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ABSTRACT

Textual emotion classification is a task in affective AI that branches from sentiment anal-

ysis and focuses on identifying emotions expressed in a given text excerpt. It has a wide

variety of applications that improve human-computer interactions, particularly to empower

computers to understand subjective human language better. Significant research has been

done on this task, but very little of that research leverages one of the most emotion-bearing

symbols we have used in modern communication: Emojis. In this thesis, we propose several

transformer-based models for emotion classification that processes emojis as input tokens

and leverages pretrained models and uses them , a model that processes Emojis as textual

inputs and leverages DeepMoji to generate affective feature vectors used as reference when

aggregating different modalities of text encoding. To evaluate ReferEmo, we experimented

on the SemEval 2018 and GoEmotions datasets, two benchmark datasets for emotion classi-

fication, and achieved competitive performance compared to state-of-the-art models tested

on these datasets. Notably, our model performs better on the underrepresented classes of

each dataset.
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1. INTRODUCTION

Sentiment analysis is the branch of affective AI consisting of various methodologies for iden-

tifying emotional valence expressed in text. Over the past years, there has been an increase

in the prevalence of sentiment analysis in research and industry. Use cases include identify-

ing customer satisfaction by inferring the sentiment being expressed in product reviews [ 1 ]

and determining job satisfaction from Voice of Employee surveys [ 2 ] and monitoring the

emotional state of a large population by inferring the sentiment expressed in public commu-

nication platforms, particularly in the case of significant events such as political elections [  3 ]

and major health crises [  4 ]. Identifying early signs of mental health conditions by identify-

ing the sentiment expressed in published online content. Due to the increasing popularity

of Emojis, there is great interest in analyzing and studying their usage in text content for

sentiment analysis [ 5 ]–[ 7 ].

Despite the wide range of use cases and their successful outcomes, the interpretative

capabilities of sentiment analysis are still limited. By definition, sentiment analysis pre-

dicts whether a text excerpt expresses sentiment ranging from positive to negative, often

including neutral sentiment as the midpoint. That alone does not provide much actionable

information or context regarding the type of emotion being expressed. For instance, sadness,

disappointment, and anger are negative emotions, but they describe very different concepts.

Emotion analysis, also called Emotion Classification, expands on sentiment analysis by

providing more meaningful and contextual predictions. While sentiment analysis predicts

positive or negative valence, emotion analysis predicts whether a text excerpt expresses any

discrete emotional states. Some of these emotions include joy, love, sadness, and anger.

These provide more meaningful and actionable outcomes and provide a framework for un-

derstanding how humans express affect in text, thus providing researchers with the insight

to teach machines to understand emotions better.

This thesis investigates multiple deep learning models that incorporate emoji processing

in their architecture. We test these models on benchmark multilabel emotion classification

datasets that use emojis and test these models on datasets that feature little to no emojis.

The contribution of this thesis consists of novel emotion classification model architectures
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that achieve competitive performance with SOTA models on the emotion classification task

and a study of the effects of using emojis as input tokens in these same models. The remainder

of this thesis is organized as follows: Chapter 2 summarizes the related work and introduces

the foundational concepts for developing our models, Chapter 3 describes the datasets used

in our experiments, Chapter 4 describes the architectures of the proposed models, Chapter 5

describes the experiments and its results, and finally Chapter 6 summarizes the main findings

and outlines directions for future work.
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2. BACKGROUND AND RELATED WORKS

The textual emotion or sentiment classification falls into two categories: lexicon-based ap-

proaches and machine learning-based approaches. The lexicon-based approaches utilize cu-

rated words and their associations to classify a text, whereas the machine learning-based

approaches train a model to classify text. The defined lexicons are either used in rule-based

models that rely on keyword frequency count [  8 ] or keyword search [ 9 ] or as input features to

machine learning-based models [ 10 ]. The machine learning-based approaches include those

using either traditional or deep learning models. The traditional machine learning approach

is similar to text classification, which includes steps as first to assign unicodes to the emojis,

then apply feature selection, and classification algorithms, such as multinomial Näıve Bayes

[ 11 ] for emotion classification or sentiment detection. With the advance of deep learning,

the recent literature on emotion classification investigates various deep language models.

2.1 Lexicon-Based Emotion Classification

Affective lexicons have been extensively used since the early stages of affective AI research

and still provide helpful linguistic features that aid in more contemporary methodologies.

These lexicons usually consist of curated sets of words and their associated set of affect

scores.

Lexicons like the Liu Lexicon [  12 ] consists of a set of words with either a positive or a

negative label with no measure of how positive or negative a word is, resulting in words

having the same level of affect despite being inherently different (e.g., irate and annoyed are

treated the same despite the prior being a more intense expression of anger than annoyed is).

There are lexicons such as AFINN [ 13 ], and SentiWordNet [ 14 ] that do quantify how positive

or how negative the word is, allowing for better distinction of expressed affect. However,

it is limited to the valence score, i.e., whether a word is positive or negative in sentiment.

Emotion classification models have used these lexicons, particularly TCS Research [ 10 ] and

SeerNet [ 15 ], with some significant results.

EmoLex [  16 ] is a lexicon that builds on top of the ones described prior and is better

suited for the emotion classification task. This lexicon consists of words and binary labels
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indicating the word’s association with the primary emotion categories from the Ekman model

of emotions (i.e., anger, sadness, contempt, disgust, surprise, and fear) and the word’s asso-

ciation to either positive or negative sentiment. Much like Liu Lexicon, EmoLex does not

quantify the association between a word and each emotion. These lexicons have also been

used in emotion classification models such as NELEC [ 17 ], and SINAI [ 18 ].

Despite their prevalence, these lexicons still present some limitations. Namely the fact

that most of these lexicons are a form of local representations of emotion. They fail to

encode the context in which the words elicit specific emotions. Sarcastic texts would be a

foil to these lexicon representations. Furthermore, words we usually assume not to have any

emotional meaning could carry some depending on the context in which they are being used,

and these lexicons would fail to identify that.

2.2 Deep Learning Model Foundations

The Deep Learning-based models that have been used in previous research have the

following basic models as building blocks. Many of the models proposed in this thesis make

use of these building blocks a well.

