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ABSTRACT

In this thesis, we focus on two challenges arising in kinetic equations, high dimensions and

uncertainties. To reduce the dimensions, we proposed efficient methods for linear Boltzmann

and full Boltzmann equations based on dynamic low-rank frameworks. For linear Boltzmann

equation, we proposed a method that is based on macro-micro decomposition of the equation;

the low-rank approximation is only used for the micro part of the solution. The time and

spatial discretizations are done properly so that the overall scheme is second-order accurate

(in both the fully kinetic and the limit regime) and asymptotic-preserving (AP). That is,

in the diffusive regime, the scheme becomes a macroscopic solver for the limiting diffusion

equation that automatically captures the low-rank structure of the solution. Moreover, the

method can be implemented in a fully explicit way and is thus significantly more efficient

compared to the previous state of the art. We demonstrate the accuracy and efficiency of

the proposed low-rank method by a number of four-dimensional (two dimensions in physical

space and two dimensions in velocity space) simulations. We further study the adaptivity of

low-rank methods in full Boltzmann equation. We proposed a highly efficient adaptive low-

rank method in Boltzmann equation for computations of steady state solutions. The main

novelties of this approach are: On one hand, to the best of our knowledge, the dynamic low-

rank integrator hasn’t been applied to full Boltzmann equation till date. The full collision

operator is local in spatial variable while the convection part is local in velocity variable. This

separated nature is well-suited for low-rank methods. Compared with full grid method (finite

difference, finite volume,...), the dynamic low-rank method can avoid the full computations

of collision operators in each spatial grid/elements. Resultingly, it can achieve much better

efficiency especially for some low rank flows (e.g. normal shock wave). On the other hand, our

adaptive low-rank method uses a novel dynamic thresholding strategy to adaptively control

the computational rank to achieve better efficiency especially for steady state solutions. We

demonstrate the accuracy and efficiency of the proposed adaptive low rank method by a

number of 1D/2D Maxwell molecule benchmark tests.

On the other hand, for kinetic equations with uncertainties, we focus on non-intrusive

sampling methods where we are able to inherit good properties (AP, positivity preserving)

12



from existing deterministic solvers. We propose a control variate multilevel Monte Carlo

method for the kinetic BGK model of the Boltzmann equation subject to random inputs.

The method combines a multilevel Monte Carlo technique with the computation of the

optimal control variate multipliers derived from local or global variance minimization prob-

lems. Consistency and convergence analysis for the method equipped with a second-order

positivity-preserving and asymptotic-preserving scheme in space and time is also performed.

Various numerical examples confirm that the optimized multilevel Monte Carlo method

outperforms the classical multilevel Monte Carlo method especially for problems with dis-

continuities.

13



1. INTRODUCTION

Kinetic equations play an important role in describing the non-equilibrium dynamics of gas

or systems comprised of large number of particles from a statistical viewpoint [  1 ]. At the

mesoscopic level, they can explain the macroscopic quantities and provide rich information

when the well-known fluid mechanical laws of Navier-Stokes and Fourier break down and

become inadequate to represent the system. There are various applications in fields such as

rarefied gas dynamics [  2 ], plasma physics [ 3 ], semiconductor modeling [ 4 ] and biological and

social sciences [ 5 ]. The most fundamental example of kinetic equation, Boltzmann equa-

tion [  6 ] bridges microscopic Newtonian mechanics and macroscopic continuum mechanics

by taking into account of particle transport and binary collisions. Denote the probability

distribution function by f(t,x,v), where t is time, x is space, and v is (particle) velocity.

The dimensionless Boltzmann equation reads [ 1 ], [ 7 ]:

∂tf + v · ∇xf = 1
ε

Q(f, f), x ∈ Ωx ⊂ Rdx , v ∈ Rdv , (1.0.1)

where ε is the Knudsen number, defined as the ratio of the mean free path and the typical

length scale. ε varies from O(1), the kinetic regime to ε � 1, the fluid regime. When

ε → 0, formally by Chapman-Enskog expansion, one can derive the compressible Euler

limit or Compressible Navier-Stokes limit depending on the leading order taken; dx and dv

are the dimensions of spatial and velocity domain respectively; and Q(f, f), is the collision

operator, a high-dimensional, nonlinear, non-local quadratic integral operator acting only in

the velocity space:

Q(g, f) =
∫
Rdv

∫
Sdv−1

Bσ(|v − v∗|, cosχ)[g(v′
∗)f(v′) − g(v∗)f(v)] dσ dv∗, (1.0.2)

where f(v) and f(v′) are short for f(t,x,v) and f(t,x,v′) (similarly for g(v′
∗) and g(v∗));

the post-collisional velocities (v′,v′
∗) are defined in terms of pre-collisional velocities (v,v∗)

through the conservation of momentum and energy during the collision:

v′ = v + v∗

2 + |v − v∗|
2 σ, v′

∗ = v + v∗

2 − |v − v∗|
2 σ, (1.0.3)
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with σ being a vector over the unit sphere Sdv−1; and Bσ is the Boltzmann collision kernel,

a non-negative function that depends on |v − v∗| and cosine of deviation angle χ (angle

between v − v∗ and v′ − v′
∗): cosχ = σ · v̂ − v∗.

It can be shown that Q(f, f) satisfies the conservation of mass, momentum, and en-

ergy. Denote Φ(v) =
[
1,v, 1

2 |v|2
]T

by collision invariants, then there hold the conservation

properties: ∫
Rdv

Q(f, f)Φ(v) dv = 0 (1.0.4)

∫
Rdv

f(t,x,v)Φ(v) dv =


ρ(t,x)

m(t,x)

E(t,x)

 =


ρ(t,x)

ρ(t,x)U(t,x)
dv

2 ρ(t,x)T (t,x) + 1
2ρ(t,x)|U(t,x)|2

 , (1.0.5)

where ρ(t,x), U(t,x), T (t,x), m(t,x) and E(t,x) are the density, velocity, temperature,

momentum and total energy at time t and position x.

Yet the numerical computations of full Boltzmann equation (  1.0.1 ) pose great challenges,

which is mainly due to multidimensional structure of collision operators ((2dv − 1)-fold

integral). Historically, there are stochastic and deterministic approaches for the numerical

computations of collision operators. Stochastic methods are mainly based on the direct

simulation Monte Carlo (DSMC) method [  8 ], [  9 ] and are widely used due to the fact that

it can avoid the curse of dimensionality. However, it becomes extremely expensive to avoid

slow convergence and fluctuations in results in certain cases near the continuum-fluid regime,

especially when Mach number is small.

Deterministic methods rely on discretizations of governing differential equations on rep-

resentative grids and have undergone considerable developments [  10 ]. One of the most pop-

ular methods is represented by the discrete velocity models of the Boltzmann equation. This

method uses a fixed set of discrete velocity quadrature points to approximate the continuous

velocity space [  11 ], [ 12 ]. Another approach is the Fourier spectral methods [  13 ], [ 14 ]. They

compute the collision operators in the frequency domain using Fourier transform technique.
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These methods can not only possess spectral accuracy, but also can reduce computational

complexity through fast Fourier methods.

Additionally, one can avoid the complexity of Boltzmann collision operator Q(f, f) by

introducing simplified full Boltzmann equation variants. The BGK model, initially proposed

by Bhatnagar, Gross, and Krook [ 15 ], has been widely used in many disciplines of science

and engineering [ 2 ], [ 5 ], [ 16 ]. It simplifies the full Boltzmann binary collision operator yet

possesses most of its key properties. In dimensionless form, the equation reads:

∂tf + v · ∇xf = 1
ε

(M[ρ,U , T ] − f) , x ∈ Ωx ⊂ Rdx , v ∈ Rdv , (1.0.6)

where ε is the Knudsen number, consistent with the one in full Boltzmann equation(  1.0.1 );

M[ρ,U , T ] is the so-called Maxwellian function given by

M[ρ,U , T ](t,x,v) = ρ(t,x)
(2πT (t,x)) dv

2
exp

(
−|v − U(t,x)|2

2T (t,x)

)
, (1.0.7)

where ρ,U , T are the density, velocity and temperature defined from (  1.0.5 ). BGK model

preserves the compressible Euler limit as ε → 0. It satisfies the conservation property (  1.0.5 )

and ∫
Rdv

M [f ](t,x,v)Φ(v) dv =
∫
Rdv

f(t,x,v)Φ(v) dv (1.0.8)

There are other variants of simplified Boltzmann equation such as linearized Boltzmann

(LB) [  17 ] and ES-BGK model [ 18 ] that consider different ways to simplify the full Boltz-

mann collision operators. However, the multi-dimensional nature still raise huge challenges

in computational complexities ((dx + dv dimensions in phase space)). For spatial discretiza-

tion, for example in full Boltzmann equation (  1.0.1 ), historically there are works with finite

volume methods(FVM), finite difference methods(FDM) and finite element method [ 19 ]–[ 22 ].

Recently, the discontinuous Galerkin (DG) method are also applied in Boltzmann equations

to achieve high-order accuracy [ 23 ], [  24 ]. However, these methods are all rely on the full grid

simulation (the collision operator need to evaluated at every spatial grid point or element),

which could be computational expensive as mesh refine.
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To deal with the expensive multi-dimensional structure, recently, a class of dynamic low

rank method have been applied to solving kinetic equations including the Vlasov equation

[ 25 ], [  26 ], Boltzmann-BGK equation [ 27 ], [  28 ] and radiation transfer equation [ 29 ]. Employed

with the projection splitting approach (see, e.g.[  30 ]), the numerical integrator approximates

the solution in a low rank manifold consisting of spatial and velocity basis. In this way,

it can reduce the computational complexity significantly because operators only need to be

evaluated in low rank manifold for every spatial/velocity basis.

Another challenging area of kinetic equations lies in the uncertain initial and boundary

conditions. During the last decade, research on kinetic theory are mainly focused on the de-

terministic part, both theoretically and numerically [  7 ], [  10 ], [  31 ] on Boltzmann equation and

related kinetic models, while the uncertainty part are ignored. However, in reality, uncer-

tainties may arise in initial/boundary conditions and parameters for these kinetic equations

because of incomplete knowledge and imprecise measurement. Recently, there has been a sig-

nificant interest to study the impact of random inputs to the kinetic equations, see [  32 ] for an

overview. To quantify the uncertainties mentioned above, works in solving kinetic equations

are mainly based on the generalized polynomial chaos based stochastic Galerkin (gPC-sG)

approximation, which has been successfully applied to many physical and engineering prob-

lems, see for instance, the overviews in [  33 ], [  34 ]. The gPC-sG method, essentially a spectral

method in the random domain, yields to a large deterministic systems of equations. However,

lack of regularity poses a serious problem in the loss of hyperbolicity of the resulting gPC-sG

system[ 35 ]. Despite that these deterministic methods show some promise, they suffer from

the disadvantage that they are highly intrusive. On one hand, existing codes for comput-

ing the deterministic kinetic problems need to be completely reconfigured to implement the

gPC based method. On the other hand, intrusiveness may induce some bad approximations

even for deterministic solvers with good properties. Due to Gibb’s phenomenon, gPc based

methods may induce approximations with negative density for problems with discontinuity,

where traditional deterministic solver fails for this case. Moreover, for kinetic equations with

high nonlinearity, like the BGK model, the Maxwellian (  1.0.7 ) distribution function need to

be reconstructed repeatedly at each step, which is cumbersome.
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Another class of methods, statistical sampling methods, most notably based on Monte

Carlo(MC) sampling, are also widely used for computational uncertainty quantification in

numerical solutions of PDEs. The non-intrusiveness enables the approximation solutions to

inherit properties, like positivity preserving, of existing deterministic kinetic solvers, which

makes the parallel computing feasible for implementation. For discontinuous solutions, MC

type methods can help prevent from Gibb’s phenomenon. However, the asymptotic conver-

gence rate N− 1
2

sample is non-improvable by the central limit theorem, where Nsample is num-

ber of samples. Variance reduction technique can be adopted like the Multilevel Monte

Carlo(MLMC) method [  36 ], where the approximation of statistical expectation breaks up

into telescopic sums of expectations of consecutive mesh size, see [  37 ] for an application

in scalar hyperbolic conservation law with random initial data. Moreover, as an improve-

ment of MLMC method, the control variate MC method, see from [  38 ],made use of different

asymptotic models and reduced the variance by introducing a new parameter in MLMC.

The first contribution of this thesis is to develop an efficient numerical method to solve

the linear transport equation based on dynamic low rank approximation to achieve increased

computational efficiency as well as drastic reduction of memory. An additional goal in the

first contribution is to capture the corresponding asymptotic limit. Although it has been

shown in [  39 ] that this can, in principle, be achieved within a low-rank approximation, it

comes at the cost of a fully implicit scheme. The key difference from previous works lies

therefore in that, instead of applying the low rank approximation to the unknown distribution

function directly, we start with a macro-micro decomposition of the equation and apply the

low rank method only to the micro part of the solution. This approach naturally captures

the diffusion limit using a more efficient implicit-explicit (IMEX) discretization strategy. In

addition, the micro part of the solution becomes low rank in the diffusion limit, hence the

method is particularly efficient in this regime.

We mention that the design of aforementioned numerical schemes that are consistent

with certain asymptotic limits falls into the general umbrella of the so-called asymptotic-

preserving (AP) schemes [  40 ], which have been developed for various kinds of kinetic and

hyperbolic equations in the past decades, see [  41 ]–[ 43 ] for an overview. In particular, for the

linear transport equation, the use of macro-micro decomposition to achieve the AP property
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in the diffusive regime first appeared in [  44 ]. The stability of the scheme was proved in [  45 ]

using energy estimates. Comparing to [  44 ], the new difficulty arising in the context of the

dynamical low-rank method is to justify the asymptotic limit under the additional projection

operator splitting, which we carefully study in this paper. Furthermore, the usual way to

generalize the first order (in time) scheme to high order using IMEX Runge-Kutta (RK)

schemes, as in [  46 ], [  47 ], cannot be applied to the low rank case again due to the operator

splitting. Hence another contribution is to propose an AP dynamical low-rank method that

remains second order in both kinetic and diffusive regimes.

The second contribution of this thesis is to develop a highly efficient adaptive low rank

method in Boltzmann equation for computations of steady state solutions. The full Boltz-

mann collision operator is local in spatial variable, which is well-suited for low-rank meth-

ods. We employ the fast Fourier spectral method [ 30 ] to solve the Boltzmann collision

operator, which is the fastest algorithm been reported to date. With the proposed low-rank

method, the complexity can be reduced from O(Ndx
x MFFN

dv
v logNv) to O(r3(r+Ndx

x +Ndv
v )+

r2MFFN
dv
v logNv), where r is the computational rank; Nx and Nv are number of spatial/ve-

locity points in each dimension; MFF is the number of discretization points over Sdv−1 and

MFF � Ndv−1
v . Another novelty lies in the adaptivity with a dynamic thresholding strategy.

The fixed-rank dynamic low rank method [ 48 ] will pose a potential large computational com-

plexity for large initial rank r. The complexity is even worse for problems with increasing

ranks since a large initial rank is needed. Recently, the adaptive dynamic low rank method

[ 49 ] has been proposed with a fixed thresholding strategy for time dependent Boltzmann

equations. We developed a simple but efficient adaptive dynamic low rank algorithm with

dynamic thresholding especially for steady state solutions of Boltzmann equation. Because

of the special structure of steady state solutions, one only need that the boundary conditions

to be accurately enforced. This method can efficiently compute steady state solutions by

monitoring residual errors. It will automatically use a low rank solution with the same order

accuracy to replace the high-rank one. Compared with the fixed rank methods, this method

adaptively use small rank for low accuracy solutions and increase rank when high accuracy

solution is needed. The efficiency and accuracy can be verified in various 1D/2D benchmark
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tests including normal shock wave, Fourier flow, lid driven cavity flow and thermally driven

cavity flow problems.

The last contribution of this thesis is to propose a control variates multilevel Monte

Carlo method for BGK equation with randomness as well as the analysis for convergence

and consistency. Following the regularity results from [  50 ], we construct a direct analogue

to the BGK model with randomness. Due to the non-intrusiveness of MC type methods,

approximations of statistical moments can preserve properties from deterministic solvers.

We adopted the Runge-Kutta IMEX scheme from [  51 ] and proposed a second order positiv-

ity preserving, entropy decaying and asymptotic preserving scheme for the BGK equation.

We show the consistency and convergence results with MC, MLMC method coupled with

the above numerical scheme involving both discretization and statistical errors. Moreover,

the idea of control variate MC method [ 38 ] is extended to the MLMC method with some

convergence analysis. Lastly, we employ the Chu reduction [ 52 ] to increase computational

efficiency in spatial discretization.

The rest of this thesis is organized as follows. In Chapter 2, we introduce the dynamic

low rank method and present the proposed efficient numerical method in linear transport

equation. The dynamic low rank method is extended with adaptivity for full Boltzmann

equation in Chapter 3. Chapter 4 discusses the control variates multilevel Monte Carlo

method for BGK equation with randomness. The thesis is concluded in chapter 5.
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2. ASYMPTOTIC DYNAMICAL LOW-RANK METHODS FOR

LINEAR TRANSPORT EQUATION

In this chapter, we focus on dealing with the high dimensional problem for kinetic equations

by employing the dynamic low-rank method. At the same time, we emphasize on preserving

the limiting behaviors of kinetic equations. We introduce the asymptotic-preserving dynamic

low-rank method in linear transport equation. The structure of this chapter is organized as

follows. In Section  2.1 , we briefly describe the linear transport equation and its macro-micro

decomposition. Section  2.2 is the main part of the paper where we introduce the dynamical

low-rank method. Both the first and second order schemes along with their AP property

are discussed in detail. We further confirmed that in the fluid limit, the solution is low-

rank. Section  2.3 provides a simple Fourier analysis for the solution to the linear transport

equation. Section  2.4 presents several numerical tests for the two-dimensional equation,

where we carefully examine the accuracy, efficiency, rank dependence, and AP property of

the proposed method. The paper is concluded in Section  2.5 . Most of the results in this

chapter are extracted from [ 53 ].

2.1 The linear transport equation and its macro-micro decomposition

In many circumstances, rather than binary particle-wise interactions, one is more inter-

ested in particles interacting with a background medium. Then the following linear Boltz-

mann equation is more appropriate

∂tf + v · ∇xf =
∫
Rdv

(s(v∗,v)f(v∗) − s(v,v∗)f(v)) dv∗, x ∈ Ωx ⊂ Rdx , v ∈ Rdv , (2.1.1)

where s(v,v∗) describes the transition rate from v to v∗ and may take various forms de-

pending on the approximation. The linear transport equation falls into this umbrella and

we focus in the following time dependent linear transport equation in diffusive scaling:

∂tf + 1
ε

v · ∇xf = σS

ε2

( 1
4π

〈f〉v − f
)

− σAf +G, (2.1.2)
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where position x = (x, y, z) ∈ Ωx ⊂ R3, and velocity v = (ξ, η, γ) ∈ S2 which is confined

to the unit sphere  

1
 . Here, we take dx = 3 and dv = 2. 〈 〉v denotes the integration over

S2 with respect to v. σS(x) ≥ σSmin > 0 and σA(x) ≥ 0 are the scattering and absorption

coefficients, and G(x) is a given source term. Here, unlike the Knudsen number defined for

( 1.0.1 ) and ( 1.0.6 ), in this chapter, ε is defined as the re-scaled collision length, which can

range between the kinetic regime ε ∼ O(1) and the diffusive regime ε � 1.

The density ρ = 1
4π

〈f〉v is defined as the angular average of f . In the limit ε → 0, ρ

satisfies a diffusion equation which can be seen via the Chapman-Enskog expansion. Indeed,

( 2.1.2 ) can be written as

f = ρ− ε
1
σS

v · ∇xf − ε2 1
σS

(
∂tf + σAf −G

)
= ρ− ε

1
σS

v · ∇xρ+O(ε2). (2.1.3)

On the other hand, taking 1
4π

〈 〉v of ( 2.1.2 ) yields

∂tρ+ 1
4πε

∇x · 〈vf〉v = −σAρ+G, (2.1.4)

which, upon substitution of ( 2.1.3 ), becomes

∂tρ− ∇x · (D∇xρ) = −σAρ+G+O(ε), (2.1.5)

with the diffusion matrix D given by

D = 1
4πσS

〈v ⊗ v〉v = 1
3σS I3×3. (2.1.6)

Therefore, as ε → 0 the limit of ( 2.1.2 ) is the diffusion equation

∂tρ− ∇x ·
( 1

3σS∇xρ
)

= −σAρ+G. (2.1.7)

1
 ↑ In the context of radiative transfer, v is usually referred to as angle or direction.
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In the macro-micro decomposition [ 44 ], we write f as

f(t,x,v) = ρ(t,x) + εg(t,x,v), (2.1.8)

where ρ is the macro part of the solution and g is the micro part. Note that 〈g〉v = 0.

Substituting ( 2.1.8 ) into ( 2.1.2 ) and taking 1
4π

〈 〉v, we obtain

∂tρ+ 1
4π

∇x · 〈vg〉v = −σAρ+G. (2.1.9)

Subtracting ( 2.1.9 ) from ( 2.1.2 ) yields

∂tg + 1
ε

(
I − 1

4π
〈 〉v

)
(v · ∇xg) + 1

ε2 v · ∇xρ = −σS

ε2 g − σAg. (2.1.10)

The coupled system ( 2.1.9 ) and (  2.1.10 ) is the macro-micro decomposition of the linear

transport equation ( 2.1.2 ). In the limit ε → 0, we have from ( 2.1.10 ):

g = − 1
σS

v · ∇xρ, (2.1.11)

which, when substituting into ( 2.1.9 ), yields the same diffusion equation ( 2.1.7 ).

