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ABSTRACT

The current technologies employed for autonomous driving provide tremendous perfor-

mance and results, but the technology itself is far from mature and relatively expensive.

Some of the most commonly used components for autonomous driving include LiDAR, cam-

eras, radar, and ultrasonic sensors. Sensors like such are usually high-priced and often require

a tremendous amount of computational power in order to process the gathered data. Many

car manufacturers consider cameras to be a low-cost alternative to some other costly sensors,

but camera based sensors alone are prone to fatal perception errors. In many cases, adverse

weather and night-time conditions hinder the performance of some vision based sensors.

In order for a sensor to be a reliable source of data, the difference between actual data

values and measured or perceived values should be as low as possible. Lowering the number

of sensors used provides more economic freedom to invest in the reliability of the components

used.

This thesis provides an alternative approach to the current autonomous driving method-

ologies by utilizing acoustic signatures of moving objects. This approach makes use of a

microphone array to collect and process acoustic signatures captured for simultaneous local-

ization and mapping (SLAM). Rather than using numerous sensors to gather information

about the surroundings that are beyond the reach of the user, this method investigates

the benefits of considering the sound waves of different objects around the host vehicle for

SLAM. The components used in this model are cost-efficient and generate data that is easy

to process without requiring high processing power.

The results prove that there are benefits in pursuing this approach in terms of cost

efficiency and low computational power. The functionality of the model is demonstrated

using MATLAB for data collection and testing.
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1. INTRODUCTION

1.1 Motivation

Night-time conditions, dust, fog, snow, rain, or any other adverse conditions alter the

functionality of various sensors incorporated in autonomous driving. Vision based sensors

like cameras often struggle with recognizing objects within the host vehicle’s surroundings in

darker conditions. Some car manufacturers use various auto exposure or contrast adjusting

algorithms, but that functionality is incorporated at the price of higher processing power.

Sudden changes in lighting conditions like driving through an underpass or bright reflections

render camera based sensors temporarily blind. Similarly, sensors that depend on the concept

of reflection of light or sound waves like LiDAR, radar, or ultrasonic are rendered useless

in rainy, snowy, or foggy conditions due to the presence of numerous suspended particles

around the sensors.

Current technologies and algorithms require computers with high processing power. Cap-

turing, processing, encoding, filtering, re-encoding, and syncing data with other sensors. All

these tasks rely on computational precision and any discrepancy in processing the crucial

data could lead to fatal casualties [ 1 ]. Radar sensors are available as long-range and short-

range, with short-range for tasks like detecting nearby vehicles and long-range for further

objects. While RADAR, although cost-efficient, but is prone to giving false results from

reflections off of smaller objects like an empty soda can [  2 ]. A majority of the sensors used

for autonomous driving are mounted on the exterior of the vehicle, making them prone to

wear and tear over time. Sensors like LiDAR contain moving parts, which makes it even

more likely to see regular wear and tear with prolonged use.

Many car manufacturers either use a single sensor or a combination, in order to offer some

form of Advanced Driver Assistance System (ADAS) features like, lane departure warning

using image recognition, proximity warning using radar, anti-lock braking system (ABS),

etc [ 3 ]. In general, the combination of different sensors offers higher levels of automation

features in a vehicle. One of the most important factors that influence the adoption rate of

fully or partially automated vehicles is price. The price is influenced by the number and type

of sensors installed in a vehicle [  4 ]. Typically the cost of some of the industrial grade sensors
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like LiDAR, radar or camera that are commonly used for autonomous vehicles, is extremely

high. There are some other alternatives that offer a combination of sensors like radar and

LiDAR as one senor, commonly known as MiDAR, but the cost is still extremely high [  5 ]. As

the likelihood of sensors getting damaged by normal wear remains extremely high, the need

for cost-efficient replacement parts is highly essential. An alternative to this problem would

be to use sensors that are easily accessible and are cost-efficient. In summary, employing

sensors that are widely available, cost-efficient, and do not produce complex data, eliminate

the need for high processing power. In addition, a sensor that works during night-time,

dusty, foggy or snowy conditions would be an optimum solution to the problems faced by

some of of the current sensors.

1.2 Methodology

In this thesis, an alternative approach that uses a microphone array for autonomous

driving is proposed. The main idea is to provide a cost-efficient and computationally mini-

mal method, with results comparable to other technologies being used. The data collected

by the model and its analysis is conducted using MATLAB. A two algorithm approach is

considered for sound source localization and distance approximation [ 6 ]. The localization of

the sound source is implemented using the concept of direction-of-arrival (DOA) of sound.

The implementation method used for this purpose captures audio from the microphones and

estimates the direction of the sound source by calculating the time of delay between signals.

The governing concept behind this technique is that sound sources at larger distances lose

their intensity due to their distance, and produce sounds with lower sound pressure level

(SPL) [  7 ]. This is true for both light and sound signals, and can be easily modeled by In-

verse Square Law [ 7 ]. If a known sound source is at an unknown distance, the amplitude

of sound reaching a listener is lowered as the sound pressure level (SPL) spreads over the

distance [ 6 ].

I ∝ 1/d2 (1.1)

I: Intensity of the sound in decibels (dB)
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d: Distance of the sound source from the listener

Another segment of the MATLAB algorithm works in parallel with the direction-of-arrival

algorithm. This segment is responsible for capturing the audio samples using the connected

hardware. The ideology behind this segment relies on the understanding that objects at

different distances produce different sound signatures. The auditory characters can vary

in terms of pitch, amplitude, reverberation, and timbre [  8 ]. Although, there is a method

that makes use of the concept of direct-to-reverberant-ratio (DRR), those dereverberation

algorithms are computationally intense and take time to process [  9 ]. If an algorithm can-

not process and provide results in near real-time scenarios, then the application for such

algorithms is ill-suited for autonomous driving, where split-second decision-making is key.

Therefore, the algorithm captures audio samples and processes the files to estimate their

intensities in decibels (dB). This helps the algorithm provide a good estimate of the distance

at which the sound source is located. The main goal of the algorithm is to provide distance

approximations of moving vehicles, therefore for this purpose, changes in the intensity levels

are calculated. For example, as an ambulance approaches closer to a listener, its sound inten-

sity increases in terms of amplitude, as a majority of the sound pressure levels are directed

to the listener without attenuation [ 8 ].

The structure of the remainder of this thesis is as follows: The next section in this chapter

goes over some of the major contributions that led to the completion of this thesis. Chapter

2 performs a literature review of related research, current problems faced by autonomous

driving, improving safety using sensors, shortfalls of sensors, and proposing a newer model

and its advantages. Chapter 3 presents a design for the microphone array and its potential

benefits over other methods. It also goes over the design that was considered for the purpose

of this thesis, in order to provide proof of concept and verify the functionality of the model. In

Chapter 4, a detailed overview is provided for the experimental setup in regards to hardware,

software and integration of both, along with its advantages. Chapter 5 provides information

on data collection, especially the different test scenarios considered, capturing, processing,

and filtering of data. Then, the results drawn from the experiment are presented in Chapter

6, along with an accuracy comparison with other technologies and some benefits of using

16



a similar approach. Further, Chapter 6 also explores how this new method can be used to

solve problems that cannot be solved by the existing technologies.

1.3 Major Contributions

A novel idea of Acoustic SLAM is presented in this thesis. The system’s design is rela-

tively simple and easy to operate. Setup of the system also does not require any complex

procedures. Using a microphone array, the system captures acoustic samples and processes

them in order to extract necessary information about the surroundings. The information is

relayed using graphical interfaces, in terms of the general direction of the sound source, and

the approximate distance from it. Graphical elements are updated frequently, in order to

display information in near real-time. This provides information to the user that is easy to

comprehend.

The system is also flexible enough to run on various hardware platforms. This aspect

also allows for the possibility of sensor fusion or using AI for scene recognition. As the data

captured by the sensor array is stored in a multi-channel audio file, thus making it easy to

process. Compared to sensor types like LiDAR, the system has relatively low operational

costs, as the data isn’t complex. As the system detects acoustic activity, therefore it can

be a great tool for blind-spot detection. Vehicles with a limited field of view like trucks or

SUVs can benefit from it, and use it to detect pedestrians or other small vehicles.

One of the major benefits of this system is cost efficiency. Compared to some other

sensors, the cost of the entire system alone is a fraction of their cost. In terms of operational

costs as well, the system does not require high-end hardware to complement the hardware

components. The simplicity, flexibility, and cost-efficiency of the system make it a good

alternative to some other systems.
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2. LITERATURE REVIEW

There is a limited amount of research that has been done in the area of localizing sound

sources using acoustics. A sound sample for any object captured within an environment

contains the source’s own sound along with some unwanted environmental noise, which

varies depending on the surrounding. In order to extract the source information from the

samples, some pre-processing is required. The sampled signal is de-noised in a pre-processing

unit, then it is passed on for further processing [ 10 ]. The signal’s original amplitude is left

untouched after noise removal in order to retain the original sound intensity levels of the

source.

It is necessary to capture the entire field in order to detect objects from different di-

rections. For example, a LiDAR sensor spins rapidly while firing about 1,000,000 pulses

per second, in order to get an accurate map of the host vehicle’s surroundings [ 11 ]. Some

researchers have pursued similar implementations that can be applied to a binaural micro-

phone pair, that constantly moves, thus allowing it to capture a wider acoustic field [ 12 ].

Although this method would cut down on the need to consider a complex microphone ar-

ray, which would definitely lower the overall cost associated with the implementation of this

method. A similar but slightly different approach uses a single moving microphone, and

utilizes a probabilistic method for event prediction, commonly known as Bayesian inference

through Kalman filters [  13 ]. Another group of researchers makes use of algorithms designed

for speech recognition using Hidden Markov Models (HMM) and Artificial Neural Networks

(ANN), for audio-visual signal processing and event detection [ 14 ].

The methods mentioned above are well suited for very specific scenarios and would present

serious disadvantages for acoustic SLAM. If some of these methods were implemented for

acoustic SLAM, then the complexity of the system would be high. With moving micro-

phone/microphones, there is a need to incorporate noise isolation algorithms, which would

help reduce the amount of interference due to the wind that would get captured because

of the microphone’s motion. In order to ensure that the algorithm operates in real-time,

it would be advantageous to use data this isn’t complex and large in size. This is the rea-
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son why some of the complex probabilistic approaches mentioned in other research papers

wouldn’t be ideal.

2.1 Safety Concerns In Autonomous Vehicles

As new trends in autonomous driving continue to evolve each day, the variation in the

number of sensor manufacturers grows too. Each car manufacturer implements different

algorithms and hardware for solving the same problem. The biggest problem associated with

autonomous vehicles is that they are sold as a product to a consumer. While understanding

the basic fundamentals of operation of most consumer products is relatively easy, contrary

to the technologies incorporated for autonomous driving [  15 ]. Therefore, it is crucial to keep

the user interaction as straightforward as possible. A majority of problems associated with

autonomous vehicles can be broken down into three basic levels, which can be streamlined

in order to optimize error resolution [ 1 ].

2.1.1 Sensory Level

Sensors play a major role in autonomous vehicles and are manufactured by numerous

different companies with varying fabrication methodologies. Different manufacturers can

use varying manufacturing methods, thus producing sensors with nonuniform accuracy under

various conditions. The need for standardized quality control for all sensor manufacturing

would eliminate the possibility of errors caused by differences in production. Perception

errors are also a major concern with sensors, especially over prolonged use, as the chances of

degradation are high [ 1 ]. Sensors like LiDAR can cause perception error or discrepancies in

reading due to the presence of suspended particles in the air. Similarly, vision-based sensors

perform poorly in low light or sudden changes in lighting conditions. While RADAR and

ultrasonic sensors that rely on the concept of reflection can easily be altered by soft surfaces

that dampen the waves emitted by them.

Solutions to these problems would be to have alternative sensors that would work in

conditions in which the others cannot. The cost is also a major factor that contributes to

the overall safety. A consumer may choose not to replace a faulty sensor due to the excessive
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replacement cost and limited availability. Therefore, choosing components that are widely

available, and come at affordable prices, would limit the number of errors at the sensory

level.

2.1.2 Algorithmic Level

In similarity with sensors, various different algorithms offer different functionalities, data

processing speeds and are available through numerous sources. Algorithms are generally to

synchronize data from different sensors and process the safest course of action of an event

in near real-time. One major downside to algorithms is that they assume all objects in an

environment follow the rules, which makes it hard for them to compute unpredictable cir-

cumstances [  16 ]. More advanced the algorithm, the more computational power it requires

for its operations. Many modern algorithms use machine learning and artificial intelligence

to learn from a user’s driving habits and react if an action seems out of the usual behavior.

Some basic functionality offered by algorithms includes object detection, traffic light detec-

tion and trajectory planning. Many algorithms still find it a challenge to navigate through

construction areas or react in areas where an accident has occurred [ 17 ]. Algorithms play

a key role in decoding the complex data collected by different sensors, and the level of

automation depends largely on it [ 18 ].

Therefore, in order for an autonomous vehicle to be efficient in terms of data handling

and decoding, there is a need for an algorithm that does not prove to be computationally

expensive. It should also be developed in a way that makes it future-proof, and can easily

be updated or modified if need be. Complex algorithms are harder to debug and difficult

to understand. An additional factor that would prove to be beneficial, is for the code to

be platform friendly. This makes the system easily configurable in the future if additional

features were to be added, or the current system needed to be modified.

2.1.3 Hardware Variation

Hardware used in autonomous consists of everything from sensors, computers, power

supply, and equipment used for mounting the sensors. But this section mainly focuses
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on computational hardware. Companies like NVIDIA offer GPUs that are built with the

capability of handling intense sensor data, while some car manufacturers choose to design

and use their own custom-built chips. The accuracy of data gathered by the sensors comes

down to the efficiency of the hardware used for processing it. A set of hardware also needs

to be tested in different scenarios in order to ensure that the system would behave optimally,

and make safe decisions in tough scenarios [  19 ]. Vehicles with more advanced and costly sets

of hardware may have an advantage over other vehicles, therefore a need for a performance

standard would help level the field in terms of safety [ 1 ].

The safety of an autonomous vehicle depends on the performance of the hardware, which

also directly relates to the detection and measurement accuracy of the system. The hardware

also needs to be cost-efficient, in order for it to be easily replaceable by the user or upgraded

to include any additional safety measures in the future.

2.2 How To Improve Safety with LiDAR, Radar and Camera

A wide array of sensors are incorporated in autonomous vehicles, with the sole purpose

of making the vehicle safer and prepared for any unpredictable circumstances. Although,

the current array of sensors do a great job, there is still a huge room for improvement in

terms of safety [  1 ]. Each different type of sensor has some vulnerabilities, it could be due to

changing lighting conditions or severe weather. As most sensors rely on analog feedback on

the sensor end, that makes them prone to interference from the surroundings. These could

be in the form of severe weather conditions like heavy winds, rain or snow, that hinder the

propagation of sound waves, laser beams, or even the view of a vision-based sensor.

