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ABSTRACT

Quick and accurate predictions of equivalent properties for thin-walled composite struc-

tures are required in the preliminary design process. Existing literature provides analytical

solutions to some structures but is limited to particular cases. No unified approach exists to

tackle homogenization of thin-walled structures such as beams, plates, or three-dimensional

structures using the thin-walled approximation. In this work, a unified approach is pro-

posed to obtain equivalent properties for beams, plates, and three-dimensional structures for

thin-walled composite structures using mechanics of structure genome. The adopted homog-

enization technique interprets the unit cell associated with the composite structures as an

assembly of plates, and the overall strain energy density of the unit cell as a summation of the

plate strain energies of these individual plates. The variational asymptotic method is then

applied to drop all higher-order terms and the remaining energy is minimized with respect to

the unknown fluctuating functions. This has been done by discretizing the two-dimensional

unit cell into one-dimensional frame elements in a finite element description. This allows the

handling of structures with different levels of complexities and internal geometry within a

general framework. Comparisons have been made with other works to show the advantages

which the proposed model offers over other methods.
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1. INTRODUCTION

The preliminary design of aerospace structures requires quick and accurate prediction of

their mechanical behavior. For a particular class of structures which can be constructed

by repeating a fundamental building block (unit cell) many times, a multiscale approach

is usually adopted. A constitutive modeling is performed over the unit cell to obtain the

constitutive models for the structure which is to be used as inputs for the global structural

analysis. Various methods exist which range from using analytical formulations to using

two-dimensional (2D) or three-dimensional (3D) finite elements. Representative volume ele-

ment (RVE) analysis [ 1 ]–[ 3 ], mechanics of structure genome (MSG) [ 4 ], [  5 ] and mathematical

homogenisation theory (MHT) [  6 ], [ 7 ] are a few of the techniques used for multiscale mod-

eling. Within this class of structures that can be analyzed using the multiscale techniques

a niche class of structures exist, which can be considered as thin-walled structures because

the structure consists of members with small thickness.These structures can be classified

based on the type of global structural models under consideration into beams, plates, and

3D structures.

1.1 Thin-walled beams

Thin-walled beams are a particular class of structures for which the thickness of the walls

is much smaller than the overall cross-section of the structure, which is, in turn, small in

comparison to the overall length of the structure, i.e., all the three dimensions are of different

orders of magnitude. The previous statement can be written as c/l << 1, where c is the

characteristic dimension of the cross-section and l the wavelength of deformation along the

beam; h/c << 1, where h is the maximum thickness of the wall. A typical thin-walled beam

is shown in Figure  1.1 and the beam cross-sectional properties can be acquired by describing

the whole cross-section using a 2D solid model in MSG. As shown in Figure  1.1 , thin-walled

approximations can also be used to obtain the cross-sectional properties by considering the

dotted lines as the plate reference line which are made of four segments A1−A2, A2−A3,

A3 − A4, and A4 − A1. Thin-walled beams have found use in applications such as wind

turbine blades, rocket motor casing, tennis rackets, fishing rods, offshore drilling bits etc.

11



x1

x2

x3

x1 x2

x3

xp3

xp2

xp3

xp2

y2

y3

yp3

yp2yp2

yp3

yp3

yp3
yp2

yp2

A1A2

A4A3

Figure 1.1. Thin-walled beam.

[ 8 ]–[ 13 ]. Using the inherent small parameters present in the beam, c/l and h/c, researchers

have developed thin-walled beam theories which provide reasonably accurate results with

a significant decrease in computational effort. Thin-walled beam theories present in cur-

rent literature can be broadly divided into two different classes of approaches, the first one

invoking assumptions before the derivation [ 14 ]–[ 16 ] and the second one using asymptotic

methods based on dropping small terms which have small contributions to the overall strain

energy [ 17 ]–[ 20 ].

The assumptions which are based on engineering intuition in the first class of approaches

can be a certain form of the displacement field or integral of particular stress fields being zero,

or certain strain components being zero. Although this approach does provide reasonably

accurate results, depending on the choice of the displacement field or different approximations

the final results vary and hence the results cease to be consistent in nature. Especially for the

case of composite materials, where all the modes of displacement field could be potentially

coupled, the theories developed using these assumptions might fail.
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The second class of approaches use asymptotic methods to obtain beam models of dif-

ferent refinements, i.e., the higher order the terms incorporated, the higher the degrees

of refinement obtained. In this form of approach two sub-classes exist, formal asymptotic

method (FAM) [ 21 ] and variational asymptotic method (VAM) [ 22 ]. The author prefer the

use of VAM over FAM. The reason VAM was chosen over FAM is because it is much easier to

perform a finite element (FE) analysis on the weak form of the equations (which is inherently

used in the case of VAM) rather than having to convert a set of partial differential equations

into a weak form which is used in the case of FAM. VAM accounts for material anisotropy

in a systematic manner and the modes of deformation which contribute most significantly

to the energy emerge out of the formulation. VAM was first used for shell modelling in [  22 ].

The concept was further enhanced for beam modelling in [ 23 ] and converted into a commer-

cial software called the Variational asymptotic beam sectional analysis (VABS). VABS takes

into consideration initial twist and curvatures of the beam, providing accurate beam proper-

ties which are inputs for its sister software – Geometrically exact beam theory (GEBT) for

performing the global beam analysis [ 24 ].

The case of thin-walled cross-sections for beams was first tackled in an analytical fashion

using VAM in [ 19 ], but since the shell bending terms were neglected, the beam stiffness ma-

trix obtained was stiffer in comparison to VABS. The shell bending terms were incorporated

into the formulation in [ 25 ] which increased the accuracy of the beam stiffness matrix in

comparison to VABS. Initial twist was introduced into the formulation in [ 18 ] and initial

curvatures were introduced in [  17 ]. All the aforementioned works have strived towards ob-

taining an analytical solution to the beam cross-sectional analysis and provide reasonably

accurate results but are restricted to only open and single cell cross-sections. Developing a

practical multi-cell thin-walled beam theory poses a problem because finding a solution in

an analytical fashion requires stress components at the junctions to be continuous which can

be solved as shown in [ 26 ] but converting into a general-purpose code is challenging.

In the most recent publications related to this field, a thin-walled theory for restrained

warping of open sections has been introduced in [ 20 ]. The overall cross-section has been

considered as a collection of strips and the energy has been minimized for each strip individ-

ually. The method does provide accurate results for some cases, but as shown later in this

13



work, the theory breaks down for some cases because of inadequate continuity constraints

at the junctions of each section.

1.2 Thin-walled plates

Thin-walled plates are a particular class of structures which have the unit cell repeating

itself in one or two directions and the transverse direction being much smaller than the overall

in-plane dimensions of the structure. The unit cell is, in turn, an assembly of plates or shells

where the thickness of these plates or shells are much smaller than the overall dimension

of the unit cell. A typical class of thin-walled plates is commonly referred to as corrugated

structures and Figure  1.2 shows the different types of corrugated structures which can be

classified into sheets, panels, and bi-directional panels.

(a) Corrugated sheets [ 27 ]

(b) Corrugated panels [ 28 ]

(c) Bi-directional corrugated panels [ 29 ]

Figure 1.2. Types of corrugated structures.

Corrugated structures show the unique property of having an order of magnitude differ-

ence in stiffness values in different directions and are widely used in aerospace, automotive,

marine, and civil industry. They find applications such as decks, ship panels, and accom-

modation modules in the marine industry [ 30 ], as corrugated roofs and walls in the civil

14



industry [ 31 ], [ 32 ], as energy absorbing structures in the packaging industry [ 33 ], and as

thermal protection systems in the aerospace industry [ 34 ], [  35 ]. In recent years corrugated

panels have found applications for flexible wings or morphing wings [ 36 ]–[ 39 ].

Equivalent plate properties for corrugated structures can be obtained by the traditional

homogenisation techniques [ 5 ], [ 7 ] but since these amount to a large computational time

and effort, researchers use the thin-walled approximation to obtain the equivalent plate

properties [  2 ], [ 3 ], [ 27 ], [ 40 ]–[ 45 ]. The methods to obtain equivalent plate properties can also

be classified based on the underlying methodology used, into axiomatic [ 2 ], [  3 ], [  27 ], [  40 ]–[ 43 ]

and asymptotic [ 5 ], [  7 ], [  44 ], [  45 ] approaches.

The theories in [ 5 ], [ 7 ] provide equivalent plate properties that replicate the original

structure very accurately, these methods use 3D or 2D solid elements to describe the unit cell

(FAM [  7 ] and VAM [ 5 ]). Buannic et al. [ 2 ] and Biancolini [ 3 ] use 2D plate elements to describe

the unit cell by considering an RVE, which is an assembly of plates as seen in Figure  1.3 .

The RVE used in this approach is 3D in nature, which makes it more computationally

expensive than the approach proposed in this work. The work in [  3 ] uses a condensation

method to remove the internal nodes of the RVE by using a condensation matrix. Further

the work in [ 3 ], creates submatrices relating the degrees of freedom (dofs) of the external

nodes with the plate strain terms by applying the Kirchoff-Love assumption which decrease

the computational time in comparison to [ 2 ] but still requires the whole RVE to be described

with a finite element (FE) mesh. Moreover, this method assumes that the bending modes of

deformation are decoupled from the stretching modes which hinders the model to account

for all coupled deformation modes.

Xia et al. [ 27 ] is an axiomatic and analytical approach, which uses the equivalent force

method in conjunction with the RVE analysis to obtain equivalent properties but are lim-

ited to symmetrically layered plates and cannot provide the coupling terms associated with

membrane-bending response, i.e., the B matrix in the plate stiffness matrix. Further, [ 27 ] as-

sumes particular local strain field components to be zero for a particular global response. For

example, when ε̄ = [0 0 1 0 0 0]T , εx and εy is assumed zero which inhibits in-plane

axial-shear coupling at the unit cell level.
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Figure 1.3. RVE model using plate elements [ 27 ].

Dayyani et al. [  40 ] is also an axiomatic and analytical approach, which uses an innovative

method of obtaining the overall strain energy produced in the unit cell (made from isotropic

material) by virtual forces and then using the Castigliano’s second theorem to obtain the

force-displacement response. This model assumes the mode of deformations along both the

in-plane directions and the out-of-plane directions to be individually decoupled and hence

cannot capture the in-plane Poisson’s effect.

Talbi et al. [ 42 ] and Aboura et al. [ 43 ] are also axiomatic approaches, which have been

solved numerically and analytically. The work in [  42 ] is an extension of [ 43 ], both these

methods obtain material properties in the reference coordinate systems by transforming local

material properties using tensor transformation laws and eventually use this information to

obtain equivalent properties by averaging them. The models are limited to only orthotropic

materials and provide a stiffer plate stiffness matrix because it assumes continuity of the

displacement field at every point of the core and face sheets and not just at the crests. This

assumption is outcome of the two-step homogenization process which has been used in the

work and is illustrated in Figure  1.4 . As shown in Figure  1.4 , the core is considered to be

16



a homogeneous solid, and in the next homogenization step the panel is approximated as a

laminate made of the face sheets with the homogeneous solid core hence assuming continuity

at all points of the core and face sheets.

Figure 1.4. Two-step homogenisation process.

Cheon and Kim [  41 ] is an axiomatic and analytical approach and obtains equivalent

properties for corrugated panels by performing a two-step process of first calculating the

effective plate properties of the core using [ 27 ] and then using those properties to obtain

effective plate properties for the corrugated panel via a layer-wise theory. This method

provides a stiffer equivalent plate because the connection between the core and the facing is

assumed at every point of the core and face sheets and not just at the crests. This is again

an example of the two-step homogenization process which is illustrated in Figure  1.4 .

Although axiomatic approaches [ 27 ], [ 41 ]–[ 43 ] provide accurate results for some cases but

due to the inherent assumptions present in them, they are often unable to capture the cases

where all the modes of displacement field could be potentially coupled and cannot be easily

assumed.

1.3 Thin-walled 3D structures

Thin-walled 3D structures studied in this work are a particular class of structures that

have the unit cell being repeated in all three directions and the overall dimensions of the unit

cell being much smaller than the dimensions of the structure. The unit cells are, in turn, an

assembly of plates or shells where the thickness of these plates or shells are much smaller than

the dimension of the unit cells. These structures are also referred to as cellular solids and are
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widely used in applications where weight savings and multifunctional properties are critical.

Aerospace sandwich cores, vibration and sound insulators, compact heat exchangers, and

biomedical implants are a few application examples of these structures [ 46 ]–[ 51 ]. A typical

thin-walled 3D strucuture is shown in Figure  1.5 .

Figure 1.5. Thin-walled 3D structure [ 52 ].

As mentioned in the case of beams and plates, during the prototyping phase of the struc-

ture it is often impractical to analyze the entire structure as a whole hence researchers have

made progresses towards obtaining equivalent or homogenized properties of the unit cells

which are in turn used as inputs for the global 3D analysis. Several analytical and numeri-

cal approaches have been proposed in the literature to determine the equivalent mechanical

properties of cellular materials [ 52 ]–[ 65 ]. Amongst these works, [  52 ]–[ 56 ] obtain the equiva-

lent properties which can be used by the classical elasticity model where every material point

has 3 degrees of freedom (dofs) and [  57 ]–[ 61 ] obtain the equivalent properties which can be

used by the Cosserat elasticity model where every material point has 6 dofs. It should be
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noted that [ 5 ] can also be used to obtain the equivalent properties which can be used by the

classical elasticity model.

As briefly described above, several methods exist in literature to model the mechanics

of cellular materials. Each method has its own assumptions, advantages and limitations.

Amongst the works presented above, [ 52 ], [ 54 ]–[ 56 ] obtain the effective properties in close-

form expressions and [ 5 ], [ 53 ], [ 66 ] obtain the effective properties numerically. As mentioned

earlier [ 5 ] uses VAM and [ 53 ] uses FAM to obtain the properties.

All the above mentioned works which provide closed-form solutions have inherent as-

sumptions associated with them. For example [  52 ] only considers the bending deformation

as the mode of deformation in elements of the unit cell.

In [  54 ], a clear demarcation has been done as to when the elements have a bending

dominant behaviour and when the element have a stretching dominant behaviour which does

not make the theory general purpose to be used for composites as all modes of deformation

can potentially be coupled.

Mousanezhad et al. [ 67 ] uses the Castigliano’s second theorem to obtain the equivalent

2D properties in which the in-plane Poisson’s effect is not considered when representing the

overall strain energy associated with the unit cell and hence, the results obtained are less

accurate than the approach proposed in this dissertation, which considers these terms.

1.4 Motivation and objective

Based on the literature review, works available in current literature have the following

major drawbacks:

• Additional stress continuity condition need to be imposed for beams with closed sec-

tions which can be solved as shown in [ 26 ] but converting into a general-purpose code

is challenging.

