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GLOSSARY 

1. Lean-Green drivers – relates to Delivery performance, Profitability, Overall productivity, 

Hazardous waste reduction, Operational cost, Information sharing and Employee satisfaction 

(Thanki & Thakkar. 2018; Gandhi, Thanki & Thakkar. 2018).   

2. Precision Agriculture Technologies- Precision agriculture is “a management strategy that uses 

information technology to bring data from multiple sources to bear on decisions associated with 

crop production”. Precision agriculture tools include information gathering tools such as yield 

monitors, targeted soil sampling and remote sensing tools; variable rate technology; guidance 

systems such as light bars and auto steer equipment (Bongiovanni & Lowenberg-DeBoer, 2004). 

3. Internet of Things (IoT) framework- Consists of four layers namely 1. Perception layer (Sensors) 

2. Communication layer (Wireless communication technologies) 3. Processing layer (Data storage 

& processing layer) 4. Application Layer (Jawad, Nordin, Gharghan & Ismail, 2017).  

4. Application programming interface (API’s)- Computing interface which defines interactions 

between multiple software intermediaries consisting of a set of functions and procedures allowing 

the creation of user applications (monitoring row crop diseases, smart irrigation, smart fertilizing, 

and farm-machinery efficient navigation) in the context of precision agriculture.  

5. Row crops- A row crop is a crop that can be planted in rows wide enough to allow it to be tilled 

or otherwise cultivated by agriculture machinery, machinery tailored for the seasonal activities of 

row crops. Corn and soybean are the major row crops grow in Indiana region 

6. Interpretive Structural Modeling- is a technique to develop a theoretical framework model from 

interpretive matrix analysis performed over content analysis of interview data.  
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ABSTRACT 

The production of row crops in the Midwestern (Indiana) region of the US has been facing 

environmental and economic sustainability issues. There has been an increase in trend for the 

application of fertilizers (Nitrogen & Phosphorus), farm machinery fuel costs and decrease in labor 

productivity leading to non-optimized usage of farm-inputs. A structured literature review 

describes Lean and Green practices such as profitability (return on investments), operational cost 

reduction, hazardous waste reduction, delivery performance and overall productivity might be 

adopted in the context of Precision Agriculture practices (variable rate irrigation, variable rate 

fertilization, cloud-based analytics, and telematics for farm-machinery navigation).   

The literature review describes low adoption of Internet of Things (IoT) based precision 

agriculture practices, such as variable rate fertilizer (39 %), variable rate pesticide (8%), variable 

rate irrigation (4 %), cloud-based data analytics (21 %) and telematics (10 %) amongst Midwestern 

row crop producers. Barriers for the adoption of IoT based Precision Agriculture practices include 

cost effectiveness, power requirements, communication range, data latency, data scalability, data 

storage, data processing and data interoperability. Focused group interviews (n=3) with Subject 

Matter Expertise (SME’s) (N=18) in IoT based Precision Agriculture practices were conducted to 

understand and define decision-making variables related to barriers. The content analysis and 

subsequent ISM model informed an action research approach in the deployment of an IoT wireless 

sensor nodes for performance improvement. The improvements resulted in variable cost reduction 

by 94 %, power consumption cost reduction by 60 %, and improved data interoperable and user-

interactive IoT wireless sensor-based data pipeline for improved adoption of Precision Agriculture 

practices. A relationship analysis of performance data (n=2505) from the IoT sensor deployment 

empirically validated the ISM model and explained the variation in power consumption for 

mitigation of IoT adoption among producers. The scope of future research for predicting IoT power 

consumption, based upon the growing season through correlation was developed in this study.   

The implications of this research inform adopters (row-crop producers), researchers and 

precision agriculture practitioners that a Lean and Green framework is driven substantively    by 

cost and power concerns in an IoT sensors-based precision agriculture solution.   
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 INTRODUCTION 

1.1 Introduction 

Row crops corn and soybean production in the Midwestern US region has economic and 

environmental concerns, based on an increase trend in the application of nitrogen and phosphorous 

fertilizers (USDA NASS Indiana, 2019). Operational costs and fuel consumption costs have 

increased with a decrease in labor productivity and resulted in lower net farm income (USDA 

NASS Indiana, 2019). As a result, Lean and Green practices such as profitability (return on 

investments), operational cost reduction, hazardous waste reduction, delivery performance and 

overall productivity might be adopted through adoption of precision agriculture applications 

(variable rate irrigation, variable rate fertilization, cloud-based analytics, and telematics for farm-

machinery navigation) to improve agriculture operations and net profitability. However, DeBoer 

& Erickson., (2019) note the low rate of adoption for variable rate fertilizer (39 %), variable rate 

pesticide (8 %), variable rate irrigation (4 %), cloud-based data analytics (21 %) and telematics 

(10 %) amongst Midwestern US row crop producers. These barriers include operational costs, 

power consumption requirements, communication range limitations, data latency, data scalability, 

data storage, data processing and data interoperability and are highlighted in the literature (Jawad 

et al. 2017; Ruan et al., 2019). This thesis explores and defines the relationships among decision 

making variables related to barriers for adoption of IoT based precision agriculture practices, 

utilizing focused group interviews (n=3) with SME’s (N= 18). These SME’s include digital 

agriculture practitioners (farmers), and specialist in wireless communication technology. A content 

analysis of SME feedback was conducted to develop a theoretical framework using Interpretive 

Structural Modeling. This theoretical framework informed the actions of the researchers in IoT 

sensors test beds at Purdue University to empirically validate the framework. The implications of 

this research fill a knowledge gap among stakeholders (Indiana row-crop producers, Precision 

Agriculture Technologists, Digital Agriculture practitioners) that subscribe to Lean- Green 

practices through the adoption and deployment of IoT wireless sensors-based precision agriculture 

practices.  
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1.2 Problem Statement 

The production of row crops in the Midwestern region of the US has been facing growing 

environmental and economic sustainability issues. From the perspective of economic 

sustainability performance there has been an increase in total operational cost, including fuel 

expenses, with a subsequent decrease in labor productivity and net farm income.  The impact 

of non-optimized usage of inputs especially fertilizers, pesticides, labor, and farm machinery 

has led to an increase in operational costs with little increase in yields and net farm income 

(USDA NASS, 2019). Lean and green practices i.e., profitability (return on investments), 

operational cost reduction, hazardous waste reduction, delivery performance and overall 

productivity may be adopted by producers in the context of precision agriculture applications 

such as smart irrigation, smart fertilization, monitoring row crop diseases and farm machinery 

navigation to improve yields and reduce costs (Fountas et al. 2005; Schimmelpfennig. D. 2016; 

Say et al. 2018). Still, there is highlights low rate of adoption for Internet of Things based 

Precision Agriculture practices among the Midwest row crop producers (DeBoer & Erickson., 

2019). Barriers to adoption include operational costs, power consumption requirements, 

communication range limitations, data latency, data scalability, data storage, data processing 

and data interoperability (Jawad et al. 2017; Ruan et al., 2019). Therefore, this research 

understands the barriers to IoT for a Lean & Green approach.  

1.3 Scope 

The scope of this study explores Lean and Green practices through the lens of Internet of 

Things (IoT) wireless sensors-based precision agriculture technologies amongst row crop 

producers in the Midwestern (Indiana) region for robust economic and environmental 

sustainability performance. The scope of structured literature review conducted in this study is 

limited to the Midwest (Indiana) geographical region of the US. The research focuses on answering 

the current adoption and understanding of issues based upon IoT wireless sensors-based precision 

agriculture technologies (Smart Irrigation, Smart fertilization, Monitoring row crop diseases and 

Farm machinery navigation) for the adoption and deployment for Lean and Green agricultural 

production. The findings and outcomes focus on filling knowledge gaps, based on decision 

variables involved in IoT wireless sensors-based data pipeline and the relationship amongst each 
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variable through Interpretive Structural Modeling (ISM). This thesis also recommends solutions 

focused on lean-green adoption through IoT wireless sensors-based precision agriculture 

application, and comparison of action research deployments and empirical testing of the ISM 

framework model.  

1.4 Significance 

The research findings fill a knowledge gap in understanding the barriers to decision making 

of adopting an IoT precision agriculture system among row crop producers. The ISM model 

describes the relationships among the practical decision making is significant in IoT wireless 

sensors-based data pipeline deployment. Purdue Agronomy Center for Research and Education 

(ACRE) testbed deployment was informed by the SME content analysis where a subsequent 

redeployment to mitigate these barriers resulted in improved performance of the IoT testbeds. 

    Research Questions 

1. What are Lean and Green practices in the context of Indiana row crop production? 

2. What are barriers to adoption of Precision Agriculture technologies among Indiana row 

crop producers? 

3. How might a Lean and Green approach, in an Internet of things (IoT) wireless sensors 

framework be developed for the improved adoption of Precision Agriculture technologies 

among Indiana row crop producers? 

1.5 Assumptions 

1. The knowledge of SME’s and information provided in the focused groups semi-structured 

interviews is assumed to be free from personal bias. 

2. The semi-structured interview questionnaire contains questions developed from a 

structured literature review and thematic analysis and is appropriate to inform digital 

agriculture researchers, practitioners, precision agriculture technologists and row crop 

producers for adoption of Lean & Green Precision Agriculture applications. 

3. The proposed research assumes inductive forms of logic for the qualitative focus groups 

interview methods.  
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4. A purposeful sampling method was used, based upon the expertise of the participants in 

the field of Internet of Things (IoT) for precision agriculture; focus groups were 

categorized based upon the assumption of that had the expertise in their respective domains 

related to different layers (Perception, Communication & Application) of an IoT 

frameworks for real time data.  

5. Transitivity is the basic assumption in Interpretive Structural Modeling stating that if 

variable X influences Y and Y influences Z then X will influence Z transitively. This means 

X is related to Z through one or more variables.  

6. The assumption was that the researcher participates in the action research approach and 

had the authority to make improvements through systematic inquiry.  

7. The basic assumptions of normality, homogeneity of variance and independence of data 

sample is assumed for the Analysis of Variance (ANOVA) method in this study.  

1.6 Limitations 

1. The proposed research study is qualitative in nature and acknowledges the researcher’s 

presence during data gathering, which was unavoidable.  

2. A basic limitation, due to the nature of focus group interviews limits the study findings in 

their generalizability.  

3. Due to budget and time constraints of this study, focus groups were limited to 3 sessions 

of interviews with 6 participants in each session.  

4. Findings are characterized by the nature of the rigor of qualitative study. However, the 

statistical analysis of the coded data from NVIVO 12 software may be used to develop a 

grounded theory and hypotheses for the future empirical research. 

5. The anonymity and confidentiality of participants may present issues when presenting 

findings. Steps were taken to maintain the confidentiality of the participants.  

6. The basic limitations of qualitative action research methods are subject to a lack of 

repeatability and rigor. However empirical testing and validation of the qualitative 

research findings was adopted to overcome this limitation.  

7. The correlation analysis performed in the study describes the relationship between two 

variables and doesn’t imply cause and effect. Correlation analysis also cannot describe 

curvilinear relationships.  
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8. The ANOVA and regression adopted are sensitive to outliers and considers only linear 

relationships.  

1.7 Delimitations 

1.  The geographical context of the research is delimited to the Indiana region of the 

Midwestern US. 

2. The Lean and Green barriers or decision variables identified were delimited in the context 

of the Internet of Things (IoT) based wireless sensor framework for precision agriculture 

practices.  

3. The participants chosen for this study were based upon expertise delimited to IoT for 

Precision Agriculture framework (Perception (sensors) layer, Communication layer 

(wireless gateway technologies), Data processing and Application layer (data storage and 

processing API’s). 

4. The sampling was delimited purposefully due to limited expertise available in the area of 

IoT frameworks for Precision Agriculture.  

5. The nature of this research was exploratory in nature and therefore the theoretical 

framework proposed by this research, along with hypotheses, were less structured; this may 

result in an opportunity for future empirical research. 

6. The statistical analysis of real time data from the IoT sensors deployed was delimited to 

one growing season and one-day time intervals each before and after the seasonal canopy 

growth. 
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 REVIEW OF LITERATURE 

2.1 Lean and Green Models  

Lean is a concept to generate a system of continuous improvement and the elimination of all 

forms of waste from production and supply chains to improve quality, reduce costs and add value 

for customers (Duarte & Cruz-Machado, 2013b; Simpson & Power, 2005). Lean management is a 

system that improves productivity, based upon finite resources (Hartman, B. 2015). Lean focuses 

on increasing output with optimized usage of input resources by reducing waste and increasing 

process efficiency. Green strategies focus on the elimination of environmental wastes related to 

water, energy, air, solid and hazardous waste (Duarte & Cruz-Machado, 2013b). Lean and Green 

paradigms have commonality in the context of waste reduction, continuous improvement, 

efficiency-driven and emphasize cleaner production (Vinodh et al., 2011; Bhattacharya et al., 

2019). Verrier et al., (2016) notes the potential impact of Lean tools, such as Gemba Walk, Values 

Stream Mapping (VSM), Visual Management, 5S and TPM that resulted in improved 

environmental performance of several firms. King and Lenox (2011) demonstrate that adoption of 

Lean management practices in the form of ISO 9001 standards result in lower inventory levels and 

leads to reduction in waste generation and emissions. The benefits of implementing Total 

Productive Maintenance (TPM) as a Lean and Green strategy means proactive maintenance 

fostering environmental sustainability due to the ability of practitioners to increase machine life 

and mitigate potential negative effects of non-optimized functioning in the form of emissions. 

Chiarini (2014) underlines the impact of 5S implementation in reducing mistakes during a rubbish 

sorting process, leading to less repetitive strain injuries, and fostering social aspects of 

sustainability performance, and can foster recycling. Sustainable VSM, a term coined by Brown 

et al., (2014) integrates both Lean and Green concepts to track the wastes in the process and foster 

optimized use of resources. Pampanelli, Found & Bernardus (2014) demonstrates that continuous 

process improvement tools may reduce resource use from 30 % to 50% on average. For example, 

close supplier relationships foster information sharing on a real time basis, helpful for reducing a 

bullwhip effect that leads to excess production, transportation, and stock holding that ultimately 

impacts the environment (Leon & Calvo-Amodio, 2017). Relationships with suppliers and key 

stakeholders are described as an important way of ensuring strong social sustainability leading to 
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competitive advantages (Herrera, 2015). A Lean & Greenhouse developed by Hines (2009) 

highlights important practices in delivery, environment, and quality pillars. The strategic house 

also highlights the strategic tools which support mitigation of Lean and Green waste (muda) (Hines, 

2009). The positive links between human resource strategies through cultural behavior and 

enhancement of environmental performance is highlighted in the Lean & Green House as well 

(Hines, 2009).  

 

Fig. 2.1: The Lean & Green House 

(Verrier et al., 2016) 

 

Carvalho and Cruz- Machado (2009) explored the integration of Lean, Agile and Green 

paradigms. Synergies among these practices arise from key attributes such as capacity surplus, 

integration level, inventory level, production lead time and transportation time (Carvalho & 

Machado, 2009). Vaise et al. (2006) studied a Romanian secondary tissue paper company where 

the development of technical environmental projects aimed at accomplishing legal requirements 

and use of Lean tools such as 5S, the Kaizen philosophy and autonomous maintenance were further 

used to optimize the use of natural resources and production output. 

The EPA published The Lean and Environmental Toolkit in December 2006 (Kidwell, 

2006) to describe that conventional Lean tools may be applied to environmental waste. The manual 

notes using Lean manufacturing tools to improve material flow that impacts the environment such 

as energy, chemicals, and other kinds of waste (EPA, 2006). Biggs (2009) published an in-depth 

study on the integration of Lean thinking and environmental improvement, concluding that Lean 
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thinking is capable of providing environmental benefits, though there was no direct intention to 

reduce environmental impact. Moreira, Alves & Sousa., (2010, July) developed a study integrating 

the concepts of Lean thinking and eco-efficiency and identified three main causes of production 

waste due to weak environmental performance: (1) Energy consumption, (2) material consumption 

and (3) pollutant emissions. The study also highlighted that the seven classic Lean wastes of 

overproduction, inventory, transportation, motion, defects, waiting and over-processing along 

within these environmental impact, energy use, material consumption and emissions, showed that 

environmental waste is embedded within these seven classic Lean production wastes. Dues et al. 

(2013) discussed how Lean practices act as a catalyst for greening operations and is highlighted in 

Figure 2.2 below.  

 

Fig. 2.2: Synergies between Lean & Green Paradigm 

(Dües et al., 2013) 

 

Lean and Green practices such as VSM, Kaizen, 5S, single minute exchange of die (SMED), 

standardized work, just-in-time (pull production), cellular manufacturing, total productive 

maintenance (TPM), Life cycle assessment (LCA), 3 R’s reduction, reuse and recycling, 

environmental emission control and impact remediation (EEC) have been utilized to implement a 

Lean & Green model (Farias et al., 2019). The integration of the Lean and Green paradigm is a 

research topic arousing great interest but still needs further development regarding organizational 
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methods adoption (Verrier et al., 2016). A Lean and Green matrix of Fercoq et al. (2016), integrates 

the seven types of Lean waste with the hierarchy of the 3Rs (reduce, reuse, recycle) of a green 

system, and the maturity model proposed by Verrier et al. (2016). A study by Inman & Green 

(2018) classified Lean and Green performance evaluation criteria based on productivity, inventory, 

profitability as operational performance criteria, and energy consumption as environmental 

performance criteria. Waste reduction, cost reduction and quality were found as criteria common 

to both Lean and Green paradigms. From the environmental perspective the term waste can be 

seen as water, raw material, energy waste or the operational side defect, scraps, overproduction 

etc. Waste reduction is therefore associated with cost reduction from both operational and 

environmental perspectives (Farias et al., 2019). The approach of total quality environmental 

management (TQEM) expands the narrow definition of quality by demonstrating that quality 

management and environmental management systems have synergistic effects (Garza-Reyes et al., 

2018b).  

In an action research study conducted by Pampanelli, Found & Bernardes, (2014) to 

develop a Lean and Green model investigated potential benefits for the environment and business 

processes of a manufacturing firm in terms of waste reduction, operational performance, and 

employee commitment. The Lean and Green Model in Figure 2.3 takes a systems approach with 

mass and energy flow analysis within system boundaries. The model highlights the input, 

operational and output metrics for Lean and Green system analysis. This is critical to understand 

application of Lean and Green model for systems analysis and developing key performance 

indicators to evaluate processes.  
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Fig. 2.3: Lean & Green Model Mass and Energy flow Analysis 

(Pampanelli et al., 2014) 

 

The Lean and Green models highlighted in this section identifies the common key concepts 

such as waste reduction, lead time reduction, monitoring process indicators, value stream mapping, 

employee satisfaction, visual management, and supply chain relationships. Manufacturing, supply 

chain and service operations are the most common industrial types where Lean & Green models 

have been adopted to assess processes (see section 2.2, table 2.1). The literature review identifies 

a gap related to the application of Lean and Green models to assess agriculture production 

processes.  