2.2.1 LiDAR

The technology used for LiDAR faces a challenge between higher range or operational

power [  20 ]. Although, LiDAR can achieve higher accuracy with an increase in operating

power, but that option costs more. Another drawback to a higher operating power is the

safety levels of the laser beams fired by the sensor. A stronger beam has the potential to

harm people’s eyes, as well as sensors of cameras in the vicinity [ 21 ]. An alternative to this
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problem is to use a long-range ultrasonic sensor in conjunction with LiDAR. Another major

disadvantage to LiDAR is that the sensor itself is relatively bulky and is usually mounted on

top of the roof of the vehicle, where the beams are free from any obstructions. Almost all cars

are designed with an aerodynamic structure in mind, in order to keep the drag coefficient as

low as possible. Mounting a LiDAR sensor on top of a vehicle increases the amount of drag

force generated by a vehicle, thus lowering the fuel efficiency. A possible alternative would

be to use an array of smaller LiDAR sensors along the sides of the roof of the car, which

would also prove to be power efficient and would not increase the amount of drag force by a

significant amount.

2.2.2 RADAR

Sensors like ultrasonic and RADAR are typically used for measuring a vehicle’s proximity

to nearby objects using high-frequency sound waves. A RADAR sensor by itself is vulnerable

to unwanted radio interference at the receiver. A RADAR also cannot distinguish between

different sizes of objects and can provide inaccurate estimates by picking up reflections from

small objects on the road [  2 ]. They are also susceptible to weather conditions like rain or

snow. Raindrops or snow reflect waves before they reach their target and provide inaccurate

data. An optimal idea is to rely on multiple data sources for higher measurement accuracy,

rather than just one. Although the sensor itself is cost-efficient and easy to replace, but offers

limited functionality in terms of tracking the movement of an object. For example, a fixed

RADAR can detect the general direction of motion of an object in terms of left or right, but

cannot provide a higher degree of information [  2 ]. Sensors like RADAR that rely on waves

as a means of measurement are prone to damping by different surfaces. Different surfaces

or materials have varying compositions, some objects are composed of harder substances

while others make use of softer materials. In general, softer materials tend to absorb a

majority of the sound waves and create a damping effect. Detection of such objects can pose

a challenge to RADAR since a majority of the waves are absorbed and are not reflected back.

To counter this kind of problem, using vision-based sensors to detect the presence of nearby

objects can improve tracking results [  22 ]. Having multiple smaller short-range RADAR
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sensors for near-field detection, and a combination of two or more long-range ultrasonic

sensors for detecting objects at greater proximity would be a cost-efficient solution. In most

scenarios, a combination of RADAR and vision-based sensors like cameras would provide

sufficient data for autonomous driving, but wouldn’t be as precise in their measurements as

some other alternatives.

2.2.3 Camera

Cameras or similar vision-based sensors offer cost-efficient solutions for object detection.

The sensor’s performance is usually complimented by an object or scene recognition algo-

rithm. The data from a camera is processed in terms of distance between pixels, in order to

classify different types of objects like people walking to biking [ 11 ]. On an algorithmic level,

errors in processing or calculation of parameters could be a problem, and testing different

scenarios or conditions can help debug such issues. Other possible errors that arise are usu-

ally caused by perception errors [  1 ]. The lens of a camera is susceptible to obstruction of

view in the form of debris like dust particles, drops of water, or snow. This could hinder

the detection performance and can lead to fatal errors. Installing transparent shields or

coverings in front of the camera module would prevent small particles from making direct

contact with the lens. Poor lighting conditions also lower the accuracy of a sensor like a

camera, since the detection of objects in darker conditions makes it harder for an algorithm

to differentiate between a moving object and its surroundings [  11 ]. While some algorithms

incorporate additional elements like automatic exposure setting based on the lighting, but a

more robust solution would be to use infra-red cameras.

Most vision-based sensors share similarities with human eyes. In some scenarios, when

there is a sudden shift from a low light setting to a really bright environment, the human eye

is temporarily blinded while the iris tries to control the amount of light entering through the

pupil. Similarly, vision-based sensors face similar problems when there is a sudden switch

from dark to a bright condition [ 11 ]. The temporary period of the sensor being blinded is

when it tries to adjust parameters like focus or exposure levels. But this temporary period

could result in fatal casualties. Therefore adding certain redundancies to a vehicle, like
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different types of sensors that can achieve the same task when other data sources fail, would

prove to be a safer approach in the long run [  23 ]. The quality and price of a vision-based

sensors is also a determining factor when it comes to accuracy. Choosing sensors based on the

purpose, functionality and quality should be the major priorities followed by cost-efficiency.

2.3 Drawbacks Of Using LiDAR, RADAR and Camera

LiDAR, RADAR, and cameras are some of the most commonly used sensor types for

autonomy applications. Each of these sensors has different principles of operation, which

make them suitable for certain situations and scenarios, that require such functionality.

When used in conjunction with each other, the feedback from each sensor complements the

other, thus increasing the detection and response efficiency of the system. As each sensor

has its drawbacks in certain conditions when used by itself, but even when sensors are used

in a combination, some flaws could still exist.

In LiDAR sensors, pulses of laser beams are fired at a really high rate, and once the

reflections are captured, the data is processed to estimate the topology of the surroundings.

The distance estimates are calculated using the concept of time-of-travel (ToT). The distance

to an object is estimated once the reflected beams are captured by the receiver. For the

measurement, the time taken by the laser beam to get reflected off of the object’s surface is

calculated [ 11 ]. Since the laser beams propagate through the air and reflect off of surfaces,

which creates some operational challenges in certain conditions. One such scenario is when

the sun is at high angles, especially the time around noon. During this time the intensity

of sunlight is extremely high, and easily overpowers the laser beams emitted by LiDAR [ 4 ].

Another similar challenge is presented by highly reflective surfaces such as tinted windows,

metallic surfaces, or shiny surfaces. These surfaces reflect a vast majority of light incident on

their surfaces, including laser pulses from LiDAR, which makes it a difficult task to capture

the reflected laser beam [  24 ]. Apart from these scenarios, LiDAR is also not cost-efficient

both in terms of component costs and operation [  24 ]. A LiDAR scanner has an extremely

high sample rate, which is essential for highly accurate measurements. But due to the

high sample rate and the vast amount of data LiDAR produces every second, it creates the
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demand for systems with high processing powers, thus proving to be an expensive option for

daily operations [  4 ]. Installation of a LiDAR sensor also requires a lot of space, especially

spots without any obstructions, so the laser pulses can propagate freely.

RADAR sensors use the operating principle of reflection of echoes. A transmitter emits

electromagnetic waves and these waves get reflected back from the surfaces of nearby objects

[ 11 ]. Once the reflected waves are detected by the receiver, the distance to the object from

the sensor is computed using the speed, distance, and time relation.

D = c ∗ T/2 (2.1)

D: Distance to an object

c: 3x108 m/s, speed of propagation of electromagnetic waves

T: Time delay, from emission to reflection to being received

The electromagnetic waves are prone to attenuation through other radio waves in the

surroundings, which affects the measurement accuracy. Extreme weather conditions also

slightly affect the performance of RADAR, especially if the receiver or the transmitter gets

blocked by some foreign particles [  2 ]. Certain environmental factors such as rain and snow

generate echo signals that can mask the desired target echoes [  2 ]. A RADAR also lacks the

ability to distinguish small objects in the path of the radio waves from the desired targets.

Nearby RADAR or other transmission sources can also cause interference to reflected echoes,

thus hindering the accuracy of the measurements. But compared to LiDAR, a RADAR is a

cost-efficient component that does not require high processing power.

vision-based sensors like cameras share similar anatomy to an eye. Therefore, its op-

erating principle depends on the light entering through the lens, which helps it generate a

digital image of the surroundings based on the varying intensities of lights being reflected

from different objects [  11 ]. Similar to an eye, certain scenarios create challenges for cameras.

For example, in low lighting conditions, the sensor has a limited amount of light available for

the detection of different objects. Another scenario is when there is a sudden shift from low

light to a dark environment and vice versa. A sudden shift in lighting conditions does not

provide enough time for the sensor in a camera to adjust the aperture size [  11 ]. Therefore,
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this sudden shift drives the camera into a temporary state of blindness. Highly reflective

surfaces or direct exposure to the sun can also temporarily disable a camera’s ability to

detect the surroundings. Similar to LiDAR and RADAR, extreme weather conditions like

snow or fog can cause detection errors, especially if some foreign particles obstruct the view

of the lens. In extremely cold weather conditions, there is also a huge possibility of frost

covering the lens due to condensation.

Most sensors used for autonomous driving are usually installed at specific locations on a

vehicle. For example, a LiDAR sensor is usually mounted on the top of a vehicle, a RADAR

is typically installed in the front and the back of a vehicle. Similarly, cameras are installed

in places which allow them to capture a better view, which can be in the front, back or on

the sides of the vehicle. The positions at which the sensors are mounted can often create

blind spots, which are dead zones that are outside the field of view of certain sensors [ 1 ].

In some cases, where objects are below the level of the sensors can often be hard to detect.

For example, a small child behind a car or a small animal can be hard to detect if they are

below the range of sensors.

2.4 Similar Implementations For Different Scenarios

This section provides a literature review on some different implementations that other

researchers have considered, that make use of sound signatures of the surroundings [ 12 ] [ 25 ].

As there isn’t a direct solution to SLAM using audio, therefore different papers investigate

different scenarios using acoustics. Echoes of sounds contain enough information that allows

to reconstruct the entire surroundings and localize the microphone within it [  13 ]. Echolo-

cation is another approach that is similar to how some mammals like bats and dolphins

navigate by using echoes generated by them for spatial navigation [  26 ] [  27 ]. If a single

moving microphone is present, then the echoes of the sound generated by a source contain

information about the source’s speed and distance. A moving microphone can generate a

virtual map in the form of a matrix, with information like the positions of different sound

sources [ 13 ]. This method utilizes an ultra wide-band multi-path probabilistic framework,

which is similar to Bayesian inference using the Kalman filter. Although, this approach is
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slightly faster to compute than extended Kalman filter, but it still requires hardware and

algorithm capable of processing complex data in near real-time. This approach although

very different from others, but has some downsides. The methodology requires sound emis-

sions after repeated intervals in order to localize the microphone. Dealing with measurement

uncertainties is also a challenging task in a real scenario, as there are multiple sources that

modify the way echoes are handled by the algorithm. Also, a moving microphone is not an

ergonomic solution in the long run, as it is more prone to wear and tear over time. There

is also a need to synchronize the movement of the microphone with the sample rate, as a

difference in synchronization can result in a detection failure.

Another approach uses deep neural networks (DNN) for multimedia event detection, using

videos pulled from the web [  28 ]. While another application for acoustics is in a multi-modal

assisted living environment, which uses a combination of audio and vision for person tracking

and activity recognition [ 14 ]. Audio signals could be human speech, environmental sounds

like a door knock, water from a pipe, by using automatic speech recognition using HMMs,

artificial neural networks (ANN), and Bayesian filters. This allows for automatic detection of

sounds like walking, cough, human fall, cry, screams or distress calls [  14 ]. These approaches

use neural networks for processing the data with precision. Computing real-time data using

DNNs or ANNs is a power-demanding computation, which requires something similar to a

Tesla K40 GPU. The sampling rate also determines the precision of the algorithm. A high

sample rate means better precision, on the other hand, computation of data is much more

economic with a lower sample rate, but at the cost of precision [ 28 ] [ 14 ].

Acoustics can also be used for short intervals, to accomplish small tasks like answering

the door, responding to smoke alarm or unloading the dishwasher when the alarm goes off.

This method also uses audio and vision-based sensors. It uses a point goal method, where

the goal position is given to the agent by its relative displacement vector from the agent’s

position, and for object goal, the agent receives a semantic object label rather than the

goal location [ 29 ]. The agent uses its acoustic-visual perception and memory along with the

spatial and semantic cues from the acoustic event for both long term and short term events

to find the target. The only downside to this method is distraction through other sounds. In

a much similar manner, using sound sources as landmarks for being included in the vehicle’s
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map, in order to localize it along the time provides better understanding of sound generating

obstacles like car engines or pedestrians [ 30 ]. For processing the captured data, considering

the fact that when sound waves spread, the sound source is considered as a core of sound

waves, if the distance from the array to the source is bigger than the array’s size then sound

waves can be seen as a parallel wave for calculation [ 10 ]. These methods do not require

extensive computational power but do require some sort of noise removal techniques on the

algorithmic level.

Distributed SLAM is another approach that is based on matching acoustic events taking

place in or around the agent’s surroundings [  31 ]. Each microphone is connected to a separate

recording device which adjusts for their different clock shifts, and the estimation is done

using particle filtering. Using an array of distributed microphones to capture the agent’s

natural acoustic landscape, a processing algorithm for Audio Event Detection (AED), can

compute varying reverberations within the captured audio sample [  31 ]. Since this approach

has microphones present at different locations, therefore it requires costly multi-channel A/D

converters for sampling synchronization, and the positions of microphones need to be known

with high precision. The research also relies on other sources for inputs like speed, which

can work in conjunction with this method.

Some researchers also consider a more precise but complex method using binaural esti-

mation. This method uses reverberations can be used as a metric to accurately estimate

the distance between the user and the sound source [  9 ]. Using direct to reverberant ratio

(DRR), the absolute distance component of the direct energy can be extracted by normaliz-

ing distance independent reverberant energy [  9 ]. Segregating direct and reverberant signals

from an acoustic mixture based on estimated source direction. The only major drawback is

the extensive processing power required for this method, as it processes the left and right

ear signals first in order to quickly localize the sound source.

As there are many possibilities on which method to select based on factors like complex-

ity of data produced, the processing power required, cost of hardware, or purpose. The goal

is to create a method that contains a precise amount of information about the surroundings,

without requiring high processing power. Developing a method that does not produce com-

plex data is also essential, as it dictates whether the approach is capable of working with
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other sensors. As data from different sources ideally needs to be synchronized in real-time,

therefore quick processing of data and low operational costs are essential.

2.5 System Model Proposal and Advantages

This section proposes a system model for acoustic SLAM and also discusses different

scenarios where an alternative method works in a much more efficient and economic manner.

For better detection and accuracy it is necessary to maximize the field of view of the acoustic

array. Therefore, a sensor that captures the entire 360◦ field proves to be the ideal solution.

The system contains hardware elements with software elements for controlling and processing

the data. An ideal sensor would contain an array of eight microphones, each at an equal

distance from the other, thus all microphones are separated from each other at an angle of

45◦. The microphones can be placed around the car in a specific manner to ensure they

are equally separated from each other. Another possibility is installing pairs of microphones

along the front, back and sides of the vehicle or a simplified version of a circular array

atop the vehicle. The microphone array also requires 12V DC for operating which can be

supplied by a rechargeable battery. If a car moves in a certain direction, then there would

be wind blowing directly into the microphones pointing in the direction of motion of the

car. To combat this problem, a porous plastic shield or a muffler will help block the wind

but will allow sound waves to penetrate through. While on the algorithm side, there is a

pre-processing algorithm and a post-processing algorithm. The system also has two separate

algorithms working in parallel with each other. The first block contains the processing and

analysis algorithms. While the second block is responsible for the localization of sound

sources. This algorithm localizes by estimation the direction of arrival of captured sound.