• Cases of non-corrugated but arbitrary shaped composite cores has not been studied

[ 27 ], [  41 ]–[ 44 ].
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• For the case of equivalent 3D properties, general anisotropic materials have not been

considered and out-of-plane properties [  52 ]–[ 56 ] cannot be predicted, since these re-

searches have only considered in-plane properties.

• No unified theories exist which can account for general thin-walled structures which

might be modeled using a beam model, or a plate model, or an equivalent 3D model.

This need has been addressed in this work by using the mechanics of structure genome

(MSG). MSG is a framework developed in [ 5 ] to provide constitutive models for various

structures. MSG requires a structure gene (SG) to be defined as the smallest mathematical

building block of the structure. The SG can be a 2D planar structure for the case where we

have uniformity along one direction and hence MSG is more computationally efficient than

the traditional RVE analysis. To use MSG for multi-scale constitutive modeling we need

to answer the following three questions: 1) what is the model of the original structure? 2)

what is the macroscopic model desired for structural design and analysis? 3) what is the

structure gene? In the current work, the answer to the first question is a plate model for

every segment of the unit cell. The answer to the second question depends on the global

model desired and the answer to the third question is a 2D domain (see Figure  2.1 ).

1.5 Outline of this thesis

The report follows the following outline with Chapter 1 reviewing the related works and

presents the motivation for the current work. Chapter 2 presents the theory and the overall

framework for obtaining the equivalent properties of various structures. Chapter 3 presents

the results we have obtained using the present theory for modeling thin-walled structures as

beams, plates, and 3D solids. Chapter 4 summarizes the work done and possible extension

of the work.
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2. FORMULATION

2.1 General formulation

According to MSG, we chose the original model to be the Kirchhoff–Love plate model

or the classical laminated plate theory (CLPT) which give the overall strain energy of the

SG in terms of plate stiffness matrices and plate strain terms defined in the plate coordinate

system. As seen in Figure  2.1 , a thin-walled structure could externally look like a beam (the

left figure), a plate (the middle figure), or a 3D structure (the right figure). Such structures

can be homogenized using the regular formulation of MSG in [ 4 ] by describing each segment

using a solid model (named MSG Solid in this dissertation). Moreover as seen in Figure  2.1 

if it is uniform along one direction, the corresponding SG can be a 2D domain in comparison

to a 3D domain. If the finite element method (FEM) is used for solving, 2D finite elements

should be used to discretize the 2D SG and 3D finite elements should be used to discretize

the 3D SG. However, if the thickness of each segment is small, it is possible for us to exploit

the thinness of the segment to construct a thin-walled version of MSG (named MSG-TW in

this dissertation). The corresponding SG retains its original dimension, however, it is formed

by an assembly of straight line segments for the case of 2D SG and an assembly of surface

elements for the case of 3D SG. The current work has only dealt with 2D SGs.

Since in the case of 2D SG it is a 1D problem, analytical solutions are possible for simple

configurations. However for general configurations (e.g. a SG with many interconnected line

segments), it is more convenient to use 1D finite elements to solve this problem. To facilitate

the formulation, four coordinate systems are set up (see Figure  2.1 ):

• a global coordinate system x = (x1, x2, x3), the origin of which can be situated any-

where in the structure. For a beam-like structure, it is convenient to set the origin at

the geometric centroid of the cross-section. For a plate-like structure, it is convenient

to set the origin at the geometric center of the thickness of the plate. This choice

helps define the macroscopic displacements as the average of their counterparts of the

original model.
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Figure 2.1. Various structures and their corresponding SGs.
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• a global coordinate system along each segments xp = (xp1, xp2, xp3), which is the rotation

of x to align itself with the reference line of every segment. Here, xp3 is the outward

normal to the reference line (for a 2D SG, xp1 = x1.). xp2 forms a right-hand system

with xp1 and xp3. This coordinate is defined for each segment and changes from segment

to segment.

• a local coordinate system y = (y1, y2, y3), which defines the SG. (y1, y2, y3) align with

(x1, x2, x3), respectively. It is noted that the local coordinate corresponding to x1 does

not exist when a 2D SG is considered and y = (y2, y3).

• a local coordinate system along each segment yp = (yp1, yp2, yp3), which is rotation of

y to align itself with the reference line of every segment in the SG. (yp1, yp2, yp3) align

with (xp1, xp2, xp3) respectively. This coordinate system is defined for each segment and

changes from segment to segment within the SG. It is noted that the local coordinate

corresponding to xp1 does not exist when a 2D SG is considered and yp = (yp2, yp3).

Since the SG is much smaller than the overall dimension of the structure, according to the

original formulation of MSG [  5 ], we can define the local coordinates yi = xi/ε and ypi = xpi /ε,

where ε is a small book-keeping parameter. Here the Latin indices assume value i ≡ (1, 2, 3).

Any function of the original thin-walled structure can be written as a function dependent

on x and y which are in turn dependent on xp and yp, f ≡ f (xi(xpα), yi(ypα)) (here α = 1, 2

because xp3 has been eliminated when we represent every segment as a plate). The partial

derivative of this function with respect to xpα can be written as:

∂f

∂xpα
=
(
∂xi

∂xpα

∂f

∂xi

)
ypα

+
(
∂ypα
∂xpα

∂yi

∂ypα

∂f

∂yi

)
xpα

=
(
∂xi

∂xpα

∂f

∂xi

)
ypα

+
(

1
ε

∂f

∂ypα

)
xpα

(2.1)
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Figure 2.2. Local-global coordinate transformation.

For a 2D SG, f ≡ f (x1, xz(xp2), yz(yp2)), with z = 2, 3. The partial derivative of the function

with respect to xp1 only depends on the global coordinate xp1 ≡ x1 and the partial derivative

of the function with respect to xp2 can be reduced as:

∂f

∂xp2
=
(
∂xz
∂xp2

∂f

∂xz

)
yp2

+
(

1
ε

∂f

∂yp2

)
xp2

(2.2)

In order to relate the local plate coordinate system with the global coordinate system, we

consider a position vector ~r(x1, x2, x3) ≡ ~r(x1, x
p
2, x

p
3), which can be defined in both the

local plate coordinate system as well as the global coordinate system (see Figure.  2.2 ). Any

tangent vector along xi can be written as:

êi = ∂~r

∂xi
(2.3)

and correspondingly any tangent vector along xpi can be written as:

êpi = ∂~r

∂xpi
=
∑

j

∂~r

∂xj

∂xj

∂xpi
=
∑

j
êj
∂xj

∂xpi
(2.4)

Eq. ( 2.4 ) can be explicitly be written in a matrix form as:
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
êp1
êp2
êp3


=


β11 β21 β31

β12 β22 β32

β13 β23 β33




ê1

ê2

ê3


(2.5)

here,

βij = ∂xi

∂xpj

As (x1, x
p
2, x

p
3) is obtained by rotating (x1, x2, x3) by an angle θ along x1, we have:

xp2 = cos θx2 + sin θx3

xp3 = − sin θx2 + cos θx3

(2.6)

from which it can be seen that βij refer to the direction cosine matrix, transforming a vector

in the xi to xpi . For a 2D SG, β1α = 0 and β11 = 1. This transformation directly translates

to the local yp and y coordinate systems as well. We can represent the rotation matrix

associated with the 2D SG as:


êp1
êp2
êp3


=


1 0 0

0 ẏ2 ẏ3

0 −ẏ3 ẏ2




ê1

ê2

ê3


(2.7)

Here ˙(·) refers to the derivative of any quantity with respect to yp2. It is noted:

∂x2

∂xp2
= ∂y2

∂yp2
= ẏ2

∂x3

∂xp2
= ∂y3

∂yp2
= ẏ3

(2.8)

ÿ2 and ÿ3 vanish in this work since all the segments are discretized using straight lines. It

is noted that even if a segment is curved, we can approximate it using enough number of

straight line elements. Having defined the coordinate system, the next step in the formulation

is to define the strain energy density of the SG which would be minimized with respect to

the fluctuating functions to obtain the final equivalent properties and constitutive relations.
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2.2 Variational statement and kinematics

Since the ratio of height to length of the segment is considered small and the external

work done of the structure is one order smaller in comparison to the strain energy [ 5 ], we

can represent the overall strain energy of the SG as:

Π = 1
2

∫
S

〈
(εp)T K (εp)

〉
dS (2.9)

where K represents the plate stiffness matrix obtained by modeling each segment using

MSG-based CLPT [ 5 ], and S denotes the domain of the global structural model. For the

case of beams the integral
∫
S is only performed along x1. For the case of plates the integral∫

S is performed along x1 and x2. For the case of equivalent 3D model the integral
∫
S is

performed along x1, x2, and x3. K contains the well-known A,B,D matrices in CLPT. It is

noted that MSG-based CLPT can obtain a plate model of the same form as the conventional

CLPT without using ad hoc assumptions (Kirchhoff kinematic assumptions and plane stress

assumption) for a segment made of arbitrary anisotropic materials. For example, MSG-

based CLPT can model plates made of 3D woven composites. 〈·〉 represents an integral

along the reference lines for all the members within the SG. εp represents the plate strains

in the (x1, x
p
2, x

p
3) coordinate system. εp = [εp11, ε

p
22, 2εp12, κ

p
11, κ

p
22, 2κp12]T , where εpαβ represent

the in-plane strains and κpαβ represent the bending curvatures. They are defined as [ 5 ]:

εpαβ = 1
2

(
∂upβ
∂xpα

+ ∂upα
∂xpβ

)

κpαβ = − ∂2up3
∂xpαx

p
β

(2.10)

where α and β take values 1 and 2, upi ≡ upi (xj(xpk), yj(ypk)) for the case of a 3D SG and upi ≡

upi (x1, x2(xp2), x3(xp2), y2(yp2), y3(yp2)) for the case of a 2D SG. up1 represents the displacement

field along xp1 direction, up2 represents the displacement field along xp2 direction, up3 represents

the displacement field along xp3 direction, of any point on the reference line of each segment.

Depending on the global model, we can define u1, u2, and u3 as the displacement field along
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x1, x2, and x3 respectively and upi are related to ui with the help of the rotation matrix

defined in Eq. ( 2.5 ): 
up1

up2

up3


=


β11 β21 β31

β12 β22 β32

β13 β23 β33




u1

u2

u3


(2.11)

For the case of 2D SG made of straight plate segments, the rotation matrix defined in

Eq. ( 2.7 ) can be employed and Eq. ( 2.11 ) reduces to:


up1

up2

up3


=


1 0 0

0 ẏ2 ẏ3

0 −ẏ3 ẏ2




u1

u2

u3


= Ω


u1

u2

u3


(2.12)

Having defined the plate strain terms in the global coordinate system, the next step in the

formulation is to define the 3D displacement field of the original structures. These depend

on the final global model and have been defined in [ 4 ]. In the subsequent sections we have

taken these displacement fields and written the plate strains corresponding to the original

structure in terms of the global model and small fluctuating functions. These plate strains

would eventually be used in Eq. ( 2.9 ) to formulate a minimization problem to obtain the

fluctuating fields in terms of the global strain fields.

2.3 MSG thin-walled beams

To model a thin-walled structure as a beam, we have taken the displacement field from

[ 4 ] and derived the local plate strain terms (Eq. ( 2.10 )) for a 2D SG. According to [ 4 ] the

displacement field for thin-walled beams, ui(x1, y2(yp2), y3(yp2)), can be written as:

u1(x1, y2(yp2), y3(yp2)) = ū1(x1)− εy2ū
′
2(x1)− εy3ū

′
3(x1) + εw1(x1, y2, y3)

u2(x1, y2(yp2), y3(yp2)) = ū2(x1)− εy3Φ(x1) + εw2(x1, y2, y3)

u3(x1, y2(yp2), y3(yp2)) = ū3(x1) + εy2Φ(x1) + εw3(x1, y2, y3)

(2.13)
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where ui and ūi denote the displacement field of the original structure and the displacement

field of the Euler–Bernoulli beam model respectively. Φ represents the sectional rotation.

wi are the unknown fluctuating functions associated with the displacement field in each

direction of the coordinate system xi , and they are used to describe deformation that cannot

be described by the simpler kinematics of an Euler–Bernoulli beam model. Since we are

constructing a beam model out of the original model, the kinematic fields in the beam

model need to be defined in terms of the displacement field of the original model as:

ū1 = 〈u1〉+ ε〈y2〉ū′2 + ε〈y3〉ū′3

ū2 = 〈u2〉+ ε〈y3〉Φ

ū3 = 〈u3〉 − ε〈y2〉Φ

Φ = 1
2〈u3,2 − u2,3〉

(2.14)

The first three definitions physically mean that the beam displacements are averages of

the 3D displacements over the SG with an offset of the corresponding rotations. The last

definition physical means that the 1D rotation due to twist is the same as the true 3D twist

averaged over the SG. ()′ refers to the derivative with respect to x1.

As the equations on the right hand side of Eq. (  2.13 ) is four times redundant in compar-

ison to the left hand side, we would require four constraints on the introduced fluctuating

functions. The definition of the beam displacements in Eq. ( 2.14 ) provides us with the nec-

essary constraints on wi which need to be imposed to solve the problem. The constraints

are:
〈wi〉 = 0

〈w3,2 − w2,3〉 = 0
(2.15)

where, it can be seen these constraints make sure that the overall rigid body translations

and rotations associated with the introduced fluctuating functions are zero. Due to the

complexity of implementing the last constraint, we have opted to impose a similar constraint

which was provided in [ 68 ] that can be written as:

〈y2w3 − y3w2〉 = 0 (2.16)
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This constraint changes the definition of Φ to:

Φ =
〈y2u3 − y3u2〉 − 〈y2〉ū3 + 〈y3〉ū2

ε〈y2
2 + y2

3〉
(2.17)

This definition can be physically interpreted as, the 1D twist associated with the SG is

combination of average twist in the SG because of pure rotation (the underlined term) and

the twist in the SG because of the offset of the origin in the SG.