2.2 Lean and Green production drivers  

Growing concern of society about the environmental impacts generated from manufacturing 

and agricultural operations has led to changes in regulations and ecological requirements and 

compelled companies to pursue environmental efficiency besides operational efficiency (Garza-

Reyes, 2015b; Torielli et al., 2011). Green practices emerge as a strong proponent of lean 

manufacturing for environmental efficiency improvement of organizations. Lean and Green 

strengthens the performance outcomes of organizational production systems in the context of 

productivity, inventory and profitability as operational performance criteria and energy 

consumption as environmental performance criteria (Farias et al., 2019). A study conducted by 

Thanki & Thakkar (2018) highlighted the Lean and Green assessment criteria factors for Supply 

chain performance and assessment factors respectively using Analytical Hierarchy Process 
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methodology. The important Lean and Green production drivers, along with importance weights 

are highlighted in Table below. 

Table 2.1: Lean & Green Assessment Criteria Weights for Supply Chain Performance 

(Thanki & Thakkar, 2018) 

Lean & Green Production Drivers Weight 

Delivery Performance  0.594 

Profitability  0.511 

Operational Cost  0.489 

Market Share 0.406 

Employee Satisfaction 0.368 

Overall Productivity 0.363 

Training & Education program  0.337 

Hazardous Waste Reduction   0.336 

Information sharing  0.295 

 

Delivery performance serves as the most important Lean and Green production driver as 

highlighted in Table 2.1, for supply chain performance. Lead time is the indicator used in the study 

by Thanki & Thakkar, (2018) to measure the delivery performance. Operational cost was the 

second most critical measure for Lean and Green assessment criteria, including costs in production, 

transportation and inventory holding costs. Operational cost is associated with cost of resources 

such as raw materials, energy, labor, and cost of waste management (Thanki & Thakkar, 2016). 

Lean practices help to reduce waste through elimination of non-value adding activities while Green 

manufacturing empathizes the efficient use of resources (Verrier et al., 2016). Therefore, Lean and 

Green integration helps to improve profitability, one of the second most important weighted 

criteria for assessment. Lean and Green practices improve labor productivity, increasing sales per 

employee and output per unit cost of production with the optimized use of labor and capital (Peng 

& Pheng, 2011). Overall productivity is an important criterion for Lean and Green assessment. 

The “zero defect manufacturing” mindset reduces environmental impact and ensures defect free 
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production to increase the market share making it a criterion for assessment (Taylor, 2006). 

Employee training, Hazardous waste reduction and information sharing are subsequent production 

divers that are identified as important, connecting to positive impact on labor productivity, 

profitability, and delivery performance (Thanki & Thakkar, 2018).  

 

 

Fig. 2.4: Lean and Green Assessment Criteria Weights for SMEs  

(Gandhi et al., 2018) 

 

    A study conducted by Strzelczak et al., (2017) highlighted an integrated Lean and Green 

model and assessed the performance of automotive supply chains. The study highlighted 

profitability, reliability, energy consumption, customizability, productivity, cash-turnover, value-

added performance, yield, emissions reduction, lead times and inventory reduction as the drivers 
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for Lean and Green production. Implementation of new and resource efficient technology drives 

the implementation process of Lean and Green practices.  

Technological upgradation and adoption is a critical driver for Lean and Green system 

assessment as highlighted in Figure 2.4 and is utilized in this research as a metric for assessment. 

Manufacturing equipment or technology upgrades are listed as an important driver for Lean and 

Green implementation (Gandhi et al., 2018; Leong et al., 2018). Pioneering in new energy efficient 

technologies leads to the beneficiary results in three aspects of sustainability i.e., environmental 

performance (environmental), green brand image (social) and cost savings (economic) (Gandhi et 

al., 2018). Leong et al., (2018) highlighted a Lean and Green assessment framework consisting of 

five major areas such as Manpower, Machine, Material, Money, and Environment. Manufacturing 

equipment or technology upgrades are listed as an important driver for Lean and Green 

implementation (Gandhi et al., 2018; Leong et al., 2018). Assessment factors such as operational 

cost efficiency, less emissions, energy efficiency and waste reduction from the adoption of 

technology are highlighted as critical drivers Leong et al., (2018).   

The impact of Lean and Green integrated strategies and practices on three sustainability 

pillars i.e., Economic, Environmental and Social has been explored by Bhattacharya et al., (2019) 

in a meta-analysis (table 2.2). The meta-analysis focuses on Economic and Environmental pillars 

as the scope of the research study is limited and excludes social metrics. The key drivers 

highlighted were operational cost, productivity, delivery performance, information sharing, 

employee satisfaction, profitability, hazardous waste reduction and employee training. 

Implementations include multiple industries, including agriculture production (Powell et al. 2017; 

Barth & Melin, 2018; Pearce et al. 2018; Zokaie & Simmons, 2006).   
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Table 2.2: Impact of Lean and Green on Environmental sustainability performance metrics 

(Bhattacharya et al., 2019) 

Reference  Economic Metrics Findings Industry 

Cherrafi, Elfezazi, 

Govindan, et al. (2017b) 

Cost reduction, profitability, 

process improvement 

The application of Lean-Green- Six Sigma integrated 

framework minimized the cost of energy and mass 

stream by 7-12% 

Manufacturing Industry 

Pampanelli et al. (2014) Total costs of energy and 

mass 

Lean and Green integration can reduce average 

resource use from 30 to 50 % and costs by 5-10%.   

Automotive 

manufacturing 

Azevedo et al. (2012) Operational cost, 

environment cost, inventory 

cost 

The authors proposed that the impact of Lean and 

Green integration on the economy is positive by 

reducing inventory and scrap levels. 

Automotive   

(Zokaei, Lovins, Wood 

& Hines., 2013) 

Operational Cost Lean and Sustainable production techniques report 2-3 

% potential cost savings at each stage of the chain.  

Read meat supply chain  

Aguado et al. (2013) Material costs, production 

costs, general costs, selling 

price 

Costs and incomes can be improved with innovative 

environmental approaches to lean systems.  

Forming tube company  

Thanki et al. (2016) Quality, cost and 

productivity, lead time, 

profitability, product 

design, brand value, market 

position, and customer 

satisfaction 

The integration would require a combination of 

practices from both lean and green paradigms. 

Manufacturing SMEs  
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Table 2.2: Continued 

Reference  Environmental Metrics  Findings  Industry 

Inman and Green (2018) Reduction of air emissions, 

effluent waste and solid 

wastes and ability to 

decrease consumption of 

hazardous and toxic 

materials. 

Indirect effect of lean practices on environmental 

performance through green practices is stronger, 

indicating complementarity. 

Manufacturing  

Garza-Reyes et al. 

(2018) 

Material use, energy 

consumption, non-product 

output and pollutant releases 

Implementing four lean methods (JIT, TPM, VSM and 

Kaizen/CI improve the environmental performance) 

Mining  

Helleno et al. (2017) Electric power consumption, 

water consumption, harmful 

gases release, waste 

segregation 

The integration of Lean and Green identified several 

scopes for improvement of environmental performance 

such as needed for implementing a measuring system.   

Manufacturing  

Barth & Melin, 2018 Resource efficiency, GHG 

emissions, Fuel 

consumption, Feed spillage, 

Labor Productivity, 

Employee satisfaction 

Reduction in the use of diesel by 50 % improving fuel 

efficiency due to improvements in feed storage of silos.  

GHG emissions decreased due to reduction in the first 

calving age. 

Due to a more structured workplace less time was spent 

on searching for tools.  

Agri-Farms (Dairy, Meat, 

Vegetables, Row-crop) 

Galeazzo et al. (2014) VOC emissions, hazardous 

waste  

Two propositions: a) simultaneous implementation of 

lean and green practices were efficient more than the 

sequential 

implementation: b) collaborations between operations 

managers and environmental managers are important. 

Manufacturing  

Powell et al. 2017 Water Efficiency, Energy  Lean Six Sigma as an enabler of greater environmental 

sustainability in dairy processing industry.  

Dairy Industry  
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2.3 Lean and Green practices in agriculture  

Environmental sustainability assessments have traditionally focused on agriculture (Scherr 

& McNeely, 2007). Researchers and policy makers have tried to develop more holistic approaches 

by incorporating stages of food processing, transportation, and food retailing in assessment 

frameworks of food supply chains (Heller & Keoleian, 2003). A number of authors have 

investigated various aspects of Lean and Green in food production (Barth & Melin, 2018). Prior 

studies utilized Lean and Green techniques in food production to assess economic costing (Pretty 

et al., 2005), lifecycle approach to sustainability impacts energy accounting in product lifecycle 

(Carlsson et al., 2003), mass balance of food sectors, ecological footprint (Ridoutt et al., 2010), 

and farm sustainability indicators (Rodriguez et al., 2010). A case study conducted in Swedish 

Farms revealed the potential for synergies between Lean and Green initiatives (Barth & Melin, 

2018). If synergies are supported, the agricultural sector may be more receptive to change 

programs when shown how Lean and Green may be combined to promote sustainable economic 

profit and environmental benefits. A most valuable tool in the combination of Green and Lean is 

the Value Stream Mapping tool that can be used to quantify the carbon footprint of the food 

production processes (Johnsson & Weidman, 2016). Mapping of carbon emissions in various sub-

processes can help farmers work more strategically to reduce their farms' negative environmental 

effects (Barth & Melin, 2018). A case study conducted in the Columbian coffee sector where Lean 

and Green assessment of six coffee producing farms highlighted the evaluation factors such as 

value stream mapping (VSM), Just in Time (JIT), Life Cycle Analysis (LCA), Reusing, Reducing, 

Recycling (3R’s), Gemba Walk and employee training (Reis et al., 2018). A case study conducted 

by Powel et al., (2017) in the Norwegian dairy industry focused on reducing raw material usage in 

milk production, thus improving resource efficiency impacting environmental sustainability and 

increasing milk yield at the same time by implementing Value Stream Mapping (VSM). A case 

study conducted in Horticulture Agri-production of apples and pears (Pearce et al., 2018) 

highlights the operational integration as being an imperative strategic contributor to Lean and 

Green. A study conducted by (Wiese et al., 2015; Yang & Suh., 2015) highlighted the operational 

practices directed at driving sustainable performance as a direct determinant of the key process 

indicators in the agri-food supply chain. Therefore, most of the studies conducted in the area of 

Lean and Green practices in agriculture focuses on the operational context with Value Stream 

Mapping, employee training, Gemba Walk, Life cycle analysis, Reducing and Recycling as 
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common tools used to streamline processes. However, there is a gap identified through literature 

review analysis regarding no application of Lean and Green practices in technological context. 

This thesis explores the Lean and Green technological practices through Precision Agriculture to 

foster economic and environmental sustainability. The following section highlights the Lean and 

Green issues in Midwest region row crop production.  

2.4 Midwest region row crop sustainability issues  

The production of row crops in the Midwestern region of the US has been facing 

environmental and economic sustainability issues. The key challenges affecting row crop 

production are overcoming barriers to adoption of energy-conserving production practices and 

improving the viability of bioenergy production (Karlen et al., 2012). Energy costs represent more 

than 22% total costs for soybean production in 2004 (Shoemaker, McGranahan & McBride, 2006).  

Average irrigation water use in soybean production has increased by around 50% from 180 m3/ha 

in 2002 to 270 m3/ha in 2012. The “ethanol decade” has demanded expansion of cropland under 

soybean and the area under irrigation. Freshwater ecotoxicity impact per ha soybean production 

increased by 3-fold from 2002 to 2012 (Yang & Suh, 2015). Nitrogen fertilizer represents a 

significant energy and cost input for soybean production. Several methods for decreasing N 

fertilizer use per unit output have been identified, including the use of crop rotations, cover crops 

and manure (Karlen et al., 2012).  

The trends pertaining to the application of Nitrogen and Phosphorous are shown in the Figure 

2.5 and Figure 2.6 below, highlighting that there is an increasing trend over the past 20 years 1990-

2019, for Indiana, the scope of this study (USDA NASS Indiana, 2019). Optimizing the input 

application of Nitrogen and Phosphorous could reduce freshwater in toxicity and reduce 

operational costs.   
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Fig. 2.5: Phosphorous application rates for- soybean production in Indiana (1990-2019) 

(USDA NASS Indiana database) 

 

       The increase in Phosphorous & Nitrogen application was 35 % and 20 % for past 30 years in 

Indiana row crop production. The increases in corn & soybean yields for past 30 years were 

39 % and 38 % in Indiana row crop production (USDA NASS Indiana, 2019). However, the 

proportional increase in yield was 3 % and 19 % for Phosphorous & Nitrogen application on 

soybean & corn respectively. Therefore, there is significant scope for optimization of fertilizer 

inputs to further improve the proportional increase in yields.  
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Fig. 2.6: Nitrogen application rates for- soybean production in Indiana (1990-2019) 

(USDA NASS Indiana database) 

From the economic perspective the total operational cost of soybean production in Indiana 

has seen an increasing trend (2003-2018) (USDA NASS, 2019). The data for total operational cost 

highlighted by metric $/Operation means total operational cost per all the farm machinery 

operations performed (seeding, harvesting) for total soybean production in Indiana state. The 

metric $/farm for fuel cost means total cost of fuel consumption per all the farm machinery 

operations performed (seeding, harvesting) for total soybean production in Indiana state.  
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Fig. 2.7: Total Operational Cost- soybean production Indiana (2003-2019) 

(USDA NASS Indiana database) 

 

 

Fig. 2.8: Fuel Cost- soybean production Indiana (2003-2019) 

(USDA NASS Indiana database) 
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    The labor productivity in economic metric $/hr for soybean production has decreased slightly 

from 2008 to 2019.    

 

 

Fig. 2.9: Labor Productivity- soybean row crop production Indiana (2009-2019) 

(USDA NASS Indiana database) 

 

The rate of increase in operational costs and decrease in labor productivity highlights that 

there is decreasing trend in economic sustainability performance metrics of labor productivity, 

increased operational cost), and decrease in environment sustainability performance metrics 

increased fertilizer application, nitrogen & phosphate application, increased fuel consumption 

(USDA NASS Indiana, 2019). A response improving agriculture production has been through 

adoption of Lean and Green principles, expressed through technology deployment and adoption. 
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2.5 Precision Agriculture 

Precision Agriculture practices relates to Lean and Green production through a focus on 

improving outcomes, defined by agriculture drivers. Precision agriculture technologies foster 

optimized application of agriculture inputs, including seeds, fertilizers, water, pesticides, and 

energy that result in savings on the input applications, resulting in increased yield, and improved 

profitability. Precision Agriculture technologies potentially provide producers improved tools to 

manage inputs and optimize factors of production such as fertilizer, pesticides, and seed 

application. The definition of precision agriculture published by the National Research Council 

(1997) defines precision agriculture as “a management strategy that uses information technology 

to bring data from multiple sources to bear on decisions associated with crop production”. 

Precision agriculture tools include information gathering tools such as yield monitors, targeted soil 

sampling and remote sensing tools; variable rate technology; guidance systems such as light bars 

and auto steer equipment. Precision Agriculture Technologies include soil mapping, variable rate 

application, yield monitoring mapping, automatic steer global position guidance systems and 

autonomous vehicles (Say, Keskin, Sehri & Sekerli, 2018). Management zones in the field are 

developed by using crop and field information. Varying input rates increase yields or reduce costs 

depending on the managers’ goal for the management zones (Adrian et al., 2005).  

The potential benefits of Precision Agriculture technologies are similar to benefits from 

Lean and Green practices. These include an increase in the accurate placement of inputs, reduction 

of machinery costs from an increase in machinery field capacity and reducing GHG emissions due 

to reductions in input usage for a given level of production (Griffin 2009; Shockley 2010). 

Precision Agriculture technologies have an impact on increasing profitability, reduction in 

operational cost, increasing labor productivity, reduction in cycle times of operation, optimizing 

fertilizer (nitrogen & phosphate application) and decreasing fuel consumption in farm machinery. 

These technologies may consist of variable rate application (water & fertilizer), real time kinematic 

(RTK) autosteer, guidance systems (GPS guided autosteers, yield monitors), submeter accuracy 

auto steering (SUB) and telematics. In a study by Brown et al. (2016), the authors note the impact 

of Precision Agriculture technologies, such as auto-steer guidance, automatic section control spray 

application and Real time kinematic precision tractor operations, on the carbon emission and 

economic operational cost in the corn and soybean production in the US state of Kentucky. The 

findings indicate that automatic section control spray application has the capability to spray more 
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precisely, reducing the over-application of inputs and having a mean net return of 0.47 % (Brown 

et al., 2015). Real time kinematic precision tractor operations provided the most significant 

improvement in carbon footprint ratio of 2.74 % with increased technical efficiency in applying 

nitrogen and seeds more accurately (Brown et al., 2015). Labor productivity also increased 

allowing more desirable production practices to be employed (Brown et al., 2015). Global 

navigation satellite systems-based auto steering reduces overlap between tractor passes and overall 

operator fatigue increasing productivity (Holt et al., 2013). A study conducted by (Van Evert et 

al., 2017) to assess the impact of implementation of Precision Agriculture Technologies in Potato 

and Olive production highlighted that Variable Rate Application (VRT) of Potassium and 

Phosphorus fertilizers, leading to a strong reduction in nutrient use and increase in operational 

profits of 21%, with increase in profits by 26%. Precision Agriculture can help in managing crop 

production inputs in an environmentally friendly way by utilizing site specific knowledge targeting 

rates of fertilizers, seed and chemicals improving soil conditions (Bongiovanni and Lowenberg-

DeBoer, 2004).  

Research Question 1 (R1): What are Lean and Green practices in the context of Indiana 

row crop production? 

Lean and Green production drivers, through Precision Agriculture practices are described 

in Table 2.3 through structured literature review using NVIVO 12 coding for thematic content 

meta-analysis of 65 peer reviewed journal articles described below in Chapter 3 Methodology 

section 3.2. 

The Lean-Green production drivers specifically Profitability, Operational Cost, Data 

Sharing and Hazardous waste reduction were used in this study to understand the barriers for 

adoption of IoT based Precision Agriculture practices (variable rate irrigation, variable rate 

fertilization, cloud-based analytics, and telematics for farm-machinery navigation among Indiana 

row crop producers). The technical, operational, data management and cost barriers related to 

adoption of IoT wireless sensors framework for Precision Agriculture practices were studied 

through Lean-Green drivers.



 

 

 

3
8
 

Table 2.3: Results of Meta-Analysis of Precision Agriculture Technologies of R1.  

Lean and 

Green 

production 

drivers 

Precision Agriculture Technologies Impact Crop type References 

Delivery 

Performance  

● Real time kinematic precision tractor operations reduced the 

turnaround time of tractor operations thereby decreasing the carbon 

footprint ratio of 2.74 %. 