The processing algorithm is responsible for noise removal, signal filtering, and analysis. Both

the hardware and software elements of the system work in conjunction with others to ensure

tracking and detection accuracy. The simplicity of the system allows this method to be

a cost-efficient alternative to sensors like LiDAR. The data captured by the system is not

complex and can be easily processed by hardware with average processing power, without

losing accuracy.
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The system design is relatively straightforward in order to ensure simplicity in terms of

hardware installation. The simplicity of the hardware makes the system serviceable, which

proves to be cost-efficient in the long run. The entire system is minimal and doesn’t add bulk

to the vehicle or affect the drag coefficient in a major way. The placement of the microphones

can be modified based on the requirement. Each microphone is placed at an equal distance

from the other in order to ensure variability in captures. If microphones are too close, then it

makes it harder for the processing algorithm to differentiate between signals captured by two

adjacent microphones. In terms of the intensity of the sound, two microphones placed close to

each other would capture signals with almost comparable intensity levels. Therefore, spacing

out the placement of the microphones ensures an evenly spread out capture field. Which

makes it relatively easier for the DOA algorithm to estimate the direction with accuracy.

Some sensor types like LiDAR are expensive and require high data processing power.

It also has some drawbacks in certain conditions. Similarly, RADAR and cameras, while

cost-efficient, still have some potential drawbacks in various scenarios. Some components

add additional bulk to the vehicle due to their size, thus having a direct impact on fuel

efficiency due to an increase in the drag coefficient. These sensor types work really well in

conjunction with each other but processing all the data drives the operational costs really

high. A viable solution to this problem is to make use of a sensor type that is cost-efficient,

in terms of operating power and processing the data collected by the sensor.

Considering the first scenario, that is cost-efficiency. Sensors like LiDAR are too expen-

sive to be replaced on a regular basis, in order to ensure optimum functional accuracy. In

terms of operational costs, LiDAR typically requires computers capable of handling a large

sum of data every second. This is due to the extremely high sampling frequency of LiDAR

that requires complex analysis and interpretation. But as a downside, this adds on to the

operational and processing costs. In a situation like this, a microphone array model, pro-

posed earlier would be a viable solution. As with most microphones, the data sets produced

can be easily processed even with some commercially available, low-cost prototyping boards.

The size of data is also directly related to the sample rate selected for the field recording. A

parameter like sample rate is adaptive and can easily be adjusted. If a situation presented a

highly crowded environment where precision is essential, then in those scenarios the sample
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rate can be increased for better accuracy. A microphone array is also easily available and

cost-efficient, and can be replaced on a regular basis, in order to ensure tracking accuracy.

There are no international protocols that state the requirements or threshold parameter

levels for a LiDAR. This means that manufacturers control the strength of the laser beams

since there are no hard-set protocols for operation in public spaces [  24 ]. A beam intensity

that is too low does not provide accurate results or a large range of detection. While a higher

intensity beam can provide a better analysis of the surroundings and a higher detection range,

but can prove to be harmful to people’s eyes in the vicinity. A high-intensity laser beam

is also potentially damaging towards CMOS sensors used in many cameras. Whereas, a

microphone array does not necessarily require any protocols for safety, as long as it is in

a fully functional condition. A microphone based sensor also does not generate any form

of physical beams or waves, therefore it is not a sensor type that can cause any harm. A

microphone essentially works by capturing the signals that reach the sensor and are within

the audible frequency range. The data sets captured contain data from all the objects in

the surroundings that generate sound. Therefore, the extraction of data can be tailored

according to situational requirements. Additional steps on the algorithmic level can easily

be implemented for filtering and noise removal from field recordings without data loss.

Some of the major factors that affect the performance of many sensors are extreme

weather conditions. LiDAR does not perform well under conditions like heavy rain and snow

[ 24 ]. It is due to the fact that the presence of water droplets in any form prevents the laser

pulses from reaching the desired targets. In a situation like this sensors like cameras would

have difficulty detecting and tracking objects. Similarly, beams transmitted by a RADAR

would also get slightly hampered by extreme weather. In extreme weather conditions, a

microphone array works relatively well for the most part, with slight modifications on the

processing algorithm side. The data produced by a sensor like a microphone contains acoustic

signatures of the entire surroundings, using advanced processing and cognition techniques like

active filtering can differentiate between different types of sounds [  32 ]. Usually, snowfall does

not generate any sound, because the surface area of a snowflake is relatively large compared

to raindrops. Due to this, snow falls gently and other snowflakes generally dampen any
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sound that may be produced by heavier particles. Therefore, in a scenario with snowfall, a

microphone based sensor works without any issues, as there isn’t a need for adaptive filtering.

Figure 2.1. Pink Noise FFT

Another case is a scenario with heavy rainfall. As a microphone captures the entire

acoustic field of the surroundings, therefore removing the sound of rain depends on the

processing algorithm. By definition, pink noise contains equal energy per octave and contains

less energy in the high-frequency spectrum (Figure 2.1) [ 33 ]. In theory, sounds like rain,

leaves rustling, ocean waves and a vast majority of sounds in nature are generally considered

pink noise (Figure 2.2) [ 33 ].

Compared to white noise, which contains an equal amount of energy throughout the entire

audible frequency spectrum, pink noise mostly contains higher energy in the low-frequency

region [  33 ]. This makes the task of removing the sound of rain a whole lot easier because
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Figure 2.2. Pink Noise Like Characteristics of Rain

incorporating a simple high pass and a low pass filter generates desirable results. This can

be improved further by incorporating an adaptive filter in the processing algorithm, that

relies on inputs such as the amplitude of the low frequencies compared to other frequencies.

Based on these inputs, the strength of the adaptive filter can be controlled. The strength of

the filter refers to the sharpness of the cutoff for the adaptive filter or the order of the filter

that determines the transition band. Scenarios with heavy rainfall or a higher low-frequency

component would require a sharper cutoff, rather than a smooth cutoff.

A vast majority of the sensors used for autonomous driving are mounted at specific loca-

tions on a vehicle. This allows the vehicle to capture different types of data with minimum

interference from other sensors or external factors. The placement of different sensors can

often create certain dead zones or blind spots. These can be referred to as areas that are
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out of reach or beyond the detection range of a certain component used for measurement. In

situations like such, a microphone array is slightly better in terms of detection solely based

on the sound of objects. This works more efficiently when used in conjunction with a sensor

like a camera. This allows to detect stationary objects like small rocks, and detect small

moving objects like an empty can. A microphone array can detect the sounds generated

by objects, while a vision-based sensor helps to identify the class of the object [  17 ]. Based

on these inputs, an algorithm can predict what decision is based on the level of priority. A

similar situation where a microphone array is a better alternative is for blind-spot detection

in bigger vehicles like trucks or buses. Even in cars, detection of small animals moving or a

small child can be easily picked up by a microphone, but other sensors types might be un-

able to track them, as they are below the detection level of the sensor. In larger commercial

vehicles, a microphone array can also help to detect the presence of pedestrians, cyclists,

pets, kids and even cars.

Almost all types of sensors still function in challenging scenarios, but their accuracy is

not as reliable. Especially vision-based sensors need adequate lighting conditions to function

properly. For example, in extremely dark conditions, cameras cannot detect objects since

they cannot differentiate between the contract of an object and its surroundings. An infra-red

based camera or headlights work really well in a situation like such, but they are relatively

expensive. A microphone array should not have any problems detecting other vehicles in

the dark, as it relies on sound waves reaching the sensor as the input source for detection.

Another scenario that has a drastic effect on the functionality of a camera, is a sudden shift

in lighting. This can be a situation in which a vehicle enters a dark tunnel from a brightly lit

environment and vice versa. This sudden shift leaves the sensor temporarily handicapped,

which is a cause of big concern. Failing to detect other objects or vehicles can lead to fatal

casualties [  1 ]. Therefore, in a scenario with varying lighting conditions, a microphone based

sensor works relatively well.

Similar to varying lighting conditions, bright lighting can also hinder the performance of

some sensors. Reflections from metallic surfaces or windows also impact the performance of

sensors like cameras. A LiDAR’s performance is also gets diminished by bright reflections.

For example, when the sun is at relatively higher angles around noon, then the intensity of
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sunlight is strong. The high intensity of the sunlight overpowers the laser pulses generated

by a LiDAR. In a situation like this, the laser pulses get attenuated by the bright sunlight

and thus making it harder to detect the target objects. Similarly, bright reflections also have

the same effect on LiDAR’s laser pulses as well as a vision-based sensor. On the other hand,

an acoustic sensor has no effect on its tracking performance in extremely bright conditions.

In general, an acoustic method that uses a microphone array is more advantageous in

scenarios like these, compared to some other sensor types. Since an acoustic sensor relies

on the sound waves reaching the microphone’s membrane for detection, therefore its per-

formance is not hindered by external factors to a big extent. With conditions like heavy

rain, slight modifications are needed on the algorithm side using a well-tuned combination

of a high pass and a low pass filter to mask the pink noise like characteristics of the sound.

Whereas, noise generated from wind can be eliminated by using a muffler on the microphone

or porous plastic shield that allows the sound waves through. Extreme weather conditions

like snow do not have any major impacts on the performance of a microphone when com-

pared to LiDAR and cameras. Even in varying lighting conditions, whether the situation is

too bright or too dark, a microphone’s performance is not affected by it, as it solely relies on

sound waves. This method also has potential applications for blind-spot detection, especially

in large commercial vehicles, where the field of view around the vehicle itself is very limited.
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3. MICROPHONE ARRAY DESIGN

In order to achieve higher accuracy, it is necessary to have multiple microphones. Generally,

one single microphone would be enough for distance estimation based on the sound intensity

levels. But in order to localize the direction of the sound, microphone pairs help in this

regard [ 34 ]. The idea is similar to stereo sound. In stereo audio, the sound is split into two

channels, one left and the other is considered right [  9 ]. This creates a virtual perception of

how our ears audition sound. This creates an effect that seems familiar to our ears, and we

feel like different elements of the sound are being transmitted from two different directions.

While in reality, it is just the sound intensity levels being higher in one channel compared to

the other, is what creates a stereo effect. In a much similar manner, using two microphones

can help in providing the general direction of the sound source in terms of left or right.

Which is a relatively low level of data, as it doesn’t provide enough information to the user.

To provide a higher degree of estimation in terms of DOA, multiple microphones can

prove to be beneficial [  35 ]. This idea can also be modeled by a similar technology used in

movie theaters, known as surround sound. In this technique, the audio is split into multiple

channels and is played through multiple speakers that are placed around the host [  8 ]. Usually

in this method, the host or the listener is placed in the center of the field, as that is the point

where the sound waves converge and enhance the listening experience. The placement of the

speakers creates a virtual perception of the spatialization characteristic of sound, by altering

sound localization [ 8 ]. This creates an effect that gives a perception of distant sound sources

by altering their sound intensities in a horizontal sound field. Similarly, in order to localize

sound sources at different distances, an approach that utilizes multiple microphones should

provide better results. Multiple microphones, each at equal intervals from the other provide

a better DOA tracking accuracy [ 35 ]. In order to ensure that the entire acoustic field is

covered by the array, an eight microphone approach would be ideal under many conditions.

This helps to localize a sound source by creating eight acoustic zones, each 45◦ wide. The

sound source is then localized within one of the octets based on the sound intensity levels

[ 36 ]. This is necessary for higher accuracy, as the outputs from the DOA algorithm are used

as inputs for the processing algorithm.
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3.1 Array Design

To achieve higher tracking and detection accuracy, a good sensor design is necessary.

Tracking or failure in detecting all directions can often lead to fatal casualties. Therefore,

capturing the entire 360◦ field gives a better estimate of the fast-changing surroundings

of the host vehicle. This in turn allows the algorithm to capture sounds from different

directions and process their intensity levels in real-time. The general idea is to have as many

microphones as possible, in order to capture a wide sound field with precision. Although,

a moving microphone array would limit the number of microphones needed by capturing

the entire field by changing its position [ 13 ]. This is a cost-efficient solution as it limits

the number of sensors needed, but sensors with moving parts wear out at a faster rate when

compared to mounted sensors. Having at least four sensors, one at each corner of the vehicle,

cover four distinct directions that provide general information about sound sources present

in those specific quadrants of the vehicle. A six microphone array can do an even better job

at tracking, detecting, and estimating intensity levels of sound sources around the vehicle,

when compared to a four microphone array.

In an ideal scenario, it is better to have certain redundancies, as it creates a more robust

system for the long run. Considering an eight microphone array proves to be a good solution.

With an eight microphone array, there are enough sensors pointing in different directions,

which can provide a vivid depiction of the surrounding sound sources. Even if one or two

microphones are not functioning adequately, there are still enough sensors present to safely

compute the data. With an eight microphone approach, the sound field of the host vehicle

is divided into eight distinct acoustic zones. This helps separate various sound sources into

different areas based on their sound intensity levels captured by the array. A Higher number

of microphones also provides a better estimate of the direction of the sound, as the DOA

algorithm has multiple data sources to compare the values with. This approach helps to

increase the overall accuracy of the system.

The orientation and positioning of the array are not limited to just one fixed design. In

an ideal case, evenly positioned microphones will provide the best results due to a symmetric

capture of the acoustic field (Figure 3.1). But for practical applications, slight variations to
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the design would also work as there are no restrictions to the placement of the microphones,

as long as the sound waves can reach the sensor without any hindrance.

Figure 3.1. Microphone Array Design

Some other variations can include mounting four microphones, one on each corner of the

host vehicle, and the remaining four microphones between the four sensors installed on the

corners of the vehicle (Figure 3.2). This orientation ensures an even placement of all the

sensors, based on a vehicle’s shape and size.
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Figure 3.2. Microphone Array Placement On A Vehicle
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3.2 Benefits of The Design

The symmetric array design and sensor placement have many advantages. A symmetric

design allows the array to capture acoustic signatures in a symmetric manner. This means

that if a sound source is right behind the vehicle and in the center, then the microphones

on the left side have comparable data to the microphones on the right. The DOA algorithm

benefits from a symmetrical array design, as it can provide finer tracking accuracy by com-

paring the values from the corresponding microphone pairs on each side. An array with eight

microphones also provides some amount of redundancies in a scenario where a few sensors

might fail over the course of time. Array with multiple sensors is more robust in terms

of reliability and is also a cost-efficient solution. With multiple sensors, individual sensors

are easily replaceable in a situation where a sensor might fail. The system setup isn’t too

complex and does not require intense processing power. In some severe weather conditions

like heavy winds, where some of the sensors are directly facing the direction of the wind,

in those cases, the remaining microphones can be used for detection. An additional porous

shield can also be installed in front of the sensors in order to block heavy winds, rain, or

snow. An even placement provides the DOA algorithm with enough comprehensible data

to estimate the direction of the sound source. Some microphones can also be installed at a

higher level than the other microphones or vice versa, in order to provide a better tracking

range.