If the geometrical centroid is chosen as the origin, we have 〈y2〉 = 0 and 〈y3〉 = 0, and

the 1D displacment fields are the average of the the corresponding 3D displacements and

the beam rotation corresponds to a pure rotation. If the geometrical centroid is not chosen

as the origin, ūi and Φ will assume a different meanings but the same constraints on the

fluctuating functions are used. Substituting Eq. ( 2.13 ) into Eq. ( 2.12 ), we get:

up1 = ū1 − εy2ū
′
2 − εy3ū

′
3 + εw1

up2 = ẏ2ū2 + ẏ2ū3 + ε(ẏ3y2 − ẏ2y3)Φ + εẏ2w2 + εẏ3w3

up3 = −ẏ3ū2 + ẏ2ū3 + ε(ẏ2y2 + ẏ3y3)Φ− εẏ3w2 + εẏ2w3

(2.18)

Since for the thin-walled beam model we have, ui(x1, y2(yp2), y3(yp2)), the local plate strain

terms definitions in Eq. ( 2.10 ) can be explicitly written as (using the partial derivative ex-

pression in Eq. (  2.2 )):

εp11 = ∂up1
∂x1

εp22 = 1
ε

∂up2
∂yp2

2εp12 = ∂up2
∂x1

+ 1
ε

∂up1
∂yp2

κp11 = −∂
2up3
∂x2

1

κp22 = − 1
ε2

∂2up3
∂(yp2)2

2κp12 = −21
ε

1
∂yp2

(
∂up3
∂x1

)

(2.19)
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and then on inputting Eq. ( 2.18 ) into Eq. ( 2.19 ) we get the following plate strain expressions:

εp11 = γ11 + εy3κ2 − εy2κ3 + εw′1

εp22 = ẏ2ẇ2 + ẏ3ẇ3

2εp12 = ẇ1 + (εy2ẏ3 − εy3ẏ2)κ1 + ε (ẏ2w
′
2 + ẏ3w

′
3)

κp11 = ẏ2κ2 + ẏ3κ3 + ε (ẏ3w
′′
2 − ẏ2w

′′
3 − (ẏ3y3 + ẏ2y2)κ′1)

κp22 = 1
ε

(ẏ3ẅ2 − ẏ2ẅ3)

2κp12 = −2
(
κ1 − ẏ3ẇ

′
2 + ẏ2ẇ

′
3

)

(2.20)

(̈·) refers to the second derivative with respect to yp2 and ()′′ refers to the double derivative

with respect to x1. εp11 physically represents the normal strain along the x1 direction. εp22

physically represents the longitudinal strain along the xp2 direction. 2εp12 physically represents

the shear strain along the x1 − xp2 plane. κp11 represents the out-of-plane bending curvature

along the xp2 direction. κp22 represents the twist curvature along the x1 direction. 2κp12

represents the out-of-plane bending curvature in the x1 − xp2 plane.

In Eq. ( 2.20 ), the underlined terms in the in-plane local plate strain terms are of order

O(ε̂ε). And the underlined terms in the out-of-plane bending curvature terms are of order

O(ε̂ε2). On inputting this form of the plate strain terms into the overall strain energy we

see that the contributions of the underlined terms to the overall energy is of order O(ε̂2εh2),

which is asymptotically smaller than the contributions of the non-underlined terms which

are of order O(ε̂2h2) and hence are dropped. Here, h refers to the characteristic dimension

of the cross-section.

The 1D beam strains in Eq. ( 2.20 ), ε = [γ11 κ1 κ2 κ3]T are defined as:

γ11 = ū′1, κ1 = Φ′, κ2 = −ū′′3, κ3 = ū′′2 (2.21)
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where γ11 is the extensional strain, κ1 is the twist rate, κ2 and κ3 are the bending curvatures

along x2 and x3 respectively. Let us introduce new variables, wpi , such that:


wp1

wp2

wp3


= Ω


w1

w2

w3


(2.22)

because while performing the finite element implementation of theory the shape functions

will be defined along each segment in the (yp2, yp3) coordinate system, as the line integral in

Eq. ( 2.9 ) is along the reference line of each segment for 2D SGs.

From Eq. (  2.22 ), we have:
wp1 = w1

wp2 = ẏ2w2 + ẏ3w3

wp3 = −ẏ3w2 + ẏ2w3

(2.23)

After dropping of all the asymptotically small terms, Eq. ( 2.20 ) can be written as:

εp11 = γ11 + εy3κ2 − εy2κ3

εp22 = ẇp2

2εp12 = ẇp1 + (εy2ẏ3 − εy3ẏ2)κ1

κp11 = ẏ2κ2 + ẏ3κ3

κp22 = −1
ε
ẅp3

2κp12 = −2 (κ1)

(2.24)

which can be written in a matrix form as:

εp = P0ε+ Γhwp (2.25)
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where

P0 =



1 0 x3 −x2

0 0 0 0

0 x2ẏ3 − x3ẏ2 0 0

0 0 ẏ2 ẏ3

0 0 0 0

0 −2 0 0


Γh =



0 0 0

0 ∂
∂yp2

0
∂
∂yp2

0 0

0 0 0

0 0 −1
ε
∂
∂yp2

(
∂
∂yp2

)
0 0 0


(2.26)

Having defined the local plate strains in terms of the global beam strains, we move on to the

plate modeling, here it is shown that the expression for the local plate strains are similar to

the Eq. ( 2.26 ) with the exception of P0

2.4 MSG thin-walled plates

For the case of the plate model, we have taken the displacement field from [  4 ] and derived

the local plate strain terms (Eq. ( 2.10 )) for a 2D SG. According to [ 4 ] the overall displacement

field for the case of 2D SG and plate model, ui(x1, x2(xp2), y2(yp2), y3(yp2)), can be written as:

u1 = ū1(x1, x2)− εy3ū3,1(x1, x2) + εw1(x1, x2, y2, y3)

u2 = ū2(x1, x2)− εy3ū3,2(x1, x2) + εw2(x1, x2, y2, y3)

u3 = ū3(x1, x2) + εw3(x1, x2, y2, y3)

(2.27)

where ui and ūi denote the displacement field of the original structure and the displacement

field of the Kirchhoff–Love plate model. wi are the unknown fluctuating functions associated

with the displacement field in each direction of the coordinate system, xi , and they are used

to describe deformation that cannot be described by the simpler kinematics of the Kirchhoff–

Love plate model. Since we are constructing a plate model out of the original model, the
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kinematic fields in the plate model need to defined in terms of the displacement field of the

original model as:
ū1 = 〈u1〉+ ε〈y3〉ū3,1

ū2 = 〈u2〉 − ε〈y3〉ū3,2

ū3 = 〈u3〉

(2.28)

(·),a refers to the derivative of (·) with respect to xa.

The physical meaning of these definition is that the 2D displacements are the average

of the original 3D displacements of the structure over the SG. If the origin of y3 is at the

geometrical centroid of the SG, ūi are averages of the corresponding 3D displacements.

The definition of the plate displacement fields in Eq. ( 2.28 ), provides us with the necessary

constraints on wi which need to be imposed to solve the problem. The constraints are:

〈wi〉 = 0 (2.29)

These constraints remove the rigid body translations associated with the introduction of the

fluctuating functions. We would also have to impose periodic boundary conditions along the

y2 direction to respect the periodic nature of the SG. The imposing of the periodic boundary

condition makes sure that the rigid body rotation associated with the introduction of the

fluctuating functions is also zero. It should be noted that, if the geometrical centroid is not

chosen as the origin, ūi will assume a different meaning but the same constraints on the

fluctuating functions are used. Now substituting Eq. ( 2.27 ) into Eq. ( 2.12 ), we obtain the 3D

displacement field in the local plate coordinate systems as:

up1 = ū1(x1, x2)− εy3ū3,1(x1, x2) + εw1(x1, x2, y2, y3)

up2 = ẏ2ū2 + ẏ3ū3 − εẏ2y3ū3,2 + εẏ2w2 + εẏ3w3

up3 = −ẏ3ū2 + ẏ2ū3 + εẏ3y3ū3,2 − εẏ3w2 + εẏ2w3

(2.30)
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Since for the thin-walled plate model we have, ui(x1, x2, y2, y3), the local plate strain terms

definitions in Eq. ( 2.10 ) can be explicitly written as (using the partial derivative expression

in Eq. ( 2.2 )):

εp11 = ∂up1
∂x1

εp22 = ẏ2
∂up2
∂x2

+ 1
ε

∂up2
∂yp2

2εp12 = ∂up2
∂x1

+ ẏ2
∂up1
∂x2

+ 1
ε

∂up1
∂yp2

κp11 = −∂
2up3
∂x2

1

κp22 = −
(
ẏ2

2
∂2up3
∂x2

2
+ ẏ2

ε

∂

∂x2

(
∂up3
∂yp2

)
+ ẏ2

ε

∂

∂yp2

(
∂up3
∂x2

)
+ 1
ε2

∂2up3
∂(yp2)2

)

2κp12 = −2 ∂

∂x1

(
ẏ2
∂up3
∂x2

+ 1
ε

∂up3
∂yp2

)

(2.31)

and then on inputting Eq. ( 2.30 ) into Eq. ( 2.31 ) we get the local plate strains in each segment

as:
εp11 = ε11 + εy3κ11 + εw1,1

εp22 = ẏ2
2 (ε22 + εy3κ22) + ẏ2ẇ2 + ẏ3ẇ3 + ε (ẏ2w2,2 + ẏ3w3,2)

2εp12 = ẏ2 (2ε12 + εy3 (2κ12)) + ẇ1 + ε (ẏ2w1,2 + ẏ2w2,1 + ẏ3w3,1)

κp11 = ẏ2κ11 + ẏ3 (ū2,11 − εy3ū3,211) + ε (ẏ3w2,11 − ẏ2w3,11)

κp22 = ẏ2
(
1 + ẏ2

3

)
κ22 + 1

ε
(ẏ3ẅ2 − ẏ2ẅ3) + ẏ2

2 ẏ3 (ū2,22 − εy3ū3,222)

+ 2ẏ2 (ẏ3ẇ2,2 − ẏ2ẇ3,2) + εẏ2
2 (ẏ3w2,22 − ẏ2w3,22)

2κp12 = 2κ12 + 2ẏ2ẏ3 (ū2,12 − εy3ū3,212)

+ 2 (ẏ3ẇ2,1 − ẏ2ẇ3,1) + 2εẏ2 (ẏ3w2,21 − ẏ2w3,21)

(2.32)

where the 2D plate strains ε = [ε11 ε22 2ε12 κ11 κ22 2κ12]T , are defined as:

ε11 = ū1,1, ε22 = ū2,2, 2ε12 = ū1,2 + ū2,1,

κ11 = −ū3,11, κ22 = −ū3,22, 2κ12 = −2ū3,12

(2.33)
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in which ε11 , ε22, and 2ε12 are the in-plane extensional and shear strains, κ11 , κ22, and 2κ12

are the out-of-plane bending curvatures. Here again the underlined terms in the in-plane

local plate strain terms are of order O(ε̂ε). And the underlined terms in the out-of-plane

bending curvature terms are of order O(ε̂ε2). On inputting this form of the plate strain terms

into the overall strain energy we see that the contributions of the underlined terms to the

overall energy is of order O(ε̂2εh2), which is asymptotically smaller than the contributions of

the non-underlined terms which are of order O(ε̂2h2) and hence are dropped. After dropping

the asymptotically smaller terms, Eq. ( 2.32 ) can be written as:

εp11 = ε11 + εy3κ11

εp22 = ẏ2
2 (ε22 + εy3κ22) + ẏ2ẇ2 + ẏ3ẇ3

2εp12 = ẏ2 (2ε12 + εy3 (2κ12)) + ẇ1

κp11 = ẏ2κ11

κp22 = ẏ2
(
1 + ẏ2

3

)
κ22 + 1

ε
(ẏ3ẅ2 − ẏ2ẅ3)

2κp12 = 2κ12

(2.34)

which can be written in a matrix form as:

εp = P0ε+ Γhwp (2.35)

where

P0 =



1 0 0 x3 0 0

0 ẏ2
2 0 0 x3ẏ

2
2 0

0 0 ẏ2 0 0 x3ẏ2

0 0 0 ẏ2 0 0

0 0 0 0 ẏ2(1 + ẏ2
3) 0

0 0 0 0 0 1


(2.36)

and Γh and wp remain the same as that of the MSG thin-walled (MSG TW) beam model in

Eq. ( 2.26 ) and Eq. (  2.23 ).
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2.5 MSG thin-walled 3D structures

As done for the previous cases, for the case of thin-walled 3D structures, we have taken

the displacement field from [ 4 ] and derived the local plate strain terms (Eq. ( 2.10 )) for a

2D SG. According to [ 4 ], the displacement field for the case of a 3D thin-walled structure,

ui(x1, x2(xp2), x3(xp2), y2(yp2), y3(yp2)), can be written as:

u1 = ū1(x1, x2, x3) + εw1(x1, x2, x3, y2, y3)

u2 = ū2(x1, x2, x3) + εw2(x1, x2, x3, y2, y3)

u3 = ū3(x1, x2, x3) + εw3(x1, x2, x3, y2, y3)

(2.37)

where ui and ūi denote the displacement field of the original structure and the displacement

field of the equivalent 3D model. wi are the unknown fluctuating functions associated with

the displacement field in each direction of coordinate system, xi . Since we are constructing a

homogenized model out of the original model, the kinematic fields in the homogenized model

need to be defined in terms of the displacement field of the original model as:

ū1 = 〈u1〉

ū2 = 〈u2〉

ū3 = 〈u3〉

(2.38)

The physical meaning of these definition is that the 3D displacements of the homogenized

structure are the average of the original 3D displacements of the structure over the SG. The

definition of the 3D displacement fields of the homogenized structure in Eq. ( 2.38 ), provides

us with the necessary constraints on wi which need to be imposed to solve the problem. The

constraints are:

〈wi〉 = 0 (2.39)

where, it can be seen that these constraints removes the rigid body translations associated

with the introduction of the fluctuating functions. We would also have to impose periodic

boundary conditions along the y2 and y3 direction to respect the periodic nature of the SG.
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The imposing of the periodic boundary condition makes sure that the rigid body rotation

associated with the introduction of the fluctuating functions is also zero. Now substituting

Eq. ( 2.37 ) into Eq. ( 2.12 ), we obtain the 3D displacement field in the local plate coordinate

systems as:
up1 = ū1 + εw1

up2 = ẏ2ū2 + ẏ3ū3 + εẏ2w2 + εẏ3w3

up3 = −ẏ3ū2 + ẏ2ū3 − εẏ3w2 + εẏ2w3

(2.40)

Since for the thin-walled 3D model we have, ui(x1, x2, x3, y2, y3), the local plate strain terms

definitions in Eq. ( 2.10 ) can be explicitly written as (using the partial derivative expression

in Eq. ( 2.2 )):

εp11 = ∂up1
∂x1

εp22 = ẏ2
∂up2
∂x2

+ ẏ3
∂up2
∂x3

+ 1
ε

∂up2
∂yp2

2εp12 = ∂up2
∂x1

+ ẏ2
∂up1
∂x2

+ ẏ3
∂up1
∂x3

+ 1
ε

∂up1
∂yp2

κp11 = −∂
2up3
∂x2

1

κp22 = −
(
ẏ2

2
∂2up3
∂x2

2
+ ẏ2

3
∂2up3
∂x2

3
+ 2ẏ2ẏ3

∂2up3
∂x2x3

+ 2 ẏ2

ε

∂

∂yp2

(
∂up3
∂x2

)
+ 2 ẏ3

ε

∂

∂yp2

(
∂up3
∂x3

)
+ 1
ε2

∂2up3
∂(yp2)2

)

