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ABSTRACT

Digital Forestry uses digital technology and multidisciplinary expertise to measure, mon-

itor, and manage urban and rural forests to maximize social, economic, and ecological ben-

efits.

In chapter  2 , we investigated the potential use of CNNs for hardwood lumber identifica-

tion based on tangential plane images. In chapter  3 , we developed deep bark, a lightweight

tree species identification application, by using deep learning. In chapter  4 , we first in-

troduced a new dataset of images of hardwood species annotated for tree ring detection.

We applied the state-of-art semantic segmentation models to the dataset. In chapter  5 , we

combined the observed classes and non-observed classes by distinguishing the attributes of

objects and applied zero-shot learning to microscopic wood images.

The results above chapters demonstrated the potential and effectiveness of machine learn-

ing in many forestry-related tasks. Those applications help both the research community

and industry to conduct better digital forestry business. However, we still need to point

out that the availability, quality, and quantity of data and annotation are critical factors in

conducting meaningful research and applications in forestry.
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1. INTRODUCTION

1.1 Machine Learning

1.1.1 The history of Machine Learning and Deep Learning

Machine learning (ML) is the study of computer algorithms that can improve automati-

cally through experience and by the use of data [ 1 ]. Figure.  1.1 briefly shows some milestones

of the development of machine learning research. The concept of Machine Learning was first

introduced by Samuel [ 2 ] in 1959. Around 1986, when Neural Networks started receiving

more attention, Dechter [  3 ] used a new word, deep learning, to describe those methods.

Three years Later, French computer scientist Yann Lecun first introduced Convolutional

Neural Network (CNN) [  4 ] and later, the variants of CNN became state-of-the-art methods

for many computer vision tasks like image classification. After 2009, there was a so-called

big bang for Deep Learning. Due to the development of hardware (GPUs and storage), deep

learning increased in popularity, and the number of research articles related to it increased

exponentially.

There are two types of data for machine learning in real-world scenarios: structure data

(sometimes called tabular data) and unstructured data. Structured data comprises clearly

defined data types with patterns, e.g., tables and unstructured data that are ”everything

else,” such as images and videos. Tabular data are generally more suitable for tree ensemble

methods, while deep learning methods commonly process unstructured data. Since we focus

on the unstructured data (images) in this dissertation, we will introduce some deep learning

methods in the following sections.

1.1.2 Multilayer Perceptron (MLP)

Multilayer Perceptron (MLP), also called deep feed-forward networks, is the fundamental

deep learning model [  5 ]. In some literature, it is also wrongly named a BP-network, where BP

represents back propagation. Back Propagation is the algorithm to train the network. The

goal of an MLP is to approximate some function f ∗. For example,for a classifier,y = f ∗(x)

maps an input x to a category y. An MLP defines a mapping y = f(x; θ) and learns the

13



Figure 1.1. Development of machine learning research.

value of the parameters θ that result in the best function approximation. These models are

called feed-forward because information flows through the function being evaluated from x,

the intermediate computations used to define f , and finally to the output y. There are no

feedback connections in which outputs of the model are fed back into itself. When MLPs are

extended to include feedback connections, they are called recurrent neural networks (RNN),

as presented in section  1.1.4 . When sparse connections are applied, e.g.,, for a 2D images,

only nearby pixels are connected, then MLP is equal to CNN in section  1.1.3 .

Figure  1.2 is an example architecture of a dense MLP. More mathematical: MLP is a

group of layers function, each layer is a function f : Rm → Rn:

f(x) = σ(A>x + b) (1.1)

Here A and b are learn-able parameters and σ is the element-wise operation called activation

functions which bring non-linearity to MLP.

Designing and training a neural network e.g., MLP, is similar to training any other

machine learning model with gradient descent. An optimization procedure, a cost function,

and a model family (network architecture) must be defined in advance.

14



Figure 1.2. Example architecture of a dense MLP [ 6 ]

1.1.3 Convolutional Neural Network (CNN)

Convolutional Neural Network (CNN) is a deep learning architecture inspired by the

natural visual perception mechanism of living creatures. Lecun, Bottou, Bengio, et al. [ 4 ]

developed a multi-layer neural network called LeNet-5 which could classify handwritten dig-

its from MNIST data set. Recent CNNs are comprised of groups of convolutional, pooling,

activation, and fully-connected linear functions and include hundreds of thousands connec-

tions [  5 ]. In order to speed up the training process and regulate the over-fitting of the

network, Batch Normalization (BN) and Dropout layers are often applied in the training

phase [ 7 ], [ 8 ].

There are many implementations of CNNs and among them ResNet [  9 ], DenseNet [  10 ],

and MobileNet-V2 [ 11 ] are commonly used. ResNet first introduced residues operation,

which helps in reducing the problem of accuracy becoming saturated and then degrading

rapidly with increasing network depth. DenseNet and MobileNet-V2 were designed to reduce

network parameters for real time utilization for portal devices.

1.1.4 Recurrent Neural Network (RNN)

Recurrent neural networks, or RNNs [  12 ], are a family of neural networks for processing

sequential data. A recurrent neural network is a neural network that is specialized for

processing a sequence of values x(1), · · · x(τ). RNNs can scale to much longer sequences

15



Figure 1.3. Example architectures of RNN, LSTM and GRU cell [ 16 ].

than would be practical for networks without sequence-based specialization. Most recurrent

networks can also process sequences of variable length. Mathematically, RNNs can be treated

as a function f of a dynamic system:

s(t) = f(s(t−1); θ) (1.2)

Here, s(t) is called the state of the system. To predict s(t), we need to know what is s(t−1)

which lead RNNs perform well for sequences of values.

However, the vanilla RNN cell (see Figure.  1.3 ) can easily produce gradient vanish or

gradient exploring. LSTM [  13 ] and GRU [ 14 ] were developed later to deal with these issues.

Adding new parameters to let the cell learn when to cut down the sequence, LSTM and

GRU are explicitly designed to avoid the long-term dependency problem (mainly caused by

gradient vanish and gradient exploring).

Although RNNs are the ideal architectures for modeling sequence, users found that RNNs

are not easy to train due to lack of parallel computing ability and the short effective length

of a sequence, which lead to some tasks e.g. translating long paragraphs (seq2seq) failing

to work. Attention [ 15 ] mechanisms are developed to deal with this problem. For most

scenarios in text tasks, applying transformers (a cell with attention) became very common.
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Figure 1.4. The trends of machine learning research in forestry. Data source:
Web of Science.

1.2 Machine Learning in Forestry

In forestry, machine learning research and applications have become popular. Figure.  1.4 

shows this trends. From 2018, the publication numbers surge when searching keywords

Machine Learning plus Forestry or Deep Learning plus Forestry on the Web of Science. We

predict this trend will continue in the following 10 to 15 years.

Forestry is a broad science focusing on everything related to forests. So the objectives

and data types are diverse. We have 1D data (sound), 2D data (images), and 3D data

(spatiotemporal data or cloud points) to solve different tasks in different subfields, e.g.,

biodiversity, forest profiling, and forest products. In this following section, we will narrow

down our eyesight to forest products.

Bark classification has most frequently been treated as a texture classification task. For

instance, Local Binary Patterns (LBP) [  17 ], [  18 ], and SIFT descriptors [  19 ] combined with a

linear classifier (e.g. SVM) are often used. At the same time, [ 20 ] extracted four statistical

parameters (uniformity, entropy, asymmetry and smoothness) used in texture classification

on trunk images, and applied decision tree algorithm for classification. Furthermore, [ 21 ]

developed a custom segmentation algorithm based on watershed segmentation methods,

extracted saliency, roughness, curvature and shape features and fed them to a Random

Forest classifier. [  22 ] extracted texture features based on Gabor wavelet and used a radial

basis probabilistic network as the classifier.

17



Deep learning has also been employed for tree identification from bark information, but

using a different type of image. In their work, Mizoguchi, Ishii, Nakamura, et al. [ 23 ] used

LiDAR scans instead of RGB images. Some authors have started exploring deep learning

on RGB images of textures. By leveraging extracted features from CNNs pre-trained on

ImageNet and different region segmentation algorithms, Cimpoi, Maji, and Vedaldi [ 24 ]

used an SVM to classify texture materials, notably on the Flickr Material Dataset [ 25 ].

Similar to bark, wood classification has most frequently been treated as a texture classi-

fication task as well. In some works [  26 ]–[ 30 ], the basic extraction of wood identification are

Gabor Filter, GLCM features and HOG features. Deep Learning methods became popular

in recent years. e.g., in [ 31 ], [  32 ], CNNs are applied to identity CITES species with relatively

high accuracy.

In automatic species identification, the trend of moving from traditional methods (feature

engineering plus classifier) to end-to-end deep learning methods is obvious and unstoppable,

mainly due to the better performance in predicting and convenience in training. However,

these deep learning methods rely highly on large data sets. Our research communities are

very traditional, very different from computer science communities, and are not very willing

to share data. The data availability issue becomes the major barrier to building better

identification applications.

1.3 Computing Platform

In this dissertation, all of the work was conducted using Python [  33 ] programming lan-

guage with Pytorch [ 34 ] frameworks. We used two different types of hardware. For a rela-

tively small dataset, we used a desktop computer equipped with Intel CoreTM i7-8700K CPU

@ 3.70GHz ×12, with 32 GB of memory, and with NVIDIA GeForce RTX 1080 Ti GPU.

For large datasets, we used a computing cluster with 20 nodes and each node equipped with

a quad-core × Intel Xeon E5-2630 v4 CPU running at 2.20GHz, with 128 GB of memory,

and with 4 × NVIDIA GeForce RTX 2080 Ti GPU.

18



1.4 Objectives

The main objective of this dissertation is to develop and apply better machine learning

algorithms, mainly focusing on deep learning, to forestry-related tasks. Specific objectives

include:

• Develop data-driven deep learning approaches for both macro and micro wood identi-

fication.

• Collect bark images from both existing databases and field sampling, improve the state-

of-art performance of existing CNNs methods, and develop tree bark identification

APP.

• Discover other forestry related tasks which could be solved by deep learning, e.g.,

detection of ring edge boundaries.
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2. WOOD IDENTIFICATION

Acknowledgement
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Abstract

Automatic species identification has the potential to improve the efficacy and automation

of wood processing systems significantly. Recent advances in deep learning allowed for the

automation of many previously difficult tasks, and in this paper, we investigate the feasibility

of using Deep Convolutional Neural Networks (CNNs) for hardwood lumber identification.

In particular, we tested two highly effective CNNs (ResNet-50 and DenseNet-121) as well as

lightweight MobileNet-V2. Overall, we achieved 98.2% accuracy for 11 common hardwood

species classification tasks.