2.2 The dynamical low-rank method for the linear transport equation

We first constrain g(t,x,v) to a low rank manifold M such that

g(t,x,v) =
r∑

i,j=1
Xi(t,x)Sij(t)Vj(t,v), (2.2.1)

where r is called the rank and the basis functions {Xi}1≤i≤r and {Vj}1≤j≤r are orthonormal:

〈Xi, Xk〉x = δik, 〈Vj, Vk〉v = δjk, (2.2.2)

with 〈·, ·〉x and 〈·, ·〉v being the inner products on L2(Ωx) and L2(S2), respectively.
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With this low rank approximation, ( 2.1.9 ) becomes

∂tρ = − 1
4π

r∑
i,j=1

∇x · (XiSij〈vVj〉v) − σAρ+G. (2.2.3)

For ( 2.1.10 ), we write

∂tg = −1
ε

(
I − 1

4π
〈 〉v

)
(v · ∇xg) − 1

ε2 v · ∇xρ− σS

ε2 g − σAg := RHS. (2.2.4)

Equation ( 2.2.4 ), however, does not uniquely specify the dynamics of the low-rank factors

Xi, Sij, and Vj. We therefore impose the following gauge conditions [  54 ]:

〈∂tXi, Xk〉x = 0, 〈∂tVj, Vk〉v = 0. (2.2.5)

Let us emphasize that the resulting dynamics of g is independent of the specific gauge

conditions chosen. However, using (  2.2.5 ) is convenient as it allows us to easily obtain

evolution equations in terms of the low-rank factors. To that end, we now project the right

hand side of ( 2.2.4 ) onto the tangent space of M:

∂tg = Pg(RHS), (2.2.6)

where the orthogonal projector Pg can be written as

Pg(RHS) =
r∑

j=1
〈Vj,RHS〉vVj −

r∑
i,j=1

Xi〈XiVj,RHS〉x,vVj +
r∑

i=1
Xi〈Xi,RHS〉x. (2.2.7)

Using ( 2.2.7 ) and the gauge conditions we can in principle derive evolution equations for

Xi, Sij, and Vj. However, this process requires inverting the matrix S = (Sij). Since an

accurate approximation mandates that S has small singular values, the resulting problem is

severely ill-conditioned. Thus, we will use the projector splitting scheme introduced in [ 48 ].

For a corresponding mathematical analysis see [  55 ]. This scheme has been extensively used

in the literature, see e.g. [  25 ], [  29 ], [  56 ], and extensions to various tensor formats have also
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been proposed [  56 ], [  57 ]. The main idea is to split equation ( 2.2.6 ) into the following three

subflows

∂tg =
r∑

j=1
〈Vj,RHS〉vVj,

∂tg = −
r∑

i,j=1
Xi〈XiVj,RHS〉x,vVj,

∂tg =
r∑

i=1
Xi〈Xi,RHS〉x.

This is particularly convenient as for the first subflow Vj is constant (in time), for the third

subflow Xi is constant, and for the second subflow both Xi and Vj are constant. Thus, we

can write

∂tKj = 〈Vj,RHS〉v, (2.2.8)

∂tSij = −〈XiVj,RHS〉x,v, (2.2.9)

∂tLi = 〈Xi,RHS〉x, (2.2.10)

where

Kj(t,x) =
r∑

i=1
Xi(t,x)Sij(t), Li(t,v) =

r∑
j=1

Sij(t)Vj(t,v). (2.2.11)

After solving each subflow we use a QR decomposition to obtain Xi and Sij from Kj and Sij

and Vj from Li, respectively.

2.2.1 A first order in time scheme

Our goal is to solve the coupled system ( 2.2.3 ) and ( 2.2.6 ) using the projector split-

ting integrator outlined in the previous section. We now proceed by deriving the evolution

equations corresponding to the subflows given by equations ( 2.2.8 )-( 2.2.10 ).
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• K-step: Solve ∂tKj = 〈Vj,RHS〉v with {Vj}1≤j≤r unchanged.

∂tKj =〈Vj,RHS〉v

= − 1
ε

r∑
l=1

(
〈vVjVl〉v − 1

4π
〈Vj〉v〈vVl〉v

)
· ∇xKl

− 1
ε2 〈vVj〉v · ∇xρ−

(
σS

ε2 + σA
)
Kj.

(2.2.12)

• L-step: Solve ∂tLi = 〈Xi,RHS〉x with {Xi}1≤i≤r unchanged.

∂tLi =〈Xi,RHS〉x

= − 1
ε

r∑
k=1

(
vLk − 1

4π
〈vLk〉v

)
· 〈Xi∇xXk〉x

− 1
ε2 v · 〈Xi∇xρ〉x −

r∑
k=1

〈
Xi

(
σS

ε2 + σA
)
Xk

〉
x
Lk.

(2.2.13)

• S-step: Solve ∂tSij = −〈XiVj,RHS〉x,v with both {Xi}1≤i≤r and {Vj}1≤j≤r unchanged.

∂tSij = − 〈XiVj,RHS〉x,v

=1
ε

r∑
k,l=1

(
〈vVjVl〉v − 1

4π
〈Vj〉v〈vVl〉v

)
· 〈Xi∇xXk〉xSkl

+ 1
ε2 〈vVj〉v · 〈Xi∇xρ〉x +

r∑
k=1

〈
Xi

(
σS

ε2 + σA
)
Xk

〉
x
Skj.

(2.2.14)

Therefore, for the overall system, we can construct a simple first order in time scheme.

Suppose at time step tn, we have (Xn
i , V

n
j , S

n
ij , ρ

n). To obtain the solution (Xn+1
i , V n+1

j , Sn+1
ij , ρn+1)

at tn+1 we proceed as follows:

1. K-step: Solve (  2.2.12 ) for a full time step ∆t, update from (Xn
i , V

n
j , S

n
ij ) to (Xn+1

i , V n
j , S

(1)
ij )

using ρn. Specifically, given Kn
j =

r∑
i=1
Xn

i S
n
ij , we discretize (  2.2.12 ) using a first order

IMEX scheme (i.e., forward-backward Euler scheme) as

Kn+1
j −Kn

j

∆t = − 1
ε

r∑
l=1

(
〈vV n

j V
n
l 〉v − 1

4π
〈V n

j 〉v〈vV n
l 〉v

)
· ∇xK

n
l

− 1
ε2

(
〈vV n

j 〉v · ∇xρ
n + σSKn+1

j

)
− σAKn

j ,

(2.2.15)
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where the term σSKj is treated implicitly to overcome the stiffness induced by a small ε.

We then perform the QR decomposition of Kn+1
j to obtain the updated basis functions

Xn+1
i and the matrix S(1)

ij :

Kn+1
j =

r∑
i=1

Xn+1
i S

(1)
ij . (2.2.16)

2. L-step: Solve (  2.2.13 ) for a full time step ∆t, update from (Xn+1
i , V n

j , S
(1)
ij ) to (Xn+1

i , V n+1
j , S

(2)
ij )

using ρn. Specifically, given Lni =
r∑

j=1
S

(1)
ij V

n
j , we discretize (  2.2.13 ) (similar to (  2.2.12 ))

as follows

Ln+1
i − Lni

∆t = − 1
ε

r∑
k=1

(
vLnk − 1

4π
〈vLnk〉v

)
· 〈Xn+1

i ∇xX
n+1
k 〉x

− 1
ε2

(
v · 〈Xn+1

i ∇xρ
n〉x +

r∑
k=1

〈
Xn+1

i σSXn+1
k

〉
x
Ln+1
k

)
−

r∑
k=1

〈
Xn+1

i σAXn+1
k

〉
x
Lnk .

(2.2.17)

We then perform the QR decomposition of Ln+1
i to obtain the updated basis V n+1

j and

matrix S(2)
ij :

Ln+1
i =

r∑
j=1

S
(2)
ij V

n+1
j . (2.2.18)

3. S-step: Solve ( 2.2.14 ) for a full time step ∆t, update from (Xn+1
i , V n+1

j , S
(2)
ij ) to

(Xn+1
i , V n+1

j , Sn+1
ij ) using ρn. Specifically, given S

(2)
ij , we discretize (  2.2.14 ) (similar

to ( 2.2.12 )) as follows

Sn+1
ij − S

(2)
ij

∆t =1
ε

r∑
k,l=1

(
〈vV n+1

j V n+1
l 〉v − 1

4π
〈V n+1

j 〉v〈vV n+1
l 〉v

)
· 〈Xn+1

i ∇xX
n+1
k 〉xS

(2)
kl

+ 1
ε2

(
〈vV n+1

j 〉v · 〈Xn+1
i ∇xρ

n〉x +
r∑

k=1
〈Xn+1

i σSXn+1
k 〉xS

n+1
kj

)

+
r∑

k=1
〈Xn+1

i σAXn+1
k 〉xS

(2)
kj .

(2.2.19)
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4. ρ-step: Solve (  2.2.3 ) for a full time step ∆t, update from ρn to ρn+1 using (Xn+1
i , V n+1

j , Sn+1
ij ).

Specifically, given ρn, we discretize ( 2.2.3 ) as

ρn+1 − ρn

∆t = − 1
4π

r∑
i,j=1

∇x ·
(
Xn+1

i Sn+1
ij 〈vV n+1

j 〉v
)

− σAρn +G. (2.2.20)

For clarity, we will refer to the above scheme as the K-L-S-ρ scheme in the following.

2.2.2 AP property of the first order scheme

In this subsection, we analyze the AP property of the first order scheme introduced in

the previous section. Our conclusion is summarized in the following proposition.

Proposition 2.2.1. In the limit ε → 0, the first order IMEX K-L-S-ρ scheme (i.e., ( 2.2.15 ),

( 2.2.17 ), (  2.2.19 ), and ( 2.2.20 )) becomes the forward Euler scheme for the limiting diffusion

equation ( 2.1.7 ), provided that for the initial value we have ξ, η, γ ∈ span({V 0
j }rj=1).

Remark 2.2.1. If, for a given initial value (X0
i , S

0
ij, V

0
j ), one of the conditions ξ, η, γ ∈

span({V 0
j }rj=1) is not satisfied, we can simply add them to the approximation space. For

example, if ξ 6∈ span({V 0
j }rj=1), we consider

X̃0 = [X0
1 , . . . , X

0
r , h], S̃0 =

S0 0

0 0

 , Ṽ 0 = [V 0
1 , . . . , V

0
r , ξ],

where h is an arbitrary function. We then orthogonalize X̃0 and Ṽ 0 (e.g. using the Gram-

Schmidt process) and use the result as the initial value in our algorithm. This increases the

rank to at most r + 3.

Proof. In the K-step, let ε → 0, we have from ( 2.2.15 ):

Kn+1
j = −〈vV n

j 〉v · ∇xρ
n

σS
. (2.2.21)
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Without loss of generality, we assume that the three components of ∇xρn

σS : ∂xρn

σS , ∂yρn

σS and
∂zρn

σS are linearly independent 

2
 . Then after the QR decomposition of Kn+1

j , the span of the

new basis {Xn+1
i }1≤i≤3 would be the same as span{∂xρn

σS , ∂yρn

σS , ∂zρn

σS }. In other words, we can

write

Xn+1 :=
[
Xn+1

1 Xn+1
2 Xn+1

3 Xn+1
4 · · · Xn+1

r

]
=
[
∂xρn

σS

∂yρn

σS
∂zρn

σS Xn+1
4 · · · Xn+1

r

]
︸ ︷︷ ︸

:=X0

D1,

(2.2.22)

where D1 is an invertible r × r matrix.

In the L-step, let ε → 0, we have from ( 2.2.17 ):

r∑
k=1

〈Xn+1
i σSXn+1

k 〉xL
n+1
k = −v · 〈Xn+1

i ∇xρ
n〉x. (2.2.23)

Since the matrix A := (〈Xn+1
i σSXn+1

k 〉x)1≤i≤r,1≤k≤r is symmetric positive definite (since

σS > 0), hence invertible (whose inverse, say, is matrix B = (bki)1≤k≤r,1≤i≤r), we have

Ln+1
k = −v ·

(
r∑

i=1
bki〈Xn+1

i ∇xρ
n〉x

)
. (2.2.24)

After the QR decomposition of Ln+1
k , we can write (by a similar argument as above)

V n+1 :=
[
V n+1

1 V n+1
2 V n+1

3 V n+1
4 · · · V n+1

r

]
=
[
ξ η γ V n+1

4 · · · V n+1
r

]
︸ ︷︷ ︸

:=V0

D2,

(2.2.25)

where D2 is an invertible r × r matrix.

In the S-step, let ε → 0, we have from ( 2.2.19 ):

r∑
k=1

〈Xn+1
i σSXn+1

k 〉xS
n+1
kj = −〈vV n+1

j 〉v · 〈Xn+1
i ∇xρ

n〉x

= −〈Xn+1
i v · ∇xρ

nV n+1
j 〉x,v.

(2.2.26)

2
 ↑ If they are linearly dependent, say, span{ ∂xρn

σS ,
∂yρn

σS , ∂zρn

σS } = span{ ∂xρn

σS }, then one just needs to replace
the second and third components of X0 by Xn+1

2 and Xn+1
3 and the same analysis carries over.
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We may write ( 2.2.26 ) as ASn+1 = C. Since the matrix A is invertible, we know that the

matrix Sn+1 is unique. We next claim that the Sn+1 defined as

Sn+1 := D−1
1

−I3×3 0

0 0

D−T
2 , (2.2.27)

satisfies ( 2.2.26 ), where the middle matrix is of size r× r, with −I3×3 in the first 3 × 3 block

and zero elsewhere. Indeed, using (  2.2.22 ) and ( 2.2.25 ) we have

gn+1 =
r∑

i,j=1
Xn+1

i Sn+1
ij V n+1

j = Xn+1Sn+1(V n+1)T = X0

−I3×3 0

0 0

V T
0 = −v · ∇xρ

n

σS
.

(2.2.28)

Therefore,

(Xn+1)TσSXn+1Sn+1(V n+1)TV n+1 = −(Xn+1)T (v · ∇xρ
n)V n+1, (2.2.29)

which, upon taking 〈 〉x,v, yields

〈(Xn+1)TσSXn+1〉xS
n+1 = −〈(Xn+1)T (v · ∇xρ

n)V n+1〉x,v, (2.2.30)

which is precisely ( 2.2.26 ).

On the other hand, substituting ( 2.2.28 ) into ( 2.2.20 ) gives

ρn+1 − ρn

∆t = ∇x ·
( 1

3σS∇xρ
n
)

− σAρn +G, (2.2.31)

which is the forward Euler scheme for the limiting diffusion equation ( 2.1.7 ).

2.2.3 Some other first order schemes and their AP property

From the operator splitting point of view, the previously introduced K-L-S-ρ scheme is

certainly not the only first order scheme. In fact, one can switch the order of K, L, and S

steps arbitrarily and still obtains a first order scheme. For example, the L-K-S-ρ scheme is
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also first order and preserves the same asymptotic limit as the K-L-S-ρ scheme (since the

proof of Proposition  2.2.1 still holds if one switches the K and L steps). Nonetheless, for

some other first order schemes, such as L-S-K-ρ, S-L-K-ρ, K-S-L-ρ, and S-K-L-ρ schemes,

their AP property needs to be examined individually. Fortunately, as we will show in the

following, by slightly different arguments these schemes all have the same asymptotic limit

as the K-L-S-ρ scheme.

• L-S-K-ρ scheme and S-L-K-ρ scheme.

After the first two substeps (L-S or S-L), the span of the updated basis {V n+1
j }1≤j≤r

will contain v. After the substep K, one has Kn+1
j = −〈vV n+1

j 〉v · ∇xρn

σS . Hence,

gn+1 =
r∑

j=1
Kn+1

j V n+1
j = −

r∑
j=1

〈vV n+1
j 〉vV

n+1
j · ∇xρ

n

σS
= −v · ∇xρ

n

σS
. (2.2.32)

Substituting gn+1 into the last ρ step recovers ( 2.2.31 ).

• K-S-L-ρ scheme and S-K-L-ρ scheme.

After the first two substeps (K-S or S-K), one has

[
Xn+1

1 · · · Xn+1
r

]
=
[
∂xρn

σS

∂yρn

σS
∂zρn

σS Xn+1
4 · · · Xn+1

r

]
D1, (2.2.33)

where D1 is an invertible r × r matrix. After the substep L, one has

r∑
k=1

〈Xn+1
i σSXn+1

k 〉xL
n+1
k = −v · 〈Xn+1

i ∇xρ
n〉x, (2.2.34)

and {Ln+1
k }1≤k≤r is uniquely determined since the matrix 〈Xn+1

i σSXn+1
k 〉x is invertible.

We now claim that {Ln+1
k }1≤k≤r defined as follows

[
Ln+1

1 · · · Ln+1
r

]
:= −

[
ξ η γ 0 · · · 0

]
D−T

1 . (2.2.35)
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satisfies ( 2.2.34 ). Indeed, for such Lk, one has

gn+1 =
r∑

k=1
Xn+1
k Ln+1

k = −v · ∇xρ
n

σS
=⇒

r∑
k=1

σSXn+1
k Ln+1

k = −v · ∇xρ
n, (2.2.36)

which, upon projection onto the space spanned by {Xn+1
i }1≤i≤r, yields ( 2.2.34 ). On

the other hand, substituting gn+1 into the last ρ step recovers ( 2.2.31 ).

Remark 2.2.2. The discussion in this subsection implies that one has the flexibility to choose

the updating order of K, L and S, while still maintaining the AP property. This flexibility is

crucial in designing second order schemes, where one needs to properly compose these steps

to achieve high order as well as preserve the asymptotic limit.

2.2.4 A second order in time scheme and its AP property

We now extend the first order scheme to second order. Due to the operator splitting

necessary in the low rank method, a straightforward application of the IMEX-RK scheme as

used in [  46 ], [  47 ] does not work (there a coupled system for ρ and g is solved simultaneously;

in the present work ρ has to be “frozen” while updating g). In the following, we propose

a scheme that maintains second order in both kinetic and diffusive regimes. It is a proper

combination of the almost symmetric Strang splitting [ 58 ], [ 59 ] and the IMEX-RK scheme.

Suppose at time step tn, we have (Xn
i , V

n
j , S

n
ij , ρ

n). To obtain the solution (Xn+1
i , V n+1

j , Sn+1
ij , ρn+1)

at tn+1, we proceed as follows:

1. ρ-step: Solve (  2.2.3 ) for a half time step ∆t/2, update from ρn to ρn+ 1
2 using (Xn

i , V
n

j , S
n
ij ).

2. K-step: Solve (  2.2.12 ) for a half time step ∆t/2, update from (Xn
i , V

n
j , S

n
ij ) to (Xn+ 1

2
i , V n

j , S
(1)
ij )

using ρn+ 1
2 .

3. L-step: Solve (  2.2.13 ) for a half time step ∆t/2, update from (Xn+ 1
2

i , V n
j , S

(1)
ij ) to

(Xn+ 1
2

i , V
n+ 1

2
j , S

(2)
ij ) using ρn+ 1

2 .

4. S-step: Solve (  2.2.14 ) for a half time step ∆t/2, update from (Xn+ 1
2

i , V
n+ 1

2
j , S

(2)
ij ) to

(Xn+ 1
2

i , V
n+ 1

2
j , S

n+ 1
2

ij ) using ρn+ 1
2 .
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5. S-step: Solve (  2.2.14 ) for a half time step ∆t/2, update from (Xn+ 1
2

i , V
n+ 1

2
j , S

n+ 1
2

ij ) to

(Xn+ 1
2

i , V
n+ 1

2
j , S

(3)
ij ) using ρn+ 1

2 .

6. L-step: Solve ( 2.2.13 ) for a half time step ∆t/2, update from (Xn+ 1
2

i , V
n+ 1

2
j , S

(3)
ij ) to

(Xn+ 1
2

i , V n+1
j , S

(4)
ij ) using ρn+ 1

2 .

7. K-step: Solve (  2.2.12 ) for a half time step ∆t/2, update from (Xn+ 1
2

i , V n+1
j , S

(4)
ij ) to

(Xn+1
i , V n+1

j , Sn+1
ij ) using ρn+ 1

2 .

8. ρ-step: Solve (  2.2.3 ) for a full time step ∆t, update from ρn to ρn+1 using (Xn+ 1
2

i , V
n+ 1

2
j , S

n+ 1
2

ij ).

More specifically, in step 1, we use the forward Euler scheme to discretize ( 2.2.3 ):

ρn+ 1
2 − ρn

∆t/2 = − 1
4π

r∑
i,j=1

∇x ·
(
Xn

i S
n
ij〈vV n

j 〉v
)

− σAρn +G. (2.2.37)

In steps 2-7, we use a second order IMEX-RK scheme to discretize the system for K, L or

S. Let us take step 2 for example,

K
(p)
j =Kn

j − ∆t
2

p−1∑
q=1

ãpq

(
1
ε

r∑
l=1

(
〈vV n

j V
n
l 〉v − 1

4π
〈V n

j 〉v〈vV n
l 〉v

)
· ∇xK

(q)
l + 1

ε2 〈vV n
j 〉v · ∇xρ

n+ 1
2 + σAK

(q)
j

)

− ∆t
2

p∑
q=1

apq

(
σS

ε2 K
(q)
j

)
, p = 1, . . . , s,

Kn+1
j =Kn

j − ∆t
2

s∑
p=1

w̃p

(
1
ε

r∑
l=1

(
〈vV n

j V
n
l 〉v − 1

4π
〈V n

j 〉v〈vV n
l 〉v

)
· ∇xK

(p)
l + 1

ε2 〈vV n
j 〉v · ∇xρ

n+ 1
2 + σAK

(p)
j

)

− ∆t
2

s∑
p=1

wp

(
σS

ε2 K
(p)
j

)
,

(2.2.38)

where Ã = (ãpq), ãpq = 0 for q ≥ p and A = (apq), apq = 0 for q > p are s×s matrices. Along

with w̃ = (w̃1, . . . , w̃s)T , w = (w1, . . . , ws)T , they can be represented by a double Butcher

tableau:
c̃ Ã

w̃T

c A

wT
(2.2.39)
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where c̃ = (c̃1, . . . , c̃s)T , c = (c1, . . . , cs)T are defined as

c̃p =
p−1∑
q=1

ãpq, cp =
p∑
q=1

apq. (2.2.40)

Here we employ the ARS(2,2,2) scheme whose double tableau is given by

0 0 0 0

γ γ 0 0

1 δ 1 − δ 0

δ 1 − δ 0

0 0 0 0

γ 0 γ 0

1 0 1 − γ γ

0 1 − γ γ

γ = 1 −
√

2
2 , δ = 1 − 1

2γ . (2.2.41)

Finally, in step 8, we use the midpoint scheme to discretize ( 2.2.3 ):

ρn+1 − ρn

∆t = − 1
4π

r∑
i,j=1

∇x ·
(
X
n+ 1

2
i S

n+ 1
2

ij 〈vV n+ 1
2

j 〉v

)
− σAρn+ 1

2 +G. (2.2.42)

Let us analyze the AP property of the above second order scheme. First, steps 2-4

(K-L-S) are (almost) the same as steps 1-3 in the first order K-L-S-ρ scheme (as discussed

in Section  2.2.2 ), hence as ε → 0, one has

gn+ 1
2 =

r∑
i,j=1

X
n+ 1

2
i S

n+ 1
2

ij V
n+ 1

2
j = −v · ∇xρ

n+ 1
2

σS
. (2.2.43)

Furthermore, steps 5-6 (S-L-K) are (almost) the same as steps 1-3 in the first order

S-L-K-ρ scheme (as discussed in Section  2.2.3 ), hence as ε → 0, one has

gn+1 =
r∑

j=1
Kn+1

j V n+1
j = −v · ∇xρ

n+ 1
2

σS
. (2.2.44)
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Finally, substituting (  2.2.44 ) into (  2.2.37 ) and (  2.2.43 ) into (  2.2.42 ), we have after the

first time step (n ≥ 1):

ρn+ 1
2 − ρn

∆t/2 = ∇x ·
( 1

3σS∇xρ
n− 1

2

)
− σAρn +G,

ρn+1 − ρn

∆t = ∇x ·
( 1

3σS∇xρ
n+ 1

2

)
− σAρn+ 1

2 +G,

(2.2.45)

which is a second-order explicit RK scheme for the limiting diffusion equation ( 2.1.7 ). There-

fore, the scheme is AP.