2.2.1 LSTM

LSTM[ 19 ] is an RNN well suited to process textual data. At each timestep i, an LSTM

cell processes the ith token of the input sequence and the hidden state of the previous

timestep to generate a hidden output state using internal gates that learn how to aggregate

information from previous hidden states and the current input element. This process is

unidirectional. In order to make it bidirectional, another LSTM is employed that processes

the sequence in reversed order.

2.2.2 DeepMoji

DeepMoji [ 20 ] is a 2-layer BiLSTM with Attention [  21 ]. It has been pretrained on the

task of predicting the occurrence of emojis in an input text. This model has been shown

to perform well on tasks such as emoji prediction and sarcasm detection achieving SOTA
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performance. Moreover, other models have leveraged the knowledge learned by DeepMoji in

their models with significant improvement to their performance, suggesting that DeepMoji

generates suitable affective feature vectors and that our model can benefit from using its

feature vectors as reference.

2.2.3 BERT

BERT is a model developed by Devlin, Chang, Lee, et al. [ 22 ] that has achieved SOTA

performance in many benchmark NLP tasks ranging from sentiment analysis to natural

language inference. As the name suggests, the model is based on the transformer[  23 ] archi-

tecture consisting of an attention mechanism that learns contextual relations between words

in a text excerpt. Unlike RNN-based or CNN-based models that encode a sequence of text

unidirectionally or partially bidirectionally, Transformers do so in a pure bidirectional man-

ner by processing the entire sequence at once and learning the word pair interactions via

self-attention. In the case of BERT, this transformer architecture not only has many learned

parameters but they were also learned from a vast corpus that allowed BERT to learn a

rather generic and well-representing model of the English language.

2.3 Deep Learning Emotion Classification

NTUA-SLP [  24 ] was the best performing model submitted to SemEval’18’s Task 1 [ 25 ].

The authors trained a BiLSTM with deep attention where the input embeddings were

Word2Vec[cite] word vectors whose dimensions were augmented with hand-picked affective

features. The augmentation of the word vectors did not improve their performance on the

multilabel classification task though it did improve their performance on regression tasks.

Seq2Emo [ 26 ] is one of the most recent deep learning-based models for emotion clas-

sification. Its architecture mimics a Seq2Seq model where an encoder BiLSTM network

transforms a sequence of tokens into a sequence of emotion encodings. Their model does

not use any other emotion or sentiment information such as lexicons or pretrained affective

embeddings. Their performance is akin to that of NTUA-SLP despite the little additional

information that it uses.
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GoEmotions [ 27 ] is the most recent benchmark dataset for emotion classification. Dem-

szky, Movshovitz-Attias, Ko, et al. have applied BERT to the dataset with some significant

results. Notably, a standard pretrained BERT had already embedded much affective infor-

mation, leading to quick learning and improved performance on other tasks when pretrained

on the GoEmotions dataset. BERT based models have also been applied to emotion clas-

sification alhuzali2021spanemo by virtue of... The autoencoder-based approach has also

been used to construct a latent variable representation from the latent emotion module to

guide the prediction fei2020latent.

2.4 Emojis In Emotion Classification

Emojis are a pictorial representation of various concepts, including emotions, objects, and

activities. Since their dawn in the early 2010s, emojis have become increasingly commonplace

in our modern forms of electronic communication.

Hu, Guo, Sun, et al.

Hu, Guo, Sun, et al. conducted a study on the usage of emojis while focusing on the

intent behind their widespread use [  28 ] and found that emojis are used to express positive or

negative sentiment, further increasing the amount of sentiment expressed in a text excerpt,

and adjust the tone of a message to convey sarcasm, irony, humor, or closeness. Another

significant finding of this study is that the authors found that positive or negative emojis

can significantly change the overall sentiment of a seemingly neutral message by including

an emoji, thus suggesting that emojis carry some crucial affect value. Ai, Lu, Liu, et al.

conducted a similar study with the focus on understanding what leads an emoji to be more

popular than others by analyzing the relationship between emojis and the context in which

they are presented [ 29 ]. They found that emoji usage is characterized into two distinct func-

tions: complementary and supplementary, where the complementary function emphasizes

the meaning of a message by adding emojis. In contrast, the supplementary function re-

places a word with an emoji that has the same meaning. Furthermore, the authors found

that the most popular emojis are also the ones that convey the most sentiment.
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Delobelle and Berendt argued that emojis were not used enough in NLP models [ 30 ].

They found that in most NLP research, emojis have either been underutilized or not utilized

at all. The proper use of emojis can increase the performance of contextual models, with

an observed increase of 5.85% in performance once emojis were used in their conversational

model.
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3. DATASETS

3.1 SemEval 2018 Task 1 - Affect in Tweets

SemEval 2018: Affect in Tweets [ 25 ] was a competition dedicated to affect-related NLP

tasks such as emotion classification, emoji prediction, and sarcasm detection with datasets

for each respective task. We use the multilabel emotion classification subset of the dataset

in our experiments. We will now refer to this subset as the SemEval’18 dataset.

This dataset consists of tweets from 2016 to 2017 that contained terms related to anger,

fear, joy, and sadness at different intensities. These are later labeled not only for the previ-

ously mentioned four emotions, but also the anticipation, disgust, love, optimism, pessimism,

surprise, and trust emotions with neutral as no emotions. This labeling scheme leads to an

overrepresentation of the basic emotions compared to the others, resulting in an inherent

class imbalance in the dataset. These labels were attributed based on the categorical model

of emotions (i.e., Plutchik [ 31 ] and Ekman [ 32 ] models). Given that the dataset consists

of Tweets, we can expect to find Twitter-only tokens such as mentions and hashtags in our

samples in addition to emojis.

The SemEval’18 dataset is split into train, validation, and test sets as described in Table

 3.1 . We can also observe the number of coincident classes per sample in Table  3.4 .

Table 3.1. The number of occurrences of each emotion in each of the Se-
mEval’18 dataset splits.

Train Valid Test
Anger 2,544 315 1,101
Anticipation 978 124 425
Disgust 2,602 319 1,099
Fear 1,242 121 485
Joy 2,477 400 1,442
Love 700 132 516
Optimism 1,984 307 1,143
Pessimism 795 100 375
Sadness 2,008 265 960
Surprise 361 35 170
Trust 357 43 153
Split Size 6,838 886 3,259
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3.2 CancerEmo

CancerEmo is a dataset designed for emotion classification focused on patients’ experi-

ences with different types of cancer, namely, breast, lung, and prostate cancer. This dataset

is relatively novel and has not been studied extensively yet.

