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ABSTRACT

Today, machine learning models and Deep Neural Networks (DNNs) are prevalent in

various areas. Also, educational Artificial Intelligence (AI) is drawing increasing attention

with the rapid development of online learning platforms. Researchers explore different types

of educational AI to improve students’ learning performance and experience in online classes.

Educational AIs can be categorized into “interactive” and “predictive.” Interactive AIs answer

simple course questions for students, such as the due day of homework and the final project’s

minimum page requirement. Predictive educational AIs play a role in predicting students’

learning states. Instructors can adjust the learning content based on the students’ learning

states.

However, most AIs are not evaluated in an actual class setting. Therefore, we want to

evaluate the effects of a state-of-the-art educational AI model, BKT (Bayesian Knowledge

Tracing)-LSTM(Long Short-Term Memory), on students’ learning performance in an actual

class setting. Data came from the course CNIT 25501, a large introductory Java program-

ming class at Purdue University. Participants were randomly separated into the control

and experimental groups (AI-group). Weekly quizzes measured participants’ learning per-

formance. Pre-quiz and base quizzes estimated participants’ prior knowledge levels. Using

BKT-LSTM, participants in the experimental group had questions from the knowledge that

they were most lacking. However, participants in the control group had questions from

randomly picked knowledge. The results suggested that both the experimental and control

groups had lower scores in review quizzes than in base quizzes. However, the score difference

between base quizzes and review quizzes for the experimental group was more often signifi-

cantly different (three quizzes) compared to the control group (two quizzes), demonstrating

the predictive capability of BKT-LSTM to some extent. Initially, we expected that BKT-

LSTM would enhance students’ learning performance. However, in post-quiz, participants in

the control group had significantly higher scores than those in the experimental group. The

result suggested that continuous complex questions may negatively affect students’ learning

initiatives. On the contrary, relatively easy questions may improve their learning initiatives.
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1. INTRODUCTION

1.1 Background

Research demonstrates that student performs better when the learning content is person-

alized [ 1 ]. Also, cognitive theory suggests students actively obtain rather than being passively

given knowledge [  2 ]. Hence, personalized learning content would be an effective method of

enhancing students’ learning outcomes. However, it is unrealistic for instructors to have the

learning content personalized for every student since the number of students is far more than

that of instructors. To tackle the deficiency, adapting course materials through strategies

or models would be a good choice. In the early stages, personalized learning content was

generated by simple technologies like arranging course materials or pieces of knowledge in

a personalized order by setting a learning goal [  3 ]. Researchers also considered providing

necessary problem solution assistance to students [ 4 ]. Indeed, such ideas were innovative at

that time, describing a preliminary Intelligent Tutoring System (ITS). It succeeded in assist-

ing instructors and improving students’ learning experience in the early years. However, the

early ITS is still far from being satisfactory for learning content adapting [  5 ]. The early ITS

did not perform well when applying to the class setting since the personalized strategies did

not fully utilize students’ features. For instance, curriculum sequencing provides students

with the best learning paths based on their learning goals. However, other features like prior

knowledge, age, major are not included in curriculum sequencing. To this end, machine

learning models and Deep Neural Networks (DNNs) would be helpful.

Today, as online courses become increasingly prevalent due to their accessibility and

convenience, the demands for high-quality and personalized learning also grow faster and

faster. Meanwhile, machine learning theories and DNNs provide a new possibility for further

improving ITS’ s performance. Classic machine learning models, such as random forests, Lo-

gistic Regression (LR), Support Vector Machine (SVM), are widely applied in many areas.

The retail industry uses machine learning models for predicting consumers’ shopping behav-

iors. Manufacturing adjusts the parameters of products based on machine learning models

to promote yield rate. Insurance companies utilize logistic regression and random forests

to predict clients’ purchase probability. Also, educational data mining is promising on pre-
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dicting students’ learning outcomes, providing information for instructors to revise teaching

strategies [ 6 ]. Rather than training models on students one by one, it would be better to

assign students to different groups. Adaptive collaboration support serves to divide students

into different groups according to their knowledge level [  7 ]. Adaptive collaboration support

offers opportunities for students having similar knowledge levels to help each other. In ad-

dition, over recent years, massive open online courses (MOOCs) have become increasingly

prevalent. Though solving problem in time is essential during the learning, it is difficult for

instructors to answer students’ questions timely. Researchers attempt to develop a virtual

instructor through Natural Language Processing (NLP) to handle massive questions from

students. The virtual instructor is a type of interactive educational AIs. It improves the

interaction frequency between students and instructors [  8 ], [  9 ]. Moreover, the model should

generate a new state from the previous state since students’ learning states keep changing

as they continue obtaining knowledge. The objective can be achieved by using a state-of-

the-art DNN called Long Short-Term Memory (LSTM), which adequately learns students’

behaviors in a time series. Research demonstrates that LSTM outperforms the majority of

classic machine learning models in terms of predictive analysis. LSTM successfully predicts

students’ clicking frequencies towards certain learning content and current question’s success

rate [  10 ]. However, researchers only fitted models to the existing dataset rather than the data

collected from actual classes. Though educational AIs have drawn more and more attention,

it turns out that educational AIs fall far behind the retail industry, information technology

companies, and finance [ 11 ]. On the other hand, the rapid development of online learning

platforms generates a huge demand for high-quality courses and better learning experiences.

Therefore, we need to dive deeper into educational AIs and explore their effects on students’

learning.

1.2 Motivation

Based on the above background, several problems exist in the development of educational

AIs. First, the educational technologies are still not satisfactory. Besides, the number

of research on educational AIs is limited, which does not satisfy the demands of online
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learning platforms. Indeed, researchers proposed well-performed educational AIs. However,

the models only fit the existing dataset rather than collecting data from a real class setting.

Therefore, this study aimed to develop a well-performed educational AI and evaluated if the

AI affects students’ learning performance. Students’ engagement (perceived engagement)

was also studied, but the study was included in [ 12 ], not in the current thesis.

1.3 Research Question

Based on the discussion and findings above, our research question would be: can edu-

cational AI enhance students’ learning performance? To narrow down the research

scope, the educational AI used in this study is a state-of-the-art knowledge tracing model

called BKT-LSTM. Weekly quizzes will measure students’ learning performance in the exper-

iment, and we will recruit participants in a Java programming course. Hence, the research

question becomes can integrating BKT-LSTM into weekly quizzes enhance stu-

dents’ learning performance in programming?

12



2. REVIEW OF LITERATURE

This section will examine the learning theories and the measurement of students’ learning

performance. Besides, this section discusses the pros and cons of the state-of-the-art predic-

tive educational AI models, including Bayesian Knowledge Tracing (BKT), Deep Knowledge

Tracing (DKT), and Long Short-Term Memory (LSTM).

2.1 Learning performance

This study aims to evaluate the effects of BKT-LSTM, a predictive educational AI,

on students’ learning performance. However, learning performance is an abstract concept;

quantifying students’ learning performance requires a specific methodology. Students’ learn-

ing performance (outcomes) are usually measured by “criterion tests” or “knowledge tests,”

which contain multiple-choice questions [  13 ]–[ 16 ]. The learning performance measured by

tests reflects the “objective learning performance” of students, indicating students’ knowl-

edge acquirement during the learning. This learning performance is often used in evaluating

the performance of predictive educational AIs. On the other hand, students’ learning perfor-

mance can also be measured by scales or questionnaires. This learning performance reflects

students’ subjective judgment of their changes on the learning acquirement. “subjective

learning performance” is self-reported by students, measured by scales or questionnaires

[ 17 ]–[ 21 ], and it is appropriate for estimating the effects of interactive educational AIs (like

Jill Watson [ 8 ]) on students’ engagement. The model BKT-LSTM is a predictive educational

AI requiring objective learning data from students. Therefore, in this study, knowledge tests

are more appropriate for measuring students’ learning performance.

2.2 Learning theories

As mentioned in the introduction, students perform better under personalized learning

content, which is consistent with the cognitive theory that students actively obtain rather

than being passively given knowledge [ 1 ], [  2 ]. Researches also suggested that “formative

feedback” can enhance students’ learning performance . Defined by Shute, “formative feed-
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back” is the information that aims to modify students’ behaviors or to think to enhance their

learning performance [ 22 ]. For example, the exam materials that test students’ acquisition

of specific pieces of knowledge can be “formative feedback”. In this study, we used weekly

quizzes as “formative feedback” and assumed those materials could enhance students’ learn-

ing performance. Therefore, using BKT-LSTM to generate personalized learning content for

students might enhance their learning performance to some extent.

2.3 Bayesian Knowledge Tracing (BKT)

Students’ learning states would change (e.g., from “unlearned” to “learned”) as they

continue to obtain knowledge during the course. Knowledge Tracing can model the learning

transition [ 23 ]. KT assumes students’ learning states are either “learned” or “unlearned”

and predicts students’ learning states towards a specific piece of knowledge through the four

below parameters: P (L0), P (T ), P (G), and P (S). Once we calculate the four parameters

Table 2.1. Parameters for Bayesian knowledge tracing

Parameters Meanings Remarks
P (L0) Initial Learning The probability that

a specific knowledge is
learned prior to learn-
ing

P (T ) Acquisition The probability that
the state for a specific
knowledge will tran-
sit from unlearned to
learned

P (G) Guess The probability that
students give correct
answers in the un-
learned state

P (S) Slip The probability that
students give incorrect
answers in the learned
state
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from students, we can predict students’ learning states using the following equation:

P (Ln) = P (Ln−1|evidence) + (1 − P (Ln−1|evidence)) ∗ P (T ) (2.1)

where P (Ln) is the probability that a specific piece of knowledge is learned when student

tries the nth attempt. P (Ln−1|evidence) is the probability that the knowledge has been

learned based on the evidence (whether the answer is correct or not).