● The global navigation satellite system-based auto steering reduces 

overlap between tractor passes thereby decreasing turnaround time.  
● Controlled Traffic Farming (CTF) is a precision agriculture 

technology reducing machinery loads to the least possible area of 

permanent traffic lanes and optimizing driving patterns for more 

efficient operations (i.e., reduced overlaps) and targeted input 

applications.  

Corn, Soybean, 

Potato, Olive 

Brown et al. 2015, 

Holt et al. 2013, 

Balafoutis et al, 2017 

Profitability  

● Variable Rate Technology was profitable than uniform rate with a 

profit margin of $37.14 per hectare in corn and soybean production. 

● Variable rate application (VRT) of Potassium and Phosphorus 

fertilizers in potato production led to a strong reduction in nutrient 

use and increase in operational profits by 21 % with increase in social 

profits by 26%. 

● The submeter accuracy auto steering precision agriculture technology 

provided 0.42 % in mean net returns over the base in corn and 

soybean production in the Kentucky region.  

● Grid sampling-variable rate fertilization generated a net return of $48 

more per acre than the conventional fertility management strategy in 

sugar-beet production.   

Corn and Soybean, 

Potatoes, Sugarbeet.  

Wang et al, 2003, Van 

Evert et al, 2017, 

Brown et al, 2015.  
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Table 2.3: Continued 

Operational 

Cost 

● The total operating cost was .08/kg of maize production under 

precision agriculture system as compared to .09/Kg under convention 

system depicted by a case study in Brazilian farms.  

● Variable rate application (VRT) technology in corn production led to 

$25/acre savings in operational cost.   

● Precision agriculture technologies such as yield mapping led to 4.5%, 

GPS soil mapping 2.4 %, guidance systems 2.7 % and VRT 3.9 % in 

operational cost savings.  

Maize, Soybean,Corn  

Silva et al, 2007, 

Schimmelpfennig, D. 

(2016) 

 

Employee 

Satisfaction 

 

● Precision agriculture technologies have high adoption rates in the US 

with yield mapping used on about 40 % of US corn farms and 

soybean acres, GPS soil maps on about 30%, guidance on over 50% 

and VRT on 28-34 percent of acres.  

● Farmers surveyed in England reported that PA technologies were 

used mostly for improving information accuracy 76 %, reducing input 

costs 63 %, improving soil conditions 48 %, improving operator 

conditions 36% and reducing greenhouse gas emissions 17 %.  

● Yield monitors a precision agriculture technology is used with 4500 

combines in the US to harvest about 46 % of corn, 36 % of Soybean 

and 15 % wheat with yield monitors 

Corn, Soybean 

Schimmelpfennig, D, 

2016, Say et al, 2018, 

Fountas et al, 2005 

Overall 

Productivity 

● Guidance systems such as light bars and auto steering can reduce 

working hours of operators in the field by 6.04 % and improve fuel 

efficiency by 6.32 % increasing labor and farm machine productivity 

● Adopting GPS-guided or auto-steered combines and tractors can 

reduce operator errors by determining precise field locations (that are 

often difficult to determine accurately by sight) and compensating for 

operator fatigue thus increasing overall labor productivity.  

● Real time kinematic autosteer technology reduces overlap and 

number of passes required over the field for input application 

increasing fuel efficiency by decreasing fuel consumption by 10.43 

%.  

Corn, Soybean 

Bora et al, 2012, 

Griffin et al, 2004, 

Brown et al, 2015, 

Shockley et al, 2011 
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Table 2.3: Continued 

Information 

Sharing 

● Site specific management precision agriculture technology use 

information technology to monitor and control data collection for 

temporal and special allocation of inputs  

● Field operators using guidance systems have timely, accurate 

information about coordinates accessible from a screen in the cab.  

● Guidance systems save money by reducing over- and under-

application of sprays and better aligning the seeding of field crop row.  

● Precision Agriculture encourages site specific crop management 

defined as the management of spatial and temporal variability at a sub 

field level to improve economic returns and reduce environmental 

impact.  

Wheat, Corn, Soybean 

Lowenberg-Deboer 

and Swinton. 1997, 

Koch et al. 2004, 

Blackmore et al, 2003.  

Hazardous 

Waste 

Reduction 

● Variable rate application technology reduced N by 36 % while 

increasing yield. 

● Variable rate nitrogen application technology reduced N03N by 50 % 

decreasing N application from 60 to 29 kg/ha. 

● VRT resulted in reduction of herbicide use by 42 % in corn 

production.  

Wheat, Barley, Corn, 

Soybean  

Griepentrog and Kyhn, 

2000, Larson et al, 

1997, Brown et al, 

2015 
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2.6 Internet of Things (IoT) wireless sensors framework for Precision Agriculture  

Internet of Things (IoT) wireless sensors communication networks have fostered Lean and 

Green farming applications shown in Table 2.3. Farm data shared by devices fosters data-based 

decision making among producers, boosting productivity, and minimizing waste encouraging 

optimal use of resources. The Internet of Things (IoT’s) applications in agriculture, with sensors, 

have been demonstrated in a study to improve crop yields or quality and to reduce costs (Ojha et 

al., 2015; Talavera et al., 2017). An evaluation of micro-climatic  weather conditions for embracing 

the production uncertainties and maximizing the returns and emission free closed- field crop 

cultivation is highlighted in the study (Redmond et al., 2020).The application of IoT sensors used 

for web-based decision support systems communicating with a WSN for irrigation scheduling in 

olive fields using data from humidity, solar radiation, temperature and rain gauging sensors is 

highlighted in the study (Diedrichs et al., 2014).  Internet of Things (IoT) for agriculture sensors 

and precision agriculture applications are classified into five categories (1) climate, (2) livestock, 

(3) plant, (4) soil, and (5) water. The fig below highlights the different types of IoT wireless sensors 

for developing Precision Agriculture applications based on climate, livestock, plant and soil 

monitoring.  
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Fig. 2.10: Critical measurable production variables in Precision Agriculture applications that 

could be captured by sensors  

(Antony et al. 2020) 

 

Different types of sensors (temperature, humidity, light, pressure, wind speed) receive and 

collect data managed by cloud information management systems for data analysis solutions 

through application programming interfaces (API’s) (Navarro, Costa & Pereira, 2020). A study 

conducted by Hashim, Mazlan, Aziz, Salleh & Mohamad, (2015) reviewed the control with an 

electronic device (arduino) of temperature, soil moisture and used Android- based API’s for 

functionality. Hashim et al., (2015) also highlighted notes the advantages of low cost and flexibility 

for agriculture control in contrast to expensive components such as high-end personal computers 

A study conducted by Pahuja et al., (2018) highlighted an online microclimate monitoring and 

control system for greenhouses. The system was supported by a WSN for gathering and analyzing 

plant sensor data to provide control of climate, fertilization, and irrigation. Luan, Fang, Ye & Liu, 

(2015) developed an artificial system that integrated drought monitoring and forecasting irrigation 

into a platform based on IoT’s hybrid programming and parallel computing. Muangprathub et al., 

(2019) focused on leaf spot disease assessing the crop-weather-environment-disease relations. The 

different types of IoT sensors for agricultural applications in the table below.  

Climate

Humidity, 
Temperature, 
Precipitation, 

Pressure, Wind

Livestock

disease, location, milk 
quality, predator, 

supply chain

Soil

carbon, moisture, 
nutrients, 

temperature, pH

Water

flow, level, O2, pH, 
temperature, 

turbidity

Plant

color, disease, H2O 
demand, height, 

pests,yield
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Table 2.4: Type of Sensors and lean & green application in agricultural processes 

(Patil, Al-Gaadi, Biradar & Rangaswamy. 2012) 

Type of Sensors Agriculture Applications Lean & Green Precision 

Agriculture Applications 

Optical Crop height measurement, N content, 

solar irradiance, plant disease, crop 

waste 

Pest control & Early disease 

detection system 

Thermistor, 

Thermocouple 

Soil temperature, water temperature, 

seed and crop storage temperature  

Precision Irrigation, Crop 

monitoring 

Pressure and flow rate Irrigation water flow  Precision Agriculture 

Acoustic Animal detection, water level, grain 

silo level 

Livestock monitoring 

Accelerometer Livestock monitoring, crop transport.  Livestock monitoring 

Electrochemical C02 greenhouse concentration, 

beehive monitoring  

Precision Fertilization 

Electrical Conductivity Soil moisture, soil and water PH, 

ambient humidity 

Soil Health, Precision Irrigation 

Electrical Capacitance Soil moisture, ambient humidity Crop monitoring 

RFID Livestock and poultry tracking, supply 

chain tracking, asset tracking.  

Livestock tracking, supply chain 

tracking.  

GPS (location) e-Extension, equipment navigation, 

livestock tracking, asset tracking.  

Farm machinery navigation and 

Livestock tracking.  

 

A wireless sensor IoT framework highlighted in the Figure below consists of Perception 

layer, Communication Layer, Data processing & Application layer.  

 

 

Fig. 2.11: An Internet of Things (IoT) wireless sensors framework for Precision Agriculture 

applications 

(Ferrández-Pastor, García-Chamizo, Nieto-Hidalgo & Mora-Martínez. 2018) 
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       The combination of different types of sensors may be used as a perception layer in IoT 

framework noted above in Figure 2.10 to gather data related to environmental, crop and soil factors. 

The combination and type of sensors used depends on factors to develop Precision Agriculture 

applications. Multiple studies highlight the application of different types of IoT sensors in Lean 

and Green precision agriculture applications. Multiple studies demonstrate that IoT decision 

support systems, utilize data from different types of sensors to inform growers when to apply inputs, 

resulting in effective disease mitigation, improving yields, and saving 500 USD reducing 

operational cost (Feng et al. 2017; Van Evert et al. 2017). Internet of Things decision support 

systems may also be used to integrate weather data and electrical capacitance sensors for real-time 

monitoring of soil water content along with soil water balance to develop irrigation scheduling 

models. Developed irrigation scheduling models to provided recommendations to wheat farmers 

on timing and intensity of irrigation, resulting in water savings of at least 25% compared to 

traditional scheduling (Saab, Sellami, Giorio, Basile, Bonfante, Rouphael & Albrizio, 2019).  

       The data from the perception layer transfers through wireless communication networks and 

protocols (Zigbee, BLE, Wifi, GPRS, LoRa, Sigfox). The constraints of communication range, 

power availability, data transfer rate, data storage, cost and scalability determine the type of 

protocol to use for a particular type of precision agriculture application. The data from the wireless 

communication gateway technologies is transferred to a data processing layer that can be a cloud 

or Application programming interface (API) depending upon the type of precision agriculture 

application at the user-end interface. The data gets processed in the cloud and different API’s may 

be developed, depending upon the Precision Agriculture applications. The IoT wireless sensors-

based Precision Agriculture barriers described below are crucial to understanding Lean and Green 

adoption. 
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Fig. 2.12: The issues for adoption of IoT wireless sensors-based Precision Agriculture practices among Midwestern producers 

(Navarro, Costa & Pereira. 2020, Jawad et al. 2017) 

Perception Layer

(Sensor nodes)

•Type and combination of sensors for a particular control & 
monitoring application. 

•Sensor integration in network. 

•Power requirements

Communication 
Layer

(network 
protocol)

•Wi-Fi Communication range required.

•Cost and power constraints

•Data transfer rate (latency) requirements as per application. 

Processing Layer 
(Data storage and 

processing)

•Cost and power efficient.

•User friendly application interface

•Big data storage and processing. 

Application Layer

•Predicting crop diseases

•Smart Irrigation

•Smart fertilizing

•Farm-machinery efficient navigation
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2.7 Barriers to Adoption of IoT Precision Agriculture Technologies among Producers 

The adoption of precision agriculture technologies among row crop producers in the US 

Midwest region has been increasing (Erickson & DeBoer, 2019). Erickson & DeBoer, (2019) note 

the adoption of different precision agriculture technologies among Mid-west region producers. 

Yield monitoring technology has the highest adoption rates at 69% of farmers reported adopting 

it. Variable rate fertilizer (39%), variable rate pesticide (8%), variable rate irrigation (4%), cloud-

based data analytics (21%) and telematics (10 %) are all reported lower adoption rates. Some of 

the challenges for adoption of IoT based Precision Agriculture include cost-effectiveness, internet 

availability near farms, power availability, data scalability and interoperability (Erickson & 

DeBoer, 2019). Multiple studies note Socio-economic factors (farmers educational level, age), 

Agro- ecological factors (soil quality, farm size, ownership of land), Farmer’s perception 

(perceived benefits vs profitability), Technological factors (computer education, data aggregation) 

and Informational factors (extension services) as factors having a positive relationship with 

adoption (Tey & Brindal. 2012; Castle, Lubben & Luck. 2016). Technical, operational and 

management issues highlighted in the Figure 2.13, are also validated by Jawad et al., (2017). The 

factors include enumerating cost, power consumption, communication range, data latency, data 

scalability, data storage and data interoperability (Jawad et al., 2017). A more recent study 

conducted by USDA NRCS., (2020) highlighted cost of equipment, less benefit, training, data 

scalability, communication range and time of implementation as the IoT Precision Agriculture 

barriers.  

In summary, the structured literature review (SLR) utilized in this study explored and 

identified the Lean and Green drivers, in context of Precision Agriculture practices specifically, 

IoT based. Internet of Things wireless sensors-based Precision Agriculture applications of 

monitoring row crop diseases, smart irrigation, smart fertilizing, cloud-based analytics, and 

telematics for farm-machinery navigation have a low rate of adoption among Indiana row crop 

producers. These barriers include technical (power limitations, communication range), operational 

(data scalability, sensor distribution, data latency), management (data storage, data interoperability 

& data processing) and finance (cost, return on investment).  

       Next, the focused group interviews, Interpretive Structural Modeling and Action research 

methods are discussed to answer the research questions of this study in the following Chapter.   
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 METHODOLOGY 

This chapter covers the research framework, data collection methods and data analysis 

methodologies applied in this thesis.   

3.1 Research Framework 

The objective of this research was to explore Lean and Green Internet of things (IoT) 

wireless sensors framework for the adoption of Precision Agriculture applications (monitoring row 

crop diseases, smart irrigation, smart fertilizing, and farm-machinery efficient navigation) among 

row crop producers in the Indiana region. The research questions, research methodology, data 

collection and data analysis methods applied are described in the table below.  

Table 3.1: Research Framework 

Research Questions Research 

Methodology 

Data Collection  Data Analysis 

What are Lean and Green 

practices in the context of 

Indiana row crop 

production? 

Structured Literature 

Review  

Search Engines- Google 

Scholar, Purdue Libraries, 

IEEE, Emerald, Elsevier and 

ScienceDirect targeting peer 

reviewed journal articles. 

USDA NASS Indiana 

Database  

Thematic content 

analysis   

What are barriers to 

adoption of Precision 

Agriculture technologies 

among Indiana row crop 

producers? 

Structured Literature 

Review  

 

Focused group semi-

structured Interviews  

Search Engines- Google 

Scholar, Purdue Libraries, 

IEEE, Emerald, Elsevier and 

ScienceDirect targeting peer 

reviewed journal articles.  

Thematic content 

analysis   
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Table 3.1: Continued 

How might a Lean and 

Green Internet of things 

(IoT) wireless sensors 

framework be developed 

for the improved adoption 

of Precision Agriculture 

technologies among 

Indiana row crop 

producers? 

Focused group semi-

structured Interviews  
 

Interpretive 

Structural Modeling 

(ISM) 

 

Action research 

deployments 

comparison 

 

Correlation analysis  

Focused groups semi-

structured interviews.  

Coding of 

Interviews followed 

by content analysis 

using Interpretive 

Structural 

modeling.   

Does Battery Power 

Consumption of IoT 

sensor nodes deployed 

vary significantly with 

Communication Range 

(CR), Data Rate (DR), 

Received Signal Strength 

Index (RSSI) and Signal 

to Noise Ratio (SNR)? 

Multiple linear 

regression   

Real time data points 

(n=2505) from Ag Sensors 

deployed at Purdue test beds.     

Analysis of 

Variance for 

Multiple linear 

regression.  

3.2 Structured Literature Review & Thematic analysis 

The research methodology framework followed a structured literature review and thematic 

analysis of a focus group, subject matter expert semi-structured interviews, and data analysis 

through a content analysis approach. The basic definition of content analysis as stated by (Berelson, 

1952) is “content analysis is a research technique for the objective, systematic and quantitative 

description of the manifest content of communication”. The four-step process model of content 

analysis by Mayring. (2008) and Downe- Wamboldt. (1992) is delimits the material to be analyzed 

by defining a unit of analysis, creating analytical categories, defining the material collection 

(creating and defining categories), pretesting the categories defined, refining through pretesting 

and refining categories and analyzing the data by coding for thematic analysis through coding and 

analyzing data. The first step was selecting the unit of analysis i.e., the peer reviewed journals and 

data reports covering the period from 1990-2019 (USDA NASS, 2019). The peer reviewed 

literature was selected from top-tier publishers Elsevier, Emerald, IEEE, Taylor Francis, 

Inderscience and Science direct. The second step was defining categories with inclusion and 

exclusion criteria. Category schemes were created by the researcher based on the research 
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questions, the selected unit of analysis, relevant theories, and a review of the initially selected 

sample journal articles and data reports. The third step was pretesting and refining categories in 

which an initial sample was carefully analyzed for progressive refining and validating of the 

category scheme. The fourth and the last step was coding and analyzing the themes, per defined 

categories. A coding system is more reliable if the critical attributes of specific categories are 

defined and in high agreement with the category definitions. The content themes identified for this 

for this study were based on Lean and Green drivers, Precision Agriculture practices and barriers 

to adoption of IoT based Precision Agriculture practices and used to develop semi-structured 

focused group interview questions. These questions were used to understand barriers and define 

related decision variables for a participatory action research approach. 
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Fig. 3.1: Content Analysis approach for the Structured Literature Review  

Defining unit of 
Analysis

• The initial literature sample unit of analysis consisted of peer reviewed journals based on two wider domains i.e., Lean & Green practices in 
agriculture and sustainable agricultural technologies. 

• The search engines used for collecting sample of peer reviewed journals were Google Scholar, Elsevier, Purdue Libraries, IEEE, Emerald, 
Science direct & USDA NASS database. 

• The period of analysis was 1990-2019 and in the initial review a sample of 90 journals was selected pertaining to the keyword search.

• The keywords used for the initial screening and selecting articles were: Lean & Green models, Lean & Green practices in agriculture and 
sustainable agricultural. 

Creating & 
Defining Categories

• The abstract, introduction and findings sections of the initial sample of 90 articles were analyzed to create and define categories based on 
deductive approach and revise inclusion and exclusion criteria. 

• As per the findings from the initial review the Lean & Green performance model drivers "Profitability, Overall Productivity, Delivery 
performance, Operational Cost, Hazardous waste reduction, Information Sharing and Employee satisfaction" were obtained in section 2.2. 

• The categories were defined pertaining to Precision Agriculture Technologies impact on Lean & Green performance drivers as an inclusion 
criterion and 15 articles were screened out of 90 with 75 articles selected as per the defined categories. 