Wu, F., Gazo, R., Haviarova, E., & Benes, B. (2021). Wood identification based on longitudinal section
images by using deep learning. Wood Science and Technology, 55(2), 553-563.
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2.1 Introduction

Current lumber scanners used in industrial wood manufacturing plants, such as rough

mills and flooring plants, are used to measure and evaluate the quality and optimize pro-

cessing of solid wood [ 35 ], [  36 ]. Because wood species differ significantly in their color, grain

structure, natural characteristics, defects, and density, the scanner sensors often need to be

calibrated for each species for their optimal performance. When production switches from

one species to another one, the scanner settings must often be manually set. In this study,

we attempt to automate the species identification based on image recognition so that the

manufacturing equipment can automatically adapt to species being processed or even be

able to process batches of mixed species.

Convolutional Neural Network (CNN) is a deep learning architecture inspired by the

natural visual perception mechanism of the living creatures. Lecun, Bottou, Bengio, et al.

[ 4 ] developed a multi-layer neural network called LeNet-5, which could classify handwritten

digits from the MNIST data-set. Recent CNNs are comprised of groups of convolutional,

pooling, activation, and fully-connected linear functions, and they include hundreds of thou-

sands of connections [  5 ]. Batch Normalization (BN) and Dropout layers are often applied

in the training phase. BN can speed up the training, while Dropout is a regularization tool

that can mitigate overfitting [  7 ], [  8 ]. There are many CNN architectures. Among them

ResNet, DenseNet, and MobileNet-V2 are commonly used [  9 ]–[ 11 ]. ResNet first introduced

residues connections, which can help in reducing the problem of accuracy becoming saturated

and then degrading rapidly with increasing network depth. DenseNet improves the short-cut

mechanism, connects each layer to every other layer in a feed-forward fashion. MobileNet-V2

was designed to reduce network parameters for real-time utilization for portable devices.

Researchers often treat wood classification as a texture classification task. Gray-Level

Co-Occurrence Matrix (GLCM), Local Binary Pattern (LBP), and Gabor filters are popular

techniques for the analysis of textures and pattern discrimination [  37 ]–[ 39 ]. Paula Filho,

Oliveira, Nisgoski, et al. [ 30 ] compared those techniques combined with a support vector

machine to classify 41 Brazilian forest species based on cross-section images. Other tech-

niques for wood identification through macroscopic images have also been proposed, e.g.,[ 31 ],
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[ 40 ], [  41 ]. However, most of the wood identification studies are based on the clean-cut cross-

section and follow human expert knowledge. This approach may hinder the real industry

application where longitudinal sections are commonly found and surfaces are rough (see

Sect.  2.2.1 ). Recent research in computer vision has shown that CNNs can learn texture

instead of shape [ 42 ]. Since images of the longitudinal section of boards contain almost

all low-frequency texture features, applying CNNs to these images is an obvious choice for

species detection. In this work, we apply CNNs to images of longitudinal lumber sections to

develop an industrial application for wood species classification.

2.2 Materials and Methods

The pipeline of a CNN classification task is composed of the following steps: 1) data

pre-processing, 2) building of CNN networks, 3) training 4) testing and evaluation. In the

sections below, we describe each step in detail.

2.2.1 Data Pre-processing

Manually labeled longitudinal images of 11 hardwood species (Figure.  2.1 & Table.  2.1 )

was acquired by Microtec Goldeneye 300 Multi-Sensor Quality Scanner™. The lumber used

in this study was ”rough”, random width, random length, and kiln-dried. These are industry

terms that mean that the lumber was unsorted, of varying lengths and widths, moisture

content of 6-8 percent, and the surface was not planed, sanded, or otherwise cleaned. Such

surface is called rough because it is cut by a sawmill band saw, then air-dried and kiln-dried

for several weeks or months. Boards are often dipped in an anti-stain chemical solution prior

to air drying to protect against staining and decay. This treatment tends to preserve the

natural color of wood somewhat. Additionally, walnut lumber is steamed prior to drying

to achieve a uniform, brown color. As boards travel on conveyors throughout the sawmill

and then spend time in the yard and kilns, the surface becomes somewhat weathered and

possibly marked by the handling and processing equipment. Additionally, drying stickers

can often leave marks on the board surface. This is an important distinction from the

identification of wood-based on clean or freshly surfaced wood samples. In this study, each
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Figure 2.1. Sample images. The area of one pixel corresponds to 0.004 mm2.

Table 2.1. Species list: Board # represents the number of boards we screened,
and patch # is the final patch (70 × 70 pixels) count for each species. Alder
has the original resolution of 500 × 1, 000 pixels which is 20 times larger than
other boards.

Species Common name Board # Patch #
Alnus serrulata Alder 81 *15714
Fraxinus sp. Ash 200 2478
Tilia americana Basswood 40 480
Prunus serotina Cherry 48 576
Acer saccharum Hard Maple 818 9816
Carya ovata Hickory 13 156
Quercus rubra Red Oak 478 5736
Acer saccharinum Soft Maple 720 8640
Juglans nigra Walnut 66 792
Quercus sp. White Oak 586 7032
Liriodendron tulipifera Yellow Poplar 108 1296

Total 3158 52716

board is represented by two images, one on top and one on the bottom board face, and the

area of one pixel corresponds to 0.004 mm2. We sampled several image patches (70 pixels

×70 pixels) from each board without overlapping. Subsequently, we applied the up-sampling

of all patches by using bi-linear interpolating into 224×224, which are commonly used input

sizes. In total, we processed 3,158 lumber images, or 52,716 patches, which are listed in

Table.  2.1 . Hickory is uncommon commercial hardwood species, and its production runs

are limited [  43 ]. It was available to us during the data collection process only in a limited

volume.
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Figure 2.2. Visualization of the cross-validation and splitting of data. Test,
Val, and Train represent test set, validation set, and train set, respectively. A
rectangle is 20 % of the whole data.

To fully evaluate the performance of CNN, we applied stratified k folds cross-validation

to the whole data-set. Cross-validation is a common technique used in machine learning [ 44 ].

We applied stratified five folds (20% each) cross-validation without overlapping (Figure.  2.2 ).

For each experiment, four folds of data (80%) were used during training, as the training set

(70%) and validation set (10%), and the rest one-fold of the data (20%) was the test set.

Data splitting was performed at the board level. Training set and validation set were used

in the training phase. The training set was used to train CNN, while the validation set was

used as the indicator for the choice of final model parameters. In our experiments, the final

model weights were selected based on maximizing the accuracy of the validation set. Finally,

the reported accuracy is based on the test set.

2.2.2 Architecture

We used the state-of-the-art CNN architectures: ResNet, DenseNet, and MobileNet.

These architectures contain several versions, which differ in the total number of layers. In

this study, based on our 10-thousand-level data-set size, we select the relatively shallow ver-

sion of the above-mentioned CNNs: Resnet-50, DenseNet-121, and MobileNet-V2. Table.  2.2 

summaries our selected computing parameters. Resnet-50 has the largest number of param-

eters (25.55M) and best predicting performance. However, as the trade-off for larger param-
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Table 2.2. Parameter Numbers, FLOPS and estimated wall times of
CNNs.The estimation is based on a 10 GFLOPS device.

Params (M) FLOPS (G) Wall Time (ms)
ResNet-50 25.55 4.14 414
DenseNet-121 7.98 2.90 290
MoblieNet-V2 3.50 0.33 33

eter space, Resnet-50 performs slower during the inference phase and may become difficult

to train or easy to overfit when the data-set is small. DenseNet-121 and MobileNet-V2 are

advanced architectures that reduce parameter numbers (7.98M and 3.50M respectively) and

speed up inference time while retaining as high classification accuracy as possible. Table.  2.2 

shows the number of parameters and the floating-point operations per second (FLOPS) for

each model. FLOPS is a model inference speed quantification and it provides information

about the inference time when the device capacity is known. We also show an estimated wall

time of each model when processing one image. The estimation is based on a 10 GFLOPS

device which is common for CPU. The real inference speed is related to FLOPS and it also

depends on the implementation. While DesnesNet-121 has smaller FLOPS than ResNet-50,

the training and inference time of DesnesNet-121 are in our implementation.

2.2.3 Training

We used SGD optimizer with a mini-batch size of 64, momentum of 0.9, and Cross-

Entropy loss for the training of all models. To further validate the effects of the optimizer,

we use the same learning rate, and we also use the Adam optimizer to train those models.

The learning rate used in Adam optimizer varies from SGD because Adam is a self-adaptive

optimizer. Common computer vision data augmentation methods for rotation, flip, and

transforming images into gray-scale were used. An identical learning rate schedule was used

for all three models. First, we trained all networks with an initial learning rate of 0.045 for

30 epochs with a weight decay of 0.94 for two epochs. Subsequently, we picked the model

weights, which performed the best on the validation set, and used the initial learning rate

of 0.025 with the same weight decay strategy for ten more epochs. We repeated the second
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step but used the initial learning rate of 0.001 for five more epochs. The second and third

steps are based on the observation that validation set accuracy tends to fluctuate, indicating

that the current learning rate is too large. This training strategy is efficient for data mining

competitions with relatively small data-sets and can be considered as a regularization [ 5 ].

Using a pre-trained model is a transfer learning method, which works well in a small

to medium-sized data-set. Common practical transfer learning approaches for classification

tasks are based on a two-step method - first, train the last fully connected layer and freeze

the remaining layers for several epochs, and then fine-tune the entire network. This two-step

method can stabilize the entire training process. However, based on our preliminary tests,

this two-step method does not perform better than a single-step transfer learning, which

trains the entire network directly. We further discuss this in the ablation study in Sect.  2.4 .

2.2.4 Testing and Evaluation

Ensemble learning is useful to improve accuracy during the testing phase. We used

majority voting and models ensemble to enhance the robustness and performance of the

results. The majority of voting is suitable for our purposes since patch images are sampled

from boards. Depending on different wood species, the number of images per board is either

12 or 14, except for Alder (194). The majority voting applied to board level classification

leads to incremental results. The model ensemble is the summary of all probability outputs

per class of all the above models as the ensemble output. We used a simple probability

ensemble with equal weight for all three models in this research.

2.3 Results and Discussion

We have implemented our system on a desktop computer equipped with Intel CoreTM

i7-8700K CPU @ 3.70GHz ×12 , with 32 GB of memory, and with NVIDIA GeForce RTX

1080 Ti GPU. All the implementations of models and Grad-CAM are based on PyTorch 1.4.

Table.  2.3 shows the overall accuracy and the macro F1 of the predictions of our models.