Applying the above equations, P (Ln) relates to the previous learning state if the knowl-

edge has been learned plus the probability that knowledge transits to the learned state if it

is not learned. Evidence depends on the correctness of answers. Bayesian inference can be

applied to calculate P (Ln−1|evidence). However, KT has several drawbacks though it has a

satisfactory performance in predicting students’ learning states. For example, KT assumes

students will not forget the knowledge once it is learned, which is inconsistent with the actual

situation. Besides, KT holds that the acquisition probability of a piece of specific knowledge

is independent of other knowledge, i.e., learning transfer is not considered. However, the

acquisition of a specific piece of knowledge may affect the acquisition of the other in ac-

tual learning. The KT model implements Bayesian Knowledge Tracing (BKT) since it uses

Bayesian inference to predict student performance. However, it only utilizes the simplest as-

sumptions and knowledge-related parameters (probabilities). Researchers demonstrate that

BKT performance can be enhanced by adding student-specific parameters [ 24 ].

2.4 Deep Knowledge Tracing (DKT)

Corbett et al. provided a solution to model students’ learning states by Bayesian infer-

ence. It showed effectiveness in predicting student performance towards specific pieces of

knowledge. Piech et al. suggested that a DNN called Recurrent Neural Network (RNN) can

better model the learning process. Based on RNN, Deep Knowledge Tracing was proposed

(DKT) [ 25 ]. The following equation defines RNN:

ht = tanh(Whxxt + Whhht−1 + bh), (2.2)
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yt = σ(Wyhht + by). (2.3)

where xt is a one-hot encoding vector of students’ interaction and yt is the predicted vector

for students; Whx, Whh, Why is input weight matrix, recurrent weight matrix, and output

weight matrix, respectively. bh is latent bias and by is output bias. h0 is the initial state.

Figure 2.1. DKT architecture

In practice, xt = {kt, rt} stands for students’ correctness of a specific piece of knowledge

at time t (kt is the knowledge, rt is the correctness). yt = {kt+1, rt+1} is the prediction

of students’ correctness at time t + 1. DKT does not require complicated feature scaling,

and it only needs to vectorize students’ correctness of pieces of knowledge. DKT is a more

promising knowledge tracing model, and it can utilize the features that BKT cannot fully use

[ 26 ]. However, DKT may have gradient exploding and vanishing problems, given that it is

established on RNN. In other words, DKT cannot tackle long sequence learning. Long-Short

Term Memory (LSTM) uses several gates (forget gate, input gate, output gate) to control

the input and output sequence, thereby solving the gradient issue to some extent. Therefore,

the LSTM-based DKT model would be more appropriate for long sequence learning than

that of the RNN-based DKT model [ 27 ].

16



2.5 DKT-DSC

DKT only considers students’ knowledge mastery (whether correct or not on specific

pieces of knowledge) though it is effective in predicting students’ performance. However, peer

ability can positively affect students’ learning achievement [  28 ]. Therefore, including student

ability into DKT would be a possible improvement. To this end, Minn et al. proposed an

improved DKT model called Deep Knowledge Tracing and Dynamic Student Classification

(DKT-DSC) by taking students’ learning ability into account [ 29 ]. In DKT-DSC, K-means

clustering assigns students to different groups based on their learning ability, shown in Figure

2.2. After that, LSTM predicts the learning performance of each group at different time

intervals (each time interval is a cluster), shown in Figure 2.3. DKT-DSC improves the

Figure 2.2. Time interval of a student’s attempt sequence

Figure 2.3. DKT-DSC architecture: comparing to standard DKT, DKT-
DSC relates to each time interval (cluster)

standard DKT model by adding a student ability module. However, the cluster number

for K-means clustering is essential. It might require a long time parameter tuning since it

17



is difficult to determine a reasonable cluster number for student ability. More calculation

details will be discussed in the methodology section.

2.6 BKT-LSTM

Based on DSC-DKT, BKT-LSTM [  30 ] introduces three features: individual knowledge

mastery, ability profile, and problem difficulty. Problem difficulty contributes to the pre-

diction of learning performance [  31 ]. In BKT-LSTM, the three calculated features will be

passed to LSTM. After that, LSTM outputs the acquirement possibilities of students’ learn-

ing mastery on pieces of knowledge. The BKT-LSTM model is defined as the following:

ht = tanh(Whx[ft] + Whhht−1 + bh), (2.4)

yt = σ(Wyhht + by). (2.5)

where [ft] = {P (kt), abz, PD(Pj)}. P (kt), abz and PD(Pj) is knowledge mastery, ability pro-

file, and problem difficulty, respectively; yt is the predicted vector for students; Whx, Whh,

and Why represents input weight matrix, recurrent weight matrix, and output weight matrix,

respectively.

Different from the standard DKT, the input vector xt becomes [ft] = {P (kt), abz, PD(Pj)}.

P (kt) is the assessment for students’ knowledge mastery at time t; abz represents students’

ability profile (the correctness or probability towards problems) at time interval z; PD(Pj)

stands for the difficulty of problem Pj at time t. BKT-LSTM leverages more features from

students, and it outperforms the standard DKT and DKT-DSC on the dataset ASSISTment

2009-2010 (skill builder) and ASSISTment 2014-2015. The ASSITment dataset was collected

through a computer-based learning system. The system collects data from students as they

do exercises on it. ASSISTment dataset is popular in estimating the performance of knowl-

edge tracing models. However, most knowledge tracing models are not evaluated under a

real class setting though they perform well under the ASSISTment dataset. The results on

the existing dataset do not reflect the models that can affect students’ learning performance.
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Consequently, rather than staying at a theoretical level, experiments are required to evaluate

the effects of BKT-LSTM on students’ learning performance.
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3. METHODOLOGY

This section elaborates on the components of the BKT-LSTM model [  30 ] and the corre-

sponding definitions and calculations. Besides the components of BKT-LSTM, data source

and data collection for BKT-LSTM training are also discussed. Finally, an experimental

design to evaluate the effects of BKT-LSTM on students’ learning outcomes is given.

3.1 ASSUMPTIONS

The use of BKT-LSTM requires the following assumptions:

• We assume the learning ability of students will improve through practices rather than

remaining static.

• One practice problem only relates to one piece of knowledge. However, one problem

sometimes includes more than one knowledge in actual tests.

• We assume that each problem or knowledge is independently learned, i.e., acquiring a

piece of knowledge will not affect the learning of other knowledge.

3.2 BKT-LSTM

BKT-LSTM takes advantage of three features from students: knowledge mastery, ability

profile, and problem difficulty. After that, the three features will be passed to LSTM. LSTM

will generate a probability vector for students’ learning acquirement. In other words, the

generated vector demonstrates how likely students have learned that knowledge.

3.2.1 Knowledge mastery

Knowledge mastery is computed by the classic BKT model with four parameters (prob-

abilities): P (L0), P (T ), P (G), and P (S) (defined in Table 2.1). The following equations

define the Bayesian inference process [ 23 ]:

P (Lt|1) = P (Lt−1)(1 − P (S))
P (Lt−1)(1 − P (S)) + (1 − P (Lt−1))P (G) (3.1)
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P (Lt|0) = P (Lt−1)P (S)
P (Lt−1)P (S) + (1 − P (Lt−1))(1 − P (G)) (3.2)

P (Lt) = P (Lt|Action) + (1 − P (Lt|Action))P (T ) (3.3)

P (Ct) = P (Lt−1)(1 − P (S)) + (1 − P (Lt−1))P (G) (3.4)

where 0, 1 denotes incorrect and correct answers for Action, respectively.

Depending on the answer’s correctness (0 or 1), the probability P (Lt) can be computed

by equation 3.1 or 3.2. If students correctly answer the question, their learning states will

be updated by equation 3.1. Otherwise, their learning states will be updated by equation

3.2. The probability P (Ct) that students learn the knowledge after answering the question

can be calculated by equation 3.4. Therefore, using the above Bayesian inference process,

we have a probability vector of students’ knowledge mastery for each piece of knowledge.

3.2.2 Ability profile

Students’ correctness rates and K-means clustering determine their ability profiles at time

interval z. Each time interval z includes several problems answering attempts. Students’

ability profiles can be computed from the previous problem answering (attempts). Ability

profiles describe students’ abilities towards each piece of knowledge. Correctness rate for a

specific piece of knowledge xj at time interval 1 : z is defined as follows [ 29 ]:

R(xj)1:z =
z∑

t=1

(xjt)
|Njt|

(3.5)

where xjt is either 0 (incorrect) or 1 (correct), depending on the answer’s correctness for the

specific piece of knowledge xj at time interval t; |Njt| is the total number of attempts for

knowledge xj at time interval t.
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Consequently, the ability profile of student i towards each piece of knowledge di
1:z is

defined as [ 29 ]:

di
1:z = (R(x1)1:z, R(x2)1:z, ..., R(xn)1:z) (3.6)

where n represents the total number of problems (knowledge).