The dataset was collected from Online Health Communities (specifically csn.cancer.org),

where patients and caregivers share their experiences with cancer ranging from undergoing

medical procedures to side effects from their treatment. Unlike the previous datasets, the

authors chose to collect and annotate only sentences instead of entire posts, preventing the

use of posts that were longer and incorporating many topics and emotions simultaneously.

The emotion classes defined in this dataset are anger, anticipation, disgust, fear, joy,

sadness, surprise, and trust. These classes are according to Plutchik’s basic emotions model.

It can also be observed that positive emotions are underrepresented in this dataset.

The data was collected from 2002 to 2018, and the resulting dataset is sampled from that

period.

For each emotion class, the authors provide separate train, validation, and test splits,

meaning that each emotion is trained individually, whereas the other datasets were designed

to have the classes trained jointly.

Table 3.2. Dataset split sizes of the CancerEmo dataset. Each emotion has
it’s own subset of train, validation, and test splits.

Train Size Valid Size Test Size
Anger 669 84 84
Anticipation 360 34 42
Disgust 735 90 66
Fear 4,310 539 539
Joy 4,834 604 605
Sadness 2,884 361 361
Surprise 614 102 110
Trust 1,509 189 189
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Despite each class being trained individually, samples still share multiple labels. Table

 3.2 shows the distribution of those labels per example, and we can observe that, like the

other datasets, very few samples have more than three classes.

3.3 GoEmotions

GoEmotions is the largest manually annotated dataset of comments labeled for 27 emo-

tion categories that can perform well in transfer learning settings. Given its novelty, there

have not been many published studies using this dataset.

Reddit 

1
 is a collection of forums where users submit posts and submit comments and rate

these posts. Posts are grouped by subreddits dedicated to any specific topic (e.g., /r/math

for mathematics-related posts). The dataset was designed to reduce harmful and offensive

language bias and have a balanced emotion distribution. In addition to that, the dataset

was also designed not to overrepresent popular communities leading to more bias.

The dataset is annotated with an extensive taxonomy of emotions to get as much emotion

coverage as possible. The labels are based on Cowen’s[ 33 ] statistical emotion model and con-

sist of the following: admiration, approval, annoyance, gratitude, disapproval, amusement,

curiosity, love, optimism, disappointment, joy, realization, anger, sadness, confusion, caring,

excitement, surprise, disgust, desire, fear, remorse, embarrassment, nervousness, pride, relief,

and grief. With the emotions desire, disappointment, pride, realization, relief, and remorse

being suggested by raters because of how frequently raters have identified them. The dataset

has comments ranging from 2005 to 2019.

The GoEmotions dataset is split into train, validation, and test sets as described in

Table  3.3 . In addition to that, the table also shows the number of instances labeled with

each emotion per split. We can observe that grief, nervousness, pride, and realization are

severely underrepresented compared to the other classes, which could lead to these being the

classes in which our models perform the worst.
1

 ↑ https://www.reddit.com
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Table 3.3. GoEmotions Emotions per split.

Train Valid Test
Admiration 4,130 488 504
Amusement 2,328 303 264
Anger 1,567 195 198
Annoyance 2,470 303 320
Approval 2,939 397 351
Caring 1,087 153 135
Confusion 1,368 152 153
Curiosity 2,191 248 284
Desire 641 77 83
Disappointment 1,269 163 151
Disapproval 2,022 292 267
Disgust 793 97 123
Embarrassment 303 35 37
Excitement 853 96 103
Fear 596 90 78
Gratitude 2,662 358 352
Grief 77 13 6
Joy 1,452 172 161
Love 2,086 252 238
Nervousness 164 21 23
Optimism 1,581 209 186
Pride 111 15 16
Realization 1,110 127 145
Relief 153 18 11
Remorse 545 68 56
Sadness 1,326 143 156
Surprise 1,060 129 141
Neutral 14,219 1,766 1,787
Split Size 43,410 5,426 5,427

3.4 Label Agreement

As a learning task, emotion classification is a challenging task because emotion perception

is very subjective. One person might perceive one emotion while another person might

perceive another emotion from the same piece of text. Moreover, given that we are only

observing text, the perception of emotion becomes even more subjective, leading to difficulty

labeling the datasets and training the emotion learning models.
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Table 3.4. Summary of the datasets

SemEval’18 GoEmotions CancerEmo
Train Size 6,838 43,410 10,288
Valid Size 886 5,426 1,886
Test Size 3,259 5,427 1,872
Total Size 10,983 54,263 14,046
Number of Emotions 11 27+Neutral 8
Labels per Example

0 2.67% 0.00% 36.12%
1 13.48% 83.75% 57.23%
2 40.89% 14.97% 6.31%
3 31.49% 1.21% 0.33%

4+ 11.46% 0.07% 0.02%

Table  3.5 shows the rater agreement scores for each of the previously described datasets.

The scoring metric is different for each dataset, but we can compare them to some extent

because they are on similar scales, especially in the case of the SemEval’18 and the GoEmo-

tions datasets. These datasets achieve fair agreement at best, which is not much. However,

as noted by Mohammad and Kiritchenko [ 34 ], that is sufficient and adequately incorporates

the ambiguity of emotions though it makes it harder to quantify the performance of our

models properly.

3.5 Emoji Usage

Emoji is used frequently in social media settings, and this can be reflected in our selection

of datasets as well for the most part. The exception is the GoEmotions dataset because it is

comprised of Reddit comments. There is an unspoken rule of sorts in Reddit that discourages

the usage of emojis leading to the vast majority of users disregarding its usage entirely. Given

that CancerEmo is based on sentences from a community forum, the usage of emojis is quite

rare.
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Table 3.5. Interrater agreement scores for each of the datasets
SemEval’18 CancerEmo GoEmotions