Even though our data-set is not very balance, the macro F1 is still aligned with accuracy in

our cases. So in the following, we will focus on analyzing accuracy for simplicity. For single
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Table 2.3. Model performance. The value is represented as mean ± variance
for 5 models.

Data Level Model Accuracy Macro F1
Patch ResNet-50 0.9519 ± 0.0065 0.8893 ± 0.0231

DenseNet-121 0.9384 ± 0.0078 0.8634 ± 0.0323
MobileNet-V2 0.9352 ± 0.0185 0.8507 ± 0.0363
Average Ensemble 0.9560 ± 0.0075 0.8944 ± 0.0330

Board ResNet-50 0.9815 ± 0.0079 0.9558 ± 0.0237
DenseNet-121 0.9755 ± 0.0088 0.9408 ± 0.0401
MobileNet-V2 0.9712 ± 0.0095 0.9076 ± 0.0446
Average Ensemble 0.9772 ± 0.0087 0.9424 ± 0.0420

model, ResNet-50 performs best in both patch and lumber identification (0.9519 and 0.9815

respectively), followed by DenseNet-121 (0.9384 and 0.9755) and MobileNet-V2 (0.9352 and

0.9712). The performance order of the three model architectures is also in line with models

trained and evaluated by the ImageNet data-set. For ensemble models, as expected, the top-

1 accuracy slightly increases compared to any single model in patch identification. However,

for lumber identification, ensemble models do not exceed the performance of ResNet-50.

This fact generally indicates that the performance of all single models is highly correlated.

The patch level confusion matrix for all single models is shown in Figure.  2.3 . For

model comparison, similar to the above-discussed overall accuracy, ResNet-50 performs best

in all species classification. Hickory is the most challenging to identify. In Table.  2.4 , the

precision and recall of Hickory are far less than other species, which also proves the difficulty.

One reason is that the training sample is not large: only 156 patches for the whole data-set.

Moreover, Hickory is also similar to Ash, which is in line with traditional wood identification.

Ash and Hickory are ring porous species with visible rays, visible parenchyma cells and

relative dark color, leading to similar patterns in longitudinal section. Alder becomes easiest

to identify in patch identification. We need to point out that the high accuracy of the alder

patch might not transform to the real-world application because the image resolution and

shape of Alder are different from other species in the collected data-set.
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Figure 2.3. Patch level confusion matrix for three models. The x-axis repre-
sents the predicted label of models, and the y-axis represents the true label of
the patch. Numbers and their corresponding species names are listed on the
y-axis. The numbers represent the proportions of the predicted label for one
species and should sum up to one.

When diving into the board-level confusion matrix (see Figure.  2.4 ), majority voting

plays a critical role in increasing the accuracy. All three models behave similarly, except

predicting Hickory in DenseNet-121. One Densenet-121 model out of five failed to identify

Hickory since the Hickory set is small.

Our method has several limitations. First, the data-set is not balanced. There are 11

species with a total of 3,158 boards. However, some species, e.g., Hickory, have less than 0.5%

(13/3158) of total boards. This non-balanced issue may affect the results when our trained

models are transformed into a real-world application when the unknown species distributions

do not parallel those of our data-set. Data sampling and weight method might relieve this

problem but will not help when the imbalance rate is significant. In the future, we plan to

collect more data from overcoming this issue. Second, some lumber samples exhibited dark

stains (see Figure.  2.1 ) that are not part of the natural anatomy of wood. Instead, they

are very common lumber processing marks. In this case, we consider it as the bias in our

data-set that might potentially slightly help to increase the final accuracy of CNNs, since

these stains appear most frequently in Soft and Hard Maple lumber. Our data does not

have labels from the tree level, which may lead to an overestimation of the performance.

US hardwood industry is fragmented. While there are few large companies, most are small
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Table 2.4. Precision and Recall scores for each species based on patch level
prediction and ResNet-50 model.

Species Common name Precision Recall
Alnus serrulata Alder 0.9999 0.9940
Fraxinus sp. Ash 0.8719 0.9071
Tilia americana Basswood 0.8179 0.8529
Prunus serotina Cherry 0.9330 0.9194
Acer saccharum Hard Maple 0.9392 0.9210
Carya ovata Hickory 0.4945 0.4286
Quercus rubra Red Oak 0.9056 0.8793
Acer saccharinum Soft Maple 0.9341 0.9553
Juglans nigra Walnut 0.6126 0.9264
Quercus sp. White Oak 0.9299 0.9127
Liriodendron tulipifera Yellow Poplar 0.9253 0.9576

to medium-sized. The nature of the wood industry is such that processing of rough, kiln-

dried lumber in factories that utilize a scanner in their process is far removed from the tree

harvesting and board milling operations. It is not uncommon for a sawmill to have several

hundred small local log suppliers. Each board goes through processes of sawmilling, green

grading, sorting by species, length, width, thickness, and grade. When a sufficient quantity

is accumulated in each subgroup, the green lumber is sold or air-dried at the mill. Then,

it is re-graded and sorted, kiln-dried, graded, and sorted again. When sufficient quantity

is accumulated in each sub-group, it is sold and possibly goes through other merchandising

steps at concentration yards, distribution yards, and international trade. A secondary wood

products manufacturer typically has dozens of lumber suppliers. While the likelihood that

any two boards in a package of lumber at a secondary wood processing facility came from

the same region is moderately high, the likelihood that any two boards came from the same

tree is extremely low. Such point-of-origin information is not kept or available for industrial

lumber. Due to these facts, we consider our lumber sample for each species to have sufficient

between-trees variation within the US Midwest hardwood region. While there may be slight

appearance variation in woods from different regions, their anatomical features do not differ

significantly within the species. Therefore the results of this study should transfer to other

regions of the hardwood industry.
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Figure 2.4. Board level confusion matrix for three models. Here x-axis is
the predicted label of models, while the y-axis is the true label of the board.
Numbers and their corresponding species names are listed on the y-axis. The
numbers in each line represent the proportions of the predicted label for one
species and should sum up to one.

2.4 Ablation Study

We present an ablation study that reports patch accuracy, where the difference is mea-

surable. Table.  2.5 and Table.  2.6 list the experiments. The baseline refers to the pipeline

described in Sect.  2.4 .

The input size of the image is critical for model performance. Table.  2.5 shows that when

we replace the input size of images from 70×70 to 224×224, where those images are almost

identical since the later images are just re-scale from the former ones, the model accuracy

increases approximate 2-3 percentages. The possible explanation is that for large input, zero

padding effects decrease, thus improving accuracy.

SGD and ADAM [  45 ] are commonly used to optimize the model. In most conditions,

SGD is slower but theoretically guarantees to converge, while ADAM is slightly faster but

may not guarantee the convergence. Table.  2.5 shows that, in our scenario, ADAM per-

forms similar to SGD, but ADAM is more suitable for DenseNet-121 than ResNet-50 and

MobileNet-V2.

Our initial intention was to use gray-scale augmentation to train a more robust model

because we considered grain to be a more robust feature than color. By removing gray-scale

augmentation (see Table.  2.5 ), we obtained a slightly more accurate model.
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Table 2.5. Ablation study. The value is represent as mean ± variance for 5
models. Here s is the input size to the model.

Experiment model Accuracy Accuracy
s = 224 s = 70

Baseline ResNet-50 0.9519 ± 0.0065 0.9192 ± 0.0197
DenseNet-121 0.9384 ± 0.0078 0.8846 ± 0.0217
MobileNet-V2 0.9352 ± 0.0185 0.8942 ± 0.0231

Using Adam as optimizer ResNet-50 0.9344 ± 0.0080 0.9135 ± 0.0064
DenseNet-121 0.9483 ± 0.0025 0.9173 ± 0.0062
MobileNet-V2 0.9391 ± 0.0049 0.9093 ± 0.0060

Removing gray-scale augmentation ResNet-50 0.9585 ± 0.0129 0.9186 ± 0.0139
DenseNet-121 0.9467 ± 0.0093 0.9033 ± 0.0119
MobileNet-V2 0.9561 ± 0.0069 0.8746 ± 0.0328

Using two step transfer learning ResNet-50 0.9264 ± 0.0153 0.8734 ± 0.0169
DenseNet-121 0.9338 ± 0.0085 0.8663 ± 0.0107
MobileNet-V2 0.9227 ± 0.0137 0.8273 ± 0.0384

Table 2.6. Model accuracy after removing maple data. The value is repre-
sented as the mean ± and the variance for five models. Here s is the input
size to the model.

model Accuracy Accuracy
s = 224 s = 70

ResNet-50 0.9550 ± 0.0069 0.9169 ± 0.0384
DenseNet-121 0.9433 ± 0.0039 0.8931 ± 0.0267
MobileNet-V2 0.9366 ± 0.0400 0.8875 ± 0.0277

We also tested the effects of the two-step transfer learning method: first, train the last

fully connected layer and freeze the remaining layers for several epochs, and then fine-tune

the entire network. We fixed the parameter of the feature extractor for the first six epochs.

Table.  2.5 shows that two-step methods performed slightly worse than training the model

directly. This phenomenon typically happened when the input domain was very different

from the pre-trained data to new data.

Table.  2.6 shows the model performance after removing maple species.
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2.5 Conclusion and Future Research

In this study, we investigated the potential use of CNNs for hardwood lumber identifica-

tion based on tangential plane images. We achieved over 95% successful classification rate

for a single model and 98% by applying the model ensemble. The selected CNNs can identify

lumber through the tangential plane correctly. In the future, we will focus on analyzing the

feature importance of our data by removing specific features and comparing the decrements

of performance for different species.
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3. BARK IDENTIFICATION

This is a post-peer-review, pre-copyedit version of an article published in European
Journal of Forest Research. The final authenticated version is available online at:  https:
//doi.org/10.1007/s10342-021-01407-7 .

Abstact

Species identification is one of the key steps in the management and conservation planning

of many forest ecosystems. We introduce Deep BarkID, a portable tree identification system

that detects tree species from bark images. Existing bark identification systems rely heavily

on massive computing power access, which may be scarce in many locations. Our approach

is deployed as a smartphone application that does not require any connection to a database.

Its intended use is in a forest, where internet connection is often unavailable. The tree

bark identification is expressed as a bark image classification task, and it is implemented as

a Convolutional Neural Network (CNN). This research focuses on developing light-weight

CNN models through knowledge distillation. Overall, we achieved 96.12% accuracy for tree

species classification tasks for ten common tree species in Indiana, USA. We also captured

and prepared thousands of bark images - a dataset that we call Indiana Bark Dataset - and

we make it available at  https://github.com/wufanyou/DBID .

