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ABSTRACT

The widespread and growing usage of machine learning models, especially in highly crit-

ical areas such as law, predicate the need for interpretable models. Models that cannot

be audited are vulnerable to inheriting biases from the dataset. Even locally interpretable

models are vulnerable to adversarial attack. To address this issue a new methodology is

proposed to translate any existing machine learning model into a globally interpretable one.

This methodology, MTRE-PAN, is designed as a hybrid SVM-decision tree model and lever-

ages the interpretability of linear hyperplanes. MTRE-PAN uses this hybrid model to create

polygons that act as intermediates for the decision boundary. MTRE-PAN is compared to

a previously proposed model, TRE-PAN, on three non-synthetic datasets: Abalone, Census

and Diabetes data. TRE-PAN translates a machine learning model to a 2-3 decision tree in

order to provide global interpretability for the target model. The datasets are each used to

train a Neural Network that represents the non-interpretable model. For all target models,

the results show that MTRE-PAN generates interpretable decision trees that have a lower

number of leaves and higher parity compared to TRE-PAN.
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1. INTRODUCTION

Since 2018, the European Union has placed regulations on personal data usage, and algorith-

mic decision making systems [1 ]. European Union citizens may as a result have a “right to

explanation”, whereby they are entitled an explanation to an algorithmic decision and have

the ability to contest it [1 ]. In the United States, regulatory bodies have begun investigating

the widespread usage of artificial intelligence (AI). In 2014 and 2016, the executive office of

the National science and technology committee published two reports related to the ethical

usage of AI and its regulatory recommendations [2 ]. This was followed by the introduction of

the “National Security Commission Artificial Intelligence Act of 2018” to establish a formal

committee to review the usage of AI and ultimately recommend necessary regulations [3 ].

As algorithmic tools grow in use, laws regulating the ethical use of these tools with the intent

to help prevent misuse as well as reduce potential algorithmic decision failures are likely to

continue to appear globally.

However, such laws are double edged, since the ones writing them are unlikely to posses

the necessary technical information required to judge the validity of any individual model

when it is used to recommend critical decisions that can affect human life. The continued and

growing usage of various permissible legal machine learning (ML) models in court in spite

of their many public failures supports this observation. One such instance is the widespread

usage of recidivism prediction instruments, which attracted controversy as these instruments

have the potential to inherit biases present in the training data, especially when applied

without consideration of the distribution of the data [4 ]. In the United States, the judiciary

presiding over State of Wisconsin vs Eric. L. Loomis used an algorithm, COMPASS, to

recommend sentencing. It sentenced the accused to 6 years in prison [5 ]. The defense argued

that the usage of a black box algorithm violated Mr. Loomis’s right to due process, since

all of the methodology of the algorithm was a trade secret. Therefore the court only saw

and used the output of the algorithm in deciding the sentence. On appeal to the Wisconsin

supreme court, the judgment was upheld [5 ]. The court’s decision was heavily criticized

by law scholars as having “failed to protect due process rights” [6 ]. These systems may

perpetuate a cycle of incarceration [4 ]. A racial bias causes a system to over-target people
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of a certain race, generating more biased training data as a result of the increased arrests

[4 ]. In order to overcome some of these legal and ethical pitfalls, ML models need to be

interpretable, and therefore open to auditing. [7 ].

In response to this concern the IEEE has published the “The IEEE Global Initiative on

Ethics of Autonomous and Intelligent Systems”, a set of guiding principles for ethical AI

usage [8 ]. These principles formed the foundation of the IEEE P7000 series of standards

specifically addressing AI standardization. Subsequently, the P7001 and P7003 standards

required transparency and algorithmic bias considerations for autonomous systems. These

standards emphasize transparency and as a consequence the need for interpretability for all

ML models.

In general, ML models can often be classified into two main categories in terms of inter-

pretability. The first class consists of easily interpretable models such as Bayesian Networks

[9 ], Decision Trees [10 ] and to some extent Random Forests [11 ]. The second class includes

more complex models such as neural networks [12 ] and Support Vector Machines [13 ]. This

second class of models is often more accurate and generalizes better to new data [14 ]. How-

ever, it suffers from a reduced interpretability [15 ]. In fact, the more complex the model,

the less interpretable it becomes. Examples include Deep Neural Networks [12 ], Convolution

Neural Network [16 ], and Recurrent Networks [17 ]. Similarly, the interpretability of SVM

decreases with high order SVMs which rely on RBF or polynomial kernels as opposed to the

simpler linear kernels.

In [15 ], Lipton divides the notion of interpretability into two main categories: trans-

parency and post-hoc explanations. Transparency aims at delivering a model level, or global

level of interpretability, and post-hoc explanations is a per input “after the fact” explanation,

that provides a local level of interpretability. Both the local and the global interpretability of

complex models have been investigated in previous studies. These studies propose a transla-

tion mechanism where a non-interpretable model is first developed and then it is translated

to an interpretable model. For instance, the Local Interpretable Model-agnostic Explana-

tions (LIME) [18 ] technique translates a non-interpretable model to a locally interpretable

one by generating data around a query from the non-interpretable model. The resulting

input and labeled data is then used to train a simple linear separator. The weights of the
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linear separator are provided as the explanation. An example of a global interpretation tech-

nique is TRE-PAN [19 ]. TRE-PAN translates a neural network by training a decision tree

model using data generated from the original model. Another global translation technique

is CRED [20 ]. This technique uses the internal structure of a neural network to generate

rules from an induced decision tree.