Emotions (Fleiss’ Kappa, p=7) (Kippendorff’s Alpha, p=3)* (Cohen’s Kappa, p=4)
Admiration - - 0.47
Amusement - - 0.47
Anger 0.41 0.69 0.31
Annoyance - - 0.19
Anticipation 0.04 0.50 -
Approval - - 0.19
Caring - - 0.25
Confusion - - 0.27
Curiosity - - 0.37
Desire - - 0.25
Disappointment - - 0.18
Disapproval - - 0.23
Disgust 0.20 0.69 0.24
Embarrassment - - 0.22
Excitement - - 0.22
Fear 0.38 0.75 0.39
Gratitude - - 0.75
Grief - - 0.10
Joy 0.47 0.75 0.30
Love 0.21 - 0.56
Nervousness - - 0.14
Optimism 0.18 0.69 0.30
Pessimism 0.08 0.69 -
Pride - - 0.15
Realization - - 0.16
Relief - - 0.19
Remorse - - 0.36
Sadness 0.32 0.75 0.34
Surprise 0.07 0.69 0.33
Trust 0.04 0.69 -
p indicates the number of raters per sample on average.
*These are estimates based on how the author reported the agreement scores.
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Figure 3.1. Emoji Usage in the Selected Datasets

Table 3.6. Emoji statistics of the datasets
SemEval’18 GoEmotions

Samples Avg. Emoji Samples Avg. Emoji
Total Samples w. Emojis per Sample* Total Samples w. Emojis per Sample*

admiration - - - 4,130 105 1.85
amusement - - - 2,328 72 2.24
anger 2,544 269 1.96 1,567 18 2.11
annoyance - - - 2,470 45 1.44
anticipation 978 104 2.60 - - -
approval - - - 2,939 90 2.19
caring - - - 1,087 33 1.79
confusion - - - 1,368 13 1.31
curiosity - - - 2,191 55 1.44
desire - - - 641 22 1.73
disappointment - - - 1,269 24 2.42
disapproval - - - 2,022 38 1.55
disgust 2,602 268 1.99 793 15 1.27
embarrassment - - - 303 7 1.57
excitement - - - 853 29 1.41
fear 1,242 132 1.70 596 13 1.15
gratitude - - - 2,662 91 1.36
grief - - - 77 3 1.00
joy 2,477 418 2.07 1,452 38 1.26
love 700 157 2.14 2,086 87 1.32
nervousness - - - 164 4 1.25
neutral - - - 14,219 124 1.76
optimism 1,984 247 2.49 1,581 81 1.53
pessimism 795 101 1.68 - - -
pride - - - 111 2 2.00
realization - - - 1,110 53 1.23
relief - - - 153 1 1.00
remorse - - - 545 2 1.00
sadness 2,008 271 1.82 1,326 61 1.49
surprise 361 52 1.63 1,060 27 1.56
trust 357 29 1.86 - - -
* This is the average number of emojis used in the samples that actually use emojis.
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4. MODELS

Let x = (x1, x2, · · · , xT ) represent a sequence of tokens, including words and sometimes

emojis. The task is to encode this sequence x and generate a feature vector that is used by

a classification layer to predict the target labels defined as y = (y1, y2, · · · , yK) ∈ {0, 1}K ,

where yi = 1 indicates that the ith emotion is being expressed in the input sequence and K

indicates the number of emotion classes to predict.

4.1 Preprocessing

Each of the proposed models have similar preprocessing requirements for each of their

encoding modules.

The BERT based models require the text to be processed as SentencePiece [ 35 ] tokens

and uses BERT’s built-in word embeddings to generate input token vectors. The BiLSTM

based models require the text to be processed as word tokens with the addition of some

preprocessing steps that preserve hashtags (e.g., #blessed), mentions (e.g., @BarackObama),

and emojis. These tokens are then vectorized using GloVe [ 36 ] word vectors extended with

emojis. The DeepMoji [ 20 ] model requires the text to be processed as word tokens and

transformed into input embeddings using DeepMoji’s own pretrained word vectors.

4.2 BERT+Emojis

Figure 4.1. BERT architecture

BERT generates both sequence embedding and contextual token embeddings from the

input sequence. As illustrated in Figure  4.1 , the sentence embedding can be used as input to
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a fully connected neural network for classification. We use sigmoid as the activation function

because multiple emotions can co-occur.

Usually, BERT is used in downstream tasks by fine-tuning on the specific domain, but

in our case, we add emojis as input tokens. Many research done in emotion classification

disregards emojis from the training and inference process of their models. Given that emojis

can be very representative of an individual’s emotional state, we decide to process them as

well. Specifically, we process the 50 most frequently occurring emojis in our datasets, as

shown in Figure  4.2 .

Figure 4.2. The 50 most frequent emojis in the datasets

4.3 BERT+BiLSTM

The preprocessing for this architecture is identical to the preprocessing done for the pre-

vious BERT architecture. Moreover, much like the previously described BERT architecture,

we process emojis as input tokens as well.

As described prior, BERT generates both sentence embedding and contextual token em-

beddings. Rather than just using the sentence embedding as a feature vector, we combine
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Figure 4.3. BERTBiLSTM architecture

the token embeddings using a BiLSTM and use the average of both directions of the output

of the last LSTM cell as the feature vector, as illustrated in Figure  4.3 .

4.4 BERTBiLSTM + DeepMoji

Figure 4.4. BERT+BiLSTM+DeepMoji architecture

This variation of the BERTBiLSTM architecture features the addition of DeepMoji fea-

tures and an attention layer that aggregates the contextual embeddings and the DeepMoji

affective features.
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Let hb
i be the BiLSTM output at timestep i and hd

t be the DeepMoji affective feature

vector. The attention scores for the BiLSTM outputs are defined as

sb
r,i = V ⊤ tanh(Wqh

d
t + Wvhb

i ) (4.1)

αb
r,i =

exp(sb
r,i)∑T

j=0 exp(sb
r,j)

(4.2)

where V , Wq, and Wv are learned parameters, sb
r,i is the attention score for the i-th token

embedding, and αb
r,i is the normalized attention score. The context vector ct is computed as

the attention-score-weighted sum of the BiLSTM outputs.

cb
t =

T∑
i=0

αb
r,ih

b
i (4.3)

This context vector cb
t is used as the input to the linear layers yielding the classifications.

y = σ(W2 tanh(W1ct + b1) + b2) (4.4)

Given that DeepMoji was trained on emoji prediction and sarcasm detection, it has

learned to generate decent affective representations from text hence our choice in doing so.

4.5 ReferEmo: Referential Emotion Encoder

The proposed model, as illustrated in Figure  4.5 , encodes a sequence of tokens, including

words and emojis, defined as x = (x1, x2, · · · , xT ), and generates a feature vector ct used

by a classification model to predict the target labels defined as y = (y1, y2, · · · , yK) ∈

{0, 1}K , where yi = 1 indicates that the ith emotion is being expressed in the input sequence.