After computing the ability profile, K-means clustering assigns students into different

groups at each time interval z. The ability profile of student i at a time interval from 1 to

z −1 determines the student’s group. That is, di
1:z−1 determines students’ group assignment.

The following equation describes the K-means clustering process of students at time interval

Segz [ 29 ]:

Cluster(Stui, Segz) = arg min
C

K∑
c=1

∑
di

1:z−1∈Cc

‖di
1:z−1 − µc‖2 (3.7)

where µc is the mean points for cluster Cc.

3.2.3 Problem difficulty

Problem difficulty is one of the three features for students. Initially, the difficulty level,

PD, of a problem, Pj, can be computed as follows [ 30 ]:

PD(Pj) =

 δ(pj), if |Nj| ≥ 4

5, else
(3.8)

δ(pj) = modulo10

∑|Nj|
i Oi(pj)

|Nj|
· 10

 (3.9)

where Nj is the number of students that answer the problem; Oi(pj) is the problem answering

result (either 1 or 0).

Essentially, the above problem difficulty computing method is based on the overall cor-

rectness rate. If less than four students answer a specific problem, it will be set to 5.

However, considering our experiment setting, which will be discussed in the experimental
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design section, which collects data from students’ weekly tests, such a problem will not exist.

Therefore, problem difficulty can be simplified as:

PD(Pj) = modulo10

∑|Nj|
i Oi(pj)

|Nj|
· 10

 (3.10)

Problem difficulty is mapped onto a scale from 1 to 10. Ten levels would be too many for

weekly test problems. Therefore, reducing the level number or exploring a more appropriate

method to define the difficulty would be a future direction.

3.3 Simplified BKT-LSTM

The standard BKT-LSTM model has three features: knowledge mastery calculated by

BKT, ability profile produced by K-means clustering, and problem difficulty defined in equa-

tion 3.10. However, based on the ablation study in [  30 ], the introduction of the ability profile

does not contribute to a tangible AUC result improvement (only 0.1 higher) on the ASSIST-

ment and Algebra dataset, shown in Table 3.1. The feature combinations of BKT-LSTM is

listed as follows:

• BKT-LSTM-1: skill mastery.

• BKT-LSTM-2: skill mastery and ability profile.

• BKT-LSTM-3: skill mastery and problem difficulty.

• BKT-LSTM-4: skill mastery, ability profile, and problem difficulty.

Thus, to reduce the complexity of BKT-LSTM, the calculation of ability profile will be

removed in practice.

3.4 Data collection

This section discusses what data is required to train the BKT-LSTM model. For knowl-

edge mastery, from equation 3.1 to 3.4, each piece of knowledge is independently learned

by the four parameters. Applying the above Bayesian inference process, we assume that

23



Table 3.1. AUC result for ablation study of BKT-LSTM

Models ASS-09 ASS-14 Algebra
BKT-LSTM-1 0.686 0.680 0.730
BKT-LSTM-2 0.720 0.701 0.743
BKT-LSTM-3 0.792 0.702 0.849
BKT-LSTM-4 0.802 0.707 0.851

a piece of knowledge does not affect the other knowledge’s learning. Hence, each problem

only relates to a specific piece of knowledge. The knowledge mastery module of BKT-LSTM

requires student_id, knowledge_id, and correctness, where correctness is a binary fea-

ture that represents whether the knowledge is correctly answered or not (0 is incorrect, 1 is

correct).

Problem difficulty is also considered in BKT-LSTM, which is defined by equation 3.10.

Apparently, BKT-LSTM needs a problem difficulty feature called difficulty. Problem dif-

ficulty needs to be initialized before students start to do exercises. In other words, each

problem needs to be initialized by certain values. However, the “objective problem diffi-

culty” would not work for students. Students might have different problem difficulty even

for the same problem. In other words, problem A might be difficult for student A, but it is

easy for student B. Problem difficulty varies through students. In addition, problem diffi-

culty will be updated after each time interval. Therefore, we consider applying the strategy

in [  29 ] to initialize each problem difficulty to 5 (median). In practice, problem difficulty can

be computed from problem_id and correctness using equation 3.10. In sum, the training

of BKT-LSTM requires five features (student_id, knowledge, knowledge_id, prob-

lem_id, correctness). An example is given in Table 3.2 and dataflow for BKT-LSTM

is described in Figure 3.1. The feature knowledge only clarifies the knowledge that the

problem testing. Therefore, knowledge will not be included in the training of BKT-LSTM.
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Table 3.2. Features for BKT-LSTM training

student_id knowledge knowledge_id problem_id correctness
1001 Data 9001 2001 1
1001 Data 9001 2002 1
1002 Variables 9002 3001 0
1003 Control Flow 9003 4001 1

Figure 3.1. Dataflow for BKT-LSTM training

3.5 Model hyper-parameters

The simplified BKT-LSTM was implemented by TensorFlow 2.0, using 100 parallel LSTM

units. The model used the default Adam (learning rate = 0.001, decay = 10e-7) as the

optimizer. We did not have much data as a common training dataset in the experiment.

Therefore, instead of setting the batch size to 32, we set the batch size to 1. Also, BKT-

LSTM was trained for 200 epochs to reach a stable loss. To avoid over-fitting, the dropout

rate was set to 0.2. Training fraction, validation fraction, and test fraction were set to 0.6,

0.2, 0.2, respectively. In the outputs of BKT-LSTM, we did not observe a large difference of

AUC between the training set, validation set, and test set (less than 0.3).
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3.6 Experiment design

This section describes the course CNIT 25501 and the integration of BKT-LSM into the

actual class setting. Besides, the experimental design evaluates the effects of BKT-LSTM

on students’ learning will be given.

3.6.1 Course CNIT 25501

CNIT 25501, a large introductory class to programming, is offered by the polytechnic

institute of Purdue university, introducing the basic ideas of Java programming. Data will be

collected from the students that are willing to participate in our experiment in CNIT 25501.

The class setting will remain the same for participants and non-participants. However,

besides the regular weekly exercises, participants require taking extra quizzes every week

as part of the study. Based on the calendar of CNIT 25501 in Figure 3.2, we determine to

reinforce students’ understanding of Variable/Data, String I/O, Control Flow, Arrays, and

Classes. The above pieces of Java knowledge are the most basic but the most significant for

Java beginners.

Figure 3.2. Calendar for CNIT 25501
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Before the course begins, participants are required to take a pre-quiz to establish prior

knowledge profiles. Pre-quiz contains demographic questions and questions from the above

pieces of knowledge. As the course starts, participants need to take “base quizzes” and

“review quizzes” every week to update their learning performance towards each piece of

knowledge. Details will be given in the next section. In the last week (week 5), participants

will have post-quizzes, including all the knowledge they have learned in the course before.

The effects of BKT-LSTM on students’ learning performance will be estimated through the

differences between the base quizzes and the review quizzes. Therefore, including the post-

quiz, five weeks are needed for running our experiment: Variables/Data in week 1, Strings

I/O and Control Flow in week 2, Arrays and Classes in week 3 to 4, and post-quiz in week 5.

As an encouragement, students who participate in the experiment will have up to 3% extra

credits for completing all the quizzes. Participants will get 0.1% extra credit for finishing a

base quiz or a review quiz to avoid skipping quizzes. Participants will have the remaining

2% extra credits if all the quizzes are completed. Figure 3.3 describes the allocation of extra

credits for quizzes.

3.6.2 Qualtrics

Students will have weekly quizzes through an online survey platform called Qualtrics.

Using Qualtrics, weekly quizzes can be distributed to participants through emails. Partic-

ipants only need to click the links and start doing the quizzes. With that convenience, we

consider conducting a remote experiment. Qualtrics will facilitate our experiment progress.

Sample questions from the knowledge and Data/Variables and the user interface of Qualtrics

are given in Figure 3.4.

3.6.3 Base quizzes & review quizzes

Participants and non-participants will have the same class setting and regular weekly

exercises. However, participants will have “base quizzes” and “review quizzes.” Base quizzes

contain the knowledge of the given week, and they are the same for the control and experi-

mental groups. Base quizzes serve to establish the learning profiles for participants. However,
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Figure 3.3. Extra quizzes and corresponding credits allocation. Participants
will have 2% bonus credits for completing all the quizzes.

review quizzes may vary based on the experiment condition. Participants’ questions come

from a self-developed question bank. The question bank includes 140 self-developed ques-

tions and 106 adapted questions from publicly available question banks  

1
  

2
 . The adapted

questions were from Java final exams in Chinese universities. Also, all the questions were
1

 ↑ “JAVA programming final exam questions”, [Online]. Available:
https://wenku.baidu.com/view/5010c983c67da26925c52cc58bd63186bdeb9245.html [Accessed:30-Jun-2021].
2

 ↑ “JAVA programming final exam questions and answers”, [Online]. Available:
https://wenku.baidu.com/view/8c6903d48f9951e79b89680203d8ce2f006665ed.html?rec_flag=default&fr=pc_
newview_relate1001_12wk_rec_doc1001_138c6903d48f9951e79b89680203d8ce2f006665ed&sxts1̄624534888041
[Accessed:30-Jun-2021].
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Figure 3.4. Problem answering interface on Qualtrics

validated by an experienced Java expert Shivashankar Guddadmath. Mr. Guddadmath is a

founding director of a technology company and he suggested that the questions were valid for

measuring students’ Java programming knowledge. Please see Appendix A for the complete

list of questions used in this study. Rather than simply giving participants the problems test-

ing the knowledge related to the given week, BKT-LSTM understands what specific pieces

of knowledge are the most lacking for students. In other words, BKT-LSTM will tell us

what specific pieces of knowledge students must reinforce. After that, we will manually give

those BKT-LSTM decided problems to participants in review quizzes. Therefore, we split

the participants into two groups. The control group will have questions covering the given

week, while the experimental group will have BKT-LSTM-decided problems. For the control

group, in review quizzes, participants will have questions from two randomly picked pieces

of knowledge until the given week. For example, in week 2, participants in the control group

may have problems with Data and Control Flow. However, knowledge for the experimental
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group is determined by BKT-LSTM. Participants will have questions from the first-lowest

probability knowledge and the second-lowest probability knowledge. Therefore, though the

review quizzes content in the control and experimental groups may vary, all the participants

will have problems from two pieces of knowledge in each quiz. Figure 3.5 shows an example

quiz setting for week two, including the knowledge String I/O and Control Flow.