Wu, F., Gazo, R., Benes, B., & Haviarova, E. (2021). Deep BarkID: a portable tree bark identification
system by knowledge distillation. European Journal of Forest Research.
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3.1 Introduction

Species recognition is one of the key steps in management and conservation planning

of many forest ecosystems [  46 ]–[ 48 ]. Autonomous forest inventory could be performed by

automatically identifying tree species. Functionality and productivity of forwarders, har-

vesters and other tree harvesting operations, such as sorting by species, could be improved

by automating tree identification [  49 ]. Similarly, automated tree species identification could

streamline sawmill merchandising. sorting and processing operations. Tree identification is

useful in industrial processing, but can also assist non-professionals in tasks, e.g., land price

estimating [ 50 ], and in public education.

Bark, leaves, leaf shape, needle distribution, and fruits are important features commonly

used to help in tree species identification. Using bark to identify trees has more advantages

than using features such as leaves or fruits [  51 ]. The bark is present in all seasons, it

does not change significantly between seasons, and it even maintains its main structure after

harvesting and during log yard storage. The bark is easily accessible and localized as opposed

to tree feature distribution that requires overall tree visibility, presence of leaves or buds.

Moreover, tree bark is visually accessible to most machines in standing tree inventory, where

foliage and fruits may not be observable. However, using bark alone to identify some tree

species may be complicated and unreliable even for experts [ 52 ].

Several studies have been conducted in the last two decades to improve tree identification

accuracy based on bark, treating it as a texture recognition task [ 53 ]. A typical pipeline of

texture recognition is to use two-step methods that first extract features from images. Those

features are then fed into either linear (e.g., support vector machine (SVM)) or no-linear

(e.g., Multilayer Perceptron (MLP)) classifiers . Zheru Chi, Houqiang Li, and Chao Wang

[ 54 ] proposed a method using Gabor filter banks, and Yuan-Yuan Wan, Ji-Xiang Du, De-

Shuang Huang, et al. [ 55 ] applied the co-occurrence matrices, histogram, and auto-correlation

methods to bark identification. Yuan-Yuan Wan, Ji-Xiang Du, De-Shuang Huang, et al. [ 55 ]

reported that adding color features could improve performance, and Jiatao Song, Zheru Chi,

Jilin Liu, et al. [ 56 ] employed the Grey-Level Co-occurrence Matrix (GLCM) assisted by Long

Connection Length Emphasis (LCLE) for bark classification. Bertrand, Ameur, Cerutti,
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et al. [ 57 ] used handcraft features, considering shape, color, structure, and orientation of

bark by using Canny filters, hue histogram, and Gabor filters. Boudra, Yahiaoui, and

Behloul [ 58 ] introduced Termed Statistical Macro Binary Pattern (SMBP), a variant of

Local Binary Pattern that represents the intensity distribution within the macrostructure

of large spatial support by one macro pattern code. Fekri-Ershad [  59 ] used Local Ternary

Patterns (LTP) and then fed them to the Multilayer Perceptron (MLP). Remeš and Haindl

[ 60 ] introduced rotationally invariant multispectral textural features and reported 90.4%

accuracy on BarkNet [ 51 ] while using nearest neighbor classifier.

In addition to texture recognition, tree identification based on the bark can also be treated

as an image classification task by employing Convolutional Neural Networks (CNNs) [ 4 ].

CNNs were successfully used for bark identification in several studies [ 50 ], [  51 ], [  53 ], [  61 ]–[ 63 ].

These studies report accuracy equally good or better as compared to texture classification

methods with benefits of easy implementation and end-to-end training. However, they all

utilize large models that are relatively heavily dependent on computing resources, e.g., VGG-

19 [ 64 ] or ResNet [ 9 ].

Currently, the well-performing bark identification systems rely on the internet connection

to transfer the bark image to a server and to access massive computing power. However,

in many forests, remote online server connections are often not available. An offline frame-

work implemented on a portable device may solve this problem. Knowledge distilling [ 65 ]

is a modern neural network technique for reducing the size of the neural network while

maintaining its performance. Our research focuses on developing a lightweight CNN model

through knowledge distillation for tree identification based on the bark.

3.2 Material and Methods

3.2.1 Study Area

The bark images used in this study were collected at Martell Forest near West Lafayette,

Indiana, USA (40◦25’ N; 87◦2’ W). Martell Forest is operated by Purdue University, Forestry,

and Natural Resource Department, Fig.  3.1 . It has a total area of 193 ha, of which 70% is

covered by deciduous forest.
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Figure 3.1. Map of study area at Martell Forest near West Lafayette, Indiana,
USA (40◦25’ N; 87◦2’ W).

3.2.2 Bark Image Data

We collected 309 images from 61 trees of 10 different species (see Fig.  3.2 ): Sugar Maple

(Acer saccharum), American Hornbeam (Carpinus caroliniana), American Beech (Fagus

grandifolia), Yellow Poplar (Liriodendron tulipifera), Black Walnut (Juglans nigra), Ameri-

can Sycamore (Platanus occidentalis), Black Cherry (Prunus serotina), White Oak (Quercus

alba), Northern Red Oak (Quercus rubra), and Black Locust (Black Locust). We used an

iPhone Xs to capture the images. The original image resolution was 3, 024 × 4, 032. We

took 5-7 images per tree at a distance between 20 - 60 cm away from the trunk. The

Diameter at Breast Height (DBH) varied between 20 - 100 cm. The images were divided

into non-overlapping patches of resolution 224 × 224 suitable for deep learning, resulting

in 18,540 individual images with about 2,000 images representing each tree species (see
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(a) A. Beech (b) Black Cherry (c) Black Locust (d) Hornbeam (e) Sugar Maple

(f) A. Sycamore (g) N. Red Oak (h) Yell. Poplar (i) Black Walunt (j) White Oak

Figure 3.2. Sample images for Indiana Bark Dataset.

Tab.  3.1 for details). We call this Indiana Bark Dataset (IBD), and it is available at

 https://github.com/wufanyou/DBID .

We also used data from BarkNet [  51 ] that includes 20 different tree species ranging from

24 to 109 trees per species (see Tab.  3.1 ). The total number of trees is 998. Each tree

species is represented by 596 to 2,724 images, and the total number of images is 23,359. The

original BarkNet dataset contains 23 different species, but only 20 species were used during

their experiments since 3 species have an insufficient number of images to use.

3.2.3 Knowledge Distillation

We applied a vanilla Response-Based Knowledge Distillation. The main idea is that the

student model mimics the teacher model to obtain a competitive or superior performance.

Here, the teacher model and student model are standard terms in knowledge distillation.

For model compression purposes, typically, the teacher model’s parameters size is much

larger than that of the student model. The response-based knowledge distillation is sim-
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Table 3.1. Species list for BarkNet and Indiana Bark Dataset. The last col-
umn is the number of non-overlapping sub-images given the crop size 224×224
and down sample rate 2. We directly deleted three species from the BarkNet
list which are not used in the experiments due to small number of images.

Dataset Species Common name Trees Img SubImgs

Indiana Acer saccharum Sugar Maple 6 31 1,860
Bark Carpinus caroliniana American hornbeam 6 30 1,800

Fagus grandifolia American Beech 5 24 1,440
Liriodendron tulipifera Yellow Poplar 7 35 2,100
Juglans nigra Black Walnut 6 30 1,800
Platanus occidentalis American Sycamore 6 30 1,800
Prunus serotina Black Cherry 6 30 1,800
Quercus alba White Oak 6 32 1,920
Quercus rubra Northern Red Oak 7 35 2,100
Robinia pseudoacacia Black Locust 6 32 1,920
Total Indiana Bark 61 309 18,540

BarkNet Abies balsamea Balsam Fir 41 922 28,235
Acer rubrum Red Maple 64 1,676 48,925
Acer saccharum Sugar Maple 81 1,999 68,040
Betula alleghaniensis Yellow Birch 43 1,255 37,325
Betula papyrifera White Birch 32 1,285 33,892
Fagus grandifolia American Beech 41 840 2,3904
Fraxinus americana White Ash 61 1,472 5,3995
Larix laricina Tamarack 77 1,902 11,4956
Ostrya virginiana American Hophornbeam 29 612 29,723
Picea abies Norway Spruce 72 1,324 35,434
Picea glauca White Spruce 44 596 19,673
Picea mariana Black Spruce 44 885 43,127
Picea rubens Red Spruce 27 740 22,819
Pinus resinosa Red Pine 29 596 14,694
Pinus strobus Eastern White Pine 39 1,023 25,621
Populus tremuloides Quaking Aspen 58 1,037 63,247
Quercus rubra Northern Red Oak 109 2,724 72,618
Thuja occidentalis Northern White Cedar 38 746 19,523
Tsuga canadensis Eastern Hemlock 45 986 27,271
Ulmus americana American Elm 24 739 27,821

Total BarkNet 998 23,359 810,843

Total all 1,059 23,668 829,383

plistic yet effective for model compression and has been broadly used in various tasks and

applications [ 66 ].

Specifically, in this paper, we train a larger teacher model and then use the predicted

labels of it as soft labels to train a smaller student model. The hard target is the ground

truth of an image expressed as a one-hot vector, while the soft target is a predicted vector

from a teacher network. The new soft vector label can be seen as a teacher who helps

the student network to learn the difficult hard target [ 65 ], [ 66 ]. Numerically, knowledge

distillation is similar to label smoothing, and can regularize the model during training. A

detailed discussion of knowledge distillation can be found in [ 67 ].
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Figure 3.3. Visualization of our implementation of knowledge distillation
during training. The black box contains the steps performed during the infer-
ence. The KL loss and CE loss are the standard Kullback–Leibler divergence
and cross-entropy loss, respectively. t will be set to 5 in this study as the
parameter of temperature T .

Fig.  3.3 shows an overview of our implementation of knowledge distillation during the

training, while the black boxes contain all the steps used for the inference. The input is

a set of images, and the output differs in training and inference. For training, the output

is the weighted sum of Kullback–Leibler divergence (KL) loss [  68 ] and cross-entropy (CE)

loss [  69 ], while for the inference, the output is the prediction of the student model activated

by Softmax.

It is common to calculate the probability qi by Softmax as:

qi = exp(zi/T )∑
j exp(zj/T ) , (3.1)

where zi and zj and are the ith and jth components of output of the model. i and j are

bounded by the number of classes. T (T >= 1) is a factor called temperature. Like simulated

annealing, as T grows, the outputs become smoother, providing more information about

which classes the teacher found more similar to the predicted class [ 65 ].