2κp12 = −2 ∂

∂x1

(
ẏ2
∂up3
∂x2

+ ẏ3
∂up3
∂x3

+ 1
ε

∂up3
∂yp2

)
(2.41)
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and then on inputting Eq. (  2.40 ) into Eq. ( 2.41 ) we obtain the local plate strains in each

segment as:

εp11 = Γ11 + εw1,1

εp22 = ẏ2
2Γ22 + ẏ2

3Γ33 + ẏ2ẏ3(2Γ23) + ẏ2ẇ2 + ẏ3ẇ3

+ ε[ẏ2
2w2,2 + ẏ2

3w3,3 + ẏ2ẏ3(w2,3 + w3,2)]

2εp12 = ẏ2(2Γ12) + ẏ3(2Γ13) + ẇ1 + ε[ẏ2(w2,1 + w1,2) + ẏ3(w1,3 + w3,1)]

κp11 = ẏ3ū2,11 − ẏ2ū3,11 + ε[ẏ3w2,11 − ẏ2w3,11]

κp22 = 1
ε

(ẏ3ẅ2 − ẏ2ẅ3)

+ ẏ2
2 ẏ3ū2,22 − ẏ2

3 ẏ2ū3,33 − ẏ3
2ū3,22 + ẏ3

3ū2,33 + 2ẏ2ẏ3(ẏ3ū2,23 − ẏ2ū3,23)

+ ε
(
ẏ2

2 ẏ3w2,22 − ẏ2
3 ẏ2w3,33 − ẏ3

2w3,22 + ẏ3
3w2,33 + 2ẏ2ẏ3(ẏ3w2,23 − ẏ2w3,23)

)
+ 2

(
ẏ2ẏ3ẇ2,2 − ẏ2

2ẇ3,2 + ẏ2
3ẇ2,3 − ẏ3ẏ2ẇ3,3

)
2κp12 = 2

(
ẏ2ẏ3 (ū2,21 − ū3,31)− ẏ2

2 (ū2,31 + ū3,21) + ū2,31 + ẏ3ẇ2,1 − ẏ2ẇ3,1
)

+ 2ε
(
ẏ2ẏ3 (w2,21 − w3,31)− ẏ2

2 (w2,31 + w3,21) + w2,31
)

(2.42)

where the 3D continuum strains ε = [Γ11 Γ22 Γ33 2Γ23 2Γ13 2Γ12]T , are defined as:

Γ11 = ū1,1, Γ22 = ū2,2, Γ33 = ū3,3,

2Γ23 = ū3,2 + ū2,3, 2Γ13 = ū3,1 + ū1,3, 2Γ12 = ū1,2 + ū2,1

(2.43)

in which Γ11, Γ22, and Γ33 are the normal strains in the three directions of the equivalent

3D model, 2Γ12, 2Γ23, and 2Γ13 are the shearing strains. Here again the underlined terms

in the in-plane local plate strain terms are of order O(ε̂ε). And the underlined terms in

the out-of-plane bending curvature terms are of order O(ε̂ε2). On inputting this form of

the plate strain terms into the overall strain energy we see that the contributions of the

underlined terms to the overall energy is of order O(ε̂2εh2), which is asymptotically smaller
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than the contributions of the non-underlined terms which are of order O(ε̂2h2) and hence are

dropped. After dropping off the asymptotically small terms, Eq. ( 2.42 ) can be written as:

εp11 = Γ11

εp22 = ẏ2
2Γ22 + ẏ2

3Γ33 + ẏ2ẏ3(2Γ23) + ẏ2ẇ2 + ẏ3ẇ3

2εp12 = ẏ2(2Γ12) + ẏ3(2Γ13) + ẇ1

κp11 = 0

κp22 = 1
ε

(ẏ3ẅ2 − ẏ2ẅ3)

2κp12 = 0

(2.44)

which can be written in matrix form as:

εp = P0ε+ Γhwp (2.45)

where,

P0 =



1 0 0 0 0 0

0 ẏ2
2 ẏ2

3 ẏ2ẏ3 0 0

0 0 0 0 ẏ3 ẏ2

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0


(2.46)

and Γh and wp remain the same as that of the MSG-TW beam and MSG-TW plate model,

in Eq. ( 2.26 ) and Eq. (  2.23 ).

Eq. ( 2.25 ), Eq. (  2.35 ) and Eq. ( 2.45 ) have the same form with the only difference being in

P0 and hence the same set of elements can be used to solve all the three models. As mentioned

earlier, the SG is divided into individual segments that have their own parameterization of xp2
and correspondingly yp2. Hence, at the junctions, it is required to have continuity conditions

imposed.
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2.6 Constraints and boundary conditions

As seen in Eq. (  2.25 ), Eq. ( 2.35 ), and Eq. ( 2.45 ), the variables wp1 and wp2 have first-order

derivatives with respect to yp2, hence just C0 continuity condition at the junction of two

intersecting segments has to be imposed on them. This continuity condition can be derived

from the fact that u1 and u2 are continuous at the junction. The variable wp3 has a second-

order derivative in yp2, which implies that it requires C1 continuity conditions at the junction,

one of which can be derived from the fact that u3 is continuous at the junction.

α

α + ∆α

Before deformation

After deformation

∂up3
∂xp2
|1

∂up3
∂xp2
|2

Figure 2.3. Slope contuniuty constraint ∆α = 0.

Another condition can be derived from using the fact that no change in angle would

occur at the junctions due to shear effects, which can be imposed by the slope, i.e., ∂up3
∂x2
p

being

equal at the junctions which has been illustrated in Figure  2.3 . An in-depth derivation of

this boundary conditions, using position vectors, can be found in Appendix A. The above

statements provide the following continuity conditions:

buic = 0

b∂u
p
3

∂xp2
c = 0

(2.47)

where b·c refers to (·)(1) − (·)(2) with (1) and (2) being the two intersecting members. The

first continuity equation in Eq. ( 2.47 ) translates to the following continuity conditions on wi

in all models, including the beam model, plate model, and 3D solid model:

bwic = 0 (2.48)
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The second continuity equation in Eq. ( 2.47 ) translates to the following continuity conditions

on wi (after dropping small terms):

bẏ2ẇ3 − ẏ3ẇ2 + Φc = 0 for a beam model

bū3,2 − ẏ2ẏ3 (ε22 + εy3κ22) + ẏ2ẇ3 − ẏ3ẇ2c = 0 for a plate model

bẏ2ẇ3 − ẏ3ẇ2 + ẏ3ẏ2 (Γ33 − Γ22) + ẏ2
2 (2Γ23)− ū2,3c = 0 for a 3D structure

(2.49)

Eq. ( 2.49 ) can further be written as (after removing constant terms):

bθpc = bθ̄c = 0 for a beam model

bθp − ẏ2ẏ3 (ε22 + εy3κ22)c = bθ̄c = 0 for a plate model

bθp + ẏ3ẏ2 (Γ33 − Γ22) + ẏ2
2 (2Γ23)c = bθ̄c = 0 for a 3D structure

(2.50)

here,

θp = −ẏ3ẇ2 + ẏ2ẇ3 = ẇp3

Overall constraints on the fluctuating functions (Eq. ( 2.15 ), Eq. ( 2.16 ), Eq. ( 2.29 ), and Eq. ( 2.39 ))

along with periodic boundary conditions on the corresponding edges (y2 edges for the plate

model, and y2 and y3 edges for the 3D structure) need to be imposed. It should be noted

that this periodicity is imposed on wi and θ̄ at the corresponding edges.

The strain energy density of the SG is written from Eq. ( 2.9 ) as:

U = 1
w

〈1
2 (εp)T K (εp)

〉
(2.51)

In Eq. ( 2.51 ), w denotes the volume of the domain spanned by yi corresponding to the

coordinates xi remaining model. For the case of MSG TW beams, w = 1. For the case

of MSG-TW plates, w is equal to the size of the SG along y2 direction. For the case of

MSG-TW 3D structures, w is equal to the area spanned by y2 and y3.

The next step is to solve the Euler-Lagrange equation which is obtained from minimizing

the functional in Eq. ( 2.51 ) subject to constraints in Eq. (  2.15 ), Eq. ( 2.16 ), Eq. ( 2.29 ), and
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Eq. ( 2.39 ). The finite element formulation used for solving the problem has been presented

in the next section

2.7 Finite element implementation

The next step in the formulation is to solve for the unknown functions wi by minimizing

the functional in Eq. ( 2.51 ). As the line integral performed for the strain energy density in

Eq. ( 2.51 ) is along every line segment, the shape functions have to be defined along (yp2, yp3)

and the nodal variables transformed into (y2, y3) as is done in the case of frame elements

[ 69 ]. The fluctuating functions wpi can be written in the form:

wp (x1, y2 (ξ) , y3 (ξ)) = S (y2 (ξ) , y3 (ξ))V p (x1) (2.52)

where ξ is the elemental coordinate system and runs from −1 to 1 while yp2 runs from −le/2

to le/2, ξ = 2yp2/le, le being the length of the segment. y2 and y3 are functions of ξ in the

following fashion:

y2(ξ) = y22 − y21

2 ξ + y22 + y21

2 , y3(ξ) = y32 − y31

2 ξ + y32 + y31

2 (2.53)

and ẏ2 = y22−y21
le

, ẏ3 = y32−y31
le

. Here the extremities of the segment are (y21, y31) and (y22, y32).

Each segment can be divided into one or more 1D elements. To ensure an exact solution for

the fluctuating functions, quadratic elements with three nodes are used. Figure  2.4 shows

a typical plate segment with its extremities and the corresponding 1D frame element and

dofs. Every element has 12 dofs and the node numbering has also been shown in Figure  2.4 .

In Eq. ( 2.52 ), V p takes the form as [ 69 ]:

V p =
[
wp11 wp21 wp31 θp1 wp12 wp22 wp32 θp2 wp13 wp23 wp33 θp3

]T
(2.54)
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)
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)

(2)

θp1

θp2

θp3

wp11

wp31

wp12

wp23

wp22
wp32

wp33

wp21
wp13

Figure 2.4. Elemental coordinates and dofs.
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Here wpij refers to the fluctuating function at the node j along direction i. Values of i =

(1, 2, 3) correspond to (x1, y
p
2, y

p
3) respectively. θpj refers to the rotation along x1 direction at

node j. S[ξ] in Eq. (  2.52 ) has the following form:

S[ξ] =


N1 0 0 0 N2 0 0 0 N3 0 0 0

0 N1 0 0 0 N2 0 0 0 N3 0 0

0 0 N̄1 M̄1 0 0 N̄2 M̄2 0 0 N̄3 M̄3

 (2.55)

where
N1 = −(1− ξ)ξ

2 N2 = (1 + ξ)ξ
2 N3 = 1− ξ2

N̄1 = 3ξ5

4 −
ξ4

2 −
5ξ3

4 + ξ2 M̄1 = le
2

(
ξ5

4 −
ξ4

4 −
ξ3

4 + ξ2

4

)

N̄2 = −3ξ5

4 −
ξ4

2 + 5ξ3

4 + ξ2 M̄2 = le
2

(
ξ5

4 + ξ4

4 −
ξ3

4 −
ξ2

4

)

N̄3 = ξ4 − 2ξ2 + 1 M̄3 = le
2
(
ξ5 − 2ξ3 + ξ

)
(2.56)

These are the traditional quadratic Hermite polynomial shape functions which can be de-

rived from the basic concept of the finite element method [  70 ]. The nodal values, V p, are

in the (x1, y
p
2, y

p
3) coordinate system and need to be transformed into the SG coordinate

system, (x1, y2, y3), because the constraints in Eq. ( 2.15 ), Eq. ( 2.16 ), Eq. ( 2.29 ), Eq. ( 2.39 ),

and Eq. ( 2.47 ) are imposed in that coordinate system. Hence we introduce a transformation

matrix T [ 69 ], which is:

T =


Ω̃ [0]4×4 [0]4×4

[0]4×4 Ω̃ [0]4×4

[0]4×4 [0]4×4 Ω̃

 Ω̃ =



1 0 0 0

0 ẏ2 ẏ3 0

0 −ẏ3 ẏ2 0

0 0 0 1


(2.57)

and

V p = TV g (2.58)
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where V g represents the nodal values in the (x1, y2, y3) coordinate system. On substituting

Eq. ( 2.58 ) into Eq. ( 2.52 ), wp can be represented in terms of V g and a new shape function

matrix, S̄ [ 69 ], is obtained.

wp = S̄V g (2.59)

where,

S̄[ξ] =


N1 0 0 0 N2 0 0 0 N3 0 0 0

0 N1ẏ2 N1ẏ3 0 0 N2ẏ2 N2ẏ3 0 0 N3ẏ2 N3ẏ3 0

0 −N̄1ẏ3 N̄1ẏ2 M̄1 0 −N̄2ẏ3 N̄2ẏ2 M̄2 0 −N̄3ẏ3 N̄3ẏ2 M̄3


(2.60)

In order to ensure the continuity conditions in Eq. ( 2.50 ), a change of variable of V g is

introduced as:

V g = V̄ g + αε (2.61)

where

α =



[0]3×i

β1

[0]3×i

β2

[0]3×i

β3


and βj depends on the global model under consideration. For the case of the beam model,

i = 4.

βj = [0 0 0 0]

For the case of the plate model i = 6.

βj =
[
0 ẏ3ẏ2 0 0 ẏ3ẏ2x3|j 0

]
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For the case of 3D solid model i = 6.

βj =
[
0 ẏ3ẏ2 −ẏ3ẏ2 −ẏ2

2 0 0
]

Here x3|j represents the x3 value of node j numbered in the local elemental system. On ap-

plying the transformations in Eq. ( 2.59 ) and Eq. ( 2.61 ), we get the following nodal variables:

V̄ g =
[
w11 w21 w31 θ̄1 w12 w22 w32 θ̄2 w13 w23 w33 θ̄3

]T
(2.62)

where, wij refers to the value of the fluctuating function at the node j along direction i.

Values of i = (1, 2, 3) correspond to (x1, y2, y3) respectively. θ̄j refers to the value of θ̄ in

Eq. ( 2.50 ) at node j.

The integral constraints are to be applied on wi which can be represented in terms of wpi
as: 

w1

w2

w3


= ΩT


wp1

wp2

wp3


(2.63)

The integral constraints can be written in the following form:

〈Ψwg〉 = 0 (2.64)

where wg = [w1 w2 w3]T and Ψ for the case of the beam model is:

Ψ =



1 0 0

0 1 0

0 0 1

0 −y3[ξ] y2[ξ]


(2.65)

and for the case of the plate model and the equivalent 3D model is a 3× 3 identity matrix.