Global interpretation is the focus of this thesis. A decision tree with linear hyperplanes as

separators is used to provide global interpretability for a complex neural network model. The

main benefit of this approach compared to previously proposed global translation techniques

is that it generates a more compact explainable model.
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2. RELATED WORK

Several methods for translating non-interpretable ML models to interpretable ML models

have been proposed in the literature [18 ], [19 ]. These methods fall under two categories:

Transparency and Post-hoc Interpretability, or in other words Global Translation and Local

translation, respectively [15 ]. Global translation corresponds to transparency since its aim

is to provide a holistic understanding of the behavior of the target model. Local trans-

lation corresponds to post-hoc interpretation as it is done after the fact and only focuses

on a subspace of the entire model. Lipton [15 ] further divides these two categories where

Simulatability, Decomposability and Algorithmic Transparency are sub-categories of Global

Translation; and Text Explanations, Visualization, Local Explanations, and Explanation by

Example are sub-categories of Local translation.

2.1 Global Translation

The aim of Algorithmic Transparency is to create an interpretable model that estimates

the behavior of the target model by translating it into a model whose behavior is understood

[15 ]. For instance, TRE-PAN is an algorithm that generates a decision tree which describes

the behavior of a deep neural network [16 ], [17 ]. Under this approach, the deep neural

network is already trained, and the training data is available. TRE-PAN uses the trained

network to generate data that is in turn used to train the interpretable decision tree. As the

tree is being trained, the original network is used to generate as many examples as needed

to help define the best splits for each node in the tree. Previous nodes in the tree are used

as constraints for the input features of the deep neural network.

TRE-PAN uses 2 of 3 decision trees. Instead of performing a binary split of the sample

data using a single feature that maximizes an individual gain, these trees use 2 out 3 features

to perform the split at every node. That is, for each node, the top three features are selected

and the corresponding thresholds are established based on the potential gain in entropy from

the split. At most two conditions need to be satisfied for a sample to be assigned to the left

subtree.
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The motivation behind TRE-PAN is that decision trees require substantially more train-

ing data than neural networks in order to achieve the same accuracy. This data may not be

available. Therefore, the non-interpretable model, once trained with the available data, can

be used to generate the additional synthetic data needed to train the interpretable model

[19 ]. Some limitations of TRE-PAN include the fact that 2 out of 3 trees are more difficult

to interpret than binary splits since three different possibilities are evaluated at each node.

Moreover, the depth of the tree in TRE-PAN is primarily dictated by the complexity of the

non-linear decision boundaries of the target model under consideration [19 ]. As TRE-PAN

generates data near the decision boundaries, the information gain from splitting is likely

going to be greater in comparison to regions further away from the decision boundaries.

This is anticipated since near the decision boundaries, the data will have a more balanced

proportion of positive and negative samples, requiring a significantly higher number of splits

to represent each boundary.

When the decision boundary of the neural network has a non-linear shape, representing

the area constrained by this shape, using a singular dimension hyperplanes is analogous to

representing the constrained area with several rectangles of varying sizes. Therefore, these

boundaries often correspond to a large number of leaves in the TRE-PAN decision tree.

Limiting the depth of the tree will come at a cost of lower accuracy [19 ].

The above global translation approach used in TRE-PAN treats the target model as a

black box and is applicable to several ML models. An alternative approach that is only appli-

cable to neural networks was proposed in [20 ]. This approach requires access to the hidden

nodes of the target neural network. Rules describing the global behavior of the network

are extracted using the “Continuous/discrete Rule Extractor via Decision tree induction”

(CRED) algorithm [20 ]. This algorithm builds a decision tree by clustering data around

the training samples that activate a hidden node for a specific output class. CRED builds

decision trees for each layer, generates intermediate rules, and combines them into global

rules.
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2.2 Local Translation

The objective of Local Translation is to observe a limited subset of the feature space

and attempt to explain it by using specific input examples. Therefore, the focus is on

explaining individual decisions, rather than the behavior of the entire model. An example

of this type of translation is the Model-agnostic Explanations (LIME) [18 ]. This technique

relies on a post-hoc approach to explain local classification results. Specifically, LIME uses

a linear model to represent a target decision derived from a non-interpretable model. Given

a target model and an input vector with a corresponding class prediction, the input is

perturbed to generate synthetic data in the local neighborhood of the input vector under

consideration. This synthetic data is then weighted by using a distance metric from the

original input and used to train the interpretable linear model. By observing this linear

model, in particular the feature weights, one can identify the most important features with

respect to the classification. This is only a locally valid interpretation.