The architecture consists of three distinct layers: encoding layer, feature aggregation layer,

and classification layer, which are preceded by a module-specific preprocessing step. This

architecture borrows some of the ideologies of ensembles [ 37 ], with the major differences being

the aggregation of feature vectors as opposed to predictions and the aggregation mechanism

being learned as opposed to having a majority voting or a boosting scheme.
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Figure 4.5. ReferEmo architecture

4.5.1 Encoding Layer

The encoding layer is responsible for creating the various feature vectors from the input

sequence used by the upper layers. This layer consists of two types of encoders: a reference

encoder and a text encoder.

Reference Encoder

The reference encoder is a model that generates an affective feature vector hr
t . As the

name suggests, this affective feature vector serves as a reference to enrich the word embed-

dings of the input sequence with affect knowledge. We use a pretrained DeepMoji[ 20 ] model

as the reference encoder.

hr
t = DeepMoji(x)
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DeepMoji has been shown to perform well on tasks such as emoji prediction and sarcasm

detection achieving state-of-the-art performance. Furthermore, other models have leveraged

the knowledge learned by DeepMoji in their models with significant improvement to their

performance. These facts suggest that DeepMoji generates good affective feature vectors

and that our model can benefit from using its feature vectors as reference. Note that the

use of the pretrained DeepMoji model is a deliberate design choice. Any model that can

generate an affective feature vector can be used.

Text Encoder

This encoder generates a set of contextual token embeddings from the input sequence.

These tokens embeddings are later enriched with the affective knowledge from the reference

vector generated by the reference encoder.

We use a 2-layer BiLSTM that encodes an input sequence x = (x1, · · · , xn) into the con-

textual token embeddings hb
1, · · · , hb

t . These token embeddings are the intermediate outputs

of the BiLSTM at timestep i and are defined as

hb
i = BiLSTMi(xi)

Where hb
i is the hidden state of the BiLSTM at timestep i. It summarizes all of the

sequence information up to xi from both the forward and backward directions.

In addition to the BiLSTM, we also use BERT as an additional text encoder. BERT is a

transformer-based model that is pretrained on a large corpus for a masked language modeling

task. BERT has shown state-of-the-art performance on many NLP tasks ranging from ma-

chine translation to sentiment analysis. Particularly, its performance on sentiment-related

tasks suggests that BERT can assimilate how affectiveness is expressed in text. Preliminary

experimental results have shown that the BiLSTM encoder yielded a better precision while

the BERT encoder yielded a better recall. We use the two encoders to improve the sensi-

tivity of the model while still maintaining high specificity. We define the token embeddings

generated by BERT as the sequence ht
1, · · · , ht

t where ht
i represents the embedding of the ith

token in the sequence within the context of the entire input sequence.
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4.5.2 Attention-based Feature Aggregation Layer

This layer receives as inputs the reference feature vector hr
t and the token embeddings

[ht
1, · · · , ht

t] and [hb
1, · · · , hb

t ] from the previous layer and generates a context vector that

aggregates the values of the sequence embeddings and the affective value of the reference

vector.

In our architecture, we use attention as the aggregation mechanism. Given that there are

two sets of token embeddings, two sets of attention scores are computed. One set of attention

scores is between the reference vector and the BiLSTM token embeddings, and the other

set is between the reference vector and the BERT token embeddings. Using attention not

only generates a feature vector that better encodes longer sequences with long dependencies

but also allows us to visualize the alignment scores between the reference feature vector and

the token embeddings, thus providing information regarding which tokens carry the most

affect value that allows us to assess the relationship between these input tokens and the

classification label.

The attention scores with respect to the BiLSTM embeddings are defined as

sb
r,i = V ⊤ tanh(Wqh

r
t + Wvhb

i ) (4.5)

αb
r,i =

exp(sb
r,i)∑T

j=0 exp(sb
r,j)

(4.6)

where V , Wq, and Wv are learned parameters, sb
r,i is the attention score for the ith token

embedding, and αb
r,i is the normalized attention score. The attention scores with respect to

the BERT embeddings are defined in an identical manner.

The context vector for each of the embeddings is computed as the attention-weighted

sum of the token embeddings.

cb
t =

T∑
i=0

αb
r,ih

b
i (4.7)
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ct
t =

T∑
i=0

αt
r,ih

t
i (4.8)

The final context vector is defined as the concatenation of cb
t and ct

t

ct = [cb
t ; ct

t] (4.9)

4.5.3 Classification Layer

The last layer consists of a two-layer fully connected neural network with a tanh activation

between the two layers and a sigmoid activation at the output layer. Since the model

architecture is designed for multilabel classification tasks, using sigmoid as the activation of

the output layer is the most suitable option.

y = σ(W2 tanh(W1ct + b1) + b2) (4.10)
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5. EXPERIMENTS AND RESULTS

5.1 Baselines

We trained each of the models described in chapter  4 and compare their performance on

the SemEval’18, GoEmotions, and CancerEmo datasets with some of the better performing

models found in literature. These models are:

• NTUA-SLP[ 24 ], an RNN-based model with domain-specific word embeddings and

the top ranked model submitted to the SemEval’18 competition.

• Seq2Emo[ 26 ], an RNN-based encoder-decoder model that classifies emotions sequen-

tially and the most current SOTA model for the emotion classification task.

Our comparison will be focused on how our models differ from the NTUA-SLP and the

Seq2Emo models both at the summary level and at the emotion level. However, at the

summary level, we also report the performance of other notable models for each dataset.

Namely:

• BERT [ 22 ], a transformer-based model pretrained on a language modeling task.

• LEMfei2020latent, an auto-encoder that encodes emotions as latent variables.

• BNetjabreel2019deep, an RNN-based model that transforms the multi-label classi-

fication task into a binary classification task.

• TCS Research[ 10 ], an ensemble model that incorporates deep learning features with

lexical features.

• PlusEmo2Vec[ 38 ], a model that generates domain-specific emotion embeddings with

CNNs.