Remark 2.2.3. There are many other choices to construct the second order scheme by

altering the order of K, L and S, as long as the steps 2-4 are symmetric with respect to steps

5-7. Note that the AP property is always guaranteed due to the flexibility in the first order

scheme.

2.2.5 Fully discrete scheme

It remains for us to specify the discretization in the physical space and velocity space.

This is the purpose of this section.

Velocity discretization

For the velocity space S2, we adopt the discrete velocity method  

3
 . The velocity points

{vi}i=1,...,Nv and weights {wi}i=1,...,Nv are chosen according to the Lebedev quadrature on S2.

Then all the integrals of the form 〈F (v)〉v are approximated as

〈F (v)〉v ≈
Nv∑
i=1

wiF (vi). (2.2.46)

3
 ↑ In the context of radiative transfer, this is usually referred to as discrete ordinates or SN method.

35



Spatial discretization

For the physical space Ωx, we assume the third dimension is homogeneous and the domain

is rectangular so that we consider x = (x, y) ∈ [a, b]×[c, d]. For simplicity, we assume periodic

boundary condition.

To obtain the asymptotic limit in a more compact stencil, we adopt the 2D staggered grid

proposed in [  60 ]. We divide the x and y directions uniformly into Nx and Ny cells with size

∆x = (b− a)/Nx, ∆y = (c− d)/Ny, respectively. We denote the vertices by xk = a+ k∆x,

yl = c + l∆y (k = 0, . . . , Nx, l = 0, . . . , Ny), and the cell centers by xk+ 1
2

= a + (k + 1
2)∆x,

yl+ 1
2

= c+ (l + 1
2)∆y (k = 0, . . . , Nx − 1, l = 0, . . . , Ny − 1). We then place the unknowns ρ

and g as in Figure  2.1 . Namely,

• ρ is located at the vertices (xk, yl) and cell centers (xk+ 1
2
, yl+ 1

2
), i.e., the red dots in the

figure;

• g (hence {Ki, Xi}i=1,...,r) is located at the face centers (xk+ 1
2
, yl) and (xk, yl+ 1

2
), i.e., the

blue diamonds in the figure.

xk−1 xk xk+1
yl−1

yl

yl+1

Figure 2.1. The staggered grids. ρ is located at the red dots; g (hence
{Ki, Xi}i=1,...,r) is located at the blue diamonds.

In the following, we describe a second order finite difference method in space. We use

simplified notations such as ρk,l = ρ(xk, yl), (Ki)k+ 1
2 ,l

= Ki(xk+ 1
2
, yl) to denote numerical

solutions evaluated at the corresponding grid points. We use the first order K-L-S-ρ scheme

in time. The discussion for other time discretization methods is similar.

• K-step
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Note that the system ( 2.2.15 ), in matrix form, can be written as

Kn+1 − Kn

∆t = −V 1∂xK
n − V 2∂yK

n + . . . , (2.2.47)

where Kn = [Kn
1 , K

n
2 , . . . , K

n
r ]T and

V 1
jl = −1

ε

(
〈ξV n

j V
n
l 〉v − 1

4π
〈V n

j 〉v〈ξV n
l 〉v

)
, V 2

jl = −1
ε

(
〈ηV n

j V
n
l 〉v − 1

4π
〈V n

j 〉v〈ηV n
l 〉v

)
.

(2.2.48)

It is clear that the matrices V 1 and V 2 are not necessarily symmetric hence the

system might not be hyperbolic. Therefore, to get a reasonable spatial discretization

for (  2.2.15 ), we propose to discretize the original equation (  2.2.4 ) and then project the

resulting scheme.

Specifically, we first discretize ( 2.2.4 ) as

∂tg = − 1
ε

(
I − 1

4π
〈 〉v

) (
ξ+Dx

+g + ξ−Dx
−g
)

− 1
ε

(
I − 1

4π
〈 〉v

) (
η+Dy

+g + η−Dy
−g
)

− 1
ε2 (ξDx

c ρ+ ηDy
cρ) −

(
σS

ε2 + σA
)
g,

(2.2.49)

where ξ+ = max(0, ξ), ξ− = min(0, ξ). A second order upwind operator is applied to

the spatial derivatives of g and a central difference operator is applied to the spatial

derivatives of ρ. More precisely, we use

Dx
+g(x, y) = 3g(x, y) − 4g(x− ∆x, y) + g(x− 2∆x, y)

2∆x ,

Dx
−g(x, y) = −3g(x, y) + 4g(x+ ∆x, y) − g(x+ 2∆x, y)

2∆x ,

(2.2.50)

and

Dx
c ρ(x, y) =

ρ(x+ 1
2∆x, y) − ρ(x− 1

2∆x, y)
∆x . (2.2.51)

Derivatives in y are defined similarly.
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We then project the equation (  2.2.49 ) onto the space spanned by {Vj}1≤j≤r, which

yields

(Kn+1
j )k+ 1

2 ,l
− (Kn

j )k+ 1
2 ,l

∆t = − 1
ε

r∑
i=1

(
〈ξ+V n

j V
n

i 〉v − 1
4π

〈V n
j 〉v〈ξ+V n

i 〉v

)
Dx

+(Kn
i )k+ 1

2 ,l

− 1
ε

r∑
i=1

(
〈ξ−V n

j V
n

i 〉v − 1
4π

〈V n
j 〉v〈ξ−V n

i 〉v

)
Dx

−(Kn
i )k+ 1

2 ,l

− 1
ε

r∑
i=1

(
〈η+V n

j V
n

i 〉v − 1
4π

〈V n
j 〉v〈η+V n

i 〉v

)
Dy

+(Kn
i )k+ 1

2 ,l

− 1
ε

r∑
i=1

(
〈η−V n

j V
n

i 〉v − 1
4π

〈V n
j 〉v〈η−V n

i 〉v

)
Dy

−(Kn
i )k+ 1

2 ,l

− 1
ε2 〈ξV n

j 〉vD
x
c ρ

n
k+ 1

2 ,l
− 1
ε2 〈ηV n

j 〉vD
y
cρ

n
k+ 1

2 ,l

−
σS
k+ 1

2 ,l

ε2 (Kn+1
j )k+ 1

2 ,l
− σAk+ 1

2 ,l
(Kn

j )k+ 1
2 ,l
.

(2.2.52)

Here the scheme is given at the grid points (xk+ 1
2
, yl). The scheme at the grid points

(xk, yl+ 1
2
) is similar.

• L-step and S-step

One can add spatial discretization to ( 2.2.17 ) and ( 2.2.19 ) directly. First of all, we

approximate the inner product 〈 〉x by a midpoint rule:

〈F (x, y)〉x =
∫

[a,b]2
F dxdy ≈ 1

2∆x∆y
Nx∑
k=1

Ny∑
l=1

(Fk+ 1
2 ,l

+ Fk,l+ 1
2
). (2.2.53)

Then we approximate the spatial derivatives of ρ and Xi at (xk+ 1
2
, yl) and (xk, yl+ 1

2
)

by

∂xρk+ 1
2 ,l

≈ ρk+1,l − ρk,l
∆x , ∂x(Xi)k+ 1

2 ,l
≈

(Xi)k+ 3
2 ,l

− (Xi)k− 1
2 ,l

2∆x , (2.2.54)

∂xρk,l+ 1
2

≈
ρk+ 1

2 ,l+
1
2

− ρk− 1
2 ,l+

1
2

∆x , ∂x(Xi)k,l+ 1
2

≈
(Xi)k+1,l+ 1

2
− (Xi)k−1,l+ 1

2

2∆x . (2.2.55)

Derivatives in y are treated similarly.

• ρ-step
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At the grid points (xk, yl), ( 2.2.20 ) is discretized as

ρn+1
k,l − ρnk,l

∆t = − 1
4π

r∑
i,j=1

(Xn+1
i )k+ 1

2 ,l
− (Xn+1

i )k− 1
2 ,l

∆x Sn+1
ij 〈ξV n+1

j 〉v

− 1
4π

r∑
i,j=1

(Xn+1
i )k,l+ 1

2
− (Xn+1

i )k,l− 1
2

∆y Sn+1
ij 〈ηV n+1

j 〉v − σAk,lρ
n
k,l +Gk,l.

(2.2.56)

The scheme at the grid points (xk+ 1
2
, yl+ 1

2
) is similar.

AP property of the fully discrete scheme

Similar to the semi-discrete case, in the limit ε → 0, the K-L-S steps yield

gn+1
k+ 1

2 ,l
=

r∑
i,j=1

(Xn+1
i )k+ 1

2 ,l
Sn+1

ij V n+1
j = − 1

σS
k+ 1

2 ,l

ξ ρnk+1,l − ρnk,l
∆x + η

ρn
k+ 1

2 ,l+
1
2

− ρn
k+ 1

2 ,l−
1
2

∆y

 ,
gn+1
k,l+ 1

2
=

r∑
i,j=1

(Xn+1
i )k,l+ 1

2
Sn+1

ij V n+1
j = − 1

σS
k,l+ 1

2

ξ ρnk+ 1
2 ,l+

1
2

− ρn
k− 1

2 ,l+
1
2

∆x + η
ρnk,l+1 − ρnk,l

∆y

 ,
(2.2.57)

which, when substituting into ( 2.2.56 ), give

ρn+1
k,l − ρnk,l

∆t =1
3

1
∆x2

ρnk+1,l − ρnk,l
σS
k+ 1

2 ,l

−
ρnk,l − ρnk−1,l

σS
k− 1

2 ,l

+ 1
3

1
∆y2

ρnk,l+1 − ρnk,l
σS
k,l+ 1

2

−
ρnk,l − ρnk,l−1

σS
k,l− 1

2


− σAk,lρ

n
k,l +Gk,l.

(2.2.58)

This is an explicit standard 5-point finite difference scheme applied to the limiting diffusion

equation ( 2.1.7 ) at grid points (xk, yl). The limiting scheme at grid points (xk+ 1
2
, yl+ 1

2
) can

be considered similarly. Therefore, the fully discrete scheme is also AP.

2.3 A Fourier analysis of the low-rank structure of the solution

In this section, we analyze the behavior of the solution to the linear transport equation

by performing a simple Fourier analysis. Our focus is in the kinetic regime because the rank

is already proved to be small in the diffusive regime.
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For simplicity, we consider the 1D slab geometry x ∈ [0, 2π] with periodic boundary

condition, and v ∈ [ − 1, 1] (so 〈 〉v =
∫ 1

−1 · dv). Also we assume σA = G = 0. Then the

macro-micro system of the linear transport equation reads:

∂tρ = −1
2〈v∂xg〉v,

∂tg = −1
ε

(
I − 1

2〈 〉v
)

(v∂xg) − 1
ε2v∂xρ− σS

ε2 g.

(2.3.1)

Projecting the above system onto the Fourier space of x yields

∂tρ̂k = −1
2 ik〈vĝk〉v,

∂tĝk = −1
ε

ik
(
vĝk − 1

2〈vĝk〉v
)

− 1
ε2 ivkρ̂k − 1

ε2

∞∑
k1=−∞

ĝk−k1σ̂k1 ,
(2.3.2)

where ρ̂k(t), ĝk(t, v) and σ̂k are the Fourier coefficients of ρ, g and σS, respectively.

For a constant σS we have

σ̂0 = σS, σ̂k = 0, k 6= 0, (2.3.3)

and the system ( 2.3.2 ) reduces to

∂tρ̂k = −1
2 ik〈vĝk〉v,

∂tĝk = −1
ε

ik
(
vĝk − 1

2〈vĝk〉v
)

− 1
ε2 ivkρ̂k − 1

ε2σ
S ĝk.

(2.3.4)

Hence all the frequency modes are decoupled. It is clear that if initially

ρ(0, x) =
m0∑

k=−m0

ρ̂k(0)eikx, g(0, x, v) =
m0∑

k=−m0

ĝk(0, v)eikx, (2.3.5)

i.e., ρ(0, x) and g(0, x, v) are band-limited, then the latter solutions will remain in the same

frequency range. In this case the solution is clearly low-rank.

This analysis is similar to the analysis conducted in [ 61 ], where it was shown that for the

linearized Vlasov–Maxwell equation the solution remains low rank if it is initially in a form

similar to (  2.3.5 ). However, the present situation is different in the sense that if we have a
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non-constant σS, as is commonly the case in practice, then even if the initial value is in that

form additional Fourier modes are excited gradually with time. This is as far as we can go

with such an argument.

However, it should not be taken to imply that performing a low-rank approximation is

necessarily futile in such a situation. In fact, the dynamical low-rank integrator makes no

assumptions that the space dependence has to take the form of a finite number of Fourier

modes; this is purely an artifact of the analysis done here. Hence, just because we have an

infinite number of Fourier modes does not necessarily imply the solution can not be captured

by a low-rank scheme. In fact, from the numerical tests in the next section, we can see that

the rank of the solution in the kinetic regime when σS is not constant can be rather intricate,

but that often relatively small ranks are sufficient to obtain an accurate approximation to

the dynamics of interest.

2.4 Numerical results

In this section, we present several numerical examples to demonstrate the accuracy and

efficiency of the proposed low rank method. In all examples, we consider a two-dimensional

square domain in physical space, i.e. x = (x, y) ∈ [a, b]2 and periodic boundary conditions.

Note that in some of the examples (e.g., the line source problem), one has to choose a large

number of points in the angular direction to obtain a reasonable solution (for both the full

tensor and low rank methods). This is the well-known drawback of the discrete velocity or

collocation method. If a Galerkin rather than collocation approach is adopted, one could

potentially use fewer discretization points (or bases). As the focus of the paper is on the low

rank method, we leave the comparison of different angular discretizations to a future study.

2.4.1 Accuracy test

We first examine the accuracy of our method (in time and space) using a manufactured

solution. We choose

f(t, x, y, ξ, η, γ) = exp(−t)sin2(2πx)sin2(2πy)
(

1 + ε

(
η + η3

3

))
, (x, y) ∈ [0, 1]2. (2.4.1)
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The corresponding ρ and g are

ρ(t, x, y) = exp(−t)sin2(2πx)sin2(2πy),

g(t, x, y, ξ, η, γ) = exp(−t)sin2(2πx)sin2(2πy)
(
η + η3

3

)
.

(2.4.2)

Let the scattering and absorption coefficients be σS = 1, σA = 0, then the source term G is

given by

G(t, x, y, ξ, η, γ) = ∂tf + 1
ε

v · ∇xf + 1
ε
g. (2.4.3)

We use this source term and the initial condition ρ(t = 0, x, y) and g(t = 0, x, y, ξ, η, γ) as

input for our low rank method and compute the solution up to a certain time. Note that the

source term here depends also on time and velocity, hence the scheme needs to be modified

accordingly to take into account this dependency. We omit the details.

We consider both the first order scheme in Section  2.2.1 and the second order scheme

in Section  2.2.4 , coupled with the second order spatial discretization described in Section  3 .

We always take Nv = 590 Lebedev quadrature points on the sphere S2 [ 62 ]. Since we know

a priori the rank of the exact solution g is 1, we fix r = 5 in the low rank method which is

certainly sufficient to obtain an accurate solution.

We vary the spatial size ∆x and the value of ε, and evaluate the error at t = 0.1 as

∆x2
Nx∑
k,l=1

(
ρlow rank(xk+ 1

2
, yl+ 1

2
) − ρexact(xk+ 1

2
, yl+ 1

2
)
)2
 1

2

. (2.4.4)

Since the proposed schemes are AP, we expect them to be stable under a hyperbolic CFL

condition when ε ∼ O(1) and a parabolic CFL condition when ε � 1. Specifically, we con-

sider three kinds of CFL conditions: mixed CFL condition ∆t ∼ c1∆x2 + c2ε∆x, hyperbolic

CFL condition ∆t ∼ ∆x, and parabolic CFL condition ∆t ∼ ∆x2.

The results of the first order (in time) scheme are shown in Figure  2.2 . Under the mixed

CFL condition, we expect to see first order convergence in the kinetic regime (ε ∼ O(1)) and

second order in the diffusive regime (ε � 1), which is clearly observed in Figure  2.2 (left).
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Under the parabolic CFL condition, we always expect second order convergence, which is

also clear in Figure  2.2 (right).
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Figure 2.2. Section  2.4.1 : convergence order (first order low rank scheme).
l2-error v.s. ∆x. Left: mixed CFL condition ∆t = 0.18∆x2 + 0.1ε∆x. Right:
parabolic CFL condition ∆t = 0.25∆x2. Blue dashed line and black line are
reference slopes of 1 and 2, respectively.

For the second order (in time) scheme, we don’t expect order higher than two in the

diffusive regime since ∆t ∼ ∆x2 and the error behaves as O(∆t2 + ∆x2) = O(∆x4 + ∆x2).

Hence we only test its performance in the kinetic regime (ε ∼ O(1)) under the hyperbolic

CFL condition, where ∆t ∼ ∆x and the error is O(∆t2 + ∆x2) = O(∆x2). The result is

shown in Figure  2.3 , where we can clearly see the uniform second order accuracy of the

scheme (in contrast to the first order scheme).

2.4.2 Test with Gaussian initial value

In this test case, we consider a smooth Gaussian initial condition:

f(t = 0, x, y, ξ, η, γ) = 1
4πς2 exp

(
−x2 + y2

4ς2

)
, ς2 = 10−2, (x, y) ∈ [ − 1, 1]2, (2.4.5)

with zero absorption coefficient and source term σA = G = 0.
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Figure 2.3. Section  2.4.1 : convergence order (second order low rank scheme).
l2-error v.s. ∆x. Hyperbolic CFL condition ∆t = 0.4∆x is used. Blue dashed
line and black line are reference slopes of 1 and 2, respectively. Result of the
first order scheme under the same CFL condition is plotted also for comparison.
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Constant scattering coefficient σS

We first consider σS ≡ 1 and focus on the AP property of the proposed method. There-

fore, we set ε = 10−6 and compare our first order low rank method with the reference solution

obtained by integrating ( 2.2.58 ), which solves the limiting diffusion equation directly. In the

low rank method, we use Nx = Ny = 128, Nv = 590 Lebedev quadrature points on S2, and

time step ∆t = 0.1∆x2 +0.1ε∆x, and fix the rank as r = 5. In solving the diffusion equation,

we use Nx = Ny = 512 and time step ∆t = 0.75∆x2.

The solutions at t = 0.1 are shown in Figure  2.4 , where they match very well. As the

theory predicts, in the limiting diffusive regime, the solution g should be become rank-2.

To confirm this, we track the singular values of the matrix S, see Figure  2.5 . Clearly, the

effective rank is 2 (two singular values are above the threshold of 10−5, which is on the order

of the spatial error).
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Figure 2.4. Section  2.4.2 : constant scattering coefficient. Density profile of
the low rank solution (left), reference solution to the limiting diffusion equation
(middle), and comparison of two solutions with y = 0 (right).

Variable scattering coefficient σS

We then set ε = 0.01 (an intermediate regime) and consider a spatially dependent scat-

tering coefficient

σS(x, y) =


0.999c4(c+

√
2)2(c−

√
2)2 + 0.001, c =

√
x2 + y2 < 1,

1, otherwise,
(2.4.6)

45



0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

t

10
-30

10
-25

10
-20

10
-15

10
-10

10
-5

10
0

10
5

Figure 2.5. Section  2.4.2 : constant scattering coefficient. Singular values of
the matrix S for the low rank method.
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whose profile is shown in Figure  2.6 . This is a challenging test as σS(x,y)
ε

varies in a large

range [0.1, 100]. Our aim here is to investigate the rank dependence of the low rank method

and its performance compared with the full tensor method.
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Figure 2.6. Section  2.4.2 : variable scattering coefficient. Profile of σS (left)
and a slice with y = 0 (right).

Specifically, we compare the first order low rank method with the first order IMEX

method that solves the macro-micro decomposition of the linear transport equation directly

[ 44 ] (referred to as the full tensor method in the following). We use the same spatial mesh,

same CFL condition ∆t = 0.1 min(σS)∆x2 + 0.1ε∆x, and same Nv = 2702 Lebedev quadra-

ture points on S2 for both methods. In the low rank method, we choose different ranks from

20 to 120.

The comparison of the low rank solution and the full tensor solution on a 256×256 mesh

at different times is shown in Figure  2.7 (top). We can see that the low rank solution matches

well with the full tensor solution except for rank r = 20. To quantitatively understand the

rank dependence, we compute the difference of two solutions on the same mesh as follows

∆x2
Nx∑
k,l=1

(
ρlow rank(xk+ 1

2
, yl+ 1

2
) − ρfull tensor(xk+ 1

2
, yl+ 1

2
)
)2
 1

2

. (2.4.7)

and track how this evolves in time under certain fixed ranks r ranging from 20 to 120.

The results are shown in Figure  2.7 (bottom). The common trend is that once the rank is

increased to a certain level, the difference saturates. This is because then the spatial error
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dominants. Also it is clear that the rank of the solution in this problem increases gradually

with time.