The Euler–Bernoulli beam model, the Kirchhoff–Love plate model, and the equivalent 3D

model are obtained from the zeroth-order approximation of the strain energy [ 5 ], hence

substituting Eq. ( 2.25 ) (or Eq. ( 2.35 ) or Eq. ( 2.45 )), Eq. ( 2.52 ), and Eq. ( 2.58 ) in Eq. ( 2.51 ),
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imposing the continuity conditions from Eq. ( 2.61 ), and the integral constraints in the form

of Lagrange multiplier, the overall functional to be minimized is:

2U0 = V̄ TEV̄ + 2V̄ T D̄hεε+ εT D̄εεε+ λTDhλV̄ + λTFhλε (2.66)

where V̄ contains the nodal values assembled from V̄ g; E, D̄hε, D̄εε, Dhλ, and Fhλ are the

global stiffness matrix, global forcing matrix, global contribution of P0, global constraint

matrix and its corresponding forcing matrix respectively which are:

E = 〈[ΓhS̄]TK[ΓhS̄]〉

D̄hε = 〈[ΓhS̄]TKP0 +
(
[ΓhS̄]TK[ΓhS̄]

)
α〉

D̄εε = 〈PT
0KP0 + αT

(
[ΓhS̄]TK[ΓhS̄]

)
α + αT

(
[ΓhS̄]TKP0

)
+
(
PT

0K[ΓhS̄]
)
α〉

Dhλ = 〈ΩT S̄〉

Fhλ = 〈
(
ΩT S̄

)
α〉

(2.67)

Γh needs to be transformed into the elemental coordinate system as:

Γh =



0 0 0

0 2
le
d
dξ

0
2
le
d
dξ

0 0

0 0 0

0 0 −
(

2
le

)2
d2

dξ2

0 0 0


(2.68)

The periodic boundary conditions can be imposed by setting the equality constraints on the

periodic edges before solving the system of linear equations.

Taking the variation of Eq. ( 2.66 ) with respect to V̄ and λ and imposing the periodic

boundary conditions, the following linear system of equations is obtained:

 E (D̄hλ)T

D̄hλ [0]3×3


V̄λ

 = −

D̄hε

Fhλ

{ε} (2.69)
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Eq. ( 2.69 ) is solved to find the solution for the zeroth-approximation of V̄ g which is

V̄ = V̂0ε (2.70)

Having solved for V̄ g, the final stiffness matrix can be found by plugging it back into

Eq. ( 2.66 ) and discarding the Lagrange multiplier term. The homogenized stiffness matrix

K̄ is of the form:

K̄ = V̂ T
0 D̄hε + D̄εε (2.71)

The zeroth-order approximation of the strain energy density for the homogenized beam

model being:

Π0 = 1
2ε

T K̄ε = 1
2



γ11

κ1

κ2

κ3



T 

Cb
11 Cb

12 Cb
13 Cb

14

Cb
12 Cb

22 Cb
23 Cb

24

Cb
13 Cb

23 Cb
33 Cb

34

Cb
14 Cb

24 Cb
34 Cb

44





γ11

κ1

κ2

κ3


(2.72)

The zeroth-order approximation of the strain energy density for the homogenized plate model

being:

Π0 = 1
2ε

T K̄ε = 1
2



ε11

ε22

2ε12

κ11

κ22

2κ12



T 

A11 A12 A16 B11 B12 B16

A12 A22 A26 B21 B22 B26

A16 A26 A66 B61 B62 B66

B11 B21 B61 D11 D12 D16

B12 B22 B62 D12 D22 D26

B16 B26 B66 D16 D26 D66





ε11

ε22

2ε12

κ11

κ22

2κ12



(2.73)
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The zeroth-order approximation of the strain energy density for the homogenized 3D solid

model being:

Π0 = 1
2ε

T K̄ε = 1
2



Γ11

Γ22

Γ33

2Γ23

2Γ13

2Γ12



T 

C11 C12 C13 C14 C15 C16

C12 C22 C23 C24 C25 C26

C13 C23 C33 C34 C35 C36

C14 C24 C34 C44 C45 C46

C15 C25 C35 C45 C55 C56

C16 C26 C36 C46 C56 C66





Γ11

Γ22

Γ33

2Γ23

2Γ13

2Γ12



(2.74)

49



3. RESULTS

For validation, the theory proposed has been implemented into a computer code called MSG

thin-walled (MSG-TW). Multiple examples have been presented, which have geometric and

material complexity associated with them. The results have been compared with existing

literature and equivalent properties obtained from MSG solid model. As MSG solid model

uses the 3D strain energy without the thin-walled approximation, the results obtained from

it have been used as the benchmark [ 71 ].

3.1 Equivalent beam properties

For the case of beam properties, in order to showcase the versatility of MSG-TW, we

have presented two different choices of reference lines, MSG-TW (Centric), and MSG-TW

(Off-Centric), for cases which can have both. MSG-TW (Centric) obtains results by choosing

the center of the segment as the reference line (a partially populated plate stiffness matrix)

and MSG-TW (Off-Centric) obtains results by choosing a reference line which does not

correspond to the center of the segment (a completely populated plate stiffness matrix)

3.1.1 Isotropic strip

The first example is an isotropic strip with width c and thickness h. The material

properties are E the Young’s modulus and ν the Poisson’s ratio. This example is chosen

to show that MSG-TW can obtain beam properties for trivial cases. The set of equations

obtained can be solved in an analytical fashion without the use of FEM mentioned previously,

yielding analytical expression for the stiffness properties which are:

Cb
11 = Ech Cb

22 = Ech3

6(1 + ν) Cb
33 = Ech3

12 Cb
44 = Ec3h

12 (3.1)

The geometric properties have been presented in Figure  3.1 and the results from the MSG-

TW code are shown in Table  3.1 , where the material properties have the following values:

E = 68.9 GPa, ν = 0.33, c = 10 cm and h = 0.5 cm.
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c

h
y2

y3

Figure 3.1. Isotropic Strip.

Table 3.1. Stiffness value for an isotropic strip section: (a) MSG-TW (Cen-
tric), (b) Harursampath et al. [ 20 ], (c) Yu et al. [  18 ], and (d) MSG solid.

Stiffness (a) (b) (c) (d)
Cb

11(107N) 3.445 3.445 3.445 3.445
Cb

22(Nm2) 107.926 107.926 107.926 107.657
Cb

33(Nm2) 71.770 71.770 71.770 71.770
Cb

44(104Nm2) 2.871 2.871 2.871 2.871
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Table 3.2. Stiffness value for an isotropic I-section: (a) MSG-TW (Centric),
(b) MSG-TW (Off-Centric), (c) Harursampath et al. [ 20 ], (d) Yu et al. [ 18 ],
and (e) MSG solid.

Stiffness (a) (b) (c) (d) (e)
Cb

11(108N) 2.067 1.998 2.067 2.067 1.998
Cb

22(103Nm2) 2.590 2.562 7.732 2.590 2.550
Cb

33(105Nm2) 4.031 3.875 3.875 4.031 3.875
Cb

44(105Nm2) 1.154 1.153 1.153 1.154 1.153

The results show good agreement with MSG solid for all cases and the analytical ex-

pression obtained can be found in a typical solid mechanics textbook. For performing the

sectional analysis in the proposed finite element method, 1 element with 3 nodes was used

and each node having 4 dofs which is computationally cheap in comparison to MSG solid

where 5 2D quadratic elements were used with a total of 28 nodes and each node having 3

dofs.

3.1.2 Isotropic I-section

The next example is an isotropic I-section with the flange and the web having length,

c = 10 cm and thickness h = 1 cm and having material properties E = 68.9 GPa and

ν = 0.33. The sectional properties obtained have been shown in Table  3.2 as MSG-TW

(Centric).

Errors associated with the values are significant in comparison to MSG solid which can

be attributed to the choice of the reference line. Such theories should converge to the original

value as the thickness decreases (c/h increases) which can be seen in the convergence trend

plotted in Figure  3.2 . As the aspect ratio (c/h) increases the value converges to the original

value but even at an aspect ratio of 1/40, the value of Cb
33 still has an error close to 2%.

These errors are mainly due to the choice of the reference line of the plate segment. For

the case of MSG-TW (Centric) as shown in Figure  3.3 , the red arrows show the directions

along which the laminate is stacked in the original 3D structure. It can be seen the shaded

areas are being added twice which causes more errors in Cb
33 than in Cb

44. This is because

the double counted area has a smaller area moment of inertia in the y2 direction than that
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Figure 3.2. Convergence study of isotropic I-section.
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c

c

h

MSG-TW (Centric)

MSG-TW (Off-Centric)
y2

y3

Figure 3.3. Overlaps in an isotropic I-section.

in y3 direction. As seen in Table  3.2 in MSG-TW (Off-Centric), the results improve a lot in

comparison to MSG-TW (Off-Centric). This is because no overlapping is present as seen by

the green arrows in Figure  3.3 . This off-centric choice of reference line leads to a completely

populated plate stiffness matrix for each segments except the web.

3.1.3 Anisotropic I-section

The next example is a composite I-section which has been extensively studied in the

literature and can provide a benchmark comparison for the formulation. The anisotropic

I-section presented in [  72 ] has been used as it has been compared in other works [ 19 ], [ 20 ].
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The schematic of the section is shown in Figure  3.4 . The material properties used have been

y2

y3

MSG-TW (Centric)

MSG-TW (Off-Centric)

Figure 3.4. Thin-walled anisotropic I section.

obtained from [ 72 ] as

E1 = 141.963 GPa, E2 = E3 = 9.79 GPa,

G12 = G13 = G23 = 6.136 GPa, ν12 = ν13 = ν23 = 0.42

The explicit orientations of the layers, in the (y2, y3) coordinate system, at different sections

are

• Right side top flange: [(90o/0o)3 /(15o)2]

• Left side top flange: [(0o/90o)3 /(15o)2]

• Right side bottom flange: [(90o/0o)3 /(15o)2]

• Left side bottom flange: [(0o/90o)3 /(15o)2]
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• Web: [(90o/0o)4]

The layers are 0.127 mm thick and the total height and the width of the section are 12.7

mm and 25.4 mm respectively. The ratio of the height of each segment to the cross-sectional

dimensions is small which qualifies it as a thin-walled section. The results obtained from

using MSG-TW beam model are compared with the previous works in Table  3.3 and are in

better agreement with MSG solid, in comparison to [  20 ]. Chandra et al. [ 72 ] assumes that the

in-plane axial strain along xp2, ε22, vanish. The results obtained are more stiffer in comparison

to other methods. It should be noted the results of MSG-TW (Centric) are exactly the same

as [ 19 ]. Here as well, the choice of reference line reflects the error associated with the final

results and it can be seen a careful choice of off-centric reference lines can provide better

results in comparison to keeping the center lines as the reference lines.

Table 3.3. Stiffness value for an anisotropic I section: (a) MSG-
TW(Centric),(b) MSG-TW(Off-Centric) (c) Harursampath et al. [ 20 ], (d)
Chandra et al. [ 72 ], and (e) MSG solid.

Stiffness (a) (b) (c) (d) (e)
Cb

11(106N) 5.134 5.055 5.133 5.525 5.022
Cb

14(Nm) 65.347 60.975 15.072 0.000 56.887
Cb

22(Nm2) 0.178 0.176 0.178 0.193 0.177
Cb

33(Nm2) 155.475 153.000 154.540 153.937 152.290
Cb

44(Nm2) 227.226 227.219 227.146 248.526 225.120

For performing the sectional analysis in MSG solid, 3, 792 2D quadratic elements were

used with a total of 12, 341 nodes and each node having 3 dofs. In contrast, for performing

the sectional analysis using the current approach, 8 1D elements were used to obtain the

plate stiffness matrices for the 5 different segments in the cross-section and 5 1D elements

were used, with each element having 3 nodes and each node having 4 dofs.

A clear computational advantage can be seen of the current approach over MSG solid,

and as seen from the sectional properties calculated in Table  3.3 , it is in better agreement

as compared to existing thin-walled beam theories. The current theory also captures the

axial-bending coupling (Cb
14) which was not being captured in [ 72 ] and less accurate in [ 20 ].
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3.1.4 Circular tube

The next example is a composite circular tube. This example showcases the ability of

MSG-TW to obtain the effective beam properties of a cross-sections which have an inherent

curvature associated with their reference lines. The schematic of the circular tube has been

shown in Figure  3.5 . The analytical solution to the cross-sectional properties considering that

y3

y2

R

t

−45o

Figure 3.5. Thin-walled composite circular tube section.
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Table 3.4. Stiffness value for an isotropic I-section: (a) MSG-TW (Centric),
(b) Yu et al. [ 18 ], and (c) MSG solid.

Stiffness (a) (b) (c)
Cb

11(107N) 4.7727 4.7729 4.7738
Cb

12(105Nm) -9.3591 -9.3607 -9.3906
Cb

22(105Nm2) 1.4943 1.4903 1.4932
Cb

33(105Nm2) 1.0705 1.0728 1.0741

the tube section is made of a single shell can be explicitly obtained from the formulation

presented in [  18 ] and written as:

Cb
11 = 2πR

(
A11 −

A2
16

A66

)

Cb
12 = πR

A66
(−3B62A16 − 2RA16A26 + 3B12A66 + 2RA12A66)

Cb
22 = πR

2A66

(
−3B26(3B62 + 2RA26) + 9D22A66 − 6R(B62A26 − 2B22A66)− 4R2(A2

26 − A22A66)
)

Cb
33 = Cb

44 = πR

Z
(
∆D + 2RA +R2B− 2R3C−R4D + 4R5E + 4R6∆A

)
(3.2)

The complete derivations and the expanded expressions for ∆D, A, B, C, D, E and ∆A

are presented in Appendix B. From Eq. ( 3.2 ), it can be seen that a circular tube with a

single type of composite layup has tension-torsion coupling associated with it. So in order

to showcase the capability of MSG-TW to capture this effect a single ply composite layup is

chosen which has a fiber angle of −450 and the material properties associated with the ply

is:
E1 = 37 GPa, E2 = E3 = 9 GPa,

G12 = G13 = G23 = 4 GPa,ν12 = ν13 = ν23 = 0.28.

The sectional properties obtained for the case of R = 7.15 cm and t = 8.682 mm have been

shown in Table  3.4 . Here we have only presented Cb
33, as for the case of a circular tube,

Cb
33 = Cb

44. We can see that, MSG-TW model is able to capture the tension-torsion coupling

terms with high degree of accuracy.

As seen for the case of the Isotropic I section, the error percentage of the beam properties

with respect to MSG solid model decreases as the aspect ratio of 2R/t increases. This
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Figure 3.6. Convergence study of composite circular tube with respect to aspect ratio.

convergence trend can be seen in Figure  3.6 . Since MSG-TW utilizes straight segments to

capture the curvature effects of a shell, we can see in Figure  3.7 that as we increase the number

of segments to describe the geometry of the shell, the difference between the numerical and

analytical values decreases. This plot was made keeping the values of R = 7.15 cm and

t = 8.682 mm. This supports the claim that we can indeed represent a curved geometry

with sufficient straight line segments.

