
DESIGN AND DEVELOPMENT OF INTELLIGENT
SECURITY MANAGEMENT SYSTEMS: THREAT
DETECTION AND RESPONSE IN CYBER-BASED

INFRASTRUCTURES
by

Yahya Javed

A Dissertation

Submitted to the Faculty of Purdue University

In Partial Fulfillment of the Requirements for the degree of

Doctor of Philosophy

School of Electrical and Computer Engineering

West Lafayette, Indiana

December 2021

THE PURDUE UNIVERSITY GRADUATE SCHOOL
STATEMENT OF COMMITTEE APPROVAL

Dr. Arif Ghafoor, Chair

School of Electrical and Computer Engineering

Dr. Walid G. Aref

Department of Computer Science

Dr. Michael D. Zoltowski

School of Electrical and Computer Engineering

Dr. Ali A. Elghariani

School of Electrical and Computer Engineering

Approved by:

Dr. Dimitrios Peroulis

2

To my parents for their love, support and prayers.

3

ACKNOWLEDGMENTS

All praise is for Allah, the Almighty, who has bestowed upon me countless blessings and

favors, and being the ultimate source of strength in my life.

I would like to express my utmost gratitude to my advisor Prof. Arif Ghafoor for his

continued guidance and support throughout my PhD journey. His remarkable mentorship

enabled me in developing my communication, technical and critical thinking skills. I consider

myself extremely fortunate for having such an amazing advisor and I have always found

something to learn from his distinguished research and academic career.

I would also like to thank Prof. Walid G. Aref, Prof. Michael D. Zoltowski and Dr. Ali

A. Elghariani for serving in my doctoral advisory committee. Their invaluable comments

and suggestions were of great help in the preparation of this dissertation.

I had the opportunity of working with many brilliant researchers: Anas Hazim Daghis-

tani, Mosab Abdulaziz Khayat, Muhamad Felemban, Tawfeeq Shawly and Thamir Qadah.

I would like to thank them and all of my colleagues of the Distributed Multimedia Systems

Lab for their stimulating discussions and valuable feedback that helped me in my research.

I would like to thank my parents Muhammad Javed and Shadab Javed for their uncondi-

tional love and being the greatest source of inspiration in my life. I would also like to thank

my siblings Bilal, Nayab and Hamza for always lifting my spirits. I would also like to extend

my gratitude to my aunt Rubina Zaffar and uncle Mohammad Zaffar for providing me with

a sense being at home during my stay in the United States.

In the end, I would like to thank the National Science Foundation and Northrop Grum-

man Mission Systems for supporting the research presented in this dissertation.

4

TABLE OF CONTENTS

LIST OF TABLES . 9

LIST OF FIGURES . 10

ABSTRACT . 13

1 INTRODUCTION . 14

1.1 Threat Detection in Cyber-based Systems 15

1.2 Threat Response in Cyber-based Systems 17

1.3 Primary Contributions . 18

1.4 Organization . 20

2 RELATED WORK . 21

2.1 Security Risk Analysis . 21

2.2 Traffic Sampling in Network Security . 22

2.3 Intrusion Detection . 23

2.4 Intrusion Prediction . 25

2.5 Intrusion Response and Recovery . 27

3 PRISM: A HIERARCHICAL INTRUSION DETECTION ARCHITECTURE FOR

LARGE-SCALE CYBER NETWORKS . 29

3.1 Background . 29

3.1.1 Attacker Behavior Modeling . 29

3.1.2 Hidden Markov Model . 30

5

3.1.3 Stream Processing . 31

3.2 System Model and Architecture . 32

3.2.1 Threat-Aware Sampler . 32

Vulnerability Assessment . 33

Network Reachability Graph Generation 34

Vulnerability Ranks and Sampling Probabilities Computation 35

Realtime Probabilistic Sampling . 37

3.2.2 Zonal Intrusion Detection System . 40

3.2.3 Alert Stream Manager . 40

3.2.4 Prediction Engine . 43

Training Data Preprocessing . 43

Multi-Stage Attack Learning . 44

Attack Recognition and Stage Prediction 48

Adversarial Machine Learning for Hidden Markov Model-based Threat

Prediction . 52

3.2.5 Security Analyzer . 53

3.3 Experimental Setup . 55

3.3.1 Distributed Security Monitoring . 56

3.3.2 Integrated Security Analysis . 59

3.4 Performance Evaluation . 60

6

3.4.1 Effect of Threat-Aware Sampling and Distributed Traffic Processing . 61

Post Sampling Information Retention 61

Network Traffic Processing Overhead 64

3.4.2 Attack Prediction Performance and Utility of Alert Stream Management 66

Attack Stage Prediction for Different Sampling Ratios 66

Prediction Recall for Different Alert Sequence Lengths 75

Prediction Recall for Different Alert Delay Configurations 79

Evaluation of the Rapidness in Identifying Attack Stages 86

3.4.3 Security Analysis for Cyber Situational Awareness 93

4 TRAP: A PARTITION-DRIVEN INTEGRATED SECURITY ARCHITECTURE

FOR CYBER-BASED SYSTEMS . 99

4.1 Intrusion Detection System . 99

4.2 Partition Manager . 100

4.2.1 Intrusion Boundary Demarcation . 101

4.2.2 Protection-zone Formation . 102

4.3 Intrusion Response System . 104

4.3.1 Damage Assessment . 104

4.3.2 Response Manager . 105

4.4 Intrusion Recovery System . 105

4.4.1 Recovery Analysis . 105

7

4.4.2 Recovery Protocol Knowledgebase 106

4.4.3 Recovery Manager . 107

4.5 Performance Monitor . 107

4.5.1 Statistics Collection . 107

4.5.2 Metrics Calculation . 107

4.6 Simulations and Evaluation . 108

4.6.1 Threat Model and Implementation 108

4.6.2 Experimentation and Results . 110

5 CONCLUSION AND FUTURE WORK . 117

5.1 Summary of Contributions . 117

5.2 Future Research Direction . 118

5.3 Security-centric Network Traffic Sampling using Temporal Graph Networks . 118

5.4 Multi-stage Attack Prediction using Recurrent Neural Networks 118

5.5 Dynamic Threat Response using Reinforcement Learning Techniques 119

REFERENCES . 120

VITA . 128

8

LIST OF TABLES

3.1 Mapping of ATT&CK Tactics to Prediction States 46

3.2 CVSS Metrics Values for Vulnerability Assessment 60

3.3 Distributed Alert Reporting Parameters . 79

9

LIST OF FIGURES

3.1 PRISM and its constituent systems. 33

3.2 TAS architecture and its interaction with the environment. 34

3.3 A sample 5-device NRG. 35

3.4 Illustration of attacker’s movement in the network. 36

3.5 Evolution of buffer (Y) during the buffer_occupancy triggered AOR proce-
dure. (a) Creation of forwarding window (F) and sorting of alerts. (b) Sending
alerts to Prediction Engine. 44

3.6 Evolution of buffer (Y) during the time_elapsed triggered AOR procedure.
(a) Creation of forwarding window (F) and sorting of alerts. (b) Sending
alerts to Prediction Engine. 45

3.7 The process of attack recognition and decoding. 50

3.8 Adversarial machine learning scenario for HMM-based prediction system. (a)
Expected alert sequence corresponding to attack progression. (b) Modified
alert sequence on account of the attacker’s evasion strategy. 52

3.9 Attack progression in the infiltration attack scenario of ISCX-2012 dataset. . 56

3.10 Attack progression in the HTTP DoS attack scenario of ISCX-2012 dataset. 57

3.11 PRISM deployment on the ISCX-2012 network. 58

3.12 TAS performance in comparison to common network traffic sampling schemes
for infiltration attack data. 62

3.13 TAS performance in comparison to common network traffic sampling schemes
for HTTP DoS attack data. 63

3.14 Processing overhead of centralized intrusion detection and distributed security
monitoring of PRISM corresponding to different sampling ratios for infiltra-
tion attack data. 64

3.15 Processing overhead of centralized intrusion detection and distributed security
monitoring of PRISM corresponding to different sampling ratios for HTTP
DoS attack data. 65

3.16 Attack stage prediction for infiltration attack with σ = 0.15. 67

3.17 Attack stage prediction for infiltration attack with σ = 0.30. 68

3.18 Attack stage prediction for HTTP DoS attack with σ = 0.15. 69

3.19 Attack stage prediction for HTTP DoS attack with σ = 0.30. 70

10

3.20 Confusion matrix representation of prediction output for infiltration attack
with σ = 0.15. 71

3.21 Confusion matrix representation of prediction output for infiltration attack
with σ = 0.30. 72

3.22 Confusion matrix representation of prediction output for HTTP DoS attack
with σ = 0.15. 73

3.23 Confusion matrix representation of prediction output for HTTP DoS attack
with σ = 0.30. 74

3.24 Prediction recall for different alert sequence lengths (ω) for infiltration attack
with σ = 0.15. 75

3.25 Prediction recall for different alert sequence lengths (ω) for infiltration attack
with σ = 0.30. 76

3.26 Prediction recall for different alert sequence lengths (ω) for HTTP DoS attack
with σ = 0.15. 77

3.27 Prediction recall for different alert sequence lengths (ω) for HTTP DoS attack
with σ = 0.30. 78

3.28 Prediction recall for different alert delay configurations for infiltration attack
with µ10

max. 80

3.29 Prediction recall for different alert delay configurations for infiltration attack
with µ30

max. 81

3.30 Prediction recall for different alert delay configurations for infiltration attack
with µ50

max. 82

3.31 Prediction recall for different alert delay configurations for HTTP DoS attack
with µ10

max. 83

3.32 Prediction recall for different alert delay configurations for HTTP DoS attack
with µ30

max. 84

3.33 Prediction recall for different alert delay configurations for HTTP DoS attack
with µ50

max. 85

3.34 EDI corresponding to different alert delay configurations for infiltration attack
with µ10

max. 87

3.35 EDI corresponding to different alert delay configurations for infiltration attack
with µ30

max. 88

3.36 EDI corresponding to different alert delay configurations for infiltration attack
with µ50

max. 89

3.37 EDI corresponding to different alert delay configurations for HTTP DoS at-
tack µ10

max. 90

11

3.38 EDI corresponding to different alert delay configurations for HTTP DoS at-
tack with µ30

max. 91

3.39 EDI corresponding to different alert delay configurations for HTTP DoS at-
tack with µ50

max. 92

3.40 System availability during infiltration attack scenario. 93

3.41 Threat perceptivity during infiltration attack scenario. 94

3.42 System degradability during infiltration attack scenario. 95

3.43 System availability corresponding to 1% of sampled traffic. 96

3.44 Threat perceptivity corresponding to 1% of sampled traffic. 97

3.45 System degradability corresponding to 1% of sampled traffic. 98

4.1 TRAP with its constituent systems and interaction with a CBS. 100

4.2 Partitioning process for AMI. (a) Multi-layered system of systems AMI archi-
tecture. (b) Demarcation of IBs on a given AMI topology. (c) AMI topological
structure in an IB. (d) Partitioning of the AMI topological structure to form
protection-zones. 101

4.3 Operational availability over topology size for σ = 3. 111

4.4 Damage extent over number of protection-zones for n = 200. 112

4.5 Guideline electricity price in pricing manipulation cyber-attack. 113

4.6 Overall AEL consumption of a community for n = 200, σ = 3. 114

4.7 Communication impediment over topology size for σ = 3. 115

12

ABSTRACT

Cyber-based infrastructures and systems serve as the operational backbone of many in-

dustries and resilience of such systems against cyber-attacks is of paramount importance.

As the complexity and scale of the Cyber-based Systems (CBSs) has increased many folds

over the years, the attack surface has also been widened, making CBSs more vulnerable to

cyber-attacks. This dissertation addresses the challenges in post intrusion security manage-

ment operations of threat detection and threat response in the networks connecting CBSs.

In threat detection, the increase in scale of cyber networks and the rise in sophistication of

cyber-attacks has introduced several challenges. The primary challenge is the requirement

to detect complex multi-stage cyber-attacks in realtime by processing the immense amount

of traffic produced by present-day networks. In threat response, the issue of delay in re-

sponding to cyber-attacks and the functional interdependencies among different systems of

CBS has been observed to have catastrophic effects, as a cyber-attack that compromises

one constituent system of a CBS can quickly disseminate to others. This can result in a

cascade effect that can impair the operability of the entire CBS. To address the challenges

in threat detection, this dissertation proposes PRISM, a hierarchical threat detection ar-

chitecture that uses a novel attacker behavior model-based sampling technique to minimize

the realtime traffic processing overhead. PRISM has a unique multi-layered architecture

that monitors network traffic distributedly to provide efficiency in processing and modu-

larity in design. PRISM employs a Hidden Markov Model-based prediction mechanism to

identify multi-stage attacks and ascertain the attack progression for a proactive response.

Furthermore, PRISM introduces a stream management procedure that rectifies the issue of

alert reordering when collected from distributed alert reporting systems. To address the

challenges in threat response, this dissertation presents TRAP, a novel threat response and

recovery architecture that localizes the cyber-attack in a timely manner, and simultaneously

recovers the affected system functionality. The dissertation presents comprehensive perfor-

mance evaluation of PRISM and TRAP through extensive experimentation, and shows their

effectiveness in identifying threats and responding to them while achieving all of their design

objectives.

13

1. INTRODUCTION

The industrial digitalization and the recent focus on automation has made CBSs find their

application in all major industries including internet-based services, retail, transport, de-

fense and energy. Most of the CBSs perform mission critical operations that require high

operational resilience. The rise in the number of cyber security incidents involving CBSs in

the form of Advanced Persistent Threats (APTs) from state sponsored and other organized

groups during the last couple of years has made it challenging to keep the CBS secure. The

complexity and scale of the CBS has increased significantly over the past couple of years and

as a consequence the attack surface has expanded proportionally. From a systems engineering

perspective, the increase in system complexity makes it more challenging to provide service

guarantees. From the security perspective, added complexity widens the attack surface [1].

Most of the cyber-attacks targeting the CBS are initiated through the network that includes

malware propagation, infiltration, vulnerability scanning, botnets, Denial of Service (DoS)

and Distributed Denial of Service (DDoS). Intrusion Detection Systems (IDSs) employed to

detect malicious activities in the cyber networks have revealed their limitations in dealing

with the present day threats as the median dwell time is reported to be of 30 days and

internal detection rate is on a continuous decline [2]. Furthermore, the delay in detection

and the corresponding delay in response enables the attacker to compromise the whole CBS

once the initial penetration is successful. The functional interdependencies among different

components of a CBS exacerbate the security risk as a cyber-attack that compromises one

constituent system of a CBS can disseminate to others by normal system operations as well

that can carry the malware or tampered data from one device to another. This can result in

a cascade effect that can impair the operability of the entire CBS in a short period of time.

These constraints and limitations in the threat detection and threat response of the current

post intrusion security management systems entails a complete overhaul in the system design

and operations.

14

1.1 Threat Detection in Cyber-based Systems

IDSs face three major challenges; an ever increasing attack complexity, astronomical in-

crease in data traversing through the networks, and the need to detect attacks in realtime

with in-depth information. To account for the growing attack complexity, modern IDSs

evolved from simple string matching systems to sophisticated machine learning-based frame-

works, making intrusion detection a computation intensive process [3]. To cater for the

processing of massive data, there is no substantial change in the IDS computational process

other than the introduction of more powerful processing hardware. However, according to

Gilder’s law the bandwidth grows at least three times faster than the compute power. While,

compute power doubles every eighteen months (Moore’s law), bandwidth doubles every six

months [4]. This widening gap between the computational capacity and network bandwidth

has made it immensely challenging for IDSs to process every packet in realtime and identify

threats in a cost effective manner. Consequently, as the limited IDS resources are deployed

at only few parts of the network, the chances of attackers penetrating the network without

detection increase. At the same time, it is expected of the IDSs to identify threats with ac-

tionable information that can lead to a proactive response, contrary to binary classification

like alerts that have little use for response operations[5]. These challenges necessitate an

overhaul in the IDS architecture and the intrusion detection process.

Commercial and opensource IDSs for enterprise networks are generally deployed in a

centralized orchestration. Some of these IDSs use multiple parallel processing nodes to handle

large quantity of data [6]. The network traffic is captured by taping the link connecting the

enterprise network to the internet which is then processed by the IDS detection module to

find malicious packets [7], [8]. This design choice has several disadvantages including high

cost of hardware that can process data in Gbps of data rates, limitations in scalability as

the network grows over time, and inability to monitor internal network traffic that ignores

attack sources other than the internet. In literature, there is a significant amount of work that

proposes a distributed IDS design. While the proposed distributed IDS architectures address

the problems associated with a centralized architecture, they introduce new issues in addition

to ignoring some of the aforementioned challenges experienced by the IDSs. As discussed in

15

the related work section of the paper, some of the proposed distributed IDS architectures only

focus on enhancing the traffic processing capabilities, but at the same time have the inability

to detect complex multi-stage attacks, and do not possess intrusion prediction feature that

can provide the response mechanism with enough information for a proactive response. On

the other hand, the proposed IDSs with intrusion prediction capabilities present a conceptual

distributed architecture that does not address the practical challenges associated with a

distributed design. Among those challenges is the alert reordering issue that occurs when

alerts are collected from distributed sources with different network latencies. This can cause

prediction error in time series data-based prediction models that are generally employed

to detect multi-stage attacks. Additionally, the proposed IDSs with intrusion prediction

capabilities lack in proper implementation and evaluation in a distributed alert generation

setup. This entails the need to develop an intrusion detection architecture that can process

network traffic in parallel, predict the attack progression and detect complex multi-stage

attacks, while addressing the challenges introduced by the distributed design.

Present-day IDSs process every packet traversing through their assigned region of obser-

vation in the network. For each packet or flow, a decision is made if they are malicious or

benign. Most of the traffic in the network is benign, and even during an attack, the malicious

traffic is a fraction of the total network traffic. Moreover, once an attack is detected, most of

the malicious packets that follow are of the same continuing attack. These observations ex-

hibit that there is room for optimizations in the way IDSs monitor traffic and detect threats.

Network traffic sampling is a plausible approach to make intrusion detection much more

efficient by directing only sampled traffic to the IDS. However, existing network sampling

techniques are designed for network traffic engineering purposes and perform poorly for in-

trusion detection applications [9]. This necessitates the development of a network intrusion

detection centric sampling scheme with the objectives of providing acceptable IDS accuracy,

retention of IDS’s ability to identify every attack and maximize attack detection speed by

reducing the amount of traffic to be processed by the IDS.

16

1.2 Threat Response in Cyber-based Systems

CBSs integrate heterogeneous systems that have functional interdependencies. These

integrated heterogeneous systems effectuate discrete functions and collaborate in an intri-

cate fashion to perform the overall functionality of the CBS. CBSs are connected to the

internet and employ cloud-based infrastructure for their computational requirements.Nowa-

days, CBSs are capable of performing multiple diverse functions as compared to the legacy

systems. However, such capability can result in an increased system complexity. The func-

tional interdependencies among the systems of CBS further exacerbates the security risk.

An attack that is initiated at one sub-system of a CBS can disseminate to others. This can

result in a cascade effect of compromising one system after other and eventually impairing

the functionality of whole CBS in a short amount of time.

Some CBS security frameworks mitigate the security risk by promptly patching the sys-

tem components for newly discovered vulnerabilities, in addition to implementation of strict

authentication protocols for communication with the CBS [10]. This solution based on the

target hardening concept is proving to be less effective as cyber-attack incidents reported over

the years indicate a continuous increase in their sophistication. Another solution is based

on the intrusion prevention approach, in which the security framework employs IDS that

generates alerts when it identifies an anomaly in the working of CBS components. Intrusion

prevention systems (IPSs), in addition to detection, can deploy some countermeasures, such

as disconnecting the attacker’s communication with the CBS, and halting the operation of

affected CBS components [11].

The performance of IPSs is tightly coupled with the IDS efficiency. IDS is usually evalu-

ated in terms of false positive rate (FPR), false negative rate (FNR) and detection delay time.

High FPR indicates significant number of false alarms that can effectuate an unpredictable

IPS behavior while high FNR implies an ineffective IPS. Detection delay time is often meted

with less importance in performance evaluation of an IDS, but it has a significant effect

on the operations performed by the IPS. Considering a scenario in which the intent of the

attacker is to compromise as many devices of the CBS as possible. The attacker orchestrates

the attack by systematically compromising one device after the other. The average time

17

taken by the attacker to compromise a device corresponds to the attack propagation speed,

and the average time taken by the IDS to identify if a component has been compromised cor-

responds to the detection speed. If the attack propagation speed is more than the detection

speed then the attacker can continue to compromise the CBS components while the IPS will

try to catch-up until all of the target components are compromised. This “catch-up” process

is evident when the strategy of the attacker is to outpace the system’s response mechanism

rather than to evade detection.