Pretesting & 
Refining Categories

• The categories and inclusion criteria were refined in the second screening as per the issues in Indiana row crop production. 

• The new inclusion criteria for screening were based on "Barriers to adoption of Precision agriculture technologies" & "IoT wireless sensors 
framework for Precision agriculture".

• The 65 articles were selected and 10 were excluded out of 75 from the initial screening making sample size of 65 peer reviewed journals as per 
redefining categories and inclusion criteria. 

Coding & 
Analyzing Data

• Thematic analysis is conducted using NVIVO 12 and the sample of 65 articles was analyzed through coding based on the categories defined.

• The findings of structured literature review followed by thematic content analysis were reported in section 2.5 Lean and Green drivers for 
Precision Agriculture practices (see table 2.5.1), section 2.6 barriers for adoption of Precision Agriculture technologies and IoT wireless sensors 
framework & issues (see fig. 2.6.2)
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3.3 Data Collection Methods 

This section includes the data collection methods applied in the thesis, specifically focused 

group semi-structured interviews, Participatory Action Research deployments of sensors and 

creation of a real time data pipeline.  

3.3.1 Focused group semi-structured interviews 

Figure 3.2 highlights the methodology approach followed for this study consisting of 

structured literature review, focused group semi-structured interviews, informed action research 

deployments and comparison of IoT sensors deployments based on improved Lean and Green 

design. The data collection methods include focused group semi-structured interviews followed 

by validation of findings, with triangulation from the SLR and action research finding of IoT 

sensors deployments at the Purdue Agronomy Center for Research Education (ACRE) research 

farm site. Denzin & Lincoln, (2008) defined the term "focus group" to apply to a situation in which 

the interviewer asks group members very specific questions about a topic after considerable 

research. Focus groups are used in the studies to investigate complex systems where the research 

can interact with participants and there is further opportunity to ask for clarification questions. 

Krueger (1988, p.18) defines a focus group as a "carefully planned discussion designed to obtain 

perceptions in a defined area of interest in a permissive, non-threatening environment". The critical 

element of focus group interviews is the involvement of people where the information encourages 

a nurturing environment (Wong, 2008). Studies conducted in the field of focus group interviews 

and data collection highlights that focus groups help to generate hypotheses that can be further 

tested using more quantitative approaches (Lewis, 2000). Diagnosing potential problems, 

programs, services, products, stimulate new ideas and result in frameworks for further validation 

with empirical research (Lewis, 2000). Because the characteristic of focus group interviews helps 

to investigate complex systems where the research may interact with the participants providing an 

opportunity to further ask for clarification questions it was appropriate to adopt for these research 

methods (Krueger 1988, p.18). Stewart and Shamdasani (1990) highlighted that convenience 

sampling may be employed for focused group interviews that consist of representative members 

of larger populations. Most focus groups interviews consist of between 6-12 participants (Stewart 

& Shamdasani, 1990). Krueger (1988) suggests that “the size of the group is governed by the 
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objectives of the research as well. Smaller groups (4-6 people) are preferable when participants 

share information about the topic (Krueger, 1988, p.94). Krueger (1988) highlighted that the 

typical focus group interview might have up to 15 questions, depending upon the length of the 

interview and research objectives.  

The results of the SLR (see Figure 2.12) defined the issues among the different layers of 

the IoT framework based upon different Precision Agriculture applications and used to generate 

the focus group interview questions. These questions were structured based upon the technical, 

operational, data management and finance barriers (cost, power consumption, communication 

range, data scalability, data storage, data interoperability, data processing, type of sensors, wireless 

communication technologies) identified from the IoT wireless sensors framework for precision 

agriculture applications identified in the structured literature review (see Figure 3.1).These 

questions are noted in the interview protocol in Appendix A.  

           In this study a purposive sampling was adopted (Kreuger 1988, p.94) to collect data from 

the SME’’s involved in three focused groups interview sessions. The focused groups were 

categorized based upon the knowledge and expertise of the participants in three layers of IoT 

wireless sensors framework: 1. Perception layer, 2. Communication layer, 3. Data Processing & 

Application layer. The credentials of the participants, their current roles and expertise in IoT 

framework layer are highlighted in Table 3.2. The researcher contacted approximately 22 

individuals out of which 18 participated (response rate of 81%) in 3 focused group interview 

sessions with 6 participants in each session. Each of the focused group consisted at least one 

expertise representing each layer of the IoT wireless sensor framework to reduce bias.  

        Research Question 3 (R3): How might a Lean and Green approach, in an Internet of things 

(IoT) wireless sensors framework be developed for the improved adoption of Precision Agriculture 

technologies among Indiana row crop producers? 

Focused group interview data was analyzed by following a content analysis approach to understand 

and define decision variables related to barriers for answering the research question above. 
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Fig. 3.2: Data collection methods focused group interviews following participatory action research cycle. 

 

•Findings of focus group semi-structured 
interviews were reflected upon and 
applied for informed deployments of IoT 
sensors nodes through participatory 
action research.

•The IoT sensor deployment of sensor 
node A was compared and informed with 
the sensor node B deployment based 
upon the Lean & Green issues. 

•The multiple deployments of 
IoT sensor nodes were 
compared on the Lean & 
Green drivers specifically 
Cost & Power Consumption 
identified through focused 
group interview findings.

•Semi-structured focused group interviews were 
conducted with 3 groups consisting 6 
participants expertise in each. (Krueger., 1988). 

•Classification of focus groups participants 
recruited were based on 3 different layers of 
generic IoT framework for Precision Agriculture 
i.e., Perception layer (sensor nodes), 
Communication layer (wireless gateway 
networks), Data Storage & Processing layer 
(Data processing, filtering, and storage). 

•The purposive or expert sampling technique 
was used to recruit participants. 

•The participants were experts in IoT for 
Precision Agriculture applications. 

•Thematic content analysis of 
the peer reviewed journals 
using NIVIO 12. 

•Thematic content analysis 
findings were used to 
develop questionnaire for 
semi-structured focus group 
interviews. Structured 

literature review 
& Thematic 

analysis

Focused group 
semi-structured 

interviews

Informed action 
research 

deployment of 
IoT sensors at 

ACRE

Comparing the 
deployments of 

multiple 
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Table 3.2: Subject Matter Expertise (SME’s)- focused groups interviews 

Participants Current Role Expertise in IoT wireless sensor framework layer 

Participant 1 (P1) Digital Agriculture Technology 

Consultant 

Wireless Communication technologies (Communication Layer) 

Participant 2 (P2) Program Coordinator in Agriculture 

Technology  

Big Data Telematics, Data Analytics, Aerial Imagery (Perception Layer)  

Participant 3 (P3) Global Technology consultant Wireless Communication technologies (Communication Layer) 

Participant 4 (P4) Graduate Research Assistant  UAV-aided wireless communication systems, Intelligent transportation system 

applications in Digital agriculture (Communication Layer) 

Participant 5 (P5) Precision agriculture technologies 

consultant and Farm-owner 

Digital agriculture practitioner, Smart irrigation & Autonomous precision agriculture 

application (Application Layer)   

Participant 6 (P6) Academic Faculty Wireless Communication Technologies for Agriculture, Signal processing, Sensor 

network design (Communication Layer)   

Participant 7 (P7) Cloud technologies consultant Cloud computing platforms for Digital Agriculture (Data processing Layer) 

Participant 8 (P8) Graduate Research Assistant Wireless Communication technologies, Embedded systems & edge-computing 

(Communication Layer) 

Participant 9 (P9) Academic Faculty Decision Support System, Cloud Computing, Mobile Apps (Application Layer) 

Participant 10 (P10) Graduate Research Assistant  Autonomous precision agriculture applications (Application Layer) 

Participant 11 (P11) Digital Agriculture Consultant Internet of Things (IoT) for Farm machinery autonomous applications (Application 

Layer) 

Participant 12 (P12) Graduate Research Assistant Software engineering, API for crop monitoring applications (Data processing Layer)  
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Table 3.2: Continued 

Participant 13 (P13)  Wireless communications Technology 

consultant 

Wireless communication networking, Long range and wide area networks 

(LoRA) for digital agriculture applications (Communication Layer)   

Participant 14 (P14) Graduate Research Assistant Internet of Things sensors applications for precision agriculture (Perception 

Layer) 

Participant 15 (P15) Extension program coordinator Digital Agriculture practitioner, Rural area sensor networking (Perception 

Layer) 

Participant 16 (P15) Digital Agriculture practitioner & 

Farmer  

Digital agriculture technologies adoption and practitioner (Perception Layer) 

Participant 17 (P17) Software engineer Cloud computing, Big Data Analytics for IoT in Agriculture (Data processing 

Layer) 

Participant 18 (P18) Application Programming Interface 

(API) developer  

Software developer for Precision agriculture applications, Cloud-back end 

(Data Processing layer) 
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3.3.2 Participatory Action Research Approach 

The focus group interviews findings informed the deployments of a Precision Agriculture 

IoT based testbed through a participatory action research approach. Participatory action research 

is a collaborative process between researchers and participants to answer a critical inquiry focusing 

on a process of active learning (Baum, MacDougall & Smith, 2006). Participatory action research 

is based on data collection, reflection, and action (Baum et al., 2006). Participatory action research 

differs from conventional research as it enables action through a reflective learning cycle, whereby 

participants collect and analyze data, then determine the action to follow, utilizing decision 

variables (Kolb, 1984 & Tandon, 1996).  

This research fits the criteria of participatory action research as the research questions of 

this study. Precision Agriculture IoT project at Purdue’s Agronomy Center for Research and 

Education (ACRE) farm was being deployed. This study informed the ACRE deployment project 

by utilizing the generic participatory action research framework of Gray, Crawford, Lobo & 

Maycock (2019) to guide the deployment. The ACRE initial deployment is shown in Figure 3.3 

below, representing generic technical, operational, data management and finance issues for an IoT 

deployment, called sensor node A in this study (Vasisht, Kapetanovic, Won, Jin, Chandra, Sinha, 

& Stratman, 2017). The initial deployment was informed by testing of IoT sensor node A for 

Precision Agriculture practices.  

 

Fig. 3.3:  Internet of Things (IoT) sensor node A- data pipeline 
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The ACRE IoT deployment, called sensor node B, was guided by critical design interventions 

identified and enacted upon by the researcher, guided by decision variables as participatory action 

research between the 1st deployment (sensor node A) and second deployment (sensor node B). The 

ACRE deployments of the initial (sensor node A) and redeployment (sensor node B) were then 

compared to Lean and Green performance drivers identified earlier.   

3.4 Data Analysis     

This section highlights the data analysis techniques i.e., content analysis of focused group 

interviews, Interpretive Structural Modeling (ISM) and comparison of participatory action 

research deployments of sensor nodes.  

3.4.1 Coding & Thematic analysis of Focused-group interviews 

Data analysis is the part of qualitative research that mostly distinctively differentiates from 

quantitative research methods. Qualitative data analysis is a more dynamic, intuitive, and creative 

process of inductive reasoning, thinking, and theorizing (Basit, 2003). Data analysis in qualitative 

research is defined as the process of systematically searching and arranging the interview 

transcripts. The process of analyzing qualitative data involves coding or categorizing of data, 

which reduces the volume of raw information followed by identifying significant patterns drawing 

meaning from the data, developing a logical chain of framework, or adding to grounded theory 

(Tashakkori & Teddlie, 2009). NVivo coding software was used to code the data from interviews. 

Inter-reliability of the coding thematic analysis of the data was checked with another rater to ensure 

the reliability kappa value k > 0.70 for acceptable reliability.   

3.4.2 Interpretive Structural Modeling (ISM) 

The nodes emerging from the interviews were analyzed for pairwise relationship 

comparison to develop a framework model. The Interpretive Structural Modeling approach first 

proposed by Warfield in 1973 (Warfield 1974a, b; Sage 1977) to analyze the complex 

socioeconomic systems. Interpretive structural modeling may be defined as a process that 

transforms unclear mental models of systems into visible well-defined models for adoption 

purposes. Interpretive Structural Modeling (ISM) can also be used for identifying and summarizing 
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the relationships among specific variables which defines a problem or an issue (Sage 1977; 

Warfield 1974a, b). ISM provides a means by which order can be imposed on the complexity of 

such variables (Mandal and Deshmukh, 1994). There are multiple applications of ISM in many 

areas the majority which are in decision support systems (Hansen, Mckell & Heitger, 1979), waste 

management (Sharma and Gupta, 1995), vendor selection (Mandal and Deshmukh, 1994), product 

design, supply chain management (Agarwal et al., 2007), decision making (Lee, 2008), value chain 

management (Mohammed, Shankar & Banwet, 2008) and world-class manufacturing (Haleem, 

Sushil, Qadri & Kumar, 2012). The steps involved in the ISM approach utilized in this study are 

described in the literature and shown in Figure 3.4 (Malone, D. W. 1975; Govindan et al. 2015; 

Agrawal, A. 2020).  
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Fig. 3.4: Interpretive Structural Modeling Methodology for this study 

Malone, D. W. 1975, Govindan et al. 2015, Agrawal, A. 2020 
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The steps involved in the ISM approach are described as follows in the context of this research 

study: 

1. Organize a group of experts for interviews and defining variables: In this study, focused 

group interviews were organized with a group of expertise based on three layers of IoT 

wireless sensors framework, 1. Perception layer, 2. Communication layer, 3. Data storage 

& processing layer to define themes and variables validated by the SLR in context of 

barriers pertaining to participatory action research decision variables in IoT wireless 

sensors framework. 

2. Identifying variables for finding contextual relationships: The focused group interview data 

was analyzed to identify the decision variables and contextual relationships from the 

barriers identified by the focus group interviews. Eleven variables were identified and 

defined through content analysis findings of the interviews for a Lean-Green IoT wireless 

sensors framework.  

3. Developing structural self-interaction matrix: Through the analysis of the three focused 

group interview sessions 6 participants each, total n=18 participants a structural self-

interaction matrix was created with descriptive contextual pairwise relationships defined 

among the 11 variables identified in the prior step.  

4. Developing reachability and interaction matrix: A random sample of at least 3 participants 

from the group of 18 participants were contacted again to validate the contextual 

relationships defined in the matrix and developing a reachability matrix identifying 

transitivity (e.g., indirect relationship- if A is related to B directly & B is related to C then 

A is in transitive relationship with C) relationships between variables was created.  

5. Developing interpretive structural model: The reachability matrix i.e., the outcome of 

previous step (4) was decomposed to create structural models. This was an interactive 

process in which the 11 variables identified in step 2 were classified in different cluster 

levels, based upon their driving and dependence power calculated for each variable in step 

4.  

3.4.3 Comparison of action research deployments  

The findings from the interviews defined the decision variables used to intervene and 

compare deployments at ACRE. The performance of deployments (sensor nodes A and B) at 
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ACRE were compared, based on the Lean and Green performance drivers of cost, power 

consumption, data interoperability & data scalability identified from the SLR and validated 

through content analysis of the focused group interviews. The action research deployment 

comparisons also partially validate the Interpretive Structural Model constructed for the Lean and 

Green IoT wireless sensors framework.   

3.5 Reliability & Validity  

Interpretive Structural Modelling was used for data analysis, based on the decision variables 

identified in the three generic layers of Internet of Things (IoT) wireless sensors framework. 

Construct validity, internal validity, external validity, and reliability were important issues in 

overall research design (Yin, 2002; Voss, Tsikriktsis & Frohlich, 2002). Construct validity means 

that the operational measures used to translate the constructs measures the concepts that they are 

meant to measure (Yin, 2002). In the context of this study, the construct validity were the 

operational definitions of the decision variables identified from the interviews. Internal validity 

means that the study measures the demonstrated relationships and are explained by contextually 

validated expert opinion. For the internal validity in the three focused group interview sessions, 

three participants were randomly selected, per the typical practice in ISM (Malone, D. W. 1975; 

Govindan et al. 2015; Agrawal, A. 2020) to fill-out a matrix survey developed from the initial 

interview data coded in NVivo software. The filled-out survey by three Subject Matter Expertise 

(SME’s) chosen from focused group interviews panel was validated and checked for reliability 

(consistency) of initial self-interpretation matrix developed by researcher from analysis of 

interview data. External validity means that the results are valid in similar settings outside the 

studied objects. Reliability means that the study is objective meaning other researchers could reach 

the same conclusions in the similar settings. Further to assure validity and reliability of the research 

design, a triangulation method was used, a typical practice for rigor in qualitative research 

methodologies (Mathison, 1988; Singleton & Straits, 1999). Triangulation may involve combining 

multiple data sources (data triangulation), using multiple research methods to analyze the same 

problem (methodological triangulation), or using multiple investigators. In this study, the approach 

of triangulation was followed by the researcher collecting and analyzing data from different 

sources i.e., the SLR (n=70), and the three focused group interview sessions. The content analysis 

from the focused group interviews was triangulated by three non-subject matter expertise 
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appraisers for inter-reliability. The theoretical framework developed through Interpretive 

Structural Modeling was partially empirically validated by comparison of action research 

deployments using multiple linear regression analysis of the real time performance data from the 

deployments. The comparison of IoT deployments was based on the Lean and Green drivers i.e., 

Cost, Power consumption, Data interoperability, Type of wireless communication, Data storage 

and Data scalability identified from the content analysis. The following chapter describes the 

findings for the focused group interviews, Interpretive Structural Model results and performance 

comparison of action research deployments.   
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 RESULTS  

This section describes the thesis findings for Focused group interviews, ISM, and comparison 

of action research deployments.   

4.1 Focused group interviews content analysis 

The data gathered from the three focused group interview sessions is shown in Table 4.2. 

The participants questions in semi-structured interview scripts are in (Appendix A). The interviews 

were conducted virtually and recorded with the informed consent of participants following IRB 

guidelines and protocol. The participants were asked to respond voluntarily each question with 

follow-ups for clarifications. Transcriptions of the recorded interviews generated were uploaded 

and analyzed in text files format using NVivo 12 software. Text search queries pertaining to  Lean 

and Green issues are highlighted in the interview questions, based upon the research objectives 

(see Appendix A) and entered using the keywords “Cost”, “Power consumption”, “Scalability”, 

“Communication range”, “Data latency”, “Data storage”, “Data processing”, “Data 

interoperability”, “Wireless communication technology”, “Type of sensors”, “Monitoring row 

crop diseases”, “Autonomous”, “Smart Irrigation”, “Smart Fertilization”, “Farm machinery 

navigation”, “Precision Applications” and string “OR” was used to connect keywords for broader 

search criteria ensuring holistic coverage for content analysis.  