Figure 3.5. Example quizzes setting for week two: the control group will get
two randomly picked knowledge until the given week; the experimental group
will have BKT-LSTM-decided problems

In addition, to obtain more data, we determine to have twenty questions in each quiz.

Twenty questions allow us to allocate four questions for each piece of knowledge in the pre-

quiz and the post-quiz. The questions in pre-quiz and post-quiz come from five pieces of

knowledge. Meanwhile, we can assign ten problems for each piece of knowledge in base

quizzes and review quizzes. A piece of knowledge corresponds to several problems. Notice

that our assumption is that one problem only relates to one piece of knowledge, not vice
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versa. The number of questions per piece of knowledge will be the same in base quizzes and

review quizzes to entirely update participants’ learning profiles. For instance, if a participant

has the lowest probability on String I/O in a base quiz, the participants will have another

ten questions for String I/O in the review quiz. Participants’ learning performance for each

piece of knowledge will be completely updated after several weeks of review quizzes. Because

no data is available in the first week, the content of review quiz one will be the same for the

control and experimental group.

3.6.4 Missing data

In the experiment, missing data will be produced by skipping or missing questions or

quizzes. K-Nearest Neighbors (KNN) imputation shows an impressive performance on tack-

ling missing data [  32 ], [  33 ]. Unlike simple imputation methods, KNN imputation considers

the relationship between the other features. For participants who miss some problems, the

missing ones will be filled with the closest distance participants. The “closet distance” is

measured by NaN-euclidean distance. The NaN-euclidean distance dNaN is defined as follows:

dNaN =
√

w ∗ dpresent (3.11)

where

w = # of coordinates

# of present coordinates
(3.12)

and where dpresent stands for the euclidean distance of the non-missing coordinates (the

present coordinates).

For instance, if a participant misses some questions in a quiz, blanks will be filled with

data from the participants who have similar problem-answering patterns. Besides, to keep

the feature correctness binary and avoid meaningless average values, we only consider one

neighbor (K = 1) when using KNN imputation.
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3.7 Data analysis

Participants will be randomly divided into the experimental group (the AI group) and

the control group. Base quizzes and review quizzes will estimate participants’ learning

outcomes. Independent t-tests evaluate a significant difference between the two groups in

base quizzes and review quizzes. Independent t-tests also estimate if there is a significant

difference between base quizzes and review quizzes. Besides, Levene tests are required to

demonstrate that the variance is equal between the two groups. Given that the number

of participants is larger than 30, we assume that the data is normally distributed. KNN

imputation handles missing data since the data is Missing At Random (MAR). We assume

that students’ learning states are stable. In other words, for the MAR data, missing data

can be inferred from the existing ones [ 34 ], [  35 ]. Moreover, KNN imputation outperforms

other simple imputation methods [ 33 ]. In addition, we assume that the prior knowledge

levels are roughly the same for participants in the two groups. Therefore, t-tests are needed

on pre-quiz and base quizzes to ensure the prior knowledge levels are roughly the same. The

effects of BKT-LSTM will be demonstrated by the t-test results between the base quizzes

and review quizzes. The significance level will be set to .05.
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4. RESULTS

This section presents the output of BKT-LSTM and data analysis results. Missing data

is filled by KNN imputation. Some participants might take the quizzes carelessly as they

finished the quizzes in a short time (< 3 minutes). However, some participants still achieved

a high score in a short time. Therefore, time taken cannot be used as a reliable indicator.

Indeed, it is difficult to define “careless answers” in questionnaires. Their answers were

still kept in the dataset. Initially, there were 38 participants (Control = 19, Exp = 19).

Three participants taking no quiz were removed from the dataset. In the data analysis

part, there are 35 participants (Control = 17, Exp = 18). Table 4.1 describes the number

of participants, mean, standard deviation, and standard error for each quiz. Regarding

participants’ demographic data, 65% were Sophomores, 26% were juniors, 6% were seniors,

and 3% were graduate students. 97% participants were from the Polytechnic institute of

Purdue University, while the remaining 3% came from other colleges of Purdue University.

Besides, 50% of participants used Java as their primary programming language. 32% of

participants reported using Python as their primary programming language, and 18% used

C/C++. On the other hand, 50% of participants reported writing and debugging programs

independently from a general programming ability. 47% of participants reported they were

beginners and could only write simple programs. 3% of participants reported they were

advanced Java users or had advanced users on other programming languages. In addition,

participants did not know whether they were taking base quizzes or review quizzes. For

example, pre-quiz was known to participants as quiz 1, and base quiz 1 was known as quiz 2,

and so forth. We assume that participants in the two groups have the same prior knowledge

levels. In the experiment, pre-quiz and base quizzes estimate participants’ learning profiles

towards specific pieces of knowledge. Therefore, t-tests are required to conduct on the pre-

quiz and base quizzes to demonstrate that participants have the same prior knowledge levels.

On the other hand, t-tests between base quizzes and review quizzes shows the effects of BKT-

LSTM on participants. Also, t-test estimates if there is a significant difference between the

two groups in the post-quiz.
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Table 4.1. Descriptive statistics for participants on quizzes

Group / Quiz N M in Max Mean SD SE

Control 17

Pre-quiz 2.000 15.000 7.765 3.212 .779

Base 1 7.000 17.000 11.765 2.773 .673

Base 2 7.000 19.000 12.918 3.850 .934

Base 3 6.000 19.000 13.088 3.817 .926

Base 4 7.000 18.000 13.059 3.491 .847

Review 1 7.000 18.000 11.118 3.257 .790

Review 2 2.000 15.000 10.118 3.810 .924

Review 3 4.000 17.000 11.353 4.333 1.051

Review 4 2.000 17.000 8.971 4.403 1.068

Post-quiz 4.000 17.000 11.176 4.531 1.099

Experimental 18

Pre-quiz 1.000 13.000 8.750 3.011 .710

Base 1 3.000 15.000 11.111 3.142 .740

Base 2 8.000 16.000 12.361 2.430 .573

Base 3 6.000 15.000 11.750 2.457 .579

Base 4 7.000 15.000 12.833 2.114 .498

Review 1 5.000 14.000 9.611 2.355 .555

Review 2 3.000 16.000 9.861 3.584 .845

Review 3 4.000 15.000 9.750 3.154 .743

Review 4 5.000 13.000 9.556 2.406 .567

Post-quiz 2.000 14.000 8.361 3.539 .834

N: Number, SD: Standard Deviation, SE: Standard Error
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4.1 The outputs of BKT-LSTM

Participants took quizzes distributed by Qualtrics. The collected data were processed

as .csv files. In the original dataset, it includes student_id, knowledge, knowledge_id,

problem_id, and correctness. BKT-LSTM generated five extra columns: accuracy, difficulty,

correct_pred, state_pred, and BKT_LSTM. The column accuracy is the correctness rate

for each problem in the quizzes. The column state_pred is the acquirement probabilities for

pieces of knowledge, which BKT generates. Finally, the acquirement probabilities for pieces

of knowledge generated by BKT-LSTM are given in the column BKT_LSTM. Figure 4.1

shows the original data and the outputs of BKT-LSTM.

Figure 4.1. Original data sample and the outputs of BKT-LSTM

4.2 Prior knowledge levels

Pre-quiz and base quizzes estimate the prior knowledge levels of participants. Pre-quiz

and base quizzes are the same for participants in the two groups. Box plots of pre-quiz and

base quizzes between the two groups are shown in Figure 4.2. Box plots suggest that the prior

knowledge levels of the control group are potentially higher than that of the experimental

group. However, the results of t-tests indicated that there is no significant difference between

the two groups in prior knowledge quizzes. The result of Levene’s test on pre-quiz suggested

that the variance between the two groups was equal, F (2, 33) = .168, p = .684. Similarly,

the results of Levene’s tests indicated that the variances between the two groups were equal

in base quiz 1, F (2, 33) = .003, p = .985, base quiz 2, F (2, 33) = 4.415, p = .043, and base
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quiz 4, F (2, 33) = 3.952, p = .055, respectively. However, the result of Levene’s test on base

quiz 3 suggested that the variance between the two groups was not equal, F (2, 33) = 6.082,

p = .019. In addition, the result of t-test on pre-quiz indicated that there was no significant

difference between the control group (M = 7.765, SD = 3.212) and the experimental group

(M = 8.750, SD = 3.011), t(33) = .937, p = .356; d = .317. T-tests also showed that there

was no significant difference between the two groups in base quizzes. Base quiz 1, control

group (M = 11.111, SD = 3.141) and the experimental group (M = 11.765, SD = 2.773),

t(33) = -.651, p = .520; d = .221. Base quiz 2, the control group (M = 12.361, SD = 2.430)

and the experimental group (M = 12.912, SD = 3.850), t(33) = -.509, p = .614; d = .171.