Dividing the 360◦ field into eight sub-sectors enables the system to capture acoustic signa-

tures at locations that are beyond the range of some other sensor types. By placing multiple

sensors, each facing in a different direction provides the ability for blind-spot detection. The

microphone array can easily pick up acoustic signatures of small children or pets around the

vehicle. This is extremely beneficial for large commercial vehicles with a limited field of view

around the vehicle. A system like this can help detect the presence of pedestrians, bicyclists,

or other moving objects around the host vehicle. A similar application can also be extended

to recognize certain types of sounds and provide higher priority to them, solely through the

sound signatures [  25 ]. This can include sirens of emergency vehicles or people walking. In

general, this system provides a cost-efficient alternative to some other sensor types and has
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advantages in certain scenarios where other sensor types cannot function adequately. Espe-

cially, in low light or dark conditions, as the sensor’s performance does not depend on it.

The overall cost of the hardware and software components is also minimal in comparison to

sensors like LiDAR.
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4. EXPERIMENTAL SETUP

To test the functionality of the system, a combination of hardware and software components

were selected. The experimental setup allows testing the algorithms, as well as the func-

tionality of the hardware. The setup also allowed the system to have flexibility in terms

of improvements. The experimental setup was also necessary for testing different scenarios

and improving the systems tracking and detection accuracy. The components were selected

based on the requirement of the system’s design. In addition to different scenarios, different

hardware components were tested as well, in order to find the ideal solution. The whole

point of having an experimental setup was to provide a working proof of concept and com-

pare its results with different measurement technologies used. This also provides a chance

to test and debug scenarios that would occur beyond the ideal conditions, like the battery

life of different components used for testing. The results from testing and debugging give

the opportunity to make improvements to the system design, in order to achieve a higher

tracking and detection accuracy.

4.1 Hardware setup

The system design requires a microphone array for higher tracking and detection accuracy.

For this reason, a microphone array was selected for testing and fine-tuning the algorithm.

The goal was to maintain simplicity in terms of hardware and software. For testing and

debugging purposes, a simple hardware setup was considered. This was necessary to provide

a proof of concept and demonstrate a working system. In order to provide an interface

between the hardware and software, a portable computer was also used. The portable

computer is used for communications between the hardware array and the algorithm. The

computer is also responsible for capturing, storing, and processing the data gathered by the

sensor array. For powering the computer and the array, a battery would be required in the

vehicle. But for testing purposes, the built-in battery of the portable computer was used. In

a situation where the system is installed in a vehicle, having direct power from the vehicle’s

oscillator and a backup battery for the system, would prove to be a better solution. In case

of a technical snag, there is a second alternative that can still provide power to the system.
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In order to test and verify the functionality of the tracking and detecting algorithm, a

microphone array with a simple design was chosen. Therefore for the microphone array, a

Microsoft Xbox One Kinect sensor was selected (Figure 4.1). This was chosen, due to its wide

availability and being a cost-efficient component. The sensor has a four microphone linear

array at the bottom, with each microphone evenly positioned from the other. This array

is sufficient for testing the functionality of the system and providing proof of concept. In

an ideal scenario, an eight microphone array that is capable of capturing the entire acoustic

field would be a viable solution in the long run.

Figure 4.1. Microsoft Xbox One Kinect Sensor

The four microphone array present in the Kinect sensors also has an RGB camera, along

with an IR depth finding camera. This provides an alternative to expanding the capabilities

of the system through sensor fusion in the future. A combination of an acoustic sensor,

a camera and a depth measuring camera would increase the system’s measurement and

detection accuracy. In order to mount the Kinect sensor, no additional clamps or mounts

were needed as the sensor can be easily taped to the top of any surface. The microphones

can also be protected with a plastic shield, that would act as a barrier against heavy winds.

Another alternative is to cover the microphones with a porous foam windbreaker, which does
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not require too much space for installation compared to a plastic shield. The sensor array

also has a proprietary port for connection, therefore additional adapters were also required.

Figure 4.2. System Setup

The sensor array has specific power requirements for operation. The operation voltage

for the Kinect sensor is rated at 12V DC. This can be provided using an external battery

in a vehicle. Some cost-efficient alternatives for a 12V DC power supply include lead-acid

batteries. A lead-acid battery has the capability of being recharged through a car’s oscillator,
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while the vehicle is moving. Lead-acid batteries are also generally safer compared to lithium-

ion batteries. For demonstrating and testing, a regular universal serial bus adapter was

selected. This allows the sensor array to be connected to a portable computer, and the

functionality of the sensor can be tested. A speaker was also used to generate sounds of

different vehicles and noises like rain or wind. The purpose of this hardware setup was to

simulate different scenarios that would occur in a real-world situation.

In order to provide power to the sensor for testing and debugging, the array was directly

connected to a wall outlet. A 12V AC to DC power adapter was used to supply power to the

sensor (Figure 4.2). The overall cost of all the hardware components used for testing was

around $80, excluding the portable computer used. This still proves to be a more economical

choice compared to sensors like LiDAR.

4.2 Software setup

The software is an integral component of the entire system. The functionality and re-

liability of the system depend on the software setup. It is crucial to keep the algorithms

separate for different types of measuring techniques, in order to keep the processing smooth.

When it comes to the overall response time of the system, having a fast algorithm is nec-

essary. The algorithm needs to be fast enough, to process data in near real-time. A delay

in processing the real-time data can lead to fatal errors [ 1 ]. Testing and debugging different

scenarios helped in increasing the reliability of the algorithm.

As the software elements were being tested to find different areas of improvement, there-

fore a flexible coding environment was needed. For this reason, MATLAB was selected as the

ideal choice. MATLAB provides enough toolboxes for processing different types of data. It

also supports a wide array of hardware, along with toolboxes for each type of sensor. Using

MATLAB, data can be captured from different data sources and can be stored dynamically

in different variables, which can be used later in the algorithm. The data stored in the vari-

ables can also be exported to different file types for further analysis using various software

tools. The most important resource provided by MATLAB is to view the data or the results
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graphically. This allows the system to show the computed results obtained from the data

through a visual interface, which makes it easier for an average user to understand the data.

The software setup is split into two separate algorithms. Both the algorithms have sep-

arate sub-algorithms and functions responsible for computing different elements needed for

approximation. The first algorithm is the DOA estimation algorithm which is responsible for

localizing different sound sources within the host vehicle’s proximity. The DOA algorithm

uses acoustic signatures of surrounding vehicles and computes an approximation of the di-

rection of the sound source. The direction of the sound source is then displayed in the form

of a vector pointing in the approximated direction of the sound source.

The second main algorithm that is part of the software setup is the proximity approxi-

mation algorithm. This algorithm is vital for the system’s reliability and accuracy. There

are many sub-algorithms within the main algorithm. Communications with the hardware

components like the sensor are carried out by both the DOA as well as the proximity approx-

imation algorithms. The communication between the sensor and the algorithms is carried

out using the bus connection. Additional drivers are also needed to be installed on the

computer, in order for the sensor to work. The driver for the sensor (Kinect SDK 2.0) is

available via Microsoft’s website.

Outputs from the algorithms can be more accurate if measurements of quantities are

relatively close to actual values. In order to ensure that, the exact positioning of the micro-

phone array is needed. The Kinect sensor has a four microphone array housed in the bottom

segment of the sensor module. The exact placement of the microphones was extracted in

centimeters. This step is needed before setting up parameters in the DOA algorithm. The

experimental setup for extraction of the microphone positions was done by generating a tone

from a sound source in front of different microphones and comparing their values.

Positions of four microphones in the Kinect sensor were calculated by using a free and

open-source software tool known as audacity. This was essential, as a four microphone array

produces a four-channel audio file, which can be captured and processed using Audacity.

In the previous versions of the Kinect sensors, the microphones were not evenly spaced,

therefore adjusting for a similar placement is necessary, without disassembling the unit. The

position of each microphone was determined in the form of x and y coordinates. Where x is
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the distance of the microphone from the initial position, and y is the height of the microphone

from the bottom of the array. The procedure to determine the position was conducted by

playing a tone in front of each microphone through a speaker. For this purpose an open

source library was used [ 37 ].

The tone being played was captured using Audacity (Figure 4.3), and the highest inten-

sities were extracted by mixing all four channels. The microphone with the highest intensity

of capture stands out, and this process was repeated multiple times, in order to get a better

estimate of the positions of the four microphones. For finding the positions, the center of

the array was used as the initial point or the origin of the x and y coordinate field. This

means that the positions of the microphones to the left of the origin are marked by negative

values for the positions. While microphones to the right of the origin are marked by positive

values for distance (Figure 4.4). The total length of the microphone module was measured

to be 24.6cm, with the origin at 12.3cm. A sine wave was played close to the microphone

array and the highest intensities were captured (Figure 4.3). The point of the highest value

was the position of the microphone. This process was performed by sweeping the sound

source from left to right and marking the position of the highest intensity. Calibration of

the microphone positions was performed five times and the values were recorded in Table

4.1. The average of all five trials was taken to get a good estimate of the positions.

Table 4.1. Calibration Trials Average
Trials Mic. 1 Mic. 2 Mic. 3 Mic. 4
Trial 1 11cm 3.4cm 7.1cm 10.9cm
Trial 2 11.1cm 3.7cm 7.3cm 11.1cm
Trial 3 10.9cm 3.5cm 7.2cm 11cm
Trial 4 11cm 3.6cm 7.4cm 11cm
Trial 5 11cm 3.4cm 7.2cm 11cm

Average 11cm 3.52cm 7.24cm 11cm

Optimization of the algorithms is necessary for run-time efficiency of the system. Since

the software elements operate in real-time to process the data, therefore code efficiency is an

important factor. In an ideal condition, the data should be processed in real-time, but that

is hard to accomplish as the computer requires some amount of time to compute the data.
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Figure 4.3. Microphone Position Calibration Using Audacity

Figure 4.4. Microphone Position Layout
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But the time delay can be minimized to near real-time values by using different loops for

different tasks. Organizing the code based on the order of occurrence also helps to prioritize

tasks that are higher level, and provide inputs to other sub-algorithms. The optimization of

the code was done by making use of variables in a dynamic manner. This method avoids the

initialization of different variables, which adds additional processing load onto the computer.

Rather, using variables under conditional loops helps to assign values to them when certain

requirements are satisfied. Using separate files for different functions also helps to reduce

the execution time. For example, the DOA algorithm displays the results in the form of a

vector that is updated every half a second. If this process is done as a part of the main DOA

algorithm, then there is a noticeable amount of lag to the rate at which the graphics for the

display vector are updated. Whereas, updating the vector graphics as a separate function

executes at a much faster rate.

In a much similar manner to updating the vector graphics, having a separate function

for capturing audio for both the algorithms also increases the execution speed. Another

method incorporated for optimizing the code for higher efficiency was to set a buffer size.

The buffer is used for capturing small bits of audio and then pushing it to other functions for

further processing. A buffer size that is to big can capture large amounts of data, but requires

additional processing power. On the other hand, a buffer size that is too small can miss out on

some important elements of the data while sampling and capturing the data. Therefore, the

buffer size for both algorithms was kept different, as both achieve different tasks. The DOA

algorithm has a buffer size of 64, while the proximity approximation algorithm uses a buffer

of length 32. As more precision and speed are required from the proximity approximation,

which is why a buffer length of 32 works best. The DOA algorithm does not necessarily

need high processing speed, therefore a 64 buffer length is sufficient. The buffers for both

the algorithms are cleared when the data is pushed to other functions for processing, which

prepares them for storing new data from the sensor source.

The structure of the DOA algorithm is as follows. The algorithms are divided into two

main parts. The first one is the main algorithm with other sub-algorithms for achieving

various computations. While the second algorithm is more of a function that is responsible

for updating the vector graphics. Execution of both the algorithms parallel to each other
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increases the overall response time of the DOA algorithm. Starting from the main algorithm,

the first section is responsible for capturing the acoustic signatures of the surroundings. In

order to ensure that the data quality is of a high standard, a decent sample rate is necessary.

A sample rate that is too low can miss out on some important elements while sampling

the audio, whereas a high sample rate is generally good, but requires high processing power.

According to Nyquist Sampling Theorem, the sample rate should be at least two times higher

than the highest frequency value in the expected data [  38 ]. Since the human hearing range is

from 20 Hz to 20 kHz, therefore a sample rate of 44.1 kHz works well. Another element to

the audio capturing sub-algorithm is frame length. This decides the length of the signal to

be captured and stored in a variable. This is necessary in order to process the data in near

real-time, as a specific frame length allows the system to capture new data while processing

the most recently captured data in the background.

The next segment of the DOA algorithm utilizes the positions of the four microphones

found using Audacity. This is needed to compare the sound intensity levels over the distance

of separation of the microphones. If a given sound source is closer to one microphone than

the others, then the corresponding microphone returns a captured signal with higher sound

intensity level. Then, on comparing theses intensity values with the rest of the microphones,

the algorithm can approximately localize the sound source. This is done by computing the

position of the sound source in radians, based on the microphone that returns the highest

intensity levels. The algorithm compares the intensity levels for each microphone, with a pair

of adjacent microphones, in order to get a precise approximation of the direction of the sound

source [  39 ]. The entire algorithm loops, over and over again, in order to capture, process,

and update the vector graphics. Since for testing and demonstration, the system uses a

four microphone array, but this same setup can easily be replaced with an eight microphone

array. The only variable that would need to be modified is the array for the positions of the

eight microphones, with respect to an initial position or the origin.

The proximity approximation algorithm relies on inputs from all the microphones in the

array. This helps the algorithm distinguish between sound sources that are closer to the

host vehicle. The proximity approximation algorithm prioritizes sound sources with a higher

intensity over sources with lower intensity levels. High-intensity level directly relates to the
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sound source being closer, which is why those sound sources are given a higher priority.

Then, the following sources are computed based on the decreasing order of intensity levels.

The proximity approximation algorithm is structured as follows. As mentioned earlier,

the sample rate is selected to be 44.1 kHz, based on the Nyquist Sampling Theorem. The

audio capture segment works almost identically to the DOA algorithm, but the buffer size

is used as 32. The audio captured is stored in a lossless uncompressed audio file with a .wav

extension. Another factor that affects the quality of the recording, is the bit depth of the

recorded file. The bit depth of the audio file can either be 8, 16, or 24. Generally, a higher

bit depth of 24 is considered to be the best, but it also produces data with large file size.

Therefore, a bit depth of 16 was selected, and it works well for capturing detailed acoustic

information.