5.2 Evaluation Metrics

The models studied in this thesis were evaluated with the standard classification metrics

of precision, recall, and F1 score [ 39 ], with the addition of the Jaccard score [  40 ], which is

frequently used to evaluate multilabel classification tasks.
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Let TP, TN , FP , and FN be true-positive, true-negative, false-positive, and false-

negative predictions. Precision and Recall are defined, respectively, as follows:

Precision = TP

TP + FP
(5.1)

Recall = TP

TP + FN
(5.2)

The F1 score is then defined as the harmonic mean of the precision and the recall.

F1 = 2 × Precision · Recall

Precision + Recall
(5.3)

The Precision, Recall, and F1 score are computed for each of the classes in our datasets.

Reporting the per-class metrics allows us to have a better picture of the actual performance of

our models in an unbundled manner. In addition to the individual class metrics, we compute

the micro and macro averages of the F1 scores to have a more holistic understanding of the

performance of our models.

The Jaccard score is an alternative to the accuracy score in a multilabel setting. It

measures the overlap between the target labels of a dataset and the predicted labels of a

model. Let T be the target label and P the predicted label. The Jaccard score for one

sample is defined as

J(T, P ) = |T ∩ P |
|T ∪ P |

(5.4)

The Jaccard Score for the entire dataset is defined as the average of the samples’ Jaccard

Scores, as illustrated in Equation  5.5 , where S represents the dataset.

Jaccard = 1
|S|

∑
s∈S

J(Td, Pd) (5.5)
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Table 5.1. Optimal hyperparameters for each of the models except BERT+Emojis

BERT+BiLSTM BERT+BiLSTM+DeepMoji ReferEmo Range

lstm hidden 512 512 256 [27, 210]
num layers 1 1 1 [1,3]
linear hidden 128 128 128 [2ˆ7, 2ˆ10]
linear dropout 0.25 0.25 0.5 [0.2, 0.7]
lr 5.45E-05 5.45E-05 1.15E-05 [1E-5, 1E-1]
optimizer RMSProp RMSProp RMSprop [Adam, AdamW, RMSprop, SGD]

5.3 Hyperparameter Tuning

We perform hyperparameter search using Optuna[  41 ], a tool that aids in performing grid

search to find the most optimal hyperparameters. The models that required hyperparameter

search are BERT+BiLSTM, BERT+BiLSTM+DeepMoji, and ReferEmo. BERT+Emojis

only had the learning rate as the hyperparameter and using the default value of 1E − 5

works well for SemEval’18 and GoEmotions. The optimal hyperparameters for the prior

models are shown in Table  5.1 , where lstm hidden refers to the number of hidden units in

an LSTM cell, num layers refers to the number of LSTM layers to have in the architecture.

linear hidden refers to the number of hidden units in the Linear layer that performs the final

classification, and linear dropout refers to the dropout probability at the classification layer.

LR refers to the learning rate and optimizer to the gradient descent optimizer to train the

model. Note that our architectures seem to favor shallow LSTMs.

5.4 Classification Performance Analysis

5.4.1 SemEval’18 Performance

Table  5.2 shows the summarized performance of our models and the baseline models on

the SemEval’18 dataset. We can see that ReferEmo and the other BERT-based models,

except for BERT+BiLSTM+DeepMoji, perform better than the baselines, particularly in

the F1 measures. For instance, NTUA-SLP’s macro F1 and ReferEmo’s F1 scores differ by

4%, while the micro F1 scores only differ by 1%, suggesting that our ReferEmo model can

better classify underrepresented groups classes when compared to NTUA-SLP and Seq2Emo.

Comparing the performance of our models to that of LEM, we observe that the macro
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F1 score is relatively high compared to the other baselines while the micro F1 score is

the lowest of the baselines, suggesting that there was an inherent tradeoff when classifying

overrepresented and underrepresented classes. Our models do not have to do such tradeoffs,

as can be seen in our results. Moreover, BERT+Emojis performs best at the summary level

across the three metrics, hinting at emojis’ representative power in emotion classification

tasks. One interesting observation is that the model that incorporates DeepMoji performs

the worst even though DeepMoji has performed well in some affect related tasks.

Table 5.2. Summary of the performance on the SemEval’18 dataset

Micro F1 Macro F1 Jaccard
NTUA-SLP 0.70 0.53 0.59
Seq2Emo 0.70 0.52 0.59
LEM 0.67 0.56 -
BNet 0.69 0.56 0.59
TCS Research 0.69 0.53 0.58
PlusEmo2Vec 0.69 0.50 0.58
BERT+Emojis 0.72 0.59 0.60
BERT+BiLSTM 0.71 0.57 0.58
BERT+BiLSTM+DeepMoji 0.67 0.50 0.55
ReferEmo 0.71 0.57 0.58

In order to gain a better understanding of the performance of each of these models,

we study the classification metrics, namely the precision, recall, and F1 score, for each

emotion category, as shown in Table  5.3 . NTUA-SLP and Seq2Emo perform the worst on

the anticipation, surprise, pessimism, and trust categories. Not surprisingly, these classes

have lower inter-rater agreement scores (as shown in Table  3.5 ). In addition to providing some

minor improvement on some of the better performing categories of NTUA-SLP and Seq2Emo,

the BERT-based models significantly improve the worse performing and underrepresented

classes. Namely, anticipation and pessimism, with an improvement of 10%. We observe some

improvement in the surprise and trust classes, though not significant. The low agreement

score suggests that the samples labeled with surprise and trust might be too ambiguous for a

model to learn correctly, and given that the number of samples with these classes is deficient,

it is improbable to perform better in these classes without up-sampling these classes. Note
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that the BERT+BiLSTM+DeepMoji model does not learn anything from the surprise and

trust classes showing how difficult it is for a weaker model to learn from them.

5.4.2 GoEmotions

Table  5.4 shows the summarized performance of our models and the selected benchmark

models for the GoEmotions dataset. We can see that NTUA-SLP performs worse on this

dataset. This can be attributed to the fact that NTUA-SLP uses domain-specific embed-

dings, making it slightly more challenging to generalize on datasets of a different domain,

as is the case for GoEmotions. Seq2Emo, however, only performs marginally better than

BERT. Despite not performing better than Seq2Emo on the micro F1 measure, our models

perform better on the macro F1 metric, thus suggesting that our models perform better on

the underrepresented classes.

Table  5.5 shows the per emotion classification metrics much like in Table  5.3 for the

SemEval’18 dataset performance. As expected, for NTUA-SLP and Seq2Emo, the perfor-

mance for the underrepresented classes, namely grief, nervousness, pride, and relief, is low.