Base quiz 3, the control group (M = 11.750, SD = 2.457) and the experimental group (M

= 13.088, SD = 3.817), t(33) = -1.241, p = .224; d = .417. Base quiz 4, the control group

(M = 12.833, SD = 2.114) and the experimental group (M = 13.059, SD = 3.491), t(33)

= -.233, p = .817; d = .078. The values of Cohen’s d suggested that the difference between

the two groups was also negligible. Based on the above results of t-tests and the values of

Cohen’s d, the prior knowledge levels of the two groups were assumed the same.

4.3 Base quizzes & review quizzes

The content of review quizzes varied from the experimental conditions. Participants in

the control group had randomly picked questions from the knowledge until the given week.

Participants in the control group had twenty questions for Variables/Data in week 1, the

same for participants in the experimental group. In week 2, participants in the control group

had ten Variables/Data questions and ten Control Flow questions. In week 3, participants

in the control group had ten questions String I/O questions and ten Array questions. In

the final review quiz, participants in the control group had ten Classes questions and ten

Control Flow questions. However, participants in the experimental group had BKT-LSTM-

determined questions. Review quizzes evaluated the effects of BKT-LSTM on participants’

learning outcomes. Box plots of base and review quizzes for the two groups are shown in

Figure 4.2.
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(a) Prior knowledge quizzes (b) Experimental group (c) Control group

Figure 4.2. Box plots of prior knowledge quizzes, base and review quizzes for
the control group and the experimental

On the other hand, t-tests between base quizzes and review quizzes evaluated the effects of

BKT-LSTM on participants. For the experimental group, there was no significant difference

between base quiz 1 (M = 11.111, SD = 3.142) and review quiz 1 (M = 9.611, SD = 2.355),

t(33) = 1.621, p = .114; d = .540. The value of Cohen’s d indicated a medium difference

between base and review quiz 1. Also, there was no significant difference between base quiz

1 (M = 11.765, SD = 2.773) and review quiz 1 (M = 11.118, SD = 3.257) for the control

group, t(33) = .624, p = .537; d = .214. The value of Cohen’s d also suggested that the

difference between the base and review quiz 1 for the control group was negligible. However,

participants in the two groups both achieved significantly lower scores in review quiz 2 and

review quiz 4 than that in base quiz 2 and base quiz 4, respectively. For the experimental

group, participants had lower scores in review quiz 2 (M = 9.861, SD = 3.584) than that

in base quiz 2 (M = 12.361, SD = 2.430), t(33) = -2.449, p < .05; d = .816. Cohen’s d

suggested that the difference between the two quizzes for the experimental group was large.

Similarly, participants in the control group had lower scores in review quiz 2 (M = 10.118,

SD = 3.810) than that in base quiz 2 (M = 12.912, SD = 3.850), t(33) = -2.127, p < .05; d

= .730. The difference between base and review quiz 2 for the control group was relatively

large. However, the Cohen’s d for the control group was smaller than the experimental group

in base and review quiz 2. Also, participants in the experimental group had lower scores

in review quiz 4 (M = 9.556, SD = 2.406) than that in base quiz 4 (M = 12.833, SD =

2.114), t(33) = -4.341, p < .001; d = 1.447. Participants in the control group also scored

lower in review quiz 4 (M = 8.971, SD = 4.403) than that in base quiz 4 (M = 13.059,
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SD = 3.491), t(33) = -3.000, p < .05; d = 1.029. The t-statistics and the values of Cohen’s

d for the experimental group were larger than the control group in base/review quiz 2 and

base/review quiz 4. Meanwhile, participants in the experimental group had lower scores in

the review quiz 3 (M = 9.750, SD = 3.154) than that in base quiz 3 (M = 11.750, SD

= 2.457), t(33) = -2.122, p < .05; d = .707. However, there was no significant difference

between base quiz 3 (M = 13.088, SD = 3.817) and review quiz 3 (M = 11.353, SD =

4.333) for the control group, t(33) = 1.240, p = .224; d = .425.

4.4 Final learning outcomes

Pre-quiz and base quizzes estimate participants’ prior knowledge levels. Post-quiz plays

a role in evaluating the difference between the two groups after using BKT-LSTM. Figure

4.1 shows the data distribution of pre-quiz and post-quiz for the two groups. The result of

Levene’s test suggested the variance between the two groups was equal, F (2, 33) = .397, p

= .533. Moreover, participants in the control group (M = 11.176, SD = 4.531) had higher

scores than the participants in the experimental group (M = 8.361, SD = 3.539), t(33) = -

2.055, p < .05; d = .693. The value of Cohen’s d suggested that the difference between the two

groups was relatively large. The results suggested that there were no significant difference

between the two groups in prior knowledge quizzes. In other words, the prior knowledge of

the two groups were at the same levels. However, the results on both the control group and

the experimental group showed that participants had lower scores on review quizzes than

that in base quizzes. Finally, post-quiz suggested that the learning outcomes of the control

group were better than the experimental group. Results will be discussed in the next section.
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5. DISCUSSION

The results suggested that the participants’ prior knowledge in the two groups was at the

same level. Also, participants in both the experimental and control groups had lower scores

in review quizzes than in quizzes. Moreover, the post-quiz indicated that participants in the

control group had higher scores than the experimental group. This section will discuss the

results and explain the potential effects of BKT-LSTM on participants’ learning outcomes.

5.1 Results interpretation

Pre-quiz and base quizzes measured participants’ prior knowledge levels. The results of

t-tests suggested that there was no significant difference between the two groups in pre-quiz

and base quizzes. Therefore, the prior knowledge of the two groups were at the same level can

be assumed. BKT-LSTM affected participants that were at the same prior knowledge level.

However, except for base quiz 1 and review quiz 1, the results suggested that participants

in both the control and experimental group had lower scores in review quizzes than in

base quizzes. Given that no data was available in week 1, review quiz 1 was the same for

participants in the two groups. Hence, it was expected that review quiz 1 did not affect

participants’ learning outcomes. However, in pre-quiz, participants in the experimental

group had slightly higher scores than those in the control group. Suggested by t-statistic

(0.937) and Cohen’s d (0.317), there might still be some difference that affected the results in

pre-quiz though the result was not significant. Therefore, we should consider using pre-quiz

as a covariate in future studies.

For the experimental group, results indicated that participants had significantly lower

scores in review quiz 2, review quiz 3, and review quiz 4 than that in base quiz 2, base quiz

3, and base quiz 4, respectively. BKT-LSTM determined the review quizzes for participants

in the experimental group. The questions came from the pieces of knowledge that BKT-

LSTM thought they were most lacking. Therefore, the results proved that BKT-LSTM did

successfully predict the most lacking knowledge for participants. Indeed, except for base

quiz 3, participants in the control group also had lower scores in review quizzes than in

base quizzes. The questions for participants in the control group were randomly picked from
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the knowledge until the given week. Review quizzes for participants in the control did help

their learning to some extent, though the questions were not personalized. However, the

experimental and control group was significantly different in base and review quiz 3. For

base/review quiz 2 and 4, participants in the experimental group had lower t-statistics than

those in the control group. The results suggested that the score difference between base

quizzes and review quizzes for the experimental group was more often significantly different

(three quizzes) compared to the control group (two quizzes). Besides, the values of Cohen’s

d suggested that the effect sizes between base and review quizzes for the experimental group

were larger than the control group. In other words, participants in the experimental group

had worse performance in review quizzes than in the control group. Given that participants’

prior knowledge levels were the same, the difference was most likely brought by BKT-LSTM.

BKT-LSTM gave questions from the knowledge they were most lacking and thereby lowering

the scores in review quizzes.

Finally, post-quiz estimated participants’ final learning outcomes. In post-quiz, partic-

ipants in the experimental group had significantly lower scores than in the control group.

Initially, it was expected that participants in the experimental group would have better

learning outcomes than in the control group. Participants in the experimental group had

personalized learning content generated by BKT-LSTM; therefore, they would have better

learning outcomes. The following reasons may cause the final learning outcomes. First, par-

ticipants in the experimental group kept answering questions from the knowledge they were

most lacking. Complex questions may lower participants’ learning initiatives. In post-quiz,

the attendance of participants in the experimental group was lower than in the control group.