4.1.1 Nodes (Content analysis) & Inter-reliability test 

The query results from the previous section were analyzed, creating nodes for each of the 

variable relationship identified. Nodes were developed by analyzing the focused groups data 

following a thematic content analysis approach. The preliminary nodes identified by the researcher 

were compared for inter-reliability, with 3 raters per, typical practice for reliability (Hruschka et 

al., 2004). The three raters include researcher, and two other researchers, with non-subject matter 

knowledge, but with expertise in content analysis, for minimizing bias (Tashakkori & Teddlie, 

2003). The non-subject matter expertise raters have proficiency conducting content analysis using 

NVIVO. A codebook was generated from NVivo software highlighting the list of nodes describing 

relationships between decision variables identified through content analysis. The Kappa values 
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from inter-reliability test are highlighted in Table 4.1. Cohen’s Kappa coefficient is a statistical 

measure of inter-rater reliability, which many researchers regard as more useful than the 

percentage agreement, since it considers the amount of agreement that could be expected to occur 

through chance (Sotiriadou, Brouwers & Le, 2014). NVivo calculates the Kappa coefficient 

individually for each combination of node and source. If the two users are in complete agreement 

about which content of the source should be coded at the node, then the Kappa coefficient is 1. If 

there is no agreement between two users (other than what could be expected by chance), the Kappa 

coefficient is ≤ 0. A value between 0 and 1 indicates the scale of agreement. The Kappa (k) value 

≤0.40 means weak agreement, between 0.40-0.75 good agreement, above 0.75 excellent agreement 

(Sotiriadou, Brouwers & Le, 2014). The average kappa (k) value is calculated for each individual 

node by using the mean k value calculated for each comparison rating between individual raters 

(n=3 raters) involved as per the typical practice highlighted in the studies (Tashakkori & Teddlie, 

2003, Hruschka et al. 2004).   

Table 4.1: Nodes & Inter-reliability (Kappa) test results 

Nodes (Variable relationship) 
     Kappa 1 

(Raters 1-2) 

Kappa 2 

(Raters 1-3) 

Kappa 3 

(Raters 1-2,3) 
Avg-Kappa 

Agreement 

(%) 

Data interoperability- Data 

processing 
0.4392 0 0.4392 0.293 96.91 

Data interoperability- Data storage 0.4901 0 0.4901 0.33 98.57 

Data interoperability -Type of 

sensors 
0 1 0.3162 0.44 96.96 

Data interoperability- Type of 

Wireless communication 
0 1 1 0.67 95.18 

Data interoperability-Type of 

Precision application 
1 1 -0.0349 0.65 100 

Data Latency- Autonomous 

applications 
0 1 0 0.33 97.57 

Data Latency- Autonomous 

applications (2)\Data latency- 

Monitoring Precision applications 

0 1 1 0.67 95.1 

Data Latency- Autonomous 

applications (2)\Smart Fertilization- 

Data Latency 

1 1 0.2441 0.75 100 

Data Latency- Autonomous 

applications (2)\Smart Irrigation- 

Data Latency 

0 1 -0.0077 0.33 98.17 
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Table 4.1: Continued 

Data Latency- Autonomous 

applications\Data latency- 

Monitoring Precision 

applications 

0.2441 0 0 0.0814 94.24 

Data Latency- Autonomous 

applications\Farm Machinery-

Data latency 

-0.0077 0 0.4111 0.67 98.43 

Data Latency- Autonomous 

applications\Smart Fertilization- 

Data Latency 

0 0 0 0 98.45 

Data latency- Data scalability 0 1 0 0.67 92.23 

Data latency-Autonomous 1 0 1 0.75 100 

Data latency-Sensor monitoring 1 0 0 0.33 100 

Data latency-cost 1 1 -0.0192 0.0814 100 

Data Processing- Data latency -0.0192 0 1 0 95.45 

Data processing-Communication 

range 
1 1 1 0.33 100 

Data Scalability- Power 

consumption 
0 0 0 0 97.3 

Data Scalability-Cost 1 1 1 0.67 100 

Data storage - Cost 1 1 -0.0088 0.660 100 

Data Storage- Data latency 0 0 0 0 99.62 

Data Storage- Data Processing -0.0088 0 -0.0096 0.327 97.46 

Data Storage- Data Scalability -0.0096 0 1 1 97.98 

Data storage- Type of Precision 

application 
0 0 0 0 97.52 

Data Storage-Power consumption 1 1 -0.0142 1 100 

Power consumption-Data latency -0.0142 0 1 0.66 92.44 

Sensors locations\Phone devices 1 0 0 0.33 100 

Sensors locations\Soil 1 0 0 0.66 100 

Smart fertilizing 1 0 0 0.3286 100 

Type of Precision Agriculture 

Application- Data scalability 
0 0 0 0.67 99.25 

Type of Sensor - Data storage -0.0115 0 0 0 96.77 
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Table 4.1: Continued 

Type of Sensor - Type of Wireless 

Communication  
0 1 1 0.33 96.84 

Type of sensor -Cost 1 1 0 0.67 100 

Type of Sensor- Data Latency (2) 0 1 0 0.33 99.56 

Type of sensor- Data processing (2) 0 1 -0.031 -0.004 97.26 

Type of sensor- Data scalability 1 1 0 0.67 100 

Type of sensor- Farm Machinery-

Autonomous 
-0.031 0 1 0.67 92.47 

Type of sensor- Farm Machinery-

Autonomous (2)\Accelerometer 
1 1 1 0.67 100 

Type of sensor- Farm Machinery-

Autonomous (2)\GPS 
1 1 0 0.67 100 

Type of sensor- Farm Machinery-

Autonomous (2)\Sound 
1 1 0 0.33 100 

Type of sensor- Farm Machinery-

Autonomous\Accelerometer 
0 0 0 0 99.17 

Type of sensor- Farm Machinery-

Autonomous\GPS 
0 0 0 0.323 99.67 

Type of sensor- Farm Machinery-

Autonomous\Sound 
0 0 1 0.67 99.52 

Type of sensor- Monitoring row 

crop diseases  
1 1 0 0.67 100 

Type of sensor- Monitoring row 

crop diseases (2)\Environmental 
0 1 1 1 97.01 

Type of sensor- Monitoring row 

crop diseases (2)\Remote sensing 
0 1 0.2636 0.67 98.39 

Type of sensor- Monitoring row 

crop diseases (2)\Site-specific 
1 1 -0.0058 0.67 100 

Type of sensor- Monitoring row 

crop diseases\Environmental 
0.2636 0 1 0 97.43 

Type of sensor- Monitoring row 

crop diseases\Remote sensing 
-0.0058 0 0.1343 0 98.04 

Type of sensor- Power 

consumption- Monitoring 

application 

0.1343 0 0 0 92.1 

Type of sensor- Power consumption- 

Monitoring application (2) 
0 1 1 0.67 91.43 
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Table 4.1: Continued 

Type of sensor- Power 

consumption- Monitoring 

application (2)\Sensor power 

monitoring 

0 1 0.797 0.67 99.31 

Type of sensor- Power 

consumption- Monitoring 

application (2)\Sensors Power 

autonomous 

1 1 0 0.42 100 

Type of sensor- Power 

consumption- Monitoring 

application\Sensor power 

monitoring 

0.797 0 0 0.66 99.65 

Type of sensor- Power 

consumption- Monitoring 

application\Sensors Power 

autonomous 

0 0 1 0.42 99.33 

Type of sensor- Smart fertilization-

Autonomous (2) 
1 1 1 0.67 100 

Type of sensor- Smart fertilization-

Autonomous (2)\Remote sensing 
1 1 0 0.67 100 

Type of sensor- Smart fertilization-

Autonomous\Ph nitrate 
1 1 1 0.60 100 

Type of sensor- Smart fertilization-

Autonomous\Remote sensing 
0 0 1 0.67 99.43 

Type of sensor- Smart Irrigation-

Autonomous 
1 1 1 0.26 100 

Type of sensor- Smart Irrigation-

Autonomous\Soil moisture 
1 1 1 1 100 

Type of sensor-Communication 

range 
1 1 0 1 100 

Type of sensors\Audio 1 0 0 1 100 

Type of sensors\Autonomous 1 0 0 0.33 100 

Type of sensors\Carbon Sensors 1 0 0 1 100 

Type of sensors\Environmental 

sensors 
1 0 1 1 100 

Type of sensors\Microbial Sensors 1 0 0 0.67 100 

Type of sensors\Monitoring crop 

disease 
1 1 0 0.67 100 

Type of sensors\Monitoring crop 

disease\Remote sensors 
1 0 0 0.33 100 

Type of sensors\Satellite 1 0 0 0.33 100 
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Table 4.1: Continued 

Type of sensor-Type of Wireless 

Communication  
0 0 0 0.67 99.08 

Type of Wireless Communication- 

Autonomous application 
0 0 0 0.33 99.27 

Type of Wireless Communication- 

Communication range 
0 0 0 0.67 98.85 

Type of Wireless Communication- 

Data Scalability 
0 1 -0.0137 0.33 94.55 

Type of Wireless Communication- 

Monitoring application 
-0.0137 0 0.385 0.33 97.2 

Type of Wireless Communication- 

Power consumption 
0.385 0 0.2408 0.2086 95.05 

Type of Wireless Communication - 

Data Latency 
0.2408 0 -0.0128 0 91.83 

Type of Wireless Communication - 

Data storage 
-0.0128 0 0 0.33 94.6 

Type of Wireless Communication -

Cost 
0 1 0 0.124 96.78 

Types of Sensor- Data Quality 0 1 1 0.2086 96.65 

 

The nodes highlighted in the Table above, with average Kappa value of 1 meaning 

excellent agreement are Data storage- Data scalability, Data storage- Power consumption and Type 

of sensor- Communication range. Nodes having good agreement with average Kappa value of 0.67 

are Data scalability- Cost, Data storage- Cost, Power consumption- Data latency, Data latency- 

Autonomous application, Data latency- Data scalability, Type of sensor- Power consumption, 

Type of sensor- Data scalability, Type of wireless communication- Communication range. Nodes 

having week agreement with average Kappa value of 0.33 are Data processing- Communication 

range, Type of wireless communication- Data storage, Type of wireless communication- Data 

scalability and Type of sensor- Type of wireless communication. Nodes having very week 

agreement with average Kappa value of less than 0.33 are Data interoperability- Data processing, 

Type of sensor- Data processing, Type of sensor- Data storage, Data storage- Type of Precision 

application and Type of sensor- Data quality. Week agreement doesn’t mean the nodes are 

insignificant for relationships and were further validated in this research using Interpretive 

Structural Modeling approach. All node relationships are described in the following section 

through descriptive content analysis approach.   
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4.1.2 Descriptive content analysis  

A codebook was developed after performing the inter-reliability and shown in Table 4.2. 

highlighting the participants actual response quotes, coded under the respective nodes using NVivo 

from interview transcription data. The average inter-reliability Kappa (k) value calculated for each 

node is shown, along with descriptive analysis highlighting the relationships between the variables 

coded for the respective node. The descriptive analysis was subsequently used to create the 

decision variables for the participatory action research process in ACRE redeployment and are 

shown in Table 4.3. The descriptive analysis was used to develop a self-interaction matrix (see 

Figure 4.1) which highlights the contextual relationships between variables for developing the 

interpretive structural model (ISM) framework.  
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Table 4.2: Descriptive content analysis 

Nodes (Variable 

relationship) 

Participant response  Avg. Kappa value 

(Inter-reliability) 

Descriptive Analysis 

Data 

interoperability- 

Data processing 

P1: “So, I'll touch on it from a different angle. You 

know from a practicality perspective, from a true 

adoption in the field, people using this, there's 

probably data interoperability in solving.” 

 

P2: “How will people communicate? Common data 

from company sensor, sensor, business, business, 

whatever is probably more important right now. At 

least then the technical specifications of the type of 

database you're using or how you're storing or how 

you're processing.” 

0.30 (Weak 

agreement) 

Data processing requirements don't directly 

depend upon the Data interoperability rather it 

depends upon the type of precision agriculture 

application, data latency and communication 

range requirements.  

Data 

interoperability- 

Data storage 

P2: “You know interoperability of formats and 

everything, something that will happen as add data 

gets larger and larger is that you know you might 

want to go between different cloud environments, 

so we have some technology that we are 

developing to do some of that not entirely pivoted 

to other, but multi cloud is for example Thing to 

do, it's kind of tangentially related.” 

P3: “Data interoperability it's more at the 

software like application level. It's like when you 

deal with issues like that. Different software 

companies may need to talk to each other to make 

sure the. Results generated by them can be used by 

each other.” 

0.33 (Weak 

agreement) 

Data storage depends upon the data 

interoperability requirement. The interoperability 

between sensors, wireless communication 

technologies and cloud storage end. The 

requirements for storage less or more depend 

upon the compatibility of storage (sensors, 

wireless communication gateway, cloud) with 

each other and precision agriculture 

application requirements. 
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Table 4.2: Continued 

Data 

interoperability 

-Type of sensors 

P4: “If I install sensor A and now, I'm stuck with this 

product and I can't use this one over here because they 

just don't talk to each other, you know? I mean like if 

we're really going to get people to adopt this stuff, there 

needs to be choice and it needs to be some flexibility.” 

P5: “Data interoperability is going to be. It's really 

important to find it's a very hard thing to define. You've 

seen things like at Gateway. Try and maybe they went 

too far and got really specific in the weeds. There's 

probably some middle ground. You know that that needs 

to be the first step. It's like how do we identify the 90% 

most important data and just come up with formats 

for that?” 

0.44 (Fair 

Agreement) 

Data interoperability depends on the type of 

sensors as interoperability means data coming from 

different types of sources. As, the participant 

reported that there will be more data 

interoperability between the same category of 

sensors as they get integrated well with a particular 

type of wireless communication protocol (LoRA, 

Zigbee, Sigfox, BLE, Wi-Fi, GPRS 3G/4G). 

Data 

interoperability- 

Type of Wireless 

communication. 

P2: “I think open source obviously has its own benefits, 

right. There is the NB- IoT is definitely nice. You can 

have NB IoT tier towers, but it is more expensive. I think 

I know that they are connected by doing Laura van 

connectivity which will be nice. It will have this open 

source thing in addition to if you want. Parts of 

proprietary technology.” 

P5: “As long as this server has the ability to talk to the 

sensor using the correct wireless communication 

technology, it doesn't matter much like which 

technology you are using. Their communication. Just 

establish the link and the data flows along the link so in 

that sense the communication is like a very low level, 

almost like you don't need to worry about it as long as 

it's there. OK yeah, and for data interoperability it's 

more at the software like application level.” 

0.67 (Good 

Agreement) 
Type of wireless communication technology 
doesn’t depend upon the data interoperability and 

vice versa. The participants highlighted that Data 

interoperability is more adaptable at the user-

interface i.e., software or cloud storage end.   
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Table 4.2: Continued 

Data 

interoperability-

Type of 

Precision 

application 

P6: “Annotated data set so that you can exactly find 

out what is the disease and you can use that annotated 

data set into training your different machine learning or 

deep learning model. So that is one of the missing pieces, 

because although we. We reached out to Plant Village 

plant dog datasets, but then we had to do the annotation 

by ourselves. So, a very large scale annotated data set is 

still needed and that is 1 area. I'm hoping that more and 

more generals will be inspiring the researchers to really 

share their data.”  

P7: “Flow rate, pressure, pH of that so that it is very 

hard to join that piece of information. The Fertilizing 

team for the different sections of the farm. So as 

previously mentioned, integrating like different 

heterogeneous sensors.”  

0.67 (Good 

Agreement) 

Data interoperability depends upon the type of 

precision agriculture application, type of sensors 

and cloud data storage user-interface. For 

instance, as the participants highlighted that for 

monitoring row crop diseases application of open-

source field topography, soil and satellite data 

apart from the sensors can be used easily to 

develop robust row- crop disease models. Also, for 

autonomous applications such as smart irrigation 

and smart fertilization the data interoperability 

between soil moisture, Ph, nitrate and open-

source topography, soil data can be useful to 

develop robust models for sending alerts. 

Data Latency- 

Autonomous 

applications 

P4: “Depending on how latency sensitive that specific 

activity is, and in general I don't think the latency thing 

is ever at the millisecond level or the second level. It's 

always at a higher level of granularity because you know 

if you're like sensor monitoring, for example soil 

monitoring. I'm like the comparison that I'm making is 

compared to self-driving cars or what have you and hear 

others may be able to chime in if you have like a self-

driving tractor then I guess some of the latency 

sensitive mapping from the self-driving car industry 

comes in where you might have to do on device analytics 

to take care of that latency issue.”  

P3: “Drone that is sensing and at the same time 

spring then I think it becomes important to at that sub 

millisecond level that you would actually have to do the 

computation.” 

0.75 

(Excellent 

Agreement) 

Autonomous applications have low latencies in 

milli-seconds or seconds especially Farm 

machinery navigation systems using GPS and 

accelerometer sensors. The smart irrigation and 

smart fertilization where the data from soil 

moisture, Ph and Nitrate sensors have data 

latencies requirements in minutes or hours as 

participants reported. The monitoring 

applications specifically for row crop diseases 

where days and weeks might be the data latency 

requirements.  
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    Table 4.2: Continued 

Data latency- 

Monitoring 

Precision 

applications 

P4: “I think more of the typical agricultural 

applications have a greater bandwidth intensive 

latency where it does not have to be at the second 

level, it can be at the minute level or hour level.” 

P5: “Amount of agronomic data is often not very 

latency sensitive, you know, I mean. Days might 

start being a problem in weeks, probably our 

problem. If you're going to act out of a millisecond, 

certainly not a big deal, but I do think as you start 

seeing.” 

P4: “If there is remote sensing or otherwise you 

know yes there is time to move that to the right 

place. Do the computation, generate the prescription 

and then send it out.” 

0.67 (Good 

Agreement) 

The monitoring applications specifically for row 

crop diseases where days and weeks might be the 

data latency requirements as reported by the 

participants.  

Data Latency-

Farm 

Machinery 

P6: “Automation in vehicles and equipment and 

sprayers and things like that. You do have this sort of 

local. But, also increasingly there are machines that 

on the front of the machine they sense what needs to 

happen here and on the back of the machine it 

happens so in that case there really is no latency 
like it's. You know it's gotta be within a fraction of a 

second.” 

0.67 (Good 

agreement) 

The autonomous precision applications have low 

latencies in milli-seconds or seconds especially 

Farm machinery navigation systems using GPS and 

accelerometer sensors.  
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Table 4.2: Continued 

Data Latency- 

Smart 

Fertilization 

P7: “Days might start being a problem in weeks, 

probably our problem. If you're going to act out of a 

millisecond, certainly not a big deal, but I do think 

as you start seeing. Automation and autonomy in 

vehicles and equipment and sprayers and things 

like that. You do have this sort of local analytics 

processing problem that does have latency issues.” 

P9: Drone that is sensing and at the same time 

spring then I think it becomes important to at 

that sub millisecond level that you would actually 

have to do the computation.”  

0.75 (Excellent 

Agreement) 

The smart irrigation and smart fertilization where 

the data from soil moisture, Ph and Nitrate sensors 

have data latencies requirements in minutes or 

hours as participants reported. The monitoring 

applications specifically for row crop diseases 

where days and weeks might be the data latency 

requirements. 