1.3 Primary Contributions

The contribution of the research presented in this dissertation has two parts: address-

ing the challenges in threat detection and addressing the challenges in threat-response for

CBSs. To address the aforementioned challenges in threat detection, the dissertation intro-

duces PRISM: Performance-oriented Realtime Intrusion-detection and Security

Monitoring [12]. The fundamental design goals of PRISM are to detect complex multi-stage

attacks in high bandwidth cyber networks with minimum processing overhead, provide intru-

sion prediction and holistic security assessment of the entire network in realtime, and should

be scalable by comprising of a modular architectural construct. The distinct contributions

of PRISM are as follows:

1) Intrusion detection, prediction and security analysis: PRISM incorporates a multi-

layered structure that utilizes the services of its several internal systems to detect intrusions,

predict attack progression and present a holistic security outlook of the system. The network

traffic is monitored in a distributed fashion by dividing the network into different surveillance

zones. Each surveillance zone is supervised by an IDS that reports only its local alerts. The

alerts are correlated in a Hidden Markov Model (HMM)-based prediction system that first

determines the type of multi-stage attack and then predicts its current stage. The prediction

output and alerts from surveillance zones are then processed to compute and visualize several

metrics for intrusion response facilitation.

2) Threat-aware sampling: PRISM uses a probabilistic sampling scheme to process more

traffic from devices that have more likelihood of being attacked. The sampling scheme

18

utilizes a novel attacker behavior model-based ranking mechanism that ranks devices in the

network according to their vulnerability and inter-device reachability information. Packets

are sampled according to a sampling probability which is calculated using the rank-based

score of the packet’s source and destination device. Instead of processing every captured

packet, only sampled packets are forwarded to the detection module of the IDS. Using the

attacker behavior model-based sampling, PRISM strategically focuses on the traffic from

those devices that are critical, and are more prone to be attacked, reducing processing

overhead and the required computing resources.

3) Alert stream management: PRISM manages the alert streams from multiple surveil-

lance zones by implementing an efficient alert stream management mechanism. The received

alerts are sent to different systems of PRISM and are subjected to distinct treatments based

on the requirement of their destination systems. For attack prediction, the alerts are re-

ordered according to their IDS generated timestamps before being sent using a window-based

stream processing implementation. For security analysis, the alerts are forwarded as soon as

they are received without any processing to enable prompt security situation update.

4) Experimentation and performance evaluation: The performance of PRISM is evalu-

ated through extensive experimentation on ISCX-2012 dataset [13]. The dataset consists of

real traffic capture of several complex multi-stage attacks launched on a widespread target

network for seven days. Experiments are designed to test the performance of all internal

systems of PRISM in terms of multiple performance metrics. Results show that PRISM

can maintain good prediction accuracy while reducing the processing overhead significantly

in addition to being able predict attack progress notably early when studied under several

experimental conditions. The security analysis capability of PRISM provides valuable utility

by computing and visualizing cyber situational awareness-centric metrics.

To address the aforementioned challenges in threat-response, the dissertation presents

TRAP: Threat Response by Adaptive Partitioning [14]. The major contributions of

TRAP are as follows:

1) Integrated security architecture: TRAP combines the concepts of intrusion prevention

and recovery to manage cyber-attacks while maintaining high operational availability of

CBS.

19

2) Adaptive partioning mechanism: TRAP introduces a novel multi-level partitioning

mechanism that partitions the CBS components based on their functionality and damage

containment requirements. The partitions help to contain the damage by localizing the

cyber-attack in the region of its inception. The response mechanism of the architecture

effectively utilizes the partitions to counter attacks involving high attack propagation speeds

as well.

3) Experimentation and performance evaluation: To demonstrate the performance of

TRAP we have implemented Advanced Metering Infrastructure (AMI)-based cyber-attacks

scenario by upgrading the source code of SecAMI simulator [15]. The performance of TRAP

is evaluated in terms of operational availability, damage extent and Average Energy Load

(AEL) consumption metrics.

1.4 Organization

The dissertation is organized as follows. In Chapter 2, related work corresponding to

threat detection, threat prediction, network traffic sampling, attacker behavior modeling,

threat response and system recovery is discussed. In Chapter 3, the design and internal

workings of PRISM are explained with the discussion of how effectively PRISM addresses

the challenges of threat detection in CBSs by a presenting comprehensive performance eval-

uation through extensive experimentation. In Chapter 4, the design of TRAP along with

the functionality of its constituent systems is described with the demonstration of threat

localization capabilities of TRAP in a practicable fast propagating cyber-attack scenario.

Chapter 5 concludes the dissertation with the recommendations for future work.

20

2. RELATED WORK

This chapter overviews the work related to threat detection and threat response in CBSs.

The related work has been classified into the following categories: 1) Security risk analysis,

2) Traffic sampling in network security, 3) Intrusion detection, 4) Intrusion prediction, and

5) Intrusion response and recovery.

2.1 Security Risk Analysis

Modeling of risk associated with the network using the vulnerability and topological in-

formation of the network has been extensively studied. The objective of most of these studies

is to find out the relative likelihood of network nodes to be attacked, and to investigate which

particular path is more likely to be taken by the attacker. Use of probabilistic attack graphs

for security risk analysis has been proposed in [16]. Also, there are approaches that calcu-

late the global or cumulative vulnerabilities associated with nodes using probabilistic attack

graphs that can reveal the cumulative vulnerabilities of a network [17]. A Bayesian Decision

Network (BDN)-based security risk management framework is proposed in [18]. The frame-

work employs vulnerability exploitation probability, impact of vulnerabilities exploitation on

network hosts in its risk assessment procedure using the temporal and environmental factors.

In [19], network security risk assessment method is presented that analyzes the vulnerabil-

ity information of different nodes of the network to compute the risk associated with each

vulnerability. The vulnerability risk information is then used to generate access control lists

to control the access to different nodes in the network for potential mitigation of threat. In

[20], a risk assessment and optimization model for network security countermeasure problem

is proposed. The model uses variables such as financial cost and impact risk to formulate

countermeasures for network security incidents.

Modeling of attacker behavior using ranking approaches has been proposed as well. In

[21], [22], [23] Google PageRank mechanism has been used to model the attacker behavior

in terms of what attack states are more likely to be reached by an attacker in an attack

graph. The goal is to reduce the complexity in analyzing attack graphs prior to undertaking

appropriate countermeasures. In [24], a network risk management mechanism using attacker

21

profiling is proposed. The mechanism determines the risk associated to critical network assets

by modeling how they can be compromised by an attacker. The behavior of the attacker is

hypothesized to be based on the social behavior parameters such as skill level, tenacity and

financial ability. The risk level is estimated using behavior based attack graphs that explore

all possible attack paths to critical network assets. In [25], a model to analyze the cyber

security risk is presented that combines the concepts of fault tree analysis, decision theory and

fuzzy logic. The model evaluates the causes of failure of cyber security prevention methods

and determines the vulnerability of the overall system. The focus of some contributions in the

area of security risk analysis is to condense the attack graphs for the facilitation of security

analysts. In [26], the concept of a core attack graph is proposed that illustrates the major

paths an attacker can take in reaching the target in the network. Recently automation in

vulnerability assessment through attack graphs has been focused, in [27], a tool and an end-

to-end process is presented to identify and exploit vulnerabilities for cyber risk assessment.

2.2 Traffic Sampling in Network Security

The impact of sampling techniques designed for network traffic engineering on the perfor-

mance of network intrusion detection is well studied. In [9], the suitability of four commonly

used sampling techniques for intrusion detection applications has been investigated. The

intrusion detection performance of random packet sampling, random flow sampling, sample-

and-hold and smart sampling is compared. It has been shown that flow-based sampling

performs better than packet-based sampling. Both sample-and-hold and smart sampling are

found to be biased towards large volume flows, and are not suitable to detect several attack

types. In [28], smart sampling and selective sampling techniques are evaluated for intrusion

detection applications. Results demonstrate that selective sampling does not exhibit much

bias towards large volume flows unlike smart sampling. In [29], a packet sampling algorithm

for worm and botnet detection is presented. The proposed algorithm selects packets that

contain first few bytes of a TCP connection by using a TCP connection tracking scheme

and Bloom filters that store the connection states. In [30], an OpenFlow-based sampling

mechanism is presented that uses a combination of stochastic and deterministic sampling

22

methods to tune the overall selection of packets for a specific application. For security re-

lated applications, it has been proposed that selecting long chain of consecutive packets

is not required, instead packet selection with gaps is preferred. In [31], a sampling scheme

designed for network intrusion detection has been proposed. The developed sampling mecha-

nism is based on late and adaptive sampling process. The late sampling process extracts flow

features and calculate flow statistics. Adaptive sampling process then selects outlier flows

with more preference as compared to flows with similar flow statistics. Recently, machine

learning-based sampling techniques have been employed for network intrusion detection ap-

plications. In [32], a hierarchical clustering-based sampling technique is proposed that uses

structural and temporal features of suspicious flows in a two-step hierarchical clustering al-

gorithm. In [33], the impact of sampling on anomaly detection is studied by comparing the

performance of four sampling techniques. Weighted Round Sampling (WRS), deterministic

sampling, Simple Random Sampling (SRS) and chain-sampling algorithms are evaluated. It

has been shown that WRS performs better than the other evaluated sampling techniques.

The dissertation proposes a novel threat-aware sampling scheme that distinguishes from the

existing sampling techniques by employing an attacker behavior model-based ranking mech-

anism that uses the vulnerability and inter-device reachability information to sample more

traffic from the devices that are more likely to be compromised by the attacker.

2.3 Intrusion Detection

The first known intrusion detection model was presented by D.E. Denning [34] afterwards

a number of contributions has been made in the field. IDSs can be classified into two major

groups based on the methodology employed to detect intrusions [35]. The first group is known

as signature-based IDSs in which the IDS maintains signatures or patterns of known cyber-

attacks that have occurred previously. The rules of these systems are usually created by the

security analysts and each time a new attack type is discovered, a new signature is created and

an update is carried out for the IDS. Signature-based IDSs continuously observe phenomenon

of interest in the system and match their observations with the signature library. When a

match occurs, an alert is raised by the signature-based IDS giving specific information about

23

what violations occurred that made the IDS to raise alarm. Signature-based IDSs are most

widely used and perform well in identifying the details of the cyber-attack that can be used

for intrusion response. The drawbacks of signature-based IDS is that they are unable to

detect zero day cyber-attacks. The second group is known as behavior or anomaly-based

IDSs in which the IDS models the normal behavior of the system and observes the behavior of

the system for specific modeled features. When the IDS observes deviation from the normal

then it raises an alert. The alerts in an anomaly-based IDS are usually binary, meaning

that they only inform about the presence of malicious activities, nothing more, therefore the

use of anomaly-based IDSs in automated intrusion response is limited. Additionally, if the

normal behavior model is less representative of the true normal behavior of the system then

any previously unseen normal activity might be flagged as anomalous. The benefits of using

anomaly-based IDSs is that they can detect zero-day attacks [36].

The architecture of IDSs is another important aspect by which they are classified. Many

IDS architectures have been proposed over the years with a certain IDS architecture being

dominant for a particular network type. For enterprise networks a centralized IDS deploy-

ment is the most common in which the IDS scrutinises all traffic passing through the external

routers that connect the enterprise network to internet [37]. Internet of Things (IoT) net-

works are generally protected by distributed IDS as there is no central location from where

data of the whole network can be monitored [38]. A distributed IDS architecture for enter-

prise networks is proposed in [39] that has IDS components distributed into different regions

of the network. Each regional detector reports malicious activities of its sphere to a global

detector that uses Sequential Hypothesis Testing (SHT) to determine whether the whole

enterprise network is under attack. A distributed IDS for smart grid networks is presented

in [40]. In the proposed system there is an intelligent Analyzing Module (AM) at every

layer of the smart grid. Multiple AMs are embedded in Home Area Networks (HANs),

Neighborhood Area Networks (NANs) and Wide Area Networks (WANs). AMs use Support

Vector Machine (SVM) and Artificial Immune System (AIS) to detect and classify malicious

traffic. AMs are trained using the data relevant to their level and have the capability to

communicate with other AMs at their level and other levels to improve detection. In [41],

the authors propose a fully distributed architecture in which the IDS has several IDS nodes.

24

Each sub-network is observed by a sentry node that communicates with the sentry nodes of

other sub-networks as well. In addition to sentry nodes there are a higher level configuration

entities called the survey nodes that work as a long term memory to cache rules, sub-network

states and representations of connections. A collaborative anomaly detection framework has

been proposed in [42] that uses network virtualization techniques to implement a global sit-

uation detection and local behavior detection model. The framework uses Hidden Markov

Random Field (HMRF) to model network behavior and spatial Markovianity to model the

network behavior’s spatial context. Recently, the use of blockchain technology in distributed

IDS design has become popular. In [43], a distributed IDS has been proposed that uses

blockchain and smart contracts to mitigate threats on collaborating IDSs on different cloud

networks. None of the abovementioned distributed IDSs, unlike PRISM, have the capability

to identify complex multi-stage attacks. Additionally, the discussed distributed IDSs lack

the ability to predict the attack progression. Moreover, they do not address the practical

issues associated with the distributed design such as the effect of alert reporting delays due

to network latencies when the alerts are gathered from various sources distributed all over

the network for holistic threat assessment.

2.4 Intrusion Prediction

Intrusion prediction, attack projection, attack intention recognition and network security

situation forecasting has been a focus of the research community for quite some time and

several techniques have been proposed [44]. Many different approaches and techniques have

been proposed over the past couple of years for prediction of multi-stage attacks. These

techniques include the use of Markov Models [45], Bayesian networks [46], clustering [47],

neural networks [48] and attack graphs [49]. The dissertation focuses its discussion on in-

trusion prediction using machine learning models only, specifically HMM-based intrusion

prediction.

In [50], an SVM-based network security situation assessment and prediction method is

introduced. The presented mechanism analyzes the IDS logs of the network that contain the

security incident information from heterogeneous sources at the three levels of service, host

25

and network. The mechanism then employs SVM to predict the security situation of the

network. Recently, the use of neural networks for the prediction of network security situation

has become popular. In [51], a Long Short-Term Memory (LSTM)-based network security

situation prediction method has been proposed. The method uses the LSTM to predict the

network security data and then uses XGBoost to determine the network security situation

using the predicted data. In [52], another LSTM-based technique to predict cyber-attacks

is presented. The proposed technique uses an architecture with an LSTM layer together

with a Multi-Layer Percepton (MLP) to predict the type of attack likely to occur. In [53],

a network security situation assessment method is proposed that is based on adversarial

deep learning. The proposed method is constructed by combining Deep Autoencoder (DAE)

and Deep Neural Network (DNN). The Deep Autoencoder-Deep Neural Network (AEDNN)

model uses the DAE network for feature learning and the DNN network to identify attacks.

After the attack identification, network security situation is determined by conducting the

impact assessment for each type of attack.

The use of HMMs for network intrusion detection is not new, in [54]–[58] anomaly de-

tection systems using HMMs are presented. Recently, HMMs have been extensively used

for network intrusion prediction. An intrusion prediction and prevention system has been

presented in [59] that uses HMM to predict the next step of an attacker. The intrusion

prediction information is then used for intrusion prevention operations according to a set

of predetermined rules. In [60] data mining driven algorithm is proposed that mines the

stream of IDS alerts for attack scenario extraction. An HMM-based alert correlation system

is then introduced that predicts the next class of attacks to be launched by the intruder.

Frameworks to predict multi-step network attacks using HMMs are proposed in [61], [62].

In [63], HMM-based architectures have been proposed that predict the attack stage when

several multi-step attacks are in action simultaneously. Lately, to address the issue of limited

availability of network intrusion detection datasets, a transfer learning-based approach was

proposed that trains the HMM model using a labelled dataset and then adapts the model

to a target unlabelled dataset [64]. The aforementioned intrusion prediction techniques only

offer a centralized approach to process network traffic, while the dissertation, on the other

hand presents an intrusion prediction architecture with distributed traffic processing. More-

26

over, the dissertation addresses the challenges associated with the distributed design by

introducing an efficient alert stream management mechanism.

2.5 Intrusion Response and Recovery

The design and development of Intrusion Response Systems (IRSs) has received less

importance than the IDS from the academic research community and the industry. The

frequency and magnitude of cyber-attacks seen over the last couple of years compelled the

security community to undertake the task of incident response automation as manual han-

dling of intrusions is becoming increasingly difficult. As a result, practical IRSs have started

to appear with automated response capabilities. IRSs can be generally categorized into three

groups: notification systems, manual response systems and automated response systems [65].

Notification systems just collect alerts from the IDS and present it to a human administra-

tor to respond to the notified threat. Manual response systems have some preconfigured

response actions to the type of alerts received by the IDS for the human administrator to

execute. Automated response systems receive the alerts from IDS, assess the threat, prepare

and execute the response in a fully automated fashion without any human intervention. In

[66], the design of an intrusion tolerant system is presented with the idea of distributing

the system into different security domains in such a way that it is hard by the attacker

to pass these security domains by the help of firewall and LAN configurations. In [67], an

automated response framework is presented by using an Intrusion Detection and Isolation

Protocol (IDIP). According to IDIP, the response nodes are distributed into IDIP communi-

ties which are further divided into IDIP neighborhoods. When an attack is detected by an

IDIP node its information is distributed to other neighboring nodes for generating response.

Though the concept has many merits but the catch-up problem cannot be catered by IDIP

alone. Moreover, the criteria for the creation of communities and neighbourhoods is also

not well defined. In [68], a tracing approach is presented to identify the chain of compro-

mised machines that was used to compromise the target host and once the chain is identified

then the response can be applied. Their approach doesn’t solve the significant issues in

intrusion response like damage containment and automated intrusion response. In [11], a

27

game-theoretic formulation of ideal response strategies once an intrusion is detected in the

network is presented. In their work no proper concept of damage containment is introduced

nor an automated response mechanism is proposed. Recently, the utilization of Markov De-

cision Process (MDP)-based intrusion response mechanisms for network security is becoming

popular. In [69], an IRS that uses a probabilistic model on the MDP framework is proposed.

The model is able to plan optimal response actions with the objective of long-term system

security. In [70], a Partially Observable Markov Decision Process (POMDP)-based intru-

sion response approach for cyber networks is proposed. The proposed model hampers the

progression of an attacker while minimizing the negative impact to system availability. The

progression of attacker is measured by embedding a state space on the condition dependency

graph which is an attack graph that models dependencies between attacker’s capabilities and

exploits. The countermeasures of the defender is in the form of blocking some of the exploits

from being carried out by the attacker. The attacker’s strategy in traversing through the

network is driven by its private strategy which is dependant on the defender’s actions. The

basic problem with all MDP-based models is the generation of very large state space which

makes it exhaustive to compute the optimal response. Also, the aforementioned MDP-based

intrusion response models do not address the threat containment problem for fast progress-

ing cyber-attacks. The dissertation presents an intrusion response and recovery architecture

that uses a novel adaptive partitioning mechanism to localize fast progressing attacks while

recovering the affected system components simultaneously.

28

3. PRISM: A HIERARCHICAL INTRUSION DETECTION

ARCHITECTURE FOR LARGE-SCALE CYBER NETWORKS

This chapter presents PRISM, an intrusion detection architecture that monitors network

traffic distributedly in different surveillance zones, samples the traffic before sending it to

the IDS, combines the alert streams from different surveillance zones while correcting any

discrepancies in the order of the received alerts, processes the combined alert sequence in

an HMM-based prediction engine to predict the progression of the attack, and provides

essential security analysis of the system. We start by discussing the background in Section

3.1. The system model and architecture is presented in section 3.2. Experimental setup

and implementation details are discussed in section 3.3. Finally, performance evaluation of

PRISM is presented in section 3.4.

3.1 Background

PRISM is built by utilizing the concepts of attacker behavior modeling, HMM and stream

processing. In this section, the basics of the underlying methods and models used in PRISM

are presented.

3.1.1 Attacker Behavior Modeling

Attacker behavior modeling is a widely used technique to evaluate the security of enter-

prise networks [71]. PRISM models the attacker behavior by extending the Google PageRank

mechanism. PageRank is flexible enough to model a diverse set of cases and its employment

in network security related graph problems is not uncommon [22], [23]. The behavior of a

random web-surfer is modeled by PageRank who starts at a web-page and keeps on clicking

links until gets bored and starts at another web-page. A web-page has higher rank if many

pages link to it, and a page is important if it has a high rank and has few links to other pages.

To model the probability of the web-surfer breaking the chain of clicking links and starting

from a new random web-page, a damping factor is introduced which essentially asserts that

29

long chains of page clicking is unlikely [72]. PageRank iteratively calculates the rank of each

page using Eq. 3.1 .

PR(U) = 1− δ + δ
∑

j∈In(U)

PR(Wj)
Out|Wj|

(3.1)

3.1.2 Hidden Markov Model

Markov chains are used to determine the probability of a sequence of events that are

observable. However, there are many instances in which the events of interest are not di-

rectly observable or hidden. A discrete first-order HMM is a doubly stochastic model that

accommodates both observed and hidden events. An HMM is characterized by the following

elements [73].