We use the following loss function to apply knowledge distillation:

L(QS, Qτ
S, Qτ

T , y) = αT 2LKL(Qτ
S, Qτ

T ) + (1 − α)LCE(QS, y), (3.2)
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where QS is the output of the student, and Qτ
S and Qτ

T are the soft outputs from the student

and the teacher, respectively, and y is the true label. The symbols LKL and LCE are the

standard Kullback–Leibler divergence (KL divergence) and cross-entropy loss, respectively,

and α is a weight parameter to control the power of knowledge distillation (we used α = 0.5

in our experiments). The KL divergence (Sometimes called relative entropy) is a metric

commonly used to measure the difference between two distributions. Formally:

LKL(P, Q) =
∑

i
Pi log

(
Pi

Qi

)
, (3.3)

here Pi and Qi are the probability of two difference distribution P and Q for ith classes.

3.2.4 Deep BarkID

We used two state-of-the-art CNN architectures: ResNet [  9 ] and MobileNet [  11 ]. Each

is provided in several versions, which differ in the number of layers. Tab.  3.2 summarize

the architectures that we used in this paper. We selected shallow versions of these CNNs:

ResNet-34 and MobileNet-V2. Since in the original BarkNet [  51 ] used ResNet-34, for com-

parison purposes, we use ResNet-34 as well. ResNet-34 has a larger number of parameters

(21.79M) and better fitting capacity. However, as the trade-off for larger parameter space,

ResNet-34 is slower during the inference phase since it requires 3.68 GMACs (giga multi-

ply–accumulate operation per second). A larger model might become difficult to train or

easy to over-fit when the dataset is small. MobileNet-V2 is the advanced architecture that

reduces parameter numbers (3.50M), requires only 0.31 GMACs, and is 11.9× faster than

ResNet-34. This significantly speeds up inference time while retaining high classification

accuracy [ 65 ], [ 66 ].

We used ResNet-34 as a teacher model and MobileNet-V2 as a student model. We

then applied the complete Knowledge Distillation, achieving high prediction accuracy and

inference performance by utilizing each model’s benefits. We refer to this method as Deep

BarkID.
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Table 3.2. Model architecture summary for ResNet-34 and MobileNet-V2.
Residual block and inverted residual block are composed of two convolutional
layers that differ in the intermediate channel numbers.

Model Output Size Layer Param (M)

ResNet-34 64 × 112 × 112 7 × 7, stride 2 0.01
64 × 56 × 56 3 × 3 max pool, stride 2 0.074
64 × 56 × 56 (3 × 3, 64 residual block)×2 0.148
128 × 28 × 28 (3 × 3, 128 residual block)×4 1.116
256 × 14 × 14 (3 × 3, 256 residual block)×6 6.822
512 × 7 × 7 (3 × 3, 512 residual block)×3 13.114
1000 × 1 × 1 average pool, 1000-d fc, softmax 0.513
Total 21.79

MobileNet-V2 32 × 112 × 112 3 × 3, stride 2 0.001
16 × 112 × 112 (3 × 3, 16 inverted residual block)×1 0.001
24 × 56 × 56 (3 × 3, 24 inverted residual block)×2 0.014
32 × 28 × 28 (3 × 3, 32 inverted residual block)×3 0.040
64 × 14 × 14 (3 × 3, 64 inverted residual block)×4 0.184
96 × 14 × 14 (3 × 3, 96 inverted residual block)×3 0.303
160 × 7 × 7 (3 × 3, 160 inverted residual block)×3 0.795
320 × 7 × 7 (3 × 3, 320 inverted residual block)×1 0.474
1280 × 7 × 7 (3 × 3, 1280 inverted residual block)×1 0.412
1000 × 1 × 1 average pool, 1000-d fc, softmax 1.281
Total 3.505

3.2.5 Implementation

Inspired by the implementation from [  51 ], we first downsampled the whole image to the

half size of its original resolution to speed up the image reading process. Tab.  3.3 lists all

details of our implementation. Most hyperparameter are the same in the [  51 ]. We followed

the augmentation approach, and we used image flip and gray-scale, because a fair amount

of randomness in terms of illumination and scale, was present during the data gathering

process.

We used transfer learning to speed up our training. We applied the ImageNet pre-

trained model for most of our experiments and for both ResNet-34 and MobileNet-V2. The

pretrained models are obtained from torchhub  . We employed a slightly different fine-

tuning strategy than the original BarkNet paper: we did not freeze the first layer (7 × 7

 ↑ https://pytorch.org/hub/
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Table 3.3. Implementation Details.

Name Parameter

Training Optimizer Adam
Initial learning rate 10−4

Batch size 32
Input Size 224
Max epoches 40
Learning rate decay 0.2 at epoch 16 and 33

Knowledge Distillation Temperature T 5
Weight Factor α 0.5

CONV), because the bark image data distribution was significantly dissimilar to those from

ImageNet. We trained the CNNs with batch size 32 and 40 epochs.

3.2.6 Deployment

Our experiment was implemented on a desktop computer equipped with a quad-core ×

Intel Xeon E5-2630 v4 CPU running at 2.20GHz, with 128 GB of memory, and with 4 ×

NVIDIA GeForce RTX 2080 Ti GPU. The training time was about one hour (BarkNet)

and five minutes (IBD) for each model. Since the main speed bottleneck during the training

phase in our environment is the File IO, there is no significant speed difference for the teacher

or the student network. All models were developed based on PyTorch 1.4. We also deployed

this model to an iPhone X based on ONNX and Core ML.

3.3 Results and Discussion

The objective of this research was to explore the effectiveness of knowledge distillation.

To fully evaluate CNN’s performance, we used five-fold cross-validation, which is the same

as in [  51 ]. We applied five folds (20% each) cross-validation without overlapping. For each

model, four folds of data (80%) were used during training, and the remaining 20% was used

for testing. Data splitting was performed tree-level for BarkNet that different trees will be

used during the training and testing. Due to the lack of tree-level labels, the image splitting

for IDB can only be performed on the image level. However, we can make sure that no same
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Table 3.4. Model accuracy comparison. ’-’ indicates the lack of results in
the particular article on the given dataset and bold values indicate the best
values given each condition. The method column indicates either the model
architecture (e.g., MobileNet-V2) or hybrid methods.

Dataset Method Single Crop Multiple Crop

IBD ResNet-34 91.20% 97.09%
MoblieNet-V2 89.32% 95.80%
Deep BarkID 91.90% 96.12%

BarkNet ResNet-34 [ 51 ] 87.04% 93.88%
Boudra, Yahiaoui, and Behloul [ 70 ] 79.10% -
Remeš and Haindl [ 60 ] 90.04% -
ResNet-34 (ours) 90.02% 94.62%
MoblieNet-V2 88.45% 93.51%
Deep BarkID 88.75% 94.36%

bark area is used for both training and testing. We report average results of single crop

accuracy and multiple crop accuracy based on majority voting in Tab.  3.4 . Generally, using

multiple crops as an ensemble technique will increase the accuracy.

3.3.1 Performance on IBD Dataset

ResNet-34 performed best on the IBD, and this result was in line with our expectations.

Knowledge distillation used in Deep BarkID contributed to this result, increasing MobileNet-

V2 performance from 89.32% to 91.90% and from 95.80% to 96.12% for single crop and

multiple crops, respectively. Fig.  3.4 shows the confusion matrix of our Deep BarkID. It

shows that Yellow Poplar was hard to identify and might be confused with Black Cherry

(Prunus serotina).

3.3.2 Performance on BarkNet Dataset

For the BarkNet dataset, ResNet-34 performed best and reached 90.02% and 94.62% for

single and multiple crops. The performance of our ResNet-34 was higher than reported in

the original study (87.04% and 83.88%), probably because we did not freeze its first layer.

Knowledge distillation also had a distinct effect. Compared to the vanilla MobileNet-V2,

our Deep BarkID increased the performance of MobileNet-V2 from 88.45% to 88.75% and
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Figure 3.4. The confusion matrix for Multiple Crop of Deep BarkID using
Indianan Bark Dataset.

Table 3.5. ResNet-34 model accuracy for different weight initialization using the IBD.

Weight initialization Single Crop Multiple Crop

[ 9 ] 58.60% 66.67%
ImageNet Pretrained 91.20% 97.09%
BarkNet Pretrained 92.24% 97.41%

93.51% to 94.36% for single and multiple crops, respectively. Since the dataset is relatively

large, the effectiveness of knowledge distillation slightly decreases. Remeš and Haindl [ 60 ]

proposed a texture classification method with relatively higher accuracy on a single crop

(90.4%). However, the author did not mention how they split dataset.

3.3.3 Validity of Transfer Learning

Many studies, e.g., [ 31 ], [  50 ], [  51 ], [  61 ] show that transfer learning helps in plant identifi-

cation applications. Still, most of these studies only used the ImageNet pre-trained model.

Using a pre-trained model speeds up training based on our experience, but may not improve
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the performance. Transfer learning will have better performance if the datasets have similar

features and distribution, so we conducted an ablation study to check the power of transfer

learning.

Tab.  3.5 shows the results confirming our expectation that using the BarkNet pre-trained

model would help to increase model accuracy. In particular, accuracy increased 91.20% to

92.24%. Training the model from the beginning is often challenging (see Tab.  3.5 ), and we

achieved an accuracy of only 58.6% and 66.67%. This result supports the common agreement

that transfer learning is useful for plant identification.

3.3.4 Bark Images Dataset for Deep Learning

In this research, we test our methods on IDB and BarkNet datasets only. Currently, there

are several other publicly available tree bark image databases, such as AFF Dataset [ 52 ],

Trunk12 Dataset [  71 ], BarkTex dataset [ 72 ] and Bark101 [  73 ]. The AFF bark dataset is

a collection of the most common Austrian trees. It contains 1,182 bark samples (960 ×

1325 pixel) belonging to 11 classes. The size of each class varies between 7 and 213 images.

AFF samples are captured at different scales and under varying illumination conditions.

The Trunk12 dataset (3000 × 4000 pixels) contains 393 images of tree bark of 12 different

trees in Slovenia. The number of images per class varies between 30 and 45 images. Bark

images are captured under controlled scale, illumination, and conditions. The types are more

homogeneous than those of AFF. The BarkTex dataset contains 408 samples from 6 species,

i.e., 68 images per species. Those images have small (256 × 384 pixels) resolution, and

they have unequal natural illumination and scale. The Bark-101 dataset is composed of 101

classes of tree barks from various age and size for a total of 2592 images (69-800)×(112-804)

pixels with noisy data like shadows, mosses or illumination changes.

