular Depth Estimation

The goal of MDE is to predict pixel-wise depth values corresponding to a given RGB

image. Traditional depth estimation methods such as structure from motion [  117 ]–[ 120 ] and

stereo matching [ 121 ]–[ 123 ] rely on multiple views of a scene to generate a sparse depth

map. However, many real-time inspection applications require depth map to be estimated

from a single viewpoint. The recent developments in DL-based computer vision techniques

have shown great promise of enabling this challenging task by predicting a dense depth

map from a single frame RGB image in an end-to-end manner. This study explored two

different approaches to this end based on convolutional neural network (CNN) and generative

adversarial network (GAN). The reconstructed depth maps can then be paired with the

corresponding RGB images to be used as inputs for the fusion-based segmentation models

presented earlier in this study.

CNN-based approach

A standard encoder-decoder-based CNN with skip connections (Figure  4.21 ) is used to

predict detailed high-resolution depth maps from single frame RGB images. The encoder

is borrowed from a DenseNet-169 architecture [  124 ] pre-trained on ImageNet dataset [  113 ].

The decoder, on the other hand, comprises a series of up-sampling layers. The baseline

architecture is adopted from Alhashim and Wonka [  125 ] with a few modifications. In the
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(a) At training time

(b) At test time

Figure 4.20. Modality hallucination architecture. It is trained to counter-
feit intermediate depth features from input RGB image, which makes depth
sensing redundant at test time.
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original study, the resolution of the final output depth maps was half the input resolution.

However, the fusion strategies proposed in this study require that the input RGB and depth

images should have the same resolution. To address this specific need, this study appended

an additional upsampling layer at the end of the network to ensure that the output resolution

matches that of the input. The predicted depth values are regressed to ground truth depths

by minimizing a composite loss function consisting of an L1 loss defined on the depth values,

an L1 loss defined over the gradients of depth image, and a structural similarity loss. The

efficiency of this approach is discussed in Section  4.6.3 .

GAN-based approach

A number of studies [  126 ]–[ 130 ], on the other hand, resorted to GAN for MDE. A GAN

consists of a pair of neural networks known as the generator and the discriminator, which

fight with each other. The generator is like a counterfeiter who tries to generate some fake

depth images, and the discriminator is like the cop who tries to catch the counterfeiter.

In the training phase, the generator becomes better and better at producing more realistic

depth images until it can produce a perfect depth image, which fools the discriminator into

believing that it is a real image. The same encoder-decoder network described in Section

 4.6.2 is used in this study as a generator to produce some artificial depth maps, which were

then classified by a discriminator as real or fake (Figure  4.22 ). The discriminator in this

study, which facilitated this adversarial training, was adopted from the classical CycleGAN

paper [ 131 ]. The performance of the GAN-based approach is described in the following

section.

4.6.3 Results

This section presents the results of CNN- and GAN-based MDE. Traditional DL algo-

rithms require that the input data are suitably normalized before being fed into a DL model.

Therefore, the ground truth and the estimated depth values were normalized between 0 and 1

in this study before computing the depth estimation accuracy. After this normalization, the

estimated depth values were compared with the ground truth depths, and the average root
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Figure 4.21. CNN-based monocular depth estimation

Figure 4.22. GAN-based monocular depth estimation
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mean square errors for five-fold cross-validations were observed to be 0.0435 and 0.0452 for

the CNN- and GAN-based approaches, respectively. This indicates that adversarial training

was not of any significant help, and therefore was not considered for any subsequent anal-

ysis. A few examples of the depth maps generated by the CNN-based approach are shown

in Figure  4.23 side by side with the corresponding RGB and ground truth depth images to

demonstrate the efficiency of this technique.

The main purpose of invoking MH andMDE was to create proxies for real depth sensing at

test time. Therefore, the efficiencies of these techniques were evaluated in terms of accuracy

and processing speed, as shown in Figures  4.24 and  4.25 , respectively. It is observed in Figure

 4.24 that, in the case of ADE, MH and MDE have comparable accuracies, both being in the

same ballpark with the measured depth (MD)-based approach. In the case of SNE, a 4%

drop in the accuracy was noticed vis-à-vis MD when MH was used. However, this accuracy

is still streets ahead of that of a single-modality RGB-based model. Also, MH demonstrated

a slight edge over MDE in terms of segmentation accuracy for this encoding technique. On

the other hand, in terms of processing speed, it was observed (Figure  4.25 ) that MH offers

a major advantage for both ADE and SNE. It requires a processing time that is even lower

than an MD-based model and is at par with a pure RGB-based model. It is particularly

advantageous for SNE, where considerable time is expended in SN estimation from raw

depth measurements. This step becomes inessential when MH is used. It leads to a win-win

situation on all counts as it increases the accuracy at no additional cost of processing time.