1) The set of N states represented by S = {s1, s2, .., sN}, where state at time t is qt.

2) A set of M distinct observation symbols per state denoted as V = {v1, v2, .., vM}.

3) Transition probability matrix ANxN where aij is the probability of shifting from state

si to state sj.

aij = P (qt+1 = sj|qt = si), i, j ∈ [1, N] (3.2)

4) Emission probability matrix BNxM , where bi(k) is the probability of an observation vk

being generated in a state si.

bi(k) = P (vk at t|qt = si), i ∈ [1, N]

k ∈ [1,M]
(3.3)

5) Initial probability vector π = {π1, π2, .., πN}, where πi is the probability of Markov

chain initializing at state si.

πi = P (q1 = si), i ∈ [1, N] (3.4)

HMM-driven prediction systems use the model λ = (S, V,A,B, π) and observation se-

quence O = {o1, o2, .., oT} to effectuate various tasks. Note that observations are IDS alerts

30

in our case and we use the terms observation sequence and alert sequence interchangeably.

The use of HMMs in practical applications is characterized by three fundamental problems.

First, how to determine P (O|λ), the probability of observation sequence given the model.

Second, how to discover the best state sequence Q = q1, q2, .., qT given the observation se-

quence and model. Third, how to learn the model parameters A and B that maximize

P (O|λ) given the observation sequence and the set of states. The first problem is solved

using the forward algorithm, the second problem is solved using the Viterbi algorithm and

for the third problem the standard solution is unsupervised learning-based Baum-Welch al-

gorithm, but in our implementation we follow a supervised learning approach discussed in

Section 3.3 of the dissertation.

3.1.3 Stream Processing

In the event of an attack, a continuous stream of alerts is generated by the IDSs. PRISM

employs stream processing techniques to perform certain data manipulation operations on

this stream of alerts. In the stream processing context, the terms bounded and unbounded

refers to the finite and infinite data, respectively. Performing data processing operations

like sort, aggregation etc. on unbounded data causes semantic problems, therefore, it is

important to have some notion of bounds on the unbounded data. Windowing is a process

of dividing data into finite blocks that can be processed as a group. The process of windowing

is essential to analyze unbounded data and it has been proven to be useful for bounded data

as well in certain scenarios. Windowing is generally time-based or count-based, however,

there are several other implementations as well. As the names suggest, a time-based window

defines a data block on the data stream with respect to a time period, while grouping a

certain number of data items together forms a count-based window. The three main window

types are tumbling, sliding and sessions. Tumbling windows are non-overlapping windows

defined by constant window size and a data item cannot be the member of more than one

window. Sliding windows are defined by a fixed window size and a slide period which may

be less than the window size implying that the windows can overlap. In a sliding-windows-

based implementation, a data item can be part of multiple windows. Sessions are windows

31

that are defined over a subset of data using a timeout gap. The events that occur within a

timeout are combined to form a session [74]. PRISM uses a custom implementation of the

windowing process employing both time-based and count-based windows to manage the flow

of alerts streams.

3.2 System Model and Architecture

.PRISM is depicted in Fig. 3.1 along with its five constituent systems: Threat-Aware

Sampler (TAS), Zonal IDS, Alert Stream Manager (ASM), Prediction Engine, and Security

Analyzer. TAS and Zonal IDS implement the distributed security monitoring functionality

of PRISM and are replicated among multiple surveillance zones. In Fig. 3.1 only one

surveillance zone is shown for lucidity. The demarcation of surveillance zones can be done

based on the network layout, traffic volume distribution and amount of available zonal IDS

resources. The objective is to distribute the traffic equally among surveillance zones with

the consideration of network administrative constraints. The number of available zonal IDS

resources determine the number of surveillance zones. ASM, Prediction Engine and Security

Analyzer implement the integrated security analysis functionality of PRISM. The detailed

information about the design and working of each component of PRISM is discussed as

follows.

3.2.1 Threat-Aware Sampler

TAS is deployed in every surveillance zone along with the zonal IDS. Mirrored traffic

from the router of the observation zone is forwarded to the TAS which samples traffic in

realtime and directs it to the zonal IDS. TAS has offline and online modes of operation. In

offline mode, TAS performs three operations: vulnerability assessment, network reachability

graph generation and vulnerability ranks and sampling probabilities computation. In online

mode, TAS carries out the operation of realtime probabilistic sampling. The architecture of

TAS is shown in Fig. 3.2 with its interaction to a general network and IDS. The functioning

of the internal modules of TAS are discussed in detail.

32

Figure 3.1. PRISM and its constituent systems.

Vulnerability Assessment

The vulnerability assessment module of TAS performs vulnerability scan of each device

in the network to determine their Common Vulnerability Scoring System (CVSS) scores

[75]. CVSS is a popular measure of assessing the severity of a device’s vulnerabilities by

assigning a score out of 10. CVSS scores are computed using the information of three

metric groups: base, temporal and environmental. For base metric group, information of

five exploitability metrics and three impact metrics is required to calculate the score of

33

Figure 3.2. TAS architecture and its interaction with the environment.

a vulnerability. The vulnerability score for a device can be obtained by considering the

CVSS scores of all vulnerabilities identified in a device. There are many commercial and

opensource tools available that can scan the network and assess the vulnerabilities of each

device [76], [77]. TAS has the flexibility to operate with any proprietary or opensource CVSS

compatible network vulnerability scanner. The vulnerability assessment procedure adapted

for experimentation is discussed in Section 3.3 of the dissertation.

Network Reachability Graph Generation

TAS employs the Network Reachability Graph (NRG) to develop the attacker behavior

model that is used to rank network devices according to their likelihood of being compro-

mised. NRG< D,E > is a directed mutligraph with its vertices corresponding to the devices

in the network represented by D = {d1, d2, ..., dn}. The parallel edges of NRG correspond

to the end-to-end communication between devices on different ports and are represented by

E, a multiset of edges (ordered pairs of vertices). A device in the network is identified by

its ip address, and for each device, the vulnerability score vs computed by the vulnerability

34

assessment module is also maintained. The communication among network devices is in

part determined by firewall policies, network configuration and authentication/permissions

within devices. A sample NRG is illustrated in Fig. 3.3 . NRG can be generated using any

network mapping tool like Nmap [78]. Another method of generating NRG is by mapping

the flow information of monitored network activity over time. We have employed the latter

method that is discussed in Section 3.3 of the dissertation.

Figure 3.3. A sample 5-device NRG.

Vulnerability Ranks and Sampling Probabilities Computation

The core idea behind threat-aware sampling is to intelligently sample traffic by modeling

the attacker behavior that can rank network devices according to their likelihood of being

targeted by the attacker. The proposed attacker behavior model captures the potential

actions of an attacker who has a specific target and tries to penetrate the network through

any accessible device. From the compromised devices, the attacker tries to strike every

other device until the attainment of target. Fig. 3.4 shows an example attack in which the

attacker compromises devices d2, d6, and d8 to attack targetB by exploiting vulnerabilities

ϑa
d2 , ϑ

x
d6 , ϑ

y
d8 and ϑz

targetB, respectively. The attacker behavior can be modeled by extending

the random surfer model with security-centric semantics. A device has a high vulnerability

rank if it has high vulnerability score and has wide attack surface i.e. several devices can

35

communicate with it on multiple ports. A device’s vulnerability rank is also high if the

devices communicating to it have high vulnerability scores. The damping factor in the

attacker behavior model corresponds to the fact that it is unlikely for an attacker to take

a longer path to reach target if a shorter path exists. The extended PageRank formalism

that captures the vulnerability transference effect of inter connected devices is presented in

Eq. (3.5). Where, τi represents the vulnerability transference effect of a device di, δ is the

damping factor, In(di) is the in-set of device di i.e. it is the set of devices transmitting to di,

ρj is the vulnerability rank of device dj which is one of the devices in the in-set of di, |Out(dj)|

is cardinality of the set of outgoing edges from device dj, and |Out(dj, di)| is cardinality of

the set of edges from device dj to di.

τi = 1− δ + δ
∑

j∈In(di)
ρj
|Out(dj, di)|
|Out(dj)|

(3.5)

Figure 3.4. Illustration of attacker’s movement in the network.

36

A device receives its vulnerability transference effect from the devices that can commu-

nicate with it and the devices that can communicate using multiple connections (port pairs)

contribute more to the vulnerability transference. In vulnerability rank computation of a

device, the device’s self vulnerability contributes to its rank in addition to the contributions

from the neighboring transmitting devices. This conforms to the semantics of the proposed

attacker behavior model that a device is likely to be compromised by an attacker if it has

high vulnerability and is surrounded by devices that have high likelihood of being targeted.

It can be argued that why not simply use the vulnerability of a device as a measure to

estimate its likelihood of being compromised. The answer is in the fact that the position of

a device in the NRG affects its likelihood of being reached by the attacker. If a highly vul-

nerable device is surrounded by devices with low vulnerabilities, the chances of the attacker

reaching that device become less. Similarly, if a device with low vulnerability is surrounded

by devices with high vulnerabilities then the likelihood of that device getting compromised

increases. The rank and sampling probability computation module of TAS uses Algorithm

1 to perform its operations. The algorithm produces two vectors R = {ρ1, ρ2, ..., ρn} and

Ψ = {ψ1, ψ2, ..., ψn} corresponding to the vulnerability ranks and sampling probabilities of n

devices in the network. The values of epochs and thresh regulate the convergence conditions

of the algorithm. For each device, first the vulnerability transference effect is computed and

then it is combined with the vulnerability score to obtain the vulnerability rank value of the

device. Finally, the vulnerability rank values are used to calculate the sampling probabilities

by employing the softmax function. Algorithm 1 is not computationally intense and it has

been shown that PageRank for millions of web-pages can be computed in few hours on a

medium size workstation [72].

Realtime Probabilistic Sampling

Once the vulnerability ranks and sampling probability computation module produces

the vulnerability ranks R and corresponding sampling probabilities Ψ of all devices in the

network, flows (or packets) are sampled in realtime before being sent to the zonal IDS. Let

37

Algorithm 1 Vulnerability Ranks and Sampling Probabilities Computation
Input: NRG < D,E >, δ, epochs, thresh
Output: R = {ρ1, ρ2, ..., ρn},Ψ = {ψ1, ψ2, ..., ψn}

1: R←− vulnerability scores of n devices in D
2: Ψ←− zero vector of length n
3: for i ∈ [1, epochs] do
4: Rlast = R
5: for di ∈ D do
6: /*vulnerability transference rank from Eq. 3.5 */
7: τi = 1− δ + δ

∑
j∈In(di) ρj

|Out(dj,di)|
|Out(dj)|

8: ρi = ρi + τi
9: end for

10: /*calculate change in rank values using L1 norm*/
11: err = sum(abs(R))− sum(abs(Rlast))
12: if err ≤ thresh then
13: break
14: end if
15: end for
16: for j ∈ [1, n] do
17: /*softmax function to compute sampling probs.*/
18: ψj = exp(ρj)/sum(exp(R))
19: end for

Xij be a flow from device di to dj, then the probability of flow Xij of being sampled is provided

in Eq. 3.6 .

P (Xij) = α ψi + β ψj + γ
vij

ω
(3.6)

Where, ψi and ψj are the sampling probabilities of devices di and dj, respectively. The

volume of the flow Xij is represented by vij and ω is the flow volume threshold corresponding

to maximum practicable volume of a flow in the network. The parameters α, β regulate

the relative influence of the of source and destination device vulnerability ranks on the

overall probability of sampling the flow, while γ controls the contribution of flow volume

on the overall sampling probability of the flow. It is to be noted that α, β, γ ∈ [0, 1] and

α + β + γ = 1. The parameters α, β and γ are configurable, and their different values

implement two distinct versions of TAS. The primary version of TAS is implemented in our

experiments with α = 0.5, β = 0.5 and γ = 0, that makes the sampling probability of the

38

flows invariant to flow volume. The other version of TAS we refer to as dynamic TAS (d-TAS)

is implemented in our experiments by setting α = 0.25, β = 0.25 and γ = 0.5. The inclusion

of volume in determining the sampling probability of a flow serves two purposes. First, it is

helpful in identifying certain attack types in which the malicious traffic is generally carried

by flows of large volumes. Second, as discussed earlier, it serves a major purpose of being a

dynamic parameter that improves the robustness of TAS against evasive strategies employed

by an adversary that can make the primary version of TAS less effective. Based on the

information possessed by the attackers, we distinguish them in two categories: conventional

attacker and adept attacker. A conventional attacker doesn’t have significant information

about the target network and acquires information while traversing through the network.

The conventional attacker starts the attack from a random host and then from there, if

successful, tries to compromise every possible host until the attainment of target. Adept

attacker, on the other hand, is assumed to have some prior knowledge about the network

host vulnerabilities, and using that information, the adept attacker tries to compromise

less vulnerable hosts. This strategy is adopted by the adept attacker to evade detection as

intuitively high vulnerability parts of the network are monitored more strictly. The proposed

attacker behavior model through the extension of PageRank mechanism with security-centric

semantics captures the potential actions of the conventional attacker competently. However,

the adept attacker can make the proposed model less effective by not compromising the

most vulnerable hosts to reach the target, that is, the next host to be targeted by the adept

attacker from a particular compromised host is not necessarily the most vulnerable one even

if this action requires more effort. To counter these evasive strategies employed by the

adept attacker, we have included the flow volume in computing the sampling probability of

a flow. Flow volume is a dynamic parameter that is distinct for each flow that appears in the

network, making the proposed TAS more resilient. Note that we assume the adept attacker

is unaware of how TAS works but has general intuition that hosts with higher vulnerability

tend to be under high surveillance. It is possible to employ parameter estimation techniques

on historical intrusion detection data to find optimal values of α, β and γ. The computation

complexity of realtime probabilistic sampling is minimal as vulnerability rank scores of hosts

39

are determined in the offline mode and extraction of the flow volume information is not

computationally demanding.

3.2.2 Zonal Intrusion Detection System

Zonal IDS receives sampled traffic from TAS, finds malicious activities in its surveillance

zone and sends alerts to the ASM. IDSs can be either signature-based or anomaly-based,

depending on the methodology they employ to detect intrusions. Signature-based IDSs main-

tain signatures or rules that are used to identify known cyber-attacks. These rules are gener-

ally created by the security analysts, but they can also be learned using supervised machine

learning techniques. Signature-based IDS are widely used and perform well in identifying

malicious traffic with considerable detail, but are unable to detect zero-day attacks. On the

other hand, anomaly-based IDSs model the normal behavior of the network, and raise alerts

when a traffic pattern is observed that deviates from the normal behavior. Anomaly-based

IDSs can detect zero-day attacks, but they provide little information about the detected

malicious activity. Anomaly-based IDSs are mostly developed using unsupervised machine

learning techniques, and their use as a stand-alone IDS solution is limited. PRISM can in-

corporate any IDS provided that the alerts contain information regarding the vulnerability

exploited, devices impacted and intrusion type. A signature-based IDS is more compatible

with other systems of PRISM, however, a hybrid signature/anomaly-based IDS can be used

as well. In its current implementation, PRISM uses the opensource signature-based Snort

IDS [7].

3.2.3 Alert Stream Manager

ASM receives streams of alerts from the Zonal IDSs located in different surveillance

zones, and forwards it to the Security Analyzer and Prediction Engine. The alerts are sent

to the Security Analyzer as soon as they received. For security analysis functions, the order

in which the alerts are received is not critical, but to update security information of the

system promptly, it is essential to forward the alerts as soon as they are received. Between

reception and forwarding of alerts to the Prediction Engine, ASM performs a set of important

40

operations that ensures the alerts being forwarded to the Prediction Engine are in the same

order as they are generated at their respective Zonal IDSs. The alerts can be reordered

due to network latencies, unsynchronized clocks of Zonal IDSs and data transmission over

a non-order-preserving channel. ASM addresses the alert reordering issue due to alerts

being reported with different network latencies from different Zonal IDSs. To rectify this

problem, ASM processes the unbounded and unordered streams of alerts by using a window-

based stream management procedure. The essence of this procedure is the fact that we can

estimate certain bounds on the network latencies. Bounds on the network latencies between

Zonal IDSs and ASM can be computed from network characteristics or historical data that

keeps track of the alert generation and reception time difference [79].

Consider Z1, Z2, .., Zn Zonal IDSs with alert reporting latencies upper-bounded by L1, L2, .., Ln,

respectively. The actual maximum alert reporting latency is denoted by ∆max = max(L1, L2, .., Ln),

where the estimate of maximum alert reporting latency is represented by µmax. Each Zonal

IDS generates a stream of alerts where an alert has a number of attributes, among which

the alert generation timestamp ts is crucial for ASM operations. The alerts are received by

the alert buffer Y = {o1, o2, .., ot, ..}, where o1 is first alert in the buffer and ot is the alert

received at a certain time t. Alerts are processed and then sent to the Prediction Engine

by a mechanism known as the Alert Order Rectification (AOR) procedure. The alert buffer

occupancy is constantly being monitored and the number of alerts in the buffer at any in-

stance is accounted by the variable buffer_occupancy. The interval between successive AOR

procedure executions is also tracked and time elapsed since the last alert AOR procedure

is tracked by the variable time_elapsed. The AOR procedure is triggered when buffer_oc-

cupancy surpasses a configurable parameter called alert sequence length ω or time_elapsed

exceeds another configurable parameter termed as timeout η. The AOR procedure triggered

when buffer_occupancy exceeds ω follows a three step protocol. First, a forwarding window

F is formed that includes all alerts in Y and all alerts received after waiting for µmax period

of time. Second, the alerts in F are sorted with respect to ts. Finally, the first ω number of

alerts in F are sent to the Prediction Engine and are removed from Y . The µmax wait time

ensures that all alerts that are supposed to be part of F according to their alert generation

timestamp, but were not received due to network latencies are included in F . It is possible

41

that buffer_occupancy does not exceed ω for a long period of time. However, the alerts

cannot remain in Y indefinitely, and must be reported to the Prediction Engine for timely

assessment of the attack. In that case, the AOR procedure is triggered when time_elapsed

caps η, which also follows the three step protocol. The only difference is that all of the

alerts in Y are included in F , are sorted, and then sent to the Prediction Engine. As a

result, a smaller sequence of alerts is sent to the Prediction Engine. The AOR procedure is

articulated in Algorithm 2 and its time complexity is O(n log(n)), while n here represents

the number of alerts being sorted.

Algorithm 2 Alert Order Rectification
Input: Y = {o1, o2, ..}, µmax, ω, η

1: buffer_occupancy ←− no. of alerts in Y
2: time_elapsed←− time since last AOR proc.
3: while Y 6= ∅ do
4: if (buffer_occupancy ≥ ω) then
5: F ←− Y [o1 : ot+µmax]
6: F.sort()
7: F = F [0 : ω]
8: Y = Y − F
9: sendToPredictionEngine(F)

10: F ← ∅
11: end if
12: if (time_elapsed == η) then
13: F ←− Y
14: F.sort()
15: Y = Y − F
16: sendToPredictionEngine(F)
17: F ← ∅
18: end if
19: update(buffer_occupancy)
20: update(time_elapsed)
21: end while

It is to be noted that for best results the value of µmax needs to be as close as possible

to ∆max. If we underestimate the value of µmax then the rectification of alert reordering

yields less precise results, and if the value of µmax is overestimated then the original alert

order can be restored by the ASM, but it will cause additional delay in sending alerts to the

Prediction Engine. Also, the value set for ω controls the number of alerts to be processed

42

by the Prediction Engine at a time. Generally, longer alert sequences allow more accurate

attack prediction but at the cost of delay in attack prediction decision. The value of η should

be set considering the alert arrival rate. It should not be too small to trigger the timeout

driven forwarding process frequently and nor should be too large to introduce unnecessary

delays in attack prediction. Fig 3.5 shows the state of Y during the AOR procedure. The

AOR procedure is triggered by buffer_occupancy exceeding ω, and correspondingly, F is

constructed by including all alerts that arrive until the µmax time as shown in Fig 3.5 a.

Subsequently, the first ω number of sorted alerts in F are sent to the Prediction Engine and

are discarded from Y as illustrated in Fig. 3.5 b. Similarly, the time_elaspsed triggered AOR

procedure is shown in Figure 3.6 . First, the formation of F followed by sorting of the alerts

is carried out. Afterwards, all alerts in F are sent to the Prediction Engine before being

discarded from the buffer.

3.2.4 Prediction Engine

Prediction engine performs the function of assessing the progression of an attack using

the alerts forwarded by the ASM. PRISM has the flexibility to accommodate any time

series data-based machine learning model, and in its current implementation the prediction

engine is driven by HMM. Similar to TAS, prediction engine has offline and online modes of

operation. In offline or training mode, prediction engine performs the operations of training

data preprocessing and multi-stage attack learning. In online or prediction mode, attack

stage prediction is carried out in realtime. The working of the internal modules of prediction

engine is described as follows.