In addition, we record the computational time needed to compute the solution to t =

0.012 for both methods on an i7-8700k @3.70 GHz CPU in Figure  2.8 . The speedup of the

low rank method is significant, especially for a large number of spatial points Nx.
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Figure 2.7. Section  2.4.2 : variable scattering coefficient. Density profile
with y = 0 of the low rank solution and full tensor solution on a 256 × 256
mesh at time t = 0.002 (top left), t = 0.006 (top middle), and t = 0.010 (top
right). Difference ( 2.4.7 ) between the low rank solution and full tensor solution
computed on different meshes and with different ranks at time t = 0.002
(bottom left), t = 0.006 (bottom middle), and t = 0.010 (bottom right).

2.4.3 Two-material test

The two-material test models a domain with different materials with discontinuities in

material cross sections and source term. It is a slight modification of the lattice benchmark

problem for linear transport equation. Here we choose the computational domain as [0, 5]2
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Figure 2.8. Section  2.4.2 : variable scattering coefficient. Computational
time (in seconds) needed for the low rank method and full tensor method to
compute the solution at time t = 0.012.
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with the absorption coefficient σA and scattering coefficient σS given as in Figure  2.9 . The

source term is given by

G(x, y) =


1, (x, y) ∈ [2, 3]2,

0, otherwise.
(2.4.8)
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Figure 2.9. Section  2.4.3 : two-material test. Profiles of absorption coeffi-
cient σA (left) and scattering coefficient σS (right). Each square block in the
computational domain is a 0.5 × 0.5 square. In the left figure, yellow square
blocks represent that σA = 10 and for the rest blue region σA = 0; in the right
figure, blue square blocks represent that σS = 0 and for the rest yellow region
σS = 1.

We set ε = 1 and compare the first order low rank method with the first order full tensor

method. For both methods, we choose Nx = Ny = 250, Nv = 2702 Lebedev quadrature

points on S2, and same mixed CFL condition ∆t = 0.1 min(σS)∆x2 + 0.1ε∆x. The initial

condition is given by

f(t = 0, x, y, ξ, η, γ) = 1
4πς2 exp

(
−(x− 2.5)2 + (y − 2.5)2

4ς2

)
, ς2 = 10−2, (x, y) ∈ [0, 5]2.

(2.4.9)

We test different ranks from 40 to 300 in the low rank method and compare it with the full

tensor solution. The error and computational time are reported in Figure  2.10 . It is clear

that at around rank r = 150, the spatial error dominates and increasing the rank further

will have no gain in solution accuracy. Moreover, at r = 150, the efficiency of the low rank

method is clearly better than the full tensor method. We then fix r = 150 and plot both the
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low rank solution and full tensor solution at t = 1.7 in Figure  2.11 , where a good match is

obtained.
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Figure 2.10. Section  2.4.3 : two-material test (ε = 1). Difference (  2.4.7 )
between the low rank solution with different ranks and full tensor solution at
time t = 1.7 (left). Computational time (in seconds) needed for the low rank
method with different ranks and full tensor method to compute the solution
at t = 1.7 (right).

In addition, we consider another scenario with ε = 0.1. The same parameters are used

as in the case of ε = 1, except we set the rank r = 100 in the low rank method (because

we expect the rank of the solution to decrease as ε decreases). The solutions of the low

rank method and full tensor method at time t = 0.6 are shown in Figure  2.12 , where we

again observe good agreement. An optimal (and possibly smaller) rank can be determined

similarly as in Figure  2.10 , we omit the result.

2.4.4 Line source test

We finally consider the line source test which is another important benchmark test for

the linear transport equation. Here we approximate the initial delta function via (  2.4.5 ) with

a much smaller ς2 = 4 × 10−4. σS = 1 and σA = G = 0. We set ε = 1 and compare the

first order low rank method with the full tensor method. For both methods, we choose the

computational domain as [ − 1.5, 1.5]2 with Nx = Ny = 150, Nv = 5810 Lebedev quadrature

points on S2, and the same mixed CFL condition ∆t = 0.025∆x2 + 0.025ε∆x. We fix the
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Figure 2.11. Section  2.4.3 : two-material test (ε = 1). Contour plot of the
log density at time t = 1.7 of the full tensor solution (top left) and low rank
solution (top right) on a 250 × 250 mesh. Density slice of both solutions along
x = 1 (middle left), x = 1.5 (middle right), x = 2.5 (bottom left), and x = 3
(bottom right). r = 150 in the low rank method.
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Figure 2.12. Section  2.4.3 : two-material test (ε = 0.1). Contour plot of the
log density at time t = 0.6 of the full tensor solution (top left) and low rank
solution (top right) on a 250 × 250 mesh. Density slice of both solutions along
x = 1 (middle left), x = 1.5 (middle right), x = 2.5 (bottom left), and x = 3
(bottom right). r = 100 in the low rank method.
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rank as r = 600 in the low rank method. The density profiles of both methods at time

t = 0.7 are shown in Figure  2.13 . We can see that the solutions match well.

We would like to mention that this is a difficult problem compared to the cases con-

sidered previously. Many more points are need on the sphere to get a reasonable solution.

Nevertheless, there are still oscillations in the solution (for both the full tensor and the low

rank method). This is a well-known artifact in the SN method. In addition, we found that

a higher rank and a more stringent CFL condition is needed in the low rank method. We

believe part of the reason are the numerical oscillations, which can be tempered by apply-

ing a proper filter or using a positivity-preserving scheme. We refer to [  63 ], and references

therein, for more details.
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Figure 2.13. Section  2.4.4 : line source test. Density profile of the full tensor
solution (left) and low rank solution (middle) on a 150 × 150 mesh, and com-
parison of two solutions along y = 0 (right) at time t = 0.7. r = 600 in the
low rank method.

2.5 Conclusions of this chapter

We have introduced a dynamical low-rank method for the multi-scale multi-dimensional

linear transport equation. The method is based on a macro-micro decomposition of the

equation and uses the low rank approximation only for the micro part of the solution. The key

feature of the proposed scheme is that it is explicitly implementable, asymptotic-preserving

in the diffusion limit, and maintains second order in both kinetic and diffusive regimes. A

series of numerical examples in 2D including some well-known benchmark tests have been

performed to validate the accuracy, efficiency, rank dependence, and AP property of the
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proposed method. Some interesting ongoing and future work includes adaptive rank selection

and the theoretical investigation of rank dependence of the solution in the kinetic regime.
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3. ADAPTIVE DYNAMICAL LOW-RANK METHODS FOR

FULL BOLTZMANN EQUATION

In this chapter, we will further study the rank dependence in kinetic regime (ε ∼ O(1)) and

explore the adaptive low-rank methods especially for steady-state solutions of full Boltz-

mann equation (  1.0.1 ). This chapter is structured as follows. In Section  3.1 , we introduce

the dynamic low rank method where the fully discrete schemes are discussed in detail. In

Section  3.2 , we presents the adaptive rank selection strategy for low-rank methods. In Sec-

tion  3.3 , we briefly analyze the low rank structure of normal shock wave problems. Section  3.4 

presents several numerical tests using the adaptive low rank method in Boltzmann equation

where we carefully examine the efficiency, accuracy and rank dependence. This chapter is

concluded in Section  3.5 . In this chapter, we set the Knudsen number ε = 1 to focus on

the kinetic regime. Most of the results in this chapter come from a working paper with

Dr. Jingwei Hu.

3.1 The dynamical low rank formulation and the fully discrete schemes

Similarly as in Section  2.2 , we first rewrite ( 1.0.1 ) as

∂tf = −v · ∇xf − Q(f, f) := RHS, (3.1.1)

and we constrain the probability density function f(t,x,v) to a low rank manifold M such

that

f(t,x,v) =
r∑

i,j=1
Xi(t,x)Sij(t)Vj(t,v), (3.1.2)

where r is the representation rank and the basis functions {Xi}1≤i≤r ⊂ L2(Ωx) and {Vj}1≤j≤r ⊂

L2(Ωv) are defined similarly as in (  2.2.6 ). Note here we consider a finite velocity domain Ωv

rather than the whole space Rdv to avoid the complication in the infinite domain. This is a

reasonable assumption because the majority of the numerical methods for kinetic equations

need to first truncate the velocity domain and then perform the discretization. It can often

be done without much loss of accuracy since f decays sufficiently fast as v goes to infinity.
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We then project RHS onto the tangent space of M and use operator splitting to obtain

the following three sub-flows.

∂tf =
r∑

j=1
〈Vj,RHS〉vVj, (3.1.3)

∂tf = −
r∑

i,j=1
Xi〈XiVj,RHS〉x,vVj, (3.1.4)

∂tf =
r∑

i=1
Xi〈Xi,RHS〉x. (3.1.5)

Using orthogonality condition and gauge condition, we can further simplify each sub-flow

and proceed in the following three sub-steps:

• K-step: Define Kj(t,x) =
r∑

i=1
Xi(t,x)Sij(t) then f(t,x,v) =

r∑
j=1

Kj(t,x)Vj(t,v). We can

rewrite ( 3.1.3 ) as

∂t

 r∑
j=1

KjVj

 =
r∑

j=1
(∂tKjVj +Kj∂tVj) =

r∑
j=1

〈Vj,RHS〉vVj. (3.1.6)

Using the orthogonality of {Vj}1≤j≤r and 〈∂tVj, Vk〉v = 0 for 1 ≤ j, k ≤ r, we have

∂tKj = 〈Vj,RHS〉v

= −
r∑
l=1

〈vVjVl〉v · ∇xKl +
r∑

m,n=1
〈VjQ (Vm, Vn)〉v KmKn, j = 1, . . . , r,

(3.1.7)

where the simplification of the last term relies crucially on the bilinearity of the collision

operator ( 1.0.2 ) as well as the fact that collisions act locally in the physical space. It

can be seen that ( 3.1.7 ) together with ∂tVj = 0 solve (  3.1.6 ). Since the solution to the

sub-flow is unique, we thus know {Vj}1≤j≤r remains unchanged during this sub-step.

• S-step: We can argue similarly to obtain that the sub-flow (  3.1.4 ) is equivalent to

∂tSij = −〈XiVj,RHS〉x,v

=
r∑

k,l=1
〈vVjVl〉v · 〈Xi∇xXk〉xSkl −

r∑
k,l,m,n=1

〈XiXkXl〉x〈VjQ(Vm, Vn)〉vSkmSln, i, j = 1, . . . , r.

(3.1.8)
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During this sub-step, both {Vj}1≤j≤r and {Xi}1≤i≤r remain unchanged.

• L-step: Define Li(t,v) =
r∑

j=1
Sij(t)Vj(t,v) then f(x,v, t) =

r∑
i=1
Xi(x, t)Li(v, t). By simi-

lar arguments, the sub-flow ( 3.1.5 ) is equivalent to

∂tLi = 〈Xi,RHS〉x,

= −
r∑
l=1

v · 〈Xi∇xXl〉xLl +
r∑

m,n=1
Q(Lm, Ln)〈XiXmXn〉x, i = 1, . . . , r.

(3.1.9)

During this sub-step, {Xi}1≤i≤r remains unchanged.

Therefore, we have obtained a set of low rank equations (  3.1.7 )-( 3.1.9 ) in the continuous

setting. The task remains is to apply the proper discretization to these equations in the

velocity space, physical space, and time, which we will detail in the following subsections.

3.1.1 Velocity space discretization

Examining the equations ( 3.1.7 )-( 3.1.9 ), we can see that all terms pertaining to the

collision operator have the form of Q(h1, h2), where h1 and h2 are some functions of v.

Luckily this isn’t much change from the original collision operator in ( 1.0.1 ) and we can

apply the well-developed fast Fourier spectral methods.

Specifically, for 2D Maxwell molecules (dv = 2 and B = const) and 3D hard spheres

(dv = 3 and B = const|v − v∗|), we can use the algorithm proposed in [  30 ] with complexity

O(MFFN
dv
v logNv), where Nv is the number of points in each dimension of the velocity space

and MFF is the number of points used on the sphere Sdv−1; for general collision kernels,

we can use the algorithm proposed in [  64 ] with complexity O(MFFN
dv+1
v logNv). Both

algorithms can be implemented as a discrete velocity method: one chooses an appropriate

velocity domain [−Lv, Lv]dv and uniform grid points {vq}; the collision solver takes discrete

values {h1(vq)} and {h2(vq)} and outputs {Q(h1, h2)(vq)} on the same set of grid points.

For more details, the readers can refer to [ 30 ], [ 64 ].
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3.1.2 Physical space discretization

There are various ways to discretize the equations (  3.1.7 )-( 3.1.9 ) in the physical space,

for example, one can apply the Fourier spectral method [ 25 ] or the high resolution finite

difference scheme [  27 ] directly to these equations. Generally speaking, the conventional

scheme used for the original equation needs to be tailored when solving the equations resulted

from the low rank projection. The issue also becomes a bit tricky when the boundary

condition is not periodic.

Here we adopt a “first discretize, then project” strategy, which is simpler because it follows

directly from the scheme for the original equation. We mention that this idea is similar to the

so-called kinetic flux vector splitting (KFVS) scheme [  65 ], a well-known method for solving

the compressible Euler equations derived from the kinetic equation. For simplicity, we focus

on the first order upwind scheme in this work. To extend it to high order, similar strategy

for the KFVS scheme [ 66 ] can be considered.

We use the one-dimensional case (d = 1) to illustrate the idea. Extension to high di-

mension with rectangular grid is straightforward as implemented in our numerical examples.

Assume Ωx = [ − Lx, Lx] with uniform grid points chosen as xp = −Lx + (p − 1
2)∆x,

p = 1, . . . , Nx, ∆x = 2Lx

Nx
. Since the transport term in the Boltzmann equation (  1.0.1 ) is

linear, it is very easy to apply the upwind scheme:

∂tf(t, x, v) = − v + |v|
2

f(t, x, v) − f(x− ∆x, v, t)
∆x

− v − |v|
2

f(x+ ∆x, v, t) − f(t, x, v)
∆x + Q(f(t, x, v), f(t, x, v))

:= − v+D+f(t, x, v) − v−D−f(x, v, t) + Q(f(t, x, v), f(t, x, v)),

(3.1.10)

where v± = v±|v|
2 , and D± are first order upwind operators. f(t, x, v) is evaluated at spatial

uniform grid points {xp}p=1,...,Nx .

For (  3.1.10 ), we can apply the same projection process as we did previously to ( 3.1.1 ) to

obtain (i.e., the analogs of ( 3.1.7 )-( 3.1.9 )):
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• K-step:

∂tKj(t, x) = −
r∑
l=1

〈v+Vj(t, v)Vl(t, v)〉vD+Kl(t, x) −
r∑
l=1

〈v−Vj(t, v)Vl(t, v)〉vD−Kl(t, x)

+
r∑

m,n=1
〈Vj(t, v)Q(Vm(t, v), Vn(t, v))〉vKm(t, x)Kn(t, x).

(3.1.11)

• S-step:

∂tSij(t) =
r∑

k,l=1
〈v+Vj(t, v)Vl(t, v)〉v〈Xi(t, x)D+Xk(t, x)〉xSkl

+
r∑

k,l=1
〈v−Vj(t, v)Vl(t, v)〉v〈Xi(t, x)D−Xk(t, x)〉xSkl

−
r∑

k,l,m,n=1
〈Xi(t, x)Xk(t, x)Xl(t, x)〉x〈Vj(t, v)Q(Vm(t, v), Vn(t, v))〉vSkmSln.

(3.1.12)

• L-step:

∂tLi(t, v) = −
r∑
l=1

v+〈Xi(t, x)D+Xl(t, x)〉xLl(t, v) −
r∑
l=1

v−〈Xi(t, x)D−Xl(t, x)〉xLl(t, v)

+
r∑

m,n=1
Q(Lm(t, v), Ln(t, v))〈Xi(t, x)Xm(t, x)Xn(t, x)〉x.

(3.1.13)

3.1.3 Treatment of the boundary condition

In the low rank framework, boundary condition for f(t,x,v) need to be transformed to

the boundary condition of {Kj}1≤j≤r. In fact, this transformation has a non-trivial impact

on the fully discrete scheme which we shall describe in the next subsection.

For a boundary point x ∈ ∂Ωx with outward pointing normal n(x) and boundary velocity

uw(x), general boundary conditions for Boltzmann equation ( 1.0.1 ) are defined through the

inflow direction:

f(t,x,v) = fbdy(t,x,v), (v − uw(x)) · n(x) < 0. (3.1.14)
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However, there are no prescribed inflow direction defined for {Kj}1≤j≤r and we need to

reconstruct the full boundary value by approximating the outflow values using values inside

the domain (extrapolation):

f b(t,x,v) :=


fbdy(t,x,v) (v − uw(x)) · n(x) < 0

fextrap(t,x,v) (v − uw(x)) · n(x) ≥ 0.
(3.1.15)

Accordingly, we can project the full boundary value f b(t,x,v) to the space spanned by

{Vj}1≤j≤r to obtain boundary values for {Kj}1≤j≤r:

Kj(t,x) =〈f b(t,x,v), Vj(t,v)〉v

=〈fbdy(t,x,v)1(v−uw(x))·n(x)<0, Vj(t,v)〉v + 〈fextrap(t,x,v)1(v−uw(x))·n(x)≥0, Vj(t,v)〉v

=〈fbdy(t,x,v)1(v−uw(x))·n(x)<0, Vj(t,v)〉v +
r∑
l=1

Kl(t,x)〈1(v−uw(x))·n(x)≥0Vl(t,v)Vj(t,v)〉v,

(3.1.16)

where the Kl term appearing on the right hand side of (  3.1.16 ) can be approximated by

extrapolation since the term results from the outflow.

Two typical boundary conditions used when solving the Boltzmann equation (  1.0.1 ) are

inflow boundary and Maxwell diffusive boundary. For inflow boundary, we assume uw(x) = 0

and the typical inflow boundary is given by:

fbdy(t,x,v) = ρin(t,x)
(2πTin(t,x))d/2 exp

(
−|v − uin(t,x)|2

2Tin(t,x)

)
, v · n(x) < 0, (3.1.17)

where ρin, uin and Tin are the density, bulk velocity and temperature of the prescribed inflow.

The Maxwell diffusive boundary condition is given by:

fbdy(t,x,v) = ρw(t,x) exp
(

−|v − uw(t,x)|2
2Tw(t,x)

)
, (v − uw(x)) · n(x) < 0, (3.1.18)

where Tw is the wall temperature, ρw is determined by conservation of mass through the

wall:

ρw(t,x) = −
∫

(v−uw(x))·n(x)≥0(v − uw(x)) · n(x)f(t,x,v) dv∫
(v−uw(x))·n(x)<0(v − uw(x)) · n(x) exp

(
− |v−uw(t,x)|2

2Tw(t,x)

)
dv
. (3.1.19)

61



3.1.4 Time discretization and the fully discrete scheme

We now add the time discretization to (  3.1.7 )-( 3.1.9 ) to obtain a fully discrete scheme.

Since most of the examples we are interested in this paper concern the stationary Boltzmann

equation, the first order time discretization suffices. For high order method in time, the

readers can refer to [ 53 ] and references therein.

Given the initial condition f(0,x,v) = f 0(x,v), we first perform the singular value

decomposition f 0(x,v) = ∑r
i,j=1 X

0
i (x)S0

ijV
0

j (v) to obtain (X0
i , S

0
ij, V

0
j ), where a fixed, rea-

sonable rank r is chosen and used in the following computation.

Suppose at time step tn, (Xn
i , S

n
ij , V

n
j ) are available. In order to obtain (Xn+1

i , Sn+1
ij , V n+1

j )

at tn+1, we proceed as follows:

1. K-step.

(a) Construct Kn
j = ∑r

i=1 X
n
i S

n
ij .

(b) Perform the forward Euler step in ( 3.1.7 ) to obtain Kn+1
j :

Kn+1
j = Kn

j − ∆t
r∑
l=1

〈
vV n

j V
n
l

〉
v

· ∇xK
n
l + ∆t

r∑
m,n=1

〈
V n

j Q (V n
m, V

n
n )
〉

v
Kn
mK

n
n , j = 1, . . . , r.

(3.1.20)

(c) Compute the QR decomposition of Kn+1
j = ∑r

i=1 X
n+1
i S

(1)
ij to obtain updated

Xn+1
i and S

(1)
ij .

The overall arithmetic complexity of this step is O
(
r2(rNdv

v + rNdx
x +MNdv

v logNv)
)

(suppose the algorithm in [ 30 ] is used).

2. S-step.

(a) Perform the forward Euler step in ( 3.1.8 ) to obtain S
(2)
ij :

S
(2)
ij = S

(1)
ij + ∆t

r∑
l=1

〈vV n
j V

n
l 〉v · 〈Xn+1

i ∇xK
n+1
l 〉x

− ∆t
r∑

m,n=1
〈V n

j Q(V n
m, V

n
n )〉v

r∑
l=1

(
r∑

k=1

(
〈Xn+1

i Xn+1
k Xn+1

l 〉xS
(1)
km

)
S

(1)
ln

)
, i, j = 1, . . . , r.

(3.1.21)
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Since some of the quantities have been computed in the K-step, they can be

reused in this step, for example, the term Q(V n
m, V

n
n ). Note that we changed

the second term on the right hand side such that it uses ∇xK
n+1
j rather than

∇xX
n+1
j . This is crucial because we have only available the boundary condition

expressed in terms of Kn+1
j as seen in Section  3.1.3 .

The overall arithmetic complexity of this step is O
(
r2(rNdx

x + r2)
)
.

3. L-step.

(a) Construct Lni = ∑r
j=1 S

(2)
ij V

n
j and K̃n+1

j = ∑r
i=1 X

n+1
i S

(2)
ij .

(b) Perform the forward Euler step in ( 3.1.9 ) to obtain Ln+1
i :

Ln+1
i = Lni − ∆t

r∑
l=1

v · 〈Xn+1
i ∇xK̃

n+1
l 〉xV

n
l

+ ∆t
r∑

p,q=1
Q(V n

p , V
n
q )

r∑
n=1

(
r∑

m=1

(
〈Xn+1

i Xn+1
m Xn+1

n 〉xS
(2)
mp

)
S(2)
nq

)
, i = 1, . . . , r.

(3.1.22)

The term involving the collision operator is rearranged so that the previously

computed values can be reused. For the same reason as in the S-step, ∇xK̃
n+1
j

is introduced to avoid using ∇xX
n+1
l .