On the contrary, participants in the control group had questions from relatively easy knowl-

edge. Easy questions may make them feel confident, and therefore improve their learning

initiatives. The above findings were consistent with the feedback intervention study: the

relationship that simple tasks enhance learning performance; however, complex tasks lower

learning performance [  22 ]. Second, participants did not have solutions from the quizzes. Par-

ticipants may lack a sense of achievement in taking quizzes, especially since the questions

are complex. It further frustrated the participants in the experimental group and lowered

their learning initiatives. BKT-LSTM worked on only three review quizzes, so participants’
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learning profiles were not sufficiently established. Also, the entire experiment only lasted

for five weeks. Short experiment duration may result in not significant results between the

two groups. In addition, the experiment only considered five pieces of knowledge. Moreover,

quizzes did not include the five pieces of knowledge until the final week. Therefore, review

quizzes for the two groups may overlap to some extent. For example, in review quiz 2,

participants in the control group had ten Variables/Data questions and ten Control Flow

questions. Meanwhile, most participants in the experimental group also had similar question

combinations. Review quizzes for participants in the control group seemingly also helped

them with the learning. In addition, except for the pre-quiz and base quiz 1, the dataset

showed that the number of missing data in the experimental group was more than that

in the control group (the difference was more than two participants). For example, eight

participants in the experimental group skipped the post-quiz, while only three participants

in the control group skipped the post-quiz. The missing data difference between the two

groups, to some extent, reflected that the willingness and the engagement on quizzes tak-

ing of participants in the experimental group were lower than those in the control group.

Therefore, it would also be essential to explore the connection between students’ engagement

and learning performance in future studies [ 12 ]. Shute suggested that students with different

achievement levels in different timing of feedback should have different types of feedback [ 22 ].

For example, in this study, the timing of the feedback was “immediate”. In the timing of

immediate feedback, students with low achievement and low prior knowledge levels should be

given “correct response” and “response contingent.” Essentially, Shute argued that students

having low performance and those having high performance were suitable for different types

of feedback. Based on the research finding, we may consider separating participants in each

group with low performance and high performance and evaluating significant differences in

future studies.

5.2 Other applications

In this study, quizzes were manually given to participants. Manually giving quizzes to

participants limits the number of participants and pieces of knowledge. It would be unreal-
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istic to manually give participants quizzes if too many participants and pieces of knowledge

are considered. Integrating BKT-LSTM into an online learning platform or exercise system

would be a solution. This makes our work may also apply to applications outside of the

traditional classroom. To help students’ learning, different types of educational technology

are drawing more and more attention. For example, one could consider applying and test-

ing BKT-LSTM in the context of computational learning [  36 ], [  37 ] and tutorials [  38 ]. Also,

educational games [ 39 ]–[ 41 ] and Virtual Reality learning environment [ 42 ]–[ 44 ] would help

students better understand abstract concepts than in traditional classrooms. BKT-LSTM’s

predictive capability might make the virtual learning environment more personalized and

realistic. In addition, BKT-LSTM might help capture students’ learning behaviors [ 45 ]–

[ 48 ], and thereby optimize the class setting. From the perspective of model performance,

BKT-LSTM can consider more student features to overcome the learning transfer drawback.

However, dimension reduction might be required with much more features [ 49 ].

5.3 Limitation

The results showed that participants in both groups had lower scores in review quizzes

than in base quizzes. The score difference between base quizzes and review quizzes for the

experimental group was more often significantly different (three quizzes) compared to the

control group (two quizzes). The experiment demonstrated that BKT-LSTM did successfully

predict participants’ most lacking knowledge to some extent. However, several limitations

for the study should be noticed. Participants would have 3% extra credits by completing all

the quizzes. To avoid participants skipping quizzes, they would receive 0.1% extra credit by

taking a quiz and 2% extra credits by taking all the quizzes. However, 3% extra credits may

not be enough to encourage students to take all the quizzes seriously. In other words, the ex-

periment rewards were not enough. Besides, participants did not have solutions after taking

quizzes. Therefore, they did not have opportunities to correct themselves. It may frustrate

participants, especially when they are facing complex questions. Moreover, BKT-LSTM as-

sumes students will not forget the learned knowledge. However, in reality, students may

forget the learned knowledge to some extent as the course continues. Therefore, participants
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who had lower scores in review quizzes than in base quizzes might be due to the material

being fresher in base quizzes. In other words, they had lower scores in review quizzes than

in base quizzes was because they forgot the learned knowledge to some extent. Finally, the

experiment only lasted for five weeks. BKT-LSTM may not sufficiently learn participants’

learning profiles under such a short experiment duration. Also, the experiment only consid-

ered five pieces of knowledge, resulting in the overlapping of the question combination for

the experimental group and the control group.
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6. CONCLUSION

This study explored the effects of BKT-LSTM on students’ learning performance. Partic-

ipants were randomly separated into the control group and the experimental group. Pre-quiz

and base quizzes estimated participants’ prior knowledge levels. Participants in the control

group had questions from two randomly picked knowledge until the given week. However,

participants in the experimental group had BKT-LSTM decided questions. BKT-LSTM

identified participants’ most lacking knowledge. Participants in the experimental group had

questions from the knowledge with the lowest acquirement probability and the second-lowest

acquirement probability. BKT-LSTM determined the content of review quizzes for the ex-

perimental group.

The results showed that participants’ prior knowledge levels were the same. Also, par-

ticipants in both groups had lower scores in review quizzes than in base quizzes. However,

the score difference between base quizzes and review quizzes for the experimental group

was more often significantly different (three quizzes) compared to the control group (two

quizzes). The difference demonstrated that BKT-LSTM effectively predicted the knowledge

that participants most lacked to some extent. In post quiz, participants in the control group

had significantly higher scores than those in the experimental group. The result implied

that BKT-LSTM affected participants’ learning outcomes negatively. For participants in

the experimental group, continuous complex questions may frustrate their learning initia-

tives. On the contrary, relatively easy questions potentially improved the learning initiatives

for participants in the control group.

44



REFERENCES

[1] R. E. Mayer, S. Fennell, L. Farmer, and J. Campbell, “A personalization effect in
multimedia learning: Students learn better when words are in conversational style
rather than formal style,” Journal of Educational Psychology, vol. 96, no. 2, pp. 389–
395, 2004, issn: 00220663. doi:  10.1037/0022-0663.96.2.389 .

[2] C. M. Chen, “Intelligent web-based learning system with personalized learning path
guidance,” Computers and Education, vol. 51, no. 2, pp. 787–814, 2008, issn: 03601315.
doi:  10.1016/j.compedu.2007.08.004 .

[3] A. Barr, M. Beard, and R. C. Atkinson, “The computer as a tutorial laboratory: the
Stanford BIP project,” International Journal of Man-Machine Studies, vol. 8, no. 5,
pp. 567–582, 1976, issn: 00207373. doi:  10.1016/S0020-7373(76)80021-1 .

[4] J. R. Anderson, F. G. Conrad, and A. T. Corbett, “Skill acquisition and the LISP
tutor,” Cognitive Science, vol. 13, no. 4, pp. 467–505, 1989, issn: 03640213. doi:  10.
1016/0364-0213(89)90021-9 .

[5] P. Brusilovsky, J. Eklund, and E. Schwarz, “Web-based education for all: a tool for
development adaptive courseware,” Computer Networks and ISDN …, vol. 30, no. 98,
pp. 291–300, 1998. [Online]. Available:  http://www.sciencedirect.com/science/article/
pii/S0169755298000828 .

[6] M. Reid, Jerk, jounce, snap, crackle and pop, Dec. 11, 2013. [Online]. Available:  http:
//wordpress.mrreid.org/2013/12/11/jerk-jounce-snap-crackle-and-pop/ .

[7] K. A. Papanikolaou, M. Grigoriadou, H. Kornilakis, and G. D. Magoulas, “Personaliz-
ing the Interaction in aWeb-based EducationalHypermediaSystem,” pp. 213–267, 2003.
[Online]. Available:  http://download.springer.com/static/pdf/144/art%253A10.1023%
252FA%253A1024746731130.pdf?originUrl=http%3A%2F%2Flink.springer.com%
2Farticle%2F10.1023%2FA%3A1024746731130&token2=exp=1459950323$%5Csim$
acl=%2Fstatic%2Fpdf%2F144%2Fart%25253A10.1023%25252FA%25253A1024 .

[8] A. K. Goel and L. Polepeddi, “Jill Watson: A Virtual Teaching Assistant for Online
Education,” Georgia Tech Library, no. Daniel 2012, pp. 1–21, 2016. [Online]. Available:
 https://www.class-central.com/report/mooc-stats-2016/%0Ahttps://www.class-
central.com/report/mooc-stats-2016/%0Ahttps://smartech.gatech.edu/handle/1853/
59104 .

[9] N. Sandu and E. Gide, “Adoption of AI-chatbots to enhance student learning experi-
ence in higher education in india,” 2019 18th International Conference on Information
Technology Based Higher Education and Training, ITHET 2019, pp. 1–5, 2019. doi:
 10.1109/ITHET46829.2019.8937382 .