There are two potential limitations to LIME: random explanations and unconvincing

explanations. LIME uses randomly perturbed data to create a local linear model. Therefore,

it can generate different explanations for the same input depending on the distribution of the

sampled data. Moreover, the local explanation can become less reliable if the input vector

is near a non-linear decision boundary of the target model [18 ] since a single hyperplane is

unlikely to be able to capture the behavior of the boundary.

Other local translation techniques include utilizing a heat map to visualize the activation

patterns in the input data [15 ], [21 ]. For instance, given an input image, the pixels which

were the most influential in selecting a predicted class can be identified [22 ].

In general, while local translation is easier to implement than global translation, it is

prone to adversarial manipulation in various applications including image classification and

insurance decision support systems [15 ]. For example, an adversarial ”fake” image can be

overlaid on top of a ”real” image causing the model to miss-classify the image [23 ]. A

globally interpretable model is more resilient to such an adversarial attack since it provides

the opportunity to audit how a given decision is reached which will in turn reveal any gaps

in the model’s inference.
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3. METHODOLOGY

The global translation technique proposed in this thesis translates a ML model into a hybrid

model consisting of a decision tree with linear SVM classifiers at each node. This hybrid ML

architecture, which was previously proposed in [24 ] and [25 ], is extended to global translation.

The proposed technique, MTRE-PAN, leverages the interpretability of the decision tree and

the generalizability of SVM in order to generate an interpretable model. It uses SVM with

linear kernels instead of a higher order kernel in order to facilitate interpretability. Moreover,

MTRE-PAN only requires a function that returns a binary output. However, in the present

thesis it is demonstrated for neural networks.

3.1 Model Overview

Let f(x), x ∈ RN represent a pre-trained, non-interpretable model, where x is the feature

vector consisting of N dimensions and f(x) is a binary classifier with codomain {−1, 1}.

MTRE-PAN builds an interpretable model for f consisting of a decision tree that uses

hyperplanes to split each node into subtrees.

Each node k in MTRE-PAN is associated with a weight matrix Ck ∈ RN∗M and a bias

vector bk ∈ RN . In the first phase, MTRE-PAN is trained using the original training data

used to develop f , along with additional training data sampled from f . This data consists of

the input set Q = {x1, x2, x3, . . . xm} and the corresponding label set Y = {l1, l2, l3, . . . lm}.

Let Parent(k) represent the parent node of node k. The set of samples that are passed from

a parent node to its left and right children are defined below:

left child: Ql = {∀x ∈ QP arent(l) | xT
i CP arent(l) ≤ bP arent(l)} (3.1)

right child: Qr = {∀x ∈ QP arent(r) | xT
i CP arent(r) > bP arent(r)} (3.2)

Leaf nodes inherit the label from the SVM classifier according to the side of the split

they fall into. This relationship between the parent node and the child nodes is exemplified

in Figures 3.1 and 3.2 , where f(x) is a circle. The right child of the root node is expanded
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Figure 3.1. Parent-child sampling in MTRE-PAN.

Figure 3.2. Multilevel expansion of the decision tree generated by MTRE-PAN.
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by training an SVM on data sampled from a subspace of the feature space of f(x), such that

any data used in the training must satisfy xT
i C1 > b1. Similarly, the left child of the root

node is expanded by training an SVM on data sampled from a subspace of the feature space

of f(x), such that any data used in training must satisfy xT
i C1 ≤ b1.

The MTRE-PAN algorithm maintains the nodes in a queue. The decision to split the

node is made according to a standard binary gain measure G given by:

G(Qk) = −E( p

p + n
) (3.3)

where the entropy E is defined as:

E(q) = −(q log2 q + (1− q)log2(1− q)) (3.4)

where Qk is the data received from the parent node; and p, and n are the number of positive

and negative examples of Qk, respectively [26 ]. Nodes whose gains falls below a preset

threshold are considered uncertain and therefore are candidates for splitting. After being

split, new leaf nodes are sampled for data and added into the queue. The steps of MTRE-

PAN are outlined in algorithms 1 , 2 and 3 . Each node generated by MTRE-PAN may

sample the original non-interpretable model for more training data if the available data is

not sufficient to represent the subspace. This is accomplished by calling Sampling-on-demand

as discussed next.