However, the MDE-based technique requires considerably higher processing time, more so in

the case of SNE. This can be attributed to the two-stage process involved in this approach,

namely depth estimation and semantic segmentation. Therefore, in the overall analysis, it

can be concluded that MH has a comparative advantage over MDE in terms of both accuracy

and processing speed. It can ably compensate for the lack of depth data at test time. This

implies that depth-sensing at test time is not indispensable. On the contrary, depth sensing

can be surrogated at test time by employing state-of-the-art MH techniques. It is believed

that this is a significant addition to the existing knowledge base and will go a long way to

enhance the efficiency of robotic inspection in time to come.
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Figure 4.23. Examples of monocular depth estimation using CNN-based approach
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Figure 4.24. Accuracy modality hallucination (MH) and monocular depth
estimation (MDE) as compared to measured depth (MD)
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Figure 4.25. Processing time for modality hallucination (MH) and monocular
depth estimation (MDE) as compared to measured depth (MD)
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4.7 Conclusions

This study is perhaps the first of its kind which investigates the effect of depth fusion on

the performance of deep learning-based multi-class damage segmentation framework. A syn-

thetic database is generated using state-of-the-art computer graphics techniques containing

three different damage categories which are commonly observed in RC structures subjected

to extreme loading. Several experiments are conducted which suggest that depth-fusion con-

siderably enhances the performance of RGB-based segmentation models. Various encoding

techniques are considered to represent depth data, including RDE which is a novelty of this

work. The SNE was observed to outperform the ADE and RDE in terms of accuracy and

robustness. Additionally, various strategies are explored for fusing depth information, and

the best strategy is identified for each encoding technique. The benefits from depth fusion

is found to be higher for exposed and buckled rebars than normal spalling. The ADE re-

quires the least processing time, followed by SNE and RDE. On the whole, it can be inferred

that the structural information provided by depth data complements the color information

embedded in RGB images leading to an improved segmentation accuracy. This study also

explored two surrogate approaches based on MH and MDE to get rid of depth sensing at

test time without letting go of its invaluable benefits and found MH to be more efficient. A

novel volumetric damage quantification approach is also proposed which is robust against

perspective distortion. It is believed that an effective implementation of the depth fusion

techniques presented in this study will prove to be a major breakthrough in the realm of

vision-based autonomous condition assessment of civil infrastructures. Validation of the

proposed approach with real depth data is a scope for future work.
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5. SUMMARY AND CONCLUSIONS

This dissertation focused on expanding the frontier in vision-based autonomous structural

inspection and condition assessment. A number of studies are undertaken with an aim to

develop fully autonomous robotic inspection and monitoring systems. First of all, a deep

learning-based approach is proposed for quick post-disaster reconnaissance of reinforced con-

crete buildings. Faster RCNN algorithm is employed to detect multiple damage categories,

namely, surface crack, spalling, severe damage with exposed rebars and severely buckled

rebars. State-of-the-art CNN models such as Inception v2, ResNet-50, ResNet-101 and

Inception-ResNet-v2 are exploited as backbone architectures. The networks were trained

and evaluated on image data collected from several past earthquakes such as Nepal (2015),

Taiwan (2016), Ecuador (2016), Erzincan (1992), Duzce (1999), Bingol (2003), Peru (2007),

Wenchuan (2008), and Haiti (2010) earthquakes. It is observed that Inception-ResNet-v2

outperforms other networks in terms of mean average precision. Moreover, it also noted that

accuracy is inversely proportional to the processing speed of the detection algorithms.

Additionally, a novel computer vision-based approach is proposed to benefit from the

valuable information hidden in historical inspection data. Strategies are proposed for au-

tonomous exploration into erstwhile inspection data in search of correspondences, view syn-

thesis from multiple correspondences and alignment to the current scene under consideration,

localizing damage in the reconstructed scenes from the past, segmenting damage, and finally

quantifying the damage to extract necessary information and derive meaningful conclusions,

after a damage is detected in the current data set. Temporal evolution of the damage is

graphically presented facilitating easier interpretation in addition to predictive and quanti-

tative evaluations. Cracks on concrete surface are used as a case study for validation of the

proposed approach. However, it can be extended to other damage categories such as spalling

and corrosion which is a scope for future work.

