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CHAPTER 1. INTRODUCTION, RATIONALE, AND HYPOTHESES 

1.1 Background  

Multiple myeloma (MM), a neoplastic clonal proliferation of plasma cells affecting mostly 

older individuals, is one of the most common hematologic malignancies [1, 2], with an estimated 

34,920 new cases and 12,410 deaths in the United States in 2019 alone [3].  Development of new 

therapeutics such as proteasome inhibitors (PI), immunomodulatory drugs, monoclonal antibodies, 

and autologous stem cell transplantation, used in varying combinations, has resulted in prolonged 

survival of MM patients [1, 2, 4, 5 – Fig. 1.1].  However, no therapy thus far is curative, and 

relapsed and/or refractory multiple myeloma (RRMM) eventually develops, particularly as a result 

of PI therapy [1, 2].  Thus, combining targeted agents has become important in treating RRMM 

and oncology in general [6]. Combining drugs circumvents tumor resistance by utilizing synergy, 

in which the total effect of two or more drugs is greater than the sum of individual drugs.  

Furthermore, identifying the mechanisms of molecular synergy provides a biologic rationale for 

proposed combinations and is essential for predicting clinical responses [7].  

 

 

Figure 1.1. Current treatment strategies for MM. Newly diagnosed MM is treated with 
combinations of thalidomide derivatives, proteasome inhibitors, and corticosteroids, followed by 
maintenance therapy [1, 2, 4, 5]. Monoclonal antibodies, anthracyclines and alkylating agents are 

reserved typically for relapsed myeloma [2, 5].  
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Sensitivity and drug synergy for the combination of mTOR inhibitors (mTORi) and histone 

deacetylase inhibitors (HDACi) have been shown in human MM cell lines, a diverse set of cancer 

cell types, and MM cells isolated from patients [7, 8].  Importantly, a proposed mechanism of 

action of synergy in the combination – degradation of the transcription factor MYC – was 

elucidated via a biologically integrated, network-based approach using MM cell lines and patient 

datasets [7] – [Figure 1.2].  MYC activation (most commonly through locus rearrangements and 

gains, mRNA overexpression, and deregulation) is found in approximately 67% of MM and is 

associated with disease progression [9-11].  Additionally, NRAS and KRAS genes are frequently 

mutated in MM, associated with disease progression, and increase the stabilization of MYC via 

phosphorylation of Serine 62 [7, 8, 12].  Targeting MYC directly, however, has remained a key 

challenge in oncology due to large protein-protein interaction interfaces, lack of deep protein 

pockets, and nuclear localization [13, 14].  Instead, finding drug combinations that indirectly target 

MYC, while acting upon their own respective direct targets, serves as a useful alternative strategy 

and may provide additional opportunities for synergy in treating MM.   

 

 

Figure 1.2.Genetic pathways dysregulated in human myeloma and susceptibility genes in mouse 
plasma cell tumors identify activated oncogenes and simultaneously downregulated tumor 

suppressor genes as druggable MM targets. 
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1.2 Rationale 

A useful strategy in addressing the issue of acquired drug resistance in cancer, particularly 

MM, is combining targeted therapies.  Given the large number of small molecules used to treat 

cancer and the even larger number of possible combinations, predictive computational methods 

are essential for identifying the most effective potential treatments [15-17].  Although there are 

several competing methods for predicting drug combinations from pharmacologic studies [16-18], 

we chose to utilize robust regression analysis of the AC50 concentrations, defined as the 

concentration at half-maximal activity, of active drugs [19].  This strategy overcomes the 

limitations of other regression models, such as ordinary least squares, in that it’s not overly affected 

by extreme outliers [20].  As previously mentioned, the oncogene MYC is a known driver in the 

progression of premalignant monoclonal gammopathy of undetermined significance to MM [7, 9, 

10], has been found to be overexpressed in MM compared to healthy donor CD138 + cells, and 

importantly has been implicated as a master regulator of mTORi/HDACi cooperation [7].  Also, 

dysregulation of tumor suppressors such as RB, p16, p21, and p27 via downregulating expression 

or hindering activity is a common feature in B cell neoplasia, including MM [7, 8, 21, 22], and 

other cancers [23].  Therefore, a useful strategy for discovering new effective treatments in MM 

is to screen for active combinations that reduce oncogenic MYC expression, while also increasing 

activity of tumor suppressors.  Finally, although the use of immunomodulatory drugs and 

proteasome inhibitors (PI) such as carfilzomib or oprozomib have significantly prolonged the 

survival of patients with MM [1, 2, 24], most patients eventually relapse [25]. Therefore, it is 

imperative to test potential combinations in not only cell lines sensitive to common therapies like 

PI but those that have acquired resistance because any combinations identified from preclinical 

studies would be evaluated in RRMM patients clinically.  Therefore, we propose the ability of 

candidate combinations to maintain efficacy in PI resistant cells as our final criterion for selection. 

The use and outcome of validated and predictive animal models is pivotal in translating 

preclinical findings to the clinic. Further, evaluating the proposed combination(s) in vivo will 

provide insight into target engagement, efficacy, and safety endpoints.  Additionally, we aim to 

evaluate efficacy of CDKi/HDACi in three separate models, each fulfilling a specific purpose.  

First, naïve athymic NCr-nu/nu (nude) mice are useful for testing dose tolerance of the 

combination, and nude mice bearing subcutaneous MM xenografts can be assessed for drug-
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induced changes in tumor burden via examining tumor volume over the course of treatment [8].  

Second, the Bcl-xL transgenic mouse model allows the study of combination effects in an 

immunocompetent model of plasma cell tumors, with features similar to human MM and Burkitt 

lymphoma [7, 26].  Lastly, the transplantable tumor model of sublethally irradiated C57BL/6 mice 

injected with MM cells from Vk*MYC; NrasLSL Q61R/+; IgG1-Cre donor mice (VQ cells), which 

home to the bone of recipient mice, aids in evaluating the combination’s efficacy in a model that 

closely recapitulates features of human MM [10, 27, 28]. 

Understanding the molecular mechanism(s) of synergy for a combination is imperative in 

its preclinical development.  Importantly as well, a strong biologic rationale for a proposed 

combination, along with an understanding of on- and off-target effects and validated biomarkers 

of a molecular response, are critical in proposing a novel drug combination for clinical 

development [29].  The top candidate combination determined from the drug screen described 

above is the CDK/HDAC inhibitor combination of dinaciclib and entinostat, respectively.  

Dinaciclib (Merck & Co.) inhibits CDK1,2,5,9, and entinostat (Syndax) inhibits HDAC1 and 3 

[30-33].  Both drugs are currently under study in clinical trials (NCT01711528, NCT02115282). 

Understanding how this combination affects the proposed targets will provide insight into on- and 

off-target effects, mechanism of action, and circumvention of certain toxicities in the individual 

drugs in treating MM by using lower doses of each drug. Finally, mechanisms of synergy can be 

elucidated by investigating how the combination affects apoptosis, the MM cell cycle, the activity 

of RB, and the transcription, protein stability, or degradation of MYC. 

1.3 Hypotheses and Aims 

We hypothesized that a novel agnostic drug combination discovery approach would reveal 

potentially synergistic combinations for treating MM. Further, we hypothesized that effective 

combinations would reduce expression of oncogenic MYC, and increase activity of tumor 

suppressors, while cooperatively reducing cell viability in vitro and prolonging survival in vivo in 

sublethally irradiated C57BL/6 recipient mice injected with MM cells from Vk*MYC; NrasLSL 

Q61R/+; IgG1-Cre genetically engineered donor mice [27]. Finally, we aimed to identify 

mechanisms of a cooperative drug response for the top candidate combination and evaluate its 

efficacy in several mouse models of MM. 
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We aimed to develop an agnostic discovery approach for identifying drug combinations to 

target MM utilizing a high-throughput drug screen of a compound library of over 1900 small 

molecules in 47 MM cell lines and in silico regression analysis to identify drug combinations 

predicted to reduce MM viability.  Additionally, considering the importance of MYC in MM 

progression, our study aimed to identify candidate tool combinations that cooperatively reduce 

MYC protein expression and increase tumor suppressor (p16, RB) activity, while synergistically 

reducing the viability of MM cell lines, regardless of inherent or induced resistance to 

chemotherapeutics, in vitro.   

Additionally, we aimed to evaluate efficacy of CDKi/HDACi in three separate models, 

each fulfilling a specific purpose.  First, the transplantable tumor model of sublethally irradiated 

C57BL/6 mice injected with MM cells from Vk*MYC; NrasLSL Q61R/+; IgG1-Cre donor mice (VQ 

cells), which home to the bone of recipient mice, facilitated evaluating the efficacy of our top 

combinations in a model that closely recapitulates features of human MM [9, 26, 27]. Second, 

naïve athymic NCr-nu/nu (nude) mice bearing subcutaneous MM xenografts were assessed for 

drug-induced changes in tumor burden via examining tumor volume, survival and intravital 

imaging [8].  Third, the Bcl-xL transgenic mouse model allowed the study of combination effects 

in an immunocompetent model of plasma cell tumors, with features similar to human MM and 

Burkitt lymphoma [7, 25].   

Additionally, we aimed to 1) identify mechanisms of molecular synergy for the candidate 

combination, which will be useful in evaluating preclinical and clinical efficacy, and 2) assess the 

mechanism of action of drug synergy and identify biomarkers for cooperative activity by 

generating a transcriptional response network (RNA Sequencing, gene set enrichment analysis 

(GSEA)) in proteasome inhibitor sensitive and resistant MM cell lines.  

1.4 Impact  

Together, these data provide evidence for a new multilayered drug combination prediction 

workflow to identify novel drug combinations for treating MM and may reveal mechanisms of  

combined drug sensitivity and resistance. Further, this research provides first evidence for 

combining a CDK inhibitor with an HDAC inhibitor in treating multiple myeloma, along with 

biomarkers of a molecular response.  Additionally, utilizing sublethally  irradiated mice injected 
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with MM cells from genetically engineered Vk*MYC; NrasLSL Q61R/+; IgG1-Cre donor mice, 

provides pathologic characterization of, and evidence for using this model to evaluate therapeutic 

efficacy of novel drug combinations in a transplantable mouse model of highly malignant MM that 

more closely recapitulates human MM. 
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CHAPTER 2. HIGH-THROUGHPUT DRUG SCREEN IDENTIFIES 
THERAPEUTIC COMBINATIONS TARGETING ONCOGENES AND 

TUMOR SUPPRESSORS IN MULTIPLE MYELOMA 

2.1 One Sentence Summary  

A single agent drug screen identified combinations against multiple myeloma (MM) effective in 

MM cell lines, a novel animal model, and patient cells.  

2.2 Abstract 

Multiple myeloma (MM) is a neoplasm involving plasma cells in the bone marrow. Drug resistance 

and progression are common, underscoring the need for new drug combinations. We utilized a 

high-throughput screen of tool compounds to limit growth of 47 human MM cell lines. In silico 

robust regression analysis of drug responses revealed 43 potential synergistic combinations. We 

hypothesized that effective combinations would reduce oncogene expression and/or enhance 

tumor suppressor gene activity based on earlier genetic and drug studies that identified p16, Myc 

and mTOR as appropriate targets in myeloma. Thus, candidate combinations were evaluated for 

cooperative reductions in MYC protein expression in MM cells. Ten combinations cooperatively 

reduced MYC expression, which is frequently over-expressed in MM. Cooperative reductions in 

viability were observed with top combinations in proteasome inhibitor-resistant and sensitive MM 

cell lines but did not limit normal fibroblast viability. The combinations cooperatively increased 

p16 activity, while also enhancing cleaved caspase 3, leading to increased apoptosis. Combination-

associated survival was evaluated in a transplantable Ras-driven allograft model of advanced MM 

that closely recapitulates myeloma in humans. Three combinations significantly prolonged 

survival in sublethally-irradiated C57BL/6 mice injected intracardiac with donor MM cells 

compared to control mice. Furthermore, the top three combinations reduced viability of ex vivo 

treated patient cells. Common genetic pathways similarly affected by the top drug combinations 

were those implicated in promoting cell cycle transition and pathways most upregulated by all 

combinations were involved in TGFB and SMAD3 signaling. These data identify potentially 

useful drug combinations for preclinical evaluation in drug-resistant MM and may ultimately 

reveal novel mechanisms of combined drug sensitivity. 
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2.3 Introduction 

Multiple myeloma (MM), a neoplastic clonal proliferation of plasma cells affecting mostly 

older individuals, is one of the most common hematologic malignancies [1, 2], with an estimated 

34,920 new cases and 12,410 deaths in the United States in 2019 alone [3].  Development of new 

therapeutics such as proteasome inhibitors (PI), immunomodulatory drugs, monoclonal antibodies, 

and autologous stem cell transplantation has resulted in prolonged survival of MM patients [1, 2, 

4]. However, no therapy thus far is curative, and relapsed and/or refractory multiple myeloma 

(RRMM) eventually develops; particularly as a result of PI therapy [1, 2]. Thus, combining 

targeted agents has become important in treating RRMM and oncology in general [5]. Combining 

drugs circumvents tumor resistance by utilizing synergy, wherein the total effect of two or more 

drugs is greater than the sum of individual drug effects. Furthermore, identifying the mechanisms 

of molecular synergy provides a biologic rationale for proposed combinations and is essential for 

predicting clinical responses [6].  

Previous research has provided evidence of efficacy and drug synergy for the combination 

of mTOR inhibitors (mTORi) and histone deacetylase inhibitors (HDACi) in human MM cell 

lines, a diverse set of cancer cell types, and MM cells isolated from patients [6, 7]. Importantly, a 

proposed mechanism of action of synergy in the combination – degradation of the transcription 

factor MYC – was elucidated via a biologically integrated, network-based approach using MM 

cell lines and patient datasets [6]. MYC activation (most commonly through locus rearrangements 

and gains, mRNA overexpression, and deregulation) is found in approximately 67% of MM and 

is associated with disease progression [8-10].  Additionally, NRAS and KRAS are frequently 

mutated in MM, associated with disease progression, and increase the stabilization of MYC via 

phosphorylation of serine 62 [6, 8, 11]. Furthermore, retroviral constructs overexpressing MYC 

alone or RAS alone were not very effective in inducing mouse plasma cell tumors compared with 

constructs that overexpressed both MYC and RAS under an IgM promoter and produced 

aggressive tumors in less than 30 days [12, 13]. Targeting MYC directly, unfortunately, has 

remained a key challenge in oncology due to large protein-protein interaction interfaces, lack of 

deep protein pockets, and nuclear localization [14, 15]. However, finding drug combinations that 

indirectly target MYC, while acting upon their own respective direct targets, serves as a useful 

alternative strategy and may provide additional opportunities for synergy in treating MM. Also, 
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loss of function of cell cycle transition checkpoint control gene p16 may result in uncontrolled cell 

proliferation, invasion, and metastasis of MM and other cancers, and inactivation may contribute 

to progression of disease [16].  

We employed an agnostic discovery approach for identifying drug combinations to target 

MM utilizing a high-throughput drug screen of a compound library of over 1900 small molecules 

in 47 MM cell lines and in silico regression analysis to identify drug combinations predicted to 

reduce MM viability. Additionally, considering the importance of MYC in MM progression, we 

identified candidate tool combinations that cooperatively reduce MYC protein expression and 

increase tumor suppressor activity, while synergistically reducing the viability of both PI resistant 

and PI sensitive MM cell lines in vitro. We then evaluated the efficacy of our top drug 

combinations in prolonging viability in a transplantable Ras-driven allograft model of advanced 

MM that closely recapitulates myeloma in humans. The ability of the top three combinations to 

reduce the viability of patient cells ex vivo was evaluated via dose-response assays. Finally, gene 

set enrichment analysis of MM cells treated with the combinations revealed commonly affected 

pathways. Through expansion of the in vitro findings, extension to unique in vivo models, and 

investigation into the mechanisms of synergistic drug responses, this study provides strong 

preclinical rationale for further evaluation of novel drug combinations in treating MM.  

2.4 Results 

2.4.1 Drug screen reveals combinations cooperatively targeting MYC and p16 that reduce 

viability of MM cells 

As part of our drug development approach, we screened ~1900 small molecules in 47 

different MM lines with the NCATS Mechanism of Interrogation Platform E (MIPE) screen, 

normalized dose responses with positive (bortezomib) and negative (DMSO) controls and 

evaluated the results in silico using Palantir’s foundry platform (Fig. 2.1).  Drugs were selected for 

activity based on the following criteria:  single agent dose-response curve class of -1.1 (complete 

response), AC50 < 2.0 µM, and activity in at least 25 of the 47 MM cell lines tested.  In addition, 

drugs paired for regression analysis were selected as having different mechanisms of action , i.e., 

not targeting the same pathway. Robust regression analysis (Fig. S2.1A) of each drug versus every 
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other drug was utilized to generate a Pearson correlation coefficient (r2) for each drug pair.  Forty-

three combinations were noted with r2 values of at least 0.5 (indicating correlation) - (Table 2.1).   

 

 

 

Figure 2.1. Prediction workflow used to find top drug combinations against MM. AC50 = half 
maximal activity concentration, WB = western blot, MTS = tetrazolium-based cell proliferation 

assay.
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Table 2.1. Top Drug Combinations Against MM Cells Based on Robust Regression  

 

As shown in Table 2.1, the top 43 combinations selected for in vitro analysis were selected based on a Pearson 

correlation coefficient (r2) of > 0.5. Listed are each compound’s target gene and name, as well as the number of cell 
lines in which each compound (cmpd) is active (dose-response curve class -1.1 [complete response], AC50 <2.0 µM). 

r2

Compound 1 

Target Gene Compound 1 Name Compound 2 Name

Compound 2 

Target Gene

Cmpd 1 

count

Cmpd 2 

count

0.804 HSP90AB1 SNX-5422 NCGC00344999-01 = ITK(1) ITK 35 39

0.836 ITK NCGC00344999-01 = ITK(1) VER-82576 HSP90AB1 39 33

0.822 HSP90AB1 Ganetespib BS-194 CDK1 35 46

0.765 HSP90AB1 SNX-5422 NCGC00188382-01 = ITK(2) ITK 35 45

0.732 HDAC1 Romidepsin SR-3306 MAPK8 45 46

0.714 TUBB XRP-44X BMS-3 LIMK1 28 37

0.702 HSP90AB1 SNX-5422 NCGC00344990-01= ITK(3) ITK 35 38

0.678 TUBB XRP-44X ON-01910 PLK1 28 37

0.671 IKBKB IMD-0354 Niclosamide STAT3 45 41

0.658 HSP90AB1 Ganetespib Dacinostat HDAC1 35 44

0.655 AURKA Alisertib Doxorubicin TOP2A 29 46

0.645 PIM3 GDC-0349 PP242 MTOR 34 34

0.644 TLR7 CPG-52364 Sepantronium bromide BIRC5 44 36

0.643 ITK NCGC00344990-01 = ITK(3) VER-82576 HSP90AB1 38 33

0.634 HSP90AB1 AT-13387AU NCGC00344990-01= ITK(3) ITK 39 38

0.634 CDK1 BS-194 Dacinostat HDAC1 46 44

0.626 MAPK8 TCS JNK 5a Indibulin TUBB 33 28

0.616 CDK1 7-Hydroxystaurosporine PIK-75 PIK3CA 37 33

0.614 ITK NCGC00188382-01 = ITK(2) Methylrosaniline chloride TNFRSF1A 45 36

0.611 PIK3CA PIK-75 Flavopiridol CDK1 33 44

0.606 TUBB XRP-44X IVX-214 PLK1 28 30

0.602 TUBB 4-Demethylepipodophyllotoxin Picropodophyllin IGF1R 40 38

0.602 MET Tivantinib 4-Demethylepipodophyllotoxin TUBB 28 40

0.597 TUBB XRP-44X Picropodophyllin IGF1R 28 38

0.594 MAPK8 SR-3306 Pracinostat HDAC1 46 34

0.583 PLK1 IVX-214 Noscapine TUBB 30 36

0.571 CDK1 BS-194 VER-82576 HSP90AB1 46 33

0.563 TUBB Lexibulin hydrochloride ON-01910 PLK1 27 37

0.557 HSP90AB1 SNX-5422 Methylrosaniline chloride TNFRSF1A 35 36

0.556 TUBB XRP-44X AST-1306 ERBB2 28 28

0.540 HSP90AB1 Geldanamycin Idarubicin hydrochloride TOP2A 34 41

0.540 HSP90AB1 CNF-2024 Idarubicin hydrochloride TOP2A 35 41

0.536 TUBB XRP-44X Tivantinib MET 28 28

0.535 MCL1 VU0482089-2 AV-412 EGFR 29 33

0.534 HSP90AB1 CNF-2024 Doxorubicin TOP2A 35 45

0.531 MCL1 VU0482089-2 1-alpha-Hydroxyergocalciferol VDR 29 28

0.524 PIM3 GDC-0349 GNE-493 PIK3CA 34 40

0.524 IGF1R Picropodophyllin Noscapine TUBB 38 36

0.521 CDK1 R-547 PIK-75 PIK3CA 29 33

0.516 HDAC1 Abexinostat 3-Methyladenine PIK3CA 43 47

0.515 MAPK8 TCS JNK 5a Noscapine TUBB 33 36

0.508 SRC KX-01 Indibulin TUBB 38 28

0.504 TUBB Lexibulin hydrochloride Merck-22-6 AKT1 27 25
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The top 43 combinations of tool compounds with r2 values of at least 0.5 were then 

evaluated for cooperative reduction of MYC protein expression in L363 MM cells via western blot 

(WB) assay when treated at the AC50 dose for 24 hours. Ten of the 43 combinations cooperatively 

reduced expression of MYC (Table 2.2) and six of the ten combinations also increased tumor 

suppressor activity as indicated by increased p16 protein (Table 2.2, Fig. S2.1B-G, WB). 

 

Table 2.2. Combinations That Reduced MYC Protein Expression in L363 MM Cells 

 

As shown in Table 2.1, the top 43 combinations selected for in vitro analysis were selected based on a Pearson 

correlation coefficient (r2) of > 0.5. Listed are each compound’s target gene and name. 

 

In the next step, compounds that were selected for further testing of the six combinations 

included drugs already approved to treat MM or other hematologic malignancies and/or drugs 

currently in clinical trials to treat MM, as well as novel combinations not yet investigated in 

treating MM. Out of the six combinations that simultaneously reduced MYC and increased p16  

protein expression, three combinations were found to be synergistic in their ability to inhibit 

myeloma growth (Fig. 2.2D-F). The three combinations were the cyclin dependent kinase inhibitor 

(CDKi) dinaciclib + the histone deacetylase inhibitor (HDACi) entinostat and a topoisomerase II 

inhibitor (doxorubicin – TOP2Ai) combined with either the aurora kinase A inhibitor (AURKAi) 

alisertib or heat shock protein 90 inhibitor (HSP90i) SNX-2112. 
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2.4.2 The top three drug combinations reduce oncogenic MYC activity and increase tumor 

suppressor activity in MM cell lines, regardless of inherent sensitivity or resistance 

The 47 cell lines were ranked for their overall sensitivity/resistance based on the mean 

AC50 for all 1900 compounds in the initial screen (Table 2.3). The ability of the top three drug 

combinations (CDKi/HDACi, TOP2Ai/AURKAi, and TOP2Ai/HSP90i) to reduce MYC protein 

while increasing p16 was evaluated in three cell lines inherently more sensitive to the compounds 

from the high-throughput drug screen, as well as three cell lines inherently more resistant.  Of the 

three top combinations, CDKi/HDACi was the most effective overall at reducing MYC protein, 

increasing p16, and inducing apoptosis (as indicated by cleavage of caspase 3) in all three (L363, 

JIM1, INA6) inherently more sensitive cell lines (Fig. 2.2A) and in two (Karpas-417, LP1) of the 

three more resistant cell lines (Fig. 2.2C).
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Table 2.3. Forty-seven Multiple Myeloma Cell Lines Ranked by Mean AC50 

 

In Table 2.3, the 47 different MM cell lines were stratified based on their overall sensitivity (S) or resistance (R) to 
all 1900 compounds in the NCATS MIPE screen.    Bolded cell lines were used  to test top combination efficacy in 

inherently sensitive (L363, JIM1, and INA6) and resistant (LP-1, RPMI-8226, Karpas417) MM lines.
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2.4.3 Evaluation of synergy and microenvironment effects in top drug combinations.  

Dose-response curves were generated via MTS assay for the top 3 drug combinations in 

L363 MM cells, treated for 48 hours with each drug singly or in combination at a 1:1 molar ratio 

(Fig. 2.2C-E). All three combinations synergistically reduced the viability of  L363 MM cells, as 

determined by Chou-Talalay combination indices (CI) less than 1.0 [17].  An 8x8 dose matrix 

combination response screen of each of the top three combinations at 7 different concentrations, 

all combinations thereof, was performed in L363 MM cells to ascertain the activity and synergy 

across a spectrum of doses. Heatmaps (Fig. 2.2F-H) indicate the percent inhibition of treated cells 

vs. vehicle control after 48 hours of exposure to drugs. For each of the top three combinations, 

synergy was achieved at a lower concentration of each drug than the half maximal inhibitory 

concentration (IC50) of each individual agent, indicating lower concentrations of each drug may 

be used in combination to generate a pharmacologically achievable reduction in MM viability. 

Surface plots of the excess inhibition of highest single agent (EOSHA) are shown in supplemental 

figure S2.2A-C, with the CDKi/HDACi combination achieving an HSA score of 15. 
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Figure 2.2. High-throughput drug screen reveals combinations that cooperatively target MYC 
and p16 and reduce viability of MM cells. A-B) Representative WB analysis of MM cell lines 
resistant (1A) or sensitive (1B) to all drugs used in screen treated for 24 hours with the top 3 

drug combinations at the AC50 concentration (the concentration at half-maximal activity; equal 
to IC50) for each line (C1 = dinaciclib (CDKi) + entinostat (HDACi), C2 = Doxorubicin 

(TOP2Ai) + Alisertib (AURKAi), C3 = Doxorubicin + SNX-2112 (HSP90i). Lysates of treated 
cells were probed for MYC, p16, total and cleaved caspase 3 (Casp3 and CC3, respectively), and 

β-actin. C-E) Dose-response curves for top 3 drug combinations in L363 MM cells. Cell viability 
was assessed with MTS assay 48h after treatment with escalated dose concentrations of either 
drug individually or in combination at a 1:1 molar ratio. Each data point represents mean of 4 

wells and error bars indicate replicate standard deviation. IC50 (in nM) for individual drugs and 

combination in each table. Chou-Talalay computation of combination indices (CI) for treated 
cells are shown for 50% affected fraction 48 hours post-exposure. Synergy is interpreted as 

CI<1.0. F-H) Graphical depiction of dose-matrix analyses for the top drug combinations in L363 
MM cells. Percent inhibition of cell growth is shown for each different combination of doses and 

colorized in red. Cells were treated for 48 hours with different concentrations of each drug 
(indicated by X- and Y-axes) singly or in combination. Arrows indicate individual drug IC50 

(half-maximal inhibitory concentration) as determined by MTS dose-response assay, ovals 
surround optimal dose for combinations, as determined by synergy scoring.   
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Figure 2.2 continued 
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The ability of the top combinations to reduce the viability of MM cells under in vitro 

conditions that more closely recapitulate the bone marrow microenvironment was evaluated by 

co-culturing L363 MM cells with a feeder layer of immortalized HS-5 bone marrow stromal cells 

(BMSCs).  HS-5 BMSCs treated alone with the drugs, singly or in combination, for 48 hours were 

more resistant to inhibition compared to L363 cells alone (Fig. 2.3A-C).  Two of the combinations 

(CDKi/HDACi and TOP2Ai/AURKAi) were still effective at reducing the IC50 compared to 

single agent, while the combination of TOP2Ai/HSP90i did not (Fig. 2.3A-C).  These results 

indicate that the drug combinations are somewhat selective for MM cells and, in two of the 

combinations, are still effective at reducing MM viability in the context of  co-culture.  

Additionally, the top combinations were largely non-toxic in non-neoplastic human H1634 

fibroblasts, treated for 48 hours with drugs from each of the top combinations (Fig. S2.2D-F) 

compared to L363 MM cells. The large difference between the cytotoxic effects of the 

combinations in MM tumor cells compared to that in non-neoplastic H1634 fibroblasts at 

achievable drug concentrations indicates a favorable safety margin for each combination.  

Each combination was also evaluated in the context of drug-resistance via in vitro dose 

response assays in cell lines selected for resistance to some of the most common first-line 

therapeutics against MM (Fig. 2.3D):  LP1, MM1, and RPMI-8226 parental MM cell lines, and 

cell lines with resistance-induced by treatment with a proteasome inhibitor (LP1-OpzR, 

oprozomib), a corticosteroid (MM1.R, dexamethasone), or a topoisomerase inhibitor (RPMI-8226 

Dox40, doxorubicin), respectively, for repeated passages. Resistance to respective drugs compared 

to parental cell line (or sensitive line in the case of MM1.S cells) was confirmed via 48-hour dose 

response assay (Fig. S2.2G-I). Parental and resistant cell lines were treated for 48 hours in dose-

response assays with the top three drug combinations, either singly or in combination. IC50 for 

each combination in each of the parental and resistant (or sensitive and resistant in the case of 

MM1 cells) is shown in Supplemental Table 2.1. As shown in the heatmap (Fig. 2.3D), the Chou-

Talalay combination index (CI) scores were all below 1, indicating synergy. Further, the CI scores 

were largely similar for each combination, regardless of induced drug-sensitivity/resistance, with 

the exception of the doxorubicin/alisertib combination in MM1 parental and dexamethasone-

resistant MM cells. The CDKi/HDACi combination of dinaciclib/entinostat performed best overall 

at synergistically reducing viability of the diverse set of parental and drug-resistant MM cells.  
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Figure 2.3. Evaluation of synergy in top drug combinations. A-C) Dose-response curves, along with 

tables listing IC50 in nM, for L363 MM cells in monoculture and L363 MM cells cocultured with 

HS-5 BMSCs treated for 48 hours with increasing concentrations of the top 3 drug combinations (A 

= CDKi/HDACi, B = TOP2Ai/AURKAi, C = TOP2Ai/HSP90i).  Black curves represent percent 

viability, relative to DMSO-treated control, in L363 cells cultured alone, purple curves show dose 

responses for L363 cocultured with human HS-5 bone marrow derived stromal cells (BMSC). D) 

Heat map depicting Chou-Talalay combination index scores for the following parental MM cell lines 

and their drug-resistant counterparts: LP1-Parental and LP1-OpzR (resistance induced via prolonged 

incubation with the proteasome inhibitor (PI) oprozomib (Opz)), Dexamethasone (Dex)-sensitive 

MM1.S and Dex-resistant MM1.R cells, RPMI-8226-Parental and RPMI-8226-Dox40 (treatment-

induced resistance to the topoisomerase inhibitor doxorubicin), all compared to CI scores of L363.  