3.2 Sampling on Demand

The need for additional training data is measured by comparing the sample variance

of the entropy to a user-defined threshold, the variance cutoff. Increasing this threshold

improves the accuracy of the classifier when the leaf is split, and improves the accuracy

of the measured entropy (by lowering it’s variance). However, it also increases the space

and time required by the sampling computation. The sampling process is repeated in the

subspace of interest until the sample variance of the entropy converges to a value below the

above-mentioned threshold as shown in Algorithm 3 .
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Algorithm 1: M-TRE-PAN Algorithm.
Input: Training data and labels: (Q,Y)

Entropy threshold: entropyT
Non-interpretable model oracle: f(x)
Variance cutoff: varCutoff

Initialize: Root node: R
R.data = (Q,Y)
Gain priority queue: Pg = {}
Pg.enqueue(R)

while Pg is not empty do
node = pG.dequeue()
[leftChild, rightChild] = node.train() /* Trains the parameters of the
node, propagates data to children, and initializes them as leaf
nodes. */
leftChild.Sample On Demand(f(X), leftChild.data, leftChild.constraints,
varCutoff)

rightChild.Sample On Demand(f(X), rightChild.data, rightChild.constraints,
varCutoff)

if leftChild.Get Entropy() > entropyT then
Pg.enqueue(leftChild)

end
if rightChild.Get Entropy() > entropyT then

Pg.enqueue(rightChild)
end

end
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Algorithm 2: Node splitting.
/* trains the weights and bias based on data */
[weights, bias ] = LinearFit(data)

/* Partitions the data, as defined in Equation (3.1 ) for the left
child, and (3.2 ) for the right child */

[leftData, rightData ] = LinearSplit(data,weights, bias)
/* Generate more data for each child if needed: */
leftData = SampleOnDemand(pWeightsC ∪ weights, pBiasB ∪ bias, leftData)
rightData = SampleOnDemand(pWeightsC ∪ −1∗weights, pBiasB ∪ −1∗bias,

rightData)
/* Children are initialized as leaf nodes, where the majority class in

the propagated dataset is the class label of the leaf */
leftChild = Create leaf (leftData)
rightChild = Create leaf (rightData)

Algorithm 3: Sample on demand
Input: Non-interpretable model: f(x);

Complete Data Q: Data;
Parent constraints of the current node: Ck and bk;
User defined sample variance cutoff: sVarianceCutoff;

Initialize: Set GenData, the set of generated data to Data;
Set sAvg to the sample average of the input Data;
Set internalBoundingBox to contain all Data in a bounding box;

while the sample variance of sAvg is less than sVarianceCutoff do
tempSample ← Sample from f(x), bounded by internalBoundingBox
if tempSample ∈ Parent constraints then

Data ← Data ∪ tempSample
sAvg ← SampleAverage(Data)
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As the MTRE-PAN tree is expanded, each node is concerned with classifying a subspace

M ⊆ RN of the original feature space RN that is defined by a hyper-polygon. After a

node is split, the data that belongs to the leaf node (as defined by equations 3.1 and 3.2 )

is surrounded by a bounding box. Afterwards, data is uniformly sampled for the leaf nodes

in the intermediary tree based on the dimensions of their respective bounding boxes. The

samples are then filtered according to the constraints associated with each node. This

sampling continues until the sample variance of the entropy falls below the variance cutoff.
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4. RESULTS

Multiple experiments were conducted to assess the efficacy of MTRE-PAN and compare

it to that of TRE-PAN [16 ], [17 ]. In its proposed implementation, TRE-PAN generates

an interpretable decision tree for each target model using a 2 out of 3 split as described

in Section 2.1 . In order to simplify the comparison with MTRE-PAN, in particular with

respect to the depth of the resulting interpretable models, the C4.5 binary implementation

of TRE-PAN was used [27 ]. MTRE-PAN, the model proposed in the present thesis, consists

of a hybrid combination of a binary decision tree and a linear SVM classifier at each node of

the tree. Both TRE-PAN and MTRE-PAN were used to generate interpretable models with

varying tree depths for several target models.

The first target model is a simple function with a circular boundary delineating the

negative and the positive samples that is populated with synthetic data. The remaining

target models are feed forward neural network models which are trained using three public

domain datasets.

Table 4.1. Hyper-parameters definition and value for experimental setup.
Hyper-parameter Description Value
Maximum Depth The maximum allowable depth of the interpretable de-

cision tree.
10

Cutoff Entropy A leaf node with an entropy higher than the Cutoff En-
tropy is considered uncertain and therefore, is a candi-
date for further splitting.

0.0808

Cutoff Variance An upper limit on the number of data points sampled in
a current leaf. It is based on the sample variance of the
entropy. A lower cutoff variance will result in a more
accurate value for the sample entropy by lowering it’s
variance.

10−5

Margin: The width around the decision boundary of the tar-
get ML from which data is being sampled. It is based
on the input of the last layer of the target ML model.
The margin is not used during the training of the in-
terpretable model. It is simply used to calculate the
post-hoc metric, Boundary Model Parity, defined below
in order to test the efficacy of the algorithm near the
decision boundaries of the target model.

0.05
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The hyper-parameters of MTRE-PAN and TRE-PAN include the Maximum Depth, the

Cutoff Entropy, the Cutoff Variance and the Margin which are described in Table 4.1 . The

ML target models consist of the following general architecture:

• An input layer and two hidden layers, each with a number of nodes equal to the number

of input variables in the dataset.

• An output layer consisting of a single node.

• All the nodes use a Sigmoid activation function.

This architecture is trained with 70% of the original data over 100 epochs. The remaining

30% are held out samples that are used for validation and testing. The data is normalized to

[-1,1]. After training, the model that achieved the highest accuracy on the validation data

across all the epochs of a dataset is used for that dataset.