Training Data Preprocessing

The training of HMM utilizes IDS alert data that can be from IDS alerts of real attack

instances, alerts from engineered attacks on a test network or synthetic alerts forged for

training purposes. As the training data can be from multiple diverse sources, it is essential

to formalize the preprocessing task. The training data preprocessing module accepts data in

a CSV format then performs four step preprocessing operation. First, all rows with missing

43

Figure 3.5. Evolution of buffer (Y) during the buffer_occupancy triggered
AOR procedure. (a) Creation of forwarding window (F) and sorting of alerts.
(b) Sending alerts to Prediction Engine.

values are removed. Second, the timestamp format of alerts is checked and is reformatted

if it is incompatible with the data parsing function. Third, duplicate rows are discarded.

Fourth, the alert data is rearranged in the ascending order with respect to the timestamps.

Finally, the refined IDS alert data is stored in a CSV file ready to be used by the multi-stage

attack learning module of the prediction engine.

Multi-Stage Attack Learning

The multi-stage attack learning module analyzes the preprocessed IDS alert data files to

train the HMM. For each multi-stage attack type in the training data, a separate model is

trained forming an HMM attack profile bank that is shared with the attack stage prediction

44

Figure 3.6. Evolution of buffer (Y) during the time_elapsed triggered AOR
procedure. (a) Creation of forwarding window (F) and sorting of alerts. (b)
Sending alerts to Prediction Engine.

module. PRISM uses the MITRE ATT&CK [80] adversary tactics and techniques knowl-

edge base to contrive the state space of its prediction models that correspond to different

attack progression stages. ATT&CK is a real-world observations-based threat information

framework that describes the actions of adversaries in executing complex multi-stage attacks.

These actions are represented by the techniques in ATT&CK framework that are organized

into fourteen tactics. ATT&CK provides a detailed technical description, real-world usage

examples with associated actors, mitigation and detection information for each technique.

Tactics are the tactical objectives of the adversary that are achieved by employing the rele-

vant techniques and tactics are arranged in the way attacker progresses through a multi-stage

attack. The tactics in ATT&CK framework naturally become suitable candidates for the

states in the multi-stage attack prediction models. However, having fourteen states not only

45

Table 3.1. Mapping of ATT&CK Tactics to Prediction States
ATT&CK Tactics Prediction States

i) Reconnaissance
1) Initial accessii) Resource development

iii) Initial access
iv) Execution 2) Execution
v) Persistence

3) Foothold

vi) Privilege escalation
vii) Defense evasion
viii) Credential access
ix) Discovery
x) Lateral movement
xi) Collection
xii) Command and control
xiii) Exfiltration

4) Impact
xiv) Impact

adds to computational complexity, but having all fourteen tactics involved in a single attack

is highly unlikely. This necessitates the mapping of the fourteen tactics into a smaller and

more generic state space. The prediction engine of PRISM maps the fourteen tactics into

four states: initial access, execution, foothold, and impact. The mapping between ATT&CK

tactics and the prediction states is shown in Table 3.1 . Note that the terms attack stage and

prediction state are used interchangeably in the paper. As discussed earlier, a supervised

learning approach is used to train the HMM. The preprocessed IDS alert training data does

not have labels indicating the classification of alert sequence into ATT&CK tactics and cor-

responding prediction states. Most of the mainstream threat detection frameworks have the

feature to report alerts in compliance to the ATT&CK framework [81]–[83]. Since PRISM

relies on the opensource snort IDS, a mechanism is required to associate snort alerts to the

ATT&CK tactics. For this purpose, we have utilized the concepts of information retrieval to

match the key words from snort alert messages to the technical description of the ATT&CK

46

techniques which is discussed in detail in Section 3.3 of the dissertation. Using the labelled

IDS alert training data, A and B matrices are learned using Eqs. 3.7 and 3.8 .

aij = Γij∑N
r=1 Γir

, i, j ∈ [1, N]

s.t. aij = 0, j > i + 2

j < i− 1

(3.7)

bi(l) = Υi(l)∑M
r=1 Υi(r)

, i ∈ [1, N]

l ∈ [1,M]
(3.8)

Where, Γij is the number of transitions from state si to sj and Υi(l) is the number of

times observation vl appears in state si. The learned HMM can be ergodic or of any shape

based on the state transitions present in the training data. However, there are certain HMM

types that model some applications more accurately, e.g., the left-right model is considered

to have better performance in speech recognition [73]. Based on our experimentation, we

have devised a semi-ergodic HMM for PRISM. The transition probabilities being learned in

Eq. 3.7 are constrained by the two conditions that no transitions of more than two states

are permitted and transitions from higher states to lower states are only possible among

the adjacent states. These constraints improve the accuracy in detecting multi-stage attack

progression. Algorithm 3 explains the multi-stage attack learning process where it receives

the alert training data and produces the HMM attack profile bank Λ. It is to be noted that

the models are designed to always begin from the first state thats why all models in Λ are

initialized with πi = [1 0 0 0].

47

Algorithm 3 Multi-stage Attack Learning
Input: Training_Data = {attack1, attack2, .., attackk}

Output: Λ = {λ1, λ2, .., λk}

1: Λ←− vector of k λ objects (init. with πi)

2: for x ∈ [1, k] do

3: /*Learning Transition Probabilities*/

4: for i ∈ [1, N] do

5: for j ∈ [1, N] do

6: λx.A[i][j] = Γij∑N

r=1 Γir
/* from Eq. 3.7 */

7: if (j > i + 2 || j < i− 1) then

8: λx.A[i][j] = 0

9: end if

10: end for

11: end for

12: /*Learning Emission Probabilities*/

13: for i ∈ [1, N] do

14: for l ∈ [1,M] do

15: λx.B[i][j] = Υi(l)∑M

r=1 Υi(r)
/* from Eq. 3.8 */

16: end for

17: end for

18: end for

Attack Recognition and Stage Prediction

The attack recognition and stage prediction module predicts the type of the multi-stage

attack and its current stage for every alert sequence forwarded by the ASM in realtime. The

attack stage prediction process has two parts, attack recognition and decoding. In attack

recognition, the attack profile corresponding to the observed alert sequence is determined

from the HMM attack profile bank. To find out the most likely attack profile, the likelihood

of the alert observation sequence given the model, P (O|λ), is computed for each HMM attack

48

profile using the forward algorithm. The HMM attack profile with the highest likelihood score

is selected and is used to track the progress of the attack. Forward algorithm uses the forward

variable ζt(i) = P (o1, o2, .., oT , qt = si|λ) which is the probability of the observation sequence

O = {o1, o2, .., oT}, and state at time t being si, given the model λ. Forward algorithm solves

for ζt(i) inductively, using the initialization, induction and termination steps illustrated in

Eqs. 3.9 , 3.10 and 3.11 , respectively.

ζ1(i) = πibi(o1), i ∈ [1, N] (3.9)

ζt+1(j) =
N∑

i=1
ζt(i)aijbj(ot+1), j ∈ [1, N]

t ∈ [1, T − 1]
(3.10)

P (O|λ) =
N∑

i=1
ζT (i) (3.11)

After attack recognition, the process of decoding takes place that involves finding out

the optimal state sequence corresponding to the forwarded alert sequence. To achieve this,

the variable χt(i) is introduced that represents the probability of being in state si at time

t as expressed in Eq. 3.12 . The most likely state qt at time t can be solved independently

using Eq. 3.13 .

χt(i) = P (qt = si|O, λ) (3.12)

qt(i) = argmax
i=1,..,N

χt(i), t ∈ [1, T] (3.13)

49

Figure 3.7. The process of attack recognition and decoding.

Viterbi algorithm takes a holistic approach by solving for the most likely state sequence

Q = {q1, q2, .., qT} corresponding to the alert observation sequence O = {o1, o2, .., oT}. The

variable νt, expressed in Eq. 3.14 , navigates through the solution.

νt(i) = max
q1,q2,..,qt−1

P (q1, .., qt−1, o1, .., ot, qt = i|λ) (3.14)

Where, νt(i) is the maximum probability for a single state sequence accounting for t

observations and si being the last state in the state sequence. Using induction, Eq. 3.15 can

be derived.

νt+1(j) = max
i=1,..,N

νt(i)aijbj(ot+1) (3.15)

50

To record the arguments that maximize Eq. 3.15 , the array ξt is introduced. Viterbi

algorithm begins by initializing νt and ξt for t = 1, as shown in Eqs. 3.16 a and 3.16 b.

ν1(i) = πibi(o1), i ∈ [1, N] (3.16a)

ξ1(i) = 0, i ∈ [1, N] (3.16b)

The algorithm then recursively solves for each time step t = 2 to T and each state

j = 1 to N , using Eqs. 3.17 a and 3.17 b.

νt(j) = max
i=1,..,N

νt−1(i)aijbj(ot), t ∈ [2, T], j ∈ [1, N] (3.17a)

ξt(j) = argmax
i=1,..,N

νt−1(i)aij, t ∈ [2, T], j ∈ [1, N] (3.17b)

Finally, the probability of the best score sequence is determined using Eq. 3.18 a and the

best path state is discovered in Eq. 3.18 b.

P ∗ = max
i=1,..,N

νT (i) (3.18a)

q∗
T = argmax

i=1,..,N
νT (i) (3.18b)

Eq. 3.19 finds out the best state sequence starting at the best path state and backtracking

in time by following ξt.

q∗
t = ξt+1(q∗

t+1), t = T − 1, T − 2, .., 1 (3.19)

51

Further details about the forward and Viterbi algorithms can be found in [73], [84].

Algorithm 4 explains the functioning of attack recognition and stage prediction module

systematically. The time complexity of Algorithm 4 is O(N2T) which is the time complexity

of both forward and Viterbi algorithms. Fig 3.7 depicts the use HMM attack profile bank in

the attack recognition and decoding tasks.

Adversarial Machine Learning for Hidden Markov Model-based Threat Predic-
tion

The HMM architecture constructed in the multi-stage attack learning process is capable

to detect a wide variety of multi-stage attack scenarios as illustrated in Section 3.4 of the

dissertation. However, the architecture is prone to adversarial examples that can obfuscate

the prediction system. One such scenario is the activity of an adept attacker who has

knowledge about the working of the Prediction Engine of PRISM. In order to deceive the

prediction process, the attacker intentionally performs the activities that generate alerts for

an earlier stage of the multi-stage attack while actually being at an advanced stage.

Figure 3.8. Adversarial machine learning scenario for HMM-based prediction
system. (a) Expected alert sequence corresponding to attack progression. (b)
Modified alert sequence on account of the attacker’s evasion strategy.

52

Consider the scenario where the attack is at stage 3 and natural progression of the

attack is supposed to be towards stage 4 as shown in Figure 3.8 a. Now, to deceive the

prediction model, the attacker deliberately repeats some of his actions that generate alerts

corresponding to stage 1 of the attack as shown in Figure 3.8 b. If the alerts generated for

the purpose of deceiving the prediction model belong to some other attack type then the

Prediction Engine of PRISM will initiate a new attack instance. However, if the alerts are

from the same attack type then Prediction Engine is prone to end up in an error state,

leaving the attacker to progress to advanced stages without being detected. Such adversarial

examples against HMM-based intrusion detection has been studied previously. In [63], HMM

architectures have been proposed that have the ability to differentiate between instances

of multiple attacks of the same type with interleaved alerts. The architectures propose

the inclusion of an extra observation symbol and prediction state to address the issue of

encountering unexpected alerts at a particular stage in addition to preprocessing the alert

stream using an alert feature-based demultiplexer. Such architectures can be incorporated

in PRISM, but currently they are not employed as in our threat model we have assumed

that the attacker has no information about the inner workings of the prediction mechanism.

3.2.5 Security Analyzer

Security Analyzer realizes the cyber situational awareness capability of PRISM by the

computation of important security metrics and their visualization in realtime for effective

decision making in response to the attacks. The input to the Security Analyzer is prediction

output of the Prediction Engine and unmediated alerts from the surveillance zones. By un-

mediated it is meant that the alerts are not subjected to the AOR procedure in the ASM.

The alert and prediction output data is processed in realtime to extract relevant information

for metrics computation. The information of interest in the alert data is the alert id, alert

generation timestamp and id of the device for which the alert has been generated. From

the prediction output, information regarding attack type, attack stage and the probabil-

ity of being at different attack stages corresponding to an alert is obtained. The metric

computation process is alert-driven (event-driven), and the metrics are computed with each

53

Algorithm 4 Attack Recognition and Stage Prediction
Input: O = {o1, o2, .., oT}, Λ = {λ1, λ2, .., λk}
Output: λactive, P∗, Q = {q1, q2, .., qT}

1: /* Attack Recognition by Forward Algorithm */
2: max_likelihood = 0
3: for λ ∈ Λ do
4: likelihood = P (O|λ) /* from Eq. 3.11 */
5: if (likelihood > max_likelihood) then
6: max_likelihood = likelihood
7: λactive = λ
8: end if
9: end for

10: /* Decoding using Viterbi Algorithm */
11: νt(i) = max

q1,..,qt−1
P (q1, .., qt−1, o1, .., ot, qt = i|λactive)

12: P∗ = max
i=1,..,N

νT (i) /* from Eq. 3.18 a */
13: Q = argmax

i=1,..,N
νT (i) /* from Eq. 3.18 b */

14: for t = T − 1 : 1 do
15: Q = Q ∪ ξt+1(q∗

t+1)
16: end for
17: Q = Q.reverse()

reported alert at time t. To get a holistic picture of the damage spread, widely used system

availability metric is utilized. Additionally, we propose two metrics: threat perceptivity and

system degradability that are designed to enhance the cyber situational awareness capabil-

ities specifically for the case of availability attacks. Formally, the three metrics are defined

as follows.

System availability: The percentage of devices working at their routine operational

capacity with respect to the total number of devices in the system at a certain time t. It is

expressed in Eq. 3.20 .

system availability(t) = no. of available devices at t
total no. of devices

∗ 100 (3.20)

Threat perceptivity: The measure to quantify attack progression and associated risk

to the system. Mathematically, it is expressed in Eq. 3.21 , where χt(i) is the probability of

being at state si for an alert received at time t, εi is the numerical value corresponding to

54

the risk associated with state si, with higher values to be set for advanced stages. The value

of thereat perceptivity is between 0 and 1 and higher value means the ongoing attack is in

advanced stages with the system facing elevated risk.

threat perceptivity(t) =
∑N

i=1 χt(i)εi

max(εi)
(3.21)

System degradability: The impact of attack risk on the system operability quantified

through the fraction of compromised devices in the system. Eq. 3.22 a specifies the fraction

of compromised devices at time t, and system degradability at time t is manifested in Eq.

3.22 b. Like threat preceptivity, the value of system degradability is also between 0 and 1,

with higher values implying increased attack progression intensity.

θ(t) = no. of compromised devices at t
total no. of devices

(3.22a)

system degradability(t) = θ(t) threat perceptivity(t) (3.22b)

System availability, threat perceptivity and system degradability is computed for each

reported alert and the Security Analyzer plots the metrics in realtime for the convenience of

the security operations team to gain valuable insights about the ongoing attack. Visualization

of the metrics helps to assess the situation better and consequently a more informed response

can be deployed. Additionally, all of the metric computations are constantly being stored in a

report file that can be used by an automated response system. The visualization functionality

of the Security Analyzer is discussed further in Section 3.4 of the dissertation.

3.3 Experimental Setup

To evaluate the performance of PRISM, comprehensive experimentation is conducted on

the ISCX-2012 dataset. The dataset contains a wide variety of multi-stage attacks embedded

in seven days of network activity. In this dissertation we will be concentrating on the

infiltration and HTTP DoS attack types. Fig. 3.9 shows the attack progression in the

55

infiltration attack scenario and Fig. 3.10 shows the attack progression in the HTTP DoS

attack scenario. The attacks are launched on a network of hundreds of workstations and the

captured traffic is stored in the packet capture (pcap) files. The network activity data of a day

is stored in a separate file and includes up to 10 million packets. The dataset also incorporates

labelled flow-data files providing information whether a flow is malicious or benign. All

constituent systems of PRISM are implemented in Python 3.7 and are compatible with the

specifications of the dataset. The experiments are conducted on a workstation with 8 cores

and 16 GB of memory. Fig. 3.11 shows the conceptual deployment of PRISM on ISCX-2012

network architecture by realizing each Local Area Network (LAN) as a surveillance zone.

The specific details of how different modules of the constituent systems of PRISM implement

the distributed security monitoring and integrated security analysis functionality using the

dataset resources is discussed as follows.

Figure 3.9. Attack progression in the infiltration attack scenario of ISCX-2012 dataset.

3.3.1 Distributed Security Monitoring

TAS and Zonal IDS implement the distributed security monitoring functionality of PRISM.

As mentioned in Section 3.2, TAS performs the operations of network reachability graph

56

Figure 3.10. Attack progression in the HTTP DoS attack scenario of ISCX-2012 dataset.

generation, vulnerability assessment, vulnerability ranks and sampling probabilities compu-

tation, and realtime probabilistic sampling. The network reachability graph generation is

carried out by determining the communication between all network devices on different port

numbers using the normal network activity data in the dataset. For vulnerability assess-

ment, the vulnerability score of each device is estimated as we cannot deploy vulnerability

scanners on the ISCX-2012 network nor vulnerability information of the network devices is

provided in the dataset. To estimate the vulnerability scores of devices, we use the CVSS

base score computation methodology by treating network devices as vulnerabilities to be ex-

ploited. The CVSS base score is determined using five exploitability metrics: attack vector,

attack complexity, privileges required, user interaction and scope, along with three impact

metrics: confidentiality, integrity and availability. The attack vector is determined using

network reachability graph with the assumption that all devices that can communicate to a

device can also compromise it. Therefore, the part of the network from where a device could

potentially be targeted can be determined. Since we are modeling multi-stage attacks, the

attack complexity is set to high for each device. Privileges required is set as low for regular

hosts and high for servers. User interaction is set as required and scope is set as changed for

each device. For all three impact metrics, the value set to low for regular hosts and high for

57

Figure 3.11. PRISM deployment on the ISCX-2012 network.

servers. Table 3.2 summarizes the values adjusted for CVSS base score metrics. Once the

network reachability graph is generated and the vulnerability assessment process is complete,

the vulnerability ranks and sampling probabilities of all devices in the network are calculated

using Algorithm 1 . The network traffic incorporated in pcap files is then distributed between

the surveillance zones using the IP addresses of the devices. In each surveillance zone, the

packets in the zonal pcap file are sampled using Eq. 3.6 . The sampled zonal pcap file is

then forwarded to Snort IDS that generates an alert file using Snort v3.0 community rules.

To engineer the distributed alert reporting process, the alert file in each surveillance zone is

appended with a transmission delay value between ∆min and ∆max, which are configurable

parameters in our experiments, and for each surveillance zone, the transmission delay values

are randomly chosen within the range of these parameters. The alerts from each surveillance

zone are then delivered to the input buffer of the ASM according to the alert generation

timestamp added with the transmission delay.

58

3.3.2 Integrated Security Analysis

The integrated security analysis functionality of PRISM is implemented by ASM, Predic-

tion Engine and Security Analyzer. Initially, the multi-stage attack learning operation of the

Prediction Engine is performed to construct the HMM attack profile bank. The pcap files for

different attack types in the dataset are used to generate the alert files using Snort IDS. The

four-step training data preprocessing is carried out and then the alert labelling correspond-

ing to ATT&CK tactics is accomplished. To label an alert, keywords are extracted from

the alert information and are matched to the technical description of ATT&CK techniques

using the information retrieval method of Term Frequency - Inverse Document Frequency

(TF-IDF). The TF-IDF scores of each keyword are calculated for all ATT&CK techniques

and the technique that has the highest average TF-IDF score of the alert message keywords is

identified. The ATT&CK tactic that pairs to the identified ATT&CK technique is selected,

and prediction state corresponding to the selected tactic, as described in Table 3.1 , is chosen

as the label of the alert. Some ATT&CK techniques are part of multiple tactics, therefore,

labelling of alerts requires establishment of context. The context is established by using the

state corresponding to the last labelled alert. For multiple candidate tactics picked up for

an alert, those tactics are selected that maps to a higher prediction state, otherwise the alert

is labelled with the state of the last labeled alert. The semantics behind this rule is that as

the attacker is executing a multi-stage attack, it is counter intuitive for the attacker to move

in the backwards direction. If there are several alerts pointing to the previous prediction

states then that will be considered as a new multi-stage attack. Such attack scenarios are

investigated in [63]. In rare cases, the average TF-IDF score of alert message keywords is not

significantly different for different ATT&CK techniques due to limitation of expressiveness

in Snort alert information. To handle such cases we label the alert with the label of the

previous alert, i.e., we make the assumption that this alert is not causing any attack stage

transition. Once the alert files are labelled, Algorithm 3 trains the HMM attack profiles

using 30% of the alert data for each attack type in the ISCX-2012 dataset.