D+E = dinaciclib (CDKi) + entinostat (HDACi), Dox + A = doxorubicin (TOP2Ai) + alisertib 

(AURKAi), Dox + S = doxorubicin + SNX-2112 (HSHP90i). Darker gray = more synergy.  



 
 

 

33 

2.4.4 Comparison of top drug combinations in a novel allograft mouse model of MM 

In an initial assessment of the in vivo activity of the top drug combinations elucidated from 

the high-throughput drug screen, a 16-week in vivo efficacy study was performed in C57BL/6J 

mice first sublethally irradiated then injected intravenously with murine Vk*MYC; NrasLSL Q61R/+; 

IgG1-Cre (VQ) cells harvested from bone marrow of donor mice (Fig. 2.4A).  After 6-8 weeks, 

serum M-spikes, as evidenced by Ig band on serum protein electrophoresis, are evident (Fig. 

2.4A; Fig. S2.3A). As shown in the representative sternal bone marrow photomicrographs of a 

C57BL/6J mouse 12 weeks after being sublethally irradiated and intravenously injected with saline 

(Fig. 3B) versus sternal bone marrow of a sublethally irradiated C57BL/6J mouse injected 

intravenously with 5x106 VQ cells (Fig. 3C), the VQ cells completely obliterate normal 

hematopoietic cells within the marrow and even induce bony lysis of the cortex (Fig. S3 B, bony 

lesion); similar to what is observed in the bone and marrow of humans affected by MM. Treatment 

with the top drug combinations commenced when M-spikes were first detected in mice (Fig. 3D). 

Treatments were as follows: CDKi/HDACi (dinaciclib and entinostat), TOP2Ai (doxorubicin) and 

AURKAi (alisertib) or HSP90i (SNX-2112), and mTORi/HDACi (rapamycin and entinostat); n=5 

(doses and regimens described in methods section 2.6.7). Survival of C57BL6/J mice injected with 

5x106 VQ cells IC, treated with the top drug combinations was significantly prolonged compared 

to control mice and was also slightly longer compared to a previously investigated combination of 

rapamycin (mTORi) and entinostat (HDACi). Further, as depicted in the graphical representation 

of M-spikes determined from electrophoretograms, the mean M-spike percentage in treated mice 

remained lower than that of control until the final weeks of treatment (Fig. 3E), when animals 

became moribund necessitating humane euthanasia.   

2.4.5 Top drug combinations are effective at selectively reducing the viability of human 

CD138+ MM cells ex vivo 

The capability of the top combinations to selectively reduce the viability of MM cells was 

evaluated in bone marrow biopsy samples obtained from patients with confirmed smoldering 

multiple myeloma (SMM). Cells were selected for CD138 status using magnetic-activated cell 

sorting (MACS) (Fig. 2.4F). CD138 positive and negative cells were treated with the top 3 

combinations of dinaciclib (10 nM) and Entinostat (500 nM), doxorubicin (225 nM) and Alisertib 
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(2 uM), or doxorubicin (225 nM) and SNX-2112 (50 nM) for 48 hours; viability was compared to 

that of control CD138 positive or CD138 negative cells treated with DMSO) (n = 3). Overall, all 

three combinations effectively reduced the viability of CD138 positive MM cells compared to 

DMSO alone. However, the CDKi/HDACi and TOP2Ai/AURKAi combinations were more 

selective in reducing MM viability compared to the TOP2Ai/HSP90i.
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Figure 2.4. Evaluating the top drug combinations in a novel allograft mouse model of MM and 
human myeloma cells ex vivo. A) Illustration of VQ inoculation scheme. 6–8-week-old 

C57BL/6J mice were sublethally irradiated then injected intracardiac with 5x10^6 Vk*MYC; 

NrasLSL Q61R/+; IgG1-Cre (VQ) cells harvested from bone marrow of donor mice.  After 6-8 
weeks, serum M-spikes, as evidenced by the γ immunoglobulin band on serum protein 

electrophoresis, are evident.  Once M-spikes were detected in mice, treatment with the top drug 
combinations commenced. B-C) Photomicrographs (bar = 100 µm; inset bar = 250 µm; H&E 

stain) of C57BL/6J mouse sternum 12 weeks post-IC injection with either saline (B, normal bone 
marrow) or VQ cells (C, marrow replaced by neoplastic plasma cells).   D) Survival plots of 

C57BL6/J mice injected with 5x10^6 VQ cell IC, treated with the top drug combinations vs a 
previously investigated combination of rapamycin (mTORi) and entinostat (HDACi), all 

compared to DMSO-treated control mice. CDKi (dinaciclib, 20 mg/kg, IP, 3x/week + HDACi 
(entinostat, 20 mg/kg, PO 5x/week; TOP2Ai, (doxorubicin,4 mg/kg IV 1x/week) + AURKAi 
(alisertib,30 mg/kg PO 5x/week); or HSP90i (SNX-2112, 20 mg/kg, PO, 3x/week), n= 5. * 

indicates significantly prolonged survival vs. DMSO-treated control mice (p < 0.01, Log-Rank 

test). E) Graphical representation of mean M-spike percentage for each treatment group of mice 
administered one of the top drug combinations, combined mTORi-HDACi, or DMSO control. 

Each data point represents mean M-spike percentage of all mice for a given time point, error bars 
indicate standard deviation amongst group mice. F) Viability of human CD138 positive (MM) 

and 138 negative cells extracted from bone marrow of smoldering multiple myeloma patients 
(n=3).  Cells were selected for CD138 status using magnetic-activated cell sorting (MACS). 

CD138 positive and negative cells were treated with the top 3 combinations of dinaciclib (10 
nM) and entinostat (500 nM), doxorubicin (225 nM) and alisertib (2 uM), or doxorubicin (225 

nM) and SNX-2112 (50 nM) for 48 hours. Solid bars indicate average viability for each 
combination in CD138 positive cells, hash-marked bars indicate the average viability for CD138 
negative cells. Error bars = standard deviation.  =p <0.001; NS = no significance p > 0.05 by 

unpaired two-tailed Student’s t test.  
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Figure 2.4 continued 
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2.4.6 Genetic pathways commonly affected by the top combinations  

To determine if common genetic pathways are similarly affected by the top drug 

combinations, L363 MM cells were treated for 48 hours with single agent IC50 concentrations of 

the top three drug combinations (CDKi/HDACi, TOP2Ai/AURKAi, and TOP2Ai/HSP90i). Two 

separate CDKi/HDACi combinations (dinaciclib/entinostat and dinaciclib/mocetinostat) were 

included to provide more robust results for the most promising combination.  48-hour dose 

response results for dinaciclib and mocetinostat in L363 cells are shown in supplemental figure 

S2.5. Purified RNAs from each treatment were analyzed via the Nanostring nCounter® d igital 

gene expression codeset system, and counts were normalized to mRNA of five housekeeping genes 

(ZNF384, MRPS5, CNOT4, NUBP1, and SF3A3). Of the 143 genes significantly changed by the 

top drug combinations versus control (Fig. S2.4A-B), a total of 125 genes were significantly 

upregulated simultaneously, or downregulated simultaneously, by all combination treatments (Fig. 

S2.4C). Forty-nine genes were concordantly upregulated and 76 were concordantly 

downregulated. Next, 78 of the concordantly upregulated or downregulated genes were found to 

induce a two-fold change in the average profile calculated across all the combination treatments 

(38 up-regulated and 40 down-regulated genes). We then utilized DAVID pathway analysis and 

Fisher’s exact test to determine the overrepresented Gene Ontology (GO) function in the 

concordant response signature of the 78 genes (Fig. 2.5A), and enriched GO terms were selected 

with nominal p-values less than 0.05. For each over-represented GO term a z-score was computed 

based on the number of up-regulated and down-regulated genes according to the formula (up or 

down)/sqrt(total) proposed by Walter et al. [18] and visualized with bubble-plots. The pathways 

most downregulated by all combinations (GO:0005654, GO:0044770, GO:0044772) were those 

implicated in promoting cell cycle transition (Fig. 2.5, Appendix A), indicating a common 

beneficial effect in preventing MM cell growth. The genes most downregulated by the 

combinations included HISTH1H3B, MNAT1, CDK4, CCND2, CHEK1, E2F1, CASP3 and 

BCL2. The pathways most upregulated by all combinations (GO:0007178 and GO:0007179) were 

involved in TGFB and SMAD3 signaling. Among these pathways, genes most downregulated 

included ID1, ID2, HSPB1, HSPA1A, SMAD3, UBB, FUT8 and TGFB1. Increasing TGFB and 

SMAD3 signaling may be an undesired effect and a potential resistance mechanism against these 

combinations.  
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Figure 2.5. Pathways most commonly affected by the top 3 combinations (CDKi/HDACi, 
TOP2Ai/AURKAi, and TOP2Ai/HSP90i) using single agent IC50 concentrations of each drug. 
Purified RNA from each sample was analyzed using the nanoString nCounter® system. Raw 

counts were normalized to mRNA of five housekeeping genes (ZNF384, MRPS5, CNOT4, 
NUBP1, and SF3A3). Statistical significance based on false discovery rate of 5%.  The 

concordant response signature includes genes significantly changed in the same direction by each 
combination treatment (Total=125, 49 up-regulated and 76 down-regulated genes), and that 

reached 2-fold change in the average fold-change profile calculated across all the combination 

treatments (Total=78, 38 up-regulated and 40 down-regulated genes). Fisher’s exact test was 
used to determine overrepresented Gene Ontology (GO) functions in the concordant response 

signature of 78 genes. Enriched GO terms were selected with nominal p-value less than 0.05. For 
each over-represented GO term a z-score was computed based on the number of up-regulated 

and down-regulated genes according to the formula (up-down)/sqrt(total) proposed by Walter et 
al. [18] and visualized with bubble-plots. The pathways most downregulated by all combinations 

include those involved in cell cycle regulation. All top combinations also commonly increase 
TGFB and SMAD3 signaling, which may be an undesired effect, potentially identifying a 

resistance mechanism for these combinations.
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2.4.7 Overcoming drug resistance in combination therapy by co-targeting the TGFβ 

pathway.   

Upregulating the transforming growth factor β (TGFβ) signaling pathway is a common,  

potentially deleterious, effect of the top three combinations based on the gene set enrichment 

analysis and Fisher’s exact test results (Fig. 2.5). With this knowledge we set out to determine if 

the addition of a drug targeting the TGFβ pathway would be effective in further reducing the 

viability of L363 MM cells co-cultured with HS-5 BMSCs (Fig. 2.6A). Indeed, the addition of the 

TGFβ-receptor inhibitor SB505124 was effective at cooperatively reducing L363 MM cell 

viability in co-culture with HS5 cells. The IC50 value for triple therapy (CDKi /HDACi + TGFβi) 

was 4.6 times lower than that of the CDKi/HDACi combination alone. Additionally, in a 48-hour 

viability assay of human SMM patient bone marrow biopsy sample cells, the addition of SB505124 

to the CDKi/HDACi combination selectively and effectively reduced the viability of CD138 

positive cells by almost 40%; while relatively sparing CD138 negative cells (n = 3) – (Fig. 2.6B). 
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Figure 2.6. Co-targeting the TGFβ pathway with combination therapy. A) Dose-response curves 
for L363 MM cells, cocultured with HS-5 BMSCs for 48 hours with escalated doses of either 

combined CDKi/HDACi of dinaciclib and Entinostat (purple curve) or combined CDKi/HDACi 
+ TGFβRi (orange curve; dinaciclib + entinostat + SB505124) at a 1:1 or 1:1:1 molar ratio (in 
nM), respectively. Arrow = IC50 shift. B) Viability of human CD138 positive (MM) and 138 
negative cells extracted from bone marrow of SMM patients (n=3).  Cells were selected for 

CD138 status using MACS. CD138 positive and negative cells were treated with the SB505124 
(TGFβRi – 5 uM), dinaciclib (CDKi – 10 nM) and entinostat (HDACi – 500 nM), or CDKi + 

HDACi + TGFβRi for 48 hours. Solid bars indicate the average viability of CD138 positive cells 
and hash-marked bars represent the average viability for CD138 negative cells. Error bars = 

standard deviation.  =p <0.001; NS = no significance p > 0.05 by unpaired two-tailed Student’s 
t test. p = 0.0012 indicates p-value for significance in comparison of CD138 positive cells treated 

with CDKi + HDACi versus CDKi + HDACi + TGFβRi. 

2.5 Discussion  

To find potentially cooperative drug combinations for treating MM, we used a multilayered 

drug combination prediction workflow based on a high-throughput drug screen to identify 

effective single agents in most of the tested MM cell lines, followed by in silico robust regression 

analysis of all active drugs, and selection for combinations that reduced oncogenic MYC protein 

expression while increasing p16 tumor suppressor activity . These selection methods were then 

followed by several in vitro methods of evaluating synergy of our top combinations. The efficacy 

of the top three drug combinations (CDKi/HDACi, TOP2Ai/AURKAi, and TOP2Ai/HSP90i) was 

further investigated in cell lines with varying degrees of inherent sensitivity or resistance to the 
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drugs. The combinations were generally non-toxic in non-neoplastic human fibroblasts based on 

the 48-hour viability assay and the large difference in the cytotoxicity on myeloma cells versus 

fibroblasts; this suggests favorable safety margins for the combinations. Together, these data 

provide a relatively agnostic approach to identify novel drug combinations for further preclinical 

development in treating multiple myeloma, especially in cases resistant to first-line treatments.   

Robust regression analysis was employed to identify potentially cooperative combinations 

based on individual drug activity across most of the MM cell lines tested. This strategy overcomes 

the limitations of other regression models, such as ordinary least squares, in that it’s not overly 

affected by extreme outliers [19]. Additionally, robust regression analysis enabled the prediction 

of potential combinations, regardless of drug target, to treat a wide variety of MM subtypes without 

the cumbersome and time-consuming step of individually testing each of the approximately 5 

million potential drug combinations/cell lines in vitro [19-23]. Many of the target classes for the 

43 drug combinations selected based on the robust regression analysis (Table 2.1) are proposed 

targets for chemotherapeutics in MM and/or other cancers [24]; providing further evidence that 

our combination discovery approach was appropriate.  

The combination of a CDK inhibitor and an HDAC inhibitor, based on these results, was 

most effective overall in treating multiple myeloma. This combination was the most effective of 

the top three combinations at simultaneously reducing MYC protein expression while increasing 

p16 tumor suppressor activity and inducing apoptosis in a variety of MM cell lines with inherent 

sensitivity or resistance to most drugs in the MIPE screen (Figs. 2.2A and 2.2B). Further, combined 

CDK and HDAC inhibition was the most synergistic combination overall in MM cell lines with 

induced resistance to common first-line chemotherapeutics (Fig. 1D). Dinaciclib (Merck & Co.) 

inhibits CDK1,2,5,9 [25-28]. Entinostat (Syndax), a class I HDAC inhibitor, inhibits HDAC 1 and 

3 [29, 30]. Both drugs are being actively pursued in clinical trials for cancer. Dinaciclib has been 

studied in combination with the proteasome inhibitor bortezomib and the corticosteroid 

dexamethasone for treating patients with relapsed MM (NCT01711528) in a phase I clinical trial. 

Additionally, dinaciclib has been or is currently being investigated in phase I-III clinical trials in 

combination with other agents aimed at treating different hematologic malignancies 

(NCT0348520, NCT01650727, NCT01580228), solid tumors (NCT01434316), metastatic triple 

negative breast cancer (NCT01624441), and pancreatic cancer (NCT01783171). Entinostat has 
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been studied in phase III clinical trial in combination with hormone therapy in treating patients 

with recurrent hormone receptor-positive breast cancer (NCT02115282) and has been investigated 

as a combined agent with immune checkpoint inhibitors (PD-1/PD-L1 antagonists in particular) in 

clinical trials treating patients with various solid tumors (NCT02437136) [30, 31]. Further 

understanding of how this combination affects the proposed targets and determining a cooperative 

response signature for the combination will provide insight into on- and off-target effects, 

mechanism(s) of action, and biomarkers of a combined response, and may facilitate circumvention 

of certain side-effects of treating MM by using lower doses. 

Additionally, utilizing sublethally irradiated mice injected with MM cells from genetically 

engineered Vk*MYC; NrasLSL Q61R/+; IgG1-Cre (VQ) donor mice, enabled evaluation of 

therapeutic efficacy in a transplantable mouse model of highly malignant MM that more closely 

recapitulates human MM [30] in an immunocompetent animal. In this model, sublethally irradiated 

C57BL mice implanted with VQ donor mouse bone marrow cells developed M-spikes (signifying 

Ig band on serum protein electrophoresis) at approximately 6 weeks. The appearance of an M-

spike is also observed within human MM patients and serves as a means of tracking progression 

of disease and response to treatment [33, 34]. Additionally, the histologic appearance of myeloma 

within the bone marrow of mice in this model closely resembles that of myeloma in human 

patients, with neoplastic plasma cells disrupting marrow architecture and lysing bone [35]. In the 

present study, all 3 combinations extended survival and were superior to treatment with one of our 

previously identified mTORi/HDACi combinations [6, 7]. 

The combinations were assessed in freshly isolated myeloma cells from human patients to 

ensure that their efficacy was not limited to cultured cell lines and engineered mouse cells. The  

data suggest that all three of the top combinations effectively reduced the viability of human 

CD138+ myeloma cells, and that the CDKi/HDACi and TOP2Ai/AURKAi combinations were 

more selective than the TOP2A/HSP90i combination when comparing CD138+ MM cell viability 

to that of non-MM CD138-negative cells. The difference in combination-induced toxicity between 

neoplastic and non-neoplastic bone marrow cells may suggest that these treatments would impart 

less off-target bone marrow depletion. More investigation into the effects of combination therapy 

on human myeloma cells ex vivo is necessary, particularly because the samples were obtained from 
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smoldering (asymptomatic) myeloma patients rather than from symptomatic patients or those 

refractory to first-line therapies.  

Fisher’s exact testing of the genes affected by the top 3 drug combinations identified cell 

cycle pathways as the most downregulated and TGFβ pathways as the most upregulated. Of the 

seven genes most downregulated by each of the combinations, low levels of expression of four 

genes (HIST1H3B, EIF4EBP1, CASP3, CDK4) have been linked to better overall survival (p < 

0.005) amongst a series of survival cohorts. Expression of the two genes (ID2 and HSPB1) 

consistently upregulated by all 3 combinations was not consistently associated with survival (p 

values > 0.1). ID2, the most upregulated gene by all 3 drug combinations, heterodimerizes with 

bHLH proteins and functions as a dominant negative inhibitor of them [36]. ID2 has been 

implicated as either an oncogene or a tumor suppressor depending on the cellular context, and 

recently has been shown to act as a tumor suppressor in multiple myeloma [37]; thus, increased 

expression of ID2 may be a benefit associated with these drugs.  However, increased signaling of 

the TGFβ pathway may be considered a negative consequence associated with these drug 

treatments, due predominantly to effects on the tumor microenvironment [38]. ]. Treating co-

cultures of myeloma cells and HS5 stromal cells with a TGFβR1 inhibitor (SB505124) as well as 

ex vivo patient samples, suggests that combining this agent with dinaciclib and entinostat could 

help to prevent potentially deleterious effects of  TGFβ receptor signaling and lead to even further 

decreases in myeloma cell proliferation. 

The primary limitation of this study was the restriction in potential combinations imposed 

by our approach.  For example, selecting only drugs with a dose-response curve class of -1.1 

(complete response), although pragmatic, may eliminate certain drugs from the screen that may 

still be potent against myeloma. Similarly, targeting genes vertically in the same pathway with 

similar mechanisms of action may also be beneficial.  Nevertheless, our study identified new drug 

combinations to evaluate in the treatment of plasma cell neoplasia and potential resistance 

mechanisms associated with these treatments.   
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2.6 Materials and Methods 

2.6.1 Study design 

A high-throughput drug screen was employed to identify single agents from a pool of 1900 

compounds that were effective, at a concentration of 2 M or less, in reducing the viability of at 

least 25 of the 47 multiple myeloma (MM) cell lines tested. Drugs that were both effective and 

had different mechanisms of action were paired for robust regression analysis.  The 43 selected 

combinations were highly correlated in their responses (r2 value ≥ 0.5). These combinations were 

tested (Western blot) for their ability to cooperatively reduce MYC protein expression relative to  

single agent and/or control and increase protein expression of tumor suppressor p16. Of the six 

combinations that reduced MYC protein and increased p16 protein expression, three 

(CDKi/HDACi, TOP2Ai/ AURKAi, TOP2Ai/HSP90i) were selected for further efficacy 

evaluation via testing for their ability to reduce MYC protein and increase p16 protein expression 

in 3 cell lines with inherent resistance to oncology drugs and three cell lines with inherent 

sensitivity to oncology drugs, as well as their ability to cooperatively reduce viability of L363 MM 

cells in monoculture or co-cultured with human bone marrow fibroblasts. Further, efficacy of the 

top 3 drug combinations was evaluated in vivo in sublethally irradiated C57BL/6J mice injected 

intravenously with murine Vk*MYC; NrasLSL Q61R/+; IgG1-Cre (VQ) cells harvested from bone 

marrow of donor mice, and ex vivo in CD138+ and CD138- MM cells obtained fresh from bone 

marrow biopsies of human MM patients. Finally, gene set enrichment analysis was used to find 

common genetic pathways similarly affected in L363 MM cells treated with the top three drug 

combinations.  

2.6.2 Human MM and other cell lines 

L363 human MM cells were obtained in 2014, cultured, and authenticated as described 

previously [6]. LP-1 oprozomib-resistant and RPMI-8226 doxorubicin-resistant MM cell lines 

were generated from parental MM cell lines (obtained from M. Kuehl, NCI and Leif Bergsagel, 

Mayo Clinic Scottsdale, AZ, respectively) by exposure to increasing concentrations of oprozomib 

(up to 400 nM) or doxorubicin (up to 5 µM), respectively, over a period of up to 18 weeks [39]. 

MM1.S and MM1.R cells were obtained from Leif Bergsagel (Mayo Clinic Scottsdale, AZ). Cells 
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were cultured in RPMI 1640 with GlutaMAX L-glutamine (Life Technologies) supplemented with 

10% fetal bovine serum (Cambrex BioScience), 100 U/ml penicillin and 100 μg/ml streptomycin  

(life technologies). HS-5 human bone marrow stromal cells (purchased from American Type 

Culture Collection) and H1634 human foreskin fibroblasts (obtained from Douglas Lowy, NCI) 

were maintained in DMEM with GlutaMAX L-glutamine (Life Technologies) supplemented with 

10% fetal bovine serum, 100 U/ml penicillin and 100 μg/ml streptomycin.  

2.6.3 NCATS MIPE screen 

The National Center for Advancing Translational Sciences MIPE (Mechanism 

Interrogation PlatE) compound library of approximately 1900 small molecules was screened in 47 

multiple myeloma cell lines (Table 3; https://ncats.nih.gov/pubs/features/screening-platform). Cell 

lines were treated in 1,536-well plates and the response was measured after 48-hour drug exposure 

with CellTiter-Glo® (Promega) luminescent cell viability assay at 11 doses (a serial of 3-fold 

dilutions) [40].  Viability was defined as percent viable cells relative to the trimmed median of 

positive control (bortezomib, a proteasome inhibitor) wells in a plate and the trimmed median of 

negative control (DMSO, dimethyl sulfoxide) wells in a plate DMSO-treated controls, as 

determined from the luminescence-based readout as follows: Viability (%) = (100 x ((Cells – 

Negative) / (Negative – Positive))) + 100. Following normalization, drug sensitivity measures 

(potency, efficacy, and dose-response curves) were obtained with an automated grid algorithm for 

large-scale curve fitting and curve classification [41].   

2.6.4 In Silico analysis 

Palantir’s Foundry® platform was used to identify potentially cooperative drug 

combinations from the NCATS MIPE screen.  Drugs were selected for robust regression analysis 

with the following criteria:  single agent dose-response curve class of -1.1 (complete response), 

AC50 > 2.0 µM, and activity in at least 25 of the 47 MM cell lines tested.  Next, robust regression 

analysis of each drug versus every other drug was utilized to generate a Pearson correlation 

coefficient (r2) for each drug pair. 43 combinations had r2 values of at least 0.5 (indicating 

correlation). 
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2.6.5 Western blot analysis 

Immunoblot analyses were performed on cells lysed with RIPA buffer (Thermo Fisher 

Scientific), electrophoresed on 4-20% Tris-Glycine SDSPAGE gels (Novex), and blotted on to 

nitrocellulose using iBlot (Invitrogen).  Each experiment was repeated at least three times, and a 

representative blot is shown in the figure. Antibodies for β-actin were obtained from Cell Signaling 

and used at 1:1000 dilutions.   

2.6.6 Antibodies (western blot) 

All antibodies were diluted in 1 M phosphate buffered saline containing 5% bovine serum albumin. 

- Rabbit monoclonal antibody against MYC (Abcam, #32072) 

 -dilution ratio: 1:10,000 

-Mouse monoclonal antibody against β-actin (CST, #3700) 

 -Dilution ratio: 1:4,000 

-Mouse monoclonal antibody against CDKN2A/p16INK4a (p16) (Santa Cruz, #1661)  

 -Dilution ratio: 1:500 

-Rabbit monoclonal antibody against cleaved caspase 3 (CST, #9662) 

 -Dilution ratio: 1:1,000 

2.6.7 Cell viability assays in human MM cell lines and primary human MM cells  

MM cell lines (L363, LP1, LP1-OpzR) were treated with increasing doses of a single agent 

or a combination of two drugs (1:1 molar ratio). Cells were seeded in 96-well plates at 50,000 cells 

per well in 200 ml media and treated for 48 hours and MTS assay using CellTiter96® Aqueous 

One Solution Cell Proliferation Assay (Promega) was performed to determine cell titers.  Ratios 

of inhibitor-treated to untreated control cell titers were calculated. Activity and synergy analyses 

were performed on a dose matrix comprised of eight single agent concentrations for each 

compound, and the 64 combinations thereof. MM cells were seeded in 96-well plates at 50,000 

cells per well in 200m media with four replicates per dose. Viability was assessed  after 48 h of 

treatment with CellTiter96® Aqueous One MTS reagent (Promega).  
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For ex vivo viability assays, bone marrow aspirates were collected from patients with 

confirmed smoldering multiple myeloma (SMM) enrolled in clinical trials at the NCI/NIH. 

Informed consent forms were reviewed and signed by all patients prior to admission. Ficoll-Paque 

PLUS density gradient sedimentation (Cytiva) was utilized to isolate bone marrow mononuclear 

cells and primary SMM cells as per the manufacturer’s protocol. CD138 positive cells were further 

separated from bone marrow samples by antibody-mediated positive selection using anti-CD138 

magnetic-activated cell separation microbeads (Miltenyi Biotech). The percentage of CD138 

positive cells in the positive fraction was quantified by flow cytometric analysis using FlowJo 

software and found to be greater than 98%. Ex vivo patient cell viability was determined in CD138 

positive and CD138 negative cells maintained in DMEM supplemented with 5% human serum and 

treated with the three top combinations (at IC50 doses of each drug) compared to DMSO-treated 

control cells.   

2.6.8 Animal studies 

All animal experiments were conducted in accordance with the Guide for the Care and Use 

of Laboratory Animals and institutionally approved (LCBG-009, ACUC, NCI) in a facility 

approved by the Association for Assessment and Accreditation of Laboratory Anim al Care. 

Sublethally irradiated (4.5 GY) C57BL/6J (Jackson Labs) were administered 5 x 10^6 Vk*MYC; 

NrasLSL Q61R/+; IgG1-Cre (VQ) cells obtained from the bone marrows of donor mice generously 

provided by Jing Zhang at the McArdle Research Labs, University of Wisconsin; Madison, WI. 

Recipient mice were monitored for serum M-spikes via retroorbital bleeds and serum protein 

electrophoresis as previously described [10, 30]. Upon detectable M-spikes, treatment with the top 

drug combinations commenced. Treatments were as follows: CDKi (dinaciclib, 20 mg/kg, IP, 

3x/week) + HDACi (entinostat, 20 mg/kg, PO 5x/week); TOP2Ai (doxorubicin,4 mg/kg IV 

1x/week) + AURKAi (alisertib, 30 mg/kg PO, 5x/week) or HSP90i (SNX-2112, 20 mg/lg, PO, 

3x/week); or mTORi (rapamycin, 2.5 mg/kg, IP, 5x/week) + HDACi (entinostat, 20 mg/kg, PO 

5x/week) n = 5. Animals were monitored for M-spikes via SPEP every 2 weeks for the remainder 

of the study, as well as for progression of clinical signs (prolonged hunched posture, hindlimb 

paralysis). Animals were humanely euthanized when moribund.  
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2.6.9 In Vitro gene response signature of drug treatments 

L363 MM cells were treated for 48 hours with the one of the top 3 combinations (10 nM 

dinaciclib and 500 nM entinostat, 225 nM doxorubicin and 1500 nM alisertib, or 225 nM 

doxorubicin and 50 nM SNX-2112), as well as the combined CDKi/HDACi of dinaciclib (10 nM) 

and mocetinostat (175nM). Total RNA was extracted using TRIzol® (Invitrogen). 100 ng of RNA 

was added to Nanostring reagents and analyzed using the NanoString nCounter® system as per 

the protocol proved by the manufacturer (Nanostring Technologies). Data 

processing/normalization, concordant gene response signature, GO enrichment methods, and code 

enrichment availability are described in the supplemental methods section.   