Four metrics are used to compare MTRE-PAN and TRE-PAN in this study:

• Model Parity: The accuracy of the resulting decision tree with respect to the underlying

target model f . It is measured as the ratio of matching labels between f and either

the decision tree generated by MTRE-PAN or TRE-PAN over the total number of

samples in the validation set. Model Parity is calculated as T P +T N
T P +T N+F P +F N

∗ 100.

• Certain Model Parity: This metric is similar to the Model Parity. Except, in this case,

the sample in the validation data set that are assigned to uncertain nodes (i.e., nodes

whose entropy is below the Cutoff Entropy) are labeled uncertain. Theses samples

cannot match any label from f and as such are considered as misses. This metric is

calculated as T P +T N
T P +T N+F P +F N+uncertain ∗100 and allows the comparison of two techniques

while taking into consideration uncertain nodes that need further expansion.

• Boundary Model Parity: This metric is similar to the Certain Model Parity. However,

in this case, the validation data set is filtered to only include the samples that are

near the decision boundary within a predefined margin. The Boundary Model Parity

measures the progress of the interpretable model towards replicating the behavior of
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the target model near the decision boundaries. It identifies an interpretable model that

has a high Certain Model Parity but may not fair well around the decision boundaries.

• Leaf Count: The number of leaves in the decision tree generated by either MTRE-PAN

or TRE-PAN.

4.1 Synthetic Data

MTRE-PAN makes use of linear separators at each node of the tree. This is similar to

LIME [18 ]. However unlike LIME, MTRE-PAN uses multiple separators whose constraints

define a hyper-polygon at each leaf node. As the tree grows, the set of polygons from the

root to a leaf node decrease in entropy after every split. This corresponds to a decrease in

the total area of the uncertain polygons. Therefore the certain polygons start to approach

the boundaries of the target model.

In order to illustrate this aspect, MTRE-PAN was applied to a simple function f con-

sisting of a circle with a radius of 1. The samples that fall inside the circle are positive

and those outside are negative. TRE-PAN was also applied to the same synthetic function.

Results for both MTRE-PAN and TRE-PAN are provided Tables 4.2 and 4.3 , respectively.

Figure 4.1 is a visualization of the polygons generated by MTRE-PAN for f at depths 9

and 12. It illustrates the convergence of the polygons to f . That is the collective area of the

uncertain polygons is smaller at depth 12 than at depth 9. Moreover, as expected, the Figure

shows that the uncertain polygons always contain the decision boundaries of f . Otherwise,

it would not be possible for opposing labeled data to appear in the polygon, giving the

polygon an entropy of 0, therefore making it certain rather than uncertain. This behavior is

also seen in the TRE-PAN example in Figure 4.2 . As in MTRE-PAN, the uncertain polygons

(hyper-rectangles in this case) also contain the decision boundary. Due to this, uncertain

polygons can be used to represent the underlying decision boundary. However in the case

of TRE-PAN, this representation of the decision boundary generally requires more nodes

compared to MTRE-PAN.

Since uncertain polygons are mutually exclusive, they can be used as an estimation for the

decision boundary and therefore the overall behavior of the underlying model. As mentioned
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(a) Depth = 9 (b) Depth = 12

Figure 4.1. The polygons generated by MTRE-PAN for the circle function
f with a radius of 1 when the maximum tree depth is set to a) 9 and b)
12. The light and dark shaded polygons define the boundaries of the negative
and positive samples, respectively. The medium shaded polygons represent
uncertain regions.

above, the accuracy of the model in representing the decision boundary is dependant on the

values set for the Cutoff Variance and Cutoff Entropy. If the Cutoff Variance is high, it may

not be possible to generate enough data to accurately label a polygon as positive, negative,

or uncertain. On the other hand if it is low, more data is needed to ensure that the sample

variance of the entropy is below the Cutoff Variance. Similarly, if the Cutoff Entropy is

high, it may not be possible to decide whether a leaf node is certain or uncertain. This may

lead to potentially labeling polygons that contain a decision boundary as certain. A Cutoff

Entropy close or equal to zero with a sufficiently low Cutoff Variance, will ensure that no

decision boundary is missed.

If a decision boundary falls within a certain polygon (i.e., a polygon with an entropy

lower than the Cutoff Entropy), it is still possible to estimate the missing decision boundary.

This entails finding neighboring leaves that do not have the same label since an estimated

boundary is simply a shared constraint that separates neighboring polygons of different

labels.
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(a) Depth = 9 (b) Depth = 12

Figure 4.2. The polygons generated by TRE-PAN for the circle function
f with a radius of 1 when the maximum tree depth is set to a) 9 and b)
12. The light and dark shaded polygons define the boundaries of the negative
and positive samples, respectively. The medium shaded polygons represent
uncertain regions.

MTRE-PAN provides a global explanation of the underlying function f in the form of a

set of uncertain polygons, and of polygons that have an estimated boundary as a constraint.