59

Table 3.2. CVSS Metrics Values for Vulnerability Assessment
Metric Name Metric Value
Attack Vector Determined by NRG

Attack Complexity High
Privileges Required Regular hosts: low, Servers: high
User Interaction Required

Scope Changed
Confidentiality Regular hosts: low, Servers: high

Integrity Regular hosts: low, Servers: high
Availability Regular hosts: low, Servers: high

Alerts from different surveillance zones are gathered in the input buffer of the ASM, from

where they are sent to the Prediction Engine and Security Analyzer. The alerts being sent

to the Prediction Engine are first sequenced and then forwarded using the AOR procedure

articulated in Algorithm 2 . The value of the parameter µmax is configured to be less than

the value set for ∆max in the experiments to test the robustness of alert stream management

process. The parameter ω is selected according to the maximum length of alert sequence

intended to be processed by the Prediction Engine. The value of the η parameter is fixed

to be 500 ms in all experiments. Prediction Engine upon reception of an alert sequence first

finds out which attack is active and then predicts the stage of the attack using Algorithm 4 .

Security Analyzer receives unmediated alerts from the ASM and attack prediction informa-

tion from the Prediction Engine to compute and visualize three metrics: system availability,

threat perceptivity and system degradability for each incoming alert.

3.4 Performance Evaluation

We have conducted several experiments to evaluate the performance of PRISM in terms

of processing efficiency and prediction efficacy. The experiments are designed to demonstrate

the individual performance of the constituent systems of PRISM and their influence on the

overall system operability.

60

3.4.1 Effect of Threat-Aware Sampling and Distributed Traffic Processing

The most computation intensive phase in the intrusion detection exercise is the process-

ing of the network traffic. The vast magnitude of traffic generated by various devices in

the enterprise networks make it even more challenging especially when the requirement is to

detect malicious traffic in realtime. To cope up with this challenge, a simple yet expensive

solution is commonly employed, that is, adding more computation power. PRISM on the

other hand provides an effective solution that leverages its threat-aware sampling and dis-

tributed traffic monitoring structure to process traffic in realtime with limited computation

resources.

Post Sampling Information Retention

In the first experiment, the performance of TAS and d-TAS is compared to common

network traffic sampling schemes of smart sampling and random sampling. In smart sampling

flows are sampled according to their size with large flows having more probability of being

selected [85]. The comparison between the sampling schemes is made using a measure that

determines how much information is lost in the sampling process. In intrusion detection

applications, a malicious flow is the information that is desired to be retained where a normal

flow is considered as noise. We introduce the metric Malicious-flow Loss Rate (MLR) that

determines the amount of malicious flows not retained after sampling as expressed in Eq.

3.23 . Sampling ratio σ is the control parameter in sampling related experiments, which is

the number of flows selected over the total number of flows as manifested in Eq. 3.24 .

MLR = number of malicious flows not selected
total number of malicious flows

(3.23)

σ = number of sampled flows
total number of flows

(3.24)

61

Figure 3.12. TAS performance in comparison to common network traffic
sampling schemes for infiltration attack data.

The MLR of TAS, d-TAS, random sampling and smart sampling corresponding to dif-

ferent values of σ for infiltration attack scenario in the ISCX-2012 dataset is shown in Fig.

3.12 . It can be seen that the MLR of TAS and d-TAS is significantly better than that of

random sampling and smart sampling with the widest difference observed for σ = 0.45 and

σ = 0.6. Note that the MLR values of all sampling schemes for σ = 0.15 and σ = 0.90 do

not differ much as compared to the other values of σ. This is because if the sampling rate is

low then only a few flows are being selected by all sampling schemes that leaves less room

for TAS to fully utilize its adversary behavior model-based sampling approach. For high

sampling rate, since only a few flows are dropped, therefore, random sampling and smart

sampling are also able retain many malicious flows.

62

Figure 3.13. TAS performance in comparison to common network traffic
sampling schemes for HTTP DoS attack data.

For HTTP DoS attack, The MLR values of TAS, d-TAS, random sampling and smart

sampling corresponding to different values of σ are shown in Fig. 3.13 . The MLR in the case

of smart sampling is better in HTTP DoS attack scenario as compared to the infiltration

attack. This is due to the fact that in infiltration attacks, the flow size is generally limited to

few hundred bytes, however, in HTTP DoS attack, the size of the flows is significantly larger.

As mentioned earlier that the smart sampling scheme favors flows with large volumes, so the

large sized flows captured by the smart sampling scheme includes higher number of malicious

flows. Therefore, the MLR for smart sampling is comparatively better in the HTTP DoS

attack scenario. The performance of the other three sampling schemes is similar to that

in the case of infiltration attack with TAS and d-TAS performing significantly better than

random sampling and smart sampling techniques.

63

Network Traffic Processing Overhead

In the second experiment, we have investigated the effect of TAS and distributed archi-

tecture on the network traffic processing capabilities of PRISM in comparison to Snort being

employed in a centralized setting.

Figure 3.14. Processing overhead of centralized intrusion detection and dis-
tributed security monitoring of PRISM corresponding to different sampling
ratios for infiltration attack data.

Fig. 3.14 shows the processing overhead of Snort for around 5.8 million packets of in-

filtration attack data. As expected, the performance of PRISM’s distributed architecture

is significantly better than a centralized intrusion detection architecture for different values

of σ. It has been determined in our other experiments discussed ahead that the prediction

capabilities of PRISM are acceptable with even σ = 0.3. Comparing the processing over-

64

head of PRISM’s distributed traffic processing architecture with σ = 0.3 to the processing

overhead of non-distributed and no sampling system (σ = 1) as an equivalent to a standard

IDS (like Snort) shows that PRISM makes the intrusion detection process 7.3x faster in the

case of infiltration attack scenario.

Figure 3.15. Processing overhead of centralized intrusion detection and dis-
tributed security monitoring of PRISM corresponding to different sampling
ratios for HTTP DoS attack data.

The processing overhead of snort for around 9.6 million packets of HTTP DoS attack

data is shown in Fig. 3.15 . The processing overhead values in the case of HTTP DoS

attack are similar to that of infiltration attack scenario with the overhead of PRISM being

almost one-third of a standard centralized IDS architecture. Similar to infiltration attack

scenario, the prediction capabilities of PRISM are acceptable for σ = 0.3 and comparing

the processing overhead of PRISM’s distributed architecture setting with σ = 0.3 to the

65

processing overhead of non-distributed and no sampling system (σ = 1) as an equivalent to

a standard centralized IDS shows that the intrusion detection process with PRISM is 7.5x

faster in the HTTP DoS attack scenario.

3.4.2 Attack Prediction Performance and Utility of Alert Stream Management

In this section we present extensive evaluation of the prediction capabilities of PRISM

through rigorous experimentation and all of the results presented in this section correspond

to the models trained using 30% of the alert data from the infiltration attack and HTTP

DoS attack scenarios in the ISCX-2012 dataset. First, we discuss the performance of PRISM

in identifying correct attack stages for different sampling ratios. Second, the prediction

recall corresponding to different alert sequence lengths is illustrated. Third, we evaluate the

effect of distributed alert reporting process on the prediction performance by demonstrating

the prediction recall for different alert delay settings. Finally, we evaluate the rapidness in

identifying attack stages by studying the impact of different delay configurations on early

detection of an attack stage and how PRISM mitigates the issue by utilizing its alert stream

management capabilities.

Attack Stage Prediction for Different Sampling Ratios

We have performed several experiments to determine the prediction efficacy of PRISM

by varying the sampling ratios σ of TAS while the alert sequence length is fixed to 10, that

is, ω = 10. The experiments are designed to showcase how different sampling ratios effect

the prediction capabilities of PRISM and provide insights about the potential use of TAS

with a particular sampling ratio in a given threat prediction scenario. There are two types of

representations used to depict the prediction output of PRISM and how it fairs against the

actual labels in our testing data. The first one shows the predicted attack stage for each alert

in the training data and also shows the correct actual stage for the corresponding alert. The

second one illustrates the the number of alerts correctly predicted by PRISM. Additionally,

for the alerts that were incorrectly predicted to be from other stages, information regarding

66

how many alerts were incorrectly predicted and to what stage is presented in the form of a

confusion matrix.

Figure 3.16. Attack stage prediction for infiltration attack with σ = 0.15.

The prediction output of PRISM corresponding to σ = 0.15 for infiltration attack scenario

is presented in Fig. 3.17 . It can be seen that PRISM is able to predict all stages correctly

even when the number of alerts corresponding to a particular attack stage are lower. The

number of alerts for stage 2 and stage 4 are lower as compared to the number of alerts in

stage 1 and stage 3. This makes it a bit harder for the prediction model to determine the

stages with fewer number of alerts, however, it can be seen that PRISM is able to determine

stages 2 and 4 accurately. Moreover, it can be seen that the length of attack stage 4 quite

small as compared to the other attack stages in the infiltration attack scenario and this fact

will play an important role in the experimental results being presented later in this section.

67

Figure 3.17. Attack stage prediction for infiltration attack with σ = 0.30.

In Fig. 3.17 , the prediction output of PRISM with σ = 0.3 is illustrated for the infiltration

attack scenario. The prediction output is similar to that of the case with σ = 0.15 as

PRISM is able to identify all of the stages correctly, however, the length of the attack

stages corresponding to the number alerts has increased with the increase in sampling ratio.

Moreover, the relative lengths of the different attack stages are also similar to that of the

experiment with σ = 0.15. Therefore, the length of attack stage 4 is still relatively smaller

than the attack stages 1, 2 and 3. By length of an attack stage we mean the number of

alerts corresponding to that attack stage, therefore, smaller length attack stages have fewer

number of alerts representing them.

68

Figure 3.18. Attack stage prediction for HTTP DoS attack with σ = 0.15.

In the case of HTTP DoS attack, the lengths of stages 1 and 2 are significantly smaller

as compared to stages 3 and 4 for σ = 0.15 as shown in Fig. 3.18 . The prediction output for

stage 3 is similar to the actual sequence with some discrepancies. In stage 4 of the HTTP

DoS attack, it can be observed that initially a lot of alerts are incorrectly determined to be

of stages 2 and 3 but as more alerts from stage 4 are processed by the prediction model, the

prediction output becomes accurate. Furthermore, the length of the attack stage 2 is quite

small as compared to the lengths of the attack stages 3 and 4. This observation will play an

important role in the experiments presented later in this section.

69

Figure 3.19. Attack stage prediction for HTTP DoS attack with σ = 0.30.

The prediction output of PRISM in the HTTP DoS attack scenario for σ = 0.30 is shown

in Fig. 3.19 . It can be seen that PRISM is able to determine stage 1 quite accurately, but for

stage 2, some of the alerts from stage 3 are predicted to be of stage 2 in contrast to prediction

output with σ = 0.15. In some cases the compatibility of the alert sequence length and the

attack stage length is better, therefore, even with a lower sampling ratio of σ = 0.15, the

prediction output is more accurate with ω = 10 as compared to the prediction output for

σ = 0.30 with ω = 10. Though with the increase in the sampling ratio, the number of

alerts per stage have increased proportionally but the relative lengths of the attack stages

are similar to the prediction output for σ = 0.15. Therefore, the length of attack stage 2 is

still quite small as compared to the lengths of the attack stages 3 and 4.

70

Figure 3.20. Confusion matrix representation of prediction output for infil-
tration attack with σ = 0.15.

The prediction output of PRISM with more details in the infiltration attack scenario

with σ = 0.15 is shown in Fig. 3.20 . It is illustrated that all alerts from attack stage 1

have been correctly identified. For attack stage 2 most incorrectly predicted alerts have

been detected of being from attack stage 1 while some incorrectly predicted alerts have been

detected of being from attack stage 3. For attack stage 3 all incorrectly predicted alerts are

identified of being from stage 1. For attack stage 4, all alerts have been correctly identified.

The confusion matrix helps to unravel the tendency of the prediction system to incorrectly

predict a particular attack stage to other attack stages. For example, the Prediction Engine

of PRISM has the tendency to incorrectly predict stages 2 and 3 as stage 1 in the infiltration

attack scenario.

71

Figure 3.21. Confusion matrix representation of prediction output for infil-
tration attack with σ = 0.30.

Fig. 3.21 shows the classification details of prediction output in the form of confusion

matrix for infiltration attack scenario when σ = 0.30. It can be seen that the overall

prediction performance is fairly decent for the aforementioned training data and sampling

ratio setting with ω = 10. The stages 1 and 4 of the attack are predicted without any

error while stages 2 and 3 are incorrectly predicted as stage 1 for some instances. Unlike in

the case when σ = 0.15, none of the alerts from attack stage 2 are incorrectly predicted of

being from attack stage 3. Moreover, the relative number of correctly predicted alerts to the

incorrectly predicted alerts for σ = 0.30 in a particular attack stage are similar to that in

the case of σ = 0.15.

72

Figure 3.22. Confusion matrix representation of prediction output for HTTP
DoS attack with σ = 0.15.

For HTTP DoS attack, the prediction output details for σ = 0.15 in the form of a

confusion matrix is shown in Fig. 3.22 . Most of the incorrect predictions are for attack stages

3 and 4. The prediction capabilities of PRISM are primarily dependant on the quality of

data used in training the models. However, given a trained model, the runtime performance

of the Prediction Engine is influenced by ω, and generally longer length alert sequences are

predicted by the model with more accuracy. But formation of long sequences needs increased

waiting times to gather alerts, and in a realtime environment, the requirement is to process

the alerts as quickly as possible for a timely prediction decision. Therefore, there is a trade

off between prediction accuracy and the capability of being able to get the prediction output

rapidly.

73

Figure 3.23. Confusion matrix representation of prediction output for HTTP
DoS attack with σ = 0.30.

The prediction output details for σ = 0.30 in the HTTP DoS attack scenario is shown in

Fig. 3.22 . The prediction output is similar to that of the case of σ = 0.15, with the difference

only being in the number of alerts being greater in the case of σ = 0.30. For attack stage

1, only one instance is being incorrectly predicted to be from attack stage 2, and for attack

stage 2, two alerts are incorrectly predicted of being from attack stage 1. For attack stage

3, most of the incorrectly identified alerts are predicted to be from attack stage 1 and some

instances are incorrectly predicted of being from attack stage 2. For attack stage 4, majority

of the incorrectly predicted alerts are wrongly identified as being from stage 1 while some of

the incorrectly predicted alerts are detected to be from stage 3.

74

Prediction Recall for Different Alert Sequence Lengths

We have conducted experiments to reveal the effect of different alert sequence lengths

on the prediction efficacy and to measure the prediction correctness, we have used recall

that quantifies how well the model performs in identifying the actual attack stage in a given

configuration.

Figure 3.24. Prediction recall for different alert sequence lengths (ω) for
infiltration attack with σ = 0.15.

The prediction recall values in the infiltration attack scenario with σ = 0.15 for different

values of ω is shown in Fig. 3.24 . It can be seen that the prediction recall for all values of

ω is ideal for attack stage 1. For attack stages 2 and 3, the prediction recall increases as the

value of ω increases. For attack stage 4, the recall corresponding to w = 5 and ω = 20 is

less than 1 unlike the recall for ω = 10, ω = 15 and ω = 25.

75

Figure 3.25. Prediction recall for different alert sequence lengths (ω) for
infiltration attack with σ = 0.30.

Fig. 3.25 shows the prediction recall values for infiltration attack scenario with σ = 0.30

corresponding to different values of ω. It can be seen that the prediction recall for stages

1 and 4 is ideal for all values of ω, but for stages 2 and 3, as the value of ω increases, the

prediction recall also increases. It can be observed that for attack stages 2 and 3, the increase

in the prediction recall when the values of ω changes from 5 to 10 is significant as compared

to the increase in the prediction recall when the value of ω changes from 10 to 15 and so on.

This is due to the fact that with the increase in ω, that is, the length of the alert sequence to

be processed by the prediction model, the prediction performance of the model improves, but

that improvement becomes less for higher values of alert sequence lengths as the prediction

model gets almost the same kind of information from the observation sequences after a

certain a length of the alert sequence.

76

Figure 3.26. Prediction recall for different alert sequence lengths (ω) for
HTTP DoS attack with σ = 0.15.

The prediction recall corresponding to σ = 0.15 in the HTTP DoS attack scenario for

different values of ω is shown in Fig. 3.26 . It can be observed that the prediction recall for all

values of ω in stage 1 of the attack is ideal. For stage 2 and stage 3 of the attack, the prediction

recall increases as the values of ω increase. The prediction recall corresponding to stage 4 of

the attack has relatively low recall as compared to other stages of the attack, however, the

trend is the same that with the increasing ω values the prediction recall increases. However,

for attack stage 4, the prediction recall value of ω = 10 is higher than the prediction recall

value for ω = 15. This is due to the fact that for two different ω values the number of alert

sequences formed from the total number of alerts present in the data and the makeup of

those sequences is different. In rare cases, it has been observed that alert sequences formed

with a lower value of ω have a better makeup of alerts then the alert sequences formed with a

77

higher value ω. Therefore, the performance of the prediction mechanism is somewhat better

for the shorter alert sequence length than an alert sequence length that is slightly longer.

Figure 3.27. Prediction recall for different alert sequence lengths (ω) for
HTTP DoS attack with σ = 0.30.

Fig. 3.27 presents the prediction recall for HTTP Dos attack and it can be seen that the

prediction recall improves with the increase in ω values for stage 2, 3 and 4. If Figs. 3.21

and 3.23 are observed together with Figs. 3.25 and 3.27 , then it can be realised that lower

values of ω exacerbate the error in prediction, especially for stages that have a significant

number alert misclassifications. Moreover, the increase in prediction recall when the value

of ω changes from 5 to 10 is more significant as compared to the increase in prediction recall

when ω changes from 10 to higher values can also be observed here.

78

Table 3.3. Distributed Alert Reporting Parameters
Delay Configuration ∆min − ∆max (ms) µ10

max (ms) µ30
max (ms) µ50

max (ms)
low 50 - 100 90 70 50

medium 100 - 250 225 175 125
high 150 - 400 360 280 200

Prediction Recall for Different Alert Delay Configurations

To ascertain the effect of alert stream management on the prediction performance we

have engineered distributed alert reporting mechanism as discussed in Section 3.3 of the

dissertation. The experimentation has been carried out with ω = 10 using the three delay

configurations: low, medium and high. Each delay configuration corresponds to a range of

delay values, where for a given alert and a delay configuration, a delay value randomly chosen

between ∆min and ∆max is added to the alert generation timestamp. The value of µmax is

set to be 10%, 30% and 50% lower than the value of ∆max for low, medium and high delay

configurations, respectively, and are represented by µ10
max, µ30

max and µ50
max. Table 3.3 shows

different ranges of the three delay configurations used in our experiments and corresponding

values of µmax are also depicted. The larger the range from which the alert delay value

is chosen to be appended to the alert, the more randomness or distortion is observed to

the sequence of alerts reported at the ASM from different Zonal IDSs. As we will show

in the results of the distributed alert reporting experiments, with increasing distortion in

the sequence of alerts, the prediction performance of the HMM-based Prediction Engine

of PRISM is deteriorated. In fact, this phenomenon is true for all time series data-based

prediction models as retention of the order of data is critical for their proper functioning.

In order to test the robustness of the proposed AOR procedure employed by the ASM, we

have used three different estimates of the maximum alert reporting delay for each delay

configuration. These different values of our estimate of the maximum alert reporting delay

evaluate the performance of PRISM stream management under practical consideration of

having an imperfect maximum alert reporting delay estimate and how the increase in error

of our estimate impact the threat prediction capability of PRISM.

79

Figure 3.28. Prediction recall for different alert delay configurations for
infiltration attack with µ10

max.

In Fig. 3.28 , the prediction recall corresponding to the three delay configurations for the

infiltration attack scenario with AOR operating at µ10
max is shown. As the distributed alert

reporting latency becomes more random i.e. higher value of the delay configuration, the

ability of the model to predict attack stages correctly is significantly reduced, especially for

those states that have fewer number of alerts, that is, attack stages with shorter length as

can be observed by the prediction recall values for high delay configuration at stage 4 of the

infiltration attack. The utility of AOR is evident that for all attack stages, the prediction

recall becomes equal to that of the case with no delay when AOR procedure is applied on

the alert streams subjected to high delay configuration.

80

Figure 3.29. Prediction recall for different alert delay configurations for
infiltration attack with µ30

max.

The prediction recall for the infiltration attack scenario corresponding to different alert

delay configurations and AOR procedure with µ30
max is shown in Fig. 3.29 . It can be seen

that as the estimate of the maximum delay experienced by alerts from different distributed

sources becomes less accurate, the ability of the AOR becomes less effective in rectifying

the alert order discrepancies introduced due to the distributed alert reporting mechanism.