2.6.10 Statistical analysis  

For cell viability dose response studies, mean and standard deviation were calculated and 

plotted from four technical replicates using Graphpad Prism 8® software. For dose matrix 

experiments, four technical replicates of each dose combination were used to determine mean and 

standard deviation. Combination Index (CI) derived by Chou and Talalay [15] from the mass-

action law principle allows quantifying drug interactions in terms of synergy (CI < 1), antagonism 

(CI > 1) and additivity (CI = 1) based on the median effect equation. CI computations for the dose 

response experiments were performed using CompuSyn software (http:// www.combosyn.com/). 

Excess over Highest Single Agent (EOHSA) was calculated as the difference of the effect 

produced by the drug combination and the greatest effect produced by each of the combination’s 

single agents at the same concentrations as when combined [42]. Ex vivo MM cell viability among 

CD138 positive and CD138 negative cells within each treatment, as well as between the 

CDKi/HDACi combination and CDKi/HDACi/TGFβR1 inhibitor,  were compared via unpaired 

two-tailed Student’s t test 

2.6.11 Data processing/normalization 

Raw counts generated by the NanoString nCounter® system (RCC files) were imported 

into the nanoString nSolver™ Analysis Software 4.0 for QC screen and selection of optimal 

housekeeping genes with geNorm algorithm [43]. Subsequently, the raw counts were normalized 

http://www.combosyn.com/
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to mRNA of five housekeeping genes (ZNF384, MRPS5, CNOT4, NUBP1, and SF3A3) with 

DESeq2’s [44] median of ratios method and variance-stabilizing transformation (VST) [45]. 

2.6.12 Concordant gene response signature  

For each combination treatment and DMSO control the responsive genes were identified 

using DESeq2 negative binomial modeling and Wald statistic p-values [44]. False discovery rates 

(FDR) were estimated with Benjamini and Hochberg method [46] and an FDR of 5% was chosen 

as the level of statistical significance. The concordant response signature  includes genes 

significantly changed in the same direction by each combination treatment (Total=125, 49 up-

regulated and 76 down-regulated genes), and that reached 2-fold change in the average fold-change 

profile calculated across all the combination treatments (Total=78, 38 up-regulated and 40 down-

regulated genes). 

2.6.13 GO enrichment analysis 

Database for Annotation, Visualization, and Integrated Discovery (DAVID) [48, 49] was 

used to determine overrepresented Gene Ontology (GO) functions in the lists of sign ificant genes. 

Enriched GO terms were selected with nominal p-value less than 0.05 with the Nanostring data 

and the false discovery rate [46] less than 5%. For each over-represented GO term a z-score was 

computed based on the number of up-regulated and down-regulated genes according to the formula 

(up-down)/sqrt(total) proposed by Walter et.al [18] and visualized with bubble-plots.  

2.6.14 Code availability 

R programming language version 3.6.3 [50], R Studio version 1.2.5033, and NIH Integrated 

Data Analysis platform (NIDAP) were used for performing the analyses. R scripts are available 

upon request. 



 
 

 

50 

2.7 References and Notes 

[1] Goldschmidt H, Ashcroft J, Szabo Z, Garderet L. Navigating the treatment landscape in 

multiple myeloma: which combinations to use and when? Ann Hematol. 2018 Nov;23(1)1-

18. 

[2] Kumar SK, Rajkumar S. The multiple myelomas - current concepts in cytogenetic 

classification and therapy. Nat Rev Clin Oncol. 2018 Jul;15(7):409-21. 

[3] Howlader N, Noone AM, Krapcho M, Miller D, Brest A, Yu M, Ruhl J, Tatalovich Z, 

Mariotto A, Lewis DR, Chen HS, Feuer EJ, Cronin KA (eds). SEER cancer statistics review, 

1975-2017, NCI, Bethesda, MD, https://seer.cancer.gov/csr/1975_2017/, based on 

November 2019 SEER data submission, posted to the SEER web site, April 2020.  

[4] Castella M, Fernández de Larrea C, Martín-Antonio B.  Immunotherapy: a novel era of 

promising treatments for multiple myeloma. Int J Mol Sci. 2018 Nov;19(11):3613. 

[5] Dancey J, Chen H. Strategies for optimizing combinations of molecularly targeted anticancer 

agents. Nat Rev Drug Discov. 2006 Aug;5(8):649-59. 

[6] Simmons JK, Michalowski AM, Gamache BJ, DuBois W, Patel J, Zhang K, Gary J, Zhang 

S, Gaikwad SM, Connors D, Watson N, Leon E, Chen JQ, Kuehl WM, Lee MP, Zingone A, 

Landgren O, Ordentlich P, Huang J, Mock BA. Cooperative targets of combined 

mTOR/HDAC inhibition promote MYC degradation. Mol Cancer Ther. 2017 

Sep;16(9):2008-21.  

[7] Simmons JK, Patel J, Michalowski AM, Zhang S, Wei BR, Sullivan P, Gamache B, 

Felsenstein K, Kuehl WM, Simpson RM, Zingone A, Landgren O, Mock BA.  TORC1 and 

class I HDAC inhibitors synergize to suppress mature B cell neoplasms.  Mol Oncol. 2014 

Mar;8(2):261-72.  

[8] Jovanović KK, Roche-Lestienne C, Ghobrial IM, Facon T, Quesnel B, Manier S. Targeting 

MYC in multiple myeloma.  Leukemia. 2018 Jun;32(6):1295-306. 

 

 

https://seer.cancer.gov/csr/1975_2017/


 
 

 

51 

[9] Chesi M, Robbiani DF, Sebag M, Chng WJ, Affer M, Tiedemann R, Valdez R, Palmer SE, 

Haas SS, Stewart AK, Fonseca R, Kremer R, Cattoretti G, Bergsagal PL. AID-dependent 

activation of a MYC transgene induces multiple myeloma in a conditional mouse model of 

postgerminal center malignancies. Cancer Cell. 2008 Feb;13:167–80. 

[10] Chng WJ, Huang GF, Chung TH, Ng SB, Gonzalez-Paz N, Troska-Price T, Mulligan G, 

Chesi M, Bergsagel PL, Fonseca R. Clinical and biological implications of MYC activation: 

a common difference between MGUS and newly diagnosed multiple myeloma. Leukemia. 

2011 Jun;25(6):1026–35. 

[11] Sears R, Nuckolls F, Haura E, Taya Y, Tamai K, Nevins JR. Multiple Ras-dependent 

phosphorylation pathways regulate Myc protein stability. Genes Dev. 2000 Oct 

1;14(19):2501–14. 

[12] Mock B, Wax J, Clynes R, Marcu KB, Potter M. The genetics of susceptibility to RIM-

induced plasmacytomagenesis. Curr Top Microbiol Immunol. 1988;141:125-7. 

[13] Clynes R, Stanton LW, Wax J, Smith-Gill S, Potter M, Marcu KB. Synergy of an IgH 

promoter-enhancer-driven c-myc/v-Ha-ras retrovirus and pristane in the induction of murine 

plasmacytomas. Curr Top Microbiol Immunol. 1988;141:115-24. 

[14] Whitfield JR, Beaulieu ME, Soucek L. Strategies to Inhibit Myc and Their Clinical 

Applicability. Front Cell Dev Biol. 2017 Feb 23;5:10. 

[15] Dang CV, Reddy EP, Shokat KM, Soucek L. Drugging the 'undruggable' cancer targets. Nat 

Rev Cancer. 2017 Aug;17(8):502-08. 

[16] Gonzalez-Paz N, Chng WJ, McClure RF, Blood E, Oken MM, Van Ness B, James CD, 

Kurtin PJ, Henderson K, Ahmann GJ, Gertz M, Lacy M, Dispenzieri A, Greipp PR, Fonseca 

R. Tumor suppressor p16 methylation in multiple myeloma: biological and clinical 

implications. Blood. 2007 Feb 1;109(3):1228-32. 

[17] Chou TC. Drug combination studies and their synergy quantification using the Chou-Talalay 

method. Cancer Res. 2010 Jan 15;70(2):440-46. 

[18] Walter, Wencke, Fatima Sanchez-Cabo, and Mercedes Ricote. GOplot: An R package for 

visually combining expression data with functional analysis. Bioinformatics (2015): btv300. 



 
 

 

52 

[19] Sliwoski G, Kothiwale S, Meiler J, Lowe WE Jr. Computational methods in drug discovery. 

Pharmacol Rev. 2014 Jan; 66(1):334–95. 

[20] Weinstein ZB, Bender A, Cokol M.  Prediction of synergistic drug combinations. Curr Opin 

Syst Biol. 2017 May 11;4(1):24–28. 

[21] Gayvert KM, Aly O, Platt J, Bosenberg MW, Stern DF, Elemento O. A computational 

approach for identifying synergistic drug combinations. PLoS Comput Biol. 2017 Jan 

13;13(1):e1005308. 

[22] Jeon M, Kim S, Park S.  In silico drug combination discovery for personalized cancer 

therapy.  BMC Syst Biol. 2018 Mar 19:12(Suppl 2):16. 

[23] Zhan F, Huang Y, Colla S, Stewart JP, Hanamura I, Gupta S, et al. The molecular 

classification of multiple myeloma. Blood. 2006; 108(6):2020–8.  

[24] Ovejero S, Moreaux J. Multi-omics tumor profiling technologies to develop precision 

medicine in multiple myeloma. Explor Target Antitumor Ther. 2021;2:65-106. 

[25] Kumar SK, LaPlant B, Chng WJ, Zonder J, Callander N, Fonseca R, Fruth B, Roy V, 

Erlichman C, Stewart AK; Mayo Phase 2 Consortium. Dinaciclib, a novel CDK inhibitor, 

demonstrates encouraging single-agent activity in patients with relapsed multiple myeloma. 

Blood. 2015 Jan 15;125(3):443-48. 

[26] Parry D, Guzi T, Shanahan F, Davis N, Prabhavalkar D, Wiswell D, Seghezzi W, Paruch K, 

Dwyer MP, Doll R, Nomeir A, Windsor W, Fischmann T, Wang Y, Oft M, Chen T, 

Kirschmeier P, Lees EM. Dinaciclib (SCH 727965), a novel and potent cyclin-dependent 

kinase inhibitor. Mol Cancer Ther. 2010 Aug;9(8):2344-53.  

[27] Kumar SK, Rajkumar V, Kyle RA, van Duin M, Sonneveld P, Mateos MV, Gay F, Anderson 

K. Multiple myeloma. Nat Rev Dis Primers. 2017 Jul 20;3:17046.  

[28] De Souza C, Chatterji BP. HDAC inhibitors as novel anti-cancer therapeutics. Recent Pat 

Anticancer Drug Discov. 2015;10(2):145-62.  

[29] Connolly RM, Rudek MA, Piekarz R. Entinostat: a promising treatment option for patients 

with advanced breast cancer. Future Oncol. 2017 Jun;13(13):1137-1148.  



 
 

 

53 

[30] Connolly RM, Zhao F, Miller KD, Lee MJ, Pikarz RL, Smith KL, Brown-Glaberman UA, 

Winn JS, Faller BA, Adedayo AO, Burkard ME, Budd GT, Levine EG, Royce ME, Kaufman 

PA, Thomas A, Trepel JB, Wolff AC, Sparano JA. E2112: Randomized phase III trial of 

endocrine therapy plus entinostat or placebo in hormone receptor–positive advanced breast 

cancer. A trial of the ECOG-ACRIN cancer research group. Journal of Clinical 

Oncology 2021 39:28, 3171-3181. 

[31] Hellmann MD, Jänne PA, Opyrchal M, Hafez N, Raez LE, Gabrilovich DI, Wang F, Trepel 

JB, Lee MJ, Yuno A, Lee S, Brouwer S, Sankoh S, Wang L, Tamang D, Schmidt EV, Meyers 

ML, Ramalingam SS, Shum E, Ordentlich P. Entinostat plus pembrolizumab in patients with 

metastatic NSCLC previously treated with anti-PD-(L)1 therapy. Clin Cancer Res. 2021 Feb 

15;27(4):1019-1028.  

[32] Wen Z, Rajagopalan A, Flietner ED, Yun G, Chesi M, Furumo Q, Burns RT, Papadas A, 

Ranheim EA, Pagenkopf AC, Morrow ZT, Finn R, Zhou Y, Li S, You X, Jensen J, Yu M, 

Cicala A, Menting J, Mitsiades CS, Callander NS, Bergsagel PL, Wang D, Asimakopoulos 

F, Zhang J. Expression of NrasQ61R and MYC transgene in germinal center B cells induces 

a highly malignant multiple myeloma in mice. Blood. 2021 Jan 7;137(1):61-74. 

[33] Rajkumar SV, Kyle RA, Therneau TM, Melton LJ 3rd, Bradwell AR, Clark RJ, Larson DR, 

Plevak MF, Dispenzieri A, Katzmann JA. Serum free light chain ratio is an independent risk 

factor for progression in monoclonal gammopathy of undetermined significance. Blood. 

2005 Aug 1;106(3):812-7.  

[34] Dejoie T, Corre J, Caillon H, Hulin C, Perrot A, Caillot D, Boyle E, Chretien ML, Fontan J, 

Belhadj K, Brechignac S, Decaux O, Voillat L, Rodon P, Fitoussi O, Araujo C, Benboubker 

L, Fontan C, Tiab M, Godmer P, Luycx O, Allangba O, Pignon JM, Fuzibet JG, Legros L, 

Stoppa AM, Dib M, Pegourie B, Orsini-Piocelle F, Karlin L, Arnulf B, Roussel M, Garderet 

L, Mohty M, Meuleman N, Doyen C, Lenain P, Macro M, Leleu X, Facon T, Moreau P, 

Attal M, Avet-Loiseau H. Serum free light chains, not urine specimens, should be used to 

evaluate response in light-chain multiple myeloma. Blood. 2016 Dec 22;128(25):2941-2948. 

[35] Fujino M. The histopathology of myeloma in the bone marrow. J Clin Exp Hematop. 

2018;58(2):61-67.  

https://ascopubs.org/doi/abs/10.1200/JCO.21.00944
https://ascopubs.org/doi/abs/10.1200/JCO.21.00944
https://ascopubs.org/doi/abs/10.1200/JCO.21.00944


 
 

 

54 

[36] Benezra R, Davis RL, Lockshon D, Turner DL, Weintraub H. The protein Id: a negative 

regulator of helix-loop-helix DNA binding proteins. Cell. 1990 Apr 6;61(1):49-59.  

[37] Perini T, Szalat R, Samur MK, Fulciniti M, Lopez MA, Lawlor M, Ott CJ, Li N, Xu Y, Wen 

K, Amodio N, Morelli E, Anderson K, Ciceri F, Munshi N. Inhibitor of DNA binding 2 (ID2) 

plays a key tumor suppressor role in promoting oncogenic transformation in multiple 

myeloma. Blood 2018; 132 (Supplement 1): 60. 

[38] Dong M, Blobe GC. Role of transforming growth factor-beta in hematologic malignancies. 

Blood. 2006 Jun 15;107(12):4589-96.  

[39] Riz I, Hawley RG. Increased expression of the tight junction protein TJP1/ZO-1 is associated 

with upregulation of TAZ-TEAD activity and an adult tissue stem cell signature in 

carfilzomib-resistant multiple myeloma cells and high-risk multiple myeloma patients. 

Oncoscience. 2017 Aug 1;4(7-8):79-94.  

[40] Mathews Griner LA, Guha R, Shinn P, Young RM, Keller JM, Liu D, Goldlust IS, Yasgar 

A, McKnight C, Boxer MB, Duveau DY, Jiang JK, Michael S, Mierzwa T, Huang W, Walsh 

MJ, Mott BT, Patel P, Leister W, Maloney DJ, Leclair CA, Rai G, Jadhav A, Peyser BD, 

Austin CP, Martin SE, Simeonov A, Ferrer M, Staudt LM, Thomas CJ. High-throughput 

combinatorial screening identifies drugs that cooperate with ibrutinib to kill activated B-cell-

like diffuse large B-cell lymphoma cells. Proc Natl Acad Sci U S A. Feb 11;111(6):2349-54 

(2014).  

[41] Wang Y, Jadhav A, Southal N, Huang R, Nguyen DT. A grid algorithm for high throughput 

fitting of dose-response curve data. Curr Chem Genomics. 2010 Oct 21;4:57-66.  

[42] Borisy AA, Elliott PJ, Hurst NW, Lee MS, Lehar J, Price ER, Serbedzja G, Zimmermann 

GR, Foley MA, Stockwell Br, Keith CT. 2003. Systematic discovery of multicomponent 

therapeutics. Proc Natl Acad Sci USA. 100;14982-14987. 

[43] Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F. 

Accurate normalization of  real-time quantitative RT-PCR data by geometric averaging of 

multiple internal control genes. Genome Biol Research (2002).  



 
 

 

55 

[44] Love MI, Huber W, Anders S (2014). Moderated estimation of fold change and dispersion 

for RNA-seq data with DESeq2. Genome Biology, 15, 550. 8. 

[45] Anders S, Huber W. Differential expression analysis for sequence count data. Genome 

Biology 2010, 11:106.  

[46] Benjamini Y, Hochberg, Y. Controlling the false discovery rate: a practical and powerful 

approach to multiple testing. J R Stat Soc Series B. 1995 57(1), 289–300.  

[47] Finney R. (2020). l2p: l2p. R package version 0.1-9. 

[48] Huang DW, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene 

lists using DAVID Bioinformatics Resources. Nature Protoc. 2009;4(1):44-57.   

[49] Huang DW, Sherman BT, Lempicki RA. Bioinformatics enrichment tools: paths toward the 

comprehensive functional analysis of large gene lists. Nucleic Acids Res. 2009;37(1):1-13.  

[50] R Core Team R: A language and environment for statistical computing. R Foundation for 

Statistical Computing, Vienna, Austria. (2020). URL https://www.R-project.org/. 

https://www.r-project.org/


 
 

 

56 

2.8 Supplemental Figures and Tables: 

 

Figure S. 2.1.  Robust regression analysis of active compounds revealed potentially effective 
combinations against MM. 1A) Example robust regression plots of all AC50 doses for a 

particular single agent (x-axis) plotted against those of the corresponding partner single agent (y-
axis). r2 = Pearson correlation coefficient. 1B-E) Representative western blots of combinations 

from robust regression analysis that reduced MYC protein and simultaneously increased p16 
expression vs. control or single agent in L363 MM cells treated for 24 hours with IC50 

concentrations of drugs. CDKi (D1) + HDACi (D2) = BS194 + Dacinostat, 1C – TOP2Ai (D1) + 
AURKAi (D2) = Doxorubicin + Alisertib,1D – HSP90i (D1) + TOP2Ai (D2) = Geldanamycin + 

Idarubicin HCl, 1E – CDKi + HSP90i = BS-194 + VER-82576, 1F –TUBBi + PLK1 1 = 
Noscapine +IVX-214, 1G – TUBBi + PLK1i 2 = XRP-44X + IVX-214.
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Figure S. 2.2.  Evaluating synergy and efficacy in various sensitive and resistant cell lines and 
tolerability in normal human fibroblasts. A-C) Matrix dose response testing for activity and 

synergy with representative heat maps and topographical graphs of excess of highest single agent 
(EOSHA) showing the amount of additional activity achieved each combination over the highest 

single agent dose in each respective row. L363 MM cells were treated with the top 3 

combinations for 48 hours at 8 different doses (64 total dose combination). HSA Score = highest 
single agent synergy score (>10 indicates synergy). D-F) Dose response cell viability plots for 

H1634 non-neoplastic human fibroblasts and L363 MM cells treated at escalating doses of each 
combination. Orange = combination dose response curve in H1634 cells, black = combination 

dose response curve in L363 MM cells. Each table shows the IC50 for single agent or 
combination in H1634 and L363 cells. G-I) Representative cell viability dose response curves for 
sensitive (blue curve) vs. resistant (red curve) MM cell lines at 48 hours validating resistance to 
respective drugs. G – LP-1-Parental vs. LP-1-OpzR treated with escalating doses of oprozomib, 

H – MM1.S vs. MM1.R treated at escalating doses of dexamethasone, I – RPMI-8226-Parental 
vs. RPMI-8226-Dox40 treated at escalating doses of doxorubicin.   
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Figure S. 2.2 continued 
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Figure S. 2.3.  Efficacy of the top 3 combinations in a novel mouse model of myeloma. A) 
Electrophoreograms from sublethally irradiated C57BL/6 mice administered 5x10^6 VQ cells. 

Top electrophoreograms are from an individual mouse on day 1 of treatment (42 days since 
administration of VQ cells via intracardiac injection) and bottom electrophoreograms are from 

the same animal after 21 days of treatment with either DMSO (vehicle control - black box), 
CDKi/HDACi (dinaciclib and entinostat – blue box), TOP2Ai/AURKAi (doxorubicin and 

alisertib – red box) or TOP2Ai/HSP90i (doxorubicin and SNX-2112 – green box). Tx = 
treatment B) Representative radiograph of left hind limb from a sublethally irradiated C57BL/6 

mice administered 5x10^6 VQ cells 11 weeks after intracardiac injection. Circles and yellow 
arrows indicate radiolucent foci of osteolysis caused by VQ cells.   
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Figure S. 2.3 continued 
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Figure S. 2.4.  Common genetic pathways are similarly affected by the top drug combinations. 
A) The number of significant genes shared (bar chart = total number significant genes for each 

single combination treatment or shared between different combination treatments; Venn diagram 
= percent of total genes (out of 501) common between different combinations). Gene selection; 

125 based on FDR < 5% in each of the 4 combos; 78 genes based on 2-fold change for the mean 
Treatment vs DMSO-treated across the 4 combos. Of the 143 genes in common, 125 were 

concordant in increased or decreased expression by all 4 combos. Of these 125 genes, 78 were 
increased or decreased at least 2-fold in the mean treatment effect. B) Heatmap of the 

significantly changed genes concordantly changed by all combinations (upregulated = red, 
downregulated = blue). C-D) Enriched pathways based on a modified Fisher’s exact test (EASE 

score) using DAVID [48, 49] and GO_FAT pathways for the list of differentially expressed 
genes common between all combination treatments. Upregulation and downregulation of the 

enriched pathways was determined with a pathway z-score as described by Walter et al. [18]. C = 
commonly upregulated pathways with z-score greater than 1, D = commonly downregulated 

pathways with z-score less than -1.  
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Figure S.2.4 continued 
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Figure S. 2.5. L363 MM cell viability upon single agent or combined treatment with dinaciclib 
and mocetinostat. Cell viability was assessed with MTS assay 48h after treatment with escalated 
dose concentrations of either drug individually or in combination at a 1:1 molar ratio. Each data 

point represents mean of 4 wells and error bars indicate replicate standard deviation. IC50 (in 
nM) for individual drugs and combination in each table. Chou-Talalay computation of 

combination indices (CI) for treated cells are shown for 50% affected fraction 48 hours post-
exposure. Synergy is interpreted as CI<1.0. 

 
 

Table S. 2.1. Effect of Top 3 Drug Combinations on Viability of Parental and Drug-Resistant 
Multiple Myeloma Cell Lines 

Cell Line 

Combination IC50 (nM) 

CDKi / HDACi TOP2Ai / ARUKAi TOP2Ai / HSP90i 

LP-1 

LP-1 Parental 10.2 335.1 204.0 

LP-1-OpzR          

(oprozomib-resistant) 
4.2 99.0 24.0 

MM1 

MM1.S 4.9 225.5 55.6 

MM1.R        

(dexamethasone-resistant) 
4.8 276.3 129.9 

RPMI-8226 

RPMI-8226-Parental 5.6 67.0 42.0 

RPMI-8226-Dox40 

(doxorubicin-resistant) 
8.8 918.0 546.0 
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CHAPTER 3. EFFICACY AND COOPERATIVE TARGETS OF 
COMBINED CDK/HDAC INHIBITION IN PRECLINICAL MODELS OF 

MULTIPLE MYELOMA 

3.1 One Sentence Summary  

Combined targeted CDK/HDAC inhibition is effective in human multiple myeloma (MM) cell 

lines, MM patient cells, and mouse models of MM, and RNA sequencing identified the top 

pathways affected by the combination. 

3.2 Introduction 

In recent years advances in several novel agents have improved the survival of patients 

suffering from multiple myeloma (MM), a neoplastic clonal proliferation of plasma cells in the 

bone marrow and other organs [1, 2]. However, MM is still an incurable cancer and patients often 

develop relapsed and/or refractory multiple myeloma (RRMM), with particular resistance to the 

common first-line treatment proteasome inhibitors [1, 3]. Previous research identified the 

transcription factor MYC as a master regulator of the cooperative response to combined targeting 

of mTOR (mammalian target of rapamycin) and HDAC (histone deacetylase) [4, 5]. MYC 

activation (commonly through locus rearrangements and gains, mRNA overexpression, and 

deregulation) is found in approximately 67% of MM and is associated with cancer progression [6-

8]. Unfortunately, direct pharmacologic targeting of MYC has remained a key challenge in 

oncology [9, 10]. However, finding drug combinations that indirectly target MYC, while acting 

upon their own respective direct targets, serves as a useful alternative strategy and may provide 

additional opportunities for synergy in treating MM.  

A multilayered drug combination prediction workflow was employed to discover novel 

combinations for treating MM comprised of a high-throughput single agent drug screen and in 

silico robust regression analysis to determine potentially cooperative drug combinations. Potential 

combinations were then selected for the ability to simultaneously reduce oncogenic MYC protein 

expression and increase p16 tumor suppressor activity. These combinations were further evaluated 

with several in vitro methods to measure synergy in MM cell line models, ex vivo responses in 

myeloma patient samples, and in vivo responses in a novel mouse model of MM [chapter 2, 11]. 
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From these data, three drug combinations, consisting of a cyclin dependent kinase (CDK) inhibitor 

combined with an HDAC inhibitor and a topoisomerase II inhibitor combined with either an aurora 

kinase A inhibitor or a heat shock protein 90 inhibitor, were found to reduce MYC protein while 

simultaneously increasing p16 activity in MM cells, all while cooperatively decreasing MM cell 

viability compared to single agent therapy. Moreover, the CDKi + HDACi combination of 

dinaciclib and entinostat emerged as the top candidate combination for further investigation and 

preclinical development.  

Dinaciclib (Merck & Co.) inhibits CDK1,2,5, and 9 [12-15]. Entinostat (Syndax), a class I 

HDAC inhibitor, inhibits HDAC 1 and 3 [16, 17]. Both drugs have proven utility in various 

therapies and are in clinical trials to treat myeloma and/or other cancers [17-20], but have not been 

combined previously, thus representing a new combination strategy for myeloma therapy. Further 

understanding of which known and potential targets are affected by this combination in vitro and 

in vivo and determining a cooperative response signature for combination therapy will provide 

insight into on- and off-target effects, mechanism(s) of action, and biomarkers of a combined 

response, and may provide rationale for further preclinical development and clinical trials. 

Evaluating the proposed CDKi/HDACi combination in vivo provides insight into target 

engagement, efficacy, and safety endpoints. Although the safety of both drugs has been 

independently investigated [14, 21, 22], it has yet to be seen if combining dinaciclib and entinostat 

results in toxicities that would preclude further preclinical development.  

Herein, targets, mechanism of action, and efficacy of combined CDK/HDAC inhibition 

were investigated both in vitro and in vivo. Freshly obtained smoldering myeloma patient bone 

marrow biopsy cells were utilized to evaluate efficacy of the combination compared to single agent 

treatment. Finally, attempts to elucidate a genetic signature of combined CDK/HDAC inhibition 

were made in MM cells through RNA sequencing.   

3.3 Results 

3.3.1 Targeted combined CDK/HDAC inhibition is effective in vitro 

Effects on oncogenic MYC protein expression, tumor suppressor p16 activity, apoptosis, 

and downstream effector molecules from CDK/HDAC inhibition with dinaciclib and/or entinostat 
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(targets outlined in Fig. 3.1A) were evaluated in L363 multiple myeloma cells treated at IC50 

concentrations of each drug as determined previously [Chapter 2] – (dinaciclib = 10 nM, entinostat 

500 nM) for 24 or 48 hours via western blot (WB) – (Fig. 3.1B). Experiments were repeated at 

least 3 times. The CDK/HDAC inhibitor combination reduced MYC protein expression, with a 

greater reduction in total MYC protein noted at 48 hours. Additionally, the combination effectively 

increased p16 tumor suppressor protein, indicating an increase in p16 activity in L363 MM cells,  

at both 24 and 48 hours. Further, single agent treatment with dinaciclib or entinostat induced 

cleavage of caspase 3 protein (at 24 and 48 hours with dinaciclib, and 48  hours with entinostat), 

indicating induction of apoptosis; however, caspase 3 cleavage was greater with combined 

CDK/HDAC inhibition at 24 hours. Protein expression of phosphorylated RNA polymerase II at 

Serine 2 (Pol IIser2), a target of MYC and CDK9 [23, 24], was decreased at 48 hours by dinaciclib 

alone but was cooperatively reduced by combined dinaciclib/entinostat treatment at 24 hours and 

undetectable at 48 hours. Acetylation of histone H3, an indicator of HDAC inhibition [2 5], was 

evident at 24 and 48 hours after treatment with entinostat, but not increased with combination 

treatment.  

Selective targeting of CDKs and HDACs by dinaciclib and entinostat was assessed via WB 

in L363 MM cells treated with IC50 doses of each drug singly, or in combination (Fig. S3.1A-B) 

for 24 and 48 hours. Dinaciclib alone reduced protein expression of known targets total CDK1, 

CDK2, and CDK5 at 24- and 48-hours post-treatment. Dinaciclib also reduced protein expression 

of phosphorylated CDK9 at threonine 186 (pCDK9Thr186), a key indicator CDK9 kinase activity 

and, in turn, an indicator of dinaciclib activity [26], at 48-hours post treatment. As expected, 

dinaciclib did not reduce expression of CDK6. Administration of entinostat reduced protein levels 

of targets HDAC1 and HDAC3 at 24- and 48-hours post-treatment; while HDAC2, HDAC4, 

HDAC7, and HDAC11 were either unchanged or increased at 24-hours post-treatment, and 

HDAC7 was decreased at 48 hours. Combined CDK/HDAC inhibition with dinaciclib and 

entinostat was more effective at reducing expression of total CDK1, 2, and 5 and cooperatively 

reduced expression of pCDK9Thr186 at 24 and 48 hours. Combined CDK/HDAC inhibition also 

resulted in reduced HDAC1, 3 and to a small degree HDAC7 by 48 hours.  