For performing the sectional analysis in MSG solid, 2880 2D quadratic elements were

used with a total of 6120 nodes and each node having 3 dofs. In contrast, for performing the

sectional analysis using the current approach, 1 1D elements was used to obtain the plate

stiffness matrix and 200 1D elements were used to obtain the results in Table  3.4 , with each

element having 3 nodes and each node having 4 dofs.

59



Figure 3.7. Convergence study of composite circular tube with respect to
number of segments.
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Figure 3.8. Realistic composite wind turbine multi-cell section [ 73 ].

3.1.5 Realistic wind turbine blade section

The next example is a realistic composite wind turbine blade with five varying skin

segments and two webs. This example has been taken from [ 73 ]. The schematic of a typical

wind turbine blade is shown in Figure  3.8 and the corresponding reference line used for MSG-

TW (Off-Centric) in Figure  3.9 . An MH 104 airfoil is used and the cross-sectional details

such as chord length, the web location, the y2 coordinates of representative points for defining

the skin segments as well as the material properties and orientation have been taken from

[ 73 ].

The lamination properties used for this example are the “Laminate layer schema for

station 1” mentioned in [ 73 ]. The only differences between the current example and the

one mentioned in [ 73 ] are the laminate thickness of each layer and origin of the coordinate

system. The thickness of all the layers are all 5 times smaller than that in [ 73 ] and the origin

is kept at Oaf .

The reference line chosen in the current example is the outside of the skin segments

which automatically means a MSG-TW (Off-centric) model is used. The results obtained

have been compared with MSG solid in Table  3.5 . It can be seen here that the beam stiff-

ness is completely populated and the MSG-TW can capture all the diagonal as well as the
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Figure 3.9. MSG-TW model for realistic composite wind turbine multi-cell section [ 73 ].
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coupling terms to a reasonable amount of accuracy with the maximum difference being in

Cb
24 (bending-torsion coupling), which is 7.69 %. Although MSG-TW induces an error in the

beam stiffness components in comparison to MSG solid, the enormous computational savings

achieved make MSG-TW more useful in critical applications such as preliminary design of

the cross-section.

Table 3.5. Stiffness value for realistic wind turbine blade section: (a) MSG
solid (b) MSG-TW(Off-Centric), and (c) Error %.

Stiffness (a) (b) (c)
Cb

11(108N) 5.48 5.68 3.59
Cb

12(106Nm) -8.28 -8.76 5.83
Cb

13(107Nm) 1.60 1.65 3.29
Cb

14(108Nm) 3.89 4.03 3.73
Cb

22(106Nm2) 6.02 6.12 1.6
Cb

23(105Nm2) -3.45 -3.60 4.56
Cb

24(106Nm2) 4.73 5.09 7.69
Cb

33(106Nm2) 6.46 6.68 3.49
Cb

34(106Nm2) -9.58 -9.89 3.37
Cb

44(108Nm2) 3.63 3.78 4.09

For performing the sectional analysis in MSG solid, 11, 023 2D linear elements were used

with a total of 20, 207 nodes and each node having 3 dofs. In contrast, for performing the

sectional analysis using MSG-TW, a maximum of 5 1D elements were used to obtain the

plate stiffness matrices for the 5 different segments in the cross-section and 128 1D elements

were used, with each element having 3 nodes and each node having 4 dofs.

3.1.6 Isotropic multi-cell box section

The final beam example is an isotropic multi-cell box section. This showcases the ap-

plication of MSG-TW to more than two cells which has been already presented in [ 26 ] but

because of the analytical nature of the work generalization of the theory was not easy. MSG-

TW works for more than two cells which are oriented in any arbitrary direction inside the

box beam. The material properties used for the example are the same as used for the pre-

vious isotropic cases and a schematic diagram of the beam cross-section has been shown in

Figure  3.10 . The results obtained have been compared with MSG solid in Table  3.6 .
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Figure 3.10. Isotropic multi-cell section.
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Table 3.6. Stiffness value for an isotropic multi-cell section: (a) MSG-TW
(Centric), (b) MSG solid, and (c) Error %.

Stiffness (a) (b) (c)
Cb

11(108N) 1.86 1.81 2.92
Cb

22(104Nm2) 9.52 9.55 0.3
Cb

33(105Nm2) 1.55 1.52 1.54
Cb

44(105Nm2) 2.24 2.20 1.73

For performing the sectional analysis in MSG solid, 2, 885 2D linear elements were used

with a total of 3, 354 nodes and each node having 3 dofs. In contrast, for performing the

sectional analysis using MSG-TW, 1 1D elements was used to obtain the plate stiffness

matrices for the segment in the cross-section and 12 1D elements were used, with each

element having 3 nodes and each node having 4 dofs.

3.2 Equivalent plate properties

As done for the beam model, MSG-TW plate model also considers the off-centric reference

lines and the effects of this consideration are more staggering for the case of the plate model

as some results cannot be obtained by using centric reference lines which are assumed by

most method in the literature.

3.2.1 Isotropic corrugated plate

The first example is an isotropic corrugated plate, the dimensions and material properties

of the SG has been shown in Figure  3.11 . This example has been studied in [ 27 ] and [ 44 ]. Xia

et al. [ 27 ] and Ye and Yu [ 44 ] provide analytical expressions for the equivalent plate properties

and are more computationally advantageous than MSG-TW but due to the choice of local

plate stiffness matrix in [ 27 ] and isotropic material in [ 44 ] they cannot be applied to general

cases. This example is chosen to show that MSG-TW can obtain values for simple cases.

The non-zero components of the equivalent plate stiffness matrix obtained are presented

in Table  3.7 . It can be seen that MSG-TW provides results as accurate as the results obtained

from [ 27 ] and [ 44 ]. The stiffness properties associated with bending in both directions (D11,
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ν = 0.33

Figure 3.11. Isotropic corrugated plate.

D12 and D22) are very close to the values obtained by the MSG solid and in [ 44 ] it has been

shown that these values replicate the original deformation of the structure to a high degree of

accuracy. The values obtained for the in-plane stiffness properties along the corrugation (A22

and A12) have a 2% difference from the values obtained in [ 44 ]. This difference is because in

[ 44 ], the author has missed a constant while obtaining Eq. (52) from Eq. (50) in [  44 ] and this

constant relates to ε22. In order to perform the analysis using MSG-TW, 5 elements with 3

nodes each were used and each node having 4 dofs which is computationally much cheaper

in comparison to MSG solid model where 881 2D quadratic elements were used with a total

of 2, 884 nodes and each node having 3 dofs.

3.2.2 Isotropic corrugated panel (with irregular thickness)

The next example is an isotropic corrugated panel as shown (along with the material

used) in Figure  3.12 , the results of which have also been presented in [ 2 ]. This particular

example presents the case of having a discontinuity in the plate reference line if the center

of the segment is chosen as the reference line (as can be seen by the red dotted line in
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Table 3.7. Equivalent plate properties for an isotropic corrugated plate: (a)
MSG-TW, (b) Xia et al. [ 27 ], (c) Ye et al. [  44 ] and (d) MSG solid.

Stiffness (a) (b) (c) (d)
A11(MN/m) 161.332 161.332 161.479 160.91
A12(MN/m) 1.215 1.216 1.245 1.380
A22(MN/m) 4.052 4.052 4.150 4.173
A66(MN/m) 42.488 42.489 42.489 42.278
D11(KN·m) 16.242 17.809 16.251 16.473
D12(N·m) 122.375 122.375 122.375 138.34
D22(N·m) 407.913 407.917 407.917 419.21
D66(N·m) 208.033 208.032 208.033 203.94

Figure  3.3 . The analytical methods adopted in [ 27 ] and [ 44 ] cannot deal with this situation

because these methods decouple the extension and bending behaviour for isotropic plates,

which translates to the center of the segment being the reference line.

MSG-TW can tackle this case by having an off-centric reference line as shown by the green

dotted lines in Figure  3.12 because a completely populated plate stiffness can be considered

in MSG-TW.

60 mm

77.12 mm

10.16 mm

0.7 mm

2.4 mm

y3

y260o

Material Properties:
E = 210 GPa
ν = 0.3

Figure 3.12. Isotropic corrugated panel (with irregular thickness).
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Buannic et al. [ 2 ] obtains the results by performing an RVE analysis using plate elements

and a 3D RVE. The results obtained from MSG-TW have been compared with [ 2 ] and also

with MSG solid in Table  3.8 , where (Em
1 , Em

2 , Gm
12) are the membrane moduli and (Ef

1 , Ef
2 ,

Gf
12) are the bending moduli. Here 2 is the direction of the corrugation. It should be noted

that instead of comparing the plate stiffness matrix, the membrane and bending moduli have

been compared for this case as presented in [  2 ]. The results obtained are close to the ones

obtained from MSG solid. The value obtained for the membrane moduli in the corrugation

direction (Em
2 ) by the present method is more accurate than the one obtained in [ 2 ].

Table 3.8. Membrane and bending moduli for an isotropic corrugated panel
(a) MSG-TW, (b) Buannic et al. [  2 ] and (c) MSG solid.

Moduli (a) (b) (c)
Em

1 (GPa) 209.77 208.1 208.98
Em

2 (GPa) 256.55 252.8 257.09
Gm

12(GPa) 83.596 84.54 84.27
νm12 0.245 0.2469 0.2434
Ef

1 (103 GPa) 82.61 81.91 81.199
Ef

2 (103 GPa) 87.44 88.20 89.09
Gf

12(103 GPa) 32.074 31.68 31.851
νf12 0.274 0.2786 0.2767

In order to perform the analysis using MSG-TW, 8 elements with 3 nodes each were used

and each node having 4 dofs which is computationally much cheaper in comparison to MSG

solid where 3, 143 2D quadratic elements were used with a total of 10, 531 nodes and each

node having 3 dofs. Buannic et al. [  2 ] used 26 2D quadratic plate elements with a total of

130 nodes which is computationally more expensive than the current method.

3.2.3 Anisotropic corrugated plate

The final example is an anisotropic corrugated plate, the geometry of which has been

shown in Figure  3.13 . This particular example has been presented in [ 74 ], where an analytical

approach is used to obtain the equivalent plate properties. All the segments associated with
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Figure 3.13. Anisotropic corrugated sheet.

this SG have the same layup sequence which is [ ± 45]2s and the material used has the

following properties:

E1 = E3 = 10.5 GPa, E2 = 148 GPa, G12 = G23 = 5.61 GPa,

G13 = 3.17GPa, ν12 = 0.0213, ν13 = 0.59, ν23 = 0.3

The non-zero components of the equivalent plate stiffness matrix obtained are presented

in Table  3.9 . The stiffness values associated with the bending modes obtained by using

MSG-TW are close to the values obtained via MSG solid. MSG-TW is able to capture

the bending-torsion stiffness components (D16 and D26) which were not being captured in

[ 74 ]. D11 is more accurately captured by MSG-TW than [ 74 ]. The model presented in [ 74 ]

assumes the bending-torsion stiffness terms at the SG level as zero, i.e., D16 and D26 are

zero, which is avoided in the present work.

The in-plane components, especially the off-diagonal terms A12, A16 and A26, show devi-

ation from the values obtained via the MSG solid model. These terms are close to what has

been obtained in [ 74 ]. This difference can be attributed to the in-plane components having

contribution from transverse shear deformation of each segment. Since these terms are ne-

glected in CLPT, we see a discrepancy in the results. It is believed that if a higher-order

69



Table 3.9. Equivalent plate properties for an anisotropic corrugated sheet:
(a) MSG-TW, (b) Park et al. [ 74 ] and (c) MSG solid.

Stiffness (a) (b) (c)
A11(MN/m) 26.688 26.684 26.543
A12(MN/m) 93.539 92.023 51.393
A16(MN/m) 0 0 -19
A22(MN/m) 122.881 120.819 112.633
A26(MN/m) 0 0 22.9
A66(MN/m) 28.43 28.442 28.138
D11(KN·m) 0.633 1.5 0.632
D12(N·m) 2.218 2.219 2.91
D16(N·m) 1.081 0 1.29
D22(N·m) 2.913 2.914 2.76
D62(N·m) 1.081 0 0.998
D66(N·m) 4.297 4.297 4.18

plate theory like the Reissner-Mindlin (RM) theory is used to represent the strain energy

associated with the SG, the results will be more accurate.

To validate the existence of the bending-torsion coupling terms in the equivalent plate

stiffness matrix, a direct numerical simulation (DNS) was performed on a large corrugated

plate with dimensions much larger than the SG and compared with an equivalent plate (of

the same dimensions) for which plate properties were the ones presented in Table  3.9 . The

mode shapes associated with the fundamental frequency was obtained from this analysis

and the mode shapes can be seen in Figure  3.14 . The values of the fundamental frequencies

obtained from the various models are:

• DNS: 10.901 Hz

• MSG: 10.752 Hz

• MSG-TW: 10.947 Hz

• Park et al. [ 74 ]: 12.714 Hz

As seen in Figure  3.14a , the mode shape obtained from the DNS is that of a coupled

bending-torsion one, which is captured by the equivalent plate models associated with MSG

solid model and MSG-TW but the mode shape obtained from the equivalent plate model
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(a) DNS (b) MSG solid

(c) MSG-TW (d) Park et al.[ 74 ]

Figure 3.14. Mode shape corresponding to fundamental frequency of the plate.

associated with Park et al. [ 74 ] is that of a pure bending one. This shows that the bending-

torsion coupling exists and it is captured by MSG solid and MSG-TW.

In order to perform the analysis using MSG-TW, 5 elements with 3 nodes each were used

and each node having 4 dofs which is computationally much cheaper in comparison to MSG

solid where 32, 020 2D quadratic elements were used with a total of 98, 261 nodes and each

node having 3 dofs.
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3.3 Equivalent 3D properties

For the case of equivalent 3D properties, as done for the case of beam and plates multiple

examples have been presented to showcase the versatility of MSG-TW. These examples have

been compared with existing literature results.

3.3.1 Isotropic cellular solid with varying flange angle

The first example is an isotropic honeycomb like cellular solid (Figure  1.5 ), the SG and

the associated geometric parameters of which have been shown in Figure  3.15 . This example

has been presented in [ 52 ], [ 64 ], and [  55 ]. Depending on the angle θ, in Figure  3.15 , the SG

can give rise to a hexagonal lattice (θ > 0), a square lattice (θ = 0) or a re-entrant lattice

(θ < 0).

The models in [ 52 ], [ 64 ], and [ 55 ] provide analytical expressions for the equivalent 2D

properties and are more computationally advantageous than MSG-TW but due to the choice

of defining every segment as a beam they are unable to provide out-of-plane properties

associated with the structure. These models only consider isotropic material properties and

hence cannot be applied to general cases. The model in [  62 ] uses a numerical approach but

chooses to define every segment as a beam and hence has the same short comings as [  52 ],

[ 64 ], and [ 55 ].