Furthermore, this study aimed at unlocking the next level in vision-based inspection

of civil infrastructure by incorporating depth fusion into a CNN-based damage diagnosis

framework. Three different damage categories which are commonly observed in RC buildings

are considered in this study, namely, spalling, spalling with exposed rebars, and severely
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buckled rebars. Computer graphics software is exploited to synthetically generate a database

of synchronized photometric and depth images to be used for the training and validation

of an encoder and decoder-based semantic segmentation model. Three different encoding

techniques are explored to represent the depth data. Additionally, various schemes for fusion

of RGB and depth data are investigated to identify the best fusion strategy. The results of

this study indicate that the performance of vision-based damage segmentation algorithms

can be significantly improved by fusion of multi-modal data, leading to more accurate and

robust inspection and enhanced infrastructure resilience. On top of that, this study proposed

surrogate strategies to dispense with depth sensing at test time without compromising on

the segmentation accuracy.

5.1 Future Work

This dissertation tackled only a few of the knowledge gaps existing in this important area

of research. There are many other critical research questions which are yet to be addressed.

The semantic segmentation of earthquake induced damages in RC buildings is one such

area which should be taken up by future studies. In segmentation-based algorithms, each

pixel in an image is classified and labeled according to the class it represents. Therefore, it

has the ability to predict the shape of a damaged area more accurately than bounding box

based approaches such as Faster RCNN. It may immensely benefit vision-based structural

inspection, given that the shape of an damaged region is a powerful discriminator among

different damage categories relevant to earthquake reconnaissance of RC buildings. For

instance, shear cracks are preeminently diagonal, while flexural cracks usually spread in

vertical or horizontal direction. This will facilitate finer level of categorization of various

damages commonly observed in RC buildings post earthquake events. Additionally, it will

help quantifying the severity of damage through autonomous evaluation of crack thickness

and spalling area. Future studies should also explore the possibility of improving the detector

performance by implementing Bayesian data fusion as proposed by [  32 ]. Aggregating the

detection scores of a damaged region photographed from disparate camera positions may

eliminate some of the false detections leading to an improved detection accuracy. Future
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studies should also focus on the practical implementation of this detection algorithm by

integrating it with UAVs or inspection robots for real hands-on experiments.

Estimating the service life of a structure is important for the sake of scheduling future

maintenance. Mechanics-based models are widely used and usually most reliable in this

matter [ 132 ]–[ 134 ]. However, in absence of proper analytical model, statistical data driven

approaches are adopted which rely on observed data from the past [  135 ]–[ 137 ]. Probabilistic

evaluation of historical damage evolution data helps predict the expected timeline for a

specified serviceability limit state. This calls for establishing the chronology of a damage

by exploring an archive of visual inspection data, which was not thoroughly studied by

researchers in the past. The present study will potentially fill that knowledge gap and will

make it possible to anticipate the remaining life of a civil infrastructure system by exploiting

a statistics-based prognostic model, the detailed investigation of which is beyond the scope

of the present study.

Besides, estimation of loss due to possible seismic events is an important interest area

for planners, government organizations and insurance agencies. It helps them in disaster

planning, formulating risk reduction policies, decision making on retrofit and mitigation

strategies, and in calculating insurance rating. Evaluating the probability of reaching or ex-

ceeding a damage state given a specific value of intensity measure is a prerequisite for seismic

loss estimation and risk assessment of infrastructure systems. This probability represented

graphically is known as the fragility curve. Professional judgment provided by a panel of

experts is one of the commonly used approaches for generating fragility curves, even though

it lacks credibility on account of being subjective and dependent on expertise of individual

experts. The damage prognostication approach alluded in this chapter can open up a new

avenue of research in the direction of image-based fragility curve generation exploiting the

chronological information embedded in archival data.

This dissertation will also provide an impetus to multi-modal inspection. Validation

of the proposed fusion-based segmentation approach with real depth data is scope for fu-

ture work. Recent developments in the field of adversarial domain adaptation [  138 ] can

be exploited to ensure that the proposed network which is trained on synthetic data, per-

forms reasonably well on real data during actual inspection. Multi-sensor information fusion
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leveraging state-of-the-art infrared and hyper-spectral cameras is another promising area of

inquiry. The scope for future research also extends to updation of the existing inspection

manuals to include volumetric quantification of damage severity capitalizing on the depth

perception.
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A. TIME-BASED AUTONOMOUS MONITORING OF