However, the prediction performance is still significantly better than the case in which the

alerts are subjected to high alert delay configuration and only in stage 4 the prediction recall

value is a bit less than the prediction recall at the no delay setting.

81

Figure 3.30. Prediction recall for different alert delay configurations for
infiltration attack with µ50

max.

In Fig. 3.30 , the prediction recall corresponding to the infiltration attack scenario for

the three alert delay configurations and AOR procedure with µ50
max is depicted. It can

be seen that for attack stages 1, 2 and 3 the performance of AOR even with 50% of the

maximum delay estimate, the prediction recall is similar to that in the no delay setting.

In stage 4, the prediction recall with AOR procedure being applied to the alert stream is

significantly better than the case with high delay configuration, but is less than the prediction

recall of the no delay setting. Note that we have observed earlier that the length of attack

stage 4 in the infiltration attack scenario is small as compared to other attack stages. The

implication of this fact is evident that the attack stage that experiences the most reduction in

prediction recall due to alert sequence distortion introduced by the distributed alert reporting

mechanism is the attack stage 4.

82

Figure 3.31. Prediction recall for different alert delay configurations for
HTTP DoS attack with µ10

max.

In Fig. 3.31 , the prediction recall value of stage 2 of the HTTP DoS attack illustrates

the similar phenomenon to the infiltration attack scenario that as the distortion in the alert

sequence becomes high, the ability of the prediction system to determine the attack stages

correctly becomes less effective especially for attack stages that have short lengths. The

effectiveness of alert stream management is also apparent as the AOR procedure with µmax

value 10% less than ∆max restores the original order of the alert sequence without any error.

It is to be noted that there is a cost associated to the application of AOR procedure as well,

that every time an alert forwarding window is formed, there is a wait of µmax before the

alerts are sent to the Prediction Engine.

83

Figure 3.32. Prediction recall for different alert delay configurations for
HTTP DoS attack with µ30

max.

The prediction recall corresponding to the HTTP DoS attack scenario for different alert

delay configurations with µ30
max delay estimate being used in the AOR procedure is shown in

Fig. 3.32 . It can be seen that the prediction recall corresponding to AOR and no delay case

in stages 1, 3 and 4 is the same with even µmax value being 30% less than ∆max. In stage 4,

the prediction recall corresponding to AOR is significantly better than the high delay case

but falls short of being equal to the no delay case. An interesting trend can be seen that

the prediction recall for medium delay case is better than then low delay case in stages 1, 2

and 4. This can occur because of the possibility that the disorder introduced in the medium

delay case can in fact create sequence of alerts that are considered valid alert sequences by

the prediction model.

84

Figure 3.33. Prediction recall for different alert delay configurations for
HTTP DoS attack with µ50

max.

In Fig. 3.33 , the prediction recall for different alert delay configurations corresponding to

HTTP DoS attack scenario with µ50
max delay estimate used in the AOR procedure is shown.

The prediction recall for different stages of the attack is similar to that in the case of µ50
max,

but with a little bit of depreciation. In stages 1, 3 and 4, the prediction recall is slightly less

in the case of AOR as compared to the no delay case. For stage 2, the prediction recall is

better than that in the case of high delay configuration but is a little bit less than that in the

instance of AOR with µ30
max. Note that we have mentioned earlier that the length of attack

stage 2 is quite small as compared to other attack stages in the case of infiltration attack.

Consequently, the impact of alert sequence distortion on the prediction recall is exorbitant

for attack stage 2, especially for high delay configuration.

85

Evaluation of the Rapidness in Identifying Attack Stages

Prediction recall is one aspect to quantify the prediction system’s performance. In a

realtime environment, it is necessary to measure how soon the prediction mechanism is able

to predict attack stage transitions during the progression of the attack. The sooner the

prediction apparatus is able to predict the attack stage, the more effective response can be

formulated to thwart the attack. To measure the ability of the Prediction Engine to detect

the correct attack stage as soon as the attack transitions from one stage to another, we

propose the metric Early Detection Index (EDI) which is expressed in Eq. 3.25 .

EDI =
∑N

i=1
ol

i−of
i

Ci
εi

H
(3.25)

Where ol
i represents the alert number of the last alert in attack stage i in original labeled

data (ground truth) and of
i is the alert number of the first alert that the model predicts

to be of attack stage i, that is, the alert that detects the beginning of attack stage i. Ci is

the total number of alerts corresponding to attack stage i in the original labelled data and

εi, as mentioned earlier, is the numerical weight corresponding to the risk associated with

attack stage i. Any ε value can be assigned to a stage with advanced attack stages being

given higher values and in our experiments the attack stage number itself is used as the ε

value. H is the sum attack stage risk values i.e. H = ∑N
i=1 εi. The value of EDI is between 0

and 1, with a zero value or near zero value for a given prediction model illustrating that the

prediction model is unable to detect any of the attack stages correctly or is only able to detect

an attack stage at the last alert of that attack stage. Similarly, an EDI value of 1 shows that

the prediction model is able to identify every attack stage at the first alert of the respective

attack stages. We have used EDI to study the impact of alert order modification due to the

alert reporting from distributed alert generation sources. The effect of the three alert delay

configurations on the prediction process and the performance of alert stream management

with three different estimates of the maximum alert reporting latency is measured in terms

of EDI is shown in the following results.

86

Figure 3.34. EDI corresponding to different alert delay configurations for
infiltration attack with µ10

max.

Fig. 3.34 shows the EDI with respect to different values of ω for the three delay con-

figurations and alert order correction using the AOR procedure in the infiltration attack

scenario. It can be observed that the EDI is quite less in the case of high delay configura-

tion as compared to medium and low delay configurations. Whereas, the EDI is near the

maximum value of 1 in the case of alert stream being subjected to the AOR procedure with

µ10
max. This demonstrates that the use of alert stream management not only benefits the

prediction correctness but also significantly improves the ability of the Prediction Engine to

detect attack stages rapidly.

87

Figure 3.35. EDI corresponding to different alert delay configurations for
infiltration attack with µ30

max.

The EDI values for different alert delay configurations and AOR with µ30
max in the in-

filtration attack scenario is shown in Fig. 3.35 . It can be seen that the reduction in the

estimate of maximum alert reporting latency adversely effects the EDI of AOR for ω = 5,

however, there is improvement in EDI when the value of ω increases. The EDI in the case of

µ10
max is indifferent to the changing values of ω, in contrast, it can be seen that with µ30

max the

increasing values of ω affects the EDI as well. The value of EDI in the case of µ30
max becomes

equal to that of µ10
max for ω = 20 and ω = 25.

88

Figure 3.36. EDI corresponding to different alert delay configurations for
infiltration attack with µ50

max.

Fig. 3.36 illustrates the EDI corresponding to the infiltration attack scenario for different

alert configurations with AOR employing µ50
max, that is, the maximum alert reporting latency

estimate is 50% less than the actual maximum alert reporting latency ∆max. It can be seen

that for lower values of ω, that is, for ω = 5 and ω = 10 EDI corresponding to AOR is equal

to that of EDI for low alert delay configuration. However, with the increase in the values

of ω, the EDI for the alert sequence treated by the AOR procedure after being subjected to

high alert delay configuration becomes significantly better. This illustrates that even with

an estimate equal to just 50% of the actual alert reporting latency, the AOR significantly

rectifies the alert order discrepancies introduced by the highest level of delay introduced in

our experiments.

89

Figure 3.37. EDI corresponding to different alert delay configurations for
HTTP DoS attack µ10

max.

The EDI values for different values of ω pertaining to HTTP DoS attack scenario for

the three delay configurations of low, medium and high along with the application of AOR

procedure on the alert sequence subjected to high alert delay configuration is shown in

Fig. 3.37 . It can be observed that the EDI values in the case of AOR and high delay

configuration is similar to the infiltration attack scenario. The EDI values in the case of low

delay configuration are much lower in the HTTP DoS attack scenario as compared to the

infiltration attack scenario while the progression of EDI values with the increasing values of

ω is slightly different in the case of HTTP DoS attack scenario.

90

Figure 3.38. EDI corresponding to different alert delay configurations for
HTTP DoS attack with µ30

max.

In Fig. 3.38 , EDI for the HTTP DoS attack scenario corresponding to different alert

delay configurations with µ30
max being used as maximum delay estimate by AOR procedure

to rectify the disorder in alert sequence due to high alert delay configuration is shown. It

can be seen that the EDI for the AOR case is much better than that in the case of high

delay setting. The EDI for AOR with µ30
max is slightly less in comparison to µ10

max and the

EDI values are almost consistent with respect to the increasing values of ω. It can also be

observed that for alert delay configurations, the EDI value is low for ω = 5 and ω = 10 that

increases significantly when the value of ω increases to 15, 20 and 25.

91

Figure 3.39. EDI corresponding to different alert delay configurations for
HTTP DoS attack with µ50

max.

The EDI for different alert delay configurations corresponding to the HTTP DoS attack

scenario with AOR procedure using µ50
max maximum alert delay estimate is shown in Fig.

3.39 . It can be seen that even with alert delay estimate being 50% less than the actual

maximum alert reporting latency, the AOR procedure significantly improves the EDI as

compared to the high alert delay setting. Also, the EDI values increase proportional to the

values of ω. In comparison the other alert delay estimates, as expected, the EDI values

for µ50
max is les than the other two. However, the EDI values for the alert sequences being

subjected to the AOR procedure are significantly better than the EDI values for all delay

configurations. This shows effectiveness of the AOR procedure of the ASM in its ability to

identify attack stages as early as possible.

92

3.4.3 Security Analysis for Cyber Situational Awareness

We have evaluated the functionality of the Security Analyzer on the alerts generated by

the infiltration attack of the ISCX-2012 dataset. In the first experiment, the network traffic

is not sampled and the value of ω is fixed to 10. Also, the alerts from different surveillance

zones are not subjected to any additional delay. The metrics are computed and visualized

by the Security Analyzer as each of the alert is received in realtime, but here we present the

plots of the complete attack.

Figure 3.40. System availability during infiltration attack scenario.

In Fig 3.40 , system availability of the network is shown with respect to the alerts. It can

be seen that there is little effect on the system availability during the first half of the attack

but during the second half the system availability reduces drastically.

93

Figure 3.41. Threat perceptivity during infiltration attack scenario.

Threat perceptivity corresponding to the stream of incoming alerts in the infiltration

attack scenario is illustrated in Fig. 3.41 . As expected, the threat perceptivity increases

as the attack progresses into advanced stages with mild threat perceptivity for almost the

first half of the attack which increases to the maximum value of 1 when the attack is near

completion. It can be seen be seen that how threat perceptivity value starts changing first

after 3500 alerts and then after 4500 alerts. Threat perceptivity value effectively shows how

close the attacker is at a certain point in achieving his final objectives.

94

Figure 3.42. System degradability during infiltration attack scenario.

In Fig. 3.42 , system degradability for the case of infiltration attack is presented. It can

be observed that as the attack progresses, with the decreasing system availability, the system

degradability increases. With the system availability almost 100% during the first half of the

attack and threat perceptivity at the lowest level, the minimal values of system degradability

correctly showcases that the potential impact of the system risk on the system operability is

minimal. In the next half of the attack, as the system availability decreases and the threat

perceptivity increases, the system degradability increases until reaching the maximum value

by the end of the attack.

95

Figure 3.43. System availability corresponding to 1% of sampled traffic.

Fig. 3.43 presents the output of Security Analyzer with just using 1% of the network

traffic that is sampled using the threat-aware sampling. In addition to exhibiting the effect

of a very high sampling rate, this experimental setting reflects the impact of an evasive

attack. The attack is evasive in a sense that the attacker completes his objectives by only

being detected for only few of his activities. It can be observed that the system availability

changes drastically to the worst levels within the last 30 reported alerts. Such a swift

change in the system state shows the challenges in responding to such type of attacks as it

is significantly difficult for any threat response system to counter an attack that produces

very few traces.

96

Figure 3.44. Threat perceptivity corresponding to 1% of sampled traffic.

Similar to the impact of a very high sampling rate that also mimics the behavior of evasive

attacks on system availability, threat perceptivity plot shows an irregular pattern within the

last 30 alerts of the infiltration attack data with 1% of sampled traffic as shown in Fig. 3.44 .

It can be seen that during the last 30 alerts, threat perceptivity increases sharply, decreases

at some points and then increases again. This behavior effectively shows the limitations of

threat detection and prediction systems designed to assist a manual response. As a human

operator will be unable to understand the situation with drastically changing dynamics in a

short period of time resulting in the successful completion of such attack types.

97

Figure 3.45. System degradability corresponding to 1% of sampled traffic.

The progression of system degradability is not different from system availability and

threat perceptivity for the 1% sampled data of the infiltration attack scenario. During the last

30 alerts it can be seen that system degradability increases quickly, decrease at some points

and then increases drastically. This shows the limitation of Security Analyzer in assisting

human-driven response operations and reaffirms the proposition that automated response

mechanisms are better suited to foil such attack types. In Chapter 4 of the dissertation, we

propose an automated threat response and recovery architecture that is designed to counter

fast propagating evasive attacks in a timely manner.

98

4. TRAP: A PARTITION-DRIVEN INTEGRATED SECURITY

ARCHITECTURE FOR CYBER-BASED SYSTEMS

The structure of TRAP and its interaction with a general CBS framework is depicted in

Figure 4.1 . TRAP is general enough to be used for Cyber-Physical System (CPS) applica-

tions as well. The efficacy of TRAP is shown for Advanced Metering Infrastructure security

which illustrates that TRAP can operate with any CBS and can be extended to even more

complex systems like CPS. TRAP is by design general and system agnostic. In this chap-

ter the terms CBS and CPS are used interchangeably since both are distributed systems

of heterogeneous components or hosts and the objective of the architecture is to contain

the damage by an automated response and recover the system in an automated fashion at

the same time. TRAP has four constituent systems: partition manager (PAM), intrusion

response system (IRS), intrusion recovery system (IRC) and performance monitor (PEM).

TRAP utilizes the service of an intrusion detection system (IDS) that generates alerts upon

detection of a cyber-attack. The architecture also uses the operational logs of CPS and

assumes that they are updated in realtime with CBS component activities such as data flow

between components with timestamp. Furthermore, it is assumed that the CBS logging

system is part of the CBS’s trusted computing base (TCB), as correct functioning of the

logging system is essential for the architecture’s recovery operations. The implementation

of the core modules of the security architecture is non-trivial but it can be standardized.

The effort in deployment of the security architecture is largely dependent on the available

flexibility in interfacing with the CBS control system. We discuss the constituent systems

of the architecture and their internal modules in detail starting with a discussion on the

intrusion detection process.

4.1 Intrusion Detection System

An extensive discussion about the functioning of the IDS is provided in the previous

chapter. TRAP starts its operations the moment IDS makes detection and identifies the

components of the CBS that got compromised by an intrusion.

99

Figure 4.1. TRAP with its constituent systems and interaction with a CBS.

4.2 Partition Manager

PAM partitions the CBS components in two levels. The first level of partitioning involves

demarcation of intrusion boundaries (IBs). The objective of the IBs is to contain damage

propagation across IBs. The second level of partitioning involves the formation of protection-

zones. The objective of protection-zones is that within an IB, components affected by the

attack needs to be isolated quickly so that the impact of the attack is confined to affected

components only.

100

Figure 4.2. Partitioning process for AMI. (a) Multi-layered system of systems
AMI architecture. (b) Demarcation of IBs on a given AMI topology. (c)
AMI topological structure in an IB. (d) Partitioning of the AMI topological
structure to form protection-zones.

4.2.1 Intrusion Boundary Demarcation

The CBS components that collaborate to provide a specific CBS function are included

in the same IB. It is possible that a CBS component handles multiple functions while the

same CBS component is shared among multiples IBs. An IB can encompass more than one

functions as well. To create IBs, CBS topological structure (component connectivity and

reachability) and CBS component to functionality mapping is used, and are assumed to be

available to the architecture. Figure 4.2 (a) shows advanced metering infrastructure (AMI)

architecture and Figure 4.2 (b) shows the division of AMI components in different IBs. The

101

smart meters that are connected to the same data concentrator perform meter_ops_nan

function, and form a neighborhood area network (NAN). Therefore, they are part of the

same IB. Similarly, the AMI components at the enterprise system layer such as meter data

management system (MDMS), consumer information system (CIS), outage management

system (OMS), distribution management system (DMS) and geographic information system

(GIS) are mapped to global_meter_management function, and can be placed in the same

IB. The idea behind IBs is that an attack inside an IB is fully contained in it by design.

The communication among different IBs is carried out by dedicated links or in some cases

through shared components. The inter-IB communication can be ensured to be not malicious

by applying a positive firewall filter policy on the inter-IB communication links or on the

outgoing traffic from the shared component. To minimize the firewall deployment overhead,

the number of inter-IB communication links should be minimum. To find an optimal IB

configuration, an optimization problem similar to classical graph partitioning problem [86]

can be formulated that minimizes the edge cut among IBs.

4.2.2 Protection-zone Formation

IBs can contain thousands of CPS components and an attack starting from a single

component in an IB can potentially compromise all of the components in that IB due to

functional dependencies. Figure 4.2 (c) shows an example AMI topology enclosed in an IB.

In order to contain the damage within an IB, we introduce a second level of partitions

known as protection-zones. The PAM groups CPS components of an IB in almost fixed-

size protection-zones such that the chances of inter protection-zone damage propagation are

minimized. The response system of the architecture utilizes the protection-zone information

to effectively localize the damage in an IB. The protection-zone creation process is formulated

as a single-objective multiple constraints optimization problem with the goal to minimize

the inter protection-zone communication.

The CPS components in an IB and the interconnections among them can be modeled

as an unweighted non-directional graph P as shown in Figure 4.2 (c). Let P = V,E where

V is the set of vertices modeling CPS components and E is the set of edges modeling the

102

communication links between CPS components. Let Pi be the ith subgraph, such that

P = ⋃k
i=1 and Pi

⋂
Pj = φ. For each vεPi, let Qi = {Pj | ∃ e(v, u) and u ε Pj where j 6= 1}

i.e. Qi is the set of neighboring subgraphs that contain a vertex u that is adjacent to vεPi

whereas there exists an edge e(v, u) between u and v.

The problem is to partition the graph P into k balanced subgraphs with minimum edge

cut such that a vertex at the boundary of a subgraph is at most connected to 1 + η other

subgraphs. Let ⊗
ij = { e(vi, vj) | vi ε Pl and vj ε Pk, ∀ k 6= l} i.e. ⊗

ij is the set of edges

extending from one subgraph to another. The optimization problem is as follows.

min
∑
i6=j
|

⊗
ij
| (4.1a)

|Pi| ≤ (1 + ε) |V |
k
, ∀i (4.1b)

|Qi| ≤ (1 + η) ∀i (4.1c)

The objective function minimized the number of communication links between two differ-

ent subgraphs or protection-zones. The damage propagates through the communication links

between CPS components, therefore minimizing the communication across protection-zones

reduces the chances of inter-protection-zone damage propagation. Moreover, the Constraint

4.1 b balances the sizes of the partitions as small-sized partitions are unable to restrict the

damage spread in one protection-zone and large sized partitions allow damage to propa-

gate to a large number CPS components without any hindrance. Constraint 4.1 c ensures

that a CPS component in a protection-zone is at most connected to components in 1 + η

protection-zones. The intuition is that, if a component that is connected to components in

many different protection-zones is attacked then damage could quickly propagate to other

protection-zones. The parameters ε and η are used to relax the constraints, the lower val-

ues of these parameters the better expected performance in terms damage containment, but

usually if the constraints are too tight then there might not be a feasible solution for a given

CPS topological structure. This graph decomposition problem is similar to the classical

103

uniform graph partitioning problem [86] and the PAM employs a greedy algorithm to create

protection-zones (partitions) of similar sizes.

PAM maintains information about the respective member components of protection-

zones and the boundary components of all protection-zones. A CPS component that has

connections to components in other protection-zones is a boundary component. Figure 4.2 (d)

shows the creation of protection-zones within an IB for AMI as an example CPS.

4.3 Intrusion Response System

IRS is activated by the IDS upon detection of an intrusion. IRS generates response for the

cyber-attack by utilizing the information provided by the IDS and PAM. The functionality

of IRS is described as follows.

4.3.1 Damage Assessment

The damage assessment (DA) module uses protection-zone information provided by PAM

to identify the protection-zones where damage has been spread. PAM shares two data struc-

tures with the DA module. The first one maps every CBS component to a protection-zone

and is named pz_component_list. The second data structure contains information about

the boundary components of the protection-zones and is named pz_boundary_set. The IDS

detects intrusions in the CBS and generates alerts that specifies the CBS components that

are compromised. The pseudocode in Algorithm 5 describes the damage assessment process.