(c) Compute the QR decomposition of Ln+1
i = ∑r

j=1 S
n+1
ij V n+1

j to obtain updated

V n+1
j and Sn+1

ij .

The overall arithmetic complexity of this step is O
(
r2(Ndx

x + rNdv
v + r2)

)
.

To simplify the notation, we treat x, v as the continuous variables in the above presentation.

The discretization in x and v can be added straightforwardly following the discussion in

Section  3.1.1 and Section  3.1.2 . The inner products 〈 · 〉v, 〈 · 〉x are evaluated using the

midpoint rule at the discrete velocity and spatial grid points.

If r is small, the computational complexity of the above algorithm will be dominated

by the evaluation of the collision operator O(r2MFFN
dv
v logNv), which can be much more

efficient than the full tensor method whose complexity is O(Ndx
x MFFN

dv
v logNv).
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3.2 An adaptive dynamical low rank method

The dynamical low rank method introduced in the last section uses a fixed rank r through-

out the entire time evolution. This turns out to be a bad strategy when solving the stationary

Boltzmann equation subject to inflow or Maxwell diffusive boundary conditions. The reason

is two-fold: 1) The boundary keeps sending new information to the interior of the domain

so that the basis Xi, Sij, Vj initialized according to the initial condition is not sufficient to

capture the solution at later time. Thus new basis needs to be injected to the solution over

time. 2) For many benchmark tests of the Boltzmann equation, the steady state solutions

are often low rank (see Section  3.3 for a partial justification). Therefore, keeping adding ba-

sis without dropping anything would unnecessarily increase the computational cost. In this

section, we provide an adaptive strategy to add and delete basis during the time evolution

of a dynamical low rank method.

3.2.1 Adding basis from the boundary

Assume that the full boundary values ( 3.1.15 ) are given by

f(t,x,v) = f b(t,x,v), x ∈ ∂Ωx. (3.2.1)

Since the function f b(t,x,v) does not necessarily belong to the space spanned by {Vj}1≤j≤r,

using a fixed set of basis will result in information loss.

We can fix this problem by explicitly adding boundary conditions as basis into {Vj}1≤j≤r.

For example, at the beginning of time step tn, in the fully discrete scheme, suppose there are

Nbx spatial points on the boundary ∂Ωx, Ndv
v velocity points over the velocity space Ωv and

Ndx
x spatial points over the physical space Ωx. We can represent the full boundary values

f b(x,v, tn) using a matrix Fb ∈ RNbx×Ndv
v . We then proceed as follows:

1. Compute SVD of Fb to obtain Fb = UbΣbQ
T
b where Ub, Qb are orthogonal and Σb is

diagonal with descending singular values.
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2. Drop singular values in Σb that are smaller than 1.0e−10. Suppose there are rb singular

values remaining, set Q̄b = Qb(:, 1 : rb) ∈ RNdv
v ×rb

3. Concatenate a random matrix Xh ∈ RNdx
x ×rb to Xn, Q̄b to V n and extend Sn with zero

padding:

X̂ = [Xn, Xh] ∈ RNdx
x ×(r+rb), Ŝ =

Sn 0

0 0

 ∈ R(r+rb)×(r+rb), V̂ = [V n, Q̄b] ∈ RNdv
v ×(r+rb),

(3.2.2)

4. Perform QR decomposition to X̂ and V̂ to orthonormalize new basis as X̂ = XqSx

and V̂ = VqSv. Set Sq = SxŜS
T
v .

Then (Xq, Sq, Vq) are the new basis and we proceed as in Section  3.1.4 . Using SVD to get

representative basis Q̄b is crucial to increase computational efficiency by reducing number of

basis added rb. If f b(t,x,v) = f b(v, t) is spatially homogeneous, then we can directly start

at step 3 and concatenate Fb to V n.

3.2.2 Dropping basis adaptively

To avoid the rank accumulation from the above procedure, we can decrease the rank r

by dropping some small singular values of matrix (Sij)1≤i,j≤r.

At the end of time step tn as described in Section  3.1.4 , we proceed as follows to adjust

the rank:

1. Compute the SVD of Sn+1 = (Sn+1
ij )1≤i,j≤r to obtain Sn+1 = UΣQT , where U,Q ∈ Rr×r

are orthonormal and Σ ∈ Rr×r is diagonal with descending singular values.

2. Drop singular values in Σ that are less than some tolerance drop_tol. Suppose there

are r′ singular values remaining, we set Ū = U(:, 1 : r′), Σ̄ = Σ(1 : r′, 1 : r′) and

Q̄ = Q(:, 1 : r′). Define S̄n+1 = Σ̄ ≈ Sn+1.

3. Update the basis as [X̄n+1
1 , X̄n+1

2 , . . . , X̄n+1
r′ ] = [Xn+1

1 , Xn+1
2 , . . . , Xn+1

r ]Ū and

[V̄ n+1
1 , V̄ n+1

2 , . . . , V̄ n+1
r′ ] = [V n+1

1 , V n+1
2 , . . . , V n+1

r ]Q̄ where {X̄n+1
i }i=1,...,r′ and {V̄ n+1

i }i=1,...,r′

are the updated spatial and velocity basis functions respectively.
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drop_tol plays an important role in overall computational efficiency and accuracy. Large

drop_tol causes low accuracy for some high-rank solutions and small drop_tol suffers

from heavy computation by large computational rank. We dynamically choose drop_tol

according to the accuracy of the current solution. More details are given in Section  3.4.1 .

3.3 Normal shock problem and low rank property of the solution

Generally speaking, it is hard to predict or analyze the rank of the solution to the

Boltzmann equation due to its highly nonlinear structure. As such, the dynamical low rank

method introduced above is really like a black box solver since one cannot tell in advance the

rank of the solution until the actual simulation is run. If the rank turns out to be high, the

method becomes slow and might not be competitive to the full tensor method. Nevertheless,

in this section we identify a class of problems whose solutions are indeed low rank so that

we have confidence about the efficiency of the low rank method.

The normal shock problem [ 2 ] is a classical benchmark test in rarefied gas dynamics

and has been used to validate all kinds of numerical methods for the nonlinear Boltzmann

equation. Consider a plane shock wave perpendicular to a flow. The flow is in the x1

direction. The gas is uniform at upstream infinity (x1 → −∞) and downstream infinity

(x1 → +∞) and the whole flow is stationary. We are interested in the shock profile developed

in this setup with various Mach numbers.

The governing equation is the following 1D stationary Boltzmann equation:

v1∂x1f = Q(f, f), (3.3.1)

with boundary condition

lim
x1→−∞

f(x1,v) = fL(v) = M[ρL,uL, TL](v) = ρL
(2πTL)d/2 exp

(
−(v1 − uL)2 + v2

2 + ...+ v2
d

2TL

)
,

lim
x1→+∞

f(x1,v) = fR(v) = M[ρR,uR, TR](v) = ρR
(2πTR)d/2 exp

(
−(v1 − uR)2 + v2

2 + ...+ v2
d

2TR

)
,

(3.3.2)
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where M[ρ,u, T ] is the Maxwellian distribution; (ρL,uL, TL) and (ρR,uR, TR) are the density,

bulk velocity and temperature of the upstream and downstream flows; and R is the gas

constant.

The net flow of mass, momentum and energy into the shock must be equal to the ones

out of the shock:

∫
v1fL(v)


1

v1

v2

 dv =
∫
v1fR(v)


1

v1

v2

 dv. (3.3.3)

Rewriting (  3.3.3 ) in terms of macroscopic quantities ρL,R, uL,R and TL,R, we have the follow-

ing Rankine-Hugoniot relations

ρLuL = ρRuR,

ρLu
2
L + ρLTL = ρRu

2
R + ρRTR,

ρLuL
(
u2
L + (dv + 2)TL

)
= ρRuR

(
u2
R + (dv + 2)TR

)
.

(3.3.4)

Given the upstream quantities (ρL, uL, TL) and using the upstream flow Mach number defined

by

ML = uL

(γTL) 1
2
, γ = dv + 2

dv
, (3.3.5)

we can solve ( 3.3.4 ) to obtain

ρR = ρL
(dv + 1)M2

L

M2
L + dv

, uR = uL
M2

L + dv
(dv + 1)M2

L

, TR = TL
((dv + 2)M2

L − 1)(M2
L + dv)

(dv + 1)2M2
L

.

(3.3.6)

In the following, we consider two scenarios where one can obtain some low rank approx-

imation to the solutions of ( 3.3.1 )-( 3.3.2 ).
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3.3.1 Weak shock wave: ML = O(1)

When ML = 1, it is clear from (  3.3.6 ) that there will be no jump hence no shock. When

ML = O(1) but bigger than 1, a weak shock will be developed. We assume

ML = 1 + ε, (3.3.7)

where ε is a small parameter. In fact, ε is on the same order of the mean free path [ 67 ]. We

then rescale x1 according to x̃1 = εx1. The (  3.3.1 ) thus becomes

v1∂x̃1f = 1
ε

Q(f, f). (3.3.8)

On the other hand, we can see from (  3.3.6 ) that the macroscopic quantities of upstream flow

and downstream flow are very close:

ρR
ρL

= 1 + dv(M2
L − 1)

M2
L + dv

= 1 + O(ε),

uR
uL

= 1 − dv(M2
L − 1)

(dv + 1)M2
L

= 1 + O(ε),

TR
TL

= 1 + (dv + 1)(M4
L − 1) + (M2

L − 1)2

(dv + 1)2M2
L

= 1 + O(ε).

(3.3.9)

Hence
fR
fL

= 1 + O(ε). (3.3.10)

Therefore, it is reasonable to assume

f(x̃1,v) = fL(v) + εf1(x̃1,v) + O(ε2), (3.3.11)

where f1(x̃1,v) is yet to be determined.

The rest of the analysis is similar to the Hilbert expansion. Substituting (  3.3.11 ) into

( 3.3.8 ) and matching orders, we obtain at order O(ε):

Q(f1, fL) + Q(fL, f1) = v1∂x̃1fL(v) ≡ 0. (3.3.12)
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Using the linearized Boltzmann collision operator [ 6 ] defined by

LM(f) := 1
M

(Q(M,Mf) + Q(Mf,M)) , M is a Maxwellian, (3.3.13)

we can write ( 3.3.12 ) as

LfL

(
f1

fL

)
(x̃1,v) = 0. (3.3.14)

The kernel property of LM implies that f1
fL

must be a linear combination of collision invariants

1, v, |v|2 and we may write

f1(x̃1,v) = fL(v)
(
a(x̃1) + b(x̃1) · v + c(x̃1)|v|2

)
, (3.3.15)

where a, b and c are functions of x1 only. Together with (  3.3.11 ), we have

f(x̃1,v) = fL(v)(1 + εa(x̃1) + εb(x̃1) · v + εc(x̃1)|v|2) + O(ε2). (3.3.16)

Therefore, up to order O(ε), the solution f(x̃1,v) is a low rank separated function in x̃1 and

v.

We mention that the derivation of O(ε) term does not require specific properties of the

collision kernel B. One can continue this process to derive O(ε2) term, which is a low rank

function as well and depends on the kernel B, see [ 67 ] for details.

3.3.2 Strong shock wave: ML → ∞

When ML is very large, a strong shock wave will develop and one cannot hope for any

asymptotic expansion as in the previous subsection. Over the years, people have tried to

find various approximations to the solution in this regime and it turns out many heuristic

solutions match well with the experiments, yet are low rank [ 2 ], [  68 ]. Here we present

one such approximation due to Mott-Smith, who obtained the first solution of Boltzmann’s

equation for the shock structure problem in 1951. More sophisticated approximations exist

but they more or less follow a similar idea as Mott-Smith.
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The starting point is a bimodal distribution (and low rank) approximation of f as

f(x1,v) = a1(x1)fL(v) + a2(x1)fR(v). (3.3.17)

To satisfy the Rankine-Hugoniot equations, we must have a1(x1) + a2(x1) ≡ 1. We thus

write a(x1) = a1(x1) and a2(x1) = 1 − a(x1). In order to determine a(x1), one additional

condition is needed. The simplest way is to enforce the moment equation by multiplying

( 3.3.1 ) by
∫

· v2
1 dv: ∫

v3
1∂x1f dv =

∫
v2

1Q(f, f) dv, (3.3.18)

which reduces to

a′(x1)
(
ρLuL(u2

L + 3TL) − ρRuR(u2
R + 3TR)

)
= αa(x1)(1 − a(x1)), (3.3.19)

with

α =
∫
v2

1 (Q(fL, fR) + Q(fR, fL)) dv. (3.3.20)

Using ( 3.3.4 ), ( 3.3.19 ) can be further simplified to

(d− 1)ρLuL(TL − TR)a′(x1) = −αa(x1)(1 − a(x1)). (3.3.21)

This equation easily integrates to

a(x1) = 1
exp(βx1) + 1 , β = α

(dv − 1)ρLuL(TL − TR) . (3.3.22)

Therefore, we have found a closed form solution in the form of (  3.3.17 ). Note that to

evaluate α, we need to make use of specific properties of the collision kernel B. Accordingly,

we can see that the spatial change in ρ across the shock wave increases with increasing Mach

number ML of the upstream:

ρ(x1)
ρL

=
1 + (dv+1)M2

L

M2
L+dv

exp(βx1)
1 + exp(βx1)

. (3.3.23)
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3.4 Numerical examples

In this section, we evaluate the accuracy and efficiency of the proposed dynamical low

rank method by several classical benchmark tests in rarefied gas dynamics, including normal

shock wave (1D), Fourier flow (1D), lid driven cavity flow (2D), and thermally driven cavity

flow (2D). All these examples concern the steady-state solution of the Boltzmann equation

and we use the first order method in both time and space as described in Section  3.1 , and

Fourier spectral method for 2D Maxwell molecules [ 30 ] to evaluate the collision operator.

The results are compared with full tensor method using the same discretization.

3.4.1 Convergence criterion

Unlike time dependent problems, we need a proper stopping criterion for solving the

steady state solutions.

For the full tensor method, we define the error as

errfull tensor = ‖fn+1
full tensor − fnfull tensor‖L2 =

〈
fn+1

full tensor − fnfull tensor, f
n+1
full tensor − fnfull tensor

〉 1
2

x,v
.

(3.4.1)

For the low rank method, we define the error similarly as

errlow rank = ‖fn+1
low rank − fnlow rank‖L2 =

〈
fn+1

low rank − fnlow rank, f
n+1
low rank − fnlow rank

〉 1
2

x,v
, (3.4.2)

where fnlow rank = ∑r
i,j=1 X

n
i S

n
ijV

n
j . Rather than reconstructing fnlow rank, the above error term

can be broke into three pieces:

fn+1
low rank − fnlow rank =

r∑
i,j=1

Xn+1
i Sn+1

ij V n+1
j −

r∑
i,j=1

Xn
i S

n
ijV

n
j

=
r∑

j=1

(
Kn+1

j −Kn
j

)
V n

j +
r∑

i,j=1
Xn+1

i

(
S

(2)
ij − S

(1)
ij

)
V n

j +
r∑

i=1
Xn+1

i

(
Ln+1

i − Lni
)

:=
r∑

j=1
∆KjV

n
j +

r∑
i,j=1

Xn+1
i ∆SijV

n
j +

r∑
i=1

Xn+1
i ∆Li

(3.4.3)
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where the notation follows Section  3.1.4 . By orthogonality of {Xi}1≤i≤r and {Vj}1≤j≤r, (  3.4.2 )

can be simplified as

err2
low rank =

〈
fn+1

low rank − fnlow rank, f
n+1
low rank − fnlow rank

〉
x,v

=
r∑

j=1
〈∆Kj,∆Kj〉x +

r∑
i,j=1

∆S2
ij +

r∑
i=1

〈∆Li,∆Li〉v + I + II + III,
(3.4.4)

where I, II and III are cross terms:

I = 2
r∑

i,j=1

〈
∆Kj, X

n+1
i

〉
x

∆Sij.

II = 2
r∑

i,j=1

〈
∆Li, V

n
j

〉
v

∆Sij.

III = 2
r∑

i,j=1

〈
∆Kj, X

n+1
i

〉
x

·
〈
∆Li, V

n
j

〉
v
.

(3.4.5)

We emphasize that it is crucial to evaluate errlow rank using (  3.4.4 )-( 3.4.5 ), since the cost of

reconstructing fnlow rank is O(r2Ndx
x Ndv

v ) which is comparable to a full tensor method.

In general, we set a fixed convergence tolerance res_tol and terminate the time iteration

whenever errlow rank, errfull tensor ≤ res_tol for both the full tensor method and low rank

method.

For the adaptive low rank method discussed in Section  3.2 , we have

|errlow rank − errada
low rank| ≤ ‖f̄n+1

low rank − fn+1
low rank‖L2 ≤ (r − r′) 1

2 · drop_tol, (3.4.6)

where errada
low rank = ‖f̄n+1

low rank − fnlow rank‖L2 , f̄n+1
low rank is the solution at the end of time step tn

after adding and removing basis. We dynamically set drop_tol = c · errada
low rank and control

errada
low rank through

1
1 + c(r − r′) 1

2
errlow rank ≤ errada

low rank ≤ 1
1 − c(r − r′) 1

2
errlow rank. (3.4.7)

In the following tests, we set c = 0.2 and apply the adaptive dynamical low rank method

with convergence criterion errada
low rank ≤ res_tol.
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3.4.2 Normal shock wave

We first consider the normal shock problem (  3.3.1 )-( 3.3.2 ) with several different Mach

numbers.

The spatial domain is chosen as x1 ∈ [ − 30, 30] with Nx = 1000. The velocity domain is

(v1, v2) ∈ [ − Lv, Lv]2.

For different Mach number ML, the initial condition is chosen as

α = 0.5, β = 0

ρ0(x) = tanh(α(x− β)) + 1
2(ρR − ρL) + ρL,

T0(x) = tanh(α(x− β)) + 1
2(TR − TL) + TL,

u0(x) =
(

tanh(α(x− β)) + 1
2(uR − uL) + uL, 0

)
,

and
γ = 2,

(ρL, ρR) = (1, (γ + 1)M2
L

(γ − 1)M2
L + 2),

(uL, uR) = (√γML,
ρLuL
ρR

),

(TL, TR) = (1, 2γM2
L − (γ − 1)

(γ + 1)ρR
).

When showing the numerical results, we are mainly interested in the macroscopic quan-

tities density ρ(x), bulk velocity v(x) (in first dimension) and temperature T (x). Their

normalized values will be presented, which are defined by

ρ̂(x) = ρ(x) − ρL
ρR − ρL

, v̂(x) = v(x) − uR
uL − uR

, T̂ (x) = T (x) − TL
TR − TL

.

Weak shock wave: Mach 1.4

In this subsection we consider Mach number to be ML = 1.4 and set Nv = 32, Lv = 13.11.

We set the reference solution fref as the solution from full grid method with convergence
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criterion res_tol = 4.0e − 10. To compare the efficiency and accuracy of the adaptive low

rank method, we vary convergence criterion res_tol and compare the L2 error with reference

solution as ‖fref − ftest‖L2 where ftest is the solution from either the full grid method or the

low rank method. At the same time, we record the computational time needed for both

methods to reach the same convergence criterion as well.

From Figure  3.1 , we can see that low rank method can achieve the same accuracy

much more efficiently compared to the full grid method. In Figure  3.2 , we tracked the

rank evolution profile and normalized macroscopic quantities under convergence criterion

res_tol = 3.0e − 7. For low rank method, the numerical rank grows slowly as time evolves

and is stabilized to 16 before reaching convergence criterion. Furthermore, both method

match well with the reference solution.
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Figure 3.1. Normal shock wave (Mach 1.4): L2 with reference solution fref
(Left) and computational time in seconds (Right) for both full grid and low
rank method under the same convergence criterion res_tol.

Strong shock wave: Mach 3.8 & Mach 6.5

In this subsection we consider the strong shock wave problems with two different large

Mach numbers. For both cases, we consider the same convergence criterion res_tol =

4.6e − 7.
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Figure 3.2. Normal shock wave (Mach 1.4): Rank evolution profile of
low rank method (Left); Normalized density, bulk velocity and temperature
(Right) profile of reference (res_tol = 4.0e − 10), full grid and low rank
method (res_tol = 3.0e − 7).
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For case ML = 3.8, we set Nv = 32 and , Lv = 20.97. We need computational time 18540

seconds for full grid method and 7556 seconds for low rank methods to reach convergence

criterion. For case ML = 6.5, we set Nv = 48 and Lv = 34.08. We need computational time

44379 seconds for full grid method and 16157 seconds for low rank methods to reach conver-

gence criterion. In Figure  3.3 , we track the rank evolution profile as well as the normalized

macroscopic quantities. The numerical rank for high Mach number shock wave behaves

similarly as the weak shock wave case, except that the growing is more rapidly. A similar

observation can be obtained that in both cases that the numerical ranks are stabilized before

reaching convergence criterion. We also obtain good matches in the normalized macroscopic

quantities profile plot.

3.4.3 Fourier flow

In the following, we will study the performance of our method with diffusive Maxwell

boundary condition. We consider a Fourier heat transfer problem and the spatial domain is

1D where x ∈ [0, 2] and velocity domain is 2D where (v1, v2) ∈ [ −Lv, Lv]2 where Lv = 7.86.

We set Nx = 200 and Nv = 32 in each velocity dimension. For initial condition, we consider

a spatially homogeneous Maxwellian with ρ0(x) = 1, u0(x) = (0, 0) and T0(x) = 1. The

diffusive Maxwell boundary condition is assumed at x = 0 and x = 2 with wall quantities

uw = (0, 0), Tw = 1 at x = 0 and uw = (0, 0), Tw = 1.2 at x = 2. The convergence criterion

is res_tol = 2.0e − 7 for both full grid and low rank methods. For full grid method, we

need 925 seconds to reach convergence criterion while for low rank method, we only need

509 seconds. From the rank evolution profile in Figure  3.4 , the numerical rank is stabilized

to 11 in a short time. We also plot the temperature profile as in Figure  3.4 and we can see

that both methods match well.