What was not expected was the low performance in some classes with a significant number

of samples such as annoyance, caring, and disapproval. The agreement score for these classes

indicates lower ambiguity in the labels than in the SemEval’18 dataset, thus suggesting that

these classes are inherently hard to learn.

The recall for the BERT-based models is much higher than that of the benchmarks.

BERT-based models seem to have a higher sensitivity while having a slightly lower specificity.

This tradeoff is to be considered if any of these models are to be deployed in any system.

Note that, once again, the model with the added DeepMoji does not perform as well as the

other ones suggesting that DeepMoji only hinders the performance of this model.

5.4.3 CancerEmo

Unlike the other datasets, each class in the CancerEmo dataset was trained independently

from others despite being described as a multilabel dataset. To conform to previous research

that used the dataset and make a fair comparison, we do the same thing. Therefore, Table
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Table 5.4. Summary of the performance on the GoEmotions dataset

Micro F1 Macro F1 Jaccard

NTUA-SLP 0.54 0.44 0.48
Seq2Emo 0.60 0.47 0.54
BERT 0.59 0.46 0.53
BERT+Emojis 0.57 0.50 0.39
BERT+BiLSTM 0.56 0.49 0.38
BERT+BiLSTM+DeepMoji 0.52 0.47 0.33
ReferEmo 0.56 0.48 0.53

 5.6 shows the per emotion classification metrics with the average scores for each metric at

the end of the table. The authors only reported the F1 scores for each model they tested

hence the missing values for precision and recall for BERT, BiLSTM, and CNN.

As shown prior, this dataset does not have many emojis, with only the joy class hav-

ing very few occurrences of emojis in the training set. This leads to no added improve-

ment from leveraging emoji representations, as seen in similar metrics of the BERT and the

BERT+Emojis models. ReferEmo suffers the most in terms of performance in all but the

joy and fear classes. ReferEmo still maintains a somewhat reasonable recall performance.

The precision, however, is the most affected metric suggesting that while still sensitive to

the correct samples, the model fails to recognize them correctly. Given that CancerEmo is

a medical domain dataset, it is possible that the vocabulary ReferEmo was trained does not

provide the coverage of terms needed for it to perform well on this dataset leading to the

decrease in the performance.

5.5 Label Ambiguity

Many examples were labeled ambiguously, making it difficult for a model to properly learn

the relationships between the input tokens and the emotion classes. This ambiguity is even

more prevalent when not even human annotators can agree with the gold standard label.

The ambiguous labeling in Figure  5.1 shows some examples of these cases. One example

shows that our model cannot identify ’love’ and ’surprise’, and the other example shows that
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our model cannot identify ’trust’. This ambiguity, in turn, hinders the model performance,

especially when it is a rather sensitive model like ReferEmo. These ambiguous labels are

more present in the ’anticipation’ and ’trust’ classes of the SemEval’18 dataset than any

other class. Part of the reason why the labels are so ambiguous is that the raters were given

relatively relaxed conditions for attributing a label to an example [ 25 ]. In addition, examples

are labeled with one primary and multiple secondary emotions. Some of the ambiguous labels

might have secondary labels, though there is no way of confirming that.

5.6 Ambiguous Emoji Usage

Some of the examples in both datasets use emojis that lead to ambiguity when the model

attempts to classify them. Figure  5.1 provides two examples to demonstrate the cases of

ambiguous emoji usage. The first example in the Ambiguous Emoji Usage has a happy

emoji, but it is labeled as ‘anger’ emotion. In the GoEmotions dataset, the happy emojis

are commonly associated with more positive emotions such as love and joy. Similarly, some

examples of the anticipation emotion in the SemEval’18 dataset use more negative emotions,

such as the ‘anger’ emoji.

5.7 Experimenting with a Hybrid Model

When studying the performance of BERT+Emojis and ReferEmo, we can observe that

their performances complement each other, particularly in the recall metric as shown in

Tables  5.3 and  5.5 . The recall is higher on the emotion classes, while the other model

performs slightly worse. For instance, the 0.06 difference in the anger class as shown in

Table  5.3 and the 0.33 difference in the desire class as shown in Table  5.5 .

For that reason, we combine both the BERT and the ReferEmo models to make a hybrid

model. This Hybrid model generates a feature vector that results from the concatenation of

BERT+Emojis’ sentence embedding and ReferEmo’s context vector ct.

The weights from the BERT and ReferEmo models are loaded and fine-tuned on the

Hybrid model. The resulting model has slightly improved performance, specifically on the
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Figure 5.1. Sample tweets showing inherent ambiguity

GoEmotions dataset, as shown in Tables  5.7 and  5.8 . However, the improvement is not nec-

essarily significant enough to justify having a larger model comprising BERT and ReferEmo.

This suggests that pretraining a model on a language modeling task, much like BERT

was, might fare better on the emotion classification task if it takes into account emojis as

well.
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Table 5.6. Summary of the performance on the CancerEmo dataset
BERT BiLSTM CNN BERT+Emojis BERT+BiLSTM BERT+BiLSTM ReferEmo

+DeepMoji

P R F1 P R F1 P R F1 P R F1 P R F1 P R F1 P R F1
Anger - - 0.68 - - 0.67 - - 0.58 0.67 0.66 0.62 0.64 0.63 0.59 0.68 0.68 0.65 0.20 0.50 0.29
Anticipation - - 0.70 - - 0.53 - - 0.54 0.86 0.86 0.86 0.86 0.86 0.86 0.84 0.83 0.83 0.77 0.57 0.48
Disgust - - 0.59 - - 0.57 - - 0.59 0.82 0.80 0.80 0.75 0.73 0.72 0.77 0.76 0.75 0.25 0.50 0.33
Fear - - 0.77 - - 0.64 - - 0.59 0.70 0.70 0.70 0.71 0.71 0.71 0.72 0.71 0.71 0.74 0.69 0.68
Joy - - 0.81 - - 0.74 - - 0.73 0.82 0.82 0.82 0.81 0.81 0.80 0.81 0.81 0.81 0.77 0.75 0.75
Sadness - - 0.71 - - 0.64 - - 0.63 0.73 0.72 0.72 0.71 0.70 0.70 0.72 0.71 0.71 0.69 0.64 0.62
Surprise - - 0.68 - - 0.50 - - 0.55 0.68 0.67 0.67 0.76 0.75 0.75 0.77 0.75 0.75 0.25 0.49 0.33
Trust - - 0.67 - - 0.59 - - 0.66 0.65 0.64 0.63 0.64 0.63 0.62 0.62 0.62 0.61 0.75 0.51 0.34
Average - - 0.71 - - 0.61 - - 0.61 0.74 0.73 0.73 0.73 0.73 0.72 0.74 0.74 0.73 0.55 0.58 0.48