Algorithm 5 Damage Assessment
Input: pz_componnent_list, pz_boundary_set, ids_alert

Output: response_set

1: for each ids_alert of a corrupted component do

2: find protection-zone P of componenet using pz_componenent_list;

3: identify boundary components of P using pz_boundary_set;

4: include the identified boundary components in response_set;

5: end for

104

For each alert received by the DA module, response_set is computed. The components

that need to be isolated from the rest of CBS are in the response_set. It is possible that by the

time IDS detects an intrusion the damage has already spread to other protection-zones. In

that case, the IDS keeps on generating alerts as more CBS components get compromised and

the DA module keeps generating response_sets and provide them to the response manager

module until the damage is contained.

4.3.2 Response Manager

Response manager (RSM) coordinates the operations of DA and interfaces with the CBS

control system. RSM starts its operations the moment it receives an alert from IDS. First,

RSM halts the operation of the compromised components. Subsequently, it sends instructions

to CBS control system to disconnect the CBS components identified in response_set. The

goal here is to stop inter protection-zone damage propagation. This action might temporarily

halt certain CBS functions or services, resulting in a brief unavailability of those functions

in exchange for the benefit of damage containment. RSM continues this process until there

are no more alerts from the IDS, indicating the damage has been successfully contained.

Subsequently, RSM activates IRC to start the recovery process. Additionally, RSM sends

IRS operational information to PEM.

4.4 Intrusion Recovery System

IRC recovers the system in an automated fashion by determining the exact extent of

damage, and performing corrective actions accordingly. The architecture responds first and

recovers afterwards, because the recovery is a time consuming process while response can be

deployed quickly after the detection of the cyber-attack. We explain the functions of several

IRC modules briefly.

4.4.1 Recovery Analysis

Recovery analysis (RA) module assesses the extent of damage by precisely identifying

the compromised components of CBS. For an IDS alert, the recovery process is initiated

105

after completion of the response process. RA module analyzes operational logs of the CBS

that contains detailed information about the activities of CBS components. The activity of

interest is usually the data flow information between CBS components. RA module uses the

IDS alert information to find the start time of the cyber-attack (Ts) and the compromised

CPS component. RA module then starts analyzing the CPS operational log to identify all

of the components to which the compromised component communicated and includes them

in a data structure known as repair_set. The RA process is described in Algorithm 6 .

Algorithm 6 Recovery Analysis
Input: ids_alert, op_log

Output: repair_set

1: for each ids_alert of a corrupted component do

2: include compromised component in repair_set;

3: end for

4: for each new entry s in repair_set do

5: identify components r in op_log that communicated with s after Ts;

6: include component c ∈ r in repair_set, if c /∈ repair_set;

7: end for

4.4.2 Recovery Protocol Knowledgebase

Once the RA module identifies the compromised components, the Recovery Protocol

Knowledgebase (RPK) module determines the recovery protocol to recover them. RPK

module maintains a knowledgebase that provides procedures that needs to be followed to

recover the compromised CBS components. For example, if the data management server is

compromised then the recovery techniques mentioned in [87] can be employed. Similarly,

if a field device is compromised then a redundant device could be activated, if available.

Otherwise, if the device was providing essential data to a controller then instructions can be

given to the controller to use simulated data till the device is restored manually.

106

4.4.3 Recovery Manager

Similar to RSM, the recovery manager (RCM) interfaces with CBS control system. RCM

submits recovery instructions to take corrective actions based on the information provided

by the RPK module, for a particular attack. Notice that RCM might not be able to com-

pletely recover the CBS functionality in an automated manner due limitations of the CBS

infrastructure or unavailability of appropriate recovery protocol in RPK for a particular

component. In that case, RCM only disables the corrupted component, and generates an

alert to recover the system manually. Once the recovery process of the system is complete,

the normal communication of all the CPS components is restored. RCM also records the

activities of IRC and forwards this information to PEM.

4.5 Performance Monitor

PEM provides an overview of response and recovery system performance by collecting

statistics from IRS and IRC, and calculating different performance metrics. The performance

monitor has two modules that are discussed briefly.

4.5.1 Statistics Collection

Information from different systems of the proposed security architecture is collected and

analyzed by statistics collection module. The received information can be in the form of ex-

tensive log files, therefore this module extracts useful data that is used by metrics calculation

module.

4.5.2 Metrics Calculation

We introduce operational availability as a measure of serviceable CBS functions, and

derive damage extent from operational availability to reflect the impairment of CBS functions

caused by an attack. To monitor the impact of response operations on the communication

of CBS components, the metric communication impediment is proposed. The metrics are

defined as follows.

107

• Operational availability: the available CBS functionality in terms of percentage of

components unaffected in an attack for a CBS function.

• Damage extent: the compromised CBS functionality in terms of percentage of com-

ponents damaged in an attack for a CBS function.

• Communication impediment: the observed limitation in the communication of

CBS components due to response operations in terms of the percentage of components

experiencing restricted communication.

Note that the metrics operational availability and damage extent concern a particular

CBS function. The overall CBS availability and damage extent can be found out by averaging

these metrics for all CBS functions.

4.6 Simulations and Evaluation

We have used AMI as the target CPS application to evaluate the performance of TRAP.

Note that as mentioned before to show the generality of TRAP we have extended its appli-

cation in CPS which similar to CBS but with added complexity. We first discuss the threat

model concerning AMI followed by a discussion on the simulation tool and implementation.

Finally, we present our experimental setup and compare the performance of TRAP with the

commonly adapted intrusion prevention approach.

4.6.1 Threat Model and Implementation

We have employed the electricity pricing manipulation cyber-attacks on AMI as the at-

tack scenario in our experiments. The attacker tries to exploit access vulnerabilities of smart

meters through a direct physical link or through the AMI. The objective of the attacker in

electricity pricing manipulation cyber-attack is to disrupt the distribution system of the

power grid such that electricity supply to the targeted regions is suspended. The attacker

maliciously gains access to a smart meter and usually injects a malware that could be prop-

agated through the network. Such cyber-attacks can be detected by modeling the state of

each meter in a distributed fashion with a centralized decision making mechanism [88]. In

108

AMI, smart meters are connected to the data concentrator through a mesh network that

forms a neighborhood area network (NAN). The target of the malware is the guideline price

information that is used by smart controller to manage the usage of different appliances to

reduce the electricity bill. The smart controller when observes a lower price at a certain

time of the day, schedules the usage of many appliances, resulting in the increase in energy

consumption of that particular consumer. The consumers in a NAN are usually connected

to the same bus used by distribution system of the power grid. If the attacker succeeds to

manipulate the pricing information in a large number of smart meters one after the other,

the transmission line that delivers power to the bus can trip. This can cause the transmission

system to reallocate power distribution to other transmission lines connecting the bus, which

in turn can trip due to excessive load. This results in a cascading failure and the community

connected to the bus can be out of power. This disruption in distribution system generally

doesn’t stay within a community as from the generation system to the consumers, power

flows through transmission lines linked to several buses as a result a total blackout can occur.

In order to simulate this scenario we have used SecAMI [15], an opensource simulator

developed to study the impact of cyber-attacks on AMI. SecAMI can be used to perform

two operations: first an AMI topology involving smart meters and data concentrators can be

created as an undirected graph, second an attack on the created topology can be simulated

that compromises one node (smart meter) after the other according to three simulation

parameters – compromise time of a node (ct), hop time from one node to another (ht),

and detection time of a compromised node (dt). These parameters determine the attack

propagation speed with respect to the detection speed in the simulation. We have modified

SecAMI to implement the protection-zone aware response mechanism of TRAP. To create

protection-zones for a given AMI topology, we have built a partitioning module on top of

SecAMI that takes a parameter k and a topology graph as inputs to create k protection-

zones of equal sizes. The partitioning module maintains information about the members of

a protection-zone and boundary components of the created protection-zones. The response

mechanism of TRAP uses the protection-zone information to identify the protection-zones

whose member components are detected to be compromised. Subsequently, it immediately

109

halts the communication of the boundary components of the under attack protection-zones

from the rest of the AMI topology.

4.6.2 Experimentation and Results

To evaluate the performance of TRAP in terms of damage containment, we have con-

ducted several experiments. The variable parameters in the experiments are: the size of the

topology in terms of number of nodes (n), the compromise to detection time ratio (σ = ct/dt)

that specifies the attack propagation speed with respect to detection speed, and the parti-

tioning parameter (k) that specifies the number of protection-zones for a given topology. The

performance of TRAP is measured in terms of three metrics. The first two are aforemen-

tioned general CPS damage containment evaluation metrics, that are, operational availability

and damage extent. The third metric is AEL that is specific to AMI and power grid analysis.

In our experiments, we consider attacks on function 1: meter_ops_nan1 i.e. in intrusion

boundary 1 in Figure 4.2 (b). Since only one function is considered, operational availability is

the percentage of components unaffected in the attack and damage extent is the percentage

of components compromised in the attack. For AEL we assume that each smart meter in

the topology is connected to a medium-sized household with standard appliances like wash-

ing machine, dish washer etc. The smart controller of each consumer schedules the energy

consumption for next 24h based on the guideline pricing information. The quadratic pricing

model presented in [89] is employed to form the normal guideline price and energy consump-

tion for a general household. In addition to evaluating the performance of TRAP in terms of

the two damage containment metrics and AEL, we have conducted experiments that illus-

trate the overhead of response operations of TRAP on the connectivity of CBS components.

Whenever an intrusion is detected, the response mechanism blocks all communication from

the affected protection-zone to the rest of the CBS. Consequently, the communication of CBS

components that are linked directly to the affected protection-zone also becomes restricted.

The components with altered connectivity adversely effect the CBS functionality associated

with them and the restricted communication of CBS components is quantified through the

metric communication impediment.

110

Figure 4.3. Operational availability over topology size for σ = 3.

The value of operational availability for different values of n with σ = 3 and k = 0, 8 is

shown in Figure 4.3 . It can be seen that the performance of the proposed partition-driven

architecture (k = 8) is considerably higher as compared to the non-partitioned system (k = 0)

e.g. at n = 200, the value of operational availability is 84.5 for the partitioned system while

its value is 7.4 for non-partitioned system. Moreover, note that the value of operational

availability increases as the value of n increases until 200 nodes after that it decreases.

This is due to the fact that there exists an optimal protection-zone size that maximizes the

benefit. If the size of the protection-zone is too small, it is more likely that damage will

propagate to other protection-zones. If the size is too large then many member nodes of the

protection-zone can get corrupted without any hindrance.

111

Figure 4.4. Damage extent over number of protection-zones for n = 200.

The damage extent for a 200 node topology with different σ and k values is shown in

Figure 4.4 . Notice that when the attack propagation speed is very high, that is, lower values

of σ, both the partitioned system (k > 0) and the non-partitioned system (k = 0) are unable

to contain the damage. This is due to the fact that for very fast progressing attacks, when

an attack is detected in a certain protection-zone, the attack has already been spread to

other protection-zones before the isolation process takes place for an infected protection-

zone. This causes even the proactive protection-zone centric response to flounder, though

the performance of the proactive response is somewhat better than the reactive detect and

disconnect response. For higher σ values, the performance of the partition-driven response

mechanism is significantly better than the reactive non-partitioned response as there’s enough

room for the response mechanism to detect the attack in a protection-zone and isolate it

before the attack propagates to any other protection-zone.

112

Figure 4.5. Guideline electricity price in pricing manipulation cyber-attack.

The manipulated guideline price in a smart meter that is determined using the quadratic

pricing model presented in [89] is shown in Figure 4.5 . It can be seen that the guideline price

drops from 1x10−3 $/kWh2 to around 0.7x10−3 $/kWh2 at 6PM which further drops to 0

$/kWh2 from 7PM to 9PM. This change in guideline price increases the energy consumption

of a consumer by 1.3 kWh on average in our simulations. The objective of the attacker is to

manipulate the guideline price data of as many smart meters as possible so that the energy

consumption for many consumers in a neighborhood can be increased. When the attacker is

able to change the guideline price data of many smart meters then the overall energy demand

of neighborhood is increased. Here in this scenario the attacker is orchestrating a blackout

that is initiated at 6PM and ends at 9PM. If the energy demand from a neighborhood

increases drastically at a certain time of the day, the transmission line supplying power to

that neighborhood becomes vulnerable to malfunction and it is most likely tripped.

113

Figure 4.6. Overall AEL consumption of a community for n = 200, σ = 3.

The increase in overall energy demand by all consumers corresponding to the 200 node

topology for non-partitioned (k = 0) and partitioned systems (k = 8) is shown in Figure 4.6 .

It can be noted that when the pricing manipulation cyber-attack begins at 6PM, the AEL

value is observed to be increasing for the non-partitioned system while it remains almost

unchanged for the partitioned system. Similarly, between 7PM to 9PM, the AEL increases

significantly in the non-partitioned system case while there is just a slight increase in the

AEL in the partitioned system case. This demonstrates the effectiveness of the partition-

based proactive response mechanism in comparison to the reactive detect and disconnect

response mechanism. The partition-driven response mechanism of TRAP efficiently handles

the attack and correspondingly load on the transmission lines connected to the bus that

connects 200 consumers to the power grid is not drastically increased.

114

Figure 4.7. Communication impediment over topology size for σ = 3.

The overhead incurred on the connectivity of CBS due to the execution of response

operations is shown Figure 4.7 . The results are for different values of the topology size

n and the number of protection-zones k. For n = 50, the communication impediment is

higher as compared to the other topology size values corresponding to k = 4, 5 and 6.

This is because when we partition a compact topology into several protection-zones, the

sizes of the resultant protection-zones are not large enough to fully contain the attack.

Consequently, the attack that starts from one protection-zone propagates to others, and the

response mechanism isolates more than one protection-zones. For n = 50 and k = 2, the sizes

of the two protection-zones are large enough to prevent the movement of the attack from

one protection-zone to another, accordingly, the values of communication impediment are

similar for all topology sizes. For higher values of n, the increase in topology size offers the

resulting protection-zones enough depth to localize the attack effectively. Additionally, it can

be observed that the communication impediment does not vary considerably as the topology

size increases because with the increase in topology size, the size of protection-zones also

increases. As the communication impediment is the percentage of components with restricted

communication corresponding to the total number of components in the CBS, therefore, the

115

increase in both the protection-zone and topology size does not change the communication

impediment significantly. It can be seen that with the increase in number of protection-zones,

the percentage of CBS components experiencing restricted communication decreases. This

is due to the fact that as the number of protection-zones increases, the protection-zone sizes

become smaller for a given topology size. As a result, the communication of fewer number

of components is altered when the response mechanism isolates an infected protection-zone.

However, as can be seen in results presented in Figure 4.4 , if we keep on increasing the

number of protection-zones then the damage containment performance starts to degrade

after a certain value of k for a given a topology. Therefore, there is a trade off between

the damage containment and overhead incurred by the response operations governed by the

selection of parameter k. The impact of communication impediment on the functionality of

CBS depends on the type of components being subjected to communication restrictions. If

the affected components perform multiple functions of vital importance to the CBS then the

impact on the overall functionality of CBS will be greater. In the case of AMI, the restricted

communication of smart meters can limit the data transmitted back to the electric utility

company which can impact the power grid’s reliability and efficiency.

116

5. CONCLUSION AND FUTURE WORK

In this chapter, the summary of contributions of this dissertation is presented in section 5.1

and directions of the future research are elaborated in section 5.2.

5.1 Summary of Contributions

The contributions of this dissertation are in the addressal of challenges in threat detec-

tion and threat response in CBSs. First, to address the challenges in threat detection, the

dissertation presents PRISM, a hierarchical intrusion detection architecture for large-scale

cyber networks that can predict the progression of complex multi-stage cyber-attacks in re-

altime by processing a fraction of the total network traffic. To achieve this, PRISM employs

an attacker behavior model-based threat-aware sampling scheme and a distributed network

traffic monitoring mechanism. Due to its distributed structure, PRISM like every other

distributed system, experiences the challenge in alert order preservation that introduces er-

rors in the prediction process. PRISM addresses this challenge by utilizing an efficient alert

stream management mechanism. Extensive experimentation has been conducted to evalu-

ate the performance of PRISM under different conditions. It has been shown that PRISM

reduces the network traffic processing overhead by up to 750% as compared to a standard

IDS while being able to predict the attack progression accurately. PRISM also demonstrates

the ability to predict the progression of an attack to advanced stages as soon as the tran-

sitions unfold, providing the response infrastructure additional margin to operate in a time

constrained environment. Furthermore, multiple security metrics have been proposed that

showcase a holistic security outlook of the system to support intrusion response operations.

Second, to address the challenges in threat-response, the dissertation introduces TRAP, a

partition-driven integrated security architecture that provides a comprehensive security inci-

dent handling solution for CBSs. TRAP proposes a novel adaptive partitioning mechanism

that localizes the cyber-attack effectively at the region of the cyber-attack’s inception. This

helps in thwarting fast propagating cyber-attacks and minimizes the damage spread. TRAP

also incorporates a recovery mechanism that recovers the affected CBS assets while simul-

taneously executing response operations. The performance of TRAP has been evaluated by

117

implementing it in the source code of SecAMI simulator and examining the ability of TRAP

in countering a fast propagating cyber-attack.

5.2 Future Research Direction

In this section, three future research directions that can be pursued by extending the

research presented in this dissertation are discussed.

5.3 Security-centric Network Traffic Sampling using Temporal Graph Networks

The threat-aware sampling scheme proposed in this dissertation uses a static graph to

model the behavior of an attacker that can be used to determine the devices that are more

likely to be targeted in case of a cyber-attack. The static graph is termed as the network

reachability graph that represents the devices in the network and their interactions with

each other. This static graph model can be extended to a dynamic graph model in which

the vertices and edges of the graph evolve with time. A dynamic graph model can yield

more accurate results as the nature of a large-scale cyber network is also dynamic. One such

model the we plan to explore is known as Temporal Graph Network (TGN) [90]. TGN is

a model for deep learning on dynamic graphs that can learn from the evolution of dynamic

graphs and then can predict the future interaction among nodes. This can be utilized in

threat-aware sampling by training the TGN with attack data and then employing the TGN

to predict how network devices can get compromised from other devices in the network.

5.4 Multi-stage Attack Prediction using Recurrent Neural Networks

The threat detection architecture presented in this dissertation uses an HMM-based pre-

diction model to assess the progression of a multi-stage cyber-attack. Recently, Recurrent

Neural Networks (RNNs)-based prediction models have become popular in scenarios in-

volving time series data centric cyber-attacks. One such RNN-based model we intend to

incorporate in our prediction system is Long Short-Term Memory (LSTM) model. We plan

to investigate the difference in performance of HMM and LSTM model in their ability to

118

predict different stages of a complex muli-stage cyber-attack under different experimental

conditions.

5.5 Dynamic Threat Response using Reinforcement Learning Techniques

The TRAP architecture proposed in the dissertation uses a partitioning mechanism that

uses the network topological structure of a CBS to create static partitions according to an

optimization problem that essentially minimizes the chances of cyber-attack proliferation

into different partitions. The partitions play an important role in response operations by

isolating an under attack partition from rest of the CBS. This strategy effectively hampers

the progression of a cyber-attack but have limitations as well. One such limitation is the fre-

quent change in the connections among CBS components that can reduce the effectiveness of

the partition-based response. Moreover, if the attacker has information about the partitions

then this information can be used to circumvent the response mechanism. To address these

challenges, the partitioning mechanism can be made dynamic using the reinforcement learn-

ing techniques in which for different environmental conditions like changes in the network

topology, actions of the attacker etc., the partitions are modified accordingly.

119

REFERENCES

[1] M. Biro, A. Mashkoor, J. Sametinger, and R. Seker, “Software safety and security risk
mitigation in cyber-physical systems,” IEEE Software, vol. 35, no. 1, pp. 24–29, 2017.

[2] Fireeye m-trends 2020 report. [Online]. Available: https ://content . fireeye.com/m-
trends/rpt-m-trends-2020 .

[3] T. Lukaseder, “Security in high-bandwidth networks,” Dissertation, 2020. [Online].
Available: https://oparu.uni-ulm.de/xmlui/handle/123456789/33216 .

[4] G. Gilder, TELESCOM: How infinite bandwidth will revolutionize our world. Free
Press, 2000.

[5] R. Sommer and V. Paxson, “Outside the closed world: On using machine learning for
network intrusion detection,” in IEEE Symposium on Security and Privacy, May 2010,
pp. 305–316.

[6] Zeek cluster architecture. [Online]. Available: https : / /docs . zeek . org / en/ current /
cluster/index.html .

[7] Snort intrusion detection/prevention system. [Online]. Available: https://www.snort.
org .

[8] Zeek network security monitor. [Online]. Available: https://www.zeek.org .

[9] J. Mai, C. Chuah, A. Shridharan, T. Ye, and H. Zang, “Is sampled sufficient for anomaly
detection?” In 6th ACM SIGCOMM Conference on Internet Measurement, Oct. 2006,
pp. 165–176.

[10] A. Humayed, J. Lin, F. Li, and B. Luo, “Cyber-physical systems security – a survey,”
IEEE Internet of Things Journal, vol. 4, no. 6, pp. 1802–1831, 2017.