Combined CDK/HDAC efficacy, targeting, and synergy were also evaluated in the context 

of drug-resistance in a cell line selected for proteasome inhibitor resistance (PIR), one of the most 
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common causes for failure of first-line therapeutics against MM. Oprozomib resistance was 

induced in LP1 parental MM cells via prolonged treatment with a proteasome inhibitor for repeated 

passages. LP1 parental (LP1-P) and oprozomib-resistant (LP1-PIR) cells, were then treated with 

the CDK/HDAC inhibitor combination for 24, 48, or 72 hours and lysates were evaluated via WB 

(Fig S3.2A). MYC protein was reduced relative to DMSO-treated control cells at 48- and 72-hours 

post-treatment with the combination and was undetectable post-treatment in PIR cells. 

Additionally, p16 protein expression was increased in both parental and PIR cells. As noted in 

L363 MM cells, HDAC1 and HDAC3, as well as CDK1, 2, and 5, total proteins were reduced 

upon combined CDK/HDAC inhibition in LP1-P cells at 24-, 48- and 72-hours post-treatment. 

Target HDAC and CDK total proteins were reduced by the combination in LP1-PIR cells at all 

time points other than CDK2 at 24-hours post-treatment.  

CDKi/HDACi treated L363, LP1-P and LP1-PIR cells were evaluated via flow cytometry 

for evidence of enhanced apoptosis (FITC/Annexin) with combined treatment (Fig 3.1C-F). 

Combined dinaciclib and entinostat treatment enhanced the percentage of apoptotic cells relative 

to total cells counted after 24, 48 and 72 hours of treatment compared to single agents. Combined 

CDK/HDAC inhibition effects on viability were evaluated in LP1 parental and oprozomib-

resistant myeloma lines (Fig. 3.1G-H; Fig S3.2B-C). Combined CDK/HDAC inhibition reduced 

cell viability relative to single agent treatment, regardless of proteasome inhibitor sensitivity or 

resistance. An 8x8 dose matrix combination response screen of dinaciclib and entinostat at 7 

different concentrations, and all combinations thereof, was performed in LP1-P and LP1-PIR MM 

cells to ascertain the activity and synergy across a spectrum of doses. Heatmaps (Fig. 3.1G-H) 

indicate the percent inhibition of treated cells vs. vehicle control after 48 hours of exposure to 

drugs. Synergy was achieved at a lower concentration of each drug than the IC50 of each individual 

agent, indicating lower concentrations of each drug may be used in combination to generate a 

pharmacologically achievable reduction in MM viability, regardless of proteasome inhibitor 

sensitivity or resistance. Surface plots of the excess inhibition of highest single agent (EOSHA) 

are shown in supplemental figure S3.2D-E, with the combined CDK/HDAC inhibition achieving 

a highest single agent (HSA) score of 20.3 in LP1-P cells and 17.3 in LP1-PIR cells; indicating 

synergy.
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Figure 3.1 In vitro evaluation of combined targeted CDK/HDAC inhibition in MM. A) Summary 
of CDK and HDAC targets of dinaciclib and entinostat, respectively, as well as drug target 
effects. B) Representative WB analysis of L363 MM cells treated for 24 or 48 hours with 

dinaciclib (10 nM), entinostat (500 nM) or both. CTRL = DMSO control. Cell lysates were 

probed for MYC, p16, total and cleaved caspase 3 (Casp3 and CC3, respectively), 
phosphorylated RNA polymerase II (pPol IISer2), acetylated histone 3 (acetyl-H3), and β-actin. C-
F Flow cytometric evaluation of apoptosis in L363, LP1-P and LP-OpzR cell lines at 24, 48, and 
72 hours after single agent or combined CDK/HDAC inhibitor treatments. C = Representative 

flow cytometric dot plots of LP1-OpzR (proteasome inhibitor-resistant) cells at 48 hours treated 
with single agent or combined dinaciclib-entinostat versus control. X-axis = number of Annexin 

V positive cells; Y-axis = number of PI positive cells D-F). Bar charts representing percent 
apoptosis (as determined by Annexin V high and PI low (early apoptosis)+ Annexin V high and 

PI high (late apoptosis) cell counts). Green bar = DMSO control, red bar = dinaciclib (10 nM), 
yellow bar = entinostat (500 nM), black bar = combination (10 nM dinaciclib + 500 nM 

entinostat). G-H) Graphical depiction of dose-matrix analyses for the combined CDK/HDAC 
inhibition in LP-1-P and LP-1-PIR MM cells. Percent inhibition of cell growth is shown for each 

different combination of doses and colorized in red. Cells were treated for 48 hours with 
different concentrations of each drug (indicated by X- and Y-axes) singly or in combination. 

IC50 concentrations for each drug in parental and oprozomib-resistant cell lines as determined 
by MTS dose-response assay, are shown in adjacent tables; ovals and dotted lines indicate 

optimal dose for dinaciclib and entinostat in each cell line, determined by synergy scoring.  
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Figure 3.1 continued 
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3.3.2 Tolerability of combined CDK/HDAC inhibition in mice 

Tolerability of combined CDKi/HDACi in 8-week-old NSG mice treated with dinaciclib 

(intraperitoneal [IP], in 20% β-Cyclodextrin) and entinostat (via oral gavage [PO] or IP, in 20% β-

Cyclodextrin). Drug doses were chosen based on previously published animal data [14, 21]. Mice 

were treated with either drug once every other day with dinaciclib, and every day with entinostat, 

for 5 days. (Table S.3.1). None of the chosen dose groups elicited overt clinical signs of toxicity 

(such as diarrhea, hunched posture, etc.) during treatment, and there was no evidence of severe 

decreases in body weight (as defined by a 20% decrease in body weight [27]) in any of the 

combination groups after 5 days of treatment. Microscopically, minimally to slightly decreased 

sternal bone marrow cellularity, characterized by loss of myeloid and erythroid precursors, was 

noted in both groups of mice administered 20 mg/kg dinaciclib. Based on these results, a dose 

regimen of 15 mg/kg dinaciclib IP two times per week and 15 mg/kg entinostat PO five times per 

week was chosen for NSG mouse studies. In a five-day tolerability study of the combination in 

naïve male and female BALB/c-Bcl-xL (Bcl-xL) transgenic mice, liquid feces, hunched posture, 

and an average weight loss of 15.03% were observed in mice administered 15 mg/kg dinaciclib IP 

iand15 mg/kg entinostat PO (Table S.3.2). Liquid feces was also observed in Bcl-xL mice 

administered 10 mg/kg dinaciclib IP and 15 mg/kg entinostat PO but not in mice administered 7.5 

mg/kg dinaciclib IP and entinostat PO. Based on these results, a dose regimen of 7.5 mg/kg 

dinaciclib IP two times per week and 15 mg/kg entinostat PO two times per week was utilized for 

the long-term Bcl-xL mouse model survival study.  

3.3.3 In vivo target engagement and efficacy of combined CDK/HDAC inhibition in mice 

Cooperative CDKi/HDACi target engagement was assessed in vivo in NSG mice bearing 

L363 MM xenografts. 6–8-week-old NSG mice were inoculated with 5x106 L363 MM cells 

subcutaneously into each flank, and tumors allowed to grow for 13 days before randomization into 

four treatment groups: vehicle control, dinaciclib (D) (15 mg/kg, IP, 3x/week), entinostat (E) (15 

mg/kg, PO, 5x/week), or the D+E combination.  For the target engagement experiment, xenografts 

from euthanized tumor-bearing mice (n = 3) were collected on day 5 for WB analysis (Fig. 3.2A). 

Combined CDK/HDAC inhibition was more effective at reducing MYC protein expression and 

increasing p16 expression overall in L363 xenografts compared to dinaciclib alone, and both 
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dinaciclib and the combination reduced total caspase 3 protein, indicating apoptosis; however, 

cleaved caspase protein was not detected via western blotting of tumor lysates.  

Combination efficacy versus single agent or control was evaluated in NSG mice bearing 

L363 MM xenografts.  For visualization, L363 cells were transfected with the pSicoLV-luciferase-

green fluorescent protein fusion gene (luc/GFP+) [7, 35].  NSG female Mice (n = 10) were treated 

with the same dose regimen as in the NSG efficacy study until tumors grew large enough to 

necessitate humane euthanasia. Tumor volumes were measured twice per week and growth of 

luc/GFP+ L363 MM xenografts was measured every two weeks by bioluminescence imaging. 

While single agent treatment with dinaciclib or entinostat significantly improved survival (Log 

Rank test p < 0.05), combined treatment with dinaciclib and entinostat significantly improved 

survival versus control or single agent (p < 0.01) (Fig. 3.2B). Additionally, an increase in mean 

tumor volume, measured via calipers, was delayed in the mice administered the combination of 

dinaciclib and entinostat compared to those administered single agent only (Fig. S3.3A). The 

overall increase in luc/GFP+ L363 MM xenograft mean radiance (p/s/cm2/sr), as detected via 

bioluminescent imaging, was slower to increase throughout the course of the efficacy study in 

NSG mice (Fig. S3.3B). However, mean tumor radiance increases over time were similar to those 

observed in tumor bearing NSG mice administered dinaciclib alone.  

In vivo efficacy of CDK/HDAC inhibition was assessed in an immunocompetent model of 

plasma cell tumors bearing similar features as human MM and Burkitt lymphoma [22]. Adult Bcl-

xL transgenic mice administered pristane oil via IP injection develop intraperitoneal 

plasmacytomas containing Myc translocations within 4-6 weeks [5, 22].  To test efficacy in this 

model, Bcl-xL tumors were transplanted into syngeneic pristane-primed male and female mice (n 

= 5) and allowed to grow for two weeks, at which time daily treatment with vehicle, single agent, 

or the dinaciclib/entinostat combination began. Cytologic evaluation of abdominocentesis samples 

was performed every other week to monitor peritoneal tumor presence and burden (Fig. S3.3C). 

Single agent treatment with dinaciclib (7.5 mg/kg, IP, 2x/week), entinostat (15 mg/kg, PO, 

2x/week), and combined CDK/HDAC treatment all showed significant improvement in survival 

(log rank test, p < 0.05) – (Fig 3.2C). However, combined CDK/HDAC inhibition was not superior 

to single agent treatment.   
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Figure 3.2.  In vivo evaluation of combined targeted CDK/HDAC inhibition. A) Representative 
WB analysis of L363 MM cell lysates from mice treated for 5 days with dinaciclib (15 mg/kg, 
IP, 2x/week), entinostat (15 mg/kg, PO, 2x/week) or both drugs.  Each lane represents a lysate 

from a single animal. Tumor lysates were probed for MYC, p16, total and cleaved caspase 3, and 
β-actin. B) In vivo efficacy of combined CDK/HDAC inhibition versus single agent or control 

treated NSG mice. C) B) In vivo efficacy of combined CDK/HDAC inhibition versus single 
agent or control treatment in Bcl-xL transgenic mice with intraperitoneal plasma cell tumors. 

Shaded areas around each survival curve represent survival probability. * = significantly 
prolonged survival versus control (p < 0.01, Log-Rank test). ** = significantly prolonged 

survival versus control and single agent treatment (p < 0.001, Log-Rank test).   



 
 

 

73 

Figure 3.2 continued 
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3.3.4 Combined CDK/HDAC inhibition cooperatively and selectively reduces MM patient 

cell viability ex vivo 

Selective reduction of the viability of MM cells was evaluated in bone marrow biopsy 

samples obtained from patients with confirmed smoldering multiple myeloma (SMM). Cells were 

selected for CD138 status using magnetic-activated cell sorting (MACS). CD138 positive and 

negative cells from 3 SMM patients were treated for 48 hours with dinaciclib (10 nM), entinostat 

(500 nM) or the combination. Viability of SMM cells, normalized to control-treated CD138 

positive and negative cell optical densities, was assessed via MTS assay in a 96 -well plate in 4 

wells per treatment. Combined CDK/HDAC inhibition with dinaciclib and entinostat more 

effectively reduced viability of SMM patient CD138-positive cells compared to single agent (Fig. 

3.3), with relative sparing of non-neoplastic CD138-negative cells.  

 

 

Figure 3.3.  Selective efficacy of combined CDK/HDAC inhibition in smoldering multiple 
myeloma (SMM) patient cells ex vivo. Viability of human CD138+ (MM) and CD138- cells 

extracted from bone marrow of SMM patients (n=3).  Cells were selected for CD138 status using 
magnetic-activated cell sorting (MACS). CD138+ and CD138- cells were treated with dinaciclib 

(10 nM), entinostat (500 nM), or the combination of the two. Solid bars indicate the average 
viability for each combination in CD138+ cells; hash-marked bars represent the average viability 
for CD138- cells. Error bars = standard deviation.  = p <0.0001; # = p <0.005 by unpaired two-

tailed Student’s t test. 
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3.3.5 RNA-seq identifies genes differentially expressed by combined CDKi/HDACi  

To gain understanding of the differential gene expression induced by combined CDK/HDAC 

inhibition and to identify the top pathways affected by the combination, RNA sequencing (RNA-

seq) with subsequent genetic analysis was performed in myeloma cells treated with combination 

or single-agent therapy. The L363 MM cell line, with a known synergistic response to combined 

CDK/HDAC inhibition [chapter 2], was utilized for the RNA sequencing experiment. L363 MM 

cells were treated with dinaciclib (4 nM), entinostat (250 nM), or the combination of both drugs 

for 48 hours. Lower doses of each drug were used based on results from previous dose matrix 

synergy analysis in L363 cells [Chapter 2] suggesting lower, less toxic, doses of both drugs still 

provide combination synergy. For total RNA-seq, samples/cells from three replicates were isolated 

and analyzed. Counts-per-million (CPM) of low-expressed genes across all samples were filtered 

out ensuring that in at least one treatment group all replicates met the cutoff of 1 CPM.  

Two-way analysis of variance (ANOVA) with interaction was performed to determine 

whether the combined drugs influence gene expression in a synergistic or antagonistic manner as 

described by Slinker [28]. One-way ANOVA contrasts were fitted to each gene to estimate the 

treatment effects of each single drug and their combination. Of the total number of significantly 

affected genes (2-fold increased/decreased expression compared to DMSO control), 404 genes 

were found via two-way ANOVA for simple effects if dinaciclib or entinostat is present to operate 

in a synergistic or antagonistic manner in the combination versus single agent treatment (Fig 3.4A). 

Furthermore, as shown in the heatmaps based on the intersections comparing lists of significant 

genes with combination treatment and interaction, 78 genes in total were found to be 

synergistically downregulated by the combination and 101 genes were synergistically upregulated 

compared to single agent treatment (Fig 3.4B-C).  
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Figure 3.4. RNA-seq identified genes synergistically changed compared to single agent 
treatment. L363 MM cells were treated for 48h with dinaciclib (4 nM), entinostat (250 nM) or 

the combination of the two. A) Intersection bar chart of all significantly upregulated or 

downregulated genes. Sets (with corresponding set sizes) represent the number of the genes non -
additively upregulated or downregulated versus single agent treatments, along with number of 

genes with additive upregulation or downregulation versus single agent treatments. B-C) 
Heatmaps of log2 fold change expression of significant genes (2-fold versus control) that were 

synergistically downregulated (B) or upregulated (C) by the combination compared to single 
agent dinaciclib or entinostat treatment via two-way ANOVA. Columns represent expression 

levels for each treatment (3 technical replicates). p < 0.05.   
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Figure 3.4 continued 
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3.3.6 GSEA identifies pathways associated with CDKi/HDACi synergy  

Gene set enrichment analysis (GSEA) was employed to investigate genetic pathways 

enriched in a synergistic CDKi/HDACi response in L363 cells [29]. From the RNA-seq results of 

significant ( 2-fold versus DMSO control) differentially expressed genes; GSEA was performed 

on the 14998 gene sets derived from the Gene Ontology (GO) dataset provided by the Molecular 

Signatures Database (MSigDB). 114 gene sets were cooperatively downregulated, and 20 gene 

sets were cooperatively upregulated, by the CDKi/HDACi combination of dinaciclib and 

entinostat compared to single agent treatments (Fig. 3.5A). Enrichment scores (ES) were defined 

as the degree to which genes in the gene set are over-represented at either the top (positive ES) or 

bottom (negative ES) of the ranked gene list [30], ranged between +1 and -1. Leading edge (LE) 

subsets (comprised of genes that contributed most to the enrichment signal) were required to 

contain at least one cooperatively upregulated gene determined from the pre-ranked ANOVA 

statistic. A significant ES was indicative of coordinated upregulation or downregulation of genes 

in the gene set.   

Within the Biological Process (BP) subset of the GO gene set, comprised of 7481 gene sets, 

the five most significantly enriched downregulated and upregulated gene sets were selected for 

evaluation (Fig 3.5B-C, Fig. S3.4A-J, Appendix B). The most significantly enriched 

downregulated gene sets were those involving DNA replication and protein folding/localization 

(ES ranging from -0.63 to -0.78 and adjusted p-value ≤ 0.0041) and were as follows (with 

synergistically downregulated LE genes): DNA Replication Checkpoint (CDC6, CDC45, TICRR, 

ORC1, CDT1, TIMELESS, TIPIN, ZNF830, DNA2), DNA Replication Initiation (CDC6, MCM5, 

MCM7, CDC45, POLA2, TICRR, ORC1, PRIM1, CDT1, MCM10, Protein Folding in 

Endoplasmic Reticulum (HSPA5, HSP90B1, PDIA3, CALR, ERO1A, EMC1, EMC4, CANX), 

Protein Localization to Kinetochore (RCC2, BUB3, NDC80, MTBP, CDT1, CDK1, HASPIN, 

SPDL1, TTK, CENPQ), and Telomere Maintenance Via Semiconservative Replication (FEN1, 

POLA2, RRIM1, POLD3, POLE3, ACD, POLD2, RFC3, DNA2, RFC4).  

The most significantly enriched upregulated gene sets (ES ranging from 0.33 to 0.48 and 

adjusted p-value = 0.0033) were those involved in cell adhesion, antigen presentation, immune  

response, and GTPase/RAS signal transduction and were as follows: Positive Regulation of Cell 
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Adhesion (EMP2, SOX2, JUP, CD44, CCL5, IL4R, RSU1, SMAD3, CD47, ITGA3), Immune 

Response Regulating Signaling Pathway and Activation of Immune Response (LGMN, TFNAIP3, 

MAPKAPK2, DUSP3, CD38, PRNP, CD47, NFKBIZ, PKRCD, PIK3CD; same LE genes in both 

gene sets), Regulation of Small GTPase Mediated Signal Transduction (RHOBTB2, ARHGAP17, 

MAPRE2, CYTH1, RALGPS1, AMOT, SPRY1, ITGA3, CYTH3, ARHGAP42) and Regulation 

of RAS Protein Signal Transduction (Leading edge genes: MAPRE2, CYTH1, RALGPS1, SPRY1, 

ITGA3, CYTH3, ARHGAP42, F2R, HEG, NET1).
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Figure 3.5 GSEA reveals enriched pathways associated with cooperative CDKi/HDACi 
response. A) Intersection bar chart [30] of all enriched upregulated or downregulated pathways 
in the Gene Ontology (GO) dataset provided by the Molecular Signatures Database (MSigDB). 
Sets (with corresponding set sizes) represent the number of enriched pathways non-additively 

upregulated or downregulated versus single agent treatments, along with number of enriched 
pathways with additive upregulation or downregulation versus single agent treatments. B-C)  

Two example enrichment plots from GSEA [30] of the Gene Ontology (GO) Biological Process 
(BP) ontology database. B) Downregulated pathway: DNA Replication Checkpoint. C) 

Upregulated pathway: Positive Regulation of Cell Adhesion. Within each figure are separate 
subfigures a-c. a) Running enrichment score (ES) calculated along the ranked gene list 

represented by the red-blue horizontal bar (the ANOVA statistic ranked from the highest positive 
to the highest negative value); the vertical black bars in the plot indicate the position of the genes 

from the respective GO terms; the vertical red/blue line indicates the positive and negative ES, 
respectively. NES = observed ES / mean(null ES). b) Ranking statistic and top ten GSEA leading 

edge genes (LE). c) Heatmap of the GSEA leading edge genes generated with hierarchical 
clustering of genes using the Ward distance and complete linkage; in each gene the mean 

expression of the control group was subtracted in the treatment samples prior to clustering. The 
GSEA plot was generated using custom R scripts and fgsea [31], ggplot2 [32], and 

ComplexHeatmap [33] packages. 
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Figure 3.5 continued 
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3.3.7 DAVID pathway analysis identifies function-related gene groups enriched in a 

synergistic CDKi/HDACi response  

The Database for Annotation, Visualization, and Integrated Discovery (DAVID) was used 

to analyze the synergistic genes (determined via two-way ANOVA of RNA-seq results) with at 

least two-fold upregulation or downregulation (101 and 78, respectively). This tool uses an 

algorithm to determine overlaps that are greater than that expected by chance between the 

synergistically upregulated or downregulated gene lists and the gene ontology (GO) database. A 

modified Fisher’s exact test was utilized to determine the overrepresented GO functions of a 

synergistic response signature and enriched GO terms were selected with a 5% false discovery rate. 

Upregulation or downregulation of over-represented pathways was determined with pathway z-

scores. For each over-represented GO term, a z-score was computed based on the number of up-

regulated and down-regulated genes according to the formula (up or down)/sqrt(total) proposed by 

Walter et al. [34] and visualized with bubble-plots. The absolute z-score cutoff of <-1 or >1 left 

102 total enriched pathways (53 downregulated and 49 upregulated). The 10 most downregulated 

and upregulated pathways in a synergistic CDKi/HDACi response, based on p-value are shown in 

figure 3.6B and GO pathways are provided in Appendix C.  

The downregulated pathways with the lowest z-scores, as determined by the modified 

Fisher’s exact test and shown in the bubble volcano plot (Fig. 3.6A), were those involved in 

cytokine activity (GO:0005125) and cytokine receptor binding (GO:0005126). Genes 

synergistically downregulated by combined CDKi/HDACi, common to both pathways,  include: 

GREM1, IL1A, CSF3, CXCL8, CSF2, IL23A, IL1B, CXCL1, CXCL3, CXCL2, and CXCL5. An 

upregulated gene, common to both pathways is EBI3. Eight of the ten most downregulated 

pathways, based on significance (lowest p-value) and number of hits within the gene set, were 

those related to leukocyte (primarily neutrophil) migration. Downregulated genes within these  

pathways include: IL1A, CXCL8, IL23A, CXCL1, CXCL3, CXCL2, PDE4B, GREM1, and 

CXCL5. Upregulated genes common to these pathways include CCR7, ITGB2, TNFRSF18, and 

PDGFA. The degree of overlap among the top downregulated pathways was striking. 

The upregulated pathways with the highest z-scores, as determined by them modified 

Fisher’s exact test and shown in the bubble volcano plot (Fig. 3.6A), were those involved in cell 
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signaling (GO:0010646 and GO:0023051, respectively). Genes synergistically upregulated by 

combined CDKi/HDACi, common to both  pathways, include CDKN1C, PRR5, PTPRR, WNT2B, 

ABAT,  SLC8A2, GRM4, FGF9, and  MAP3K8 (Fig. 3.6A, Appendix C). Likewise, eight of the 

ten most significantly upregulated pathways are those involved in cell surface adhesion and 

signaling (Fig. 3.6C). Synergistically upregulated genes within these pathways include PRR5, 

PRNP, EBI3, IGF2, SOX13, CTLA4, ABAT, CCR7, and MAP3K8. 
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Figure 3.6. Modified Fisher’s test reveals enriched function-related gene groups in a synergistic 
CDKi/HDACi response. The Database for Annotation, Visualization, and Integrated Discovery 

(DAVID) was used to analysis the pathways most commonly affected by combined 
CDKi/HDACi. Genes that were synergistically changed in the same direction by the combination 

treatment and that reached 2-fold change were selected for Fisher’s exact test to determine 
overrepresented Gene Ontology (GO) functions. Enriched GO terms were selected with a 5% 

false discovery rate. A) For each over-represented GO term a z-score was computed based on the 
number of up-regulated and down-regulated genes according to the formula (up-down)/sqrt(total) 

proposed by Walter et al. [34] and visualized with bubble-plots. B-C) Enriched pathways based 
on a modified Fisher’s exact test (EASE score) using DAVID [35, 36] and GO_FAT pathways 
for the list of differentially expressed genes common between all combination treatments. B = 

top 10 pathways downregulated by synergistic CDK/HDAC inhibition with z-score < -1, C = top 

10 pathways upregulated by synergistic CDK/HDAC inhibition with z-score > 1. 
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Figure 3.6. Continued 
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3.3.8 Master regulators of a combined CDKi/HDACi response  

Ingenuity Upstream Regulator Analysis (IURA), an application within Ingenuity Pathway 

Analysis® (IPA, Qiagen) was used to identify the upstream transcriptional regulators of combined 

CDKi/HDACi synergy from the RNA-seq data. The lists of differentially expressed genes from 

the L363 MM cells treated with dinaciclib (4 nM) and entinostat (250 nM) were imported into IPA. 

A cutoff of 1.5-fold significance was selected to provide a broad dataset for analysis. 747 

significant genes associated with either single agent treatment or combined CDKi/HDACi were 

used as the input dataset to provide a broad list of genes with adequate coverage for analysis [5]. 

IURA examines the number of known targets of each transcription regulator present in the 

imported dataset, and also compares their direction of change to what is expected from the 

literature (from information stored in the Ingenuity® Knowledge Base) to predict likely relevant 

transcriptional regulators.  For each potential transcriptional regulator an overlap p‐value and 

activation z‐score were calculated (Table 3.1). 

A total of fourteen transcriptional regulators were identified with highly significant p-values 

for overlap and activation z-scores between -2 and 2 (Table 3.1, Fig. 3.7): Five “inhibited” 

transcriptional regulators (ANKRD42, TGIF1, FLI1, NFKBIZ, ATF4) and nine “activated” 

transcriptional regulators (LEF1, ZBTB16, ZFP36, ID1, CBX5, ERG2, CITED2, Tcf7, and TP53).  

The master transcriptional regulators with predicted inhibition consist primarily of those involved 

in cell adhesion and leukocyte migration. Among the regulators with predicted activation, several 

are known tumor suppressors or activate/potentiate other tumor suppressors, such as TP53, 

ZBTB16, and ZFP36 [37-39]. Several target molecules of the upstream regulators were also 

identified by GSEA as synergistic leading edge genes of enriched upregulated/downregulated 

pathways; and/or by Fisher’s exact testing of GO datasets as components of enriched pathways 

(Table 3.1). The downregulated molecules, based on this test, were primarily involved in cell 

adhesion, antigen presentation, leukocyte trafficking, and chemotaxis and include CXCL1, 

CXCL2, CXCL3, CXCL5, CXCL8, IL1A, IL1B, CSF2, and CSF3, among others. The upregulated 

molecules are involved in antigen presentation, immune response, and bone remodeling and 

include SPRY1, SOX13, and PRNP, among others.  
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Table 3.1. Upstream master regulators of a combined CDKi/HDACi response 

 

As shown in Table 3.1, Ingenuity Upstream Regulator analysis was performed on the lists of differentially expressed 
genes from the L363 MM cells treated with dinaciclib (4 nM) and entinostat (250 nM) or the combination of both 
imported into IPA. Upstream regulator analysis revealed five CDKi/HDACi synergy-associated “inhibited” 

transcriptional regulators and nine “activated” transcriptional regulators. Bold gene = synergistic gene identified as 
LE gene in GSEA of GO_BP dataset. Underlined gene = synergistic gene identified in top 10 enriched pathways 
(upregulated or downregulated) from Fisher's exact testing of GO_FAT dataset. 

Upstream 

Regulator

Predicted 

Activation 

State

Activation 

z-score

p-value of 

overlap Target Molecules in Dataset

ANKRD42 Inhibited -2 3.92E-06 CSF2,CSF3,CXCL3,IL1B

TGIF1 Inhibited -2.185 1.23E-06 CCL3,CXCL1,CXCL2,CXCL3,CXCL8,IL1B

FLI1 Inhibited -2.114 0.0000368 CCN2,CSF2,CSF3,EGR1,LOX,MMP1,SRGN,TNC

NFKBIZ Inhibited -2.415 0.0000084 CSF2,CSF3,CXCL3,CXCL8,IL23A,MMP3

ATF4 Inhibited -3 0.0000268
AMPD1,CHAC1,CTH,CXCL1,CXCL2,CXCL8,DDIT3,DDR2,LAMP3,PSAT1,SLC3A2,SLC7A11, 

SLC7A5,WNT11

LEF1 Activated 2.2 0.031 CD274,CDH1,ITGB8,PPM1L,SGK1,SH3BGRL2,SPRY1

ZBTB16 Activated 2.138 0.00857 CD274,CSF2,IL1A,IL3RA,KLF2,MMP9,MPI,NFKBIZ,SOX13,TSC22D3

ZFP36 Activated 2.442 1.54E-07 CDC6,CSF2,CXCL2,CXCL3,E2F8,IL1A,IL1B,IL23A,MEFV,MMP1,PBK,TRAF1

ID1 Activated 2.236 0.0000559 ALDH1A1,CCN2,EGR1,IGF2,MMP14,MMP9,NOTCH1,TMPRSS6

CBX5 Activated 2 0.0213 CDC25A,CDC6,CXCL5,CYP1B1,PLAAT4,SCG5

EGR2 Activated 2.158 0.0000526 CBLB,CCL1,DMBT1,EGR1,FCER2,IGF2,IL1A,IL1B,MME,NOTCH1,RRAD,TNFSF10

CITED2 Activated 2.1 0.0000209
ARL4A,CD274,CXCL1,CXCL2,CXCL3,CXCL8,EGLN3,IL1A,IL1B,LCP2,MMP1,NAMPT,SAT1,SERPI

NB2,ZBP1

Tcf7 Activated 2.333 0.0228 CSF2,IL1R1,ITGB8,PAPSS2,PPM1L,SH3BGRL2,SOX13,SPRY1,STAT1

TP53 Activated 2.866 2.25E-13

ABAT,ALDH1A1,APOL1,CCN1,CCN2,CDC25A,CDC6,CDH1,CERS6,CSF2,CXCL1,CXCL2,CXCL3,

CXCL8,DDIT3,DNMT3B,E2F8,EGR1,ENTPD8,FSTL1,GAS7,GPM6B,H2AZ1,IDH2,IGF1,IGF2, 

IL16,IL1A,IL1B,IL4I1,KRT8,LAMP3,LOX,MAFB,MAP3K8,MB,MIS18A,MMP1,MMP3,MMP9,MPI,NAM

PT,NCAPG,NOTCH1,PACSIN1,PADI4,PBK,PDE4B,PDGFA,PFKFB4,PIK3CG,PLAAT4,PRKG1,     

PRNP,PTPRU,RAB11FIP1,RFC3,RGS13,RND3,RRAD,SAT1,SERPINB2,SERPINE1,SESN1,SGK1

,SH3BGRL2,SLC7A11,SLC7A5,SPHK2,STAT1,TMOD1,TNC,TNFAIP2,TNFRSF18,TNFSF10,TRA

F1,TSC22D3,TTK,TTN,TUBB3,VRK1,WDHD1,ZFP36L1,ZYX
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Figure 3.7. Ingenuity upstream regulator analysis identifies predicted master transcriptional 

regulators of  combined CDK/HDAC inhibition. A total of fourteen transcriptional regulators 
were identified with highly significant p-values for overlap and activation z-scores between -2 

and 2. Transcriptional regulators, and their target genes, are arranged by subcellular localization 
(nucleus, cytoplasm, plasma membrane, or secreted into extracellular space). Master 

transcriptional regulators are shown in orange (“activated”: LEF1, ZBTB16, ZFP36, ID1, CBX5, 
ERG2, CITED2, Tcf7, and TP53) and blue (“inhibited”: ANKRD42, TGIF1, FLI1, NFKBIZ, 

ATF4).  Target genes of the predicted master regulators  are shown in  red (synergistically 
upregulated by combined CDKi/HDACi) or green (synergistically downregulated by combined 

CDKi/HDACi). 
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Fig 3.7. Continued 
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3.4 Discussion  

Combined indirect targeting of oncogenic MYC and tumor suppressors such as p16 may 

be a useful strategy in cancer therapy, especially as activation of oncogenes and inactivation of 

tumor suppressors act in combination to promote cancer cell growth and contribute to malignancy 

(8, 9, 40). Combined targeted CDK/HDAC inhibition by dinaciclib and entinostat was effective at 

reducing oncogenic MYC and its effector molecules, as well as increasing p16 activity, in vitro 

and in vivo. Moreover, combined dinaciclib/entinostat was effective at reducing both the rate of 

L363 tumor growth in vivo in NSG mice and in myeloma patient cells treated ex vivo.  