Data Latency- 

Smart Irrigation 

P8: “If you had some sort of censored on your 

irrigator that could you know spray based on, you 

know based on sensor readings. Of course, 

irrigators are not moving 100 miles an hour, but 

you probably do need to be able to make decisions 

here faster than a second or something like that. And 

we are starting to see that you know. I remember 

there's a laser-based weed. You know that you put 

on a boom and it actually it's the weeds with the 

laser you know, and that's a lot of image 

processing.” 

0.33 (Weak 

agreement) 

Data latency requirements for the smart irrigation 

applications might be in minutes or hours that 

medium latency requirement higher than farm 

machinery autonomous applications but lower than 

monitoring row crop diseases biophysical 

applications.   
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Table 4.2: Continued 

Data latency- 

Data scalability 

P7: “If there is remote sensing or otherwise you 

know yes there is time to move that to the right place. 

Do the computation, generate the prescription, and 

then send it out. But, also increasingly there are 

machines that on the front of the machine they sense 

what needs to happen here and on the back of the 

machine it happens so in that case there really is no 

latency like it's. You know it's gotta be within a 

fraction of a second depending on the speed of the 

vehicle, certainly anything that's navigation related if 

it's autonomous, has to be sub millisecond.” 

P8: “So, for autonomous applications one of the 

nice things is for you to know if you're thinking of 

autonomous driving in terms of tractors or whatever, 

you can have a lot of data and you can offline train 

the model right. So if you can train the model offline 

using various kinds of temporal datasets that have 

been taken overtime, it's going to just enable 

decisions to be taken at real time faster and. Currently 

it is right you don't want it to make bad decisions, 

especially for things related to autonomous driving, 

so I think things were latency, it's latency sensitive 

and plus the cost of a bad decision is high.” 

0.67 (Good 

Agreement) 

Data latency doesn’t depend upon the data 

scalability requirements as it depends upon the type 

of precision agriculture application 

requirements.  

Data latency-

Cost 

P9: “If you get, you know that data all the time and 

then you know if you want to record with ice Blue. If 

you want your real data at the end of the year, you 

know you don't need that. By the 2nd, get that at the 

end of the year, you know that the high bandwidth 

data you don't necessarily need you know. And you 

also need to consider the cost of running a streaming 

device running on cell data because you have to pay 

a monthly charge and that might be 60 bucks to 

hundreds of dollars.” 

0.10 (weak 

agreement) 

Data latency doesn’t depend upon the cost 

requirement rather it depends upon the type of 

precision agriculture application. As one of the 

participants reported that for monitoring row crop 

diseases application data from the remote sensing 

image sensors can be transferred to cloud storage at 

higher latencies depending upon the criticality of 

timeline developing predictive models.  



 

 

 

7
6
 

 

Table 4.2: Continued 

Data processing- 

Data latency 

P8: “Low latency links back to some major 

processing, but edge computing I think is still going 

to be a key element in advancing some of these 

technologies.” 

P9: “So if you're concerned about latency you might 

want to do more of the processing on the device or 

on the edge or in the cloud depending on the latency 

requirements to decide how much to transfer the 

model? For example, Cloud will give you most 

accuracy, maximum accuracy and you can use very 

beefy models that are pre-trained, but you might not 

be able.” 

P8: “So, I think depending on whether it's an 

autonomous application or it's a by-physical 

application and autonomous, a lot of data will be 

good because you can take advantage of offline 

training the model and having a model that is 

updated once in a while.” 

0.10 (weak 

agreement) 

Data processing does depend upon the data latency 

requirements. For the lower latency requirement 

of autonomous applications such as Farm 

machinery efficient navigation most of the data 

process takes place at the Wireless 

communication gateway edge end. However, for 

monitoring row crop diseases applications where 

data latency requirements are higher the data can be 

processed overtime on the cloud storage end to 

develop application programming interfaces for 

row-crop diseases predictive models.  

Data processing-

Communication 

range 

P10: “I'm not an expert here, but aren't there also 

examples where you're storing the data on the 

device or at the edge and you're only sending alerts 

or notifications if something is out of range, so then 

that limits your. You know the communications 

requirements, so there's ways again around finding 

what you're trying to do. You may only need to send 

short bytes of data with an alert or a notification 

when it goes out of range.” 

0.33 (weak 

agreement) 

Data processing depends upon the communication 

range between sensor node and wireless 

communication technology, low latency 

autonomous applications such as autonomous 

farm-machinery efficient navigation for harvesting 

or seeding using GPS, accelerometer or 

autonomous drones might require a lot of local 

data processing at the wireless communication 

gateway edge end with lower latencies.  

 

 



 

 

 

7
7
 

Table 4.2: Continued 

Data Scalability- 

Power 

consumption 

P10: “So, running the analytics locally or at the edge 

will require some adaptation to the neural network in 

order to run them within your essay. So, when you're 

transferring to the back end, if your content is too 

complex, you don't want to constantly try to transfer a 

major amount of data, you don't want to hog the 

bandwidth. By continuous transfer. So, it's not only 

the latency and power requirement, it's also the 

amount of data.”  

0.33 (weak 

agreement) 

Data scalability depends upon the power 

consumption requirements as large numbers of 

different types of sensors to increase data scale or 

using remote sensing drone imagery sensors can 

consume more power and increase costs 

significantly. 

Data Scalability-

Cost 

P7: “You know that's kind of application specific 

need, but I could definitely see you know if the data 

LoRA is what you have here in this presentation slide, 

I can definitely see that being useful. If you get, you 

know that data all the time and then you know if you 

want to record with ISO-Blue. If you want your real 

data at the end of the year, you know you don't need 

that. By the 2nd, get that at the end of the year, you 

know that the high bandwidth data you don't 

necessarily need you know.” 

0.70 (Good 

Agreement) 

Data scalability depends upon the cost 

requirements as data from larger & different types 

of sensors deployed in different areas of the field 

require more storage capacity that involve costs. 

However, the increase in storage at the cloud end or 

wireless communication gateway edge doesn’t 

contribute to significant increase in costs as 

participants reported. Installing more and 

different types of sensors to scale contributes much 

to the variable input cost. 

Data storage - 

Cost 

P10: “So that's not something that I think should be 

a huge priority on the cloud side especially. Sir, 

keeping terabytes of data costs next to nothing on the 

cloud side or on the edge side. I'm sorry, probably a 

little more important are the I work on a project called 

Iso- Blue, which is an edge computing device on 

agricultural machinery.”  

P8: “We have 500 gigabyte SSD's on him that doesn't 

cost too much and is smaller than a credit card, so 

that's more than enough for us for a couple of seasons 

of data and you could go much bigger without having 

any issues. Obviously, it will cost a little more, but in 

the grand scheme of things, I don't think that's super.” 

0.67(Good 

Agreement) 

Data storage requirements depend upon the cost. 

However, increasing the data storage requirements 

at the cloud storage and wireless gateway edge 

doesn’t cost much as reported by the 

participants.  
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Table 4.2: Continued 

Data Storage- 

Data latency 

P7: “Wi-Fi has short to medium coverage, LoRa has 

really long coverage and for many applications in 

agriculture, the latency doesn't matter much. For 

example, when you monitor the condition of soil, 
you may be able to cache the data and send the data 

through a slow link. Just gradually over time, also 

you can also send it over time like it's not required as 

the interval is very large. Yeah, in that case you have 

more things you can. Work with, for example. Some 

people say even if you are using it. Some short-range 

technologies on the sensor side. You may be able to 

catch the data and then collect it.”  

P10: “By driving cars with connections to the 

sensors, just like physically collecting the data 

nearby, you go there with some connection to 

collect the data. In that case the circular built is 

more like if we want to scale the case you need to 

manually go there somehow, but you can scale to 

areas where there's no connection at all.” 

0.33 (weak 

Agreement) 

Data storage depends upon the data latency 

requirements. The participants highlighted that 

higher the data latency for monitoring application 

more data storage is required at the cloud- 

storage end for storing data overtime with 

LoRA at higher latencies to build disease 

predictive models. 

 

  



 

 

 

7
9
 

Table 4.2: Continued 

Data Storage- 

Data Processing 

P7: “Running the analytics locally or at the edge will 

require some adaptation to the neural network in 

order to run them within your essay. Pounds write 

latency, bumps, and the other is transferred to the back 

end, right? So, when you're transferring to the back 

end.” 

P8: “As a researcher, it pains me, but I think the reality 

is that you know big data and these types of processing 

ideas are going to make lots of cheap sensors. Then 

maybe you don't know they're not scientific if you will, 

and they don't update every second. But there are lots 

of them. A lot more valuable than one or two really 

fancy ones. Or you know that meaning that oftentimes 

the cheap ones are also lower power, and you know, 

because you're not necessarily looking for the same 

type of tolerances and things. I think there's also a 

practical advantage there in that. Go out and visit a 

farm, right? Even if you're not a farmer, gotten into 

farming or you know this doesn't take very long to 

realize that things break. Everything is far apart, it 

is very hard to maintain this stuff. You know you're 

a lot better having 1000 tons and letting under break 

than having two.” 

0.33 (Weak 

agreement) 

Data storage depends upon the data processing 

requirements. The participants reported that for the 

Autonomous application such as Farm machinery 

navigation, smart irrigation & smart fertilization 

the Data processing is required at the wireless 

gateway edge end and therefore storage 

requirements goes accordingly. For monitoring 

row-crop diseases application the data can be 

processed for developing predictive models on the 

cloud-storage end where data can be stored from 

different gateways & other open-public data 

sources overtime. The vice versa is not true 

because data processing depends upon the type of 

precision agriculture application and not on data 

storage requirements.  

Data Storage- 

Data Scalability 

P10: “Always assume that the data can always be 

immediately sent and therefore the ability of the local 

sensor to buffer, to store a certain amount of 

information until it reaches back coverage is useful.” 

P8: “I was going to say that's seems to be the trend to 

capture as much data as possible at the edge. So really, 

rather than just applying the technology randomly 

trying to look at what's the purpose of the data, as 

you've all said.” 

1 (Excellent 

agreement) 

Data storage depends upon the data scalability 

requirements. Higher the data scale from 

different sensors and larger fields require more 

data storage requirements at the cloud and 

wireless communication gateway end. The vice-

versa is also true i.e. the data scalability depends 

upon the data storage requirements.  
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Table 4.2: Continued 

Data storage- 

Type of 

Precision 

application 

P5: “They just have everything in one box, and we 

provide them the MDM NWD watchdog technology 

through which we control the data. We flash the 

images and for example if there is any breakdown in 

any situation we all have the backup stored data for 

it. So that is something that is actually in development 

and I'm pretty sure that was gonna be the trying to do 

really resonates with what it's going to be in future.” 

0.33 (Weak 

agreement) 
Data storage depends upon the type of Precision 

agriculture application. The participants 

highlighted that for monitoring row crop diseases 

application the data from remote sensing, soil 

moisture and weather sensors can be transferred and 

stored overtime on cloud-storage providing much 

flexibility and data interoperability from other 

open-data sources for instance topography and soil 

geographic data.  

Data Storage-

Power 

consumption 

P4: “Here's the rest API that you can pull the data in 

from so we can't quantify what the power 

consumption is for that. But then you have it on the 

plant side. Sometimes you might have sensors like the 

from the Farm beats platform where you could 

determine how often you want this data. So, then 

that determines the power consumption that's going 

to be drawing. And so that that's to give like different 

perspectives on sometimes you might not know how it's 

affecting the power consumptions. And sometimes you 

can see immediately that the battery level is one of the 

sensors that you were looking at and how the power is 

being drained.” 

P9: “I think the reality is that you know big data and 

these types of processing ideas are going to make lots 

of cheap sensors. Then maybe you don't know they're 

not scientific if you will, and they don't update every 

second. But there are lots of them a lot more valuable 

than one or two really fancy ones or you know that 

meaning that oftentimes the cheap ones are also 

lower power.” 

1 (Excellent 

agreement) 
Data storage doesn’t depend upon the power 

consumption requirements. Power consumption 

depends upon the data latency requirements i.e., 

data transfer rate as highlighted by participants. 
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Table 4.2: Continued 

Power 

consumption-

Data latency 

P3: “LoRAWAN maybe more specific would be 

appropriate for like one of these, you know, 

hundreds or thousands of sensors spread out 

over a huge area. You know and Something like 

that would typically be, you know, power or 

battery, small battery or energy harvested kind of 

thing. The sensors, probably by nature, not a very 

fast update rate, or don't measure very often. And 

so, it Maps to that technology well, but there are a 

lot of other things you know or LoRA won't solve 

the problem in the space of AG One would be just, 

you know, machine automation. You know, like 

you'll never be able to have a cloud connected 

machine that's maybe utilizing the cloud's 

ability to do real time computations and have that 

connected through LoRA  like this is probably just 

will never work for latency reasons.” 

P5: “LoRA  gateways consume huge amounts of 

power so that their clients don't have to. You know. 

I mean, it's a balance. You can only get so much 

data latency for a certain amount of power.” 

0.67 (Good 

Agreement) 

Data latency depends upon the power 

consumption requirements as lower the latency 

requirements from sensors and wireless 

communication technologies higher the power 

consumption. LoRA is a low power and higher 

latency wireless communication technology 

protocol. The 3G/4G/5G and wireless WIFI have 

more power consumption as they have low 

latencies-high data transfer rate and are used 

for autonomous applications. Bluetooth wireless 

BLE is a low power- low latency option for 

shorter communication range precision 

applications such as for RFID, GPS and other 

short communication range sensor precision 

applications. 

Typeof Precision 

Agriculture 

application - 

Cost 

P11: “If you have smart fertigation or real time 

like pH and electrical conductivity control, you 

are just wasting money if you are doing that process 

on the cloud and you will be vulnerable to lack of 

Internet and also processing that data you're using.” 

P8: “If you get, you know that data all the time and 

then you know if you want to record with Iso- Blue. 

If you want your real data at the end of the year, 

you know you don't need that. By the 2nd, get that 

at the end of the year.”  

0.75 (Excellent 

agreement) 
Type of precision agriculture application 
depends upon the cost requirements. The 

participants reported that for monitoring row crop 

disease applications where data latency 

requirements are higher the data can be transferred 

to cloud storage over-time with lower bandwidth 

requirements and costs associated as compared to 

low latency autonomous applications.  
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Table 4.2: Continued 

Type of Precision 

Agriculture 

Application- Data 

scalability 

P12: “Disease detection and management or 

other things on the farm, nutrients etc comes from 

different sources. You might have some that 

would come from an egg input provider that would 

be doing custom applications of pesticides or 

fertilizers. There might be some coming from the 

farm machinery or come from the farmers 

perspective or a consultant. Or you know if you're 

if you're ordering aerial imagery, there would be 

that source and other.”  

P9: “The biophysical model again right there, it 

might be important to have multi-dimensional 

data over time to just have a richer model to 

give you a very intricate observation. So, so I think 

depending on whether it's an autonomous 

application or it's a by physical application and 

autonomous, a lot of data will be good because 

you can take advantage of offline training.” 

0.67 (Good 

agreement) 

Type of precision agriculture application depends 

upon the data latency requirements as autonomous 

applications have low latencies in milli-seconds or 

seconds especially Farm machinery navigation 

systems using GPS and accelerometer sensors. The 

smart irrigation and smart fertilization where the data 

from soil moisture, Ph and Nitrate sensors have data 

latencies requirements in minutes or hours as 

participants reported. The monitoring applications 

specifically for row crop diseases where days and 

weeks might be the data latency requirements. 

Type of Sensor - 

Data storage 

P10: “Autonomous areas don't really care about 

data that happened previously and you're not 

really going to need to store historical data. OK, 

except it with the exception of the monitoring 

applications for that autonomous. Application so I 

don't. I don't imagine there being a very high data 

storage requirement.” 

0.33 (Week 

agreement) 

Data storage requirements depend upon the type of 

sensors. Remote sensing sensors store and transfer 

large amounts of image sensing data to the cloud 

overtime. However, for the autonomous 

applications sensors such as accelerometers and 

GPS sensors historical data storage doesn’t value 

much. The participants also reported that the 

variable that sensors are measuring if changing 

constantly requires sending and storing data 

consistently over time.  
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Table 4.2: Continued 

Type of Sensor - 

Type of Wireless 

communication 

Technology 

P12: “Overkill to be sampling 8 every second so you 

can't save a lot and probably this is one of the biggest 

advantages of LoRa. You can cover a big range 

and send data at a very low rate. Yeah, instead of 

like, depending on a cell network modem never 

planned for just measuring a slowly changing 

variable like temperature so. 

P13: “As long as you don't need image sensors, 

then the bandwidth requirements are negligible. 
Just to give you a context. So, in our system where 

a single soul chip tag can connect to six 

simultaneous sensors we're sending something like 

50, 50 bytes, 50 bytes every five minutes.” 

0.67 (Good 

agreement) 
Type of wireless communication technology 
depends on the type of sensors integrated. The 

participants reported that Autonomous applications 

such as Smart Irrigation, Smart Fertilization 

and Farm machinery navigation have lower 

data latency requirements where LoRA has a 

drawback of higher latency more suitable for 

integrating environment, soil and Ph nitrate 

sensors where data latency requirements are 

higher as compared to Autonomous 

applications.  

Type of sensor -

Cost 

P11: “You have to go out there and take subsamples 

and that isn't near detailed enough to address the 

variability that's in the field. And so to me, like the 

big game changer that we really need is some kind 

of a low cost accurate phosphorus potassium soil 

Ph type of a sensor. And that, to me would 

revolutionize crop production more than anything.” 

0.67 (Good 

Agreement) 

Type of sensor depends on cost. Remote sensing 

sensors collecting satellite data are costlier as 

compared to weather, soil moisture, Ph and 

nitrate sensors. GPS, accelerometer. 

Type of Sensor- 

Data Latency 

P10: “If you're concerned about latency you might 

want to do more of the processing on the device or 

on the edge or in the cloud depending on the 

latency requirements of the process.” 

P14: “If your variable doesn't change too often 

then it's overkill to be sampling 8 every second so 

you can't save a lot and probably this is one of the 

biggest advantages of LoRa, So, you don't. You can 

cover a big range and send a very low rate.” 

0.67 (Good 

agreement) 
Data latency depends upon the type of variable 

measured through sensors and type of precision 

agriculture application. The participants reported 

that for smart irrigation and smart fertilization the 

data from soil moisture, Ph, nitrate and weather 

sensors might have latency requirements in 

minutes or in hours. However, GPS, 

accelerometer & remote sensing sensors have 

lower data latencies.   
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Table 4.2: Continued 

Type of sensor- 

Data scalability 

P16: “Something on the leaves of crops, then you 

would use satellite aerial or drone typically, and 

so, I mean these are sensors or few in number, but 

they're collecting a lot of data over a wide area.” 