[11] S. Zonouz, H. Khurana, W. Sanders, and T. Yardley, “Rre: A game-theoretic intru-
sion response and recovery engine,” in IEEE Transaction on Parallel and Distributed
Systems, vol. 25, 2014, pp. 395–406.

[12] Y. Javed, M. Khayat, A. Elghariani, and A. Ghafoor, “Prism: A hierarchical intrusion
detection architecture for large-scale cyber networks,” arXiv preprint arXiv:2111.11000,
2021. [Online]. Available: https://arxiv.org/abs/2111.11000 .

[13] A. Shiravi, H. Shiravi, M. Tavallee, and A. A. Ghorbani, “Towards developing a system-
atic approach to generate benchmark datasets for intrusion detection,” in Computers
& Security, vol. 31, May 2012, pp. 357–374.

120

https://content.fireeye.com/m-trends/rpt-m-trends-2020
https://content.fireeye.com/m-trends/rpt-m-trends-2020
https://oparu.uni-ulm.de/xmlui/handle/123456789/33216
https://docs.zeek.org/en/current/cluster/index.html
https://docs.zeek.org/en/current/cluster/index.html
https://www.snort.org
https://www.snort.org
https://www.zeek.org
https://arxiv.org/abs/2111.11000

[14] Y. Javed, M. Felemban, T. Shawly, J. Kobes, and A. Ghafoor, “A partition-driven
integrated security architecture for cyberphysical systems,” IEEE Computer, vol. 53,
no. 3, pp. 47–56, 2020.

[15] T. Shawly, J. Liu, N. Burrow, and S. Bagchi, “A risk assessment tool for advanced
metering infrastructures,” in 2014 IEEE Conference on Smart Grid Communications,
2014.

[16] A. Singhal and X. Ou, “Security risk analysis of enterprise networks using probabilistic
attack graphs,” NIST Inter-Agency Report 7788, Aug. 2011.

[17] J. Homer, S. Zhang, X. Ou, D. Schmidt, Y. Du, S. Rajagopalan, and A. Singhal, “Ag-
gregating vulnerability metrics in enterprise networks using attack graphs,” Journal of
Computer Security, vol. 21, no. 4, pp. 561–597, 2013.

[18] M. Farmad and A. Bafghi, “Bayesian decision network-based security risk management
framework,” Journal of Network and Systems Management, vol. 28, pp. 1794–1819,
2020.

[19] Y. Lai and P. Hsia, “Using the vulnerability information of computer systems to im-
prove the network security,” Computer Communications, vol. 30, no. 9, pp. 2032–2047,
2007.

[20] V. Viduto, C. Maple, W. Huang, and D. Perez, “A novel risk assessment and optimiza-
tion model for a multi-objective network security countermeasure selection problem,”
Decision Support Systems, vol. 53, no. 3, pp. 599–610, 2012.

[21] X. Ou, W. Boyer, and M. McQueen, “A scalable approach to attack graph generation,”
in 13th ACM Conference on Compter and Communication Security (CCS ’06), 2006,
pp. 336–345.

[22] R. Sawilla and X. Ou, “Identifying critical attack assets in dependency attack graphs,”
in 13th European Association on Research in Computer Security (ESORICS), vol. 5283,
2008, pp. 18–34.

[23] V. Mehta, C. Bartzis, H. Zhu, E. M. Clarke, and J. Wing, “Ranking attack graphs,”
in Recent Advances in Intrusion Detection, Sept. 2006.

[24] R. Dantu, P. Kolan, and J. Cangussu, “Network risk management using attacker pro-
filing,” Security and Communication Networks, vol. 2, pp. 83–96, 2009.

[25] A. Gusmao, M. Silva, T. Poleto, L. Silva, and A. Costa, “Cybersecurity risk analysis
model using fault tree analysis and fuzzy decision theory,” International Jouranl of
Information Management, vol. 43, pp. 248–260, 2018.

121

[26] M. Barrere, R. Steiner, R. Mohsen, and E. Lupu, “Tracking the bad guys: An efficient
forensic methodology to trace multi-step attacks using core attack graphs,” in 13th
International Conference on Network and Service Management, Nov. 2017.

[27] D. Malzahn, Z. Birnbaum, and C. Wright-Hamor, “Automated vulnerability testing
via executable attack graphs,” in 2020 International Conference on Cyber Security
and Protection of Digital Services, June 2020.

[28] G. Androulidakis, V. Chatzgiannikis, and S. Papavassilou, “Network anomaly detection
and classification via opportunistic sampling,” in IEEE Network, vol. 23, Jan. 2009,
pp. 6–12.

[29] L. Braun, G. Munz, and G. Carle, “Packet sampling for worm and botnet detection
in tcp connections,” in 2010 IEEE Network Operations and Management Symposium,
Jun. 2010.

[30] S. Shahreza and Y. Ganjali, “Flexam: Flexible sampling extension for monitoring and
security applications in openflow,” in HotSDN 13: Proceedings of the second ACM
SIGCOMM workshop on Hot topics in software defined networking, Aug. 2013, pp. 167–
168.

[31] K. Bartos and M. Rehak, “Ifs: Intelligent flow sampling for network security-adaptive
approach,” International Journal on Network Management, vol. 25, pp. 263–282, Jul.
2015.

[32] L. Su, Y. Yao, N. Li, J. Liu, Z. Lu, and B. Liu, “Hierarchical clustering based net-
work traffic data reduction for improving suspicious flow detection,” in 12th IEEE
International Conference Big Data Science and Engineering, Sept. 2018.

[33] R. Sibai, Y. Chabchoub, C. Jaoude, J. Demejian, and M. Togbe, “Towards efficient data
sampling for temporal anomaly detection in sensor networks,” in IEEE MENACOMM
2019, Nov. 2019.

[34] D. Denning, “An intrusion-detection model,” IEEE Transactions on Software Engi-
neering, vol. 13, no. 2, pp. 222–232, 1987.

[35] C. Xenakis, C. Panos, and I. Stavrakakis, “A comparative evaluation of intrusion
detection architectures for mobile ad hoc networks,” Computers and Security, vol. 30,
pp. 63–80, 2011.

[36] H. Liao, C. Lin, Y. Lin, and K. Tung, “Intrusion detection system: A comprehensive
review,” Journal of Network and Computer Applications, vol. 36, pp. 16–24, 2013.

122

[37] Z. Ahmad, A. Khan, C. Shiang, J. Abdullah, and F. Ahmad, “Network intrusion detec-
tion system: A systematic study of machine learning and deep learning approaches,”
Transactions Emerging Telecommunications Technologies, vol. 32, no. 1, Oct. 2020.

[38] N. Chaabouni, M. Mosbah, A. Zemmari, C. Sauvignac, and P. Faruki, “Network in-
trusion detection for iot security based on learning techniques,” IEEE Communication
Surveys and Tutorials, vol. 21, no. 3, pp. 2671–2701, 2019.

[39] J. Li, D. Lim, and K. Sollins, “Dependency-based distributed intrusion detection,” in
DETER Community Workshop on Cyber Security Experimentation and Test, 2007.

[40] Y. Zhang, L. Wang, W. Sun, R. Green, and M. Alam, “Distributed intrsuion detection
system in a multi-layer network architecture of smart grids,” IEEE Transactions on
Smart Grid, vol. 2, 2011.

[41] C. Gruhl, F. Beer, H. Heck, B. Sick, U. Buhler, A. Wacker, and S. Tomforde, “A
concept for intelligent collaborative network intrusion detection,” in ARCS, 2017.

[42] Y. Xie, Y. Wang, H. He, Y. Xiang, S. Yu, and X. Liu, “A general framework for
modeling and perceiving distributed network behavior,” IEEE/ACM Transactions on
Networking, vol. 24, no. 5, pp. 3162–3176, 2016.

[43] O. Alkadi, N. Moustafa, B. Turnbull, and K. Choo, “A deep blockchain framework-
enabled collaborative intrusion detection for protecting iot and cloud networks,” IEEE
Internet of Things Journal, May 2020.

[44] M. Husak, J. Komarkova, E. Bou-Harb, and P. Celeda, “Survey of attack projection,
prediction and forecasting in cyber security,” IEEE Communication Surveys and Tu-
torials, vol. 21, no. 1, pp. 640–660, 2019.

[45] D. S. Fava, S. R. Byers, and S. J. Yang, “Projecting cyberattacks through variable-
length markov models,” IEEE Transactions on Information Forensics and Security,
vol. 3, pp. 359–369, 2008.

[46] H. Du, D. F. Liu, J. Holsopple, and S. J. Yang, “Toward ensemble characterization
and projection of multistage cyber attacks,” International Conference on Computer
Communications and Networks (ICCCN), 2010.

[47] F.Manganiello, M. Marchetti, and M. Colajanni, “Multistep attack detection and alert
correlation in intrusion detection systems,” International Conference on Computer
Communications and Networks (ICCCN), 2010.

[48] B. Zhu and A. Ghorbani, “Alert correlation for extracting attack strategies,” Interna-
tional Journal of Network Security, vol. 3, pp. 244–258, 2006.

123

[49] L. Wang, A. Liu, and S. Jajodia, “Using attack graphs for correlating, hypothesizing,
and predicting intrusion alerts,” Computer Communications, vol. 29, pp. 2917–2933,
2006.

[50] X. Cheng and S. Lang, “Research on network security situation assessment and pre-
diction,” in 2012 Fourth international conference on computational and information
sciences, Aug. 2012.

[51] L. Shang, W. Zhao, J. Zhang, Q. Fu, Q. Zhao, and Y. Yang, “Network security situa-
tion prediction based on long short-term memory network,” in 2019 20th Asia-Pacific
network operations and management sysmposium, Nov. 2019.

[52] O. Fredj, A. Mihoub, M. Krichen, O. Cheikhrouhou, and A. Derhab, “Cybersecurity at-
tack prediction: A deep learning approach,” in SIN 2020: 13th international conference
on security of information and networks, Nov. 2020, pp. 1–6.

[53] H. Yang, R. Zeng, G. Xu, and L. Zhang, “A network security situation assessment
method based on adversarial deep learning,” Applied Soft Computing, vol. 102, no. 12,
2021.

[54] S. Cho, “Incorporating soft computing techniques into a probabilistic intrusion detec-
tion system,” IEEE Transactions on Systems, Man and Cybernetics, vol. 32, no. 2,
pp. 154–160, 2002.

[55] S. Joshi and V. Phoha, “Investigating hidden markov models capabilities in anomaly
detection,” in ACM-SE 43: 43rd Annual Southeast Regional Conference, Mar. 2005,
pp. 98–103.

[56] G. Florez-Larrahondo, S. Bridges, and R. Vaughn, “Efficient modeling of discrete events
for anomaly detection using hidden markov models,” in ISC’05: 8th International Con-
ference on Information Security, Sept. 2005, pp. 506–514.

[57] S. Cho, “Hmmpayl: An intrusion detection system based on hidden markov models,”
Computer and Security, vol. 30, no. 4, pp. 221–241, 2011.

[58] N. Gornitz, M. Braun, and M. Kloft, “Hidden markov anomaly detection,” in 32nd
International Conference on Machine Learning, 2015, pp. 1833–1842.

[59] K. Haslum, M. Moe, and S. Knapskog, “Hidden markov anomaly detection,” in Inter-
national Conference Local Computer Network, 2008.

[60] H. Farhadi, M. AmirHaeri, and M. Khansari, “Alert correlation and prediction using
data mining and hmm,” ISC International Journal Information Security, vol. 2, no. 2,
pp. 77–101, 2011.

124

[61] A. Sendi, M. Dagenais, M. Jabbarifar, and M. Couture, “Real time intrusion prediction
based on optimized alerts with hidden markov model,” Journal of Networks, vol. 7,
no. 2, pp. 311–321, 2012.

[62] P. Holgado, V. Villagra, and L. Vasquez, “Real-time multistep attack prediction based
on hidden markov models,” IEEE Transactions on Dependable and Secure Computing,
vol. 17, no. 1, pp. 134–147, 2017.

[63] T. Shawly, A. Elghariani, J. Kobes, and A. Ghafoor, “Architectures for detecting inter-
leaved multi-stage network attacks using hidden markov models,” IEEE Transactions
on Dependable and Secure Computing, 2019.

[64] T. Chadza, K. Kyriakopoulos, and S. Lambotharan, “Learning to learn sequential net-
work attacks using hidden markov models,” IEEE Access, vol. 8, pp. 134 480–134 497,
2020.

[65] A. Sendi, N. Jivan, M. Jabbarfar, and M. Dagenais, “Intrusion response systems: Sur-
vey and taxonomy,” International Journal of Computer Science and Network Security,
vol. 12, 2013.

[66] P. E. Verissimo, N. F. Neves, and M. P. Correia, “Intrusion-tolerant architectures:
Concepts and design,” in Lecture Notes in Computer Science, vol. 2677, 2003.

[67] D. Schnackenberg, K. Djahandari, and D. Sterne, “Infrastructure for intrusion detec-
tion and response,” in Proceedings DARPA Information Survivability Conference and
Exposition. DISCEX’00, 2000.

[68] X. Wang, D. Reeves, S. Wu, and J. Yuill, “Sleepy watermark tracing: An active
network-based intrusion response framework,” in IFIP International Information Se-
curity Conference, 2001, pp. 369–384.

[69] S. Lannuci and S. Abdelwahed, “Model-based response planning strategies for auto-
nomic intrusion protection,” ACM Transactions on Autonomous and Adaptive Systems,
vol. 13, no. 1, pp. 1–23, May 2018.

[70] E. Miehling, M. Rasouli, and D. Teneketzis, “A pomdp approach to the dynamic
defense of large-scale cyber networks,” IEEE Transactions on Information Forensics
and Security, vol. 13, no. 10, pp. 2490–2505, Oct. 2018.

[71] E. Jonsson and T. Olovsson, “A quantitative model of the security intrusion process
on attacker behavior,” IEEE Transactions on Software Engineering, vol. 23, no. 4,
pp. 235–245, 1997.

125

[72] S. Brin and L. Page, “The anatomy of a large-scale hypertextual web search engine,”
Computer Networks and ISDN Systems, vol. 30, no. 4, pp. 107–117, 1998.

[73] L. Rabiner, “A tutorial on hidden markov models and selected applications in speech
recognition,” Proceedings of the IEEE, vol. 77, no. 2, pp. 257–286, 1989.

[74] T. Akidau, R. Bradshaw, C. Chambers, S. Chernyak, R. Fernandez-Moctezuma, R.
Lax, S. McVeety, F. P. D. Mills, E. Schmidt, and S. Whittle, “The dataflow model: A
practical approach to balancing correctness, latency, and cost in massive-scale, un-
bounded, out-of-order data processing,” Proceedings of VLDB Endowment, vol. 8,
no. 12, 2015.

[75] Common vulnerability scoring system. [Online]. Available: https://www.first.org/cvss/ .

[76] Nessus network vulnerability scanner. [Online]. Available: https://www.tenable.com/
products/nessus/ .

[77] Openvas - open vulnerability assessment scanner. [Online]. Available: https://www.
openvas.org/ .

[78] Nmap: The network mapper. [Online]. Available: https://nmap.org/ .

[79] U. Srivastava and J. Widom, “Flexible time management in data stream systems,” in
Proc. ACM PODS 2004, Jun. 2004, pp. 263–274.

[80] Mitre att&ck. [Online]. Available: https://attack.mitre.org/ .

[81] Splunk enterprise security. [Online]. Available: https://www.splunk.com/ .

[82] Extrahop. [Online]. Available: https://www.extrahop.com/ .

[83] Logrhythm. [Online]. Available: https://logrhythm.com/ .

[84] D. Jurasky and J. Martin, Speech and language processing. Pearson Prentice Hall, 2009.

[85] N. Duffield, C. Lund, and M. Thorup, “Estimating flow distributions from sampled
flow statistics,” in ACM SIGCOMM IMW’02, Novemeber 2002.

[86] B. Kernighan and S. Lin, “An efficient heuristic procedure for partitioning graphs,”
The Bell System Technical Journal, vol. 49, no. 2, pp. 291–307, 1970.

[87] P. Liu, “Architectures for intrusion tolerant database systems,” in 18th Annual Com-
puter Security Conference, 2002.

126

https://www.first.org/cvss/
https://www.tenable.com/products/nessus/
https://www.tenable.com/products/nessus/
https://www.openvas.org/
https://www.openvas.org/
https://nmap.org/
https://attack.mitre.org/
https://www.splunk.com/
https://www.extrahop.com/
https://logrhythm.com/

[88] Y. Liu, S. Hu, and A. Zomaya, “The hierarchical smart home cyberattack detection
considering power overloading and frequency disturbance,” IEEE Transactions on In-
dustrial Informatics, vol. 12, no. 5, pp. 1973–1983, 2016.

[89] L. Liu, Y. Liu, L. Wang, S. Hu, and A. Zomaya, “Economical and balanced energy
usage in the smart home infrastructure: A tutorial and new results,” IEEE Transactions
on Emerging Topics in Computing, vol. 3, no. 4, pp. 556–570, 2015.

[90] E. Rossi, B. Chamberlain, F. Frasca, D. Eynard, F. Monti, and M. Bronstein, “Tempo-
ral graph networks for deep learning on dynamic graphs,” arXiv preprint arXiv:2006.10637,
2020. [Online]. Available: https://arxiv.org/abs/2006.10637 .

127

https://arxiv.org/abs/2006.10637

VITA

Yahya Javed completed his Bachelor of Engineering degree in Information and Commu-

nication Systems from the School of Electrical Engineering and Computer Science (SEECS),

National University of Sciences and Technology (NUST), Islamabad, Pakistan in 2013. Be-

fore joining the grad school at Purdue, Yahya worked as a research assistant at NUST, PTCL

& Cisco Center of Excellence for IP Technologies, Islamabad, Pakistan. Yahya began his

Ph.D. in Computer Engineering at the Elmore Family School of Electrical and Computer

Engineering, Purdue University, West Lafayette, IN, USA in 2015. Yahya received the 2009-

2013 Shahen merit scholarship and NUST academic excellence scholarship in 2011-2013.

Yahya was the recipient of VIP Graduate Mentor Fellowship in 2021.

128

	TITLE PAGE
	COMMITTEE APPROVAL
	DEDICATION
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	ABSTRACT
	INTRODUCTION
	Threat Detection in Cyber-based Systems
	Threat Response in Cyber-based Systems
	Primary Contributions
	Organization

	RELATED WORK
	Security Risk Analysis
	Traffic Sampling in Network Security
	Intrusion Detection
	Intrusion Prediction
	Intrusion Response and Recovery

	PRISM: A HIERARCHICAL INTRUSION DETECTION ARCHITECTURE FOR LARGE-SCALE CYBER NETWORKS
	Background
	Attacker Behavior Modeling
	Hidden Markov Model
	Stream Processing

	System Model and Architecture
	Threat-Aware Sampler
	Vulnerability Assessment
	Network Reachability Graph Generation
	Vulnerability Ranks and Sampling Probabilities Computation
	Realtime Probabilistic Sampling

	Zonal Intrusion Detection System
	Alert Stream Manager
	Prediction Engine
	Training Data Preprocessing
	Multi-Stage Attack Learning
	Attack Recognition and Stage Prediction
	Adversarial Machine Learning for Hidden Markov Model-based Threat Prediction

	Security Analyzer

	Experimental Setup
	Distributed Security Monitoring
	Integrated Security Analysis

	Performance Evaluation
	Effect of Threat-Aware Sampling and Distributed Traffic Processing
	Post Sampling Information Retention
	Network Traffic Processing Overhead

	Attack Prediction Performance and Utility of Alert Stream Management
	Attack Stage Prediction for Different Sampling Ratios
	Prediction Recall for Different Alert Sequence Lengths
	Prediction Recall for Different Alert Delay Configurations
	Evaluation of the Rapidness in Identifying Attack Stages

	Security Analysis for Cyber Situational Awareness

	TRAP: A PARTITION-DRIVEN INTEGRATED SECURITY ARCHITECTURE FOR CYBER-BASED SYSTEMS
	Intrusion Detection System
	Partition Manager
	Intrusion Boundary Demarcation
	Protection-zone Formation

	Intrusion Response System
	Damage Assessment
	Response Manager

	Intrusion Recovery System
	Recovery Analysis
	Recovery Protocol Knowledgebase
	Recovery Manager

	Performance Monitor
	Statistics Collection
	Metrics Calculation

	Simulations and Evaluation
	Threat Model and Implementation
	Experimentation and Results

	CONCLUSION AND FUTURE WORK
	Summary of Contributions
	Future Research Direction
	Security-centric Network Traffic Sampling using Temporal Graph Networks
	Multi-stage Attack Prediction using Recurrent Neural Networks
	Dynamic Threat Response using Reinforcement Learning Techniques

	REFERENCES
	VITA