45

https://doi.org/10.1037/0022-0663.96.2.389
https://doi.org/10.1016/j.compedu.2007.08.004
https://doi.org/10.1016/S0020-7373(76)80021-1
https://doi.org/10.1016/0364-0213(89)90021-9
https://doi.org/10.1016/0364-0213(89)90021-9
http://www.sciencedirect.com/science/article/pii/S0169755298000828
http://www.sciencedirect.com/science/article/pii/S0169755298000828
http://wordpress.mrreid.org/2013/12/11/jerk-jounce-snap-crackle-and-pop/
http://wordpress.mrreid.org/2013/12/11/jerk-jounce-snap-crackle-and-pop/
http://download.springer.com/static/pdf/144/art%253A10.1023%252FA%253A1024746731130.pdf?originUrl=http%3A%2F%2Flink.springer.com%2Farticle%2F10.1023%2FA%3A1024746731130&token2=exp=1459950323$%5Csim$acl=%2Fstatic%2Fpdf%2F144%2Fart%25253A10.1023%25252FA%25253A1024
http://download.springer.com/static/pdf/144/art%253A10.1023%252FA%253A1024746731130.pdf?originUrl=http%3A%2F%2Flink.springer.com%2Farticle%2F10.1023%2FA%3A1024746731130&token2=exp=1459950323$%5Csim$acl=%2Fstatic%2Fpdf%2F144%2Fart%25253A10.1023%25252FA%25253A1024
http://download.springer.com/static/pdf/144/art%253A10.1023%252FA%253A1024746731130.pdf?originUrl=http%3A%2F%2Flink.springer.com%2Farticle%2F10.1023%2FA%3A1024746731130&token2=exp=1459950323$%5Csim$acl=%2Fstatic%2Fpdf%2F144%2Fart%25253A10.1023%25252FA%25253A1024
http://download.springer.com/static/pdf/144/art%253A10.1023%252FA%253A1024746731130.pdf?originUrl=http%3A%2F%2Flink.springer.com%2Farticle%2F10.1023%2FA%3A1024746731130&token2=exp=1459950323$%5Csim$acl=%2Fstatic%2Fpdf%2F144%2Fart%25253A10.1023%25252FA%25253A1024
https://www.class-central.com/report/mooc-stats-2016/%0Ahttps://www.class-central.com/report/mooc-stats-2016/%0Ahttps://smartech.gatech.edu/handle/1853/59104
https://www.class-central.com/report/mooc-stats-2016/%0Ahttps://www.class-central.com/report/mooc-stats-2016/%0Ahttps://smartech.gatech.edu/handle/1853/59104
https://www.class-central.com/report/mooc-stats-2016/%0Ahttps://www.class-central.com/report/mooc-stats-2016/%0Ahttps://smartech.gatech.edu/handle/1853/59104
https://doi.org/10.1109/ITHET46829.2019.8937382


[10] F. Chen and Y. Cui, “Utilizing student time series behaviour in learning management
systems for early prediction of course performance,” Journal of Learning Analytics,
vol. 7, no. 2, pp. 1–17, 2020, issn: 19297750. doi:  10.18608/JLA.2020.72.1 .

[11] R. Luckin and M. Cukurova, “Designing educational technologies in the age of AI: A
learning sciences-driven approach,” British Journal of Educational Technology, vol. 50,
no. 6, pp. 2824–2838, 2019, issn: 14678535. doi:  10.1111/bjet.12861 .

[12] A. Kramadhati Gopi, “An Experimental Study of the Effects of a Bayesian Knowledge
Tracing Model on Student Perceived Engagement,” M.S. Thesis, Purdue University,
2021.

[13] J. W. Jackson, “Enhancing self-efficacy and learning performance,” Journal of Exper-
imental Education, vol. 70, no. 3, pp. 243–254, 2002, issn: 19400683. doi:  10.1080/
00220970209599508 .

[14] J. Lu, C. S. Yu, and C. Liu, “Learning style, learning patterns, and learning perfor-
mance in a WebCT-based MIS course,” Information and Management, vol. 40, no. 6,
pp. 497–507, 2003, issn: 03787206. doi:  10.1016/S0378-7206(02)00064-2 .

[15] P.-n. Chou, “Effect of Students ’ Self-Directed Learning Abilities on Online Learning
Outcomes : Two Exploratory Experiments in Electronic Engineering,” International
Journal of Humanities and Social Science, vol. 2, no. No. 6 [Special Issue], pp. 172–
179, 2012.

[16] M. J. Lee and A. J. Ko, “Comparing the effectiveness of online learning approaches
on CS1 learning outcomes,” ICER 2015 - Proceedings of the 2015 ACM Conference
on International Computing Education Research, pp. 237–246, 2015. doi:  10.1145/
2787622.2787709 .

[17] S. J. Lee, S. Srinivasan, T. Trail, D. Lewis, and S. Lopez, “Examining the relationship
among student perception of support, course satisfaction, and learning outcomes in
online learning,” Internet and Higher Education, vol. 14, no. 3, pp. 158–163, 2011,
issn: 10967516. doi:  10.1016/j.iheduc.2011.04.001 . [Online]. Available:  http://dx.doi.
org/10.1016/j.iheduc.2011.04.001 .

[18] M. Kang and T. Im, “Factors of learner-instructor interaction which predict perceived
learning outcomes in online learning environment,” Journal of Computer Assisted
Learning, vol. 29, no. 3, pp. 292–301, 2013, issn: 02664909. doi:  10.1111/jcal.12005 .

[19] H. Lu, L. Jia, S.-h. Gong, B. Clark, and H. Lu, “International Forum of Educational
Technology & Society The Relationship of Kolb Learning Styles , Online Learning Be-
haviors and Learning Outcomes to Network-Based Learning in Scandinavia ( October
2007 ), pp . 187-196 Published by : International Forum o,” vol. 10, no. 4, 2016.

46

https://doi.org/10.18608/JLA.2020.72.1
https://doi.org/10.1111/bjet.12861
https://doi.org/10.1080/00220970209599508
https://doi.org/10.1080/00220970209599508
https://doi.org/10.1016/S0378-7206(02)00064-2
https://doi.org/10.1145/2787622.2787709
https://doi.org/10.1145/2787622.2787709
https://doi.org/10.1016/j.iheduc.2011.04.001
http://dx.doi.org/10.1016/j.iheduc.2011.04.001
http://dx.doi.org/10.1016/j.iheduc.2011.04.001
https://doi.org/10.1111/jcal.12005


[20] H. C. K. Hsu, C. V. Wang, and C. Levesque-Bristol, “Reexamining the impact of
self-determination theory on learning outcomes in the online learning environment,”
Education and Information Technologies, vol. 24, no. 3, pp. 2159–2174, 2019, issn:
15737608. doi:  10.1007/s10639-019-09863-w .

[21] D. Song and D. Kim, “Effects of self-regulation scaffolding on online participation and
learning outcomes,” Journal of Research on Technology in Education, vol. 53, no. 3,
pp. 249–263, 2021, issn: 19450818. doi:  10.1080/15391523.2020.1767525 . [Online].
Available:  https://doi.org/10.1080/15391523.2020.1767525 .

[22] V. J. Shute, “Focus on formative feedback,” Review of Educational Research, vol. 78,
no. 1, pp. 153–189, 2008, issn: 00346543. doi:  10.3102/0034654307313795 .

[23] U. Modeling and C. S. Departments, “Knowledge Tracing : Modeling the Acquisition
of Procedural Knowledge,” User Modeling and User-Adapted Interaction, pp. 253–278,
1995.

[24] M. V. Yudelson, K. R. Koedinger, and G. J. Gordon, “Individualized bayesian knowl-
edge tracing models,” Lecture Notes in Computer Science (including subseries Lecture
Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 7926 LNAI,
pp. 171–180, 2013, issn: 16113349. doi:  10.1007/978-3-642-39112-5_18 .

[25] C. Piech, J. Bassen, J. Huang, et al., “Deep knowledge tracing,” Advances in Neural
Information Processing Systems, vol. 2015-January, pp. 505–513, 2015, issn: 10495258.
arXiv:  1506.05908 .

[26] M. Khajah, R. V. Lindsey, and M. C. Mozer, “How deep is knowledge tracing?” Pro-
ceedings of the 9th International Conference on Educational Data Mining, EDM 2016,
pp. 94–101, 2016. arXiv:  1604.02416 .

[27] A. Sherstinsky, “Fundamentals of Recurrent Neural Network (RNN) and Long Short-
Term Memory (LSTM) network,” Physica D: Nonlinear Phenomena, vol. 404, p. 132 306,
2020, issn: 01672789. doi:  10.1016/j.physd.2019.132306  . arXiv:  1808.03314 . [Online].
Available:  https://doi.org/10.1016/j.physd.2019.132306 .

[28] E. A. Hanushek, J. F. Kain, J. M. Markman, and S. G. Rivkin, “Does peer ability affect
student achievement?” Journal of Applied Econometrics, vol. 18, no. 5, pp. 527–544,
2003, issn: 08837252. doi:  10.1002/jae.741 .

[29] S. Minn, Y. Yu, M. C. Desmarais, F. Zhu, and J. J. Vie, “Deep Knowledge Tracing
and Dynamic Student Classification for Knowledge Tracing,” Proceedings - IEEE In-
ternational Conference on Data Mining, ICDM, vol. 2018-November, pp. 1182–1187,
2018, issn: 15504786. doi:  10.1109/ICDM.2018.00156 . arXiv:  1809.08713 .

47

https://doi.org/10.1007/s10639-019-09863-w
https://doi.org/10.1080/15391523.2020.1767525
https://doi.org/10.1080/15391523.2020.1767525
https://doi.org/10.3102/0034654307313795
https://doi.org/10.1007/978-3-642-39112-5_18
https://arxiv.org/abs/1506.05908
https://arxiv.org/abs/1604.02416
https://doi.org/10.1016/j.physd.2019.132306
https://arxiv.org/abs/1808.03314
https://doi.org/10.1016/j.physd.2019.132306
https://doi.org/10.1002/jae.741
https://doi.org/10.1109/ICDM.2018.00156
https://arxiv.org/abs/1809.08713


[30] S. Minn, “BKT-LSTM: Efficient Student Modeling for knowledge tracing and student
performance prediction,” 2020. arXiv:  2012.12218  . [Online]. Available:  http://arxiv.
org/abs/2012.12218 .