The polygon’s other constraints define the limits of this estimate. This prevents LIME’s

unbounded plane issue. Whereby LIME generates a plane as a local estimate but never

specifies the valid region in the feature space for the estimate.

4.2 Abalone Data

The Abalone dataset consists of recorded physical characteristics for the abalone mol-

lusks [28 ]. It includes 4,177 samples where each sample has 8 features and an integer label

representing the physical characteristics of the abalone gastropods. The input features are

sex, length, diameter, height, whole weight, shucked weight, viscera weight, and shell weight.

The label, rings, is an integer number that represents the age of the abalone mollusks. For

the purpose of this study, it was converted to -1 for all values below the median and 1 for

all values above the median in order to enable binary classification. The target model for

this dataset achieved an 84.4% accuracy over the validation dataset. The performance met-
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Table 4.2. Evaluation metrics for the circle function interpretable models
generated by MTRE-PAN at depths ranging from 1 to 12.

Depth Model
Parity

Certain
Model
parity

Boundary
Model
parity

Leaf
Count

1 91.50 0.00 0.00 1
2 42.88 34.38 0.00 2
3 78.65 34.38 0.00 3
4 81.75 66.53 0.00 5
5 85.22 66.53 0.00 8
6 84.58 66.53 0.00 14
7 87.70 69.85 0.00 26
8 88.88 76.45 1.47 48
9 94.03 81.85 25.29 80
10 95.95 90.08 48.82 132
11 97.78 94.40 69.12 206
12 98.90 96.75 82.35 305

rics of the corresponding interpretable models generated by MTRE-PAN and TRE-PAN are

reported in Tables 4.4 and 4.5 , respectively.

From the results, both MTRE-PAN and TRE-PAN approach the underlying model in

terms of Model Parity. MTRE-PAN begins to achieve a non-zero certain model parity earlier

in comparison to TRE-PAN (depth 3 vs depth 5). MTRE-PAN also starts from a higher

certain model parity when compared to TRE-PAN (51.81% vs 15%). Both models converge

near the boundaries, with MTRE-PAN achieving a non-zero boundary model parity sooner

(depth 4 vs depth 6), with a significantly higher starting parity (45.87% vs 16.40%). As the

leaf count indicates, MTRE-PAN at depth 4 has a significantly lower number of leaf nodes

when compared to the closest TRE-PAN tree (with respect to parity) at depth 9 (7 leaf

nodes vs 201 leaf nodes). The cost of training MTRE-PAN’s linear classifiers is superseded

by the exponentially higher number of splits that is needed for TRE-PAN to achieve a similar

accuracy. It can also be argued that while simple in their separators, the sheer number of

TRE-PAN nodes complicate the interpretability of the decision tree generated by TRE-PAN

compared to shallower tree generated by MTRE-PAN.
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Table 4.3. Evaluation metrics for the circle function interpretable models
generated by TRE-PAN at depths ranging from 1 to 12.

Depth Model
Parity

Certain
Model
parity

Boundary
Model
parity

Leaf
Count

1 90.95 0.00 0.00 1
2 50.50 0.00 0.00 2
3 77.72 0.00 0.00 4
4 81.33 64.85 0.00 8
5 83.45 64.85 0.00 14
6 83.58 66.20 0.00 26
7 87.15 70.50 0.00 49
8 88.70 76.12 12.15 91
9 92.85 83.28 39.23 166
10 95.95 89.62 58.01 286
11 98.12 94.75 75.97 476
12 99.15 96.85 86.19 775

4.3 US Adult Census Data

This dataset is a collection from the US 1994 adult census data [29 ]. It includes 13

input variables and one output variable for 32,561 individuals that responded to the census.

The input variables are age, work class, level of education, education years, marital status,

occupation, relationship, race, sex, capital gain, capital loss, hours per week, and native

country. The output variable is the income of the individual. In the original dataset, the

income is a binary label that is set to -1 if the income is less than 50,000$ and 1 otherwise.

The target neural network model for the US Adult Census Data achieved an accuracy of

82.9%. The performance metrics of the corresponding interpretable models generated by

MTRE-PAN and TRE-PAN for this dataset are included in Tables 4.6 and 4.7 , respectively.

Similar to the Abalone dataset, these results reflect an overall higher Certain Model

Parity with MTRE-PAN compared to TRE-PAN. However, both MTRE-PAN and TRE-

PAN struggle when attempting to converge to the decision boundary within the margin.

They need a depth of 6 and 9 respectively to begin to converge to the boundary. While the

Certain Model Parity increases steadily for both TRE-PAN and MTRE-PAN, the Boundary
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Table 4.4. Evaluation metrics for the Abalone interpretable models generated
by MTRE-PAN at depths ranging from 1 to 10.