CRACKS ON THE METALLIC WHEELS OF NASA's MARS

EXPLORATION ROVER

A practical application and extension of the vision-based approach presented in Chapter  3 for

estimation of damage chronology is described in this section. A Mars exploration rover called

Curiosity (Figure  A.1 ) was launched in December 2011 as a part of the National Aeronautics

and Space Administration’s (NASA) Mars exploration program which landed on the Mars

surface in August 2012. The primary goal of the rover was to explore the climate, geology,

and presence of life-supporting environments on Mars. The mission was initially planned

for two years and subsequently it was extended indefinitely. The rover, which has been

operational since then, has recently started developing some cracks on its wheels (Figure

 A.2 ), and to make matters worse, the cracks are expanding over time. It can be noted in

this context that the failure of a wheel will imply impairment of the whole system, as the

rover will no longer be able to move on the Mars surface. Therefore, the scientists at the

Jet Propulsion Laboratory (JPL) of NASA are keen to track the temporal evolution of these

cracks on the rover wheels. There are a number of cameras which are mounted on the rover

for environmental sensing. The cameras, once in a while, become active to capture images

from different viewpoints. These images are timestamped and saved in specific folders.

The standard operating procedure required the human operators at the JPL to manually

browse through all the data directories to identify the relevant images facilitating a visual

interpretation of the evolving nature of a crack under investigation. Needless to say that such

a manual process is labor-intensive and time-consuming. This study, therefore, proposed a

computer vision-based approach to automate this process.

The approach proposed herein is akin to one presented in Chapter  3 . However, the

current problem was more challenging considering that the wheel surface is not flat, making

homography-based techniques less appropriate. In addition to that, the background and

the lighting conditions are changing continuously as the rover moves on the Mars surface,

adding to the complexity of the problem. In view of these challenges, three major changes are

incorporated into the original algorithm presented in Chapter  3 . In the original approach,
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Figure A.1. Curiosity: NASA’s Mars exploration rover

Figure A.2. Cracks on the rover wheel
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the reference image used for feature matching and correspondence identification was the best

correspondence from the immediately preceding dataset (arranged in the reverse order).

However, in the revised approach, multiple reference images were considered comprising

the best correspondences from the previous two data acquisition rounds (arranged in the

reverse order) and the maiden initiatory reference image (Figure  A.3 ). The sum total of

matched features vis-à-vis all the three reference images was used as an evaluation metric

to identify the best correspondence from a large pool of candidate images. Moreover, to

ensure that no key point from outside the wheel surface is considered for feature matching,

a region of interest is manually demarcated at the outset on the initial reference image

(Figure  A.4 ). The corresponding regions on relevant images from previous data acquisition

rounds are automatically determined by homography-based warping of the original interest

region. The feature matching exercise considered only those key points located inside the

delimited interest regions, and any key points lying outside the regions were ignored. It

was further observed that the identified best correspondence was not ideal in many cases,

particularly when it contained the concerned crack region very close to a boundary of the

image. Therefore, two candidate best matches were identified for each data set, and the

one that contained the crack region closer to the image center was designated as the best

correspondence (Figure  A.5 ). Apart from these three modifications, the remaining procedure

is identical to the approach elaborately discussed in Chapter  3 , and the same is not repeated

here.

Despite several challenges, it was observed that the autonomous approach developed in

this study could accurately identify the appropriate corresponding images for a crack region

of interest. A collage of best correspondences identified from historical visual data is shown in

Figure  A.6 for a test case under consideration. A lucid depiction of the temporal changes in

a crack, as exhibited in this figure, will immensely benefit the scientists at JPL to efficiently

monitor the deteriorating condition of the rover wheels.
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Figure A.3. To identify the best correspondence from a given data acquisition
round, three reference images are considered, which include the initial reference
image and the best correspondences from the immediately preceding two data
sets (arranged in the reverse order). The evaluation metric used for identifying
best correspondence is the total number of matched key points vis-à-vis all
three reference images.

Figure A.4. To exclude all matched key points from outside the wheel sur-
face, a region of interest was manually delimited in the initial reference image.
The corresponding regions in the subsequent candidate correspondences are
estimated by homography transformation of the concerned interest region.
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Figure A.5. The crack region in the identified best correspondence is often
in the vicinity of the image boundary. This issue is addressed in this study by
identifying two candidate best correspondences and then selecting the one in
which the crack region is closer to the image center.
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Figure A.6. A collage of identified corresponding images from various data
acquisition rounds. The figure clearly depicts the time evolution of a crack
under investigation in the reverse order. The figure legends represent the line-
up of data acquisition rounds.
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