[31] S. Minn, F. Zhu, and M. C. Desmarais, “Improving knowledge tracing model by in-
tegrating problem difficulty,” IEEE International Conference on Data Mining Work-
shops, ICDMW, vol. 2018-November, pp. 1505–1506, 2019, issn: 23759259. doi:  10.
1109/ICDMW.2018.00220 . arXiv:  arXiv:1604.02336 .

[32] Z. Zhang, “Missing data imputation: Focusing on single imputation,” Annals of Trans-
lational Medicine, vol. 4, no. 1, 2016, issn: 23055847. doi:  10 . 3978 / j . issn . 2305 -
5839.2015.12.38 .

[33] J. Sessa and D. Syed, “Techniques to deal with missing data,” International Conference
on Electronic Devices, Systems, and Applications, 2017, issn: 21592055. doi:  10.1109/
ICEDSA.2016.7818486 .

[34] J. R. Carpenter, M. G. Kenward, and I. R. White, “Sensitivity analysis after multiple
imputation under missing at random: A weighting approach,” Statistical Methods in
Medical Research, vol. 16, no. 3, pp. 259–275, 2007, PMID: 17621471. doi:  10.1177/
0962280206075303 . eprint:  https : / / doi . org / 10 . 1177 / 0962280206075303  . [Online].
Available:  https://doi.org/10.1177/0962280206075303 .

[35] K. Bhaskaran and L. Smeeth, “What is the difference between missing completely
at random and missing at random?” International Journal of Epidemiology, vol. 43,
no. 4, pp. 1336–1339, Apr. 2014, issn: 0300-5771. doi:  10.1093/ije/dyu080  . eprint:
 https://academic.oup.com/ije/article-pdf/43/4/1336/9727786/dyu080.pdf  . [Online].
Available:  https://doi.org/10.1093/ije/dyu080 .

[36] D. Kao and D. F. Harrell, “MazeStar: A platform for studying virtual identity and com-
puter science education,” ACM International Conference Proceeding Series, vol. Part
F130151, pp. 1–6, 2017. doi:  10.1145/3102071.3116221 .

[37] D. Kao and D. Fox Harrell, “The effects of badges and avatar identification on play and
making in educational games,” Conference on Human Factors in Computing Systems
- Proceedings, vol. 2018-April, pp. 1–19, 2018. doi:  10.1145/3173574.3174174 .

[38] D. Kao, “Exploring Help Facilities in Game-Making Software,” PervasiveHealth: Per-
vasive Computing Technologies for Healthcare, 2020, issn: 21531633. doi:  10.1145/
3402942.3403014 . arXiv:  2006.03519 .

[39] D. Kao, R. Ratan, C. Mousas, and A. J. Magana, “The Effects of a Self-Similar Avatar
Voice in Educational Games,” Proceedings of the ACM on Human-Computer Interac-
tion, vol. 5, no. CHIPLAY, 2021, issn: 25730142. doi:  10.1145/3474665 .

48

https://arxiv.org/abs/2012.12218
http://arxiv.org/abs/2012.12218
http://arxiv.org/abs/2012.12218
https://doi.org/10.1109/ICDMW.2018.00220
https://doi.org/10.1109/ICDMW.2018.00220
https://arxiv.org/abs/arXiv:1604.02336
https://doi.org/10.3978/j.issn.2305-5839.2015.12.38
https://doi.org/10.3978/j.issn.2305-5839.2015.12.38
https://doi.org/10.1109/ICEDSA.2016.7818486
https://doi.org/10.1109/ICEDSA.2016.7818486
https://doi.org/10.1177/0962280206075303
https://doi.org/10.1177/0962280206075303
https://doi.org/10.1177/0962280206075303
https://doi.org/10.1177/0962280206075303
https://doi.org/10.1093/ije/dyu080
https://academic.oup.com/ije/article-pdf/43/4/1336/9727786/dyu080.pdf
https://doi.org/10.1093/ije/dyu080
https://doi.org/10.1145/3102071.3116221
https://doi.org/10.1145/3173574.3174174
https://doi.org/10.1145/3402942.3403014
https://doi.org/10.1145/3402942.3403014
https://arxiv.org/abs/2006.03519
https://doi.org/10.1145/3474665


[40] D. Kao, A. Joshi, C. Mousas, et al., “Fighting COVID-19 at Purdue University: Design
and Evaluation of a Game for Teaching COVID-19 Hygienic Best Practices,” pp. 1–23,
2021. doi:  10.1145/3472538.3472552 .

[41] D. Kao, “JavaStrike: A Java programming engine embedded in virtual worlds,” Per-
vasiveHealth: Pervasive Computing Technologies for Healthcare, 2019, issn: 21531633.
doi:  10.1145/3337722.3341828 .

[42] D. Kao, A. J. Magana, and C. Mousas, “Evaluating Tutorial-Based Instructions for
Controllers in Virtual Reality Games,” Proceedings of the ACM on Human-Computer
Interaction, vol. 5, no. CHIPLAY, 2021, issn: 25730142. doi:  10.1145/3474661 .

[43] H. Liu, Z. Wang, C. Mousas, and D. Kao, “Virtual Reality Racket Sports: Virtual
Drills for Exercise and Training,” Proceedings - 2020 IEEE International Symposium
on Mixed and Augmented Reality, ISMAR 2020, pp. 566–576, 2020. doi:  10.1109/
ISMAR50242.2020.00084 .

[44] D. Kao, C. Mousas, A. J. Magana, et al., “Hack.VR: A Programming Game in Virtual
Reality,” 2020, issn: 2331-8422. arXiv:  2007.04495  . [Online]. Available:  http://arxiv.
org/abs/2007.04495 .

[45] O. Alabi, A. J. Magana, and R. E. Garcia, “Exploring student computational prac-
tices in solving complex engineering design problems,” ASEE Annual Conference and
Exposition, Conference Proceedings, 2014. doi:  10.18260/1-2--20473 .

[46] Q. Clark, J. L. Mohler, and A. J. Magana, “Learning style dynamics,” ASEE Annual
Conference and Exposition, Conference Proceedings, vol. 122nd ASEE Annual Confer-
ence and Exposition: Making Value for Society, no. 122nd ASEE Annual Conference
and Exposition: Making Value for Society, 2015, issn: 21535965. doi:  10.18260/p.
24413 .

[47] J. P. Bywater, J. L. Chiu, M. Floryan, et al., “Using machine learning techniques to
capture engineering design behaviors,” Proceedings of International Conference of the
Learning Sciences, ICLS, vol. 3, no. 2018-June, pp. 1359–1360, 2018, issn: 18149316.

[48] A. J. Magana, C. Vieira, and M. Boutin, “Characterizing Engineering Learners’ Pref-
erences for Active and Passive Learning Methods,” IEEE Transactions on Education,
vol. 61, no. 1, pp. 46–54, 2018, issn: 00189359. doi:  10.1109/TE.2017.2740203 .

[49] T. Zhang and B. Yang, “Big Data Dimension Reduction Using PCA,” Proceedings -
2016 IEEE International Conference on Smart Cloud, SmartCloud 2016, pp. 152–157,
2016. doi:  10.1109/SmartCloud.2016.33 .

49

https://doi.org/10.1145/3472538.3472552
https://doi.org/10.1145/3337722.3341828
https://doi.org/10.1145/3474661
https://doi.org/10.1109/ISMAR50242.2020.00084
https://doi.org/10.1109/ISMAR50242.2020.00084
https://arxiv.org/abs/2007.04495
http://arxiv.org/abs/2007.04495
http://arxiv.org/abs/2007.04495
https://doi.org/10.18260/1-2--20473
https://doi.org/10.18260/p.24413
https://doi.org/10.18260/p.24413
https://doi.org/10.1109/TE.2017.2740203
https://doi.org/10.1109/SmartCloud.2016.33


A. APPENDIX FOR QUESTION BANK

Appendix A includes the questions bank for the five selected pieces of knowledge (Vari-

ables/Data, String I/O, Control flow, Array, and Classes). The question bank includes 140

self-developed questions and 106 adapted questions from publicly available question banks

 

1
  

2
 . All the questions were validated by an experienced Java expert. Correct answers were

marked red.

A.1 Variables/Data

1
 ↑ “JAVA programming final exam questions”, [Online]. Available:

https://wenku.baidu.com/view/5010c983c67da26925c52cc58bd63186bdeb9245.html [Accessed:30-Jun-2021].
2

 ↑ “JAVA programming final exam questions and answers”, [Online]. Available:
https://wenku.baidu.com/view/8c6903d48f9951e79b89680203d8ce2f006665ed.html?rec_flag=default&fr=pc_
newview_relate1001_12wk_rec_doc1001_138c6903d48f9951e79b89680203d8ce2f006665ed&sxts1̄624534888041
[Accessed:30-Jun-2021].
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A.2 String I/O
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A.3 Control flow
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A.4 Array
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