Additionally, GSEA and upstream regulator analysis will help reveal a response signature of 

combined CDK/HDAC inhibition by highlighting the top pathway affected by the combination.  

MYC binds and recruits the positive transcription elongation factor b (P-TEFb; comprised 

of  activated CDK9 and cyclin T1) to its target genes and activates RNA polymerase II (Pol II) 

transcription complexes by phosphorylation of Pol II at serine 2 in its carboxy-terminal domain 

(CTD) to initiate elongation of its target genes [23, 24]. As dinaciclib is known to inhibit CDK9 

by decreasing phosphorylation of threonine 186 [14], a decrease in p-CDK9Thr186 and resultant 

decrease in phosphorylated Pol II at serine 2 (pPol IIser2) were noted by 48 hours in L363 MM cells 

treated with dinaciclib alone. Interestingly though, pPol IIser2 is effectively reduced by combined 

CDK/HDAC as early as 24 hours and is almost undetectable at 48 hours, implying that the 

combination may be more effective at reducing transcription of MYC targets in vitro. Additionally, 

cooperative reduction of CDK9 activity by the combination, as indicated by reduced expression of 

pCDK9Thr186 in MM cells, implies that combined CDK/HDAC inhibition is more effective at 

decreasing downstream MYC target effects.   

In vitro data also shows that targeted CDK/HDAC inhibition is effective in MM cells with 

induced resistance to proteasome inhibitors (PIs) - (Fig. 3.1, Fig. S3.2). PI resistance is an 

important driver in increasing oncogenic MYC activity and can result in overexpression of the 

drug efflux transporter P-glycoprotein/ABCB1 and thereby reducing the efficacy of other potential 

therapeutics [16, 41, 42]. As such, it is important that a drug combination, likely to be evaluated 

in clinical trials in patients who have developed PI resistance, be effective in PI-resistant MM as 

is the case with the proposed novel CDKi/HDACi combination of dinaciclib and entinostat.  
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The use and outcome of validated and predictive animal models is pivotal in translating the 

preclinical findings to the clinic. Therefore, target engagement and efficacy of combined 

CDKi/HDACi were investigated in two separate models, each fulfilling a specific purpose. First, 

after assessing tolerability of combination treatment, NSG mice bearing subcutaneous L363 MM 

xenografts were assessed for combination target engagement, indicated by reduction of MYC 

protein and increased activity of p16, and efficacy as determined by delayed development of tumor 

burden. The data show that not only is combined CDK/HDAC inhibition with dinaciclib and 

entinostat tolerated, but the combination reduced MYC protein expression and increased p16 

activity slightly better than single agent treatment. More importantly, the combination significantly 

reduced the rate of tumor growth in xenografts (Fig 3.2).  Second, the Bcl-xL transgenic mouse 

study allowed detection of combination effects in an immunocompetent model of plasma cell 

tumors with features of human MM and Burkitt lymphoma [5, 22]. Although combined 

CDK/HDAC inhibition prolonged survival, it was no more effective than single agent treatment. 

A possible reason for this is that enhanced toxicity in Bcl-xL transgenic mice necessitated a lower 

dose than in NSG mice.  

Cooperative effects of combined CDK/HDAC inhibition were assessed in freshly isolated 

patient myeloma cells to provide evidence that efficacy was not limited to cultured cell lines and 

mouse models. The data suggest that the combination was more effective at reducing the viability 

of human CD138+ myeloma cells than single agent treatment while still showing selectivity for 

CD138+ myeloma cells; suggesting that combined therapy may spare patients from the detrimental 

effects of bone marrow depletion because of chemotherapy.   

Analysis of the RNA-seq results from L363 myeloma cells treated with dinaciclib and/or 

entinostat provided insight into mechanisms and potential biomarkers of a combined 

CDKi/HDACi response, as well as master regulators of synergy.   Based on the ANOVA statistical 

analysis of differentially expressed genes and subsequent gene set enrichment analysis of the GO 

Biological Process gene sets, downregulated genes and pathways included those involving DNA 

replication and protein folding/localization (Fig 3.5B, Fig. S3.4A-E). These effects are in line with 

expected pharmacologic effects of  individual CDK and HDAC inhibition [14, 21, 43], but also 

provide insight into new potential mechanisms of synergy and biomarkers of a combined response. 

For example, it is known that dinaciclib inhibits the unfolded protein response through a CDK1- 
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and 5-dependent mechanism [43]. However, GSEA identifying synergistic downregulation of 

protein folding machinery suggests that combining dinaciclib with the HDAC inhibitor entinostat 

may enhance UPR-mediated cell death in MM. Further studies are necessary to confirm this, 

however. Similarly, the GO_BP gene set “Positive Regulation of Cell Adhesion” was among 

enriched upregulated pathways identified in a synergistic CDKi/HDACi response. One of the 

synergistically upregulated leading-edge genes in this pathway was SMAD3 (Fig. 3.5C, Fig. S. 

3.4F). Increased signaling of the TGFβ/SMAD pathway is a potentially negative consequence 

associated with combined CDK/HDAC inhibition. This provides further rationale for investigating  

the addition of TGFβ pathway inhibitors to the combination to help abrogate TGFβ receptor 

signaling in check and further enhance decreases in myeloma cell proliferation in vitro to prolong 

survival in animal models of MM. 

Additionally, Fisher’s exact testing of the significant genes, using a wider data set 

(GO_FAT) provided additional information on upregulated and downregulated functionally-

related gene groups and interactions. The ten most downregulated pathways were those related to 

leukocyte migration, which correlates largely with the results from Ingenuity upstream regulator 

analysis (IURA). Downregulated genes within these pathways include: IL1A, CXCL8, IL23A, 

CXCL1, CXCL3, CXCL2, PDE4B, GREM1, and CXCL5. Upregulated genes common to these 

pathways include CCR7, ITGB2, TNFRSF18, and PDGFA. Interestingly, TNFRSF18, which was 

synergistically upregulated by CDK/HDAC inhibition, has been identified as a tumor suppressor 

in MM and may enhance sensitivity of MM cells to proteasome inhibitors by inhibiting NF-κB 

activation [44]. TNFRSF18 was also a target gene predicted to be upregulated by TP53 in the 

Ingenuity upstream regulator analysis (Table 3.1) 

Ingenuity upstream regulator analysis, based on over-representation in knowledge-based 

transcriptional networks, was employed to identify master regulators controlling synergistically 

upregulated/downregulated target genes. The master transcriptional regulators predicted to be 

inhibited by combined CDK/HDAC inhibition were mainly those involved in regulating cell 

adhesion molecules and work both intracellularly and as part of the extracellular matrix to promote 

metastasis. A master regulator of combined CDK/HDAC inhibition with predicted activation was 

TP53 (Table 3.1, Fig. 3.7). This molecule obviously has a broad set of activities as it relates to 

cancer, but its dysregulation is implicated in the pathogenesis and progression of MM [37]. 
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Activating TP53, therefore, is a likely beneficial effect of combined CDKi/HDACi interaction. 

Another known tumor suppressor predicted to be activated by the combination, ZBTB16 [38], is 

also an important gene involved in bone formation [45]. Its activation, therefore, may be beneficial 

in patients to help prevent one of the most deleterious consequences of MM progression, bony 

lysis. TCF7 and LEF1, both upstream transcriptional regulators with predicted activation by 

synergistic CDK/HDAC inhibition were predicted to activate SPRY1, an enriched gene in GSEA 

analysis on the leading edge of two of the top 5 upregulated gene sets (Fig.S.3.4). SPRY1 (Sprouty 

1) promotes osteogenesis and is regulated by miR-21 [46], thus providing more evidence that the 

combination may prevent bone-loss/lysis in vivo. However, a recent study has proposed that 

upregulated LEF1 may promote MM cell growth [47]. It is important to note though, that LEF1 

was not found to be one of the synergistically upregulated genes from the RNA-seq results and 

was actually only upregulated with single agent entinostat treatment in L363 cells. Further studies, 

including validation of predicted changes to master regulators via RT-PCR, are necessary to 

evaluate the effects of combined CDK/HDAC inhibition on the master regulators and their targets.  

3.5 Future Directions and Limitations 

Further investigation into a combined genetic signature will aid in discovering mechanisms 

of drug synergy and provide biomarkers for a combined response that may translate to clinics. 

Concurrent to the L363 cells treated in monoculture with either single agent or the combination, 

RNA samples were obtained from treated L363 cells co-cultured with HS-5 bone marrow stromal 

cells (BMSCs); as well as L363 cells (with and without BMSC co-culture) treated with the TGFβR 

inhibitor SB505124. RNA-seq and subsequent data analysis from these experiments will help 

provide insight into the interplay between myeloma and the microenvironment of supportive 

stroma and may help elucidate novel mechanisms of drug sensitivity and/or resistance in MM. 

Weighted gene co-expression network analysis (WGCNA) of the RNA-seq data from these 

experiments will aid in elucidating a signature of combined CDKi/HDACi response in MM and 

provide biomarkers for future preclinical development.  

Experimental validation of activation or inhibition of the predicted master regulators via RT-

PCR of RNA from treated cells is necessary. Also, it will be important to determine which of the 

predicted transcriptional regulators show a trend in expression upwards/downwards during disease 
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progression from monoclonal gammopathy of undetermined significance (MGUS) to SMM to 

MM based on patient data.   

More investigations into the effects of CDKi/HDACi combination therapy on patient 

myeloma cells ex vivo are also necessary, particularly as the samples in this study were limited to 

those from smoldering (asymptomatic) myeloma patients and not from those who are symptomatic 

or refractory to first line therapies. Investigating the efficacy of combined CDK/HDAC inhibitor 

therapy in relapsed and/or refractory MM patient cells is necessary as this patient population would 

be most likely to receive combination therapy and may be the most likely to benefit.  Additionally, 

evaluation of the effects of the combination in a CD138+ and CD138 negative coculture setting 

could give insight into possible resistance to treatment that bone marrow stromal cells may impart 

[48]; especially as the RNA-seq data has elucidated the important changes in cell-cell interaction, 

leukocyte trafficking, and other pathways that contextual understanding of the microenvironment 

may impart.  

A potential limitation of the GSEA strategy was that the Gene Ontology (GO) results 

summarized in this study were restricted to gene sets derived from the Biological Process (BP) 

ontology. Gene sets not included in the summary but included in the full GSEA of the RNA-seq 

data include Cellular Component (CC) and Molecular Function (MF) ontology gene sets, 

comprised of 996 and 1708 gene sets, respectively. A future direction will be to incorporate GSEA 

of these gene sets into the analysis of important enriched gene sets in a combined CDKi/HDACi 

response.   

In summary, these studies have provided rationale for combined CDK/HDAC inhibition in 

treating human MM. The cooperative effects on targets and limited off -target effects as shown in 

in vitro, in vivo, and ex vivo studies support that the combination may have therapeutic utility for 

patients.   

3.6 Materials and Methods 

3.6.1 Human MM and other cell lines 

L363 human MM cells were obtained in 2014, cultured, and authenticated as described 

previously [6]. LP-1 oprozomib-resistant MM cells were generated from parental MM cell lines 
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(obtained from M. Kuehl, NCI) by exposure to increasing concentrations of oprozomib (up to 

1μM) over a period of up to 45 weeks. Resistance to oprozomib was confirmed via dose-response 

assay before experiments. Cells were cultured in RPMI 1640 with GlutaMAX L-glutamine (Life 

Technologies) supplemented with 10% fetal bovine serum (Cambrex BioScience), 100 U/ml 

penicillin and 100 μg/ml streptomycin (life technologies).  

3.6.2 Western blot analysis 

For western blot (WB) experiments, cells were seeded at 1.5x10^6 cells/ml, 3 ml/well in 

six-well plates and treated with DMSO (10 nM), dinaciclib (10 nM), entinostat (500 nM) or the 

combination of dinaciclib and entinostat for 24, 48 or 72 hours. Immunoblot analyses were 

performed on cells lysed with RIPA buffer (Thermo Fisher Scientific), electrophoresed on 4 -20% 

Tris-Glycine SDSPAGE gels (Novex), and blotted on to nitrocellulose using iBlot (Invitrogen).  

Each experiment was repeated at least three times, and a representative blot is shown in the figure. 

Antibodies for β-actin, were obtained from Cell Signaling and used at 1:1000 dilutions.   

3.6.3 Cell viability assays in human MM cell lines and primary human MM cells  

For cell viability assays MM cell lines (LP1, LP1-OpzR) were treated with increasing doses 

of a single agent or a combination of two drugs (1:1 molar ratio). Cells were seeded in 96-well 

plates at 50,000 cells per well in 200 mL media and treated for 48 hours and MTS assay using 

CellTiter96® Aqueous One Solution Cell Proliferation Assay (Promega) was performed to 

determine cell titers.  Ratios of inhibitor-treated to untreated control cell titers were calculated. 

Activity and synergy analyses were performed on a dose matrix comprised of eight single agent 

concentrations for each compound, and the 64 combinations thereof. MM cells were seeded in 96-

well plates at 50,000 cells per well in 200m media with four replicates per dose. Viability was 

assessed after 48 h of treatment with CellTiter96® Aqueous One MTS reagent (Promega).  

For ex vivo viability assays, bone marrow aspirates were collected from patients with 

confirmed smoldering multiple myeloma (SMM) enrolled in clinical trials at the NCI/NIH. 

Informed consent forms were reviewed and signed by all patients prior to admission. Ficoll-Paque 

PLUS density gradient sedimentation (Cytiva) was utilized to isolate bone marrow mononuclear 
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cells and primary SMM cells as per the manufacturer’s protocol. CD138 positive cells were further 

separated from bone marrow samples by antibody-mediated positive selection using anti-CD138 

magnetic-activated cell separation microbeads (Miltenyi Biotech). The percentage of CD138 

positive cells in the positive fraction was quantified by flow cytometric analysis using FlowJo 

software and found to be greater than 98%. Ex vivo patient cell viability was determined in CD138 

positive and CD138 negative cells treated with the three top combinations (at IC50 doses of each 

drug) compared to DMSO-treated control cells.   

3.6.4 Flow cytometry assay for apoptosis in human MM cell lines  

L363, LP-1-Parental, or LP-1-OpzR MM cells were seeded at 1.5x10^6 cells/ml, 3 ml/well 

in six-well plates and treated with DMSO (10 nM), dinaciclib (10 nM), entinostat (500 nM) or the 

combination of dinaciclib and entinostat for 24, 48 or 72 hours. Cells were stained for apoptosis 

using FITC Annexin V and propridium iodide (PI) reagents as per the manufacturer’s protocol 

(#556547BD Biosciences). After incubation, cells were quantified by flow cytometric analysis 

using FlowJo software.   

3.6.5 In vivo experiments 

All animal experiments were conducted in accordance with the Guide for the Care and Use 

of Laboratory Animals and institutionally approved (LCBG-009, ACUC, NCI) in a facility 

approved by the Association for Assessment and Accreditation of Laboratory Animal Care. 

Tolerability and dose ranging of combined CDK/HDAC inhibition with dinaciclib and entinostat 

was evaluated in both naïve NSG mice and naïve Bcl-xL transgenic mice prior to starting studies.  

For target engagement and efficacy studies in NSG mice bearing L363 MM xenografts, 

5x10^6 cells were inoculated onto each flank (2 tumors per mouse) of NSG (NOD scid gamma) 

mice (NCI, Frederick, MD) and allowed to grow for 11 days prior to randomization into treatment 

groups (4 groups; 10 mice per group). For visualization, L363 cells were transfected with the 

pSicoLV-luciferase-green fluorescent protein fusion gene (luc/GFP+) [21]. Mice were treated with 

15 mg/kg dinaciclib (intraperitoneal [IP], in 20% β-Cyclodextrin, 3x/week)  and 15 mg/kg 

entinostat (oral gavage [PO] or IP, in 20% β-Cyclodextrin, 5x/week). Tumor volumes and animal 



 
 

 

97 

weights were measured twice weekly, and growth of luc/GFP positive L363 cells was measured 

weekly manually with calipers and by bioluminescence using a XenogenIVIS100® system. For 

the target engagement study, mice were humanely euthanized on the fifth day and tumors were 

collected for histology and western blotting. For the long-term efficacy study, NSG mice were 

humanely euthanized an tumors collected for histology if animals were observed in moribund 

condition or if one of the tumor dimensions met or exceeded 1 cm in diameter.  Kaplan-Meier 

survival curves were generated for overall survival between the four groups. Survival probability 

distributions were compared using the log rank test.  

For the long-term in vivo efficacy in the Bcl-xl transgenic model, BALB/c-Bcl-xL 

transgenic mice were generated as previously described [22]. Tumor transplants were initiated by 

injecting finely minced oil granuloma tissue from donor mice into intraperitoneally into syngeneic 

BALB/c-Bcl-xL recipient mice that had primed with 0.2 ml pristane oil 14 days prior to 

transplantation. Tumors were allowed to grow for 14 days prior to randomization  into treatment 

groups (4 groups, 5 animals per group). Mice were administered DMSO 7.5 mg/kg dinaciclib (IP, 

2x/week), 15 mg/kg entinostat (PO, 2x/week) or the combination. Mice were treated until criteria 

for humane euthanasia were met [27]. Plasma cell tumors were diagnosed via Wright-Geimsa 

staining of ascites fluid cytofuge preparations. The criterion for a positive sample was ten tumor 

cells per high-powered field. Survival probability distributions were compared among Kaplan-

Meier survival curves generated for each treatment and compared using the log rank test. 

3.6.6 RNA-seq and differential gene expression analysis of combined CDK-HDAC 

inhibition 

L363 MM cells were cultured either alone or in co-culture with bone marrow stromal cells 

(BMSC-HS5) and treated with dinaciclib (4nM), entinostat (250nM), SB505125 (5M); dinaciclib 

and entinostat combination, and dinaciclib, entinostat and SB505125 triple combination. For total 

RNA sequencing (RNA-seq) of samples/cells from three replicates cultured in above conditions 

were harvested, and RNA were isolated using the RNeasy Mini Kit (Qiagen) using manufacturers 

protocol. Briefly, 3 million cells were harvested, lysed by RLT buffer, and loaded on QIAshredder 

spin column homogenizer (Qiagen). The filtrate was proceeded for RNA isolation as per the RNA 

mini kit guidelines. RNA was eluted in RNAse free water provided in the kit and stored at -80C. 



 
 

 

98 

RNA concentration was measured 260/280 and 230/260 ratios using DeNovix DS-11 

Spectrophotometers/Fluorometers machine. For quality control (QC) of  the RNA samples, 

automated electrophoresis via the Agilent Tape Station system with regular sensitivity (25-500 

ng/ul), at Center for Cancer Research (CCR)’s Genomics core, was performed. The RNA samples 

were diluted to approximately 100 ng/µl in PCR strip tubes in a total volume of 10 µl. The QC of 

RNA is described as RNA integrity number (RIN) ranging from intact (10) to degraded (1). All 

the 36 RNA samples had RIN 8. and at a concentration of 50 ng/ul in a volume of 10ul were sent 

to CCR’s Genomic core at Frederick for sequencing on the NovaSeq 6000® system using Illumina 

TruSeq Stranded mRNA Library Prep and paired-end sequencing. Reads of the samples were 

trimmed for adapters and low-quality bases using Cutadapt before alignment with the reference 

genome (hg38) and the annotated transcripts using STAR. The mapping statistics were calculated 

using Picard software. Library complexity was measured in terms of unique fragments in the 

mapped reads using Picard’s MarkDuplicate utility. In addition, the gene expression quantification 

analysis was performed for all samples using STAR/RSEM tools. 

Gene-level raw counts (RSEM) were transformed to counts-per-million (CPM) with library 

size normalization [49]. Low-expressed genes across all samples were filtered out assuring that in 

at least one treatment group all replicates met the cutoff of 1 CPM. Subsequently, limma-voom 

[50] was used for quantile normalization and empirical Bayes extension of Analysis of Variance 

(ANOVA). Univariate two-way ANOVA with interaction was performed to determine whether 

the combined drugs influence gene expression in a synergistic or antagonistic manner as described 

by Slinker [28]. One-way ANOVA contrasts were also fitted to each gene to estimate the treatment 

effects of each single drug and their combination. The univariate p-values were adjusted for false 

discovery rate (FDR) using the method of Benjamini and Hochberg [51]. An adjusted p-value 

<0.05 and absolute fold change >1.5 were used as the cutoffs to identify significant genes. The 

analyses were done using the R programming language version 3.5.1, EdgeR version 3.24.3, limma 

version 3.38.3 Bioconductor packages, and the NIH Integrated Data Analysis Platform (NIDAP). 

3.6.7 Gene set enrichment analysis 

Gene Set Enrichment Analysis (GSEA) [29] was performed using Bioconductor fgsea 

package [30] and GO Ontology collections from The Molecular Signatures Database (MSigDB 
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v7.0) . In the GSEA analysis, genes were pre-ranked with the ANOVA statistic for the combination 

treatment effect and the interaction term. For each gene set, p-value was calculated with 5000 

random gene permutations. Gene sets with the FDR less than 5% were considered significantly 

enriched. The GSEA plot was generated using custom R scripts and fast gene set enrichment 

analysis (fgsea) implementation method (open-source R package in Bioconductor) – [31], ggplot2 

[32], and ComplexHeatmap [33] packages.  

3.6.8 DAVID enrichment analysis of GO data set 

The Database for Annotation, Visualization, and Integrated Discovery (DAVID, 

https://david.ncifcrf.gov/) [35, 36] was used to determine overrepresented Gene Ontology (GO) 

functions in the lists of significant genes. GO_FAT functional categories (comprised of GO subsets 

with the broadest terms filtered out) were tested. Enriched GO terms were selected with nominal 

p-value less than 0.05 with the synergistically upregulated or downregulated genes from RNA-seq 

and the false discovery rate less than 5% [51]. For each over-represented GO term a z-score was 

computed based on the number of up-regulated and down-regulated genes according to the formula 

(up-down)/sqrt(total) proposed by Walter et.al [34] and visualized with bubble-plots.  
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3.8 Supplemental Figures and Tables: 

 

Figure S. 3.1.  Evaluation of on- and off-target CDK and HDAC effects by dinaciclib and/or 
entinostat treatment. L363 MM Cells were treated for 24 or 48 hours with dinaciclib (Dina – 10 

nM) or entinostat (Entino – 500 nM), singly or in combination (D + E). A) Representative 
western blot (WB) images of target CDKs 1, 2, 5 and 9 (including phospho-CDK9Thr186 (blue 

labels and boxes) versus non-target CDK6 (black box and labels). B) Representative WB images 
of entinostat targeted HDACs 1 and 3 (blue labels and boxes) versus non-target HDACs 2, 4, 7 

and 11 (black box and labels).
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Figure S. 3.2.  Evaluation of targeted combined CDK/HDAC inhibition in LP-1 parental and 
oprozomib resistant MM cell lines. A) Representative bar charts of western blot (WB) 

ratiometric analysis, normalized to β-Actin and DMSO-treated control cells, of bands 
representing MYC, p16, HDAC1, HDAC3, CDK1, CDK2, CDK5, and CDK9 in LP-1-Parental 
and proteasome inhibitor resistant (LP-1-OpzR) cells treated for 24, 48, or 72 hours with IC50 

concentrations of dinaciclib (LP-1-P and LP-1-OpzR = 5 nM) and entinostat (LP-1-P = 62.5 nM, 

LP-1-OpzR = 250 nM) as determined by dose matrix synergy analysis (Fig. 3.1G-H). B-C) 
Dose-response curves for dinaciclib and entinostat in LP-1-P (B) and LP-1-OpzR (C) cells. Cell 
viability was assessed with MTS assay 48h after treatment with escalated dose concentrations of 
either drug individually or in combination at a 1:1 molar ratio. Each data point represents mean 

of 4 wells and error bars indicate replicate standard deviation. IC50 (in nM) for individual drugs 
and combination in each table. D-E) Matrix dose response testing for activity and synergy with 
representative heat maps and topographical graphs of excess of highest single agent (EOSHA) 
showing the amount of additional activity achieved combined dinaciclib/entinostat treatment 

achieved over the highest single agent dose in each respective row. LP-1P (D) or LP-1-OpzR (E) 
MM cells were treated with the top 3 combinations for 48 hours at 8 different doses (64 total 
dose combination). HSA Score = highest single agent synergy score (>10 indicates synergy).  
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Fig S. 3.2 Continued 
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Figure S. 3.3.  Evaluating efficacy of combined CDK/HDAC inhibition in mouse models of MM. 
A-B) Mean tumor volume (A) and mean tumor radiance (B) over time in NSG mice bearing 

GFP/Luc+ L363 xenografts (n = 10). A) tumor volume expressed in mm3. Black line = vehicle 
control, red line = entinostat (15 mg/kg, PO, 5x/week), blue line = dinaciclib (15 mg/kg, IP, 

3x/week), purple line = combo. B) Mean tumor radiance over time expressed as p/s/cm 2/sr. C) 
Peritoneal tumor incidence in pristane-induced Bcl-xL mice over time.   
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Figure S. 3.4 GSEA reveals enriched pathways associated with cooperative CDKi/HDACi 
response. A-J)  Enrichment plots from GSEA [30] of the Gene Ontology (GO) Biological 

Process (BP) ontology database. A-E) Synergistically downregulated GO BP pathways: DNA 
Replication Checkpoint (A), DNA Replication Initiation (B), Protein Folding in Endoplasmic 

Reticulum (C), Protein Localization to Kinetochore (D), Telomere Maintenance Via Semi 
Conservative Replication (E). F-J) Synergistically upregulated pathways: Positive Regulation of 
Cell Adhesion (F), Immune Response Regulating Signaling Pathway (G), Activation of Immune 

Response (H), Regulation of Immune Response (I), Regulation of Small GTPase-Mediated 

Signal Transduction (J). Within each figure, separate are separate subfigures a-c. a) Running 
enrichment score calculated along the ranked gene list represented by the red-blue horizontal bar 
(the ANOVA statistic ranked from the highest positive to the highest negative value); the vertical 
black bars in the plot indicate the position of the genes from the respective GO terms; the vertical 
red/blue line indicates the positive and negative enrichment score (ES), respectively. b) Ranking 

statistic and top ten GSEA leading edge genes (LE). c) Heatmap of the GSEA leading edge 
genes generated with hierarchical clustering of genes using the Ward distance and complete 

linkage; in each gene the mean expression of the control group was subtracted in the treatment 
samples prior to clustering. The GSEA plot was generated using custom R scripts and fgsea [32], 

ggplot2 [33], and ComplexHeatmap [34] packages.  
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Figure S. 3.4. Continued 
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Figure S. 3.4. Continued 
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Figure S. 3.4. Continued 

 
  



 
 

 

114 

Figure S. 3.4. Continued
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Figure S. 3.4. Continued
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Figure S. 3.4. Continued
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Figure S. 3.4. Continued
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Figure S. 3.4. Continued
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Table S. 3.1. Tolerability of combined CDK/HDAC inhibition in naïve NSG mice 

 

Table S.3.1 illustrates the tolerability of combined dinaciclib and entinostat therapy in female NSG 
mice when administered at different doses and via different routes (IP = intraperitoneal, PO = oral 

gavage). The duration of the study was 5 days.  = Increased;  = Decreased; -- = finding not 
observed. 
 
 

 
Table S. 3.2. Tolerability of combined CDK/HDAC inhibition in naïve Bcl-xL mice 

 

 
Table S.3.2 illustrates the tolerability of combined dinaciclib and entinostat therapy in NSG mice 
(mixture of males and females) when administered at different doses of dinaciclib IP (2.5 mg/kg 

– 15 mg/kg) and a consistent dose of 15 mg/kg entinostat PO. The duration of the study was 5 

days.  = Increased;  = Decreased; -- = finding not observed.

Group # Animals

Dinaciclib 

Dose

Dinaciclib 

Route

Entinostat 

Dose

Entinostat 

Route

Mean % Weight 

Gain/Loss St. Dev. 