The next factor responsible for the fast computation of data is the sample frame length.

An ideal frame length should be long enough to capture enough data, but not too long as

it would take time for the data to process. A long sample frame length increases the time

needed for computation, and the results would be displayed after the event has occurred.

Therefore, a sample frame length of 1024 samples per frame was selected. This ensures that

enough data is captured every second, without skipping any important information. The

captured frames are then passed on to the pre-processing block for further analysis.

After audio capturing has occurred, the data is pushed to the pre-processing block for

further analysis. The main role of the pre-processing block is to remove any unwanted noise

from the audio captures. The amount of noise removal required for each recording is not

fixed, as it depends on the level of noise present in each capture [ 40 ]. The transients in the

signal are analyzed in real-time, and if any unwanted or non-periodic transients are present

then they are considered as external noise. The noise removal process lowers the amplitude

of any non-periodic transients in the captured audio. These can be due to uneven surfaces

of the road, car horns, through natural elements like birds or people walking.

After pre-processing of data is complete, the data is pushed for further computations. In

this step, only the highest intensity level and its corresponding microphone are considered.

The intensity levels of the captured data are then used as inputs to the proximity approxi-

mation block. The inputs from other microphones are also compared and then are pushed to
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the post-processing block for displaying the results computed from the captured data. The

computation of an approximate distance uses a function that contains the mathematical

equations and relations that translate the intensity levels to a distance value. The computa-

tion of the distance using a separate function lowers the feedback time of the computation

block of the algorithm.

The next step of the proximity approximation algorithm is post-processing the data. In

this section, since the data contains fours audio channels, the loudest channel is considered

for displaying the results. A comparison between all four audio channels decides the most

dominating audio channel, which directly relates to the loudest intensity microphone. The

next step is to clear all the previously used variables for newer sets of data. After this step,

the array length is adjusted in order to display the results graphically. Once the vector

lengths are set, the data is pushed then pushed to the graphics block.

The final segment of the algorithm is to display the results graphically. The results are

kept simple and easy to understand for the user. In order to display the results, a waveform

display, a Fast-Fourier Transform, and the distance in a colored scale are shown. These are

updated in near real-time, when newer results are computed and pushed to the graphics

block. The waveform display shows data in an Amplitude vs Time form. Whereas the

Fast-Fourier Transform display shows the arrangement of different frequency elements in the

data in a Amplitude vs Frequency assortment [ 36 ]. The distance approximation is shown

as a color meter, where green represents sound sources that are further away from the host

vehicle. Brighter colors like red represent close proximity of the sound source to the host

vehicle. An additional spectral display can also be accessed if needed, but it adds some

amount of delay to the results. The data presented by a spectral display is also complex and

a bit difficult to comprehend for the user, but can be accessed if it is required for a detailed

analysis of the captured data. For simplicity, the results are displayed in a manner that is

easy to be comprehended by the user and are mapped according to the spatial arrangement

of the sensor array.
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4.3 Hardware and Software Integration

Optimal hardware and software integration is essential for the system’s feedback and

response to be as close to real-time as possible. The sensor array captures raw analog data

from the host vehicle’s surroundings, which is encoded into a digital signal using a universal

serial bus adapter. The conversion is needed, as it allows the data to be imported into a

variable form and analysis can be performed on the data. The system runs two separate

algorithms in parallel with each other, in order to compute and display different types of

information. The sensor array also has extra redundancies like an IR depth camera and a

regular RGB camera. These can act as a good alternate for providing multiple types of data

using only one sensor module.

On the software side of the setup, various sub-functions are utilized, in order to execute

the computations at a faster rate. The code was also tested and optimized to ensure optimal

functionality in different types of scenarios. On the software side of the setup, additional

libraries were also installed for the sensor. These libraries were provided by Microsoft, which

allows the sensor module to be set up and used with a computer. For the algorithms to

provide accurate results, the exact positions are also needed, which were calculated using

the calibrations performed using Audacity. Additionally, Simulink was also used to test

the performance of the microphones in terms of their sensitivity, by computing a frequency

response.

As the entire system uses and processes captured audio for computation, therefore MAT-

LAB’s audio toolbox was selected to streamline the process. This provides the functionality

for the algorithm to adjust values of specific parameters, that would increase the quality

of the captured data. The toolbox also provides functions for displaying the results in a

graphical manner with the axis supporting decibel, amplitude and frequency data types.

Additionally, digital signal processing system toolbox and signal processing toolbox were

also included as a part of the audio toolbox. These provide mathematical functions that can

be accessed to convert the amplitudes of the data into other forms like logarithmic or power

values.
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MATLAB environment was selected due to its support for a wide array of hardware

components. Different manufacturers can provide their own library or can be downloaded

directly from MATLAB. Multiple hardware components can also be used within one algo-

rithm, with each sensor component providing different data types. In the case of a Kinect

microphone array, it provides a four-channel audio file, which is a bit more complex to pro-

cess compared to other audio samples with two audio channels. For this reason, only the

loudest channel is considered and the rest are eliminated, as it enables the algorithm to

process the data faster. The loudest channel also means that the sound source is closer to

that particular microphone compared to the rest. The intensity of sound and distance of the

sound source from the listener can be modeled by an inverse relation.

Integrating hardware and software components together exposes the test setup to different

test conditions. This helps to adapt the system to different conditions and fix problems that

arise during testing. This helps to create a robust hardware and software system setup. A

setup like such enables the system to be mobile, and can easily be mounted on a vehicle.

This also enables the system setup to be modifiable in the future, if extra features were to

be added. As the algorithms were designed specifically for sensors like microphone arrays,

therefore adding extra microphones is a seamless process. As all parameters of the sensor

module can be controlled by the software setup, which eliminates the need for additional

tools that are needed for analysis.

Within MATLAB, the algorithms can also be exported to C-programming language.

The benefit of this is to run the software setup on a small portable computer, which would

prove to be more power efficient and compact. A similar logic of the algorithms can also

be translated to other programming languages, in order to make the code more adaptable

for different systems. The integration of the hardware and software components allows the

system to run independently, without being affected by the performance of other sensor

types. The system needs to be ready when new data is available for processing without any

additional delays. Therefore, making use of variables for storing and processing new data

allows a smooth flow of data elements within the algorithm. Mapping the computed results

in a graphical manner makes the task of comprehending the surroundings easier for the user.
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4.4 Benefits of Test Setup

Having a test setup helps to simulate different scenarios and find potential points of

failure. Many bugs within the code were debugged and the overall structure was improved

after testing the system setup. The overall structure of the system setup was relatively

simple and cost-efficient. The data gathered by the sensor array is not too complex and

can be easily changed based on the capture setting. Processing the captured data requires

a moderate amount of processing power, making it a good alternative for some other sensor

types that require extensive computing power. The flexibility of the system made it easier to

test different hypothetical scenarios and test the system’s response in those cases. Based on

the results obtained from those simulations, the parameters were tweaked further, in order to

eliminate flaws from the system. An example of such a flaw was a relatively high processing

delay due to large buffer size. This was easily fixed by lowering the buffer size, so the data

can flow at a much smoother rate.

One major advantage that the system carries over other alternatives is the ability to func-

tion independently. This eliminates the need for additional complex sensor components, that

increase the overall costs associated with the system, and in turn require higher operational

power. The ability to run independently provides the freedom to install other sensors for

providing additional features to the user without interfering with the system setup. The test

setup is flexible enough, that additional microphone arrays can be combined with the initial

setup to provide better accuracy, without the need for modifying the algorithms. Since the

test system is a working prototype of the actual system, therefore it can be mounted on a

host vehicle to test real world scenarios. Apart from these, the system is also cost-efficient

compared to some other sensor types like LiDAR. It also has major advantages for blind-

spot detection, especially on large commercial vehicles with a limited field of view of the

surroundings.

The software setup of the system is simple and comprehensive in terms of logic. Infor-

mation is relayed to the user through graphical interfaces, making it easier to understand

the complex data. The structure of the algorithms is also flexible, which allows room for

modifications in the future. The functions used by the algorithm can also be written in
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different programming languages, making it platform-friendly. The simplicity and flexibility

of the system give full freedom for sensor fusion. Sensor fusion would allow the system to

track and detect multiple types of objects in real-time. This would increase the overall ac-

curacy of the entire system. An example of sensor fusion is to use vision-based sensors for

detecting still objects or object moving around the host vehicle [ 41 ]. Using a microphone

array for detecting acoustic signatures of objects, while using vision sensors for confirming

the presence of those objects would provide better tracking results. Similarly, combination

of sensors like RADAR with a microphone array can help localize still and moving objects

[ 41 ] [ 42 ].

Another major benefit is the flexibility of the algorithms. This is in regards to the ability

to run on different platforms for better performance or additional features. The portability

factor also means that the code can be flashed onto a small prototyping board, and using

the ports on the board, various hardware peripherals can be connected. This allows creating

variations of the system based on the vehicle and the available budget. By using MATLAB

as the software environment, the code can easily be translated to different programming lan-

guages. The most convenient option is to export the algorithms to C-programming language,

directly from MATLAB. This would then allow the code to be embedded on portable micro-

processors. The basic logic of the algorithms can also be translated to other programming

languages using some third-party tools or directly by importing the logic of the functions.

This provides the freedom to select different platforms for the system based on the budget

and the requirement for the scenario.

In general, the test setup provides a real emulation of how the actual system setup would

perform. This also provides enough flexibility testing and make changes to the system design

by modifying the algorithms or hardware setup. The test setup also allows to test different

real world conditions and scenarios, in order to test the performance of various components.

Due to the simplicity of the hardware setup, real situations were also tested by mounting

the sensor array at the rear end of a vehicle, without any additional mounts or clamps. A

simple graphical interface relays information to the user about the vehicle’s surrounding in a

simple, efficient, and timely manner. When the test system is installed on a vehicle, it does
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not add any additional bulk to the vehicle or require high operational power. The system is

a cost-efficient solution to other sensor types like LiDAR.
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5. DATA COLLECTION

Data collection is necessary in order to validate the system’s performance, response time,

and overall efficiency. This is a procedural approach, that allows the system to be tested

in various conditions. This section provides an in-depth review of different types of data

collected. This section also provides an overview of different data processing techniques used

for each step within the algorithms. These steps are essential for verifying the integrity of

the system’s test setup. Additional tools are also used for verifying the results provided by

the system. These include distance measurement instruments and data blocks produced by

other sensor types for comparison of accuracy.

The purpose of data collection is to test hypothetical situations that the system can en-

counter in real-world applications. This allows the system to be modified further in order to

increase the overall tracking and detection accuracy of the system. During data collection,

additions changes to the algorithm were made for noise removal and the overall sensitivity

of the system. Some extra variables were also created to store new data which allows the

processing of data to occur at a faster rate. The data collected can be transformed into dif-

ferent forms, and the system’s performance under different conditions can be identified [ 43 ].

Based on these results, extra physical or software changes can be implemented. Analyzing

the data after collection helps to understand certain points of failure of the system. This

allows creating a more robust system for the long run.

The majority of data collection depends on different test scenarios. These help to under-

stand how the hardware and software components perform under such conditions, and their

performance can be improved further. In our case, the system was tested for noisy conditions,

windy conditions, and heavy rain. This helps to establish the ideal conditions for the setup

and implement changes to increase the accuracy in the non-ideal scenarios. The whole point

of collecting multiple sets of data is to reduce the likelihood of errors in real-world scenarios.

Sections in this chapter further explore some different experimental procedures followed to

collect data, and the types of tools used. They also provide an in-depth overview on three

possible cases in which the host and the sound source can exist in real-world scenarios. The

final sections of this chapter provide an explanation on the different models and techniques
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used to process the data collected. The last section provides a comprehensive evaluation of

the different types of data collected and the conclusions that can be derived from it.

5.1 Data Collection Procedure

The proper procedure needs to be followed in order to obtain good quality data. For

initial testing and data collection, the experimental setup can be used for testing the system’s

response in various conditions. In order to simulate different types of sound sources, a wireless

speaker was used. A single sine wave tone can be played to demonstrate a sound emitted by

a source. Different variations of the monotonic tones can be used by varying the frequency

of the sine wave. Varying the positions of the speaker can also simulate a moving sound

source. In order to test the performance with noise, a different wireless speaker was used to

play white noise, pink noise, or sounds of nature.

To test the system and verify the accuracy of the data, measurement tools, and a test

setup were used (Figure 5.1). As sound sources were placed at different positions are the

distance was computed by the algorithm, therefore the results were verified using distance

measurement tools. In order to simulate windy conditions, a fan was placed close to the

microphone array that creates the same effect as wind blowing into the microphones. For

blocking the wind, a plastic shield was placed in front of the sensor array that still allows the

sound was through it. The connector on the sensor array uses a proprietary port, therefore

a universal serial bus adapter was used to connect to the computer. The sensor also carries

a power requirement of 12V DC for operation, which is indirectly supplied through the

adapter. This power was supplied using the wall outlet, but when the setup is installed on

a host vehicle, a portable battery or the auxiliary port of the vehicle can be used.

Simulating different scenarios and situations are the most important factors of testing.

This allows the system’s response to be evaluated under these conditions. Further, the

verification of the system can be performed to check if additional changes to the hardware

or software components are needed. In order to simulate the scenarios, the three possible

cases for the states of the host and the sound source were evaluated. The three cases for the

states of the host vehicle and the sound source are as follows:
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1. Static source

2. Static host and moving source

3. Moving host and source

Figure 5.1. Data Collection Test Setup
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5.1.1 Static Source

The first scenario is a case in which the sound source is stationary. In this case the host

can be moving or at a static position as well. A situation like such can occur at a traffic light

or in a parking lot. This can also be a case where an emergency vehicle is parked on the

side of the road. Similar applications of such scenarios can be used for blind-spot detection.

With a static source, the task of detection is relatively simple. The only variable that needs

to be removed is additional environmental noise.

The data collection procedure for the case with a static source is as follows. Sounds

generated by different sound sources are generally produced by the vibrations caused inside

the vehicle’s engine [  38 ]. In order to simulate the presence of a static sound source, a

monotonic sine wave was played using a wireless speaker. The speaker was placed at a fixed

distance of two meters from the microphone array. This procedure was repeated with the

monotonic tone being replaced by an engine sound, which simulates a static vehicle with the

engine running. To test the system’s performance with noise, an additional wireless speaker

was introduced to the test condition. This speaker played the ambiance of a busy city with

sounds of people walking, car horns, and various other acoustic elements.

The collected data shows that the entire system setup depends on the sound waves being

captured by the microphone array. Therefore, if there are objects like parked cars or other

still objects, then detecting them would be a challenge. As still objects do not produce any

sounds, which makes it impossible for the system to detect their presence. As long as a static

source generates some amount of acoustic data, then the system can detect its presence. The

major advantage that the system’s design carries is setup flexibility. This means that the

task of detecting still objects without any sound can be achieved through sensor fusion. A

vision-based sensor like a camera can detect still objects in the frame, while the acoustic

array can detect moving objects that generate sounds [ 44 ].