P14: “So, if you're talking, you know a piece of 

autonomous farm equipment, Generally, would 

think of the data. At least of the data speed needs, 

there are going to be significantly higher. Most 

that's focused around safety, right? Anything that 

involves safety typically requires high data 

rates and often has redundancies.” 

P12: But like redundancies, you mean we need to 

then process the data a lot. Basically, have the 

implementation of control applications right. 

Alright, but more by redundancy I was so in 

talking like a vehicle scenario. You have, you 

know, a lot of times they are. You know they'll 

have two sensors to do the job of. One for fail 

safe reasons, so that's kind of where I was 

thinking along those lines. Compared to, you 

know, for in some sort of an agronomic sensing 

scenario, 

0.67 (Good 

Agreement) 

Data scalability depends upon the type of sensors. 

Remote sensing and drones can store and transfer 

large amounts of image, visuals & navigation 

point data from large area fields. However, for 

weather, soil, Ph & Nitrate sensors the large-

scale applications will involve more of these 

sensors.  

 

  



 

 

 

8
5
 

Table 4.2: Continued 

Type of sensor- 

Data processing 

P11: “I could call it like multi sensor fusion but at 

the same time you want to provide a usable API right 

so that people can understand at the front end the 

results may be properly visualized from the different 

sources and they might be some sensor sources that 

are resulting in noisier data than the others. So, 

you might want to normalize. With respect to that, 

and there are other ways of doing dimensionality 

reduction, right? So, if you see noisier data, you can 

do more dimensionality reduction or noise 

removal for that, or outlier removal for that versus 

the others that are clean or so. So that is one way of 

doing differential analytix. The other is related to 

latency, so if you're concerned about latency you 

might want to do more of the processing on the 

device or on the edge or in the cloud depending on 

the latency requirements.” 

0.33 (Weak 

agreement) 

Data processing at cloud storage or at gateway or 

edge depends upon sensor type as remote sensing, 

GPS and autonomous application sensor as 

reported by participants need much higher data 

processing at communication gateway or cloud 
for driving the vehicles and generating prescription 

maps for row-crop diseases.  

   

Type of Sensor 

power 

monitoring 

P15: “I mean you can have color cameras, multi 

spectral camera, hyperspectral cameras, so these are 

the sensors that are normally you choose for. For 

monitoring view crop diseases in drops or even or 

even in any other crops that you would like to.” 

P14: “So, the sensor could be on an aerial drone or 

it could be deployed in the soil. So, depending on or 

it can be deployed in their farm machinery. So just 

another way to classify depending on what we're 

trying to measure. Or it could be satellite sensors 

where you want to install a camera. For instance, for 

disease monitoring or. Of, course if is not critical 

there, but there there's certainly higher 

bandwidth requirements.” 

0.67 (Good 

agreement) 

Monitoring diseases applications where higher 

latency and bandwidth requirements are there 

the power consumption from the sensors might 

be less as compared to autonomous applications 

where latency requirements are lower.  
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Table 4.2: Continued 

Sensors Power 

autonomous 

P15: “If you have a sensor that's connected to an 

alternator in a battery on a vehicle. Well, that's 

sort of the same category like you don't have to 

worry about power consumption of a sensor since 

the ones that you only have to worry about power 

consumption are those that are not mounted to an 

engine of some kind.” 

0.67 (Good 

Agreement) 

Accelerometer sensors connected to the 

machinery or autonomous vehicle are battery 

powered and power efficient as compared to the 

one’s not powered by internal engine vehicle 

batteries. 

Type of sensor-

Communication 

range 

P16: “For instance, for the disease monitoring or of 

course if you have a drone or some other moving 

vehicles that you want to photograph. These 

latency is not critical here, but there's certainly 

higher bandwidth requirements. The area or 

receipt latency as being important. It depends on 

where the intelligence is. What I mean by that is if 

you are trying to irrigate automatically and say OK, 

I want to deliver this volume of water to the field.” 

1 (Excellent 

agreement) 

Monitoring precision applications have higher 

latency requirements having higher bandwidth 

requirements for wider coverages therefore the 

type of sensors used in monitoring applications are 

compatible with higher latency and wider 

communication range bandwidths.  

 

  



 

 

 

8
7
 

Table 4.2: Continued 

Type of Wireless 

Communication- 

Power 

consumption 

P14: But for power we did a comparison for some 

of the different wireless technologies. I know this 

from the work we have done that mention this paper 

we were interested in the power consumption for 

data transfer and our goal was to decrease the data 

transfer for it’s obviously much lower. Especially 

Bluetooth low energy, right? So, 85.8% for LoRA 

it is 99.9% to LoRA and SigFox. So, I think just to 

map to a higher granularity, BLE is quite a bit 

lower, so 85 versus 6 box and low RES 99.9. So, 

you may have to consider that if you're thinking of 

data transfer using these different wireless 

technologies.” 

P17: BLE is low power on the client side because 

the server side became significantly higher 

power. It doesn't matter how you do it, but you can 

control through modulation. Teams where the 

power is in through protocols, you know so But it's 

likely one of the better on the client side, but 

overall, it may not be better than something else 

you know.”  

P18: “The latency requirements and the power 

consumption. So, we actually have found that if 

the latency requirements are low and you 

basically want to consume the power, and that's 

where we did this comparison between the 

different wireless technologies that LoRA is 

much more power consuming than Bluetooth. 

Depending on what networking modality you will 

have and the battery requirements of that sensor, 

you might want to kind of bound the amount of data 

transfer that is happening from the sensor to the 

gateway.” 

0.67 (Good 

agreement)  
Type of wireless communication technology 
depends upon the power consumption 

requirements as lower the latency requirements 
of the precision application such as autonomous 

more is the throughput rate and higher the power 

consumption. 
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Table 4.2: Continued 

Type of wireless 

communication 

technology- Data 

Latency 

P16: “Something like LoRa-WAN maybe more 

specific would be appropriate for like one of these, 

you know, hundreds or thousands of sensors spread 

out over a huge area. You know and Something like 

that would typically be, you know, power or 

battery, small battery or energy harvested kind of 

thing. The sensors, probably by nature, not a 

very fast update rate, or don't measure very 

often.” 

P18: “So, depending on the size of the data rate 

you want the bandwidth spreading factor. You 

basically see what is your so they'll be an automated 

thing. Of course, if there is more autonomous data 

but that you have these autonomous networking 

decisions where is very you basically essentially 

have an API where you have the software defined 

decision engine to decide on which networking 

modality is helpful for that specific application.”  

P16: “The Iso- blue data were sending that over 

cellular. The need I guess the need for that to be the 

latency needed. That you would if there's any like 

real big requirement then of needing the data right 

away. The only thing I can think of is knowing like 

we were talking about using it for grain cart to 

keep track of how much grains in each combine as 

they're going through the field and, but I could see 

you know local Wi-Fi. And so, using going over 

cellular or some other connection, you know 

throughput for that want to be that high.”  

0.13 (Weak 

agreement) 
The type of wireless communication technology 
depends upon the data latency requirements of 

Precision application. The participants highlighted 

that LoRA is suitable for low power consumption 

and very long coverage where data latency 

requirements are higher such as monitoring 

applications where large image remote sensing, soil 

moisture and weather data can be transferred 

overtime. For autonomous precision applications 

where data latency requirements are higher LoRA 

is not suitable as throughput is lower and 4G-5G 

will work better however cost goes up. 

 

  



 

 

 

8
9
 

Table 4.2: Continued 

Type of Wireless 

communication 

technology- Data 

storage 

“So, I think depending on whether it's an 

autonomous application or it's a by-physical 

application. For autonomous, a lot of data will be 

good because you can take advantage of offline 

training and having a model that is updated 

once in a while. Not necessarily always updating 

online.”  

0.33 (Weak 

agreement) 
Type of wireless communication technology 
depends upon data storage requirements. The 

participants reported that the biophysical model 

might have multi-dimensional data to have an 

accurate model updated overtime. However, the 

autonomous applications such as smart irrigation 

and smart fertilization having self-intelligent 

systems require real-time data processing for 

sending alerts require more data processing 

involving edge-computing at wireless 

communication end, so data storage requirements 

are less.  

Type of Wireless 

communication 

technology-Cost 

The coverage using wireless technologies and for 

soil sensors LoRA will be great. For typical 

applications, Wi-Fi will be cheaper. It's like it can 

support higher throughput; cellular is very 

promising, but it can cost a lot.”  

For example, the company A web services will cost 

a lot, so in that case it's better to use a 

microcontroller or appeal, see. That will take care 

of analyzing like in real time. Actuator two to turn 

on to, let's fertilizer applied. It also serves the 

purpose of working as a backup if you don't 

have Internet, you are fine. The PLC will work if 

you want to keep track of the pH and electrical 

connectivity, you can do that quickly.” 

0.13 (Weak 

agreement) 

 

Type of wireless communication technology 
depends on the type of sensors integrated. The 

participants reported that Autonomous applications 

such as Smart Irrigation, Smart Fertilization and 

Farm machinery navigation have lower data 

latency requirements where LoRA has a drawback 

of higher latency more suitable for integrating 

environment, soil and Ph nitrate sensors where data 

latency requirements are higher as compared to 

Autonomous applications.  
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Table 4.2: Continued 

Types of Sensor- 

Data Quality 

P18: “So there is a very good application of lots of 

those kinds of sensors, which means a lot of 'em 

that are cheap and no one piece of data is that 

good. But if I compare now to yesterday and the 

day before, I get a good trend of something that's 

happening. But there's a different class of sensor 

that if you're going to use a sensor essentially to 

drive a biophysical model. Essentially calibrate 

that model from time to time. Then you don't just 

wanna know that well. Yes, the soil is whether it 

must have rained there, you might need to know. It 

rained and now how deep is the? How deep did the 

water flow into the soil? And so that takes sort of a 

different class of sensor, but you wouldn't have 

it all over the field. You might only have one or 

two of them, but you need really accurate data 

to drive models, and so I think there is a balance 

between the two.” 

0.33 (Weak 

agreement) New 

relationship 

Data quality from the sensors depends upon the 

type, scale, and calibration of sensors. Data 

quality might depend on the scale of sensors 

deployed, calibration and type of sensors used to 

measure biophysical variables.  
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The table above is developed using NVivo for content analysis and highlights the 

descriptive analysis of the expertise participants' responses in quotes from the focused group 

interviews with nodes developed from the content analysis. Nodes (variable relationship) column 

describes the relationship between decision variables coded from the content analysis with 

respective kappa values.  

The relationship nodes identified from the content analysis are described below. An 

Interpretive Structural Modeling (ISM) methodology was applied to develop these relationships 

among the variables.  

4.1.3 Decision Variables for Action Research Deployments 

The descriptive content analysis of the focused group interviews is used to define the 

decision variables.  

Table 4.3: Decision variables for Deployment at ACRE 

Variable (Node) Definition (Content Analysis- Focused group interviews) 

C1- Cost (CT) Fixed cost (Sensor cost, Communication gateway technology cost). 

Variable cost (Sensor batteries cost, Power consumption cost, Cloud 

storage subscription cost) 

C2- Types of Sensors 

(TS) 

Monitoring row crop diseases (Weather sensors (Temperature, Humidity, 

Light, Pressure, Soil Moisture), Remote Sensing (Drones, GPS), LIDAR 

image sensors), Smart Fertilization (Ph, Nitrate soil sensors), Smart 

Irrigation (Soil moisture, Ph level), Farm machinery autonomous 

operations (GPS, accelerometers, proximity, fuel level, sound). 

C3- Type of Wireless 

Communication 

technologies (TWC) 

3G/4G/5G, LoRaWAN, Sigfox, TVWS (Long communication range > 

5miles to 10 miles), Mid-range (<1 mile) Zigbee, Wi-Fi, Short range (10-

1000 m), Bluetooth (BLE), GPRS. 
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Table 4.3: Continued 

C4- Type of Precision 

Agriculture application 

(TPA) 

Monitoring applications (Row crop diseases), Autonomous applications 

(Smart Irrigation, Smart Fertilization, Farm Machinery navigation 

autonomous operations.   

C5- Data Storage (DS) Data storage platforms i.e.  (Wireless communication gateway end), cloud 

(User-end- application interface). 

C6- Data Scalability 

(DSC) 

The scale or amount of data transferred for storage and processing from 

different types(number) of sensors to edge (communication gateway-end) or 

cloud (User-end application interface) for developing precision agriculture 

applications.  

C7- Data Latency (DL) refers to the data transfer rate (bits/secs, bytes/secs, kbps, mbps) 

requirements defined for sensors and wireless communication technologies 

integrated with sensors for transferring data.  

C8-Communication 

Range (CR) 

defined as the communication distance between the sensor node (the device 

integrated with different types of sensors) and wireless communication 

gateway technology. The Signal to Noise ratio (SNR) and Received Signal 

Strength Index (RSSI) are the metrics used in this research study for the 

empirical analysis of signal strength with a communication range.  

C9- Data processing 

(DP) 

defined as the amount of data (bits/secs, bytes/secs, kbps, mbps) processed 

by the communication gateway technology and cloud storage end.  

C10- Power 

consumption (PC) 

defined as power consumption by sensors, wireless communications 

technology integrated with sensors along with backhaul networks (Wi-Fi, 

GPRS- 3G/4G/5G). The operating battery voltage for sensor nodes having 

different types of sensors integrated is the indicator for power consumption 

used in the empirical analysis for this research.  

C11- Data 

interoperability (DI) 

defined as the ability of cloud storage (user-end application interface) to 

store and process data from different sources (different types of sensors, 

wireless communication mobile gateway edge, remote sensing, other open-

source data) and able to communicate well with heterogeneous sensors and 

farm machinery for data transfer. 
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4.2 Interpretive Structural Modeling (ISM) analysis 

The Interpretive Structural Modeling (ISM) analysis technique was used for defining the 

contextual relationships and developing the model among the decision variables (see section 4.1). 

The ISM process started from developing a contextual matrix highlighting the relationship among 

variables, converting the contextual relationships in defined symbols with respective scores, 

checked and validated by the three raters for inconsistencies matrix developed (Malone, D. W. 

1975, Govindan et al. 2015, Agrawal, A. 2020). 

4.2.1 Contextual relationship matrix 

The alphabetic symbols used in the matrix below follows the notations:  

 V=1 if i (row variables) is related to j (column variables) only but not vice-versa (j is not 

related to i) 

 A=0 if j is related to i only but not vice-versa (i is not related to j)  

 X=1 for both direction relations from variable i to j and vice-versa  

 O=0 if the relation between the variables does not appear valid. 

The contextual matrix highlights the pairwise relationships between variables. These pairwise 

relationships were converted into notations in the self -interaction matrix in the following section. 
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Contextual 

Relationship 

Matrix (i rows, 

j columns) 

C1 

(CT) 

C2 (TS) C3 (TWC) C4 (TPA) C5 (DS) C6 (DSC) C7 (DL) C8 (CR) C9 (DP) 

 

C10 (PC) C11 (DI) 

C1 (CT) - V (Remote 

sensing 
sensors 

collecting 

large 
amounts of 

imagery 

satellite data 
are costlier as 

compared to 

weather, soil 
moisture, Ph 

and nitrate 

sensors) 

V (Type of 

Wireless 
communication 

technology 

depends upon 
the cost as low 

latency and 

more scale of 
different types 

of sensors with 

higher 
processing 

increases the 

power 
consumption 

cost) 

V (Low data 

latency and 
high data 

storage 

increases the 
cost of 

development 

on the cloud 
storage) 

V (Data 

storage 

requirements 
depend upon 

the cost. 

Increasing the 
cloud storage 

subscription 

cost) 

V (Data 

scalability 

depends upon 
the cost as it 

increases the 

sensors, data 
storage & 

processing 

costs) 

V (Cost 

depends upon 

the data 
latency 

requirements 

as the 
participants 

reported lower 

data latency 
for 

autonomous 

applications 
require more 

power 

consumption 
for high data 

transfer and 

processing) 

X 

(Communicatio

n range between 

sensors and 

wireless 

communication 

technology 

depends upon 

the cost 

requirements as 

broader the 

range for same 

data transfer 

requirements 

more power 

consumption)  

V (Data 

processing 

depends upon 
the cost 

requirements 

as higher the 
processing 

more is the 

power 
consumption) 

V (Variable 

Cost depends 

upon power 
consumption 

by sensors and 

communicatio
n gateway) 

V(Cost of 

cloud storage 

subscription 
depends upon 

the data 

interoperabilit
y between 

different data 

storages) 

C2 (TS) A - X (LoRA long 

range low 

power, lower 
latency (high 

data transfer 

rate). 
Autonomous 

application 

sensors (GPS, 
accelerometer, 

audio) low 

latency- 
3G/Wifi/BLE 

(Environmental, 

Remote 
sensing)- 

Monitoring 
applications- 

(higher latency, 

low data transfer 
rate)- LoRA, 

Sigfox) 

X 
(Monitoring 

application 

uses remote 
sensing, 

environmental 

(Temp, 
Humidity, 

Light, CO2) 

and soil 
moisture 

sensors) 

A (Data 

storage 

requirements 

depend on 
type of sensors 

for Remote 

sensing 
sensors 

involving a lot 

of Image 
processing, 

data points 

storage 
requirements 

are more)  

V (Data 

scalability 

depends upon 

the type of 
sensors as 

satellite aerial 

or drone 
sensors fewer 

in number 

collects large 
amount of 

data) 

V (Data 

latency 

depends upon 

the type of 
sensors as for 

autonomous 

applications 
the data from 

GPS, Sound 

and 
accelerometer 

sensors have 

low latency 
requirements) 

O (Type of 

sensors 

doesn’t 

depends upon 
the 

communicatio

n range as they 
are dependent 

upon the type 

of precision 
application) 

A (Data 

processing 

depends upon 

type of sensors 
as large 

amount of data 

from remote 
sensing, Image 

sensors 

require more 
processing)  

V (Type of 

sensors 

depends upon 

power 
consumption 

as remote 

sensing and 
imagery 

sensors 

consume more 
power as 

compare to 

thermocouple, 
resistive soil 

moisture 

sensors) 

A (Data 

interoperabilit

y depends 

upon the 
heterogeneity 

of different 

sensors and 
their 

integration 

with the 
communicatio

n gateway 

technology) 

Fig. 4.1: Contextual Relationship Matrix 



 

 

 

9
5
 

Fig 4.1: Continued 

C3 (TWC) A X - X (Type of 

wireless 
communicatio

n technology 

depends upon 
type of 

precision 

application as 
autonomous 

applications 

require lower 

latency and 

larger data 
processing) 

A (Data 

storage 
depends upon 

the type of 

precision 
application as 

autonomous 

application 
requires edge 

computing 

increasing 

data storage & 

processing at 
gateway end) 

A (Data 

Scalability 
depends upon 

the data 

processing and 
storage 

limitations of 

wireless 
communicatio

n gateway 

technology) 

V (Data 

latency 
depends upon 

the type of 

precision 
application 

which depends 

on data latency 
and bandwidth 

range 

requirements 

LoRA) 

X (Type of 

wireless 
communicatio

n technology 

depends upon 
communicatio

n range as for 

shorter ranges 
and lower data 

latency 

requirements 

for moving 

autonomous 
application 

LoRA might 

not work due 
to higher data 

latencies) 

V (Data 

processing 
depends upon 

the type of 

wireless 
communicatio

n gateway. 