Decreased BM 

Cellularity

Clinical 

Observations

1 3 h2.17 1.21 __--__ __--__

2 3 10 mg/kg IP 10 mg/kg PO i4.17 4.4 __--__ __--__

3 3 10 mg/kg IP 10 mg/kg IP i2.02 6.6 __--__ __--__

4 3 20 mg/kg IP 20 mg/kg PO i6.24 1.15 minimal __--__

5 3 20 mg/kg IP 20 mg/kg IP i9.15 5.86 slight __--__

Dinaciclib- 2x/week (Tu, Th)

Entinostat - 2 x/week (M, W)

control - 20% BCD, IP, 3x/week

Group # Animals Dinaciclib Dose Dinaciclib Route

Mean % Weight 

Gain/Loss St. Dev. 

Decreased BM 

Cellularity Clinical Observations

1 3 h2.97 3.25 __--__ __--__

2 3 2.5 mg/kg IP h4.13 4.37 __--__ __--__

3 3 5.0 mg/kg IP i3.47 3.54 __--__ __--__

4 3 7.5 mg/kg IP i0.65 1.41 minimal __--__

5 3 10.0 mg/kg IP h2.65 1 minimal liquid feces in 2/3

6 3 15.0 mg/kg IP i15.03 2.52 minimal

liquid feces in 3/3, hunched on 

Day 5 in 3/3

Dinaciclib- 2x/week (Tu, Th)

Entinostat - 2 x/week (M, W)

control - 20% BCD, IP, 3x/week
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APPENDIX A. ENRICHED GO DATASETS OF CONCORDANT GENES AMONG TOP COMBINATIONS 

GO id GO term GO 
category 

P-value Hit in 
pathway 

Not in 
pathway 

Total 
pathway 

Hit% in 
pathway 

Genes in pathway Down genes Up genes Z-score(ratio) 

GO:0007050 cell cycle arrest BP 0.01191952 14 54 68 20.6 PML, CNOT10, SMAD3, 
UBB, ID2, TGFB1, 
WNT10B, CDK4, 

MAP2K6, CDKN1C, 
CDKN1A, CHEK2, E2F1, 

RB1 

(-5) CNOT10 WNT10B 
CDK4 E2F1 RB1 

(+9) PML SMAD3 UBB 
ID2 TGFB1 MAP2K6 

CDKN1C CDKN1A CHEK2 

1.07 

GO:0044843 cell cycle G1/S phase transition BP 0.00126334 16 51 67 23.9 PML, CNOT10, MNAT1, 
UBB, ID2, PKMYT1, 

CDK4, BCL2, CDC25A, 

TCF3, CCND2, CDKN1A, 
CHEK2, E2F1, EIF4EBP1, 

RB1 

(-11) CNOT10 MNAT1 
PKMYT1 CDK4 BCL2 

CDC25A TCF3 CCND2 

E2F1 EIF4EBP1 RB1 

(+5) PML UBB ID2 
CDKN1A CHEK2 

-1.50 

GO:0044770 cell cycle phase transition BP 0.0021184 19 73 92 20.7 PML, CNOT10, MNAT1, 
UBB, ID2, TGFB1, 

WNT10B, PKMYT1, 
CDK4, BCL2, CDC25A, 

TCF3, CCND2, CDKN1A, 
CHEK1, CHEK2, E2F1, 

EIF4EBP1, RB1 

(-13) CNOT10 MNAT1 
WNT10B PKMYT1 CDK4 

BCL2 CDC25A TCF3 
CCND2 CHEK1 E2F1 

EIF4EBP1 RB1 

(+6) PML UBB ID2 
TGFB1 CDKN1A CHEK2 

-1.61 

GO:0022402 cell cycle process BP 0.03005028 26 152 178 14.6 CNOT10, MNAT1, 

FANCA, TGFB1, 
WNT10B, PKMYT1, 
CDK4, BCL2, TCF3, 

CDC25A, CCND2, CHEK1, 
CHEK2, EIF4EBP1, PML, 

SMAD3, UBB, ID2, 
PBRM1, FLNA, MAP2K6, 

PTTG2, CDKN1C, 
CDKN1A, E2F1, RB1 

(-14) CNOT10 MNAT1 

WNT10B PKMYT1 CDK4 
BCL2 TCF3 CDC25A 

CCND2 CHEK1 EIF4EBP1 
PBRM1 E2F1 RB1 

(+12) FANCA TGFB1 

CHEK2 PML SMAD3 UBB 
ID2 FLNA MAP2K6 

PTTG2 CDKN1C CDKN1A 

-0.39 

GO:0000082 G1/S transition of mitotic cell 
cycle 

BP 0.00240211 15 49 64 23.4 PML, CNOT10, MNAT1, 
UBB, ID2, PKMYT1, 

CDK4, BCL2, CDC25A, 
CCND2, CDKN1A, CHEK2, 

E2F1, EIF4EBP1, RB1 

(-10) CNOT10 MNAT1 
PKMYT1 CDK4 BCL2 

CDC25A CCND2 E2F1 
EIF4EBP1 RB1 

(+5) PML UBB ID2 
CDKN1A CHEK2 

-1.29 

GO:0072332 intrinsic apoptotic signaling 
pathway by p53 class mediator 

BP 0.04235759 5 9 14 35.7 PML, CDKN1A, UBB, 
CHEK2, E2F1 

(-1) E2F1 (+4) PML CDKN1A UBB 
CHEK2 

1.34 

GO:0000278 mitotic cell cycle BP 0.022488 22 117 139 15.8 PML, CNOT10, SMAD3, 
MNAT1, UBB, ID2, 

PBRM1, TGFB1, 
WNT10B, PKMYT1, 
CDK4, FLNA, BCL2, 

CDC25A, TCF3, CCND2, 
CDKN1A, CHEK1, CHEK2, 

E2F1, EIF4EBP1, RB1 

(-14) CNOT10 MNAT1 
PBRM1 WNT10B 

PKMYT1 CDK4 BCL2 
CDC25A TCF3 CCND2 
CHEK1 E2F1 EIF4EBP1 

RB1 

(+8) PML SMAD3 UBB 
ID2 TGFB1 FLNA 
CDKN1A CHEK2 

-1.28 

GO:0007093 mitotic cell cycle checkpoint BP 0.0151602 10 31 41 24.4 PML, CNOT10, CDKN1A, 
MNAT1, UBB, CHEK1, 
CHEK2, TGFB1, E2F1, 

RB1 

(-5) CNOT10 MNAT1 
CHEK1 E2F1 RB1 

(+5) PML CDKN1A UBB 
CHEK2 TGFB1 

0.00 
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GO:0044772 mitotic cell cycle phase 
transition 

BP 0.00121277 19 69 88 21.6 PML, CNOT10, MNAT1, 
UBB, ID2, TGFB1, 

WNT10B, PKMYT1, 
CDK4, BCL2, CDC25A, 

TCF3, CCND2, CDKN1A, 
CHEK1, CHEK2, E2F1, 

EIF4EBP1, RB1 

(-13) CNOT10 MNAT1 
WNT10B PKMYT1 CDK4 

BCL2 CDC25A TCF3 
CCND2 CHEK1 E2F1 

EIF4EBP1 RB1 

(+6) PML UBB ID2 
TGFB1 CDKN1A CHEK2 

-1.61 

GO:1903047 mitotic cell cycle process BP 0.01062014 21 101 122 17.2 PML, CNOT10, MNAT1, 
UBB, ID2, PBRM1, 
TGFB1, WNT10B, 

PKMYT1, CDK4, FLNA, 
BCL2, CDC25A, TCF3, 

CCND2, CDKN1A, CHEK1, 
CHEK2, E2F1, EIF4EBP1, 

RB1 

(-14) CNOT10 MNAT1 
PBRM1 WNT10B 

PKMYT1 CDK4 BCL2 
CDC25A TCF3 CCND2 
CHEK1 E2F1 EIF4EBP1 

RB1 

(+7) PML UBB ID2 
TGFB1 FLNA CDKN1A 

CHEK2 

-1.53 

GO:0045786 negative regulation of cell cycle BP 0.0407752 17 87 104 16.3 PML, CNOT10, SMAD3, 
MNAT1, UBB, ID2, 

TGFB1, WNT10B, CDK4, 
MAP2K6, CDKN1C, BCL2, 
CDKN1A, CHEK1, CHEK2, 

E2F1, RB1 

(-8) CNOT10 MNAT1 
WNT10B CDK4 BCL2 

CHEK1 E2F1 RB1 

(+9) PML SMAD3 UBB 
ID2 TGFB1 MAP2K6 

CDKN1C CDKN1A CHEK2 

0.24 

GO:1902807 negative regulation of cell cycle 
G1/S phase transition 

BP 0.03234748 8 24 32 25.0 PML, BCL2, CNOT10, 
CDKN1A, UBB, CHEK2, 

E2F1, RB1 

(-4) BCL2 CNOT10 E2F1 
RB1 

(+4) PML CDKN1A UBB 
CHEK2 

0.00 

GO:1901988 negative regulation of cell cycle 

phase transition 

BP 0.03722979 9 31 40 22.5 PML, BCL2, CNOT10, 

CDKN1A, MNAT1, UBB, 
CHEK2, E2F1, RB1 

(-5) BCL2 CNOT10 

MNAT1 E2F1 RB1 

(+4) PML CDKN1A UBB 

CHEK2 

-0.33 

GO:0010948 negative regulation of cell cycle 
process 

BP 0.0424324 11 45 56 19.6 CDK4, PML, BCL2, 
CNOT10, CDKN1A, 

MNAT1, UBB, CHEK1, 
CHEK2, E2F1, RB1 

(-7) CDK4 BCL2 CNOT10 
MNAT1 CHEK1 E2F1 

RB1 

(+4) PML CDKN1A UBB 
CHEK2 

-0.90 

GO:2000134 negative regulation of G1/S 
transition of mitotic cell cycle 

BP 0.02306211 8 22 30 26.7 PML, BCL2, CNOT10, 
CDKN1A, UBB, CHEK2, 

E2F1, RB1 

(-4) BCL2 CNOT10 E2F1 
RB1 

(+4) PML CDKN1A UBB 
CHEK2 

0.00 

GO:0045930 negative regulation of mitotic 
cell cycle 

BP 0.01490402 12 43 55 21.8 PML, BCL2, CNOT10, 
CDKN1A, SMAD3, 

MNAT1, UBB, CHEK1, 
CHEK2, TGFB1, E2F1, 

RB1 

(-6) BCL2 CNOT10 
MNAT1 CHEK1 E2F1 

RB1 

(+6) PML CDKN1A 
SMAD3 UBB CHEK2 

TGFB1 

0.00 

GO:1901991 negative regulation of mitotic 
cell cycle phase transition 

BP 0.02794285 9 29 38 23.7 PML, BCL2, CNOT10, 
CDKN1A, MNAT1, UBB, 

CHEK2, E2F1, RB1 

(-5) BCL2 CNOT10 
MNAT1 E2F1 RB1 

(+4) PML CDKN1A UBB 
CHEK2 

-0.33 

GO:0045787 positive regulation of cell cycle BP 0.02667714 14 61 75 18.7 PML, CNOT10, UBB, ID2, 

TGFB1, WNT10B, CDK4, 
TCF3, CCND2, CDKN1A, 
CHEK2, E2F1, EIF4EBP1, 

RB1 

(-8) CNOT10 WNT10B 

CDK4 TCF3 CCND2 E2F1 
EIF4EBP1 RB1 

(+6) PML UBB ID2 

TGFB1 CDKN1A CHEK2 

-0.53 

GO:0071158 positive regulation of cell cycle 
arrest 

BP 0.01919859 8 21 29 27.6 PML, CNOT10, CDKN1A, 
UBB, ID2, CHEK2, TGFB1, 

E2F1 

(-2) CNOT10 E2F1 (+6) PML CDKN1A UBB 
ID2 CHEK2 TGFB1 

1.41 

GO:0090068 positive regulation of cell cycle 
process 

BP 0.01705164 12 44 56 21.4 CDK4, PML, CNOT10, 
CCND2, CDKN1A, UBB, 

ID2, CHEK2, TGFB1, 
WNT10B, E2F1, RB1 

(-12) CDK4 CNOT10 
CCND2 WNT10B E2F1 

RB1 CDK4 CNOT10 
CCND2 WNT10B E2F1 

RB1 

(+12) PML CDKN1A UBB 
ID2 CHEK2 TGFB1 PML 
CDKN1A UBB ID2 CHEK2 

TGFB1 

0.00 

GO:0090068 positive regulation of cell cycle 

process 

BP 0.01705164 12 44 56 21.4 CDK4, PML, CNOT10, 

CCND2, CDKN1A, UBB, 
ID2, CHEK2, TGFB1, 
WNT10B, E2F1, RB1 

(-12) CDK4 CNOT10 

CCND2 WNT10B E2F1 
RB1 CDK4 CNOT10 

CCND2 WNT10B E2F1 
RB1 

(+12) PML CDKN1A UBB 

ID2 CHEK2 TGFB1 PML 
CDKN1A UBB ID2 CHEK2 

TGFB1 

0.00 
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GO:0051726 regulation of cell cycle BP 0.02987281 25 144 169 14.8 CNOT10, MNAT1, 
TGFB1, WNT10B, 

PKMYT1, CDK4, E2F5, 
BCL2, TCF3, CDC25A, 

CCND2, FGF2, CHEK1, 

CHEK2, EIF4EBP1, PML, 
SMAD3, UBB, ID2, 
MAP2K6, CDKN1C, 

CDKN1A, E2F1, 
GADD45B, RB1 

(-15) CNOT10 MNAT1 
WNT10B PKMYT1 CDK4 
E2F5 BCL2 TCF3 CDC25A 

CCND2 FGF2 CHEK1 
EIF4EBP1 E2F1 RB1 

(+10) TGFB1 CHEK2 PML 
SMAD3 UBB ID2 

MAP2K6 CDKN1C 
CDKN1A GADD45B 

-1.00 

GO:0071156 regulation of cell cycle arrest BP 0.01446228 9 25 34 26.5 CDK4, PML, CNOT10, 
CDKN1A, UBB, ID2, 

CHEK2, TGFB1, E2F1 

(-3) CDK4 CNOT10 E2F1 (+6) PML CDKN1A UBB 
ID2 CHEK2 TGFB1 

1.00 

GO:1902806 regulation of cell cycle G1/S 
phase transition 

BP 0.00679674 11 32 43 25.6 PML, BCL2, CNOT10, 
TCF3, CCND2, CDKN1A, 
UBB, ID2, CHEK2, E2F1, 

RB1 

(-6) BCL2 CNOT10 TCF3 
CCND2 E2F1 RB1 

(+5) PML CDKN1A UBB 
ID2 CHEK2 

-0.30 

GO:1901987 regulation of cell cycle phase 
transition 

BP 0.00328719 15 51 66 22.7 PML, CNOT10, MNAT1, 
UBB, ID2, TGFB1, 

WNT10B, CDK4, BCL2, 

TCF3, CCND2, CDKN1A, 
CHEK2, E2F1, RB1 

(-9) CNOT10 MNAT1 
WNT10B CDK4 BCL2 

TCF3 CCND2 E2F1 RB1 

(+6) PML UBB ID2 
TGFB1 CDKN1A CHEK2 

-0.77 

GO:0010564 regulation of cell cycle process BP 0.0407752 17 87 104 16.3 PML, CNOT10, MNAT1, 

UBB, ID2, TGFB1, 
WNT10B, PKMYT1, 
CDK4, BCL2, TCF3, 

CCND2, CDKN1A, CHEK1, 
CHEK2, E2F1, RB1 

(-11) CNOT10 MNAT1 

WNT10B PKMYT1 CDK4 
BCL2 TCF3 CCND2 
CHEK1 E2F1 RB1 

(+6) PML UBB ID2 

TGFB1 CDKN1A CHEK2 

-1.21 

GO:2000045 regulation of G1/S transition of 
mitotic cell cycle 

BP 0.00386501 11 29 40 27.5 PML, BCL2, CNOT10, 
TCF3, CCND2, CDKN1A, 
UBB, ID2, CHEK2, E2F1, 

RB1 

(-6) BCL2 CNOT10 TCF3 
CCND2 E2F1 RB1 

(+5) PML CDKN1A UBB 
ID2 CHEK2 

-0.30 

GO:0007346 regulation of mitotic cell cycle BP 0.00173523 20 78 98 20.4 PML, CNOT10, SMAD3, 
MNAT1, UBB, ID2, 
TGFB1, WNT10B, 

PKMYT1, CDK4, CDKN1C, 
BCL2, TCF3, CCND2, 

CDKN1A, CHEK1, CHEK2, 
E2F1, EIF4EBP1, RB1 

(-12) CNOT10 MNAT1 
WNT10B PKMYT1 CDK4 

BCL2 TCF3 CCND2 
CHEK1 E2F1 EIF4EBP1 

RB1 

(+8) PML SMAD3 UBB 
ID2 TGFB1 CDKN1C 

CDKN1A CHEK2 

-0.89 

GO:1901990 regulation of mitotic cell cycle 
phase transition 

BP 0.00204022 15 48 63 23.8 PML, CNOT10, MNAT1, 
UBB, ID2, TGFB1, 

WNT10B, CDK4, BCL2, 
TCF3, CCND2, CDKN1A, 

CHEK2, E2F1, RB1 

(-9) CNOT10 MNAT1 
WNT10B CDK4 BCL2 

TCF3 CCND2 E2F1 RB1 

(+6) PML UBB ID2 
TGFB1 CDKN1A CHEK2 

-0.77 

GO:0031327 negative regulation of cellular 
biosynthetic process 

BP 0.04745529 24 143 167 14.4 PML, FZD8, HIST1H3B, 
SMAD3, VEGFA, NF2, 

NSD1, UBB, SFRP2, 
HIST1H3H, ID2, ID1, 

TGFB1, WNT10B, FLNA, 
CDKN1C, TCF3, HDAC10, 
BMP6, NOTCH1, CHEK2, 

E2F1, EIF4EBP1, RB1 

(-10) HIST1H3B VEGFA 
NSD1 HIST1H3H 

WNT10B TCF3 BMP6 
E2F1 EIF4EBP1 RB1 

(+14) PML FZD8 SMAD3 
NF2 UBB SFRP2 ID2 ID1 
TGFB1 FLNA CDKN1C 

HDAC10 NOTCH1 
CHEK2 

0.82 
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GO:2000113 negative regulation of cellular 
macromolecule biosynthetic 

process 

BP 0.02199751 24 132 156 15.4 PML, FZD8, HIST1H3B, 
SMAD3, VEGFA, NF2, 

NSD1, UBB, SFRP2, 
HIST1H3H, ID2, ID1, 

TGFB1, WNT10B, FLNA, 
CDKN1C, TCF3, HDAC10, 
BMP6, NOTCH1, CHEK2, 

E2F1, EIF4EBP1, RB1 

(-10) HIST1H3B VEGFA 
NSD1 HIST1H3H 

WNT10B TCF3 BMP6 
E2F1 EIF4EBP1 RB1 

(+14) PML FZD8 SMAD3 
NF2 UBB SFRP2 ID2 ID1 
TGFB1 FLNA CDKN1C 

HDAC10 NOTCH1 
CHEK2 

0.82 

GO:0031324 negative regulation of cellular 

metabolic process 

BP 0.03908824 34 222 256 13.3 SOCS1, HIST1H3B, 

VEGFA, NF2, HIST1H3H, 
TGFB1, WNT10B, 

PKMYT1, BCL2, TCF3, 
HDAC10, HSPB1, BMP6, 
DUSP8, CHEK2, TRIM39, 
EIF4EBP1, PML, FZD8, 
SMAD3, NSD1, UBB, 

SFRP2, ID2, ID1, FLNA, 
PTTG2, CDKN1C, 

CDKN1A, HSPA1A, 
NOTCH1, E2F1, 
GADD45B, RB1 

(-14) HIST1H3B VEGFA 

HIST1H3H WNT10B 
PKMYT1 BCL2 TCF3 

BMP6 DUSP8 TRIM39 
EIF4EBP1 NSD1 E2F1 

RB1 

(+20) SOCS1 NF2 TGFB1 

HDAC10 HSPB1 CHEK2 
PML FZD8 SMAD3 UBB 

SFRP2 ID2 ID1 FLNA 
PTTG2 CDKN1C CDKN1A 

HSPA1A NOTCH1 
GADD45B 

1.03 

GO:0010629 negative regulation of gene 
expression 

BP 0.03401328 24 138 162 14.8 PML, CNOT10, FZD8, 
HIST1H3B, SMAD3, 
VEGFA, NSD1, UBB, 

SFRP2, HIST1H3H, ID2, 
ID1, TGFB1, WNT10B, 
FLNA, CDKN1C, TCF3, 

HDAC10, CDKN1A, 
BMP6, NOTCH1, E2F1, 

EIF4EBP1, RB1 

(-11) CNOT10 HIST1H3B 
VEGFA NSD1 HIST1H3H 

WNT10B TCF3 BMP6 
E2F1 EIF4EBP1 RB1 

(+13) PML FZD8 SMAD3 
UBB SFRP2 ID2 ID1 

TGFB1 FLNA CDKN1C 
HDAC10 CDKN1A 

NOTCH1 

0.41 

GO:0010558 negative regulation of 
macromolecule biosynthetic 

process 

BP 0.0416681 24 141 165 14.5 PML, FZD8, HIST1H3B, 
SMAD3, VEGFA, NF2, 

NSD1, UBB, SFRP2, 

HIST1H3H, ID2, ID1, 
TGFB1, WNT10B, FLNA, 
CDKN1C, TCF3, HDAC10, 
BMP6, NOTCH1, CHEK2, 

E2F1, EIF4EBP1, RB1 

(-10) HIST1H3B VEGFA 
NSD1 HIST1H3H 

WNT10B TCF3 BMP6 

E2F1 EIF4EBP1 RB1 

(+14) PML FZD8 SMAD3 
NF2 UBB SFRP2 ID2 ID1 
TGFB1 FLNA CDKN1C 

HDAC10 NOTCH1 
CHEK2 

0.82 

GO:0009892 negative regulation of 
metabolic process 

BP 0.04492285 35 233 268 13.1 SOCS1, CNOT10, 
HIST1H3B, VEGFA, NF2, 

HIST1H3H, TGFB1, 
WNT10B, PKMYT1, BCL2, 
TCF3, HDAC10, HSPB1, 
BMP6, DUSP8, CHEK2, 

TRIM39, EIF4EBP1, PML, 
FZD8, SMAD3, NSD1, 
UBB, SFRP2, ID2, ID1, 

FLNA, PTTG2, CDKN1C, 
CDKN1A, HSPA1A, 

NOTCH1, E2F1, 
GADD45B, RB1 

(-15) CNOT10 HIST1H3B 
VEGFA HIST1H3H 

WNT10B PKMYT1 BCL2 
TCF3 BMP6 DUSP8 

TRIM39 EIF4EBP1 NSD1 
E2F1 RB1 

(+20) SOCS1 NF2 TGFB1 
HDAC10 HSPB1 CHEK2 
PML FZD8 SMAD3 UBB 

SFRP2 ID2 ID1 FLNA 
PTTG2 CDKN1C CDKN1A 

HSPA1A NOTCH1 
GADD45B 

0.85 

GO:0051172 negative regulation of nitrogen 
compound metabolic process 

BP 0.04745529 24 143 167 14.4 PML, FZD8, HIST1H3B, 
SMAD3, VEGFA, NF2, 

NSD1, UBB, SFRP2, 
HIST1H3H, ID2, ID1, 

TGFB1, WNT10B, FLNA, 
CDKN1C, TCF3, HDAC10, 
BMP6, NOTCH1, CHEK2, 

E2F1, EIF4EBP1, RB1 

(-10) HIST1H3B VEGFA 
NSD1 HIST1H3H 

WNT10B TCF3 BMP6 
E2F1 EIF4EBP1 RB1 

(+14) PML FZD8 SMAD3 
NF2 UBB SFRP2 ID2 ID1 
TGFB1 FLNA CDKN1C 

HDAC10 NOTCH1 
CHEK2 

0.82 
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GO:1903507 negative regulation of nucleic 
acid-templated transcription 

BP 0.04012801 21 117 138 15.2 PML, FZD8, HIST1H3B, 
SMAD3, VEGFA, NSD1, 

UBB, SFRP2, HIST1H3H, 
ID2, ID1, TGFB1, 
WNT10B, FLNA, 

CDKN1C, TCF3, HDAC10, 
BMP6, NOTCH1, E2F1, 

RB1 

(-9) HIST1H3B VEGFA 
NSD1 HIST1H3H 

WNT10B TCF3 BMP6 
E2F1 RB1 

(+12) PML FZD8 SMAD3 
UBB SFRP2 ID2 ID1 

TGFB1 FLNA CDKN1C 
HDAC10 NOTCH1 

0.65 

GO:1902679 negative regulation of RNA 
biosynthetic process 

BP 0.04012801 21 117 138 15.2 PML, FZD8, HIST1H3B, 
SMAD3, VEGFA, NSD1, 
UBB, SFRP2, HIST1H3H, 

ID2, ID1, TGFB1, 
WNT10B, FLNA, 

CDKN1C, TCF3, HDAC10, 
BMP6, NOTCH1, E2F1, 

RB1 

(-9) HIST1H3B VEGFA 
NSD1 HIST1H3H 

WNT10B TCF3 BMP6 

E2F1 RB1 

(+12) PML FZD8 SMAD3 
UBB SFRP2 ID2 ID1 

TGFB1 FLNA CDKN1C 

HDAC10 NOTCH1 

0.65 

GO:0051253 negative regulation of RNA 
metabolic process 

BP 0.04621822 21 119 140 15.0 PML, FZD8, HIST1H3B, 
SMAD3, VEGFA, NSD1, 
UBB, SFRP2, HIST1H3H, 

ID2, ID1, TGFB1, 
WNT10B, FLNA, 

CDKN1C, TCF3, HDAC10, 
BMP6, NOTCH1, E2F1, 

RB1 

(-9) HIST1H3B VEGFA 
NSD1 HIST1H3H 

WNT10B TCF3 BMP6 
E2F1 RB1 

(+12) PML FZD8 SMAD3 
UBB SFRP2 ID2 ID1 

TGFB1 FLNA CDKN1C 
HDAC10 NOTCH1 

0.65 

GO:0045892 negative regulation of 
transcription; DNA-templated 

BP 0.03466248 21 115 136 15.4 PML, FZD8, HIST1H3B, 
SMAD3, VEGFA, NSD1, 
UBB, SFRP2, HIST1H3H, 

ID2, ID1, TGFB1, 
WNT10B, FLNA, 

CDKN1C, TCF3, HDAC10, 
BMP6, NOTCH1, E2F1, 

RB1 

(-9) HIST1H3B VEGFA 
NSD1 HIST1H3H 

WNT10B TCF3 BMP6 
E2F1 RB1 

(+12) PML FZD8 SMAD3 
UBB SFRP2 ID2 ID1 

TGFB1 FLNA CDKN1C 
HDAC10 NOTCH1 

0.65 

GO:0010468 regulation of gene expression BP 0.04280819 46 329 375 12.3 CNOT10, HIST1H3B, 
VEGFA, MNAT1, 

HIST1H3H, FANCA, 
TGFB1, WNT10B, CDK4, 
E2F5, BCL2, BRAF, TCF3, 
HDAC10, HSPB1, FGF2, 
BMP6, CHEK1, MAPK8, 

PLCG2, CHEK2, 
EIF4EBP1, PML, NFE2L2, 

FZD8, SMAD3, NSD1, 
UBB, SFRP2, MLLT3, ID2, 
PBRM1, ID1, MAP3K13, 

PIK3CD, ETV4, FLNA, 
MAP2K6, PTTG2, 

CDKN1C, CDKN1A, 
HSPA1A, FUT8, NOTCH1, 

E2F1, RB1 

(-23) CNOT10 HIST1H3B 
VEGFA MNAT1 

HIST1H3H WNT10B 
CDK4 E2F5 BCL2 BRAF 

TCF3 FGF2 BMP6 CHEK1 
MAPK8 EIF4EBP1 

NFE2L2 NSD1 MLLT3 
PBRM1 ETV4 E2F1 RB1 

(+23) FANCA TGFB1 
HDAC10 HSPB1 PLCG2 

CHEK2 PML FZD8 
SMAD3 UBB SFRP2 ID2 
ID1 MAP3K13 PIK3CD 
FLNA MAP2K6 PTTG2 

CDKN1C CDKN1A 
HSPA1A FUT8 NOTCH1 

0.00 

GO:0030336 negative regulation of cell 
migration 

BP 0.00650414 9 21 30 30.0 BRAF, BCL2, NFE2L2, 
FGF2, NF2, SFRP2, 
ACVR1C, NOTCH1, 

TGFB1 

(-4) BRAF BCL2 NFE2L2 
FGF2 

(+5) NF2 SFRP2 ACVR1C 
NOTCH1 TGFB1 

0.33 

GO:2000146 negative regulation of cell 
motility 

BP 0.00806578 9 22 31 29.0 BRAF, BCL2, NFE2L2, 
FGF2, NF2, SFRP2, 

ACVR1C, NOTCH1, 
TGFB1 

(-4) BRAF BCL2 NFE2L2 
FGF2 

(+5) NF2 SFRP2 ACVR1C 
NOTCH1 TGFB1 

0.33 

GO:0051271 negative regulation of cellular 
component movement 

BP 0.01446228 9 25 34 26.5 BRAF, BCL2, NFE2L2, 
FGF2, NF2, SFRP2, 
ACVR1C, NOTCH1, 

TGFB1 

(-4) BRAF BCL2 NFE2L2 
FGF2 

(+5) NF2 SFRP2 ACVR1C 
NOTCH1 TGFB1 

0.33 
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GO:0040013 negative regulation of 
locomotion 

BP 0.01201864 9 24 33 27.3 BRAF, BCL2, NFE2L2, 
FGF2, NF2, SFRP2, 
ACVR1C, NOTCH1, 

TGFB1 

(-4) BRAF BCL2 NFE2L2 
FGF2 

(+5) NF2 SFRP2 ACVR1C 
NOTCH1 TGFB1 

0.33 

GO:0043534 blood vessel endothelial cell 
migration 

BP 0.00569715 7 11 18 38.9 HSPB1, NFE2L2, FGF2, 
VEGFA, NOTCH1, ID1, 

TGFB1 

(-3) NFE2L2 FGF2 VEGFA (+4) HSPB1 NOTCH1 ID1 
TGFB1 

0.38 

GO:0090101 negative regulation of 
transmembrane receptor 
protein serine/threonine 
kinase signaling pathway 