The data collected for the case with a static sound source suggests that environmental

noise can slightly affect the performance of the system, as it is unstructured data from

random sources [  45 ]. This is bound to happen, as when two sound waves interact with

each other, then the varying energy levels collide with each other. This is known as the
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attenuation of signals. The attenuated signal can be recovered using specific algorithms,

which would increase the processing time of the current algorithms. Although, for testing

purposes, relatively loud volumes of noise were used. The purpose was to test the most

extreme conditions which prepare the system for adverse conditions. The types of noise

vary in real-world conditions, the variations can be in terms of the amplitude of sounds of

different objects [ 45 ].

The first type of sound source was using the monotonic sine wave (Figure 5.2). This type

of sound generally mimics the sinusoidal vibrations produced by the movement of pistons

in an engine [  38 ]. A sound like this is easily detected by the system and the proximity

estimation was found to be really accurate. The second type of source was the sound of a

static car’s engine. The distance was kept fixed for all test conditions at two meters. With

the idle engine sound, the detection and proximity modeling was still really close to the

actual state of the source (Figure 5.3). Testing with the third type of source was engine

sound with a city landscape noise. In this scenario, the tracking results after noise removal

are close to the results with the second type of sound source, with only a few variations in

the blue line (Figure 5.4).

In general, the results for all three types of sound sources were found to be good approx-

imations of the actual distance. This means that the results computed by the system are

accurate in a scenario with a static sound source. Although the approximations of distance

were modeled accurately, these computations were not consistent for all three sound sources.

Since the microphones in the array are arranged close to each other, therefore computing the

variation of intensity levels across each microphone is a bit tricky. This problem would be

solved by placing microphones around the vehicle, with each evenly spaced from the other.

One of the main observations that can be made from the data is that when the sound source

gets more complex, then the modeled values for the approximated distance see small varia-

tions and can be observed in Figure 5.4. This is because of the fact that a noise removal block

is incorporated within the algorithm. With signal processing, the original data is bound to

lose some amount of data as a result of processing.
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Figure 5.2. Static Monotonic Sound Source

Figure 5.3. Static Car Engine Sound As A Source
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Figure 5.4. Static Car Engine Sound With City Noise As A Sound Source

5.1.2 Static Host and Moving Source

The second scenario is the case with a static host vehicle, with moving sound sources in

its surroundings. An instance like such can occur when a host vehicle is at a red light and

the vehicle in the opposite lane is passing by or the host vehicle is pulled over at the side of

the road. This can even occur in a parking lot when the host is trying to reverse the vehicle,

but there are moving vehicles present. In such a case, the system would also work well for

blind-spot detection. A condition like this also presents a situation in which multiple sound

sources can be present around the host vehicle. In such cases, the system uses a combination

of three to four adjacent microphones, in order to localize each sound source [  34 ]. But for

testing only a limited number of wireless speakers were available and only a four microphone

array was used. Therefore, computing multiple sound sources with just four microphones

would not provide accurate direction estimations. Although, an eight microphone array can

do that relatively well.

The procedure for this scenario is very similar to the first scenario, but with slight

modifications. First, a monotonic sound source was used to play a fixed pitched sound. In

order to simulate a moving sound source, the wireless speaker was being moved around the

Kinect sensor. The motion of the movement was similar to a vehicle moving on a road,
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which was in a fixed direction with slight movements to the left or right. The initial starting

distance was again used as two meters. This process was again repeated with the monotonic

tone being replaced by a real-world sample of a car passing by, this provides a more accurate

representation of a moving vehicle. Similar to the first condition, the performance was tested

again with environmental noise. Another wireless speaker was used to play the sounds of a

city landscape with sounds like traffic, car horns, and people walking. The speaker playing

environmental noise was placed at a fixed position and was not moving like the other speaker.

The sound waves reaching the microphone array are all collectively considered as data,

which is further processed for noise removal and proximity approximation. In this situation,

the moving objects are easy to detect, as they generate sound while moving. If there are

still objects present in the surroundings, then they can be detected through sensor fusion.

Sensors like RADAR or vision-based sensors like cameras can detect stationary objects and

work in parallel with the microphone array. Although a RADAR sensor is considered an

acoustic sensor due to the emission of high-frequency beams. But this sensor can still work

without causing any interference with the microphone array. This is because the frequency

of the ultrasonic waves is way beyond the audible range or the detection sensitivity range of

a microphone.

The first type of moving sound source tested was the monotonic sound. This sound is

generally easy to detect as it doesn’t contain any complex elements in the sound waves. The

results for the changing distance of the sound source are also modeled well by the system

(Figure 5.5). With the second sound source, that is with the sample of a car passing by, the

approximations are still within a good range. But since the sound contains many harmonics

when the source moves, the system takes a bit longer to process the data (Figure 5.6). In the

third testing scenario with environmental noise added to the car engine sound, the distance

approximations of the moving were similar to the first sound source (Figure 5.7). Noise

removal adds additional time delay to the processing of the results when complex acoustic

elements are present in the data.

The results for all three sound sources were found to be within relatively close range to the

actual values. The system does experience a slight processing delay when the sound sources

are moving when compared to the scenario in which the source is static. As the case with a
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static sound source, the model of distance approximations was similar to the actual values,

but the results were not consistent throughout all three types of acoustic conditions. The

condition with the monotonic sound had approximations that was an exact representation

of the actual changing distance values. But for the engine sound and the condition with

noise, the results were not as accurate as of the first case and contain slight deviations

(Figure 5.7). This is due to the fact that the data is more complex compared to the first

case. The system also compares the intensity levels between adjacent microphones, which

requires additional processing time for complex data. In general, the system can detect, track

and provide proximity approximation that can be used to detect nearby objects with good

precision. The reliability and detection accuracy of the system can be increased through

sensor fusion. Another method that would lower the processing time would be to run the

noise removal block on a separate portable computer, and push the processed data to the

secondary portable computer for further analysis.

Figure 5.5. Moving Monotonic Sound Source & Static Host

66



Figure 5.6. Moving Car Sound As A Source & Static Host

Figure 5.7. Moving Car Sound With City Noise As A Source & Static Host
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5.1.3 Moving Host and Source

In the third test scenario, both the host and the source are moving. This situation is

most commonly encountered while driving on the road. A situation like such occurs most of

the time where the host is surrounded by other moving sound sources. The processing power

need is highest for this scenario, as the system tries to capture and analyze the data in real-

time. In this condition, noise removal is necessary for eliminating low amplitude noise due

to the wind. Localization of different sound sources is performed by comparing the intensity

levels of adjacent microphone pairs. This helps to localize the DOA of sounds from different

sources. Testing multiple sound sources is a challenging task, as it requires multiple wireless

speakers in order to simulate multiple sound sources. Another limitation was that only a

four microphone array was used to provide a proof of concept, therefore an eight microphone

array would provide better results. An array with evenly spaced microphones covers the

entire acoustic field and can provide better DOA accuracy, compared to a four microphone

array.

The testing procedure for the scenario with moving host and the sound source is as follows.

Similar to the first two testing conditions, first the monotonic sound source is tested. For

this test scenario, both the microphone array and the wireless speaker are moving. Different

variations were tried to simulate different possibilities of motion of vehicles. For this scenario,

the initial starting distance was not needed as the positions of both the microphone array

and the sound source keep changing over time. Any arbitrary starting point for both the

array and the source can be selected. This setting was repeated again but this time with

the car engine sounds, which provides a better representation of the sounds on a road. Then

finally, the engine sound was tested with environmental sounds like traffic noise, which was

played through a different wireless speaker. The speaker playing the noise was kept at a

fixed position but the volume of the noise was altered over time. This helps create a more

natural representation of noise sources moving within the host vehicle’s surroundings.

All the acoustic data captured by the microphone array goes through the pre-processing

and noise removal blocks. Similar to the second condition, tracking moving objects is not a

challenging task, as they generate sound while moving due to the vibrations that arise from
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the engine [  38 ]. Sensor fusion can be used to detect still objects like emergency vehicles that

are parked along the side of the road. A two-stage approach to processing the data would

work in a more time-efficient manner. The current test setup relies on only one computer

for processing and analysis, which takes some amount to process the previous sets of data.

Running the noise removal block on a separate portable computer will help in decreasing

the amount of processing time needed, as the task of analyzing the data can be performed

in parallel to each other.

First, the monotonic sound source was tested by itself. The sound being relatively simple

is easy to detect and track. Results for this sound source are within a close range of changing

distance values and depict the actual motion of the sound source (Figure 5.8). For the second

sound source, which is the car engine sound, the results were also found to be within a good

range as they depict the actual values of varying distance due to the motion (Figure 5.9).

The third sound source was the engine sound with the environmental noise playing through

a wireless speaker. In this case, the proximity estimation was good but wasn’t as accurate

as with the first two cases (Figure 5.10). The blue line in Figure 5.10 is not as smooth in

the third segment due to the loss of data during processing. This is because the number

of microphones available in the array is limited to four. Which cannot provide an ideal

representation of the entire acoustic field around the host. In an ideal situation, an eight

microphone array would solve this problem. An additional case was also considered in which

both the host and the source are moving at the same speed. For this scenario, all three

cases provided accurate estimations of distance. When two objects are moving at the same

velocity, then the distance between them is constant. This is generally easy to process as

the sets of data, in this case, are not complex.

The results computed by the algorithms model the distance values for all the test cases

and were able to provide an accurate representation of the sound source’s varying motion in

real-time. The only observation made was the processing delay for the DOA algorithm with

moving sound sources. This was caused by a limited number of microphones available in the

array module. The delay is expected, due to the fact that the data sets get more complex

as the source and the host start moving. Separating the hardware needed for processing

will also help in reducing the processing time needed. Running the noise removal block on a
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separate computer, while the proximity approximation block can run in parallel separately.

The localization and mapping in terms of distance can be more accurate if sensor fusion is

used. Vision-based sensors or RADAR can help to detect still objects with precision, while

the microphone array can localize and map the moving objects around the host vehicle.

Figure 5.8. Moving Monotonic Sound Source & Host

Figure 5.9. Moving Car Sound As A Source & Moving Host
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Figure 5.10. Moving Car Sound With City Noise As A Source & Moving Host

5.2 Pre-processed Data

The pre-processing of data is needed before it can be analyzed further and important

elements can be extracted from it. The captured data is considered raw in terms of the

amount of information it contains. Raw data contains a lot of unwanted elements that

increase the file size, thus creating storage issues. Larger sets of data also take much longer

to process, and require higher memory for buffer storage. The process of pre-processing

data is also important for the removal of redundant elements. Some sets of data can also

contain certain artifacts that occur during the capturing or storing process. This can create

irregularities in the analysis and estimation results concluded from the data. Therefore, in

order to avoid this, a filtering block is needed. This filtering block is executed after the

data has been pre-processed by the algorithm. The framework for the filter blocks is created

using MATLAB’s filterDesigner (Figure 5.11 & Figure 5.12). The parameters for the cutoff

frequencies can be controlled within the code of the main algorithm.

The raw data captured has redundant information that would slow down the computation

process if it is not eliminated. This redundant information can be environmental noise,

vibrations from other sources, or even artifacts that arise due to digital sampling of analog

information [  38 ]. One example of such a case is using the DOA and proximity approximation

system in rainy conditions. The sounds of other vehicles in rainy conditions would get
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Figure 5.11. Low Pass Filter Framework Design

Figure 5.12. High Pass Filter Framework Design
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masked by the sound of the water droplets falling on different surfaces. As mentioned in the

earlier sections, the characteristics of rain are similar to pink noise. Therefore, a majority of

noise originating from rain can be eliminated from the captured samples by implementing a

combination of a high pass filter and a low pass filter [ 46 ]. This removes the unwanted noise

of the rain from the samples and focuses on the sounds of the vehicles. This can be observed

from Figure 5.13 & Figure 5.14, where the sound of rain has been filtered out from the noisy

signal.

Figure 5.13. Sound Of A Moving Vehicle In The Rain

Noise removal or pre-processing of captured data ensures that the size of the data is

small and only contains relevant information for the processing algorithms. This step helps

to ensure that the processing of data occurs in near real-time. Complex amounts of data take

longer to process, and the results wouldn’t be relevant if the events have already occurred.
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Figure 5.14. Filtered Sound Of A Moving Vehicle In The Rain
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Pre-processing stage lowers the size of the data by eliminating redundant information from

the audio samples. The information eliminated usually contains unwanted environmental

noise, vibrations from the engine, or noise from wind or rain.

Noise is the environment exist in various forms. It can be sounds of nature like wind,

rain, or leaves rustling, these are clubbed as pink noise [  33 ]. Some other sources of noise

can be due to the vibrations from the engine or the wheels of the host vehicle, which cannot

be classified into one specific form, but share similar characteristics to Gaussian noise [ 38 ].

The noise is separated from the sounds of vehicles, by identifying the periodic transients of

sound. Both the external noise and the vehicle sounds have different transients. The noise

removal step separates these transients from each other, and the noise is eliminated.

Noise removal block is part of the pre-processing process. This ensures that any unwanted

data is removed from the data file before it is pushed for further analysis. Smaller data size

ensures that the data flow is smooth and efficient. The size of captured data varies based on

the scenario. A situation with static sources produces smaller sets of data, while scenarios

with a lot of movement have larger sets of data. This is because if there is an activity in the

host’s surroundings, then the acoustic data is more complex. Generally, complex sets of data

take longer to process, therefore pre-processing the data reduces the data size significantly.

After the noise removal process is completed, the data is pre-processed further. Following

the noise removal process, the size of the data is smaller than the original raw data. This

makes it easier to process it in near real-time. The next step is to transform the data into

a type that can be analyzed by the algorithms. The most commonly used method used for

the storage and playback of audio data is amplitude vs time representation. Similarly, the

audio data is stored in a variable, where the data is represented as an array. This allows

the data set to be accessed by simply calling the variable name within the code. It also

makes it easier to perform transformations on the data in a variable format, without altering

the original data. Variables also make the process of moving the data sets across different

sub-algorithms relatively faster.

After the noise removal step, the data is transformed into a variable format, which is then

pushed for further processing. The next step to push the data further for filtering. This step

is a post noise removal procedure and ensures that the data is an accurate representation of
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the original acoustic signature of the sound source. The pre-processing of data requires the

most amount of time compared to other sub-algorithms. Therefore, this process cab made

faster by separating the hardware components. This means that the pre-processing block

can execute and process the data set on a separate computer, and the rest of the algorithms

can execute on a different computer. By using such an approach, the algorithms following

the pre-processing block wouldn’t have to rely on the timely export of data. This would help

lower the overall processing time taken by the system.