Depth Model
Parity

Certain
Model
parity

Boundary
Model
parity

Leaf
Count

1 35.60 0.00 0.00 1
2 93.72 0.00 0.00 2
3 81.27 51.81 0.00 4
4 83.39 67.65 45.87 7
5 86.68 67.65 45.87 12
6 88.27 74.25 64.99 22
7 92.12 74.25 64.99 40
8 92.77 76.95 68.74 76
9 93.93 83.17 77.74 144
10 95.04 87.02 83.86 259

Model Parity stagnates at depth 9 for TRE PAN. The decision boundaries for the target

model associated with the US Adult Census dataset are more complex than in the case of

the Abolone dataset. This is also compounded by the increased number of dimensions in

this dataset compared to the Abalone dataset.

4.4 Diabetes Diagnosis Data

This dataset covers a population of 798 Pima Indian women. It consists of eight input

features which were selected based on the WHO suggested predictors for diabetes mellitus

[30 ]. The label is either 1 or -1 based on whether or not diabetes is detected for each individ-

ual. The eight input features are age, number of pregnancies, plasma glucose concentration,

diastolic blood pressure, triceps skin fold thickness, 2-hour serum insulin, body mass index,

and diabetes pedigree function. The target model for this dataset achieved an accuracy of

70.8% which is lower than the previous two target models. The performance metrics of the

corresponding interpretable models generated by MTRE-PAN and TRE-PAN are included

in Tables 4.8 and 4.9 , respectively. Unlike the Census data, the boundary model parity

converges faster. However the starting parity is still significantly lower compared to the

Abalone data. Considering that this dataset has the same number of dimensions as the
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Table 4.5. Evaluation metrics for the Abalone interpretable models generated
by TRE-PAN at depths ranging from 1 to 10.

Depth Model
Parity

Certain
Model
parity

Boundary
Model
parity

Leaf
Count

1 36.14 0.00 0.00 1
2 74.71 0.00 0.00 2
3 69.25 0.00 0.00 4
4 69.20 0.00 0.00 8
5 70.91 15.67 0.00 16
6 74.93 30.71 16.40 31
7 79.60 38.41 21.60 58
8 80.61 49.87 37.16 109
9 84.49 55.34 42.98 201
10 85.46 61.73 50.11 374

Abalone dataset, it is likely that the lower starting Boundary Model Parity and worse target

model accuracy (70.8% vs 84.4%) are due to Diabetes dataset being more non-linear than

the Abalone dataset. Moreover, even though both MTRE-PAN and TRE-PAN are closer

in Boundary Model Parity at depths 6 and 7, and they have similar starting Parities (i.e.,

14.37% and 13.18%, respectively); MTRE-PAN converges faster over 4 levels reaching a

Parity of 45.17%, while TRE-PAN reaches only a Parity of 23.43%.

4.5 Discussion

Across all of the datasets, the performance metrics provide a comparative insight into

the behavior of MTRE-PAN and TRE-PAN.

The Model Parity measures the difference between the behavior of the interpretable model

produced by either M-TRE-PAN or TRE-PAN and the underlying target model, without

any distinction between certain and uncertain polygons. This metric is subject to sudden

changes in accuracy due to the uncertain polygons being treated as though they are certain.

This trend can be observed in Tables: 4.5 , 4.6 , 4.7 , and 4.4 . For example in Table 4.4 , the

Model Parity at depth 2 increases to 93% from its previous value of 35% while the Certain

Model Parity remains 0%. This means that all of the nodes currently in the tree exceed the
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Table 4.6. Evaluation metrics for the US Adult Census interpretable models
generated by MTRE-PAN at depths ranging from 1 to 10.

Depth Model
Parity

Certain
Model
parity

Boundary
Model
parity

Leaf
Count

1 5.13 0.00 0.00 1
2 95.76 0.00 0.00 2
3 90.53 84.25 0.00 4
4 95.37 84.25 0.00 7
5 95.24 88.64 0.00 13
6 95.86 89.21 12.50 24
7 95.64 89.68 12.50 45
8 96.02 89.68 12.50 86
9 96.11 90.32 15.57 168
10 96.40 90.73 21.05 327

Cutoff Entropy, and are uncertain. The Model Parity stabilizes as the depth and Certain

Model Parity increase. As the total area of the uncertain polygons diminishes, the variance

of the Model Parity also diminishes since most of the data which now resides within certain

polygons, is never going to be re-labeled.

Certain Model Parity is an increasing function as the depth of the tree increases. Since

this metric includes an uncertain label for all data that fall within uncertain nodes, this

intermediary class is always considered to be a miss when calculating the parity. Therefore,

a given sample will not transition from a True positive/negative to a False positive/negative

as the tree is expanded. This case can occur when Model Parity is calculated. In the worst

case, a polygon’s Entropy may fall below the Cutoff Entropy and becomes certain, as a result

a sample might be falsely labeled. However, this scenario does not affect Certain Parity since

the sample was considered falsely labeled before the split occurred.

Overall the Certain Model Parity is a closer indicator of the convergence of the in-

terpretable model to the target model’s decision boundaries. A major difference between

MTRE-PAN and TRE-PAN can be observed for the Census data in Tables 4.6 , and 4.7 .