IDB, AFF, Trunk12, and BarkTex datasets share a similar limitation. They are relatively

small in size, and the species variance is slight. In other words, it makes the performance

evaluation meaningless for most deep learning methods since all methods will achieve good

performance. To properly evaluate the performance of deep learning techniques, we highly

recommend using large datasets, e.g., BarkNet or Bark-101.
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3.3.5 Potential of Deep Learning Methods

Several studies confirm the advantage of using deep learning methods for bark identifi-

cation [ 51 ], [  53 ], [  61 ]. However, some of them point to several drawbacks. Šulc and Matas

[ 53 ] pointed out that deep learning methods may require massive computing resources and

large dataset sizes and argued that portable model, e.g., MobileNet, tends to decrease the

model accuracy. We propose that this always does not hold true, and in this paper, we show

that using knowledge distillation, a portable model can achieve a comparable performance.

3.3.6 Limitations and Future Work

While our approach shows results that are either comparable or better than the state-

of-the-art algorithms, it does not come without limitations. Indiana Bark Dataset size is

smaller than the BarkNet. It would be useful to capture more images from more trees in

different light conditions, different seasons, and different resolutions and retrain our models.

We have developed an App for a portable iOS device shown in Fig.  3.5 . However, its user

interface could be improved. We also plan to deploy it on on Android devices.

3.4 Conclusion

We developed Deep BarkID, a light-weight tree species identification application, by using

deep learning. We used transfer learning from BarkNet and knowledge distillation to reduce

the inference time of tree species identification from bark images. We achieved 96.12%

accuracy for ten tree species classification tasks with the multi-crop setup using the Deep

BarkID.
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Figure 3.5. A snapshot of Deep BarkID deployed on an iPhone X.
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4. TREE RING MEASUREMENT
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Abstract

Dendrochronology (tree-ring dating) is a quantitative dating method based on analyzing

the information from the growth ring of trees. Tree-ring dating is not only beneficial for

scientific purposes but also is essential in the wood industry. Basic image processing tech-

niques have been applied to automatic detection of tree-ring boundaries and consequently

help in tree ring measurement. But performance of such approaches is limited, especially

when the wood surface is rough. In this poster, we focus on providing a better dataset

for the research of automatic detection of tree-ring boundaries as well as developing deep

learning-based models to solve the problem.

Wu, F., Gazo, R., Benes, B., & Haviarova, E. (2021).
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4.1 Introduction

Dendrochronology (tree-ring dating) is a quantitative dating method based on analyzing

the information from the growth rings of trees [  74 ], which has been applied in many scientific

fields, such as archeology [ 75 ], climatology [  76 ], hydrology [  77 ], quaternary geology [  78 ] and

other environmental studies. Tree-ring dating is not only essential for scientific purposes

but can be beneficial in forest management and the wood industry. In forest management

and procurement, the mean annual ring width of logs could help the managers determine

average growth rate after previous forest management interventions and the wood quality

during processing, and use that information to adjust their forest management strategies.

Norell [  79 ] pointed out that tree ring measurement could be performed on either clean cross-

sections of wood or rough end faces of tree trucks depending on different demands and

circumstances for end face treatment, imaging techniques, and analysis time.

Wood is the secondary xylem of tree plants. It is commonly used to perform tree-ring

dating. Earlywood and latewood are frequently combined in a single growth ring. Earlywood

has a thinner cell walls and a larger lumens than latewood, and it usually grows early in the

season. From an anatomy perspective, softwood (wood from conifers) and hardwood (wood

from deciduous trees) have different structures. Softwood is relatively simple, consisting

primarily of tracheid cells (90 — 95 % by mass). And in the transverse section (cross section),

the growth rings of softwood are either district or not, according to the earlywood to latewood

transitions, growth rate of trees, and other factors. Hardwood, in contrast to softwood, is

more complex and has more cell types. Within one growth cycle, pores (cross sections of

vessel elements), are distributed differently and can be divided into ring-porous (larger pore

diameters in earlywood), diffuse-porous (similar pore diameters within one growth ring), and

semi ring-porous (between two distinct types). The difficulty of detecting growth ring edges

in hardwood species correlates with the pore distribution (simpler in ring-porous species),

pore diameter (simpler in large pore diameter species), and other factors, e.g., the color of

the wood. Since the hardwood species have more diversity in the cross section, it is still a

significant challenge to identify ring edges accurately and automatically for many hardwood

species.
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Nowadays, the tree-ring measurement process is still time-consuming and often conducted

by experts with the help of stereoscopes and software [ 80 ]. Commercial software, for example,

WinDENDRO™, is helpful in analyzing tree rings by scanners or cameras images. Apart from

that, there are also some open-source equivalents, e.g., measuRing [ 81 ] and MtreeRing [ 82 ],

all of which require mostly clear samples for better detecting of tree-ring boundaries. X-ray

screening is often used to obtain better images, which helps to differentiate ring edges, and

some software e.g., LignoVision™, now supports X-ray images. Either surface cleaning or

X-ray screening is not very economically or technically feasible in the forest or sawmill, so

it is still valuable to discover better methods to measure annual tree ring widths when the

surface of wood log is rough (Figure.  4.1a ).

(a) Rough surface.

Pith
Heartwood
Sapwood

(b) Clean surface with some annotations.

Figure 4.1. Sample images of Hickory (Carya spp.).

Image processing methods have been used to measure tree ring widths automatically.

Soille and Misson [ 83 ] applied morphological operations, e.g., erosion and dilation, open-

ing and closing, and watershed segmentation, to semi-automatically measure the tree ring

area for Norway Spruce (Picea ablies L.). Cerda, Hitschfeld-Kahler, and Mery [ 84 ] used a

Generalized Hough Transform to estimate tree rings with the help of image gradient and

edge detection. Such image processing algorithms are often used in tree ring measurement
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literature [  85 ]. A more comprehensive review of image processing-based methods of tree ring

measurement could be found in Fabijańska and Danek [ 80 ], These methods rely highly on the

assumption that tree ring images from trunks contain high-contrast edges and trees rings are

in a common circular shape. When those methods analyze noisy images, their performance

declines drastically.

Modern methods, such as machine learning and especially deep learning, can also be

employed to detect tree rings. Fabijańska and Danek [  80 ] treated tree rings detection as a

semantic segmentation with the state-of-the-art model U-Net [  86 ]. Similarly, Habite, Abdel-

jaber, and Olsson [  87 ] applied pix2pix [  88 ], a derivative from generative adversarial network

(GAN) [  89 ], to obtain output ring edges. Compared to image processing methods, these su-

pervised learning-based methods often show better result, but simultaneously, require larger

dataset size and laborious annotation of images. To our knowledge, there are only few pub-

licly available ring image datasets with annotations, e.g, in Fabijańska, Danek, Barniak, et

al. [ 90 ], which somehow handle the development of creative machine learning application for

tree ring edge detection.

In this paper, we focus on 1) developing a new dataset of images of major hardwood

species annotated for tree ring detection and 2) apply the state-of-art semantic segmentation

models to the dataset.

4.2 Material and Methods

Figure.  4.2 shows the overall methodology of the research. Steps 1-3 are the data collec-

tion processes, Steps 4-5 are the annotation processes, and Step 6 is the training and testing

process. In this section, we will introduce those steps in detail.

4.2.1 Data Collection

We obtained in total 136 wood cookies (trunk cross sections approximately 10-12 cm

thick) of 11 representative US hardwood species with diameters from 25 to 60 cm. Table.  4.1 

summaries critical information for this dataset.
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Figure 4.2. Flow chart of the whole process.

First, we drilled four holes on each rough wood surface (surface cut with a chainsaw)

for later alignment purposes. Then we put the rough wood cookies inside the image-taking

frame (Figure.  4.3 ). The area of the frame is 95 × 95 cm and the height to the Lens of the

camera is 92 cm. There were in total six fill lights, four pointing downwards and two parallel

to the cross-sections to reduce reflected light spots. We used autofocus (AF) and auto white

balance (AWB) to obtain better quality images during the image-taking process, so the pixel

area and contrast varies slightly for each wood cookie. An image was taken of each side of

the cookie.

After initial rough-surface images were taken , each cookie surface was machined flat

using a Model 40 Thermwood CNC router and a flycut tool until both sides were flat. The

cookies that were surfaced using the Model 40 Thermwood CNC router had to meet a height

requirement due to the 22.3 cm clearing on the router carriage. The cookies could be no

greater than 19.4 cm tall because each cookie laid on a 1.59 cm particleboard, and on top

of the particleboard was a 1.91 cm sheet of plywood. Three programs were run depending

on the diameter of each cookie. Program 1 was used on cookies 30.5 cm in diameter or less.

Program 2 was used for cookies 33 to 46 cm in diameter. Finally, program 3 was used for
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Table 4.1. Summary of wood samples.

Species Common name Cookies #

Fraxinus spp. Ash 11
Tilia americana Basswood 11
Juglans nigra Black walnut 14
Prunus serotina Cherry 13
Celtis occidentalis Hackberry 10
Acer saccharum Hard maple 14
Carya spp. Hickory 12
Quercus rubra Red oak 14
Acer saccharinum Soft maple 12
Quercus spp. White oak 14
Liriodendron tulipifera Yellow poplar 11

Total 136

cookies 48.3 cm in diameter and up. Processing any individual side of one cookie could take

anywhere from 5 to 25 minutes, depending on how rough the individual cut was. Having

three different programs allowed the CNC operator to save time and not waste any motions

that were not cut. The maximum material that could be taken off in one pass from the

router was 0.51 cm. So after finished run the Z axis height was adjusted by -0.51 cm. This

process was repeated until one side of the cookie was completely flat. Once flat the cookies

were turned over to begin surfacing the other side. The previous steps were repeated until

the entire cookie was flat on both sides. By the time the CNC processing is finished, the

cookies were flat on both sides but left with small machine marks that were going to be

sanded off in the final step.

With the hardwood cookies flat on both sides, they were sanded with a 60-grit sanding

belt using a TimeSaver Series 1300 wide belt sander. Using the TimeSaver belt sander

the cookies were sanded until the machine marks from the flycut router bit were eliminated.

Much like the Thermwood router the TimeSaver had a height requirement. No cookies could

be bigger than 12.7 cm tall. So before even being considered to sand, the CNC operator

machined the cookies down to less than 12.7 cm in height. With each pass through the

TimeSaver using 60 grit sandpaper the maximum amount of material the operator could
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Figure 4.3. Frame to take images.

take off was -0.051 cm. Once finished sanding on both sides, a brush, compressed air and

shop vacuum were used remove dust from the surface as necessary to achieve clear cross

sections for the clean-surface pictures.