5.3 Filtered Data

Filtering is the next step following the pre-processing of raw data. This step is essential, as

it removes any high-energy elements from the pre-processed data. These are high amplitude

elements that are present in the lower or higher frequency range, and they overpower mid-

range frequency elements. Therefore, if their amplitudes are too high, then they are removed

using low and high pass filters. This filtering process only executes if these elements are

present in the pre-processed data. Filtering makes sure that the data is smooth and does

not contain any arbitrary values [ 40 ]. If any unwanted information is present in the data,

then the results computed by the proximity approximation algorithm would not be accurate.

For example, a noisy signal was created, and the spectral image was generated [ 47 ]. The

horizontal lines in the spectral image are the high-energy, unwanted noise elements (Figure

5.15). The FFT and waveform of the noisy signal is also shown in Figure 5.16.

The first step in the filtering process is to create a new variable with a copy of the pre-

processed acoustic data. This helps to speed up the processing part, as different variables

with the same data can be pushed for further analysis. It also ensures that the original data

is left untouched if the results computed by some sub-algorithms are not accurate. After

a copy of the pre-processed data is created, the noisy data is converted into the frequency

vs amplitude format (Figure 5.16). This helps to recognize the presence of high amplitude

elements along the frequency spectrum. Filtering of these unwanted elements is easier to

implement if the data is in the frequency domain. Therefore, an FFT is performed on the

pre-processed data. If any data points with amplitudes above the zero decibel threshold are
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Figure 5.15. Spectral Image Of A Noisy Signal

present, then an appropriate filter is applied in order to remove those elements (Figure 5.17)

[ 32 ].

The size of the data is still large after the filtering process, as the data contains informa-

tion from four audio channels. The next step is common for both the DOA and the proximity

approximation algorithms. This is to find the loudest audio channel, which directly corre-

sponds to the position of the sound source is closer to the microphone returning the highest

intensity value. The DOA algorithm compares different microphone pairs with each other,
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Figure 5.16. An Unfiltered Signal With Noise

in order to present an accurate DOA of the sound. While for proximity approximation, only

the channel with the highest intensity level is needed. After this step, the data is small in

size as it only contains information about one audio channel rather than four. When the

system is tested with an eight microphone array, the processing time will get cut down to

about one-eighth of the initial processing time.

After the appropriate filters have been applied to the pre-processed data, the next step

is eliminating audio channels. This step of the filtering algorithms is similar for both DOA

and proximity approximation algorithms. The DOA algorithm requires all four audio chan-

nels for the comparison of intensity levels. The main purpose of the DOA algorithm is to

precisely estimate the direction of the sound source. The degree of presence is computed

in radians by using the intensity values from the two loudest channels. While the distance
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approximation only considers the loudest audio channel out of the four available. The sound

source is localized by the DOA algorithm in terms of its location around the host vehi-

cle. Whereas, the proximity approximation algorithm is responsible for mapping the sound

source by computing its distance from the host vehicle.

Figure 5.17. Noisy Signal Post Filtering

In general, the filtering of data can be done before the pre-processing process. This would

help remove the unwanted noise more efficiently, but as the raw data is relatively large in

the beginning, therefore the whole filtering process takes a long time to compute. Another

disadvantage to filtering the data, in the beginning is with regards to the accuracy of the

data. As noise removal occurs before filtering, then the data passes through the filters and

high-energy elements are removed from it. At this point, the data is mostly free from any

unwanted noise, and the filtering algorithm can perform efficiently. But if the data filtering
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process executes before the pre-processing stage, then a lot of information is lost, as the

algorithm aggressively removes elements that seem to have high-energy. The main goal of

the filtering block is to apply smoothness to the data, so any discrepancies are eliminated

from it [ 40 ].

5.4 Post-processed Data

Once the data has been filtered, it is then pushed further for post-processing. Post-

processing of audio related data in the system’s design refers to editing the data in order to

fit the array dimensions. At this stage, a majority of the data is in its final form. In this

step, the data is evaluated to compute the distance estimate based on the sound intensity

levels. The amplitudes of the data are left untouched throughout the processing procedure.

As the distance estimates inversely relate to the intensity levels, therefore altering it would

cause discrepancies in the results provided by the algorithm. Post-processed data is simply

adjusted for being displayed through the graphical interface.

In the preliminary steps, the data goes through a noise reduction process, followed by

filtering. After these steps are executed, the data contains some empty spots. The noise

reduction process simply lowers the amplitudes of elements it considers as noise. Some

elements that already have been reduced are usually removed by the filtering process. These

empty data points need to be replaced by arbitrary data values, so they can be scaled to

a set of axes. These empty data points are padded by zeros, this is done so the original

data values are left untouched. After this step, the data is normalized and can be displayed

graphically in a two-dimensional manner.

The DOA algorithm doesn’t require intensive noise removal or filtering. The general

process of normalization works relatively well for estimating the direction of the sound source.

After the DOA algorithm compares the audio channel pairs, the buffers are cleared so new

data sets can be accommodated. The angle of presence is computed in radians, using the

two concurrent audio channels as vectors. The angle of presence computed is the arbitrary

separation between the two-channel vectors. This is also dependant on the positions of the

microphones within the array. The wider the separation between consecutive microphone
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pairs, the better is the accuracy of estimation. Microphones that are too close to each other

provide similar levels. Comparing the data collected by such microphones, does not show

much difference between intensity levels.

On the other hand, the proximity approximation algorithm relies purely on accurate

data. Therefore, noise reduction is an integral part of the distance approximation algorithm.

Filtering is also another essential component, as it helps to generate smoother data sets.

This directly helps to get accurate estimation results. The distance of the sound source is

computed using the Inverse Square Law. For the calculation of distance, the intensity levels

of the acoustic data are used as inputs for estimation. Similar to the DOA algorithm, the

distance of separation between two consecutive microphone pairs is an important factor in

determining the distance accurately. The greater the distance of separation between the

microphones, the better the intensity comparison results.

After the results are computed by both the algorithms, the finalized data is pushed

further to the graphics block. The results for the distance are displayed using two graphical

elements. The first one is a color gradient scale, which displays higher intensities as bright

red color, and the lower intensities are shown using green. Colors between these gradients

represent changing positions of the sound source, as it moves closer or farther away from

the host vehicles. Red color can be seen as a warning when the sound source gets too close

to the host vehicle, while green can be regarded as a relatively safe distance. The second

set of results are displayed using a small section next to the color gradient meter, in which

the relative distance is modeled by a moving line. DOA algorithm uses a separate graphics

display for displaying the direction of the sound source.

Small buffers of fixed lengths are used for displaying the results graphically. Once the

buffers for the graphics receive data, the old data sets are cleared. This allows for a seamless

transition of new data to be processed by the algorithms. The buffers for the graphics are

also cleared once the data is displayed. An additional step was implemented, this allows

the system to run without any obstructions. If the response from different blocks of the

algorithm is slow, then those sets of data are skipped. This allows the system to process

the next set of data, instead of delaying the results for the old set. Execution of the code is

timed, and if some blocks cause a delay, then the algorithm resets itself. An implementation

81



like this allows the system to self-configure problems that may arise during the data capture

or processing.

5.5 Explanation of Data Types

The system produces different forms of data after each processing step. Data can vary

in terms of size, the information contained, or the number of audio channels. Different

sequential processes make data more portable and precise for analysis. After each processing

step is executed, the form of data changes in some way that is different from the original data

set captured by the microphone array. Data for the amplitudes of the captured samples is left

untouched throughout the data handling process, in order to preserve characteristics of the

sound source. Only the form of the data changes after the processing of data is completed.

For example, after noise reduction, the data is smaller in size, and after filtering it is even

smaller. But after the post-processing stage, it is the smallest in size since unnecessary

channels are eliminated.

The microphone array captures the initial sets of data required for analysis. The sample

rate used for this case was selected as 44.1 kHz. This allows the system to get all the

information about the host’s acoustic field without any data loss. The captured data contains

four audio channels, as each channel corresponds to the data captured by each individual

microphone in the array (Figure 5.18). In an ideal eight microphone array, the data would

contain eight audio channels. The captured data is stored in a lossless file with a wave file

extension. Lossless data format prevents any data loss due to compression of data.

Pre-processing of data performs noise reduction if the data requires it. This process is

executed on four audio channels. After the execution of this stage, the size of the data is

small only if noise reduction is performed on the original data set. Whether or not the noise

reduction process is performed on the original data set, it is then transformed into a variable

format for easier portability. The variable is an array of the same length as the sample rate

selected. For this case the sample rate was selected as 44.1 kHz, therefore the length of the

variable array is 44.1 kHz. This is enough to preserve all the acoustic information without

any data loss or artifacts in the sampled data.
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Figure 5.18. Raw Data With Four Audio Channels

The next step is filtering of data where smoother sets of data are generated as the output.

During this process, any acoustic elements present with high energies or amplitudes above

the zero decibel threshold are removed. The removal occurs by applying the adequate filter

types as required. For this step within the filtering block, the data is transformed into the

frequency domain, as it separates the existence of all frequency elements along with their

amplitudes. The transform used for this purpose was Fast-Fourier Transform (FFT). A copy

of the pre-processed data is created before being transformed into the frequency domain.

This preserves the data from being corrupted by any possible errors that may arise from

processing and transformations.

The filtered data then bifurcates into two forms for the DOA and proximity approxima-

tion algorithms. At this point, the data only contains information about the sound source
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and is free from any noise. The DOA algorithm eliminates the audio channel data after

computing the direction of the sound source. The DOA algorithm only pushes the com-

puted results to the graphics block. While the distance approximation algorithm compares

the audio channels, and only stores the loudest channel (Figure 5.19). This channel is then

pushed for post-processing. At this stage, the data is the smallest in size and only contains

the acoustic characteristics of the sound source, within the audible range of frequencies.

Figure 5.19. Channel 3 Selected, As It Has The Highest Intensity

The post-processing block within both algorithms receives the results for the direction of

sound and the loudest audio channel. These values are then normalized if needed, in order to

match the vector lengths. This allows the information to be displayed in a two-dimensional

form. After the data is displayed in various forms, the buffers are cleared. This whole process

from capturing, processing, displaying the data, to clearing the buffers loops over and over
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again in real-time. To ensure a constant flow of data, the size of the buffers was selected

adequately. In order to avoid processing delays, processing blocks were created to streamline

the entire process.

The size of data is the largest when it is captured and stored in a lossless wave file. The

file contains information from four audio channels, along with external noise. As the data

passes through different processing stages, the size of data gets smaller and is thus easier

to process. Each processing stage makes sure that the data is accurate and is free from

any unwanted information. This ensures that the approximations made by the algorithms

are accurate. Additional normalization is applied to the data set, in order to match the

lengths of the arrays for displaying the data. The final form of the data for the distance

approximation is then modeled by a moving line that represents the motion of the sound

source and as a color gradient. While the final form of data for the direction of sound is

displayed as a vector pointing in the direction of arrival of the sound.
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6. RESULTS

The section provides a deep insight into the results and conclusions made from the system’s

performance during data collection. The comparisons are made based on accuracy and the

system’s response time, in different test scenarios and conditions. This segment also goes

over some advantages the system has over other sensor systems. The results section is to

verify and explain the functionality of the sensor array model proposed.

The main idea for the system is to model the distance based on the time delay of the

captured sounds. In general, if an object is farther from a listener, then there are more

reverberations present in the sound once it reaches the listener [ 9 ] [ 48 ]. Whereas, sounds

closer to the listener have a smaller number of reverberations [ 9 ]. This is due to the fact

that as distance increases, the sound gets reflected off of multiple surfaces [  49 ]. While

the sound wave continues to travel in the same trajectory, with the final acoustic signal

being more complex due to the reflections being superimposed on the original signal. The

transients of a sound source that has reverberations present are generally longer in length

[ 48 ]. Estimating the distance solely based on the number of reverberations is also a good

solution, but it requires extensive filters. For example, particle filters can compute the

number of reverberations present but require high processing power [  9 ]. The DRR or the

intersection of reverberation level and the direct sound level provides the critical distance

from the sound source (Figure 6.1).

This section also goes over some benefits that the setup offers. The benefits mainly per-

tain to the situations in which the system can perform relatively well, compared to other

sensor types. It also proves an in-depth overview of the economic benefits. Economic benefits

relate to the system hardware and software setup. The direction of arrival runs separately

from the distance approximation algorithm due to the high number of computations per-

formed by the algorithm. Execution of both algorithms in parallel allows the system to

compute two different tasks at the same time. It also provides enough processing power

needed for each algorithm. In an ideal system design or setup, these tasks can be computed

on two separate computers for a faster response time.
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Figure 6.1. Correlation Between Reverberations & Critical Distance

The next section provides more information on how the direction of arrival algorithm

computed the direction of the sound source. This includes the basic mathematical logic used

for the system setup, as well as the equation for the setup. The model was designed for a

two-microphone system for estimating the direction of the sound, by calculating the results

as two possible outcomes, either left or right. This design concept was then extended for a

four microphone array setup and can be used for an eight microphone array as well.

6.1 Direction Of Arrival Computation

The computation of the direction of the sound source is performed a bit differently than

proximity approximation. It uses basic trigonometry and geometry to simplify the acoustic
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arrangement. The direction of the sound originating from the source is displayed using the

polar form of the acoustic field. Most signals captured by different sensor types are converted

from analog to digital. In order to achieve that, a good sampling rate is selected, along with

a buffer for temporarily storing the data. The sensitivity of the microphones detects the

amplitudes or the intensities of the sound. Most microphones have an oscillating membrane

that captures the varying pressure levels of the sound. Therefore, a microphone with a good

sensitivity range for the frequency directly translates to higher accuracy.

The estimation for the direction of the sound source is as follows. The geometric represen-

tation of the system is shown in Figure 6.2. The model represents the comparison approach

with microphones 1 and 2. This concept is further extended for all the microphones that are

part of the array. Figure 6.2 has a sound source S, which is present between microphones 1

and 2. The direction of the sound source is given by the angle θ. The computation of the

angle θ is performed by comparing the time delay between microphone pairs. For example, in

Figure 6.2 the sound source is present between microphone 1 and 2, therefore the evaluation

process considers the following microphone pairs: (1,2), (1,3), and (1,4).

The lengths of segments BS and DS can be calculated using the distance formula. Mi-

crophones 2, 3, and 4 have an equal distance of separation from each other. Similarly,

microphones 1 and 4 also have an equal distance of separation between them. The time de-

lay between the two consecutive microphone pairs is compared and based on that the angle

θ is calculated. The algorithm also uses the speed of sound in the air to calculate the length

of segment AD.

This is easy to calculate using the distance formula, where c is the speed of sound in air

(340m/s), and t is the time delay in seconds (s):

AD = t ∗ c (6.1)

This gives the distance covered by the acoustic signal while the time delay of length

t occurred. The positions on the x-axis remain fixed, as it represents the positions of the

microphones in the array. The time delay can be detected by looking at the starting positions

of the transients of the acoustic data. The smaller the time delay between two transients, the
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Figure 6.2. Direction Of Arrival Estimation System Model

more centered the sound source is between two consecutive microphone pairs. All possible

microphone pairs are tested in order to get an accurate representation of the direction of

the source. The positions of the microphones are essential for this measurement. With the

Kinect sensor, the arrangement of the microphones is symmetric, with respect to the center

point on the array module.