3.4.4 Lid driven cavity flow

We next consider the 2D lid driven cavity flow problem to study the performance of

our adaptive low rank method and the rank dependency. The spatial domain is rectangular

(x, y) ∈ [0, 0.5]2 and velocity domain is (v1, v2) ∈ [ − Lv, Lv]2 where Lv = 7.86. We set
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Figure 3.3. Normal shock wave (Mach 3.8 & Mach 6.5) Rank evolution
profile of low rank method with Mach 3.8 (Top Left) and Mach 6.5 (Top
Right); Normalized density, bulk velocity and temperature profile of full grid
and low rank method (res_tol = 4.6e − 7) with Mach 3.8 (Bottom Left) and
Mach 6.5 (Bottom Right).
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Nx = 100 in each spatial dimension and Nv = 32 in each velocity dimension. For initial

condition, we consider a spatially homogeneous Maxwellian with ρ0(x) = 1, u0(x) = (1, 1)

and T0(x) = 1. The diffusive Maxwell boundary condition is assumed at boundaries of

[0, 0.5]2. We set the wall temperatures at y = 0 with uw = (1, 0), Tw = 1 and while at

x = 0, x = 0.5 and y = 0, we all set uw = (0, 0), Tw,b = 1. The convergence criterion

is res_tol = 2.0e − 7. For full grid method, we need 29043 seconds to reach convergence

criterion and for low rank methods, we only need 8323 seconds. We compare the temperature

and velocity profile in Figure  3.5 and a well match is obtained. We track the rank of low

rank method and compare the error decaying behavior of both methods as in Figure  3.6 . We

can see for low rank method, as errada
low rank is decreasing, the rank needed is increasing more

rapidly than previous tests. Rank stabilization is not observed here. When time t = 1.5, rank

needed for low rank method is as many as 100. However, low rank method can efficiently

evolve distribution to a relatively low accuracy solution efficiently. From the error decaying

behavior, we can see both error behaves similarly.

3.4.5 Thermally driven cavity flow

We now consider the effect of flow induced due to thermal gradients in 2D with the

thermally driven cavity flow problem. The spatial domain is rectangular (x, y) ∈ [0, 2]2

and velocity domain is (v1, v2) ∈ [ − Lv, Lv]2 where Lv = 6.55. We set Nx = 100 in each

spatial dimension and Nv = 32 in each velocity dimension. For initial condition, we consider

a spatially homogeneous Maxwellian with ρ0(x) = 1, u0(x) = (0, 0) and T0(x) = 1. The

diffusive Maxwell boundary condition is assumed at boundaries of [0, 2]2. We set the wall

temperatures at y = 0, y = 2 with uw = (0, 0) and that Tw follows a linear function ranging

from 1 to 1.2 as in Figure  3.7 . At x = 0 and x = 2, we set uw = (0, 0), Tw = 1. The

convergence criterion is res_tol = 2.0e − 7. For full grid method, we need 19011 seconds to

reach convergence criterion and for low rank methods, we only need 7112 seconds. We plot

the temperature and velocity profile for both methods as in Figure  3.8 where we can see a

good match. We track the rank trajectory of low rank method and the error decay profile

as in Figure  3.9 . Different from the lid driven cavity flow problem, the rank increases more
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Figure 3.5. Lid driven cavity flow: Temperature profile of full grid (Top Left)
and low rank (Top Right); x-component velocity of full grid (Middle Left) and
low rank (Middle Right); y-component velocity of full grid (Bottom Left) and
low rank (Bottom Right) method. Convergence criterion is res_tol = 2.0e−7
for both methods
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Figure 3.6. Lid driven cavity flow: Rank evolution profile of low rank method
(Left); Error decaying behaviors of full grid and low rank method (Right)

Figure 3.7. Thermally driven cavity flow: Wall temperature profile at y = 0 and y = 2
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rapidly and when reaching convergence criterion, rank is increasing to as many as 120. We

emphasize that for this problem, the current convergence criterion res_tol may not be small

enough to get a highly accurate solution because of the small-scale induced velocity. A more

efficient way would to be first use the low rank method to get an approximated solution and

then turn to full grid method to further increase the accuracy of the solution.
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Figure 3.8. Thermally driven cavity flow: Temperature profile of full grid
(Top Left) and low rank (Top Right) method; x-component velocity of full
grid (Middle Left) and low rank (Middle Right); y-component velocity of full
grid (Bottom Left) and low rank (Bottom Right). Convergence criterion is
res_tol = 2.0e − 7 for both methods.
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Figure 3.9. Thermally driven cavity flow: Rank evolution profile of low rank
method (Left); error decaying behaviors of full grid and low rank method
(Right)
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3.5 Conclusions of this chapter

We have introduced an adaptive low rank method in Boltzmann equations for compu-

tation of steady state solutions. This method employed the fast Fourier method and the

dynamic low rank method to obtain computational efficiency. Unlike the fixed-rank low

rank method, this method can adaptively control the computational rank by monitoring

residual errors of current solutions. A series of benchmark tests are conducted to show the

efficiency and accuracy of the proposed method. Some interesting future work would be to

analyze the theoretical rank dependency of general Boltzmann equations.
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4. UNCERTAINTY QUANTIFICATION FOR KINETIC BGK

EQUATION USING VARIANCE REDUCED MONTE CARLO

METHODS

It remains to discuss the kinetic equations with uncertainties. We focus on the BGK model

( 1.0.6 ) of the Boltzmann equation with uncertainties. We propose an efficient control variate

multilevel Monte Carlo method that can effectively reduce the variance of approximation.

The rest of this chapter is structured as follows. In the next section, we introduce the

BGK equation with random inputs and establish the well-posedness of the equation. The

Monte Carlo methods and analysis are presented in Section  4.2 , whereas in Section  4.3 we

discuss their multilevel extension in a standard and control variate setting. In Section  4.4 we

show the numerical results obtained with standard MC, MLMC and control variate MLMC

methods. Finally some conclusions are drawn in Section  4.5 . In a separate Section  4.A we

report the details of the dimension reduction method and the numerical scheme adopted to

solve the deterministic BGK equation. Most of the results in this chapter are extracted from

[ 69 ].

4.1 The BGK equation with random inputs

In this section we formulate systematically the BGK equation with random inputs and

establish the well-posedness of the equation by extending the results in [ 50 ], [ 70 ].

4.1.1 Setup of the problem

In the BGK equation, due to uncertain initial- or boundary- conditions, the resulting

solution f would be a random variable taking values in the functional space, where the

solution of the BGK equation ( 1.0.6 ) lies in. In most circumstances, it is the physical

observables or macroscopic quantities (such as ρ, U , T ) at certain time that are of interest,

hence we will mainly consider random variables taking values in L1(Ωx), where Ωx is the

physical domain. Following the discussion in [ 37 ], we first present some basic concepts from

probability theory and functional analysis.
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Let (Ω,F ,P) be a probability space with Ω being the set of elementary events, F the

corresponding σ-algebra, and P the probability measure mapping Ω into [0, 1] such that

P(Ω) = 1. A random variable taking values in L1(Ωx), a separable Banach space, is defined

to be a mapping X: Ω → L1(Ωx) such that for any A ∈ G , the preimage X−1(A) ∈ F ,

where X−1(A) = {w ∈ Ω : X(w) ∈ A} and (L1(Ωx),G ) is a measurable space.

To define the expectation and variance of random variables in L1(Ωx), we need the con-

cept of Bochner integral by extending the Lebesgue integral theory. The strong measurable

mapping X : Ω → L1(Ωx) is Bochner integrable if, for any probability measure P on the

measurable space (Ω,F ), ∫
Ω
‖X(w)‖L1(Ωx) dP(w) < ∞. (4.1.1)

Moreover, any Bochner integrable random variable X : Ω → L1(Ωx) can be approximated

by a sequence of simple random variables {Xn}n∈N defined as follows,

Xn =
N∑

i=1
xn,iχAn,i , An,i ∈ F , xn,i ∈ L1(Ωx), N < ∞. (4.1.2)

To get moments like expectation or central moments like variance, similar as the derivation

of the Lebesgue integral, the Bochner integral is defined by taking the limit of sequences of

simple random variables {Xn(w)}, for example, the k-th order moments is defined as

E[Xk] :=
∫

Ω
Xk(w) dP(w) = lim

n→∞

∫
Ω
Xk
n(w) dP(w), (4.1.3)

and the variance is defined as

V[X] := E[(X − E[X])2] =
∫

Ω
(X(w) − E[X])2 dP(w) = E[X2] − (E[X])2. (4.1.4)

For the error analysis, we need to introduce the Banach space Lp(Ω,F ,P;L1(Ωx)) with the

norm

‖X‖Lp(Ω;L1(Ωx)) := (E[‖X‖pL1(Ωx)])
1
p < ∞, 1 ≤ p < ∞; (4.1.5)
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and L∞(Ω,F ,P;L1(Ωx)) with the norm

‖X‖L∞(Ω;L1(Ωx)) := ess supw∈Ω‖X‖L1(Ωx). (4.1.6)

We consider the real physical case where dx = dv = 1 and the BGK equation with random

inputs hence reads

∂tf(w; t,x,v) + v · ∇xf(w; t,x,v) = 1
ε

(M[ρ,U , T ](w; t,x,v) − f(w; t,x,v)),

w ∈ Ω, x ∈ Ωx ⊂ R3, v ∈ R3, t > 0,
(4.1.7)

where

M[ρ,U , T ](w; t,x,v) = ρ(w; t,x)
(2πT (w; t,x)) 3

2
exp

(
−|v − U(w; t,x)|2

2T (w; t,x)

)
, (4.1.8)

with

ρ(w; t,x) =
∫
R3
f(w; t,x,v) dv, U(w; t,x) = 1

ρ(w; t,x)

∫
R3

vf(w; t,x,v) dv,

T (w; t,x) = 1
3ρ(w; t,x)

∫
R3

|v − U(w; t,x)|2f(w; t,x,v) dv.
(4.1.9)

The initial condition is given as

f(w; 0,x,v) = f0(w; x,v), w ∈ Ω, x ∈ Ωx ⊂ R3, v ∈ R3. (4.1.10)

For the boundary condition, we consider one of the following:

• periodic boundary: f(w; t,x + a,v) = f(w; t,x,v) for x ∈ ∂Ωx and some a ∈ R3;

• Dirichlet boundary: f(w; t,x,v) = g(w; t,x,v) for x ∈ ∂Ωx;

• purely diffusive Maxwell boundary: for x ∈ ∂Ωx,

f(w; t,x,v) = M[ρw, 0, Tw](w; t,x,v) = Mw(w; t,x,v), v · n < 0, (4.1.11)
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where n is the outward normal of ∂Ωx and Mw is given by

Mw(w; t,x,v) = ρw(w; t,x)
(2πTw(w; t,x)) 3

2
exp

(
− |v|2

2Tw(w; t,x)

)
, (4.1.12)

where Tw(w; t,x) is the wall temperature and ρw(w; t,x) is chosen such that

∫
v·n>0

v · n f(w; t,x,v) dv = −
∫

v·n<0
v · n Mw(w; t,x,v) dv. (4.1.13)

4.1.2 Well-posedness of the equation and some estimates of the macroscopic
quantities

In the following, we establish the well-posedness of the BGK equation ( 4.1.7 ) with random

inputs. We also obtain some estimates for the macroscopic quantities ρ, U and T . For

simplicity, we assume the periodic boundary condition and consider the uncertainty only

arising in the initial condition f0.

First of all, some general estimates on the macroscopic quantities can be obtained point-

wise in w following [ 50 ] for the deterministic BGK equation.

Proposition 4.1.1 ([ 50 ]). Suppose that f(w; t,x,v) ≥ 0. Define ρ(w; t,x), U (w; t,x),

T (w; t,x) according to ( 4.1.9 ). Moreover, set

Nq(f)(w; t) := sup
x

sup
v
f(w; t,x,v)|v|q, q ≥ 0. (4.1.14)

Then the following estimates hold:

ρ(w; t,x)
T (w; t,x)

3
2

≤ C0N0(f), (4.1.15)

ρ(w; t,x)(3T (w; t,x) + |U(w; t,x)|2)
q−3

2 ≤ CqNq(f), for q > 5, (4.1.16)

where C0, Cq are some positive constants.

Based on the above estimates, one can obtain the existence and uniqueness of the solution

to ( 4.1.7 ) also following [ 50 ] in a point-wise manner in w.
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Theorem 4.1.1 ([ 50 ]). Set

Nq(f)(w; t) := sup
x

sup
v
f(w; t,x,v)(1 + |v|q), (4.1.17)

then, by definition, Nq(f) ≤ Nq(f). Suppose that the initial condition f0(w; x,v) ≥ 0 and

that for some q > 5,

Nq(f0)(w) = sup
x

sup
v
f0(w; x,v)(1 + |v|q),

sup
w

Nq(f0)(w) ≤ A0 < ∞,
(4.1.18)

and
γ(w; t,x) :=

∫
R3

f0(w; x − vt,v) dv,

inf
w

inf
x

inf
t
γ(w; t,x) ≥ A1 > 0,

(4.1.19)

then, for fixed Knudsen number ε > 0, there exists a unique mild solution of the initial-value

problem ( 4.1.7 )-( 4.1.10 ) with periodic boundary condition.

Moreover, for all t > 0, the following bounds hold:

N0(f)(w; t) ≤ A0 exp
(
C0

ε
t
)
, Nq(f)(w; t) ≤ A0 exp

(
Cq
ε
t
)
, (4.1.20)

inf
x
ρ(w; t,x) ≥ A1 exp

(
− t

ε

)
, (4.1.21)

where C0 and Cq are the same constants appearing in Proposition  4.1.1 .

As a direct consequence of Proposition  4.1.1 and Theorem  4.1.1 , we have the following

corollary on the upper bounds of the macroscopic quantities.

Corollary 4.1.2. Suppose that the conditions in Theorem  4.1.1 hold. We also assume the

Knudsen number ε ≥ ε0 > 0. Then for all t > 0, the following bounds hold:

sup
w

sup
x

{ρ(w; t,x), |U(w; t,x)|, T (w; t,x)} ≤ C1 exp
(
C2

ε0
t
)
, (4.1.22)
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where C1 and C2 are positive constants depending only on A0, A1, C0 and Cq.

Proof. By ( 4.1.16 ), ( 4.1.20 ) and ( 4.1.21 ), we have

(3T (w; t,x) + |U(w; t,x)|2)
q−3

2 ≤ CqNq(f)
ρ(w; t,x) ≤ CqA0

A1
exp

(
Cq + 1
ε

t
)
. (4.1.23)

Hence

T (w; t,x)≤ 1
3

(
CqA0

A1

) 2
q−3

exp
(

2(Cq + 1)
(q − 3)ε t

)
, |U(w, t,x)| ≤

(
CqA0

A1

) 1
q−3

exp
(
Cq + 1

(q − 3)εt
)
.

(4.1.24)

By ( 4.1.15 ) and ( 4.1.24 ), we have

ρ(w; t,x) ≤ C0N0(f)T (w; t,x) 3
2

≤ 3− 3
2C0C

3
q−3
q A

q
q−3
0 A

− 3
q−3

1 exp
(

3(Cq + 1) + (q − 3)C0

(q − 3)ε t

)
.

(4.1.25)

4.2 Standard Monte Carlo method

In this section, we describe the basic Monte Carlo sampling method to solve the BGK

equation (  4.1.7 ) and establish some error estimates. For simplicity, we will consider that

the uncertainty only comes from the initial condition. The case for the random boundary

condition is similar.

4.2.1 Monte Carlo method

Suppose we generate M independent and identically distributed (i.i.d.) random samples

f i
0, i = 1, . . . ,M, according to the random initial condition f0(w; x,v). Then each f i

0(w; x,v)
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will yield a unique analytical solution to (  4.1.7 ) at time t, denoted by f i(w; t,x,v). From

f i(w; t,x,v), we can easily compute

ρi(w; t,x) =
∫
R3
f i(w; t,x,v) dv, mi(w; t,x) =

∫
R3

vf i(w; t,x,v) dv,

Ei(w; t,x) =
∫
R3

|v|2

2 f i(w; t,x,v) dv,
(4.2.1)

then U i and T i are given by

U i(w; t,x) = mi(w; t,x)
ρi(w; t,x) , T i(w; t,x) = 2ρi(w; t,x)Ei(w; t,x) − |mi(w; t,x)|2

3(ρi(w; t,x))2 . (4.2.2)

Since it is the macroscopic quantities we are interested in, in the following, without further

notice we will use a single variable q to denote ρ, |U | or T .

Given the samples qi, i = 1, . . . ,M , the MC estimate of the expectation E[q(w; t,x)] is

given by

E[q(w; t,x)] ≈ EM [q(w; t,x)] := 1
M

M∑
i=1

qi(w; t,x). (4.2.3)

To estimate the error between E[q(w; t,x)] and EM [q(w; t,x)], we need the following lemma.

Lemma 4.2.1. For every finite sequence {Yj}Mj=1 of independent random variables with zero

mean in L2(Ω;L2(Ωx)),

∥∥∥∥ M∑
j=1

Yj

∥∥∥∥2

L2(Ω;L2(Ωx))
=

M∑
j=1

‖Yj‖2
L2(Ω;L2(Ωx)). (4.2.4)

Proof. From independence of {Yj}Mj=1 and that E[Yj] = 0,

∥∥∥∥ M∑
j=1

Yj

∥∥∥∥2

L2(Ω;L2(Ωx))
=
∫

Ωx
E[(

M∑
j=1

Yj)2] dx =
∫
D
V[

M∑
j=1

Yj] dx

=
∫
D

M∑
j=1

V[Yj] dx =
M∑
j=1

∫
D
E[Y 2

j ] dx =
M∑
j=1

‖Yj‖2
L2(Ω;L2(Ωx)).

(4.2.5)

We have the following consistency theorem.
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Theorem 4.2.2. For any M ∈ N+, at time t = t1,

‖E[q(w; t1,x)] − EM [q(w; t1,x)]‖L2(Ω;L1(Ωx)) ≤ M− 1
2 |Ωx|

1
2 ‖V[q(w; t1,x)]‖

1
2
L1(Ωx). (4.2.6)

Proof. We interpret the M samples {f i
0}Mi=1 as unique realizations of M independent samples

of f0 in the probability space (Ω,F ,P). In other words, {f i
0}Mi=1 are i.i.d. copies of f0 ∈

L1(Ωx ×R3). As a result, the corresponding copies of macroscopic quantities {qi(w; t1,x)}Mi=1

derived from the initial data {f i
0}Mi=1 are also independent in L2(Ω;L1(Ωx)).

Denote E[q(w; t1,x)] − qi(w; t1,x) by ∆qi(w, t1,x), then

E[∆qi(w, t1,x)] = 0, (4.2.7)

and

‖E[q(w; t1,x)] − EM [q(w; t1,x)]‖L2(Ω;L1(Ωx)) = M−1
∥∥∥∥ M∑

i=1
∆qi(w, t1,x)

∥∥∥∥
L2(Ω;L1(Ωx))

. (4.2.8)

Using the boundedness of domain Ωx,

∥∥∥∥ M∑
i=1

∆qi(w, t1,x)
∥∥∥∥2

L1(Ωx)
≤ |Ωx|

∥∥∥∥ M∑
i=1

∆qi(w, t1,x)
∥∥∥∥2

L2(Ωx)
. (4.2.9)

Taking the expectation, noting that ∆qi are independent and using Lemma  4.2.1 , we have

∥∥∥∥ M∑
i=1

∆qi(w, t1,x)
∥∥∥∥
L2(Ω;L1(Ωx))

≤ |Ωx|
1
2

∥∥∥∥ M∑
i=1

∆qi(w, t, x1)
∥∥∥∥
L2(Ω;L2(Ωx))

=|Ωx|
1
2

√√√√ M∑
i=1

‖∆qi(w, t1,x)‖2
L2(Ω;L2(Ωx)) = |Ωx|

1
2M

1
2 ‖∆qi(w, t1,x)‖L2(Ω;L2(Ωx))

=|Ωx|
1
2M

1
2 ‖V[q(w; t1,x)]‖

1
2
L1(Ωx).

(4.2.10)

As a direct result of Theorem  4.2.2 and Corollary  4.1.2 , we have the following convergence

theorem.
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Theorem 4.2.3. Under assumptions of Theorem  4.1.1 and Corollary  4.1.2 , for 0 < t1 < ∞,

as M → ∞, the MC estimate EM [q(w; t1,x)] converges in L2(Ω;L1(Ωx)) to E[q(w; t1,x)].

Furthermore, for any M ∈ N+, there holds the error bound

‖E[q(w; t1,x)] − EM [q(w; t1,x)]‖L2(Ω;L1(Ωx)) ≤ C1|Ωx| exp
(
C2

ε0
t1

)
M− 1

2 . (4.2.11)

Proof. It only needs to note that

‖V[q(w; t1,x)]‖
1
2
L1(Ωx) ≤ ‖E[q2(w; t1,x)]‖

1
2
L1(Ωx) ≤ |Ωx|

1
2C1 exp

(
C2

ε0
t1

)
. (4.2.12)

4.2.2 Monte Carlo method with fully discrete scheme

To complete the error analysis, we need to consider the Monte Carlo method coupled

with the fully discrete scheme for the BGK equation, which includes discretization in time,

physical space and velocity space. The details are given in the  4.A . Simply speaking,

we are using Gauss quadrature in the velocity space, second order IMEX-RK scheme for

time discretization, and second order MUSCL finite volume scheme for spatial discretization

(under the hyperbolic CFL condition ∆t ≤ C∆x). Overall, this leads to a second order

positivity-preserving and asymptotic-preserving scheme for the deterministic BGK equation.

In the following, we assume that the velocity discretization is accurate enough and ignore

the work and error in velocity space. It is then reasonable to assume the numerical solution

q∆x,∆t(w; t1,x), computed with mesh size ∆x and time step ∆t corresponding to initial data

f0(w; x,v) up to time t1, satisfies the following error estimate point-wise in w:

Assumption 4.2.1. For fixed time t1 > 0, under the hyperbolic CFL condition ∆t ≤ C∆x,

we have

‖q(w; t1,x) − q∆x,∆t(w; t1,x)‖L1(Ωx) ≤ C(w)
(
(∆x)2 + (∆t)2

)
≤ Cw(∆x)2, (4.2.13)

where Cw is some positive constant.
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The MC estimate of the expectation E[q(w; t,x)] is now given by

E[q(w; t,x)] ≈ EM [q∆x,∆t(w; t,x)] := 1
M

M∑
i=1

qi
∆x,∆t(w; t,x). (4.2.14)

We have

Theorem 4.2.4. For any M ∈ N+, at time t = t1,

‖E[q(w; t1,x)]−EM [q∆x,∆t(w; t1,x)]‖L2(Ω;L1(ΩxΩx)) ≤ M− 1
2 |Ωx|

1
2 ‖V[q(w; t1,x)]‖

1
2
L1(Ωx)+Cw(∆x)2.