The clean-surface picture taking was similar to the rough-surface picture taking process,

with the addition that for several species, both dry and wetted surface pictures were taken.

For many species, wetting the surface with water could remove dust and make the surface

features more visible. However, for Black Walnut, the absorbed water will lead to a darker

surface and more invisible ring edges.

4.2.2 Data Annotation

The data annotation process consisted of two steps. We first manually labeled 4 anchors

(East, West, North and South) and the pith coordinates in order to align the annotation

of the both rough and clean images. Then we focused on the clean images, slice one cut

started from the pith of the cookie to the edge of the image, and manually annotate ring

edges. Here we only annotated those ring edges with clean boundary to avoid potential

false positives samples created by human considering that the ring edges are arrange tightly.

Slightly different from [ 80 ] who annotated only one point per ring as ground truth, we used
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two or three points to represent either an arc or a line. Figure.  4.4 shows the annotation

example. This was time consuming task that typically took 5 minutes to fully label one slice

of each wood cookie.

Figure 4.4. Annotation Sample of White Oak (Quercus spp.).

4.2.3 Methods

We define this tree-ring measurement as a semantic segmentation task. We want to

obtain a model f : I → P , where I ∈ RL×W is the input ring image. Here L and W are

the length and width for the image. In this research, we set W to 128 since this width is

also the annotation width we used. P ∈ RL×3 is the prediction heat map of ring edges and

only outputs the left mid and right point of each pixel row. Slightly different from [  80 ], [  87 ],

which tried to detect all edges of rings by using segmentation methods and output a mask

of a similar shape to the input, we simplify the task since the rough images may not even

have full clean growth ring edges by raw eyes. To point out, our annotation is

As the problem formed as semantic segmentation task, we could follow common encoder-

decoder architecture, and used some the-state-of-art encoder e.g., ResNet [ 9 ], Efficient-

Net [  91 ] and MobileNet [ 11 ] and FPN [ 92 ] as decoders in this research. Figure.  4.5 is the

illustration of the architecture used in this research.
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Figure 4.5. Illustration of the FPN architecture.

4.2.4 Post-processing and Evaluation

Post-processing is used to finalize rings. We used a simple local maximum once the

heatmap is obtained. Also, we remove some local maximum that the likelihood is less than

0.05.

To simplify the evaluation process, we also followed the proposed evaluation methods

in [  80 ]. They defined the correctly detected tree-ring boundaries as true positives (TP), tree-

ring boundaries omitted by models as false negatives (FN), and false boundaries introduced

by models as false positives (FP). If the predicted ring edge is within the certain distance of

the ground truth, we consider it is a true positive; otherwise, it is a false prediction. We need

to point out that the certain distance is a sensitive parameter, and in [  80 ], they use a pixel

distance of 2 for evaluation. We also inherit the recall (REC), which is called sensitivity as

well, and precision (PREC) metrics that Eqs ( 4.1 ) and (  4.2 ) determine, respectively. Finally,

we use the balanced F score (F1) to evaluate the performance, which is the harmonic mean

of precision and recall (Eqs.  4.3 ).

REC = TP

TP + FN
(4.1)

PREC = TP

TP + FP
(4.2)
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F1 = 2 · REC · PREC

REC + PREC
(4.3)

4.3 Results and Discussion

In this research, we used a desktop computer equipped with a quad-core × Intel Core

i7-8700K running at 3.70GHz, 32 GB of memory, and × NVIDIA GeForce RTX 1080 Ti

GPU. We trained all models with the same hyper parameters. We used binary cross entry

loss to train the models, and Table.  4.2 shows the details of all necessary parameters in this

research. We split the data into 80% from training and 20% for testing without overlapping.

In the following section, we will discuss some factors that will affect the performance of our

methods.

Table 4.2. Implementation Details.

Name Parameter

Input size 1024 × 128
Output size 256 × 3
Optimizer Adam
Learning rate 10−5

Mini batch size 16
Max iteration 2000

First, we discuss the performance over different species in Table.  4.3 . Overall, for most

species, the F1 scores range from 0.7 to 0.9, showing that the model could discover ring

edges. However, for some species, e.g., White oak and Hard maple, the F1 scores are pretty

low, indicating the potential failure of the models. Since we only trained one model for all

species, that failure might come from the anatomy structure. White oak and Hard maple are

with abundant and banded parenchyma cells. Those features might make the model detect

more false ring edge boundaries.

Table.  4.4 shows the impacts of surface cleanliness. It meets our assumption that ring

edges from the rough surface are the hardest to be identity. Also, wetting the surface makes

more ring edges visible both by raw human eyes and the models.
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Table 4.3. The performance over different species. The backbone encoder is
Efficient-b0, the surface is clean and dry and the color space is V.

Species Common name TP FN FP REC PREC F1

Fraxinus spp. Ash 126 6 118 0.95 0.52 0.67
Tilia americana Basswood 207 32 76 0.87 0.73 0.79
Juglans nigra Black walnut 251 16 68 0.94 0.79 0.86
Prunus serotina Cherry 201 26 107 0.89 0.65 0.75
Celtis occidentalis Hackberry 68 9 18 0.88 0.79 0.83
Acer saccharum Hard maple 36 6 36 0.86 0.50 0.63
Carya spp. Hickory 169 18 15 0.90 0.92 0.91
Quercus rubra Red oak 276 30 126 0.90 0.69 0.78
Acer saccharinum Soft maple 326 98 89 0.77 0.79 0.78
Quercus spp. White oak 149 21 145 0.88 0.51 0.64
Liriodendron tulipifera Yellow poplar 82 11 78 0.88 0.51 0.65

Table 4.4. The impacts of surface cleanliness. Note that the sum of true
positive and false positives is now a constant due to the image alignment and
crop reasons.

Surface TP FN FP SEN PREC F1

Rough 1450 863 1563 0.63 0.48 0.54
Clean Dry 1508 550 1072 0.73 0.58 0.65
Clean Wet 1891 273 876 0.87 0.68 0.77

As in the [ 80 ], use proper color space will enhance the accuracy of the prediction. We

followed the same setup and compared the impact of utilizing RGB, HSV, and V (relative

lightness or darkness of a color) color space. In Table.  4.5 , our experiments once demon-

strated that using V channel will somehow reduce overfitting by applying a robust prior

knowledge that ring edges are often shown that when the relative lightness changes raptly.

We tested several different backbone encoders here in Table.  4.6 . Since the current

labeled dataset size is small, we selected relative lightweight models here. It is not surprising

that Efficient-b0 is the best among all three encoders since Efficient was shown as highly-

performing in many other tasks.

This approach has several limitations. First, the labeled dataset size is relatively small,

and we just utilized one rectangular area per sample. Specifically for some rough samples,
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Table 4.5. The impacts of Color Space. The backbone encoder is Efficient-b0,
the surface is clean and wet.

Color Space TP FN FP SEN PREC F1

RGB 1633 236 788 0.87 0.67 0.76
HSV 1686 421 927 0.80 0.65 0.71
V 1891 273 876 0.87 0.68 0.77

Table 4.6. Choices of Encoder. The surface is clean and wet and the color space is V.

Encoder TP FN FP SEN PREC F1

MobileNet-V2 1552 634 773 0.71 0.67 0.69
ResNet-18 1449 522 812 0.74 0.64 0.68
Efficient-b0 1891 273 876 0.87 0.68 0.77

Ring edges within those areas might become invisible even for rough eyes. To better utilize

these images in the future, we plan to annotate more rings edges and even try to annotate

the entire cross-section surface instead of just selected sections. There are other studies,

e.g., [  87 ], [  93 ], that try to detect pith automatically. However, we ignored the influence of

pith locations and manually labeled pith. In the real world, the correct localization of the

ring pith is important because the image slices should start from the pith. Detecting the

pith is even more difficult for samples with multiple occurrences of pith. Last, we used a

simple semantic segmentation method to solve the problem aligned with most references

to demonstrate its purpose. There are several advanced ways to enhance the performance,

e.g., using object detection methods with key point identification. In the future, we will

investigate other methods for the ring edge detection task.

4.4 Conclusion

In this paper, we first introduce a new dataset of images of hardwood species annotated

for tree ring detection. It currently consists of 136 common hardwood species from Indiana,

USA. For better future industry utilization, we incorporated both clean and rough images

into this study.
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We applied the state-of-the-art semantic segmentation models to the dataset and achieved

an overall F1 score of 0.77 for clean images, which shows the power of the convolutional neural

network. However, this method failed for rough images in alignment with our assumptions.
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5. ZERO SHOT LEARNING FOR WOOD
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Abstract

The application of Convolutional Neural Network in developing algorithms for machine

wood identification has received significant attention recently. These techniques commonly

use many correctly identified (labeled) images to train a neural network (CNN). This ap-

proach’s limiting prerequisite is the cost of acquisition and the limited availability of a suffi-

cient number (typically hundreds or thousands) of images per species, and the verification of

species labels. In this study, we apply the concept of zero-shot learning to identify the classes

of features that are not present during neural network training. A typical approach in the

zero-shot learning method is to learn the attribute vector instead of the categorical label.

This approach mimics the traditional way of human identification of wood by its features.

Wu, F., Liu, Y., Gazo, R., Benes, B., & Haviarova, E. (2021).
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5.1 Introduction

Wood is a uneatable resource, which supplies are not infinite [ 94 ]. There are about 60,000

wood species that are known to science, and the international trade in round wood is worth

around 17 billions US dollars in 2019 [  95 ], [ 96 ]. The entire economic value of wood is often

under-estimated, especially at the places of origin. There is a large amount of illegal trade

mainly involving rosewood, which is a trade term for a wide range of tropical hardwoods [ 97 ].

From 2014 to 2018, rosewood accounted for 31.7% of the total monetary value of illegal

wildlife trade seizures [ 98 ]. The whole supply chain of forest products is intricate, usually

involving multiple countries. Practically, it is not reliable to use the existing certification

and documentation methods to trace the origin of forest products [  94 ]. Therefore, it is

important to identify the wood species from the source, midpoint, and destination to meet

the legislative requirement and human concerns about sustainability. Besides, commercially

sourcing wood species is essential to functioning economy since different wood species have

different physical, mechanical and chemical properties that affect their final uses and prices.

Genetics-based methods could help to identify wood species and have been successful

in many studies [ 99 ], [ 100 ]. Using a polymerase chain reaction (PCR) to perform DNA

analysis, wood scientists could determine the wood species more accurately. However, it is

sometimes difficult to extract DNA from wood material since for a live tree, there is only a

small amounts of DNA in the xylem and it degrades gradually after harvesting. In addition,

using PCR to amplify DNA may fail, probably due to inhibitory substances such as chemical

extractives, which are common in many wood species [ 99 ]. Apart from DNA-based methods,

chemical methods, e.g., mass spectrometry, stable isotopes, and radio-carbon, are showing

promise in many studies. However, the cost is relatively high, ranging from 100 to 300 US

dollars per sample [ 101 ].