The implementation of the direction of arrival system can be extended to an eight micro-

phone array. For this setup, microphones on the same surface of the vehicle can be grouped

together for comparison of time delay. The difference in transients or the time delay in the

signals captured by different microphones is used as inputs to compute the angle in radians.

The results for the angle are computed by taking the components of the x & y axes. These
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components are in terms of sin and cos computed in radians. The computed results for the

angle in radians are then pushed to the graphics block. This is where the direction of the

sound source is displayed by a vector in the polar form.

The direction of arrival (DOA) of the sound produced by the source is localized by the

system using the microphone array. The samples collected are common for both the DOA

and the proximity approximation algorithms. The data is processed in different ways to

extract different kinds of information. Processing the data for the DOA algorithm is a bit

more complex than proximity approximation, as there are many variables involved with the

computation. As all possible combinations of microphone pairs are evaluated, the response

time is a bit slow, but the results are highly accurate.

6.2 Accuracy Comparison

This subsection provides accuracy comparisons for different test scenarios, and how the

system compares with actual measurements. The accuracy comparisons are made for the

distance estimations and direction of the sound source. Starting from the different test

conditions from the data collection procedure for proximity approximation, different mea-

surements are compared for verification of data. Later on in this subsection, the results for

the direction of arrival are compared for accuracy and precision. This provides a general

idea for the system’s performance in real test conditions. Further changes to the system’s

design or the software elements can be made based on the amount of deviation from actual

measurements.

6.2.1 Distance Approximation Accuracy Comparison

Staring with the test conditions for the sound source distance modeling results from the

data collection stage, this section provides a review of the results and their level of accuracy.

In this subsection, all three possible test scenarios are considered for comparison. After the

results for each scenario are presented, this section will also provide an overview of some
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conditions in which the system did not perform relatively well. The intensity of the sound

is given by the equation,

I = 2π
2ν2λ2ρc (6.2)

I: Intensity of the sound in decibels (dB)

ν: Frequency of the sound wave (Hz)

λ: Amplitude of the sound wave (m)

ρ: Density of air (kg/m3)

c: Speed of sound (m/s)

The speed of sound is given by the relation,

c = νλ (6.3)

The equation for the intensity can be simplified to,

I = 2π
2ρc3 (6.4)

Under ideal conditions, the speed of sound is approximately 340 m/s, but this value

varies based on the temperature, humidity, and location. Using the relation between speed,

distance, and time.

c = d/τ (6.5)

Here, τ is the time delay between a sound wave captured by two consecutive microphone

pairs, and the estimation of the distance is made using the speed of sound derived from the

intensity levels.

The first test scenario was with the static sound source. In this case, sound sources

like a monotonic sine wave, or less complex sounds are easier to detect and process. When

additional environmental noise is introduced to the condition, the data gets more complex,

and more processing is needed for extracting specific information. The results for the simple
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sound sources like the monotonic sine wave and the engine sound have the exact same values

for distance as the actual measurement. Slight deviations in accuracy are observed when

environmental noise is added to the scenario. This occurs due to the fact that the noise goes

through a reduction process, which can alter the original source sound in some way. But the

data is not altered in a manner that would cause discrepancies in the results.

The second scenario was with the static host and a moving source. This scenario was

simulated by moving the sound source around, in order to create an illusion of a moving

vehicle. Similar to the first scenario, the monotonic sine wave, and the car sound produce

accurate results. Sometimes if the object is moved too fast between the microphones in the

array, then the tracking and the results are not quite accurate. A scenario like this wouldn’t

really occur in a real-world setting but is something that can be fixed by increasing the

sample rate. But this also comes at a cost, in terms of an uptick in the time taken by the

system to process the data. With the environmental noise induced into the scenario, the

results are still observed to be close to the actual measurements.

The third and final scenario tested was with the moving host and source. In order to

simulate this scenario, both the microphone array and the sound source were moving to

replicate a moving vehicle. A test situation like such exposes the microphones to wind while

in motion. To eliminate noise through wind, a transparent or porous shield can be mounted

in front of the microphones that can block the wind but would let the sound wave pass

through. The monotonic sine wave results were the most accurate in this scenario. Then the

results for the engine sound were close to the actual motion of the source. After inducing

environmental noise in the scenario, the results were close to the actual measurements but

weren’t as accurate as they were with other test conditions.

In conclusion, the data modeled by the system was observed to be in close agreement with

the actual measurements for the distance of the sound source. Some additional improvements

can be made on the software end by using neural networks for better separation of noise

from the sound source [ 28 ]. The computers used for processing the data and analysis can be

separated, which would lower the processing time.
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6.2.2 Direction Of Arrival Accuracy Comparison

The verification process for the direction of the sound source is as follows. A printed

protractor was used to measure the angle at which the wireless speaker was placed. In

order to accurately get the angle of the speaker, a string was used to get the direction from

the protractor to the source. This setup helps to verify the results provided by the DOA

algorithm. The speed of the results depends on the complexity of the data provided as an

input to the DOA algorithm. The verification of the results was done in a manner similar to

the distance approximation algorithm. This provides a general overview of the performance

of the system in terms of DOA estimation. The algorithm executes the A/D process, which

helps to perform analysis on the data sets. Multiple DSP techniques such as sampling, noise

reduction or frequency domain conversion is performed on the captured data, in order to

extract information. The core concept of the noise reduction process is to minimize the

noise in the raw data. For this purpose, the algorithm tries to maintain an SNR as high as

possible, without losing any important information.

The description of the test scenario simulated is as follows. A wireless speaker was

used to play the role of a sound source near the microphone array. The distance was kept

at approximately 4 meters, as this was just to verify the functionality of the DOA tracking

accuracy. In order to simulate a moving sound source, the speaker was approximately moved

between -40◦ and 30◦ in random order. The DOA algorithm was able to accurately track

the movement of the sound generated through the speaker, and direction is represented by

the green arrow as shown in Figure 6.3 and Figure 6.4. As only a four microphone array

was used to provide a proof of concept, therefore only the 180◦ acoustic field is considered.

This approach can easily be extended to an eight microphone array in order to represent the

entire 360◦ acoustic field around the host vehicle.

The results of the DOA algorithm were consistent with the actual values and can be also

be observed from Figure 6.3, Figure 6.4 & Table 6.1. For complex acoustic data with loud

environmental noise, the DOA results don’t get affected by a significant amount. This is

because the algorithm can easily pick out the loudest acoustic channel, as noise does not

directly have any effect on the intensity levels of sound. In general, the overall performance
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Figure 6.3. DOA -40◦ to the left

Figure 6.4. DOA -40◦ to the right

94



Table 6.1. DOA Algorithm Accuracy Comparison
TEST ANGLE TRIAL 1 TRIAL 2 TRIAL 3 TRIAL 4 TRIAL 5

90◦ 95◦ 100◦ 90◦ 90◦ 85◦

80◦ 80◦ 75◦ 80◦ 70◦ 80◦

70◦ 60◦ 70◦ 65◦ 70◦ 65◦

60◦ 60◦ 70◦ 60◦ 60◦ 65◦

50◦ 40◦ 55◦ 50◦ 50◦ 50◦

40◦ 40◦ 35◦ 45◦ 40◦ 50◦

30◦ 30◦ 30◦ 35◦ 30◦ 30◦

20◦ 20◦ 10◦ 20◦ 20◦ 20◦

10◦ 5◦ 10◦ 5◦ 10◦ 10◦

0◦ -5◦ 0◦ -5◦ 0◦ 0◦

-10◦ -5◦ -15◦ -10◦ -10◦ -10◦

-20◦ -20◦ -20◦ -15◦ -10◦ -15◦

-30◦ -25◦ -30◦ -25◦ -30◦ -35◦

-40◦ -40◦ -45◦ -45◦ -40◦ -40◦

-50◦ -50◦ -50◦ -50◦ -60◦ -55◦

-60◦ -55◦ -55◦ -60◦ -60◦ -60◦

-70◦ -70◦ -65◦ -70◦ -70◦ -70◦

-80◦ -70◦ -85◦ -80◦ -75◦ -80◦

-90◦ -90◦ -85◦ -90◦ -95◦ -80◦
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can be improved by integrating machine learning techniques or using artificial intelligence

(AI), to recognize and differentiate characteristics of different sounds. Using smaller com-

puters for easier tasks and more powerful ones for heavy processing can definitely provide a

boost in the efficiency of the system.

6.3 Blind-Spot Detection

Compared to other sensors utilized for autonomous driving that produce beams for scan-

ning and detecting the surroundings, a microphone array works a bit differently. Many

sensors such as LiDAR produces large and complex data sets, that have a lot of redundant

information, and deciphering the data requires high operational costs. In this regard, a mi-

crophone array is easier to setup and operate. An acoustic sensor like a microphone also has

an advantage over other sensors as it can pick up on the acoustic activity around the vehicle.

This opens up the possibilities for blind-spot detection.

Blind-spot regions or dead zones around a vehicle could be areas that are beyond the

range of a sensor, or are below the level of detection [  1 ]. Spots like these could be behind

the vehicle, or by the sides where the field of view is limited. Especially in large commercial

vehicles, blind-spot detection can prevent some major fatalities. A microphone array can

pick up acoustic signatures of activities such as pedestrians, small vehicles, small children,

or animals. This can be used for regular vehicles where the field of view is limited. This

can also be used as a combination with some other sensors in order to detect still objects,

as they do not produce any sound. Other applications of blind-spot detection can also be

applied to large warehouses, where workers are moving around large commercial machines.

Overall, an acoustic sensor has some benefits in terms of object detection over other sensor

types, through detection of their acoustic signatures.

For example, the waveform of a pedestrian walking close to the vehicle is shown in Figure

6.5 and will be used for feature extraction. The changes in transients of the waveform can

be used to recognize the type of activity taking place. This can be observed in Figure 6.6

when transient changes are detected on a small section of the sample. In Figure 6.6, a dense

region of the vertical region represents a significant amount of change in the transient.
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Figure 6.5. Transients Of A Pedestrian Walking

Figure 6.6. Transient Change Detection
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Figure 6.7. Mel Frequency Spectrum

Figure 6.8. Extracted Acoustic Features

98



In Figure 6.7, a Mel-Frequency spectrum is shown. This provides an accurate represen-

tation of the way different sounds at specific distances are perceived by human ears [  36 ] [  50 ].

After performing a Mel Frequency analysis on the audio sample, the elements with the high-

est pitch are extracted and can be observed from Figure 6.8. These are the points at which

the pedestrian’s foot makes contact with the ground, and generates a periodic waveform with

high pitch elements. The model for blind-spot detection can be enhanced even further using

AI or machine learning. Acoustic event recognition or sound-activated decision-making can

help avoid certain obstacles like firetrucks [  45 ] [  51 ]. Generating a risk evaluation matrix for

different sounds can help prioritize tasks like emergency vehicles.

6.4 Economic Benefits

As microphone array only considers the data that reaches the sensor in terms of changes

in acoustic intensities, thus producing data that is easy to process. A lot of redundant

information present within the data about the surroundings is eliminated in the processing

stages. This creates a system that is economic to operate. The data sets produced are

not too complex and hence do not require extensive processing power. Overall, the cost of

operation is relatively low compared to some other sensor types like LiDAR.

Cost efficiency is one of the major benefits of a system like such. Starting from the cost

of hardware components, to the software elements, the maximum cost is under $200. The

system also proves to be economic in the long run, with regard to the cost of replacing

hardware components. In terms of software tools used, the code can be ported to Python

which is free to use and provides efficient libraries for audio applications [  52 ]. For example

pyAudioAnalysis, an open-source Python library can efficiently extract audio information

and perform analysis [  53 ]. The data sets generated by the system are also economic in

terms of processing, thus eliminating the need for extensive computational power. A low-

cost system allows the user to replace faulty parts, which directly translates to better safety

compared to costlier sensor types like LiDAR. In conclusion, the system’s low operation

costs, simple setup, flexibility for sensor fusion, tracking, and detection accuracy, make it a

strong alternative to some other high-cost sensor systems.
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7. FUTURE WORK

The system was simulated on a personal computer, therefore the number of resources such

as RAM, CPU, and memory allocated were limited. If the sensor array and the software

elements are connected to a computer that is specifically designed for the purpose of Acoustic

SLAM, then the performance would see a significant boost. Similarly, running the DOA and

distance approximation algorithms on separate computers can definitely help increase the

processing speed. This parallel computational approach for processing and estimation will

significantly reduce the system’s response time. The overall accuracy and detection of the

system setup can be increased through sensor fusion. Sensor fusion with a vision-based

sensor can help detect still objects or vehicles, which cannot be detected by the microphone

array. Even an IR camera can help detect still obstacles while the microphone array can

pick up acoustic signatures of moving vehicles.

MATLAB was selected as the IDE because it provides flexibility in terms of testing

and debugging. But it also has some limitations like requiring extensive CPU power and

execution of statements in a sequential manner. The finalized version of the software elements

can be ported to the Python programming language. This would enable the algorithms to

run on various platforms. Python is free and also offers open-source libraries like librosa for

processing audio data, which is faster than the audio toolbox offered by MATLAB. It is also

the ideal language for machine learning and artificial intelligence applications, which can be

applied to the system’s design in the future.
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8. SUMMARY

In this thesis, a novel idea that utilizes an array of acoustic sensors for SLAM was presented.

Different test scenarios were simulated using MATLAB, and the system’s performance was

evaluated. The overall performance and accuracy of the system were comparable to the

actual measurements. One major advantage that the system has over other sensor setups is

cost-efficiency. The data sets captured by the sensor array are easy to process, as they are

not too complex and contain acoustic data stored in four channels. The simplicity of the

data means that the system does not have a high operational cost, in terms of computational

power needed. This helps the system capture and process data, in order to display the results

in near real-time.

Another advantage the system carries over sensors like cameras, LiDAR, and RADAR is

that it can function in adverse conditions. Conditions like heavy snow, do not impact the

system’s accuracy. Similarly, dark or low light conditions also do not alter the system’s func-

tionality. Since conditions like rain and wind have white noise-like characteristics, therefore

this can be removed during the processing stage by applying a high pass filter to the data.

This makes it a viable low-cost alternative.

The system’s design is relatively simple and only depends on the positioning of the

microphones for better accuracy. This provides enough flexibility for modifications or for

sensor fusion. Sensor fusion with a vision-based sensor can help the system reach even higher

detection accuracy. The flexibility of the software elements allows the code to be ported to

other programming languages for higher portability and compatibility. Regular vehicles,

large commercial transportation, or warehouse machines can even benefit from a system like

such through blind spot detection. In conclusion, this system carries major advantages over

other sensor types in many situations, while being a cost-efficient alternative.
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