BP 0.03306225 6 13 19 31.6 HSPA1A, SMAD3, UBB, 
SFRP2, NOTCH1, TGFB1 

(-0) (+6) HSPA1A SMAD3 
UBB SFRP2 NOTCH1 

TGFB1 

2.45 

GO:0043536 positive regulation of blood 
vessel endothelial cell 

migration 

BP 0.01761194 5 6 11 45.5 HSPB1, NFE2L2, FGF2, 
VEGFA, TGFB1 

(-3) NFE2L2 FGF2 VEGFA (+2) HSPB1 TGFB1 -0.45 

GO:0043535 regulation of blood vessel 
endothelial cell migration 

BP 0.03306225 6 13 19 31.6 HSPB1, NFE2L2, FGF2, 
VEGFA, NOTCH1, TGFB1 

(-3) NFE2L2 FGF2 VEGFA (+3) HSPB1 NOTCH1 
TGFB1 

0.00 

GO:0007179 transforming growth factor 
beta receptor signaling 

pathway 

BP 0.03782063 8 25 33 24.2 PML, CDKN1C, HSPA1A, 
SMAD3, UBB, FUT8, ID1, 

TGFB1 

(-0) (+8) PML CDKN1C 
HSPA1A SMAD3 UBB 

FUT8 ID1 TGFB1 

2.83 

GO:0007178 transmembrane receptor 
protein serine/threonine 
kinase signaling pathway 

BP 0.04810211 12 53 65 18.5 PML, CDKN1C, HSPA1A, 
SMAD3, BMP6, UBB, 

SFRP2, FUT8, ACVR1C, 
NOTCH1, ID1, TGFB1 

(-1) BMP6 (+11) PML CDKN1C 
HSPA1A SMAD3 UBB 
SFRP2 FUT8 ACVR1C 
NOTCH1 ID1 TGFB1 

2.89 

GO:0044839 cell cycle G2/M phase 
transition 

BP 0.02041265 9 27 36 25.0 CDK4, CDC25A, CDKN1A, 
MNAT1, UBB, CHEK1, 

CHEK2, WNT10B, 

PKMYT1 

(-6) CDK4 CDC25A 
MNAT1 CHEK1 WNT10B 

PKMYT1 

(+3) CDKN1A UBB 
CHEK2 

-1.00 

GO:0030003 cellular cation homeostasis BP 0.0438765 8 26 34 23.5 PML, BCL2, CACNB3, 
FGF2, SMAD3, BMP6, 

PLCG2, TGFB1 

(-3) BCL2 FGF2 BMP6 (+5) PML CACNB3 
SMAD3 PLCG2 TGFB1 

0.71 

GO:0006875 cellular metal ion homeostasis BP 0.03782063 8 25 33 24.2 PML, BCL2, CACNB3, 
FGF2, SMAD3, BMP6, 

PLCG2, TGFB1 

(-3) BCL2 FGF2 BMP6 (+5) PML CACNB3 
SMAD3 PLCG2 TGFB1 

0.71 

GO:0000086 G2/M transition of mitotic cell 
cycle 

BP 0.01201864 9 24 33 27.3 CDK4, CDC25A, CDKN1A, 
MNAT1, UBB, CHEK1, 

CHEK2, WNT10B, 
PKMYT1 

(-6) CDK4 CDC25A 
MNAT1 CHEK1 WNT10B 

PKMYT1 

(+3) CDKN1A UBB 
CHEK2 

-1.00 

GO:1901989 positive regulation of cell cycle 
phase transition 

BP 0.03268109 5 8 13 38.5 CDK4, CCND2, TGFB1, 
WNT10B, RB1 

(-4) CDK4 CCND2 
WNT10B RB1 

(+1) TGFB1 -1.34 

GO:1901992 positive regulation of mitotic 
cell cycle phase transition 

BP 0.0244453 5 7 12 41.7 CDK4, CCND2, TGFB1, 
WNT10B, RB1 

(-4) CDK4 CCND2 
WNT10B RB1 

(+1) TGFB1 -1.34 

GO:0010608 posttranscriptional regulation 
of gene expression 

BP 0.00906544 10 28 38 26.3 CDK4, PML, CNOT10, 
HSPB1, HSPA1A, SMAD3, 

UBB, TGFB1, E2F1, 
EIF4EBP1 

(-8) CDK4 CNOT10 E2F1 
EIF4EBP1 CDK4 CNOT10 

E2F1 EIF4EBP1 

(+12) PML HSPB1 
HSPA1A SMAD3 UBB 
TGFB1 PML HSPB1 

HSPA1A SMAD3 UBB 
TGFB1 

0.63 

GO:0010608 posttranscriptional regulation 
of gene expression 

BP 0.00906544 10 28 38 26.3 CDK4, PML, CNOT10, 
HSPB1, HSPA1A, SMAD3, 

UBB, TGFB1, E2F1, 
EIF4EBP1 

(-8) CDK4 CNOT10 E2F1 
EIF4EBP1 CDK4 CNOT10 

E2F1 EIF4EBP1 

(+12) PML HSPB1 
HSPA1A SMAD3 UBB 
TGFB1 PML HSPB1 

HSPA1A SMAD3 UBB 
TGFB1 

0.63 

GO:0050821 protein stabilization BP 0.01010038 7 13 20 35.0 PML, FLNA, CDKN1A, 
HSPA1A, SMAD3, CHEK2, 

WNT10B 

(-1) WNT10B (+6) PML FLNA CDKN1A 
HSPA1A SMAD3 CHEK2 

1.89 

GO:0034248 regulation of cellular amide 
metabolic process 

BP 0.02743604 8 23 31 25.8 CDK4, PML, CNOT10, 
HSPB1, NFE2L2, SMAD3, 

TGFB1, EIF4EBP1 

(-4) CDK4 CNOT10 
NFE2L2 EIF4EBP1 

(+4) PML HSPB1 SMAD3 
TGFB1 

0.00 

GO:0031063 regulation of histone 
deacetylation 

BP 0.00826968 4 1 5 80.0 PML, VEGFA, MAPK8, 
TGFB1 

(-2) VEGFA MAPK8 (+2) PML TGFB1 0.00 
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GO:0090311 regulation of protein 
deacetylation 

BP 0.01535537 4 2 6 66.7 PML, VEGFA, MAPK8, 
TGFB1 

(-2) VEGFA MAPK8 (+2) PML TGFB1 0.00 

GO:0031647 regulation of protein stability BP 0.00155447 10 20 30 33.3 PML, FLNA, BCL2, 
CDKN1A, HSPA1A, 
SMAD3, NF2, ID1, 
CHEK2, WNT10B 

(-2) BCL2 WNT10B (+8) PML FLNA CDKN1A 
HSPA1A SMAD3 NF2 

ID1 CHEK2 

1.90 

GO:0043276 anoikis BP 0.03709778 4 4 8 50.0 BCL2, NOTCH1, CHEK2, 
E2F1 

(-2) BCL2 E2F1 (+2) NOTCH1 CHEK2 0.00 

GO:0010761 fibroblast migration BP 0.02495672 4 3 7 57.1 PML, BRAF, FGF2, TGFB1 (-2) BRAF FGF2 (+2) PML TGFB1 0.00 

GO:0008631 intrinsic apoptotic signaling 
pathway in response to 

oxidative stress 

BP 0.03709778 4 4 8 50.0 PML, BCL2, HSPB1, 
NFE2L2 

(-2) BCL2 NFE2L2 (+2) PML HSPB1 0.00 

GO:2001243 negative regulation of intrinsic 
apoptotic signaling pathway 

BP 0.03268109 5 8 13 38.5 BCL2, HSPB1, NFE2L2, 
HSPA1A, SFRP2 

(-2) BCL2 NFE2L2 (+3) HSPB1 HSPA1A 
SFRP2 

0.45 

GO:0044092 negative regulation of 
molecular function 

BP 0.03363832 20 107 127 15.7 SOCS1, PML, VEGFA, 
NF2, UBB, SFRP2, ID2, 
ID1, PKMYT1, FLNA, 

PTTG2, CDKN1C, HSPB1, 
CDKN1A, DUSP8, 

NOTCH1, MAPK8, E2F1, 
RB1, GADD45B 

(-6) VEGFA PKMYT1 
DUSP8 MAPK8 E2F1 RB1 

(+14) SOCS1 PML NF2 
UBB SFRP2 ID2 ID1 

FLNA PTTG2 CDKN1C 
HSPB1 CDKN1A 

NOTCH1 GADD45B 

1.79 

GO:0030279 negative regulation of 
ossification 

BP 0.03306225 6 13 19 31.6 BCL2, SMAD3, NOTCH1, 
ID2, ID1, TGFB1 

(-1) BCL2 (+5) SMAD3 NOTCH1 
ID2 ID1 TGFB1 

1.63 

GO:2000177 regulation of neural precursor 
cell proliferation 

BP 0.03306225 6 13 19 31.6 FGF2, VEGFA, NF2, 
NOTCH1, ID2, TGFB1 

(-2) FGF2 VEGFA (+4) NF2 NOTCH1 ID2 
TGFB1 

0.82 

GO:0031960 response to corticosteroid BP 0.03071856 7 18 25 28.0 BCL2, CDKN1A, BMP6, 

NOTCH1, CASP3, TGFB1, 
EIF4EBP1 

(-4) BCL2 BMP6 CASP3 

EIF4EBP1 

(+3) CDKN1A NOTCH1 

TGFB1 

-0.38 

GO:0070482 response to oxygen levels BP 0.04378226 13 59 72 18.1 PML, NFE2L2, SMAD3, 
VEGFA, UBB, TGFB1, 

CDK4, BCL2, CDKN1A, 
NOTCH1, CASP3, E2F1, 

EIF4EBP1 

(-7) NFE2L2 VEGFA 
CDK4 BCL2 CASP3 E2F1 

EIF4EBP1 

(+6) PML SMAD3 UBB 
TGFB1 CDKN1A 

NOTCH1 

-0.28 

GO:0031965 nuclear membrane CC 0.00748265 6 8 14 42.9 CDK4, PML, BCL2, 
CCND2, SMAD3, 

PRPF38A 

(-4) CDK4 BCL2 CCND2 
PRPF38A 

(+2) PML SMAD3 -0.82 

GO:0005654 nucleoplasm CC 0.02878371 36 243 279 12.9 HIST1H3B, MNAT1, 
HIST1H3H, FANCA, 

PKMYT1, CDK4, E2F5, 
TCF3, HDAC10, CDC25A, 
CCND2, CHEK1, MAPK8, 

CHEK2, CASP3, 
EIF4EBP1, PML, SMAD3, 
NSD1, UBB, MLLT3, ID2, 

PBRM1, ID1, ETV4, 
MAP2K6, ALKBH2, 

DNAJC14, CDKN1A, 
HSPA1A, FCF1, ALKBH3, 
NOTCH1, U2AF1, E2F1, 

RB1 

(-23) HIST1H3B MNAT1 
HIST1H3H PKMYT1 

CDK4 E2F5 TCF3 
CDC25A CCND2 CHEK1 
MAPK8 CASP3 EIF4EBP1 

NSD1 MLLT3 PBRM1 
ETV4 ALKBH2 FCF1 

ALKBH3 U2AF1 E2F1 
RB1 

(+13) FANCA HDAC10 
CHEK2 PML SMAD3 UBB 

ID2 ID1 MAP2K6 
DNAJC14 CDKN1A 
HSPA1A NOTCH1 

-1.67 

GO:0046983 protein dimerization activity MF 0.0353584 19 108 127 15.0 PML, HIST1H3B, SMAD3, 
VEGFA, HIST1H3H, ID2, 
ID1, TGFB1, MAP3K13, 

FLNA, BRAF, E2F5, BCL2, 
TCF3, BMP6, NOTCH1, 

SOS2, CHEK2, E2F1 

(-10) HIST1H3B VEGFA 
HIST1H3H BRAF E2F5 

BCL2 TCF3 BMP6 SOS2 
E2F1 

(+9) PML SMAD3 ID2 
ID1 TGFB1 MAP3K13 
FLNA NOTCH1 CHEK2 

-0.23 
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APPENDIX B. GSEA ENRICHED GO_BP DATASETS UPON SYNERGISTIC CDK/HDAC INHIBITION 

Up or 
Down 

pathway padj ES NES size leading Edge Size 
leading 

Edge 

fraction 
Leading 

Edge 
Down Protein 

Localization to 
Kinetochore 

0.004 -0.76686 -2.13877 17 RCC2,BUB3,NDC80,MTBP,CDT1,CDK1,HASPIN,SPDL1,TTK,CENPQ,AURKB 11 0.64705
9 

Down DNA Replication 
Checkpoint 

0.004 -0.77765 -2.10337 15 CDC6,CDC45,TICRR,ORC1,CDT1,TIMELESS,TIPIN,ZNF830,DNA2 9 0.6 

Down Protein Folding in 
Endoplasmic 

Reticulum 

0.004 -0.69181 -1.8712 15 HSPA5,HSP90B1,PDIA3,CALR,ERO1A,EMC1,EMC4,CANX 8 0.53333
3 

Down Telomere 
Maintenance 

Semiconservative 

Replication 

0.00402 -0.63052 -1.99835 28 FEN1,POLA2,PRIM1,POLD3,POLE3,ACD,POLD2,RFC3,DNA2,RFC4,POLE2,POLE,RPA2,RFC2,RTEL1 15 0.53571
4 

Down DNA Replication 
Initiation 

0.00406 -0.74117 -2.47033 34 CDC6,MCM5,MCM7,CDC45,POLA2,TICRR,ORC1,PRIM1,CDT1,MCM10,POLE3,ORC2,ORC3,MCM4,MCM2,POLE2,NBN,CCNE1,POLE,ORC5,MCM6,WDR18 22 0.64705
9 

Up Activation of 

Immune 
Response 

0.00334 0.332172 1.538157 446 LGMN,HLA-DRA,TNFAIP3,MAPKAPK2,DUSP3,HLA-DPA1,CD38,PRNP,CD47,NFKBIZ,PRKCD,PIK3CD,CDC42,PLCG2,HLA-DRB1,HLA-DRB5,CD59,CAV1,HLA-

DPB1,PRKACA,IRF1,TANK,HLA-DQB1,ARPC5,CLEC7A,GCSAM,NECTIN2,CYFIP2,BIRC3,RTN4,RAB29,HEXIM1,HLA-
DQA1,EZR,PLCL2,CCR7,ACTG1,CLU,LGALS3,ITGAM,CD36,BIRC2,RUNX1,PAK1,BCAR1,ELF2,PLCG1,CTSB,THEMIS2,RAP1A,UBE2N,VAV2,CMTM3,LILRA2,SK
AP1,NFKBIA,PRKCB,MAPK1,HLADQA2,CFH,KRAS,TAB3,PSME4,MUC3A,CD276,C3,CACNB3,PIK3C3,NR4A3,PLSCR1,TRIM15,GPS2,CRK,ELMO2,UBA52,ARP
C2,ICOSLG,MALT1,MEF2C,PIK3AP1,IGLV223,PAWR,RIPK1,MUC16,DDX58,FLOT1,RELA,TRIM5,RIOK3,LCK,FGR,NCKAP1L,NCK1,RAC1,MICB,MAP3K7,PJA2,
GRAMD4,LGR4,ACTB,DMBT1,PAG1,ZC3H12A,ACTR2,DHX58,CD28,MUC12,IKBKB,CFD,NONO,MYO10,WIPF2,CARD11,TNIP1,LTF,CD22,ITGB2,UBE2D1,D

USP22,TAB2,CYLD,TRAF6,C3AR1,GFI1,CD3E,MAPK3,NCKAP1,CD55,HCK 

129 0.28923

8 

Up Immune 

Response 
Regulating 
Signaling 
Pathway 

0.00334 0.354504 1.636582 433 LGMN,HLA-DRA,TNFAIP3,MAPKAPK2,DUSP3,HLA-DPA1,CD38,PRNP,CD47,NFKBIZ,PRKCD,PIK3CD,CDC42,PLCG2,HLA-DRB1,HLA-DRB5,CAV1,JUN,HLA-

DPB1,PRKACA,IRF1,TANK,HLA-DQB1,CALM1,ARPC5,CLEC7A,MAPK8,GCSAM,NECTIN2,CYFIP2,BIRC3,RTN4,RAB29,HLA-
DQA1,EZR,PLCL2,CCR7,ACTG1,LGALS3,ITGAM,CD36,BIRC2,RUNX1,PAK1,BCAR1,ELF2,PLCG1,CTSB,THEMIS2,RAP1A,CD40,UBE2N,VAV2,CMTM3,LILRA2,S
KAP1,NFKBIA,PRKCB,MAPK1,HLADQA2,KRAS,TAB3,PSME4,MUC3A,CD276,GAB2,CACNB3,PIK3C3,NR4A3,PLSCR1,TRIM15,GPS2,CRK,ELMO2,UBA52,ARP
C2,ICOSLG,MALT1,MEF2C,PIK3AP1,IGLV223,PAWR,RIPK1,MUC16,DDX58,FLOT1,RELA,TRIM5,RIOK3,LCK,FGR,NCKAP1L,NCK1,RAC1,PIGR,MICB,MAP3K7,
PJA2,GRAMD4,LGR4,FER,ACTB,DMBT1,PAG1,ZC3H12A,ACTR2,PPP3CA,DHX58,CD28,MUC12,IKBKB,MYO10,WIPF2,MAPK10,CARD11,TNIP1,LTF,CD22,CT

SH,ITGB2,UBE2D1,DUSP22,TAB2,CYLD,TRAF6 

125 0.28868

4 

Up Positive 
Regulation of Cell 

Adhesion 

0.00334 0.430148 1.912325 286 EMP2,SOX2,HLA-DMB,JUP,CD44,CCL5,HLA-DPA1,IL4R,RSU1,SMAD3,CD47,ITGA3,HLA-E,NFKBIZ,CYTH3,CDC42,STX3,CAV1,HLA-
DPB1,EPB41L5,PODXL,AFDN,S100A10,MYADM,NDNF,SDC4,CCR7,FN1,RHOA,CD36,RUNX1,PAK1,EBI3,DUSP10,MAP4K4,PREX1,PRKCA,CD74,MAP3K8,FR
MD5,CD83,FLCN,SKAP1,PTPRU,TNFSF9,PRKCZ,TGFBR2,CD276,LGALS1,SMAD7,NR4A3,KIFAP3,CRK,VWC2,ARPC2,ICOSLG,MALT1,ICAM1,FLOT1,ADAM19
,RELA,ITGA6,VCAM1,ZFHX3,RELL2,LCK,TSC1,ANXA1,ITGA2,BCL6,NCKAP1L,LGALS9,IGF2,EFNB2,NCK1,RAC1,EMID1,COL26A1,GSK3B,RAG1,FMN1,IL15,C
OL16A1,ILK,FLNA,PPP3CA,DAG1,CD28,CD274,DMTN,MYO10,SOCS1,CARD11,ARL2,ERBB2,ARHGEF7,MMRN1,CYLD,TRAF6,ILTS1,FAM49B,CD3E,CORO1A

,ITGB1BP1,CD55,DYSF,EPHA1,CCDC80,CHRD 

110 0.38461
5 

Up Regulation of 
Small GTPase 

Signal 
Transduction 

0.00334 0.474638 2.093758 266 RHOBTB2,ARHGAP17,MAPRE2,CYTH1,RALGPS1,AMOT,SPRY1,ITGA3,CYTH3,ARHGAP42,CDC42,F2R,CDON,HEG1,NET1,GDI1,ARHGEF9,RAC2,RHOB,ALS2
,ITGB1,CADM4,NTRK1,PRAG1,RHOA,CHN1,RAP1GAP,RASA4,SRGAP2,MAP4K4,ARF6,ARHGEF40,OBSCN,PSD,MET,PREX1,VAV2,TIMP2,RALBP1,FLCN,ARR
B1,ARHGEF3,RALGAPA2,RALGPS2,ABR,RHOC,KRAS,ARHGDIB,MADD,RHOF,SPATA13,FGD6,NOTCH2,PLEKHG5,TNFAIP1,STMN3,RAP1GAP2,CRK,GPR174,
ARAP1,ARHGAP28,FLOT1,PSD3,ARHGEF6,TRIP10,ARAP3,SHOC2,RHOG,BCL6,ARHGAP44,ARHGAP32,RALGAPA1,NOTCH1,RAC1,ARHGAP24,ARHGEF25,A
RAP2,RASA4B,AKAP13,ARHGEF11,ROBO1,EPS8,MCF2L2,PPP2CB,MAPKAP1,ARHGEF7,KANK2,ARHGAP26,CD2AP,ARHGEF12,RASA1,OCRL,PLEKHG3,SYN

PO2L,RHOQ,RASAL1,STARD13,SYNGAP1,SRGAP3,ARHGEF18,SLIT2,DNMBP,FAM13B,ARHGAP25,DEPDC7,ARHGAP12,FAM13A,VAV1,MYO9A,CBL 

110 0.41353
4 

Up Regulation of Ras 
Protein Signal 
Transduction 

0.00334 0.480191 2.030598 183 MAPRE2,CYTH1,RALGPS1,SPRY1,ITGA3,CYTH3,ARHGAP42,F2R,HEG1,NET1,ARHGEF9,ALS2,ITGB1,CADM4,NTRK1,PRAG1,RASA4,MAP4K4,ARF6,ARHGEF
40,OBSCN,PSD,MET,PREX1,VAV2,TIMP2,FLCN,ARRB1,ARHGEF3,RALGPS2,ABR,KRAS,ARHGDIB,MADD,SPATA13,FGD6,NOTCH2,PLEKHG5,TNFAIP1,STMN
3,CRK,GPR174,FLOT1,PSD3,ARHGEF6,SHOC2,BCL6,ARHGAP44,NOTCH1,RAC1,ARHGEF25,RASA4B,AKAP13,ARHGEF11,ROBO1,EPS8,MCF2L2,PPP2CB,M

APKAP1,ARHGEF7,KANK2,ARHGEF12,RASA1,PLEKHG3,SYNPO2L,RASAL1,SYNGAP1,ARHGEF18 

68 0.37158
5 
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APPENDIX C. FISHER’S EXACT ENRICHED GO_FAT DATASETS UPON SYNERGISTIC CDK/HDAC INHIBITION 

GOid GO term collection Zscore Down_genes Up_genes PValue FDR Count 

GO:0005125 cytokine activity MF_FAT -2.88675 (-11) GREM1 IL1A CSF3 CXCL8 CSF2 IL23A IL1B CXCL1 CXCL3 CXCL2 
CXCL5 

(+1) EBI3 3.89E-06 0.001995 12 

GO:0005126 cytokine receptor binding MF_FAT -2.88675 (-11) GREM1 IL1A CSF3 CXCL8 CSF2 IL23A IL1B CXCL1 CXCL3 CXCL2 
CXCL5 

(+1) EBI3 2.72E-05 0.004657 12 

GO:0050900 leukocyte migration BP_FAT -2.35702 (-14) CXCL8 MMP1 CXCL1 SLC7A11 ITGAL CXCL3 CXCL2 CXCL5 GREM1 
IL1A PROCR IL23A IL1B PDE4B 

(+4) TNFRSF18 ITGB2 MMP9 CCR7 1.29E-08 1.02E-05 18 

GO:0045236 CXCR chemokine receptor 
binding 

MF_FAT -2.23607 (-5) CXCL8 CXCL1 CXCL3 CXCL2 CXCL5 (+0)  1.21E-05 0.003094 5 

GO:0033993 response to lipid BP_FAT -2.18282 (-13) ERRFI1 CSF3 CXCL8 CSF2 TNC HMGA2 CXCL1 CXCL3 CXCL2 
CXCL5 LOX IL1B PDE4B 

(+4) TNFRSF18 WFDC1 FBXO32 CCR7 0.001893 0.038774 17 

GO:0002688 regulation of leukocyte 
chemotaxis 

BP_FAT -2.12132 (-7) GREM1 CXCL8 IL23A CXCL1 CXCL3 CXCL2 CXCL5 (+1) CCR7 1.85E-05 0.001362 8 

GO:0050920 regulation of chemotaxis BP_FAT -2.12132 (-7) GREM1 CXCL8 IL23A CXCL1 CXCL3 CXCL2 CXCL5 (+1) CCR7 8.80E-04 0.023019 8 

GO:0097529 myeloid leukocyte migration BP_FAT -2.11058 (-9) GREM1 IL1A CXCL8 IL23A IL1B PDE4B CXCL1 CXCL3 CXCL2 (+2) ITGB2 CCR7 7.70E-07 1.51E-04 11 

GO:0030595 leukocyte chemotaxis BP_FAT -2.11058 (-9) GREM1 CXCL8 IL23A IL1B PDE4B CXCL1 CXCL3 CXCL2 CXCL5 (+2) ITGB2 CCR7 4.66E-06 5.13E-04 11 

GO:0060326 cell chemotaxis BP_FAT -2.11058 (-9) GREM1 CXCL8 IL23A IL1B PDE4B CXCL1 CXCL3 CXCL2 CXCL5 (+2) ITGB2 CCR7 4.35E-05 0.002648 11 

GO:0032496 response to lipopolysaccharide BP_FAT -2.11058 (-9) CSF3 CXCL8 CSF2 IL1B PDE4B CXCL1 CXCL3 CXCL2 CXCL5 (+2) TNFRSF18 CCR7 2.00E-04 0.00827 11 

GO:0002237 response to molecule of 
bacterial origin 

BP_FAT -2.11058 (-9) CSF3 CXCL8 CSF2 IL1B PDE4B CXCL1 CXCL3 CXCL2 CXCL5 (+2) TNFRSF18 CCR7 2.88E-04 0.011323 11 

GO:0006935 chemotaxis BP_FAT -1.94145 (-10) CXCL8 CXCL1 CXCL3 CXCL2 CXCL5 GREM1 IL23A IL1B PDE4B 
FEZF1 

(+3) ITGB2 PDGFA CCR7 0.002025 0.040585 13 

GO:0042330 taxis BP_FAT -1.94145 (-10) CXCL8 CXCL1 CXCL3 CXCL2 CXCL5 GREM1 IL23A IL1B PDE4B 
FEZF1 

(+3) ITGB2 PDGFA CCR7 0.002056 0.040843 13 

GO:1990266 neutrophil migration BP_FAT -1.89737 (-8) IL1A CXCL8 IL23A IL1B PDE4B CXCL1 CXCL3 CXCL2 (+2) ITGB2 CCR7 7.81E-08 3.01E-05 10 

GO:0097530 granulocyte migration BP_FAT -1.89737 (-8) IL1A CXCL8 IL23A IL1B PDE4B CXCL1 CXCL3 CXCL2 (+2) ITGB2 CCR7 4.14E-07 1.13E-04 10 

GO:0002685 regulation of leukocyte 
migration 

BP_FAT -1.89737 (-8) GREM1 IL1A CXCL8 IL23A CXCL1 CXCL3 CXCL2 CXCL5 (+2) TNFRSF18 CCR7 5.70E-06 5.77E-04 10 

GO:1902624 positive regulation of neutrophil 
migration 

BP_FAT -1.88982 (-6) IL1A CXCL8 IL23A CXCL1 CXCL3 CXCL2 (+1) CCR7 4.33E-08 2.23E-05 7 

GO:1902622 regulation of neutrophil 
migration 

BP_FAT -1.88982 (-6) IL1A CXCL8 IL23A CXCL1 CXCL3 CXCL2 (+1) CCR7 1.73E-07 5.93E-05 7 

GO:0002690 positive regulation of leukocyte 
chemotaxis 

BP_FAT -1.88982 (-6) CXCL8 IL23A CXCL1 CXCL3 CXCL2 CXCL5 (+1) CCR7 5.83E-05 0.003156 7 

GO:0050921 positive regulation of 
chemotaxis 

BP_FAT -1.88982 (-6) CXCL8 IL23A CXCL1 CXCL3 CXCL2 CXCL5 (+1) CCR7 4.93E-04 0.017475 7 

GO:0016477 cell migration BP_FAT -1.67126 (-19) CXCL8 CXCL1 SLC7A11 ITGAL CXCL3 CXCL2 CXCL5 LOXL2 PDE4B 
CYP1B1 FEZF1 MMP1 IGF1 GREM1 IL1A PROCR MMP14 IL23A IL1B 

(+10) PTPRR ITGB2 CHRD PDGFA LDLRAD4 ARHGDIB CCR7 
TNFRSF18 MMP9 FGR 

3.15E-07 9.73E-05 29 

GO:0048870 cell motility BP_FAT -1.67126 (-19) CXCL8 CXCL1 SLC7A11 ITGAL CXCL3 CXCL2 CXCL5 LOXL2 PDE4B 
CYP1B1 FEZF1 MMP1 IGF1 GREM1 IL1A PROCR MMP14 IL23A IL1B 

(+10) PTPRR ITGB2 CHRD PDGFA LDLRAD4 ARHGDIB CCR7 
TNFRSF18 MMP9 FGR 

3.17E-06 3.84E-04 29 
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GO:0051674 localization of cell BP_FAT -1.67126 (-19) CXCL8 CXCL1 SLC7A11 ITGAL CXCL3 CXCL2 CXCL5 LOXL2 PDE4B 
CYP1B1 FEZF1 MMP1 IGF1 GREM1 IL1A PROCR MMP14 IL23A IL1B 

(+10) PTPRR ITGB2 CHRD PDGFA LDLRAD4 ARHGDIB CCR7 
TNFRSF18 MMP9 FGR 

3.17E-06 3.84E-04 29 

GO:0040011 locomotion BP_FAT -1.67126 (-19) CXCL8 CXCL1 SLC7A11 ITGAL CXCL3 CXCL2 CXCL5 LOXL2 PDE4B 
CYP1B1 FEZF1 MMP1 IGF1 GREM1 IL1A PROCR MMP14 IL23A IL1B 

(+10) PTPRR ITGB2 CHRD PDGFA LDLRAD4 ARHGDIB CCR7 
TNFRSF18 MMP9 FGR 

4.27E-05 0.002648 29 

GO:0030593 neutrophil chemotaxis BP_FAT -1.66667 (-7) CXCL8 IL23A IL1B PDE4B CXCL1 CXCL3 CXCL2 (+2) ITGB2 CCR7 4.41E-07 1.13E-04 9 