Currently, the mainstream ways of wood identification are anatomy-based methods [ 102 ].

Macroscopic wood anatomy and microscopic wood anatomy are two categories. The latter

is more expensive but more accurate, because it requires microscopy preparation and ob-

servation tools [  101 ]. Experts can define the features of macro and/or micro images to find

references and determine the genus of wood. For example, the distribution of vessel ele-
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ments and the arrangement of parenchyma can often help determine the hardwood genus.

Generally speaking, it takes years of training to master this skill and the number of experts

is declining globally [  103 ]. To overcome the above problem, computer-aided tools for wood

identification have attracted researchers’ attention. InsideWood is one of the most beneficial

online tools for wood identification, it is a database containing feature descriptions and im-

ages of wood species, most of which are microscopic images [  104 ]. Other tools to help wood

identification focusing on macroscopic images, e.g, CITESwoodID and xylotron [ 105 ], [ 106 ].

In recent decades, many studies have focused on automatic wood identification based on

wood image by using Convolutional Neutral Networks (CNN) [  30 ], [ 31 ], [ 103 ], [ 107 ]. These

studies have relatively satisfactory performance, which shows the potential of deep learning

in wood identification. However, all of these studies require relatively large replicates for

each class, and their scopes are usually to narrow down the identification to native species.

We believe these studies will raise the scientists’ attention to collecting more images of each

wood species, but collecting data is always time-consuming and labor-intensive. Therefore,

we should seek an alternative way to automatic wood identification, which fits most wood

collections’ current situation. These collections own thousands of species, each containing

only a few or even just a single sample and a complete feature description with multiple-entry

key, as in InsideWood and CITESwoodID.

Zero-shot learning in machine learning has been proposed to identify objects from the

classes not observed in the training process and predict the classes they belong to. [ 108 ]–

[ 110 ]. The methodology of zero-shot learning is to learn the parameters of observed classes

together with their class representations and rely on the representational similarity between

class labels, so that images can be classified into new classes during the prediction process.

This methodology fits the requirement of current wood collections precisely.

In this paper, we combine the observed classes and non-observed classes by distinguishing

the attributes of objects, and applying zero-shot learning to microscopic wood images in

InsideWood. To our knowledge, this research is the first of its kind to focus on large-scale

wood species identification.
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A B C

Figure 5.1. A set of sample images of True Hickory (Carya aquatica). A, B
and C are cross, tangential and radial sections respectively.

5.2 Material and Methods

5.2.1 Data Description

InsideWood is an open resource for wood anatomy research, that can be searched, and

which incorporates multiple-entry keys to help wood identification [  104 ]. Its database con-

tains more than 9,400 fossil and modern woody dicots descriptions, representing over 10,000

species and 200 plant families, and provides over 50,000 images [ 111 ], most of which are

microscopic images. In this study, we focus on a subset of the InsideWood collection. Ta-

ble.  5.1 lists some statistics of the data we use, all from InsideWood. Those microscopic

images generally follow three views (cross-section, tangential-section, and radial-section).

The cross-section is the most commonly used view in wood identification, with 16,778 im-

ages. There are 13,176 images of the tangential section and 8,969 images of the radial section.

Figure.  5.1 shows some sample images. Those images fall into different views and magni-

fication, and when the magnification information is not well used, the performance will be

degraded.
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Table 5.1. Data Descriptions.
Name #

# of Images Total 38,923
cross section 16,778
tangential section 13,176
radial section 8,969

# of Family 254
# of Species 7,426

Magnification x1 ∼ x300
Resuliton 1000x1500

5.2.2 Attributes

We use a subset of International Association of Wood anatomists (IAWA) Hardwood

List [ 40 ] feature definitions as labeled attributes. We labeled all attributes into three cat-

egories, which implies the observation of attributes in a different section. Table.  5.3 shows

summaries sub categories of each attributes. The features of growth rings are the most

difficult challenging part to learn, it is also in line with the knowledge of experts.

5.2.3 Objective Function

In this research, we applied Direct Attribute Prediction (DAP) [  109 ] to learn probabilistic

attributes. Although DAP performs worse than the compatibility learning frameworks [ 112 ],

it is simple and has a better diagnostic effect. The class label can be calculated by Equa-

tion  5.1 .

f(x) = argmaxc

M∏
m=1

p (ac
m | x)

p (ac
m) , (5.1)

where

p (am | x) =
K∑

k=1
p (am | yk) p (yk | x) , (5.2)
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Table 5.2. Attribute Accuracy
Section Feature Group EfficientNet-b1 ResNet-18 MobileNet-V2

Transverse Growth Rings 0.665 0.675 0.690
Vessels 0.836 0.833 0.839
Tracheids and fibres 0.814 0.811 0.814
Axial parenchyma 0.798 0.792 0.800
Rays 0.882 0.877 0.883

Longitudinal Vessels 0.779 0.781 0.786
Tracheids and fibres 0.732 0.731 0.743
Rays 0.765 0.764 0.789
Secretory elements and cambial variants 0.962 0.965 0.962
Storied structure 0.941 0.941 0.942
Mineral inclusions 0.931 0.931 0.928

5.3 Results and Discussion

We built a supervised classification framework based on deep transfer learning neural

network. For the main part of the model, we use EfficientNet [  91 ] since it is the state-of-the-

art model based on NAS techniques [  113 ]. In the experiment of this paper, we focus on the

version with fewer parameters, which is EfficientNet-b1. It should be noted that the backbone

of different versions of EfficientNet is the same, only differs in depth and bottleneck block

types. In addition, we also compared the deep transfer learning model using MobileNet-V2

and ResNet as the backbone [ 114 ].

Data splitting was performed at the level of the plant family. We applied stratified five-

folds cross-validations without overlapping (i.e., 20% of the plant family per fold). For each

experiment, four folds of data were used during training, and the remaining fold of the data

was used as the test set. We further divide the training set (70% of the plant family) and

the validation set (10% of the plant family) in the training phase. The training set is used

to train models, and the validation set is used to select the final model parameters. In our

experiments, the final model parameters are selected based on maximizing the evaluation

metrics of the validation set.

We first apply Direct Attribute Prediction (DAP) to investigate the difficulty of learning

each attribute. Table.  5.2 show the result. For simplicity, we group all the results into the

main categories. In general, we can conclude that zero-shot learning works as desired.
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5.4 Conclusion

This preliminary study focused on investigating the potential zero-shot learning to mi-

croscopic wood images in InsideWood. Right now, we only applied the most straightforward

Direct Attribute Prediction (DAP) and showed average accuracy of 80%. This result met our

assumption that zero-shot learning could help for large-scale microscopic wood identification.
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Table 5.3. Attributes Table.
Feature Group Codes Views

Growth Rings 1–2
Growth ring boundaries distinct 1 cross
Growth ring boundaries indistinct or absent 2 cross

Vessels 3–51, 52–54, 56–59
Porosity 3–5 cross
Vessel arangement 6–8 cross
Vessel groupings 9–11 cross
Solitary vessel outline 12 cross
Perforation plates 13–19 radial
Intervessel pits: arrangement and size 20–27 tangential
Vestured pits 29 tangential
Vessel - ray pitting 30–35 tangential
Helical thickenings 36–39 tangential
Tangential diameter of vessel lumina 40–45 cross
Vessels per square millimetre 46–50 cross
Mean vessel element length 52–54 tangential
Tyloses and deposits in vessels 56–58 tangential
Wood vesselless 59 cross

Tracheids and fibres 60–73
Vascular / vasicentric tracheids present 60 cross
Ground tissue fibres 61–64 tangential
Septate fibres and parenchyma–like fibre bands 65–67

Septate fibres present 65 tangential
Non-septate fibres present 66 tangential
Parenchyma-like fibre bands alternating with ordinary fibres 67 cross

Fibre wall thickness 68–70 cross
Mean fibre lengths 71–73 tangential

Axial parenchyma 75–95
Axial parenchyma absent or extremely rare 75 cross
Apotracheal axial parenchyma 76–77 cross
Paratracheal axial parenchyma 78–84 cross
Banded parenchyma 85–89 cross
Axial parenchyma cell type / strand length 90–95 cross

Rays 96–117
Ray width 96–100 tangential
Aggregate rays 101 cross
Ray height 102 tangential
Rays of two distinct sizes 103 tangential
Rays: cellular composition 104–109 radial
Sheath cells 110 tangential
Tile cells 111 cross
Perforated ray cells 112 cross
Disjunctive ray parenchyma cell walls 113 cross
Rays per millimetre 114–116 cross
Wood rayless 117 cross

Storied structure 118–122
All rays storied 118 tangential
Low rays storied, high rays non–storied. 119 tangential
Axial parenchyma and / or vessel elements storied 120 tangential
Fibres storied 121 tangential
Rays and / or axial elements irregularly storied 122 tangential

Secretory elements and cambial variants 124–135
Oil and mucilage cells 124–126

Oil and / or mucilage cells associated with ray parenchyma 124 tangential
Oil and / or mucilage cells associated with axial parenchyma 125 tangential
Oil and / or mucilage cells present among fibres 126 cross

Intercellular canals 127–131
Axial canals 127–129 cross
Radial canals 130 tangential
Intercellular canals of traumatic origin 131 cross

Tubes / tubules 132 radial
Cambial variants 133–135 cross

Mineral inclusions 136–163
Prismatic crystals 136–143 tangential
Druses 144–148 tangential
Other crystal types 149–153 tangential
Other diagnostic crystal features 154–158 tangential
Silica 159–163 tangential
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6. CONCLUSION

This dissertation demonstrated the potential of using machine learning, especially deep

learning methods, in many forestry-related tasks, e.g., wood and bark identifications. Those

applications help both the research community and industry in implementing digital forestry

strategies.

For machine learning, data is always the first concern. If the availability, quality, and

quantity of data and annotation meet specific requirements, the methods will have signifi-

cance. As our community realizes the effectiveness and importance of machine learning, it

is our hope that more publicly available data becomes accessible to researchers.

In the recent decade, there has been an ’All-in-AI’ trend that many research areas be-

ginning to apply deep learning methods to their fields of study. Although we admit the

potential of deep learning techniques, we need to point out that deep learning is not the

solution for all. The relative complexity and the lack of exploratory may limit and impede

its adoption in many research areas.
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