Based on Certain Model Parity, MTRE-PAN at depth 3 is as good of an approximation of
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Table 4.7. Evaluation metrics for the US Adult Census interpretable models
generated by TRE-PAN at depths ranging from 1 to 10.

Depth Model
Parity

Certain
Model
parity

Boundary
Model
parity

Leaf
Count

1 5.30 0.00 0.00 1
2 92.21 0.00 0.00 2
3 80.76 72.92 0.00 4
4 90.94 72.92 0.00 7
5 91.21 72.92 0.00 13
6 90.16 78.64 0.00 25
7 92.35 80.08 0.00 47
8 92.56 82.10 0.00 90
9 93.07 84.25 1.90 173
10 93.65 84.84 1.90 330

the target model as TRE-PAN is at depth 9. Similar trends can be observed for the other

datasets.

The ultimate goal of MTRE-PAN and TRE-PAN is to translate the target model into

an interpretable model. Therefore, the Boundary Model Parity is the most important of the

metrics in illustrating the progress towards this goal. It is a test of each model’s ability to

represent the decision boundaries of the target model without the potential for easily inter-

pretable data to inflate the accuracy of the translation. Any interpretable model generated

by MTRE-PAN or TRE-PAN can achieve high levels of Certain Model Parity. However, if

the decision boundaries are complex, the model will fail at shallow depths. This is exem-

plified when the Abalone (Table 4.4 ) and Diabetes models (Table 4.8 ) are compared. Both

datasets have the same number of dimensions (i.e., 8 input features each). However the

decision boundaries for the diabetes dataset are more difficult. Although both models have

similar Certain Model Parity, the Boundary Parity for the diabetes does not converge easily.

The leaf count serves as an indication of the potential complexity in extracting infor-

mation from the interpretable models. Since MTRE-PAN is able to achieve Certain Model

Parity comparable to TRE-PAN at shallow depths, it requires a significantly lower number of

nodes. This case is exemplified in Tables 4.6 and 4.7 . In this instance, MTRE-PAN requires
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Table 4.8. Evaluation metrics for the Diabetes interpretable models generated
by MTRE-PAN at depths ranging from 1 to 10.

Depth Model
Parity

Certain
Model
parity

Boundary
Model
parity

Leaf
Count

1 16.36 0.00 0.00 1
2 87.41 0.00 0.00 2
3 74.61 53.57 0.00 4
4 81.52 53.57 0.00 7
5 79.88 53.57 0.00 13
6 83.21 64.99 14.37 25
7 89.49 70.22 24.89 46
8 91.64 74.98 33.88 85
9 93.43 79.95 45.17 154
10 94.17 85.78 58.00 275

Table 4.9. Evaluation metrics for the Diabetes interpretable models generated
by TRE-PAN at depths ranging from 1 to 10.

Depth Model
Parity

Certain
Model
parity

Boundary
Model
parity

Leaf
Count

1 16.72 0.00 0.00 1
2 70.27 0.00 0.00 2
3 74.45 43.13 0.00 4
4 82.79 43.13 0.00 7
5 80.49 43.13 0.00 13
6 81.48 52.33 0.00 25
7 84.40 60.00 13.18 47
8 86.87 64.02 13.18 87
9 87.48 68.92 20.91 163
10 88.98 70.77 23.43 303

only 4 leaf nodes to represent the behavior of the target model nearly as well as TRE-PAN

with 173 leaf nodes. For every added level between TRE-PAN and MTRE-PAN with similar

Certain Model Parity, the leaf count doubles.
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5. CONCLUSION

This thesis proposes MTRE-PAN, a global translation model that can be used for any target

ML model. MTRE-PAN builds the explainable model as a hybrid combination of a decision

tree and SVM linear separators at each node of the tree. This explainable model organizes

the feature space into a set of polygons that approach the behavior of the target model.

MTRE-PAN was inspired by TRE-PAN which is also a global translation model that was

previously proposed in the literature. TRE-PAN uses a decision tree to partition the space,

instead of a linear hyperplane as in the case of the proposed MTRE-PAN. The performance

of MTRE-PAN is compared to that of TRE-PAN for three target ML models which were

developed using public domain datasets. The results show that MTRE-PAN achieves a

higher parity across all metrics at shallower depths compared to TRE-PAN.

MTRE-PAN has a higher computational complexity than TRE-PAN because it uses

linear SVM classifiers at each node. However, as the results show, TRE-PAN requires a

much deeper tree to achieve similar results to MTRE-PAN thereby offsetting the difference

in computational complexity. This is especially true for highly non-linear target models.

Future work include the pruning of the MTRE-PAN interpretable tree model around the

decision boundaries of the target model and potentially developing a loss function that is

specific to each target model to replace the current SVM classifiers. This loss function could

use the target model’s probability distribution to locate the decision boundaries. However,

this will be at the cost of a more model dependent methodology. An example of this technique

applied to image classification is provided in [31 ]. Future work also includes developing more

robust metrics that can help measure the level of explainability produced by each approach.
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