GO:0071621 granulocyte chemotaxis BP_FAT -1.66667 (-7) CXCL8 IL23A IL1B PDE4B CXCL1 CXCL3 CXCL2 (+2) ITGB2 CCR7 2.11E-06 2.96E-04 9 

GO:0002687 positive regulation of leukocyte 

migration 

BP_FAT -1.66667 (-7) IL1A CXCL8 IL23A CXCL1 CXCL3 CXCL2 CXCL5 (+2) TNFRSF18 CCR7 3.23E-06 3.84E-04 9 

GO:0005576 extracellular region CC_DIRECT -1.66667 (-23) LGALS3BP CSF3 CSF2 CXCL8 TNC CXCL1 CXCL3 FSTL1 CXCL2 

APOLD1 CXCL5 APOL1 SERPINB2 MMP1 MMP3 PSG1 IGF1 IL1A 
PROCR LOX IL23A IL1B SCG5 

(+13) SERPINA1 WNT2B EBI3 PDGFA LILRA2 FGF9 DMBT1 

IL13RA2 COL27A1 TNFRSF18 IGF2 MMP9 COL5A3 

2.42E-08 2.01E-06 36 

GO:0090023 positive regulation of neutrophil 
chemotaxis 

BP_FAT -1.63299 (-5) CXCL8 IL23A CXCL1 CXCL3 CXCL2 (+1) CCR7 8.25E-07 1.51E-04 6 

GO:0071624 positive regulation of 
granulocyte chemotaxis 

BP_FAT -1.63299 (-5) CXCL8 IL23A CXCL1 CXCL3 CXCL2 (+1) CCR7 1.63E-06 2.65E-04 6 

GO:0090022 regulation of neutrophil 
chemotaxis 

BP_FAT -1.63299 (-5) CXCL8 IL23A CXCL1 CXCL3 CXCL2 (+1) CCR7 2.01E-06 2.96E-04 6 

GO:0071622 regulation of granulocyte 

chemotaxis 

BP_FAT -1.63299 (-5) CXCL8 IL23A CXCL1 CXCL3 CXCL2 (+1) CCR7 1.41E-05 0.001247 6 

GO:0070098 chemokine-mediated signaling 
pathway 

BP_FAT -1.63299 (-5) CXCL8 CXCL1 CXCL3 CXCL2 CXCL5 (+1) CCR7 5.76E-04 0.01945 6 

GO:0072359 circulatory system development BP_FAT -1.60591 (-13) FHOD3 ERRFI1 CXCL8 IGF1 APOLD1 LOXL2 GREM1 IL1A IFT74 
MMP14 LOX IL1B CYP1B1 

(+6) TMPRSS6 ITGB2 PDGFA FGF9 APLNR CHI3L1 7.46E-04 0.020576 19 

GO:0072358 cardiovascular system 
development 

BP_FAT -1.60591 (-13) FHOD3 ERRFI1 CXCL8 IGF1 APOLD1 LOXL2 GREM1 IL1A IFT74 
MMP14 LOX IL1B CYP1B1 

(+6) TMPRSS6 ITGB2 PDGFA FGF9 APLNR CHI3L1 7.46E-04 0.020576 19 

GO:0006928 movement of cell or subcellular 
component 

BP_FAT -1.5667 (-21) CXCL8 CXCL1 SLC7A11 ITGAL CXCL3 CXCL2 CXCL5 LOXL2 IFT74 
UCHL1 PDE4B CYP1B1 FEZF1 MMP1 IGF1 GREM1 IL1A PROCR 

MMP14 IL23A IL1B 

(+12) HCN4 PTPRR ITGB2 CHRD PDGFA LDLRAD4 MOBP 
ARHGDIB CCR7 TNFRSF18 MMP9 FGR 

1.79E-05 0.001359 33 

GO:0008283 cell proliferation BP_FAT -1.5667 (-21) ERRFI1 CSF3 CSF2 CXCL8 TNC CXCL1 CXCL5 LOXL2 IFT74 UCHL1 
CYP1B1 FEZF1 FZD9 HMGA2 IGF1 RPGRIP1 GREM1 IL1A MMP14 

IL23A IL1B 

(+12) CDKN1C WNT2B EBI3 CHRD WFDC1 PDGFA FGF9 CTLA4 
SPEG PRNP IGF2 MMP9 

3.69E-05 0.002422 33 

GO:0030199 collagen fibril organization BP_FAT -1.34164 (-4) GREM1 LOX CYP1B1 LOXL2 (+1) COL5A3 3.19E-04 0.011845 5 

GO:0051094 positive regulation of 
developmental process 

BP_FAT -1.34164 (-13) CSF3 CXCL8 FZD9 HMGA2 IGF1 LOXL2 GREM1 IL1A MMP14 
IL23A IL1B CYP1B1 FEZF1 

(+7) WNT2B ITGB2 PDGFA BAIAP2 FGF9 CHI3L1 PACSIN1 0.001495 0.03254 20 

GO:0009617 response to bacterium BP_FAT -1.29099 (-10) CSF3 CXCL8 CSF2 CXCL1 CXCL3 CXCL2 CXCL5 IL23A IL1B PDE4B (+5) TNFRSF18 BAIAP2 FGR DMBT1 CCR7 1.59E-04 0.007197 15 

GO:0001944 vasculature development BP_FAT -1.29099 (-10) ERRFI1 CXCL8 APOLD1 LOXL2 GREM1 IL1A MMP14 LOX IL1B 
CYP1B1 

(+5) TMPRSS6 ITGB2 PDGFA FGF9 CHI3L1 5.07E-04 0.017758 15 

GO:0051707 response to other organism BP_FAT -1.21268 (-11) CSF3 CXCL8 CSF2 HMGA2 CXCL1 CXCL3 CXCL2 CXCL5 IL23A IL1B 
PDE4B 

(+6) TNFRSF18 KRT8 BAIAP2 FGR DMBT1 CCR7 0.0013 0.029062 17 

GO:0043207 response to external biotic 
stimulus 

BP_FAT -1.21268 (-11) CSF3 CXCL8 CSF2 HMGA2 CXCL1 CXCL3 CXCL2 CXCL5 IL23A IL1B 
PDE4B 

(+6) TNFRSF18 KRT8 BAIAP2 FGR DMBT1 CCR7 0.0013 0.029062 17 

GO:0009607 response to biotic stimulus BP_FAT -1.21268 (-11) CSF3 CXCL8 CSF2 HMGA2 CXCL1 CXCL3 CXCL2 CXCL5 IL23A IL1B 
PDE4B 

(+6) TNFRSF18 KRT8 BAIAP2 FGR DMBT1 CCR7 0.002202 0.042199 17 

GO:0045766 positive regulation of 
angiogenesis 

BP_FAT -1.13389 (-5) GREM1 IL1A CXCL8 IL1B CYP1B1 (+2) ITGB2 CHI3L1 6.37E-04 0.01945 7 

GO:1904018 positive regulation of 
vasculature development 

BP_FAT -1.13389 (-5) GREM1 IL1A CXCL8 IL1B CYP1B1 (+2) ITGB2 CHI3L1 0.001182 0.027216 7 



 
 

 

 

1
3

0
 

GO:0050731 positive regulation of peptidyl-

tyrosine phosphorylation 

BP_FAT -1.13389 (-5) GREM1 CSF3 CSF2 IL23A IGF1 (+2) TNFRSF18 IGF2 0.00237 0.044629 7 

GO:0030335 positive regulation of cell 
migration 

BP_FAT -1.06904 (-9) CXCL8 CXCL1 IGF1 CXCL3 CXCL2 CXCL5 IL1A MMP14 IL23A (+5) TNFRSF18 PDGFA MMP9 FGR CCR7 2.32E-05 0.001626 14 

GO:2000147 positive regulation of cell 
motility 

BP_FAT -1.06904 (-9) CXCL8 CXCL1 IGF1 CXCL3 CXCL2 CXCL5 IL1A MMP14 IL23A (+5) TNFRSF18 PDGFA MMP9 FGR CCR7 3.33E-05 0.002233 14 

GO:0051272 positive regulation of cellular 
component movement 

BP_FAT -1.06904 (-9) CXCL8 CXCL1 IGF1 CXCL3 CXCL2 CXCL5 IL1A MMP14 IL23A (+5) TNFRSF18 PDGFA MMP9 FGR CCR7 4.38E-05 0.002648 14 

GO:0040017 positive regulation of 
locomotion 

BP_FAT -1.06904 (-9) CXCL8 CXCL1 IGF1 CXCL3 CXCL2 CXCL5 IL1A MMP14 IL23A (+5) TNFRSF18 PDGFA MMP9 FGR CCR7 4.59E-05 0.002709 14 

GO:0001568 blood vessel development BP_FAT -1.06904 (-9) CXCL8 APOLD1 LOXL2 GREM1 IL1A MMP14 LOX IL1B CYP1B1 (+5) TMPRSS6 ITGB2 PDGFA FGF9 CHI3L1 9.41E-04 0.023812 14 

GO:0030155 regulation of cell adhesion BP_FAT 1.04257 (-9) CXCL8 TNC IGF1 GREM1 IFT74 MMP14 IL23A IL1B CYP1B1 (+14) PRR5 PRNP PTPRR TNFRSF18 EBI3 CHRD SOX13 IGF2 
ABAT ARHGDIB CTLA4 MAP3K8 CCR7 SKAP1 

1.34E-08 1.02E-05 23 

GO:0071495 cellular response to endogenous 
stimulus 

BP_FAT 1.09109 (-8) ERRFI1 CXCL8 TNC HMGA2 FSTL1 GREM1 IL1B PDE4B (+13) CDKN1C HCN4 TMPRSS6 ITGB2 CAMK2A CHRD IGF2 
LDLRAD4 BAIAP2 FBXO32 FGF9 ADAMTSL2 ZYX 

0.001661 0.035013 21 

GO:0042327 positive regulation of 
phosphorylation 

BP_FAT 1.14708 (-7) CSF3 CSF2 IGF1 GREM1 IL1A IL23A IL1B (+12) PRR5 TNFRSF18 IGF2 PDGFA MMP9 FGR GRM4 FGF9 
CHI3L1 MAP3K8 CCR7 MDFI 

6.35E-04 0.01945 19 

GO:0010562 positive regulation of 
phosphorus metabolic process 

BP_FAT 1.14708 (-7) CSF3 CSF2 IGF1 GREM1 IL1A IL23A IL1B (+12) PRR5 TNFRSF18 IGF2 PDGFA MMP9 FGR GRM4 FGF9 
CHI3L1 MAP3K8 CCR7 MDFI 

0.002401 0.044629 19 

GO:0045937 positive regulation of phosphate 
metabolic process 

BP_FAT 1.14708 (-7) CSF3 CSF2 IGF1 GREM1 IL1A IL23A IL1B (+12) PRR5 TNFRSF18 IGF2 PDGFA MMP9 FGR GRM4 FGF9 
CHI3L1 MAP3K8 CCR7 MDFI 

0.002401 0.044629 19 

GO:0051249 regulation of lymphocyte 

activation 

BP_FAT 1.1547 (-4) MMP14 IL23A IL1B IGF1 (+8) PRR5 PRNP EBI3 IGF2 SOX13 CTLA4 CCR7 MAP3K8 5.94E-04 0.01945 12 

GO:0042110 T cell activation BP_FAT 1.1547 (-4) IL23A IL1B IGF1 ITGAL (+8) PRR5 PRNP EBI3 IGF2 SOX13 CTLA4 CCR7 MAP3K8 0.001156 0.027216 12 

GO:0070489 T cell aggregation BP_FAT 1.1547 (-4) IL23A IL1B IGF1 ITGAL (+8) PRR5 PRNP EBI3 IGF2 SOX13 CTLA4 CCR7 MAP3K8 0.001156 0.027216 12 

GO:0071593 lymphocyte aggregation BP_FAT 1.1547 (-4) IL23A IL1B IGF1 ITGAL (+8) PRR5 PRNP EBI3 IGF2 SOX13 CTLA4 CCR7 MAP3K8 0.001177 0.027216 12 

GO:0070486 leukocyte aggregation BP_FAT 1.1547 (-4) IL23A IL1B IGF1 ITGAL (+8) PRR5 PRNP EBI3 IGF2 SOX13 CTLA4 CCR7 MAP3K8 0.001333 0.0296 12 

GO:0016337 single organismal cell-cell 

adhesion 

BP_FAT 1.21268 (-6) SLC7A11 IGF1 ITGAL IL23A IL1B CYP1B1 (+11) PRR5 PRNP EBI3 ITGB2 SOX13 IGF2 ABAT ITGAD CTLA4 

MAP3K8 CCR7 

3.08E-04 0.011769 17 

GO:0098602 single organism cell adhesion BP_FAT 1.21268 (-6) SLC7A11 IGF1 ITGAL IL23A IL1B CYP1B1 (+11) PRR5 PRNP EBI3 ITGB2 SOX13 IGF2 ABAT ITGAD CTLA4 

MAP3K8 CCR7 

6.75E-04 0.020027 17 

GO:0044093 positive regulation of molecular 
function 

BP_FAT 1.25724 (-12) ARHGAP9 ERRFI1 CSF3 CSF2 BEX1 CXCL1 HMGA2 IGF1 GREM1 
MMP14 IL23A IL1B 

(+19) RGS13 ITGB2 CAMK2A PDGFA ARHGEF10L MEFV GRM4 
FGF9 ARHGDIB CCR7 MAP3K8 EGLN3 IGF2 MMP9 FGR FCER2 

IL3RA CHI3L1 MDFI 

1.79E-04 0.007902 31 

GO:0030029 actin filament-based process BP_FAT 1.29099 (-5) FHOD3 CSF3 CXCL1 PDE4B PFN4 (+10) HCN4 KRT8 PDGFA ARHGEF10L BAIAP2 MOBP ARHGDIB 
ZYX CCR7 PACSIN1 

0.001292 0.029062 15 

GO:0061045 negative regulation of wound 
healing 

BP_FAT 1.34164 (-1) SERPINB2 (+4) TMPRSS6 PDGFA WFDC1 ABAT 0.001497 0.03254 5 

GO:0046903 secretion BP_FAT 1.34164 (-7) LGALS3BP CSF2 HMGA2 IGF1 IL1A IL1B SCG5 (+13) SERPINA1 CAMK2A IGF2 PDGFA ABAT SYT7 FGR GRM4 
KCNMB4 CHI3L1 CCR7 IL13RA2 TSPOAP1 

0.001644 0.03499 20 

GO:1903035 negative regulation of response 
to wounding 

BP_FAT 1.34164 (-1) SERPINB2 (+4) TMPRSS6 PDGFA WFDC1 ABAT 0.002377 0.044629 5 

GO:0031399 regulation of protein 
modification process 

BP_FAT 1.34715 (-10) ERRFI1 CSF3 CSF2 UCHL1 IGF1 GREM1 IL1A IL23A IL1B JDP2 (+17) CDKN1C PRR5 PTPRR ITGB2 PDGFA LDLRAD4 GRM4 FGF9 
CCR7 MAP3K8 PRNP TNFRSF18 IGF2 MMP9 FGR CHI3L1 MDFI 

9.93E-04 0.024521 27 
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GO:0065009 regulation of molecular function BP_FAT 1.37249 (-17) ARHGAP9 ERRFI1 CSF3 CSF2 BEX1 CXCL1 UCHL1 PDE4B CYP1B1 
SERPINB2 HMGA2 IGF1 GREM1 MMP14 IL23A IL1B SCG5 

(+26) CDKN1C SERPINA1 RGS13 ITGB2 CAMK2A WFDC1 PDGFA 
ARHGEF10L ELFN2 MEFV CACNG8 GRM4 FGF9 ARHGDIB CCR7 
MAP3K8 PRNP EGLN3 IGF2 MMP9 FGR FCER2 PPP2R2C IL3RA 

CHI3L1 MDFI 

7.36E-05 0.003786 43 

GO:0045785 positive regulation of cell 
adhesion 

BP_FAT 1.38675 (-4) IGF1 IFT74 IL23A IL1B (+9) PRR5 TNFRSF18 EBI3 CHRD IGF2 CTLA4 MAP3K8 CCR7 
SKAP1 

8.15E-05 0.004055 13 

GO:0007159 leukocyte cell-cell adhesion BP_FAT 1.38675 (-4) IGF1 ITGAL IL23A IL1B (+9) PRR5 PRNP EBI3 ITGB2 SOX13 IGF2 CTLA4 MAP3K8 CCR7 7.48E-04 0.020576 13 

GO:0009967 positive regulation of signal 

transduction 

BP_FAT 1.4 (-9) CSF3 CSF2 CYP1B1 FZD9 IGF1 GREM1 IL1A IL23A IL1B (+16) CDKN1C PRR5 WNT2B PDGFA ABAT GRM4 FGF9 CCR7 

MAP3K8 TNFRSF18 IGF2 MMP9 FGR CHI3L1 MDFI SKAP1 

5.80E-04 0.01945 25 

GO:0016310 phosphorylation BP_FAT 1.41421 (-12) ERRFI1 CSF3 CSF2 PAPSS2 UCHL1 MEF2B HMGA2 IGF1 GREM1 
IL1A IL23A IL1B 

(+20) CDKN1C PRR5 PTPRR ITGB2 CAMK2A PDGFA LDLRAD4 
GRM4 FGF9 SPEG CCR7 MAP3K8 PRNP TNFRSF18 IGF2 MMP9 

FGR IL3RA CHI3L1 MDFI 

0.002065 0.040843 32 

GO:0009790 embryo development BP_FAT 1.41421 (-6) CXCL8 CSF2 HMGA2 IGF1 GREM1 MMP14 (+12) CDKN1C PTPRR WNT2B ITGB2 CHRD KRT8 PDGFA MMP9 
FGF9 APLNR PDZD7 MDFI 

0.002151 0.041494 18 

GO:0050863 regulation of T cell activation BP_FAT 1.50756 (-3) IL23A IL1B IGF1 (+8) PRR5 PRNP EBI3 IGF2 SOX13 CTLA4 CCR7 MAP3K8 1.85E-04 0.007944 11 

GO:1903037 regulation of leukocyte cell-cell 
adhesion 

BP_FAT 1.50756 (-3) IL23A IL1B IGF1 (+8) PRR5 PRNP EBI3 IGF2 SOX13 CTLA4 CCR7 MAP3K8 2.67E-04 0.01069 11 

GO:0007155 cell adhesion BP_FAT 1.5667 (-12) LGALS3BP TNC SLC7A11 ITGAL LOXL2 IFT74 CYP1B1 IGF1 
GREM1 MMP14 IL23A IL1B 

(+21) PRR5 PTPRR EBI3 ITGB2 CHRD ABAT ARHGDIB CTLA4 
CCR7 MAP3K8 PRNP CADM2 TNFRSF18 IGF2 SOX13 BAIAP2 

ITGAD COL5A3 ZYX CD22 SKAP1 

5.79E-06 5.77E-04 33 

GO:0022610 biological adhesion BP_FAT 1.5667 (-12) LGALS3BP TNC SLC7A11 ITGAL LOXL2 IFT74 CYP1B1 IGF1 
GREM1 MMP14 IL23A IL1B 

(+21) PRR5 PTPRR EBI3 ITGB2 CHRD ABAT ARHGDIB CTLA4 
CCR7 MAP3K8 PRNP CADM2 TNFRSF18 IGF2 SOX13 BAIAP2 

ITGAD COL5A3 ZYX CD22 SKAP1 

6.24E-06 6.02E-04 33 

GO:0001932 regulation of protein 
phosphorylation 

BP_FAT 1.56893 (-9) ERRFI1 CSF3 CSF2 UCHL1 IGF1 GREM1 IL1A IL23A IL1B (+17) CDKN1C PRR5 PTPRR ITGB2 PDGFA LDLRAD4 GRM4 FGF9 
CCR7 MAP3K8 PRNP TNFRSF18 IGF2 MMP9 FGR CHI3L1 MDFI 

5.34E-05 0.002945 26 

GO:0042325 regulation of phosphorylation BP_FAT 1.56893 (-9) ERRFI1 CSF3 CSF2 UCHL1 IGF1 GREM1 IL1A IL23A IL1B (+17) CDKN1C PRR5 PTPRR ITGB2 PDGFA LDLRAD4 GRM4 FGF9 
CCR7 MAP3K8 PRNP TNFRSF18 IGF2 MMP9 FGR CHI3L1 MDFI 

1.61E-04 0.007197 26 

GO:0010647 positive regulation of cell 
communication 

BP_FAT 1.56893 (-9) CSF3 CSF2 CYP1B1 FZD9 IGF1 GREM1 IL1A IL23A IL1B (+17) CDKN1C PRR5 WNT2B PDGFA ABAT SLC8A2 GRM4 FGF9 
CCR7 MAP3K8 TNFRSF18 IGF2 MMP9 FGR CHI3L1 MDFI SKAP1 

8.40E-04 0.022532 26 

GO:0043085 positive regulation of catalytic 
activity 

BP_FAT 1.56893 (-9) ARHGAP9 ERRFI1 CSF2 CXCL1 IGF1 GREM1 MMP14 IL23A IL1B (+17) RGS13 CAMK2A PDGFA ARHGEF10L MEFV GRM4 FGF9 
ARHGDIB CCR7 MAP3K8 EGLN3 IGF2 FGR FCER2 IL3RA CHI3L1 

MDFI 

8.71E-04 0.022981 26 

GO:0023056 positive regulation of signaling BP_FAT 1.56893 (-9) CSF3 CSF2 CYP1B1 FZD9 IGF1 GREM1 IL1A IL23A IL1B (+17) CDKN1C PRR5 WNT2B PDGFA ABAT SLC8A2 GRM4 FGF9 
CCR7 MAP3K8 TNFRSF18 IGF2 MMP9 FGR CHI3L1 MDFI SKAP1 

9.04E-04 0.023442 26 

GO:0002694 regulation of leukocyte 
activation 

BP_FAT 1.60357 (-4) IGF1 MMP14 IL23A IL1B (+10) PRR5 PRNP EBI3 SOX13 IGF2 FGR CTLA4 MAP3K8 CCR7 
IL13RA2 

1.30E-04 0.006186 14 

GO:0032940 secretion by cell BP_FAT 1.60591 (-6) LGALS3BP HMGA2 IGF1 IL1A IL1B SCG5 (+13) SERPINA1 CAMK2A IGF2 PDGFA ABAT SYT7 FGR GRM4 
KCNMB4 CHI3L1 CCR7 IL13RA2 TSPOAP1 

9.61E-04 0.0241 19 

GO:0006468 protein phosphorylation BP_FAT 1.61645 (-11) ERRFI1 CSF3 CSF2 UCHL1 MEF2B HMGA2 IGF1 GREM1 IL1A 
IL23A IL1B 

(+20) CDKN1C PRR5 PTPRR ITGB2 CAMK2A PDGFA LDLRAD4 
GRM4 FGF9 SPEG CCR7 MAP3K8 PRNP TNFRSF18 IGF2 MMP9 

FGR IL3RA CHI3L1 MDFI 

2.01E-04 0.00827 31 

GO:0007166 cell surface receptor signaling 
pathway 

BP_FAT 1.6641 (-20) ERRFI1 CSF3 CSF2 CXCL8 GRIK4 CXCL1 ITGAL CXCL3 CXCL2 
CXCL5 PDE4B GREM1 IL1A MMP14 IL1B FSTL1 IFT74 FZD9 HMGA2 

IGF1 

(+32) CDKN1C PTPRR WNT2B ITGB2 ABAT LDLRAD4 GRM4 FGF9 
ADAMTSL2 CTLA4 CCR7 IL13RA2 TNFRSF18 KRT8 MMP9 FGR 

FCER2 ITGAD IL3RA SKAP1 MDFI TMPRSS6 EBI3 CAMK2A CHRD 
PDGFA CACNG8 PRNP IGF2 BAIAP2 TSPAN15 ZYX 

1.36E-09 4.18E-06 52 

GO:0090287 regulation of cellular response to 
growth factor stimulus 

BP_FAT 1.66667 (-2) GREM1 IL1B (+7) CDKN1C FBN3 FGF9 TMPRSS6 ADAMTSL2 CHRD LDLRAD4 7.33E-04 0.020576 9 
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GO:0009966 regulation of signal transduction BP_FAT 1.67748 (-16) ARHGAP9 ERRFI1 CSF3 CSF2 CXCL8 UCHL1 CYP1B1 FZD9 HMGA2 
IGF1 GREM1 IL1A MMP14 IL23A IL1B MGLL 

(+27) CDKN1C PRR5 PTPRR WNT2B TMPRSS6 RGS13 CHRD 
PDGFA ABAT ARHGEF10L LDLRAD4 CACNG8 GRM4 FGF9 

ARHGDIB ADAMTSL2 CCR7 MAP3K8 PRNP TNFRSF18 IGF2 
MMP9 FGR TSPAN15 CHI3L1 MDFI SKAP1 

2.31E-05 0.001626 43 

GO:0032268 regulation of cellular protein 
metabolic process 

BP_FAT 1.71499 (-12) ERRFI1 CSF3 CSF2 UCHL1 SERPINB2 IGF1 GREM1 IL1A MMP14 
IL23A IL1B JDP2 

(+22) CDKN1C PRR5 PTPRR SERPINA1 ITGB2 WFDC1 PDGFA 
LDLRAD4 MEFV GRM4 FGF9 CCR7 MAP3K8 PRNP EGLN3 

TNFRSF18 IGF2 MMP9 DAZL FGR CHI3L1 MDFI 

0.001179 0.027216 34 

GO:0022407 regulation of cell-cell adhesion BP_FAT 1.73205 (-3) IL23A IL1B IGF1 (+9) PRR5 PRNP EBI3 IGF2 SOX13 CTLA4 ABAT CCR7 MAP3K8 3.51E-04 0.012748 12 

GO:0019220 regulation of phosphate 
metabolic process 

BP_FAT 1.73205 (-9) ERRFI1 CSF3 CSF2 UCHL1 IGF1 GREM1 IL1A IL23A IL1B (+18) CDKN1C PRR5 PTPRR ITGB2 PDGFA LDLRAD4 ELFN2 
GRM4 FGF9 CCR7 MAP3K8 PRNP TNFRSF18 IGF2 MMP9 FGR 

CHI3L1 MDFI 

6.08E-04 0.01945 27 

GO:0051174 regulation of phosphorus 
metabolic process 

BP_FAT 1.73205 (-9) ERRFI1 CSF3 CSF2 UCHL1 IGF1 GREM1 IL1A IL23A IL1B (+18) CDKN1C PRR5 PTPRR ITGB2 PDGFA LDLRAD4 ELFN2 
GRM4 FGF9 CCR7 MAP3K8 PRNP TNFRSF18 IGF2 MMP9 FGR 

CHI3L1 MDFI 

6.14E-04 0.01945 27 

GO:0050790 regulation of catalytic activity BP_FAT 1.85934 (-12) ARHGAP9 ERRFI1 CSF2 CXCL1 UCHL1 SERPINB2 IGF1 GREM1 
MMP14 IL23A IL1B SCG5 

(+23) CDKN1C SERPINA1 RGS13 CAMK2A WFDC1 PDGFA 
ARHGEF10L ELFN2 MEFV GRM4 FGF9 ARHGDIB CCR7 MAP3K8 

EGLN3 IGF2 MMP9 FGR FCER2 PPP2R2C IL3RA CHI3L1 MDFI 

6.19E-04 0.01945 35 

GO:0051246 regulation of protein metabolic 
process 

BP_FAT 1.85934 (-12) ERRFI1 CSF3 CSF2 UCHL1 SERPINB2 IGF1 GREM1 IL1A MMP14 
IL23A IL1B JDP2 

(+23) CDKN1C PRR5 PTPRR SERPINA1 EBI3 ITGB2 WFDC1 
PDGFA LDLRAD4 MEFV GRM4 FGF9 CCR7 MAP3K8 PRNP EGLN3 

TNFRSF18 IGF2 MMP9 DAZL FGR CHI3L1 MDFI 

0.001897 0.038774 35 

GO:0007167 enzyme linked receptor protein 
signaling pathway 

BP_FAT 1.88562 (-5) ERRFI1 IGF1 FSTL1 GREM1 IL1B (+13) CDKN1C PTPRR TMPRSS6 CHRD IGF2 PDGFA LDLRAD4 
BAIAP2 MMP9 FGR FGF9 ADAMTSL2 ZYX 

0.002151 0.041494 18 

GO:0050865 regulation of cell activation BP_FAT 2 (-4) IGF1 MMP14 IL23A IL1B (+12) PRR5 PRNP EBI3 SOX13 IGF2 PDGFA ABAT FGR CTLA4 

MAP3K8 CCR7 IL13RA2 

1.63E-05 0.00132 16 

GO:0010646 regulation of cell communication BP_FAT 2.26274 (-17) ARHGAP9 ERRFI1 CSF3 CSF2 CXCL8 UCHL1 CYP1B1 GREM1 IL1A 
MMP14 IL23A IL1B SCG5 MGLL FZD9 HMGA2 IGF1 

(+33) CDKN1C PRR5 PTPRR WNT2B ABAT ARHGEF10L LDLRAD4 
SLC8A2 GRM4 FGF9 ARHGDIB ADAMTSL2 MAP3K8 CCR7 LZTS1 

TNFRSF18 MMP9 FGR CHI3L1 SKAP1 MDFI TMPRSS6 RGS13 
CAMK2A CHRD PDGFA CACNG8 KCNMB4 PRNP IGF2 BAIAP2 

SYT7 TSPAN15 

6.73E-07 1.48E-04 50 

GO:0023051 regulation of signaling BP_FAT 2.26274 (-17) ARHGAP9 ERRFI1 CSF3 CSF2 CXCL8 UCHL1 CYP1B1 GREM1 IL1A 
MMP14 IL23A IL1B SCG5 MGLL FZD9 HMGA2 IGF1 

(+33) CDKN1C PRR5 PTPRR WNT2B ABAT ARHGEF10L LDLRAD4 
SLC8A2 GRM4 FGF9 ARHGDIB ADAMTSL2 MAP3K8 CCR7 LZTS1 

TNFRSF18 MMP9 FGR CHI3L1 SKAP1 MDFI TMPRSS6 RGS13 
CAMK2A CHRD PDGFA CACNG8 KCNMB4 PRNP IGF2 BAIAP2 

SYT7 TSPAN15 

1.11E-06 1.90E-04 50 
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