The variation of the in-plane properties obtained using the proposed method with respect

to the angle θ, keeping the values of other geometric parameters as constants is presented

in Figures  3.16 -  3.19 . In the example, l = 10 cm, h = 10 cm and t = 0.5 cm. The material

used in the example is aluminium which has Young’s modulus, E = 68.9 Gpa, and Poisson’s

ratio, ν = 0.33.

The in-plane properties in Figures  3.16 -  3.19 have also been compared with [ 52 ], [ 55 ], [ 62 ],

and the MSG solid model. The model proposed in Gibson and Ashby [ 52 ] only considers the

bending energy associated with the individual segments but as the value of angle θ moves

close zero, the different segments have a stretching dominant behaviour in comparison to

bending and hence, a singularity is observed in the model for the value of equivalent Young’s

modulus in x2 direction (Figure  3.16 ) at zero value of θ. The values of equivalent Young’s
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Figure 3.15. Cellular solid structure.
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Figure 3.16. Equivalent Young’s modulus of a cellular solid structure in x2 direction.
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Figure 3.17. Equivalent Young’s modulus of a cellular solid structure in x3 direction.
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Figure 3.18. Equivalent shear modulus of a cellular solid structure in x2 − x3 direction.
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Figure 3.19. In-plane Poisson’s ratio of a cellular solid structure.
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Table 3.10. Equivalent 3D stiffness matrix of a cellular solid structure for
θ = 15◦ (a) MSG-TW, (b) MSG solid model, and (c) Error %.

Stiffness (MPa) (a) (b) (c)
C11 4736.9 4678.9 1.23
C12 1089.4 1105.5 1.46
C13 381.81 386.88 1.31
C22 2446.39 2488.9 1.71
C23 847.44 860.89 1.56
C33 306.99 311.48 1.44
C44 4.3215 4.1919 2.99
C55 564.15 573.11 1.56
C66 997.52 1000.1 0.26

modulus in x3 direction (Figure  3.17 ) and equivalent shear modulus in x2 − x3 direction

(Figure  3.17 ) are higher for the case of MSG-TW and MSG solid model in comparison to

[ 52 ], [ 62 ], and [  55 ]. This is due to considering the additional segments (highlighted with blue

line in Figure  3.15 ) present in the SG of the MSG solid and MSG-TW models in comparison to

[ 52 ], [ 62 ], and [ 55 ]. The non-zero components of the equivalent 3D stiffness matrix obtained

using MSG-TW are compared with MSG solid model for θ = 15◦ rad and θ = −15◦ rad in

Table  3.10 and Table  3.11 . It can be seen that MSG-TW model provides stiffness values close

to that obtained by the MSG solid model with the maximum error in the C44 values. This

difference can be attributed to the shear modulus having contribution from the transverse

shear deformation of each segment. Since these terms are neglected in classical laminated

plate theory (CLPT), we see a discrepancy in the results. It is believed that if a higher-order

plate theory like the RM theory is used to represent the strain energy associated with each

segment in the SG, the results will be more accurate.

In order to perform the analysis using MSG-TW, 10 elements with 3 nodes each were

used and each node having 4 dofs which is computationally much cheaper in comparison to

MSG solid where 3, 428 2D quadratic elements were used with a total of 11, 587 nodes and

each node having 3 dofs.
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Table 3.11. Equivalent 3D stiffness matrix of a cellular solid structure for
θ = −15◦ (a) MSG-TW, (b) MSG solid model, and (c) Error %.

Stiffness (MPa) (a) (b) (c)
C11 7507.4 7352.9 2.10
C12 1094.1 1075.2 1.75
C13 -220.53 -213.94 3.08
C22 4154.9 4080.0 1.83
C23 -847.45 -821.77 3.12
C33 180.75 173.48 4.19
C44 2.6775 2.4705 7.73
C55 332.17 346.01 4.00
C66 1694.2 1706.4 0.71
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Figure 3.20. Schematic of a hierarchical square SG.

3.3.2 Hierarchical square

The next example is a hierarchical square which has been presented in [ 67 ]. Mousanezhad

et al. [ 67 ] uses the Castigliano’s second theorem to obtain the equivalent 2D equivalent prop-

erties. This method is a simplified use of the energy approach and provides good results

for SG with complex geometries but is only limited to isotorpic materials. The SG and the

associated geometric parameters have been shown in Figure  3.20 .

As elaborated in [ 67 ], the ratio r/R is the de-facto measure of the magnitude of alter-

ation, the variations of the effective properties verses the ratio r/R have been presented
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Figure 3.21. Equivalent Young’s modulus of a hierarchical square.

in Figures  3.21 -  3.23 . The material used in this example is aluminium which has Young’s

modulus E = 68.9 GPa, and Poisson’s ratio ν = 0.33. The geometric parameters of t and R

have been kept fixed, having values of 5 mm and 10 cm respectively. These results have been

compared with the results obtained from [  67 ]. The results obtained are close to the ones

obtained by the MSG solid model and also show the same behaviour which was provided by

the analytical solutions presented in [ 67 ]. Mousanezhad et al. [ 67 ] considers the beam energy

of each segment of the SG which assumes the local in-plane shear components of the energy

as zero but as MSG-TW takes these terms into consideration we see a small difference in

the elastic modulus obtained. It should be noted that since the SG shows symmetry in the

x2 − x3 plane the effective Young’s modulus in both the directions are the same and hence

only one of the components has been presented.

The individual components of the equivalent 3D stiffness matrix obtained for the case

of r = 5 cm, keeping the other values fixed, have been presented in Table  3.12 . The results

obtained are close to the ones obtained using the MSG solid model with the maximum error

being in C23. This difference can be attributed to the usage of the CLPT at the local level.
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Figure 3.22. Equivalent shear’s modulus of a hierarchical square in x2 − x3 direction.

Figure 3.23. In-plane Poisson’s ratio of a hierarchical square.
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Table 3.12. Equivalent 3D stiffness matrix of a hierarchical square for r = 5
cm (a) MSG-TW, (b) MSG solid model, and (c) Error %.

Stiffness (MPa) (a) (b) (c)
C11 5186.39 5099.03 1.71
C12 24.83 26.75 7.16
C13 24.83 26.75 7.16
C22 47.13 50.46 6.60
C23 27.94 30.59 8.65
C33 47.13 50.45 6.60
C44 3.22 3.39 5.00
C55 650.00 670.92 3.12
C66 650.00 670.93 3.12

CLPT does not capture the local out-of-plane shear components of the energy and due to

the inherent plate thickness associated with the segments we see the difference in C23.

In order to perform the analysis using MSG-TW, 12 elements with 3 nodes each were

used and each node having 4 dofs which is computationally much cheaper in comparison to

MSG solid model where 3, 362 2D quadratic elements were used with a total of 11, 176 nodes

and each node having 3 dofs.

3.3.3 Composite square

The final 3D example is a composite square, the geometry and dimensions of which has

been shown in Figure  3.24 . Every segment in this SG is made up of 8 layers of composite

laminate with thickness of 0.127 mm and each laminate has a fiber orientation of 15◦. The

material used in the laminates has the following properties:

E1 = 141.96 GPa, E2 = E3 = 9.79 GPa,

G12 = G23 = G13 = 6.136 GPa ν12 = ν13 = ν23 = 0.42

This particular example has been chosen to showcase the full potential of MSG-TW

to obtain equivalent 3D stiffness matrices for a SG having anisotropic material properties.
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Figure 3.24. Schematic of a composite square SG.
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Table 3.13. Equivalent 3D stiffness matrix of a composite square (a) MSG-
TW, (b) MSG solid model, and (c) Error %.

Stiffness (MPa) (a) (b) (c)
C11 16133.90 15518.11 3.97
C12 1016.82 1008.76 0.80
C13 468.38 459.01 2.04
C15 -1192.81 -1135.27 5.07
C16 2589.74 2535.23 2.15
C22 983.56 988.88 0.54
C23 3.04E-06 20.44 100
C26 317.09 311.80 1.7
C33 453.06 456.25 0.70
C35 -146.06 -140.04 4.3
C44 1.08 1.16 7.48
C55 547.32 545.43 0.35
C66 1188.20 1188.30 0.01

The non-zero components of the equivalent 3D stiffness matrix obtained for this case are

presented in Table  3.13 .

The values for the stiffness components obtained by using MSG-TW are close to the

values obtained via the MSG solid model except for C23. This difference can be attributed

to the in-plane components having contribution from transverse shear deformation of each

segment. Since these terms are neglected in CLPT, we see a discrepancy in the results. To

validate this claim, the variation of the 3D strain components of E22 and 2E13 (following

Abaqus conventions) for an applied global strain of Γ33 = 0.01 were obtained using the MSG

solid model, as seen in Figure  3.25 and Figure  3.26 . The plots of both the strain components

along the reference line of the top flange can be seen in Figure  3.27 . As seen in Figures  3.25 -

 3.27 , the out-of-plane shear strain component (2E13) is comparable in magnitude to the in-

plane axial strain component (E22) but in the proposed model the out-of-plane shear strain

component is neglected by CLPT which leads to an error in C23. It is believed that if a

higher-order plate theory like the first-order shear deformation theory is used to describe the

strain energy associated with each segment within the SG, the results will be more accurate,

which will be studied in future works.
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Figure 3.25. Variation of 2E13 to a global strain of Γ33 = 0.01.

Figure 3.26. Variation of E22 to a global strain of Γ33 = 0.01.

86



Figure 3.27. Variation of E22 and 2E13 along the reference line of the top flange.
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In order to perform the analysis using MSG-TW, 8 elements with 3 nodes each were used

and each node having 4 dofs which is computationally much cheaper in comparison to the

MSG solid model where 54, 159 2D quadratic elements were used with a total of 164, 612

nodes and each node having 3 dofs.
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4. CONCLUSION AND FUTURE PROSPECTS

4.1 Conclusion

In this dissertation, a general framework for obtaining equivalent properties of thin-

walled beams, plates and 3D structures has been presented. This has been achieved by

representing the structure gene (SG) as an assembly of straight members whose energy can

be adequately represented using the classical lamination plate theory (CLPT). The plate

stiffness matrix used to represent the strain energy of each segment of the SG is considered

to be fully populated, which makes the proposed model a general purpose theory which can

tackle geometrically complex SGs such as multi-cell beam sections and corrugated plates

with face sheets. The proposed theory can deal with anisotropic material properties present

in the SG and can used as an alternative to the MSG solid model, where quick results are

required without expensive modeling and computational efforts.

Several examples have been studied to demonstrate the versatility of the proposed theory

and the results are in good agreement with those available in the literature and the MSG

solid model. For the case of thin-walled beams, the results are in good agreement with the

cross-sectional properties obtained from VABS with a prominent computational advantage.

The present theory can be used as an alternative to VABS, where quick results are required.

The current framework does not use additional constraints for closed sections in comparison

to open sections hence it can be used for the design of arbitrary thin-walled sections.

For the case of thin-walled corrugated plates, the results are also in good agreement

with the equivalent plate properties obtained from the MSG solid model with a prominent

computational advantage by meshing the 2D SG using 1D line elements instead of 2D solid

elements. The present theory is able to capture the coupled modes of deformation which

may exist in corrugated plates made of composite materials.

For the case of thin-walled 3D structures, the results are also in good agreement with the

equivalent 3D properties obtained from the MSG solid model with a prominent computa-

tional advantage. The theory presented is able to capture the coupled modes of deformation

which are inherent to thin-walled SGs which use composite materials. The equivalent 3D

properties obtained using the proposed theory provides the out-of-plane properties using
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only a 2D SG which makes it more computationally efficient than using a 3D RVE and more

general purpose than theories which assume material orthotropy in a 2D RVE.

4.2 Future prospect: MSG-TW using RM plate model

The effective properties which are obtained using MSG-TW only provide accurate results

when the height of the plates are small in comparison to the length of the segments since

only CLPT is considered at the local segment level. As seen in Figure  3.2 on increasing the

thickness of the segments the accuracy decreases. To account for thick segments higher-order

theory plate theory such as the Reissner-Mindlin (RM) plate model need to be used at the

local segment level.

In order to use the RM plate model, additional dofs are need to describe the energy of

each segment. These dofs account for the rotations associated with each material point on

the reference surface. The dependence of these additional dofs on the global variables can

be obtained by assuming that CLPT as a special case of the RM plate model where the

transverse strain are zero (2γ13 = 0, 2γ23 = 0). These out-of-plane strain terms can be

represented as:
2εp13 = φp2 + ∂up3

∂xp1

2εp23 = −φp1 + ∂up3
∂xp2

(4.1)

where, φp2 represents the rotational dof along xp2 and φp1 represents the rotational dof along

xp1.

These have been illustrated in Figure  4.1 . Additionally the bending curvatures (κp11, κp22,

2κp12) can be described in terms of φp1 and φp2 as:

κp11 = ∂φp2
∂xp1

κp22 = −∂φ
p
1

∂xp2

2κp12 = ∂φp2
∂xp2
− ∂φp1
∂xp1

(4.2)
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x1

xp3

xp2

xp2

xp3

x1

Φp
2

∂up3
∂x1

2εp13

Φp
1

∂up3
∂xp2

2εp12

Figure 4.1. Rotational kinematics variables.