(4.2.15)

Proof.

‖E[q(w; t1,x)] − EM [q∆x,∆t(w; t1,x)]‖L2(Ω;L1(Ωx)) ≤ ‖E[q] − EM [q]‖L2(Ω;L1(Ωx))

+ ‖EM [q] − EM [q∆x,∆t]‖L2(Ω;L1(Ωx)).

(4.2.16)

It is enough to apply Theorem  4.2.2 and Assumption  4.2.1 .

The following corollary is a direct result of Theorem  4.2.4 .

Corollary 4.2.5. Under assumptions of Theorem  4.1.1 and Corollary  4.1.2 , for 0 < t1 <

∞, as M → ∞ and ∆x, ∆t → 0, the MC estimate EM [q∆x,∆t(w; t1,x)] converges in

L2(Ω;L1(Ωx)) to E[q(w; t1,x)]. Furthermore, for any M ∈ N+, there holds the error bound:

‖E[q(w; t1,x)] − EM [q∆x,∆t(w; t1,x)]‖L2(Ω;L1(Ωx)) ≤ C1|Ωx| exp
(
C2

ε0
t1

)
M− 1

2 + Cw(∆x)2.

(4.2.17)

4.3 Control variate multilevel Monte Carlo method

In this section we first introduce the multilevel Monte Carlo method and then follow-

ing [  71 ] we discuss the use of control variate techniques to optimize its variance reduction

properties locally using two subsequent levels or globally among all levels.
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4.3.1 Multilevel Monte Carlo method

The MLMC method is defined as a multilevel discretization in x and t with a level l

dependent number of samples Ml. Suppose we have a nested triangulation {Tl}Ll=1 of the

spatial domain Ωx (L ∈ N+ is the number of levels) such that the mesh size ∆xl at level l

satisfies

∆xl = sup{diam(K) : K ∈ Tl} ↘ as l ↗ . (4.3.1)

Set qi
∆x0,∆t0(w; t,x) := 0, then given a target level L of spatial resolution, the MLMC estimate

of the expectation E[q(w; t,x)] is given as follows

E[q(w; t,x)] ≈ EL[q∆xL,∆tL(w; t,x)]

:=
L∑
l=1

EMl

[
q∆xl,∆tl(w; t,x) − q∆xl−1,∆tl−1

(w; t,x)
]

=
L∑
l=1

Ml∑
i=1

1
Ml

[
qi

∆xl,∆tl(w; t,x) − qi
∆xl−1,∆tl−1

(w; t,x)
]
.

(4.3.2)

Hence what we really sample is the difference of solutions at two consecutive levels. At each

level l, we separately generate Ml i.i.d. samples f i
0, i = 1, . . . ,Ml, of the initial data f0 on

meshes ∆xl and ∆xl−1 respectively, and then use the fully discrete scheme for the BGK

equation ( 4.1.7 ) to advance solutions qi
∆xl,∆tl and qi

∆xl−1,∆tl−1
to a certain time t.

To simplify the notation, we set q∆x0,∆t0(w; t,x) := 0 and define the random variable

Yl := q∆xl,∆tl(w; t,x) − q∆xl−1,∆tl−1
(w; t,x), and the specific samples Y i

l := qi
∆xl,∆tl(w; t,x) −

qi
∆xl−1,∆tl−1

(w; t,x). We have the following consistency and convergence results for the esti-

mator ( 4.3.2 ).

Theorem 4.3.1. For any Ml ∈ N+, l = 1, . . . , L, at time t = t1,

‖E[q(w; t1,x)] − EL[q∆xL,∆tL(w; t1,x)]‖L2(Ω;L1(Ωx)) ≤ Cw(∆xL)2

+ |Ωx|
1
2

L∑
l=1

Ml
− 1

2 ‖V[Yl]‖
1
2
L1(Ωx).

(4.3.3)
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Proof.

‖E[q] − EL[q∆xL,∆tL ]‖L2(Ω;L1(Ωx)) = ‖E[q] −
L∑
l=1

EMl
[Yl]‖L2(Ω;L1(Ωx))

≤ ‖E[q] −
L∑
l=1

E[Yl]‖L2(Ω,L1(Ωx)) + ‖
L∑
l=1

EMl
[Yl] −

L∑
l=1

E[Yl]‖L2(Ω;L1(Ωx))

≤ ‖E[q] − E[q∆xL,∆tL ]‖L1(Ωx) + |Ωx|
1
2

L∑
l=1

‖EMl
[Yl] − E[Yl]‖L2(Ω;L2(Ωx))

= I + II.

(4.3.4)

For part I, Assumption  4.2.1 yields

I = ‖q(w; t1,x) − q∆xL,∆tL(w; t1,x)‖L1(Ω;L1(Ωx)) ≤ Cw(∆xL)2. (4.3.5)

For part II, using Lemma  4.2.1 ,

II = |Ωx|
1
2

L∑
l=1

Ml
− 1

2 ‖Y i
l − E[Yl]‖L2(Ω;L2(Ωx)) = |Ωx|

1
2

L∑
l=1

Ml
− 1

2 ‖V[Yl]‖
1
2
L1(Ωx). (4.3.6)

Theorem 4.3.2. Under the assumptions of Theorem  4.1.1 and Corollary  4.1.2 , for 0 < t1 <

∞, as Ml → ∞ and ∆x, ∆t → 0, the MLMC estimate EL[q∆xL,∆tL(w; t1,x)] converges in

L2(Ω;L1(Ωx)) to E[q(w; t1,x)]. Furthermore, there holds the error bound:

‖E[q(w; t1,x)] − EL[q∆xL,∆tL(w; t1,x)]‖L2(Ω;L1(Ωx))

≤ Cw(∆xL)2 +
(
Cw|Ωx|

1
2 (∆x1)2 + C1|Ωx|exp

(
C2

ε0
t1

))
M

− 1
2

1

+
L∑
l=2

Cw|Ωx|
1
2
(
(∆xl)2 + (∆xl−1)2

)
M

− 1
2

l .

(4.3.7)
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Proof. From ( 4.1.4 ), we can see that V[X] ≤ E[X2], then from Theorem  4.3.1 for l = 1,

‖Y i
1 − E[Y1]‖L2(Ω;L2(Ωx)) = ‖qi

∆x1,∆t1 − E[qi
∆x1,∆t1 ]‖L2(Ω;L2(Ωx))

≤ ‖qi
∆x1,∆t1‖L2(Ω;L2(Ωx))

≤ ‖qi
∆x1,∆t1 − qi‖L2(Ω;L2(Ωx)) + ‖qi‖L2(Ω;L2(Ωx))

≤ Cw(∆x1)2 + |Ωx|
1
2C1 exp

(
C2

ε0
t1

)
,

(4.3.8)

and similarly for l ≥ 2,

‖Y i
l − E[Yl]‖L2(Ω;L2(Ωx)) ≤ ‖Y i

l ‖L2(Ω;L2(Ωx))

= ‖qi
∆xl,∆tl − qi

∆xl−1,∆tl−1
‖L2(Ω;L2(Ωx))

≤ ‖qi
∆xl,∆tl − qi‖L2(Ω;L2(Ωx)) + ‖qi − qi

∆xl−1,∆tl−1
‖L2(Ω;L2(Ωx))

≤ Cw((∆xl)2 + (∆xl−1)2).

(4.3.9)

Remark 4.3.3. The summation term on the right hand side of ( 4.3.7 ) implies that, if

the mesh is refined by a factor of 2 as the level increases, then, to balance the errors in

different levels, the sample ratio across levels should be chosen as 24 = 16. Furthermore, it

should be noted that the above error estimate highly depends on the regularity of the solution

and is valid when the solution is smooth (typical when the BGK equation is in the kinetic

regime). When the solution contains discontinuities/shocks (typical when the BGK equation

is close to the fluid regime), it is well-known that the numerical scheme will not maintain

its original order. A second order scheme as we considered here will generally degenerate to

first order or even worse [  72 ]. Therefore, to balance the errors in different levels, the sample

ratio can be chosen smaller. Our numerical results in Section  4.4.2 (smooth solutions) and

Sections  4.4.3 - 4.4.4 (discontinuous solutions) indeed confirmed this prediction (the general

trend follows though the actual ratio value chosen may not be exactly the above predicted

number due to the non-negligible first two terms on the right hand side of ( 4.3.7 )).
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4.3.2 Quasi-optimal and optimal multilevel Monte Carlo method

In this section we generalize the previous MLMC method following [  71 ]. To start with,

take the 2 level MLMC method for example. Suppose we have a low fidelity (coarse mesh)

approximation q1 and a high fidelity (fine mesh) approximation q2, then the 2 level MLMC

method with control variate reads as follows

E[q] ≈ EM1 [λq1] + EM2 [q2 − λq1], (4.3.10)

where the multiplier λ has to be determined in order to minimize the overall variance V[q] =

λ2V[q1] + V[q2 − λq1]. It can be shown that for independent samples the optimal value of λ

is given by

λ = Cov[q1, q2]
2V[q1]

. (4.3.11)

When M2 � M1, the contribution from V[λq1] is negligible compared to V[q2 − λq1]. We

therefore can only focus on the minimization of the variance V[q1 − λq2]. In this case, the

optimal value of λ is given by

λ = Cov[q1, q2]
V[q1]

≈

M2∑
i=1

(qi
1 − q̄1)(qi

2 − q̄2)
M2∑
i=1

(qi
1 − q̄1)2

, (4.3.12)

where q̄1 = EM2 [q1], q̄2 = EM2 [q2] and in the above expression the covariance and variance

are estimated directly from the Monte Carlo samples.

Generally, suppose we have L levels of solutions {q∆xi,∆ti}i=1,...,L, from coarsest level

q∆x1,∆t1 to finest level q∆xL,∆tL . Then the MLMC method with control variates is given by

E[q(w; t,x)] ≈ EL
CV [q∆xL,∆tL ]

:=
L∏

i=1
λiEM1 [q∆x1,∆t1 ] +

L∑
l=2

L∏
i=l
λiEMl

[q∆xl,∆tl − λl−1q∆xl−1,∆tl−1 ].
(4.3.13)
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Note that {λl}Ll=1 here are the coefficients to be determined and λL = 1. If we only consider

the variance reduction for each pair of consecutive levels, then we can easily get the analogy

of ( 4.3.11 ) to estimate {λl}, which we refer to as the quasi-optimal MLMC method:

λl−1 =
Cov[q∆xl,∆tl , q∆xl−1,∆tl−1 ]

V[q∆xl−1,∆tl−1 ]
≈

Ml∑
i=1

(qi
∆xl,∆tl − q̄∆xl,∆tl)(qi

∆xl−1,∆tl−1
− q̄∆xl−1,∆tl−1)

Ml∑
i=1

(qi
∆xl−1,∆tl−1

− q̄∆xl−1,∆tl−1)2
,

(4.3.14)

where q̄∆xl,∆tl = EMl
[q∆xl,∆tl ].

However, if we focus on minimizing the overall variance of the estimator  4.3.13 and

assume that the levels are independent, then denoting

λ̂l =
L∏

i=l
λi, l = 1, . . . , L, (4.3.15)

the optimality conditions yield a tridiagonal system for λ̂l:

λ̂lV[q∆xl,∆tl ] − λ̂l+1
Ml

Ml +Ml+1
Cov[q∆xl+1,∆tl+1 , q∆xl,∆tl ]

− λ̂l−1
Ml+1

Ml +Ml+1
Cov[q∆xl−1,∆tl−1 , q∆xl,∆tl ] = 0, l = 1, . . ., L− 1,

(4.3.16)

where we assumed λ̂0 = 0, λ̂L = 1 and q∆x0,∆t0 = 0. A practical way to solve the above

tridiagonal system is to rewrite ( 4.3.16 ) in terms of original λi. For simplicity, we denote

V[q∆xl,∆tl ] by Vl and Cov[q∆xl+1,∆tl+1 , q∆xl,∆tl ] by Covl to get

λ1V1 − M1

M1 +M2
Cov1 = 0,

λ2V2 − M2

M2 +M3
Cov2 − λ1λ2

M3

M2 +M3
Cov1 = 0,

λ3V3 − M3

M3 +M4
Cov3 − λ2λ3

M4

M3 +M4
Cov2 = 0,

...

λL−1VL−1 − ML−1

ML−1 +ML

CovL−2 − λL−2λL−1
ML

ML−1 +ML

CovL−2 = 0,

(4.3.17)
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which can be easily solved by recursive substitution. This is what we refer to as the optimal

MLMC method.

Denote the correlation coefficient of q∆xl,∆tl and q∆xl+1,∆tl+1 by

rl =
Cov[q∆xl,∆tl , q∆xl+1,∆tl+1 ](
V[q∆xl+1,∆tl+1 ]V[q∆xl,∆tl ]

) 1
2
, (4.3.18)

we can prove the following consistency and convergence results for the estimator ( 4.3.13 ):

Theorem 4.3.4. For any Ml ∈ N+, l = 1, . . . , L, if {λl} are quasi-optimal and exact, i.e.,

λl =
Cov[q∆xl,∆tl , q∆xl+1,∆tl+1 ]

V[q∆xl,∆tl ]
, (4.3.19)

then at time t = t1,

‖E[q(w; t1,x)] − EL
CV [q∆xL,∆tL(w; t1,x)]‖L2(Ω;L1(Ωx))

≤ Cw(∆xL)2 + |Ωx|
1
2M1

− 1
2 λ̂1‖V[q∆x1,∆t1 ]‖

1
2
L1(Ωx)

+ |Ωx|
1
2

L∑
l=2

Ml
− 1

2 λ̂l(1 − r2
l−1)

1
2 ‖V[q∆xl,∆tl ]‖

1
2
L1(Ωx).

(4.3.20)

Proof. The proof is similar to Theorem  4.3.1 . All we need is to note that when λ is quasi-

optimal, we have for l ≥ 2,

V[q∆xl,∆tl − λl−1q∆xl−1,∆tl−1 ] = V[q∆xl,∆tl ] + λ2
l−1V[q∆xl−1,∆tl−1 ]

− 2λl−1Cov[q∆xl,∆tl , q∆xl−1,∆tl−1 ]

= (1 − r2
l−1)V[q∆xl,∆tl ].

(4.3.21)

Theorem 4.3.5. Under the assumptions of Theorem  4.1.1 and Corollary  4.1.2 , and if {λl}

are quasi-optimal and exact, we have for 0 < t1 < ∞, as Ml → ∞ and ∆x, ∆t → 0, the quasi-
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optimal MLMC estimate EL
CV [q∆xL,∆tL(w; t1,x)] converges in L2(Ω;L1(Ωx)) to E[q(w; t1,x)]

with the error bound

‖E[q(w; t1,x)] − EL
CV [q∆xL,∆tL(w; t1,x)]‖L2(Ω;L1(Ωx))

≤ Cw(∆xL)2 +
L∑
l=2

Cw|Ωx|
1
2 λ̂lM

− 1
2

l (1 − r2
l−1)

1
2 (∆xl)2

+
(
Cw|Ωx|

1
2 (∆x1)2 + C1|Ωx|exp

(
C2

ε0
t1

))
M

− 1
2

1 λ̂1.

(4.3.22)

Remark 4.3.6. Note that the computational cost for quasi-optimal and optimal MLMC is

the same as the standard MLMC method. One can use the data from MLMC to estimate λl
using ( 4.3.14 ) or ( 4.3.17 ). Finally, we emphasize that in [  73 ] one of the estimators, W-RDiff

estimator, in fact coincides with our optimal MLMC strategy (see also [  71 ]). However, the

method has never been analyzed in the case of kinetic equations and additionally, the quasi-

MLMC method does not appear in the previous literature. Without solving a tridiagonal

system which may suffer from ill-conditioning, the quasi-MLMC method offers an efficient

and robust alternative to the optimal MLMC method.

4.4 Numerical results

In this section, we present several numerical examples for the BGK equation ( 4.1.7 )

with random initial condition or random boundary condition. The details of the determin-

istic solver are provided in Section  4.A . Simply speaking, we are solving a reduced system

( 4.A.6 ) and (  4.A.7 ), which is equivalent to the full BGK equation in one spatial dimension.

We use the IMEX-RK scheme for time discretization and finite volume scheme for spatial

discretization so that the overall method is second order in both time and space. We choose

x ∈ [0, 1] and v ∈ [ − 5, 5], where 40 Legendre-Gauss quadrature points are used in the

velocity space to ensure that the error in velocity is negligible. The CFL condition is fixed

as ∆t = 0.1∆x.
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4.4.1 Error evaluation

In the following, we assume the uncertainties come from either the initial condition or

boundary condition. Since the solution is a random field, the numerical error is a random

quantity as well. For error analysis, we therefore compute a statistical estimator by averaging

numerical errors from several independent experiments.

More precisely, for each method we perform K = 40 experiments, and get the correspond-

ing approximations {q(j)(t, x)}, j = 1, . . . , K, where q can be ρ, U or T . We approximate the

overall error in norm ‖·‖L2(Ω;L1(Ωx))) via

E(t) =

√√√√√ 1
K

K∑
j=1

‖q(j)(t, ·) − qref(t, ·)‖2
L1(Ωx), (4.4.1)

where qref(t, x) is the reference solution obtained using the stochastic collocation method

[ 74 ] with 120 Legendre-Gauss collocation points and Nx = 1280 spatial points. We are also

interested in the error at each spatial point:

E∆x(t, x) =

√√√√√ 1
K

K∑
j=1

(q(j)(t, x) − qref(t, x))2. (4.4.2)

Sometimes to better evaluate the error from the random domain, we would like to ig-

nore the error induced by spatial discretization. To achieve so, we consider another kind of

reference solution, qrel(t, x), obtained again using the stochastic collocation with 120 collo-

cation points, while in the spatial domain we use the same finest mesh ∆xL as that in the

corresponding MLMC method to obtain q(j)(t, x). Therefore, we can assess the error as

Erel∆x(t, x) =

√√√√√ 1
K

K∑
j=1

(q(j)(t, x) − qrel(t, x))2. (4.4.3)

In each of the following tests, we perform two stages of computations. The experimental

stage is to determine the optimal sample allocation parameters (there are some guidance

from the theoretical estimates, see Remark  4.3.3 , but we still choose to do a careful testing
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just as a way to verify the theory). The simulation stage is to perform various methods to

estimate the physical quantities of interest.

4.4.2 Test 1: Smooth random initial condition

We first consider the BGK equation subject to random initial condition:

f 0(x,v, z) = 0.5M[ρ,U , T ] + 0.5M[ρ,−U , T ], (4.4.4)

with

M[ρ,U , T ](x,v, z) = ρ(x, z)
(2πT (x, z)) 3

2
exp

(
−|v − U(x, z)|2

2T (x, z)

)
, (4.4.5)

where
ρ(x, z) =

2 + sin(2πx) + 1
2 sin(4πx)z

3 , U (x) = (0.2, 0, 0),

T (x, z) =
3 + cos(2πx) + 1

2 cos(4πx)z
4 ,

(4.4.6)

and the random variable z obeys the uniform distribution on [−1, 1]. The periodic boundary

condition is used and the Knudsen number ε = 1.

To determine the number of samples needed in MC and MLMC methods as well as the

sample ratio across levels in MLMC methods, we proceed as follows.

In the MC method, we consider a series of spatial discretizations: N = 10, 20, 30, 40,

and for each case, we vary the sample size as M = 5, 10, 15, ... The results are shown in

Figure  4.1 (left), where we plot the error (  4.4.1 ). It can be observed that when the number of

samples is few, the statistical error dominates and when there are enough number of samples,

the spatial error dominates. Therefore, we can roughly determine the minimum number of

samples needed so that the statistical error O(M− 1
2 ) balances with the spatial/temporal

error O(∆x2):

• N = 10, M ≈ 40.

• N = 20, M ≈ 640.

• N = 30, M ≈ 3300.
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Figure 4.1. Test 1: Error (  4.4.1 ) (density ρ) of MC method (left) and MLMC
method (right) v.s. number of samples (for MLMC, it is the number of samples
in the first level).

• N = 40, M ≈ 10240.

In the MLMC method, we consider three levels of spatial discretizations: N1 = 10,

N2 = 20, N3 = 40 and the corresponding number of samples at each level are chosen as

M1, M2 = M1
a

and M3 = M1
a2 , where we test different ratios a = 2, 4, 8, 16. We then vary

the starting sample size as M1 = 16, 32, 48, ... The results are shown in Figure  4.1 (right),

where we can see that regardless of ratios, the statistical error and spatial/temporal error

are roughly balanced when M1 ≈ 10240 (the error saturates when the sample size further

increases).

In Figure  4.2 we combine all the previous MC and MLMC results under the scale of

workload. Since we are essentially solving 1D BGK problem, the workload for one determin-

istic run up to certain time with N spatial points is O(N2). Then for the MC method with

M samples, the total work is O(MN2). For the MLMC method with ratio a, the amount of

work is O(M1N
2
1 + M2(N2

1 + N2
2 ) + M3(N2

2 + N2
3 ) = a2+5a+20

a2 M1N
2
1 ). As we can see clearly

from Figure  4.2 , with the same workload, the MLMC methods can achieve better accuracy

compared to various MC. Among MLMC methods with different ratios, there is no signifi-

cant difference except for ratio a = 2. Therefore, we empirically set a = 4 for this smooth

random initial condition test.
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Figure 4.2. Test 1: Error (  4.4.1 ) (density ρ) of MC and MLMC methods v.s.
computational workload.

Now we fix the mesh sizes N1 = 10, N2 = 20, N3 = 40, and sample sizes M1 = 10240,

M2 = 2560, M3 = 640 in the MLMC method. We then find the number of samples in the

MC method such that they have the same workload. This means

• N = 10, M = 30720.

• N = 20, M = 7680.

• N = 30, M = 3413.

• N = 40, M = 1920.

Note that comparing with the numbers we found earlier, for N = 10 and 20, the number

of samples are far beyond the minimum number of samples needed, while for N = 30, M

is around the minimum number of samples needed. Finally for N = 40, the number of

samples here is not enough to balance the statistical error and numerical error in the MC

method. Using the above parameters, we compare the errors of the standard MC method

and three MLMC methods, namely, the standard MLMC, the quasi-optimal MLMC, and

optimal MLMC. The results are shown in Figure  4.3 , from which we clearly see the better

accuracy of MLMC methods compared to standard MC for fixed workload. On the other

hand, the difference of three MLMC methods are not obvious in this example.