Table 5.7. Per emotion performance comparison with the Hybrid model on SemEval’18

BERT+Emojis ReferEmo Hybrid
Emotion Support P R F1 P R F1 P R F1
Anger 1101 0.76 0.84 0.80 0.79 0.78 0.79 0.78 0.81 0.79
Anticipation 425 0.36 0.28 0.32 0.37 0.28 0.29 0.37 0.34 0.35
Disgust 1099 0.70 0.84 0.77 0.73 0.78 0.75 0.72 0.80 0.76
Fear 485 0.72 0.77 0.75 0.72 0.77 0.74 0.72 0.79 0.75
Joy 1442 0.83 0.88 0.85 0.81 0.89 0.85 0.83 0.87 0.85
Love 516 0.55 0.74 0.63 0.52 0.76 0.61 0.59 0.69 0.64
Optimism 1143 0.69 0.85 0.76 0.67 0.87 0.75 0.70 0.83 0.76
Pessimism 375 0.41 0.48 0.44 0.41 0.46 0.43 0.40 0.45 0.42
Sadness 960 0.67 0.76 0.71 0.67 0.75 0.70 0.67 0.75 0.71
Surprise 170 0.58 0.11 0.19 0.59 0.11 0.18 0.47 0.14 0.22
Trust 153 0.35 0.18 0.23 0.29 0.09 0.13 0.26 0.21 0.23
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Table 5.8. Per emotion performance comparison with the Hybrid model on GoEmotions

BERT+Emojis ReferEmo Hybrid
Emotion Support P R F1 P R F1 P R F1
Admiration 4,130 0.64 0.78 0.70 0.62 0.75 0.68 0.64 0.77 0.70
Amusement 2,328 0.75 0.92 0.83 0.72 0.87 0.79 0.76 0.91 0.83
Anger 1,567 0.49 0.53 0.51 0.46 0.50 0.48 0.49 0.52 0.50
Annoyance 2,470 0.33 0.38 0.35 0.31 0.40 0.34 0.34 0.40 0.36
Approval 2,939 0.38 0.42 0.40 0.32 0.42 0.36 0.38 0.44 0.41
Caring 1,087 0.41 0.50 0.45 0.37 0.44 0.40 0.40 0.53 0.46
Confusion 1,368 0.40 0.56 0.46 0.32 0.54 0.40 0.37 0.56 0.44
Curiosity 2,191 0.48 0.71 0.57 0.46 0.64 0.54 0.49 0.70 0.57
Desire 641 0.62 0.49 0.55 0.53 0.46 0.49 0.61 0.51 0.55
Disappointment 1,269 0.38 0.32 0.35 0.30 0.31 0.30 0.33 0.34 0.34
Disapproval 2,022 0.38 0.42 0.40 0.33 0.46 0.38 0.38 0.42 0.40
Disgust 793 0.52 0.46 0.49 0.40 0.56 0.46 0.50 0.47 0.49
Embarrassment 303 0.67 0.38 0.48 0.42 0.40 0.41 0.65 0.41 0.50
Excitement 853 0.45 0.43 0.44 0.36 0.51 0.42 0.42 0.45 0.43
Fear 596 0.58 0.76 0.66 0.56 0.76 0.64 0.62 0.77 0.69
Gratitude 2,662 0.92 0.91 0.92 0.91 0.89 0.90 0.91 0.91 0.91
Grief 77 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Joy 1,452 0.59 0.67 0.63 0.51 0.63 0.57 0.59 0.68 0.63
Love 2,086 0.75 0.87 0.80 0.72 0.85 0.78 0.74 0.86 0.80
Nervousness 164 0.47 0.35 0.40 0.32 0.38 0.35 0.38 0.43 0.41
Optimism 1,581 0.59 0.58 0.58 0.49 0.58 0.53 0.55 0.59 0.56
Pride 111 0.86 0.38 0.52 0.58 0.34 0.43 0.86 0.38 0.52
Realization 1,110 0.31 0.21 0.25 0.21 0.21 0.21 0.27 0.23 0.25
Relief 153 0.00 0.00 0.00 0.28 0.25 0.26 0.00 0.00 0.00
Remorse 545 0.54 0.84 0.66 0.58 0.83 0.68 0.54 0.82 0.65
Sadness 1,326 0.53 0.59 0.56 0.50 0.59 0.54 0.53 0.61 0.57
Surprise 1,060 0.52 0.57 0.54 0.50 0.55 0.52 0.53 0.57 0.55
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6. CONCLUSION

This thesis investigated multiple deep learning models that incorporate emoji processing in

their architecture. We tested these models on benchmark emotion classification datasets

that use emojis, namely SemEval’18 and GoEmotions. In addition to that, we tested on an

emotion dataset that does not contain emojis, CancerEmo. We found that the performance

of these models is comparable to state-of-the-art models and that for the most part, they

benefit from processing emojis as input tokens. The improvement is not only notable on the

datasets that make the most use of emojis, but also on the ones in which emojis are scarce

thus showing the representational power of emojis in this particular task.

One potential direction for future work is to pre-train our text encoders on a language

modeling task that also processes emojis in order for the models to better learn how emojis

are used in general, not just on the specific dataset it’s being trained on. This would provide

consistent performance on the tasks.

Another potential direction for future research is pretraining the models in a different

domain dataset and train on a target dataset to study how emotions are expressed in different

domains and which ones are shared between them. For instance, pretraining on the Reddit

domain dataset and training on the Twitter domain dataset. Moreover, training the model

on a medical focused dataset to not only better understand patient’s expression of emotions,

but also understand how these expressions of emotion differ from the general domain.

Recently, the emoji standard started to support the selection of skin tones to many

commonly used emojis. Some possible direction for future work is expanding our models to

properly address these emojis whose skin tone can change. It would also be interesting to

study how the perception of emotion changes with a variation on the emoji’s skin tone and

what type of bias are learned from how we use emojis.
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