For the case of beams, on setting these strain terms to zero we obtain the zeroth order

approximation for the displacement fields, upi ≡ upi (x1, y2(yp2), y3(yp2)) and the rotations as:

up1 = ū1(x1)− εy2ū
′
2(x1)− εy3ū

′
3(x1)

up2 = ẏ2ū2(x1) + ẏ3ū3(x1) + ε(y2ẏ3 − y3ẏ2)Φ(x1)

up3 = −ẏ3ū2(x1) + ẏ2ū3(x1) + ε(y3ẏ3 + y2ẏ2)Φ(x1)

φp2 = −ẏ2ū
′
3(x1) + ẏ3ū

′
2(x1)− ε(y3ẏ3 + y2ẏ2)κ1(x1)

φp1 = Φ(x1)

(4.3)
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These kinematic variables can be perturbed using the fluctuating functions, wpi ≡ wpi (x1, y2, y3)

and ψpα ≡ ψpα(x1, y2, y3), as:

up1 = ū1 − εy2ū
′
2 − εy3ū

′
3 + εwp1

up2 = ẏ2ū2 + ẏ3ū3 + ε(y2ẏ3 − y3ẏ2)Φ + εwp2

up3 = −ẏ3ū2 + ẏ2ū3 + ε(y3ẏ3 + y2ẏ2)Φ + εwp3

φp2 = −ẏ2ū
′
3 + ẏ3ū

′
2 − ε(y3ẏ3 + y2ẏ2)κ1 + εψp2

φp1 = Φ + εψp1

(4.4)

Substituting Eq. ( 4.4 ) into Eq. ( 2.10 ), Eq. ( 4.1 ), and Eq. ( 4.2 ), using the partial derivative

expression in Eq. ( 2.2 ), the RM plate strains can be written as:

εp11 = γ11 + εy3κ2 − εy2κ3

εp22 = ẇp2

2εp12 = ẇp1 + (εy2ẏ3 − εy3ẏ2)κ1

κp11 = ẏ2κ2 + ẏ3κ3

κp22 = ψ̇p1

2κp12 = −2κ1 + ψ̇p2

2εp13 = εψp2

2εp23 = εψp1 + ẇp3

(4.5)

Here we have discarded the asymptotically smaller terms. It should be noted in the above

equation ψp1 and ψp2 are treated as one order higher than wp1, wp2, and wp3 as they correspond to

the perturbation of the slope degrees of freedom. The overall strain energy density associated

with an isotropic segment can be written as:

Π = 1
2〈(ε

p)TKεp〉 (4.6)
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here εp = [εp11 εp22 2εp12 κp11 κp22 2κp12 2εp13 2εp23]T and

K =



A11 A12 0 0 0 0 0 0

A12 A22 0 0 0 0 0 0

0 0 A66 0 0 0 0 0

0 0 0 D11 D12 0 0 0

0 0 0 D12 D22 0 0 0

0 0 0 0 0 D66 0 0

0 0 0 0 0 0 Ḡ13 0

0 0 0 0 0 0 0 Ḡ23



(4.7)

where the additional terms, Ḡ13 and Ḡ23, are the shear modulus of the material multiplied

by the thickness and the shear correction factor. It should be noted K assumes this specific

form in Eq. ( 4.7 ) for an isotropic plate segment. For a general composite segment we could

have a completely populated 8× 8 stiffness matrix. On inputting Eq. ( 4.5 ) into Eq. ( 4.6 ), we

get the following strain energy density of the isotropic strip:

Π = 〈(γ11 − εy2κ3)2A11 + 2ẇp2(γ11 − εy2κ3)A12 + (ẇp2)2A22 + (ẇp1)2A66〉

+ 〈(κ2)2D11 + 2ψ̇p1κ2D12 + (ψ̇p1)2D22 + (−2κ1 + ψ̇p2)2D66〉

+ 〈(εψp2)2Ḡ13 + (εψp1 + ẇp3)2Ḡ23〉

(4.8)

The case of an isotropic strip has been solved analytically by minimizing Eq. ( 4.8 ) with

respect to the fluctuating functions to obtain the following fluctuating terms:

ẇp1 = 0

ẇp2 = −ν(γ11 − εy2κ3)

ẇp3 = κ2νy2

ψp1 = −1
ε
κ2νy2

ψp2 = 1
ε

4κ1 sinh(Zc/2)
Z sinh(Zc) sinh(Zs)

(4.9)
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where Z =
√
Ḡ13/D66. Eq. ( 4.9 ) can be substituted into Eq. ( 2.10 ), Eq. (  4.1 ), and Eq. ( 4.2 )

to obtain the plate strain terms:

εp11 = γ11 − εy2κ3

εp22 = −ν(γ11 − εy2κ3)

2εp12 = 0

κp11 = κ2

κp22 = −κ2ν

2κp12 = −2κ1 + 4κ1 sinh(Zc/2)
sinh(Zc) cosh(Zy2)

2ε13 = 4κ1 sinh(Zc/2)
Z sinh(Zc) sinh(Zy2)

2ε23 = 0

(4.10)

It can be seen from Eq. ( 4.10 ), the terms associated with κ1 are different from the CLPT

approximation. To validate the solution, a specific case of aluminum strip is taken into

consideration, with material properties as E = 68.9 GPa and ν = 0.33. The height of the

strip has been kept constant at 4 cm and the effective torsional stiffness has been calculated.

Figure  4.2 shows the plot of the difference between torsional stiffness obtained from CLPT

and the RM model with respect to MSG Solid. As expected, the RM model provides a much

better value of torsional stiffness even at a aspect ratio of 1 : 5 in comparison to the CLPT

model.

The recovered shear strain 2ε13 for a beam torsional strain (κ1) of 0.01 is presented in

Figure  4.3 . It shows the solution of 2ε13 perfectly follows the hyperbolic strain curve obtained

from the MSG Solid model.

The results shown in this section are very promising for an isotropic strip section. However

it was beyond the scope of this dissertation to develop this theory further as it required

additional continuity conditions to formulated for the new degrees of freedom (Ψp
1 and Ψp

2).

It is hoped that the model can be developed in the future by using the base idea presented

here.
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Figure 4.2. Convergence study of isotropic strip section.

Figure 4.3. 2ε13 distribution along the middle reference line.
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A. SLOPE CONTINUITY CONDITION

In order to derive the slope continuity condition, we have considered the initial position

vector of a point ~r0 before deformation, and the final position ~r after deformation. ~r can be

written in terms of ~r0 and the displacement field ~u as:

~r = ~r0 + ~u (A.1)

As illustrated in Figure  A.1 , we have two segments numbered 1 and 2 and we have defined

two coordinate systems, (x1, x2, x3) being the global coordinate system and (x1, x
p(i)
2 , x

p(i)
3 )

being the global coordinate system for segment number i. In the undeformed configuration,

Before deformation

After deformation

O x2

x3
~r0

~r

~u
x
p(1)
2

x
p(1)
3

x p(2)2

x p(2)3

x1

x1

x1

Figure A.1. Slope continuity

definitions of direction cosines ẏ2 and ẏ3 in Eq. ( 2.8 ) can be used to obtain the unit vectors

along the plate reference line and perpendicular to it as:

êp(i)
2 = ẏ

p(i)
2 ê2 + ẏ

p(i)
3 ê3

êp(i)
3 = −ẏp(i)

3 ê2 + ẏ
p(i)
2 ê3

(A.2)
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Here, êp(i)
2 is a unit vector along the each of the plate reference lines and êp(i)

3 is a unit vector

perpendicular to the plate reference lines. Using Eq.  A.2 , we obtain the initial angle between

the two plates before deformation as:

cos α0 = êp(1)
2 · êp(2)

2 (A.3)

Now using Eq. ( A.1 ), a vector along the plate reference line in the deformed configuration

can be written as:
~Sp(i) = ∂~r

∂x
p(i)
2

= êp(i)
2 +

∂u
p(i)
j

∂x
p(i)
2

êp(i)
j (A.4)

where, êp(i)
j refer to the unit vectors along (x1, x

p(i)
2 , x

p(i)
3 ) for j = (1, 2, 3). Using this infor-

mation we obtain the final angle between the two plates after deformation as:

cos α =
~Sp(1) · ~Sp(2)

|~Sp(1)||~Sp(2)|
(A.5)

On expanding Eq. ( A.5 ), and dropping the small nonlinear terms, we get:

cos α =
cos α0

(
1 + ∂u

p(2)
2

∂x
p(2)
2

+ ∂u
p(1)
2

∂x
p(1)
2

)
+
(
−ẏp(1)

2 ẏ
p(2)
3 + ẏ

p(1)
3 ẏ

p(2)
2

)(
∂u

p(2)
3

∂x
p(2)
2
− ∂u

p(1)
3

∂x
p(1)
2

)
|~Sp(1)||~Sp(2)|

(A.6)

where (after dropping of small nonlinear terms):

|~Sp(1)||~Sp(2)| =
1 + ∂u

p(2)
2

∂x
p(2)
2

+ ∂u
p(1)
2

∂x
p(1)
2

 (A.7)

Eq. ( A.6 ) can be simplified as:

(cos α− cos α0)
1 + ∂u

p(2)
2

∂x
p(2)
2

+ ∂u
p(1)
2

∂x
p(1)
2

 =
(
−ẏp(1)

2 ẏ
p(2)
3 + ẏ

p(1)
3 ẏ

p(2)
2

)∂up(2)
3

∂x
p(2)
2
− ∂u

p(1)
3

∂x
p(1)
2


(A.8)

Based on the approximation that no shear strain exists in the plate, the initial angle, α0 and

the final angle, α are the same which leads to the right hand side of the above expression

being zero. For the above equation to be valid, then, the partial derivative terms need to be

zero which give us the slope continuity condition presented in Eq. ( 2.47 ).
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For small angle changes, ∆α, where, α = α0 + ∆α, we can further write Eq. ( A.8 ) as:

∆α sin α0

1 + ∂u
p(2)
2

∂x
p(2)
2

+ ∂u
p(1)
2

∂x
p(1)
2

 =
(
−ẏp(1)

2 ẏ
p(2)
3 + ẏ

p(1)
3 ẏ

p(2)
2

)∂up(2)
3

∂x
p(2)
2
− ∂u

p(1)
3

∂x
p(1)
2

 (A.9)

the above equation can be used to additionally obtain boundary conditions if we have small

changes in angles between the two plates.
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B. ANALYTICAL SOLUTION FOR A CIRCULAR TUBE

The analytical expression for the cross-sectional properties of a circular tube was derived

using the formulation in [ 18 ]. The methodology adopted in this work is similar to the MSG-

TW beam model, where the displacement field is perturbed by a small unknown function; the

shell strain terms are derived and after removing of asymptotically small terms the unknown

functions are solved for by minimizing the strain energy. In [  18 ], the shell strain terms have

been expressed as: εκ
 = Pε+ Tψ (B.1)

where,

P =



1 0 y3 −y2

0 0 0 0

0 0 0 0

0 0 ẏ2 ẏ3

0 −2 0 0

0 0 0 0


T =



0 0 0

1 0 0

0 1 0

0 0 0

b22/2 0 0

0 0 1



ε =



γ11

κ1

κ2

κ3


ψ =


2ε0

12

ε0
22

κ0
22



(B.2)

The only unknowns which exist in ψ and we solve for ψ by minimizing the overall strain

energy density which can be written as:

2Π0 = 〈〈(Pε+ Tψ)TK(Pε+ Tψ)〉〉 (B.3)

Here, K is the plate stiffness matrix associated with the composite layup. The above equation

can be minimized with respect to ψ for open section but for closed sections in ordered to

maintain stress continuity additional constraints need to be imposed, which are:

〈〈wi,2〉〉 = 0 〈〈κ0
22〉〉 = 0 (B.4)
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These constraints can be transformed into a matrix form as:

〈〈φψ − Lε〉〉 (B.5)

As presented in [ 18 ], these constraints can be imposed in the form of a langrange multiplier

and eventually the value of ψ can be obtained which on plugging back Eq. ( B.3 ), the overall

analytical expression for the beam stiffness matrix can be obtained.

For the case of a circular tube (Figure.  3.5 ) the different matrix mentioned previously

take the following form:

P =



1 0 R sin(θ) −R cos(θ)

0 0 0 0

0 0 0 0

0 0 sin(θ) cos(θ)

0 −2 0 0

0 0 0 0


T =



0 0 0

1 0 0

0 1 0

0 0 0

− 1
2R 0 0

0 0 1



φ =



1 0 0

0 − sin(θ) −R sin(θ)

0 cos(θ) R cos(θ)

0 0 1


L =



0 0 0 0

0 R 0 0

0 0 0 0

0 0 0 0



(B.6)
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where θ is the angle made by the position vector of a point with respect to the positive

direction of y2. On inputting the above expression into the formulation presented in [ 18 ] and

solving we get the expression, Eq. ( 3.2 ), where:

∆A =

∣∣∣∣∣∣∣∣∣∣∣
A11 A12 A16

A12 A22 A26

A16 A26 A66

∣∣∣∣∣∣∣∣∣∣∣
∆D =

∣∣∣∣∣∣∣∣∣∣∣
D11 D12 D16

D12 D22 D26

D16 D26 D66

∣∣∣∣∣∣∣∣∣∣∣
A =− 2B22|D̄22| −B66|D̄66| −B12|D̄12|+B11|D̄11|+ 3B26|D̄26|

B = 9B2
26D11 − 8B22B66D11 + 4B12B66D12 + 4B11B66D22 − 6B26B12D16 − 12B26B11D26

+B2
12D66 + 8B22B11D66 − A11|D̄11|+ 2A12|D̄12|+ 2A16|D̄16| − 4A22|D̄22| − 4A26|D̄25|

− A66|D̄66|

C =−B66(B2
12 + 8B11B22) + 9B11B

2
26 + A11(B66D22 − 3B26D26 + 2B22D66)

− A66(B11D22 +B12D12 + 2B22D11) + A12(4B66D12 + 6B26D16 + 2B12D66)

+ A26(2B12D16 − 6B26D11 + 4B11D26) + A16(4B22D16 −B12A26 − 3B26D12)

+ 4A22(B66D11 −B11D66)

D = 8D16|Ā16| − 4D66|Ā66| − 4D26|Ā26| −D22|Ā22|+ 4D12|Ā12| − 4D11|Ā11|

+ A11(9B2
26 − 8B22B66)− 8A12B12B66 + 16A22B11B66 + 6A16B26B12

− 24A26B11B26 + A66(B2
12 + 8B22B11)

E =B12|Ā12| −B22|Ā22| − 2B66|Ā66|+ 2B11|Ā11|+ 3B26|Ā26|

Z = |D̄11|+ 4R2|Ā11| − 2R(B66D22 − 3B26D26 + 2B22D66)

− 4R3(2B66A22 − 3B26A26 +B22A66)

+R2(−9B2
26 + 8B22B66 + 4D66A22 − 4D26A26 +D22A66)

(B.7)

where, Aij , Bij and Dij correspond to the components of the A, B and D submatrices in the

plate stiffness matrix and |Āij | is determinant of the minor of the Aij element in:

A =


A11 A12 A16

A12 A22 A26

A16 A26 A66


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and |D̄ij | is determinant of the minor of the Dij element in:

D =


D11 D12 D16

D12 D22 D26

D16 D26 D66


For the case of symmetric laminates where the B matrix is a [0]3×3 matrix, we can reduce

Eq. ( 3.2 ) to:

Cb
11 = 2πR

(
A11 −

A2
16

A66

)

Cb
12 = πR

A66
(−2RA16A26 + 2RA12A66)

Cb
22 = πR

2A66

(
9D22A66 − 4R2(A2

26 − A22A66)
)

Cb
33 = Cb

44 = πR

Z
(
∆D +R2B−R4D + 4R6∆A

)
(B.8)

where,

B =− A11|D̄11|+ 2A12|D̄12|+ 2A16|D̄16| − 4A22|D̄22| − 4A26|D̄25| − A66|D̄66|

D = 8D16|Ā16| − 4D66|Ā66| − 4D26|Ā26| −D22|Ā22|+ 4D12|Ā12| − 4D11|Ā11|

Z = |D̄11|+ 4R2|Ā11|
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