105



0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

time

10
-3

10
-2

MC:N=10

MC:N=20

MC:N=30

MC:N=40

MLMC:L3R4

quasi-MLMC:L3R4

optimal-MLMC:L3R4

Figure 4.3. Test 1: Time evolution of the errors (  4.4.1 ) (density ρ) using MC
and various MLMC methods.

Next we examine the errors of the three MLMC methods as defined in (  4.4.2 ), (  4.4.3 ).

The results are gathered in Figure  4.4 . We can see that the three MLMC methods perform

equally well in this test (the differences of the three methods are not significant though the

optimal MLMC has the smallest error overall), largely because the solution is smooth.

To better understand this, we plot the values of λ1 and λ2 in the quasi-optimal and

optimal MLMC methods in Figure  4.5 . We can see that almost all values are not far from

1, which means the methods are not far from the standard MLMC.

4.4.3 Test 2: Shock tube problem

In this test, we consider two kinds of shock tube problems with random initial condition.

The first one has uncertainty in the interface location:

I :


ρl = 1, U l = (0, 0, 0), Tl = 1, f0 = M[ρl,U l, Tl] x ≤ 0.5 + 0.05z,

ρr = 0.125, U r = (0, 0, 0), Tr = 0.25, f0 = M[ρr,U r, Tr] x > 0.5 + 0.05z.
(4.4.7)
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Figure 4.4. Test 1: Approximated expectation of density E[ρ] (left), veloc-
ity E[U ] (middle) and temperature E[T ] (right) using MLMC, quasi-optimal
MLMC and optimal MLMC methods at time t = 0.1 (top row). Error (  4.4.2 )
of expectation of density (left), velocity (middle) and temperature (right) us-
ing three MLMC methods (middle row). Relative error (  4.4.3 ) of expectation
of density (left), velocity (middle) and temperature (right) using three MLMC
methods (bottom row).

The second one has uncertainty in the state variables:

II :


ρl = 1 + 0.1(z + 1), U l = (0, 0, 0), Tl = 1, f0 = M[ρl,U l, Tl] x ≤ 0.5,

ρr = 0.125, U r = (0, 0, 0), Tr = 0.25, f0 = M[ρr,U r, Tr] x > 0.5.
(4.4.8)

The random variable z obeys the uniform distribution on [ − 1, 1]. We set the Knudsen

number ε = 10−6 so that the problem is close to the fluid regime.
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For problem (I), similarly as the previous example, we perform a series of tests to de-

termine the optimal number of samples needed in MC and MLMC methods as well as the

sample ratio across levels. Figure  4.6 shows the analogous tests as those in Figure  4.1 . The

main difference from the previous example is that the errors saturate much quicker as the

number of samples increases. This is due to the low regularity of the solution so that the error

from spatial/temporal discretization dominants easily. In Figure  4.7 we combine both MC

and MLMC results under the scale of workload. Similarly as what we observed in Figure  4.2 ,

with the same workload, the MLMC methods can achieve better accuracy compared to MC.

In addition, the MLMC methods with ratios a = 2, 4 are more accurate than a = 8, 16. This

is consistent to our earlier theoretical prediction, see Remark  4.3.3 . From the right plot in

Figure  4.6 , we also see that M1 ≈ 320 is the minimum number of samples needed for the

MLMC method to balance the statistical error and spatial/temporal error. Therefore, we

choose the following parameters in the MLMC methods: mesh sizes N1 = 10, N2 = 20,
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Figure 4.6. Test 2 (I): Error (  4.4.1 ) (density ρ) of MC method (left) and
MLMC method (right) v.s. number of samples (for MLMC, it is the number
of samples in the first level).

N3 = 40, and sample sizes M1 = 320, M2 = 80, M3 = 20. In Figures  4.8 - 4.9 , we report

the results obtained using the standard MLMC, quasi-optimal MLMC, and optimal MLMC

methods. We mainly examine the approximation to the expectation E[q] as the proposed

quasi-MLMC and optimal MLMC methods are especially designed to minimize the variance

in the estimation of E[q]. As a by-product, we also plot the approximation to the variance

V[q] using the samples generated for expectation. Note that the MLMC methods are based

on the linearity of the expectation operator, not the variance operator. Hence to approxi-

mate the variance, we approximate separately two different expectations E[q2] and E[q] and

use them to obtain V[q] = E[q2] − (E[q])2. We refer to [  75 ] for other approaches to variance

approximation including error control. The results clearly show that both control variate

MLMC methods outperform the standard MLMC in regions where the solution presents

strong variations, namely close to the shock position. Although the results are very close,

as expected, the optimal MLMC method performs slightly better than the quasi-optimal

MLMC.

For problem (II), we choose the following parameters: mesh sizes N1 = 10, N2 = 20, N3 =

40, and number of samples M1 = 640,M2 = 160,M3 = 40 (these parameters are chosen based

on a similar test as problem (I) and we omit the detail). The results are shown in Figure  4.10 

and Figure  4.11 , where the same observation as problem (I) is obtained.

109



10
2

10
3

10
4

10
5

10
6

10
7

Total computational workload

0.015

0.02

0.025

0.03

0.035
MC:N=10

MC:N=20

MC:N=30

MC:N=40

MLMC:L3R2

MLMC:L3R4

MLMC:L3R8

MLMC:L3R16
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To better see the difference of the three MLMC methods, we plot the values of λ1 and λ2

in the quasi-optimal and optimal MLMC methods for both problems (I) and (II) in ( 4.12 )

and (  4.13 ). It is clear that for these problems with shocks/discontinuities the values are

far from one in various regions of the computational domain. This is particularly true for

the temperature and velocity in agreement with the corresponding errors observed in the

previous figures.

4.4.4 Test 3: Sudden heating problem

In the last test, we consider a problem with random boundary condition. The gas is

initially in a constant state with ρ0 = 1, U 0 = (0, 0, 0), T0 = 1 and f0(x,v) = M[ρ0,U 0, T0].

At time t = 0, we suddenly change the wall temperature at left boundary x = 0 to

Tw(z) = 3(T0 + sz), s = 0.2, (4.4.9)

where the random variable z obeys the uniform distribution on [ − 1, 1]. We assume purely

diffusive Maxwell boundary condition at x = 0 and homogeneous Neumann boundary con-

dition at x = 1. The Knudsen number is set as ε = 0.1. This is a classical benchmark test

in kinetic theory. With the sudden rise of the wall temperature, the gas close to the wall is
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Figure 4.8. Test 2 (I): Approximated expectation of density E[ρ] (left), veloc-
ity E[U ] (middle) and temperature E[T ] (right) using MLMC, quasi-optimal
MLMC and optimal MLMC methods at time t = 0.15 (top row). Relative er-
ror (  4.4.3 ) of expectation of density (left), velocity (middle) and temperature
(right) using three MLMC methods (bottom row).

heated and accordingly the pressure rises sharply and pushes the gas away forming a shock

propagating into the domain.

We compare the three MLMC methods using parameters: mesh sizes N1 = 10, N2 =

20, N3 = 40, and number of samples M1 = 1280,M2 = 320,M3 = 80 (these parameters

are chosen based on a similar test as in previous examples). The results are shown in

Figure  4.14 and Figure  4.15 . Again the control variate MLMC methods outperform the

standard MLMC in all simulations and the optimal MLMC method yields slightly better

results than the quasi-optimal MLMC.

4.5 Conclusions of this chapter

We have introduced a control variate multilevel Monte Carlo method for the BGK model

of the Boltzmann equation with uncertainty. Well-posedness of the BGK equation with
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Figure 4.9. Test 2 (I): Approximated variance of density V[ρ] (left), veloc-
ity V[U ] (middle) and temperature V[T ] (right) using MLMC, quasi-optimal
MLMC and optimal MLMC methods at time t = 0.15 (top row). Relative
error (  4.4.3 ) of variance of density (left), velocity (middle) and temperature
(right) using three methods (bottom row).

random parameters, consistency and convergence analysis for various MC type methods are

established. Extensive numerical results confirm that the MLMC methods perform much

better than the standard MC, and the control variate MLMC is capable to provide further

improvement over the conventional MLMC, in particular for problems close to fluid regimes

and in presence of discontinuities, where the fidelity degree of the various levels is reduced and

traditional gPC-SG based methods may fail (see [ 35 ]). In addition to an optimal strategy,

we have introduced a simplified quasi-optimal approach that does not require solving a

tridiagonal system of linear equations. In the numerical examples, this simplified approach

provided only slightly less accurate results than those obtained with the optimal strategy.

The control variate multilevel Monte Carlo methods here developed naturally extend to

other kinetic equations of Boltzmann type which combines deterministic discretizations in

the phase space with Monte Carlo sampling in the random space. In particular, even if
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Figure 4.10. Test 2 (II): Approximated expectation of density E[ρ] (left), ve-
locity E[U ] (middle) and temperature E[T ] (right) using MLMC, quasi-optimal
MLMC and optimal MLMC methods at time t = 0.15 (top row). Relative er-
ror  4.4.3 of expectation of density (left), velocity (middle) and temperature
(right) using three MLMC methods (bottom row).

our study was limited to one space dimension, we expect the gains of MLMC methods over

standard MC to be even more significant in higher dimensions.

4.A Dimension reduction method and deterministic solver for the BGK equa-
tion

In this Appendix, we briefly describe the dimension reduction method adopted to reduce

the computational complexity of the BGK equation and the details of the numerical methods

used to discretize time, physical space and velocity space. Since the Monte Carlo methods

are non-intrusive, our discussion will be based on the deterministic equation (  1.0.6 ) for

simplicity.
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Figure 4.11. Test 2 (II): Approximated variance of density V[ρ] (left), veloc-
ity V[U ] (middle) and temperature V[T ] (right) using MLMC, quasi-optimal
MLMC and optimal MLMC methods at time t = 0.15 (top row). Relative
error (  4.4.3 ) of variance of density (left), velocity (middle) and temperature
(right) using three methods (bottom row).

4.A.1 The Chu reduction method

The BGK equation ( 1.0.6 ) is formulated in a six-dimensional phase-space where compu-

tations can be extremely expensive. Under certain homogeneity assumptions, one can reduce

the dimension using the so-called Chu reduction [ 52 ].

Let x = (x1, x2, x3), v = (v1, v2, v3), and U = (U1, U2, U3). If the solution f only varies

in one spatial dimension, then effectively we are solving a one-dimensional problem and it is

reasonable to assume the following:

∂x2f = ∂x3f = 0, U2 = U3 = 0. (4.A.1)
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Figure 4.12. Test 2 (I): Values of λ1 in quasi-optimal (left) and optimal
(right) MLMC methods (top row). Values of λ2 in quasi-optimal (left) and
optimal (right) MLMC methods (bottom row).

Then the equation ( 1.0.6 ) becomes

∂tf(t, x1, v1, v2, v3) + v1∂x1f(t, x1, v1, v2, v3) = 1
ε

(M[ρ,U , T ] − f(t, x1, v1, v2, v3)) , (4.A.2)

where

M[ρ,U , T ](t, x1, v1, v2, v3) = ρ(t, x1)
(2πT (t, x1))

3
2

exp
(

−(v1 − U1(t, x1))2 + v2
2 + v2

3
2T (t, x1)

)
. (4.A.3)

The Chu reduction proceeds by introducing two distribution functions:

φ(t, x1, v1) :=
∫∫

R2
f(t, x1, v1, v2, v3) dv2dv3, (4.A.4)

ψ(t, x1, v1) :=
∫∫

R2

(1
2v

2
2 + 1

2v
2
3

)
f(t, x1, v1, v2, v3) dv2dv3. (4.A.5)
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Figure 4.13. Test 2 (II): Values of λ1 in quasi-optimal (left) and optimal
(right) MLMC methods (top row). Values of λ2 in quasi-optimal (left) and
optimal (right) MLMC methods (bottom row).

It is then easy to derive that φ and ψ satisfy the following system:

∂tφ(t, x1, v1) + v1∂x1φ(t, x1, v1) = 1
ε

(Mφ(t, x1, v1) − φ(t, x1, v1)) , (4.A.6)

∂tψ(t, x1, v1) + v1∂x1ψ(t, x1, v1) = 1
ε

(Mψ(t, x1, v1) − ψ(t, x1, v1)) , (4.A.7)

where

Mφ(t, x1, v1) :=
∫∫

R2
M[ρ,U , T ] dv2dv3 = ρ(t, x1)√

2πT (t, x1)
exp

(
−(v1 − U1(t, x1))2

2T (t, x1)

)
, (4.A.8)

Mψ(t, x1, v1) :=
∫∫

R2

(1
2v

2
2 + 1

2v
2
3

)
M[ρ,U , T ] dv2dv3 = T (t, x1)Mφ. (4.A.9)
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Figure 4.14. Test 3: Approximated expectation of density E[ρ] (left), veloc-
ity E[U ] (middle) and temperature E[T ] (right) using MLMC, quasi-optimal
MLMC and optimal MLMC methods at time t = 0.1 (top row). Relative er-
ror (  4.4.3 ) of expectation of density (left), velocity (middle) and temperature
(right) using three methods (bottom row).

Denoting
∫
R · dv1 = 〈·〉, it is easy to see the following relation holds

ρ =
∫
R
φ dv1 =

∫
R
Mφ dv1,

m = ρU1 =
∫
R
v1φ dv1 =

∫
R
v1Mφ dv1,

E = 1
2ρU

2
1 + 3

2ρT =
∫
R

(1
2v

2
1φ+ ψ

)
dv1 =

∫
R

(1
2v

2
1Mφ +Mψ

)
dv1.

(4.A.10)

Now our task is to solve the reduced 1D BGK system ( 4.A.6 )-( 4.A.7 ).

4.A.2 The fully discrete scheme

The fully discrete scheme used to solve (  4.A.6 )-( 4.A.7 ) consists of three components:

velocity discretization, time discretization, and spatial discretization.
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Figure 4.15. Test 3: Approximated variance of density V[ρ] (left), veloc-
ity V[U ] (middle) and temperature V[T ] (right) using MLMC, quasi-optimal
MLMC and optimal MLMC methods at time t = 0.1 (top row). Relative error
( 4.4.3 ) of variance of density (left), velocity (middle) and temperature (right)
using three methods (bottom row).

Velocity discretization

In the velocity space, we follow the discrete velocity method (see Section 4.1.1 in [  76 ] or

[ 21 ] for example), which satisfies a discrete entropy decay property.

We first truncate the infinite velocity domain into a bounded interval [ −R,R] and then

discretize it using Nv-point Gauss quadrature with (ξk, wk), k = 1, 2, . . . , Nv as abscissae and

weights. To obtain Mφ, Mψ from φ and ψ, normally one could use the relation in (  4.A.10 ),

where the continuous integral is replaced by the Gauss quadrature. However, due to the

domain truncation error, the resulting moments are not sufficiently accurate. To remove

this error, we assume

Mφ = exp(α1 + α2v1 + α3v
2
1), Mψ = − 1

2α3
Mφ, (4.A.11)
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and determine α1, α2, α3 such that


〈Mφ〉

〈v1Mφ〉

〈1
2v

2
1Mφ +Mψ〉

 =


〈φ〉

〈v1φ〉

〈1
2v

2
1φ+ ψ〉

 :=


ρ

m

E

 , (4.A.12)

where 〈u(v1)〉 := ∑Nv
k=1 u(ξk)wk denotes the quadrature sum in the interval [ − R,R]. The

above nonlinear system is solved by the Newton-Raphson algorithm.

Time discretization

Due to the possibly stiff collision term, we use the implicit-explicit Runge-Kutta (IMEX-

RK) scheme [  77 ], [ 78 ] for the time discretization. In particular, we employ the second-order

IMEX-RK scheme proposed in [  51 ], which is positivity preserving and asymptotic preserving

(preserving the Euler limit without ∆t resolving ε).

Specifically, we discretize ( 4.A.6 ) and ( 4.A.7 ) as

φ(i) = φn − ∆t
i−1∑
j=1

ãijv1∂x1φ
(j) + ∆t

i∑
j=1

aij
1
ε

(
M

(j)
φ − φ(j)

)
, i = 1, . . . , ν,

ψ(i) = ψn − ∆t
i−1∑
j=1

ãijv1∂x1ψ
(j) + ∆t

i∑
j=1

aij
1
ε

(
M

(j)
ψ − ψ(j)

)
, i = 1, . . . , ν,

φn+1 = φ(ν) + α∆t2 1
ε2

(
Mn+1

φ − φn+1
)
,

ψn+1 = ψ(ν) + α∆t2 1
ε2

(
Mn+1

ψ − ψn+1
)
,

(4.A.13)
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where the values of the coefficients ãij, aij, α are given in Section 2.6.1 of [  51 ]. To implement

the above scheme explicitly, we first solve the moment system for i = 1, . . . , ν


〈φ(i)〉

〈v1φ
(i)〉

〈1
2v

2
1φ

(i) + ψ(i)〉

 =


〈φn〉

〈v1φ
n〉

〈1
2v

2
1φ

n + ψn〉

− ∆t
i−1∑
j=1

ãij


〈v1∂x1φ

(j)〉

〈v2
1∂x1φ

(j)〉

〈1
2v

3
1∂x1φ

(j) + v1∂x1ψ
(j)〉

,


〈φn+1〉

〈v1φ
n+1〉

〈1
2v

2
1φ

n+1 + ψn+1〉

 =


〈φ(ν)〉

〈v1φ
(ν)〉

〈1
2v

2
1φ

(ν) + ψ(ν)〉

,
(4.A.14)

which is obtained by taking the moments of (  4.A.13 ) and using (  4.A.12 ). Hence we can

obtain ρ(i), m(i) and E(i) first, and use them to define M
(i)
φ and M

(i)
ψ . Finally we solve

( 4.A.13 ) to get φ(i) and ψ(i).

Spatial discretization

In the physical space, we use the second order MUSCL finite volume scheme [ 79 ].

Here we take the following first order in time scheme for φ as an illustration (suppose it

is evaluated at velocity point v1 = ξk):

φn+1
k (x1) − φnk(x1)

∆t + ξk∂x1φ
n
k(x1) = 1

ε

(
(Mφ)n+1

k (x1) − φn+1
k (x1)

)
. (4.A.15)

Suppose x1 ∈ [a, b] and [a, b] is divided into Nx uniform cells with size ∆x = (b − a)/Nx,

where a = x 1
2
, b = xNx+ 1

2
. In the cell [xj− 1

2
, xj+ 1

2
], define the cell average as

φnj,k := 1
∆x

∫ xj+ 1
2

xj− 1
2

φnk(x1) dx1. (4.A.16)

Then integrating ( 4.A.15 ) over [xj− 1
2
, xj+ 1

2
] yields

φn+1
j,k − φnj,k

∆t +
F n

j+ 1
2 ,k

− F n
j− 1

2 ,k

∆x = 1
ε

(
(Mφ)n+1

j,k − φn+1
j,k

)
, (4.A.17)
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where (Mφ)n+1
j,k := (Mφ)n+1

k (xj). Note that we have replaced the cell average of (Mφ)n+1
k

by its point value at cell center xj (the error introduced by this is O(∆x2) which does not

destroy the overall order of the method). F n
j+ 1

2 ,k
is the flux at interface xj+ 1

2
and is defined

as

F n
j+ 1

2 ,k
= max(0, ξk)φnl,j,k + min(0, ξk)φnr,j+1,k, (4.A.18)

with the left interface and right interface values φnl,j,k, φnr,j,k given by


φnl,j,k = φnj,k + 1

2∆xσnj,k,

φnr,j,k = φnj,k − 1
2∆xσnj,k,

(4.A.19)

where σnj,k is the slope of the linear reconstruction and is chosen to be the MC limiter (θ = 2):

σnj,k = minmod
(
φnj+1,k − φnj−1,k

2∆x , θ

(
φnj,k − φnj−1,k

∆x

)
, θ

(
φnj+1,k − φnj,k

∆x

))
. (4.A.20)
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5. CONCLUDING REMARKS AND FUTURE WORKS

In this thesis, we’ve introduced works in dealing with the challenges in high dimensions and

uncertainty quantification problems for kinetic equations.

For high dimension problems, we focus on the dynamic low-rank method. Kinetic equa-

tions under dynamic low-rank frameworks have many remarkable properties:

• Collision operator (Boltzmann, BGK, Linearized-Boltzmann) are local in x while con-

vection part are local in v. This separated structure is well-suited for dynamic low-rank

methods.

• Dynamic low-rank methods can drastically increase computational efficiency as well as

reduce memory cost. Adaptivity strategy can further reduce computational cost.

• In the near fluid regime, kinetic equations are low-rank. In kinetic regime, there are

some low-rank flows (e.g. normal shock wave)

• Numerical methods under low-rank framework can be well-designed to achieve AP and

higher order.

We introduced works in linear transport and full Boltzmann equations. The rank depen-

dency are investigated in both the fluid regime and kinetic regime. The numerical schemes

are well-designed to achieve high orders and asymptotic preserving in linear transport equa-

tion. Adaptivity are also studied in the numerical computations of steady state solutions in

full Boltzmann equation with dynamic thresholding strategy to further increase computa-

tional efficiency. A series benchmark tests verified the accuracy and efficiency of the proposed

dynamic low rank methods in these equations.

On the other hand, in order to inherit good preperties from existing deterministic meth-

ods, we focus on the non-intrusive sampling method to tackle kinetic equations with uncer-

tainties. We have introduced a control variate multilevel Monte Carlo method as well as

theoretical analysis regarding the well-posedness, consistency and convergence analysis for

various MC type methods. Extensive numerical results confirm that the MLMC methods

perform much better than the standard MC, and the control variate MLMC is capable to
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provide further improvement over the conventional MLMC. Moreover, this method naturally

extend to other kinetic equations of Boltzmann type which combines deterministic discretiza-

tions in the phase space with Monte Carlo sampling in the random space.

Following works in this thesis, there are many relevant topics that worth investigating in-

cluding but not limited to:

• Low-rank methods with AP properties in other types of kinetic equations

• General rank dependence investigations in kinetic equations.

• Adaptive low-rank methods for general time dependent kinetic equations.

• Uncertainty quantification in other kinetic equations
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