Autonomous 
applications 

might require 

large amount 

of data 

processing & 
edge 

computing for 

alert systems) 

X (Type of 

wireless 
communicatio

n technology 

depends upon 
power 

consumption 

as lower data 
latency and 

higher 

processing 

requires more 

power 
consumption 

as for 

3G/4G/5G & 
Wifi as 

compare to 

LoRA) 

X (Type of 

wireless 
communicatio

n technology 

depends upon 
data 

interoperabilit

y as Type of 
sensors used 

must be 

compatible 

and 

interoperable 
with type of 

wireless 

communicatio
n gateway 

integrated)    

 
 

C4 (TPA) A A X - X (Type of 

precision 

application 
depends upon 

data storage as 

monitoring 
applications 

might require 

higher data 
storage from 

imagery & 

remote 
sensing)  

X (Type of 

precision 

application 
depends upon 

the data scale 

as large-scale 
data might be 

required from 

different type 
of sensors and 

scale of 

sensors 
deployed) 

X (Type of 

precision 

application 
depends upon 

data latency 

requirements 
as autonomous 

type precision 

agriculture 
applications 

might require 

low data 
latency)  

X (Type of 

precision 

application 
depends upon 

communicatio

n range as for 
autonomous 

alert 

applications 
short & mid-

range 

communicatio
ns & lower 

power 

technologies 
such as BLE & 

Zigbee. ) 

X (Data 

processing 

depends upon 
the type of 

precision 

application as 
for Monitoring 

applications 

with higher 
data 

processing at 

cloud storage 
instead of 

communicatio

n gateway 
end) 

X (Type of 

precision 

application 
depends upon 

the power 

consumption 
requirements 

as lower data 

latency 
autonomous 

applications 

might require 
Wifi, 

3G/4G/5G 

communicatio
n gateway 

consuming 

more power 
than LoRA for 

wider 

communicatio
n ranges) 

A (Data 

interoperabilit

y depends on 
the type of 

precision 

application as 
the cloud 

storage and 

communicatio
n gateway 

technology 

must be 
interoperable 

and 

compatible 
between 

different types 

of sensors) 
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Fig 4.1: Continued 

C5 (DS)  

X 

 

 

 

 

X 

 

A 

 

X 

 

- 
X (Data 

storage 
depends upon 

the data scale 

as for large 
amount of data 

from different 

type of sensors 
require larger 

communicate 

edge gateway 

and cloud 

storage space) 

V (Data 

latency 
depends upon 

data storage as 

higher data 
latency might 

require more 

storage of data 
at cloud end as 

compared to 

communicatio

n gateway 

edge end for 
Monitoring 

applications) 

V 

(Communicati
on range 

depends upon 

the data 
storage as for 

short-range 

applications 
requiring 

autonomous 

alert more data 

processing & 

storage is 
required at the 

communicatio

n gateway 
edge end) 

V (Data 

processing 
depends upon 

data storage as 

for monitoring 
applications 

more data 

processing 
might be 

required at the 

cloud-end as 

data latency 

requirements 
are higher) 

O (Power 

consumption 
doesn’t 

directly 

depends upon 
the data 

storage rather 

it might 
depend upon 

the data 

processing 

rate) 

X (Data 

Storage 
depends upon 

data 

interoperabilit
y. The data 

from different 

types of 
sensors must 

synchronize 

with cloud 

storage. More 

variety of 
sensors or data 

sources might 

require more 
interoperable 

cloud storage)  

 

C6 (DSC) X A V X X - A (Data 

latency 
indirectly 

depends upon 
the data 

scalability as 

low latency 
type of 

autonomous 

application 
require more 

data storage 

and processing 
at 

communicatio

n technology 
gateway end) 

O 

(Communicati
on range 

doesn’t 
depend upon 

data 

scalability and 
nor vice-versa. 

Data 

scalability 
rather depends 

upon type and 

number of 
sensors) 

A (Data 

processing 
depends upon 

the data 
scalability as 

more data 

processing is 
required for 

large scale of 

data at the 
cloud end for 

Monitoring 

precision 
applications)   

A (Power 

consumption 
depends upon 

the data 
scalability as 

higher data 

processing and 
low data 

latency 

requirement 
for 

autonomous 

applications 
require more 

power 

consumption 
at the 

communicatio

n gateway 
technology 

end) 

X (Data 

Scalability 
depends on the 

data 
interoperabilit

y as more 

interoperable 
the data 

storage scale 

of data can be 
increased with 

data from 

different 
sensors) 
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Fig 4.1: Continued 

C7 (DL) A A X X A V - X (Data 

Latency 
depends upon 

the 

communicatio
n range as for 

monitoring 

applications 
covering 

wider areas of 

farm LoRA 

might be used 

having higher 
data latency 

and low power 

consumption) 
 

 

A (Data 

processing 
depends upon 

the data 

latency as 
lower the data 

latency 

requirements 
of an 

application 

higher the data 

processing) 

 

X (Data 

Latency 
depends on the 

power 

consumption 
has lower is 

the data 

latency (high 
data transfer 

rate) higher is 

the power 

consumption 

by sensor 
nodes and 

communicatio

n gateway 
technology) 

 

A (Data 

interoperabilit
y indirectly 

depends on the 

data latency as 
low data 

latency might 

impact the 
compatibility 

of wireless 

communicatio

n gateway for 

different types 
of sensors)  

C8 (CR) X O X X A O X - X (Data 

processing 
depends upon 

the 

communicatio
n range  

X 

(Communicati
on range 

depends on 

power 
consumption 

as higher the 

range more 
power 

consumption 

is there by 
sensors and 

communicatio

n gateway 
technology) 

O (Data 

interoperabilit
y doesn’t 

depend on 

communicatio
n range) 

C9 (DP) A V A X A V V X - O (Power 

consumption 

doesn’t 
directly 

depends on the 

data 
processing 

rather it 

depends on the 
data latency) 

O (Data 

interoperabilit

y doesn’t 
depends on the 

data 

processing 
rather it 

depends on the 

data storage) 
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Fig 4.1: Continued 

C10 (PC) A X X X O V X X O - O (Power 

consumption 
doesn’t depends 

on the data 

interoperability) 

C11 (DI) A V X A X X O O O O - 
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4.2.2 Self-Interaction Matrix  

The self-Interaction matrix was developed using the contextual relationship matrix above 

with symbol notation. The highlighted cells in yellow are inconsistent with results of participants 

from the validity check.  

Self-

Interaction 

Matrix (i row,j 

column) 

C1 

(CT) 

C2 

(TS) 

C3 

(TWC) 

C4 

(TPA) 

C5 

(DS) 

C6 

(DSC) 

C7 

(DL) 

C8 

(CR) 

C9 

(DP) 

 

C10 

(PC) 

C11 

(DI) 

C1 (CT) 1 V=1 V=1 V=1 X=1 X=1 V=1 X=1 V=1 V=1 V=1 

C2 (TS) A=0 1 X=1 V=1 A=0 X=1 V=1 O=0 A=0 X=1 A=0 

C3 (TWC) A=0 X=1 1 X=1 A=0 A=0 V=1 X=1 V=1 X=1 X=1 

C4 (TPA) A=0 A=0 X=1 1 X=1 X=1 X=1 X=1 X=1 X=1 A=0 

C5 (DS) X=1 X=1 A=0 X=1 1 X=1 V=1 V=1 V=1 O=0 X=1 

C6 (DSC) X=1 A=0 V=1 X=1 X=1 1 A=0 O=0 A=0 A=0 X=1 

C7 (DL) A=0 A=0 X=1 X=1 A=0 V=1 1 X=1 A=0 X=1 A=0 

C8 (CR) X=1 O=0 X=1 X=1 A=0 O=0 X=1 1 X=1 X=1 O=0 

C9 (DP) A=0 V=1 A=0 X=1 A=0 V=1 V=1 X=1 1 O=0 O=0 

C10 (PC) A=0 X=1 X=1 X=1 O=0 V=1 X=1 X=1 O=0 1 O=0 

C11 (DI) A=0 V=1 X=1 A=0 X=1 X=1 O=0 O=0 O=0 O=0 1 

Fig. 4.2: Self-Interaction Matrix 

4.2.3 Reachability Matrix  

A reachability matrix shown in Figure 4.3 was subsequently validated by three interview 

participants from focus groups. Typical practice follows that validation with at-least 3 experts, in 

this study participants, per the ISM literature for validating a self-interaction matrix (Malone, D. 

W. 1975, Govindan et al. 2015, Agrawal, A. 2020). Inconsistencies between the self-interaction 

matrix and reachability matrix were resolved based on 2 out of 3 same responses with typical 

acceptance criteria of at least 67 % consistency, and included in the final interpretive matrix 

(Malone, D. W. 1975, Govindan et al. 2015, Agrawal, A. 2020).  
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Reachabilit

y Matrix- 

E1, E2, E3 (i 

row,j 

column) 

C1 

(CT) 

C2 

(TS) 

C3 

(TWC) 

C4 

(TPA) 

C5 

(DS) 

C6 

(DSC) 

C7 

(DL) 

C8 

(CR) 

C9 

(DP) 

 

C10 

(PC) 

C11 

(DI) 

C1 (CT) 1 V, X, V V,X,V V, A,V V,XV V,V,V V,A,V V,V,V V,A,V V,V,A V, V,X 

C2 (TS) A,X,A 1 X,X,O X,V,V V,A,A V,V,V V,V,X O,O,O A,A,V X,X,X X,O,A 

C3 (TWC) A,A,X X,O,X 1 X,X,X V,A,A X,X,X X,X,X X,X,V V,O,V X,V,X V,O,O 

C4 (TPA) A,A,V X,X,X X,X,X 1 X,V,X X,X,X X,X,X X,X,V X,X,X X,X,X V,V,X 

C5 (DS) X,X,V V,V,A A,A,O X,A,X 1 X,X,X A,A,V V,V,A V,V,A O,O,X X,X,A 

C6 (DSC) A,V,V A,A,V X,X,V X,X,X X,X,X 1 V,A,A O,O,A X,A,A A,A,A A,X,X 

C7 (DL) A,A,V X,A,A X,X,O X,X,X A,A,V V,V,A 1 X,X,X A,A,A X,X,A A,A,V 

C8 (CR) A,A,A O,O,O X,X,X X,X,V A,A,V O,O,V X,X,X 1 X,X,O X,X,O O,O,A 

C9 (DP) A,V,A V,V,A A,O,A X,X,X A,A,V X,V,V V,V,V X,X,O 1 X,V,V O,O,X 

C10 (PC) A,A,V X,X,X X,A,X X,X,X O,O,X V,V,V X,X,V X,X,O X,A,A 1 O,O,X 

C11 (DI) A,A,X X,O,V A,O,O A,A,X X,X,V V,X,X V,V,A O,O,V O,O,X O,O,X 1 

Fig. 4.3: Reachability Matrix 

4.2.4 Final Interpretive Matrix  

The final interpretive matrix in Figure 4.4 was developed by removing inconsistencies from 

the reachability matrix and providing a score for each cell symbol notation noted in section 4.2.1. 

The driving power for cluster analysis was calculated by adding the column cells and the 

dependence power by adding up the row cells. The driving power for each variable is defined as 

the total number of variables influenced by a variable, For instance, the Cost (CT) variable has a 

driving power 11, which means it influences 11 variables. The dependence power for each variable 

is defined as the total number of variables that the variable is dependent upon or influenced. For 

instance, the Type of Precision Application (TPA) variable has a dependence power 10, which 

means it is dependent upon 10 other variables.  
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Interpretive 

matrix (i 

row,j 

column) 

C1 

(CT) 

C2 

(TS) 

C3 

(TWC) 

C4 

(TPA) 

C5 

(DS) 

C6 

(DSC) 

C7 

(DL) 

C8 

(CR) 

C9 

(DP) 

 

C10 

(PC) 

C11 

(DI) 

Driver 

Power 

C1 (CT) 1 V=1 V=1 V=1 V=1 V=1 V=1 V=1 V=1 V=1 V=1 11 

C2 (TS) A=0 1 X=1 V=1 A=0 V=1 V=1 O=0 A=0 X=1 A=0 6 

C3 (TWC) A=0 X=1 1 X=1 A=0 X=1 X=1 X=1 V=1 X=1 O=0 8 

C4 (TPA) A=0 X=1 X=1 1 X=1 X=1 X=1 X=1 X=1 X=1 V=1 10 

C5 (DS) X=1 V=1 A=0 X=1 1 X=1 A=0 V=1 V=1 O=0 X=1 8 

C6 (DSC) V=1 A=0 X=1 X=1 X=1 1 A=0 O=0 A=0 A=0 X=1 6 

C7 (DL) A=0 A=0 X=1 X=1 A=0 V=1 1 X=1 A=0 X=1 A=0 6 

C8 (CR) A=0 O=0 X=1 X=1 A=0 O=0 X=1 1 X=1 X=1 O=0 6 

C9 (DP) A=0 V=1 A=0 X=1 A=0 V=1 V=1 X=1 1 V=1 O=0 7 

C10 (PC) A=0 X=1 X=1 X=1 O=0 V=1 X=1 X=1 A=O 1 O=0 7 

C11 (DI) A=0 V=1 O=0 A=0 X=1 X=1 O=0 O=0 O=0 O=0 1 4 

Dependence 

power 

3 8 8 10 5 10 8 8 6 8 5 79 

Fig. 4.4:  Interpretive Matrix 

4.3 Partitioning of Interpretive Matrix 

The final interpretive matrix developed helps to partition and build a final Interpretive 

Structure Model. A reachability set consists of a set of variables that are influenced by a particular 

variable, which is defined by its driving power (Singh, M. D., & Kant, R. 2008). An antecedent 

set consists of variables that are dependent on a variable, which is defined by its dependence power. 

For instance, the Cost (CT) variable has reachability and dependencies to all the other 10 variables 

including itself, Whereas Data Interoperability (DI) has the least reachability and dependency i.e., 

to 4 variables (Type of Sensors (TS), Data Storage (DS) and Data Scalability (DSC)) including 

itself. The intersection set contains common variables in reachability and antecedents sets.  
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Table 4.4: Iteration for partitioning of Interpretive matrix 

Iteration- 1 

Variables Reachability Set Antecedent Set Intersection Set  Level 

C1 C1, C2, C3, C4, C5, C6, C7, C8, C9, 

C10, C11 

C1, C5, C6 C1, C5, C6  

C2 C2, C3, C4, C6, C7, C10 C1, C2, C3, C4, C5, 

C9, C10, C11 

C2, C3,C4,C10  

C3 C2, C3, C4, C6, C7, C8, C9, C10 C1, C2, C3, C4, C6, 

C7, C8, C10 

C2, C3, C4, C6, C7, 

C8, C10 

 

C4 C2, C3, C4, C5, C6, C7, C8, C9, C10, 

C11 

C1, C2, C3, C4, C5, 

C6, C7, C8, C9, C10 

C2, C3, C4, C5, C6, 

C7, C8, C9, C10 

 

C5 C1, C2, C4, C5, C6, C8, C9, C11 C1, C4, C5, C6, C11 C1, C4, C5, C6, 

C11 

 

C6 C1, C3, C4, C5, C6, C11 C1, C2, C3, C4, C5, 

C6, C7, C9, C10 ,C11 

C1, C3, C4, C5, C6, 

C11 

1 

C7 C3, C4, C6, C7, C8, C10 C1, C2, C3, C4, C7, 

C8, C9, C10  

C3, C4, C7, C8, 

C10 

 

C8 C3, C4, C7, C8, C9, C10 C1, C3, C4, C5, C8, 

C9 

C3, C4, C8, C9  

C9 C2, C4, C6, C7, C8, C9, C10 C1, C3, C4, C5, C8, 

C9 

C4, C8, C9  

C10  C2, C3, C4, C6, C7, C8, C10 C1, C2, C3, C4, C7, 

C8, C9, C10 

C2, C3, C4, C7, C8, 

C10 

 

C11 C2, C5, C6, C11 C1, C4, C5, C6, C11 C5, C6, C11  
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Table 4.4: Continued 

Iteration 2 

Variables Reachability Set Antecedent Set Intersection Set  Level 

C1 C1, C2, C3, C4, C5, C7, C8, C9, C10, 

C11 

C1, C5 C1, C5  

C2 C2, C3, C4, C7, C10 C1, C2, C3, C4, C5, 

C9, C10, C11 

C2, C3,C4,C10  

C3 C2, C3, C4, C7, C8, C9, C10 C1, C2, C3, C4, C7, 

C8, C10 

C2, C3, C4, C7, 

C8, C10 

 

C4 C2, C3, C4, C5, C7, C8, C9, C10, C11 C1, C2, C3, C4, C5, 

C7, C8, C9, C10 

C2, C3, C4, C5, 

C7, C8, C9, C10 

 

C5 C1, C2, C4, C5, C8, C9, C11 C1, C4, C5, C11 C1, C4, C5, C11  

C7 C3, C4, C7, C8, C10 C1, C2, C3, C4, C7, 

C8, C9, C10  

C3, C4, C7, C8, 

C10 

2 

C8 C3, C4, C7, C8, C9, C10 C1, C3, C4, C5, C8, 

C9 

C3, C4, C8, C9  

C9 C2, C4, C7, C8, C9, C10 C1, C3, C4, C5, C8, 

C9 

C4, C8, C9  

C10  C2, C3, C4, C7, C8, C10 C1, C2, C3, C4, C7, 

C8, C9, C10 

C2, C3, C4, C7, 

C8, C10 

2 

C11 C2, C5, C11 C1, C4, C5, C11 C5, C11  
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Table 4.4: Continued 

Iteration 3 

Variables Reachability Set Antecedent Set Intersection Set  Level 

C1 C1, C2, C3, C4, C5, C8, C9, C11 C1, C5 C1, C5  

C2 C2, C3, C4 C1, C2, C3, C4, C5, 

C9, C11 

C2, C3, C4 3 

C3 C2, C3, C4, C8, C9,  C1, C2, C3, C4, C8,  C2, C3, C4, C8  

C4 C2, C3, C4, C5, C8, C9, C11 C1, C2, C3, C4, C5, 

C8, C9  

C2, C3, C4, C5, 

C8, C9 

 

C5 C1, C2, C4, C5, C8, C9, C11 C1, C4, C5, C11 C1, C4, C5, C11  

C8 C3, C4, C8, C9 C1, C3, C4, C5, C8, 

C9 

C3, C4, C8, C9 3 

C9 C2, C4, C8, C9 C1, C3, C4, C5, C8, 

C9 

C4, C8, C9  

C11 C2, C5, C11 C1, C4, C5, C11 C5, C11  

 

Iteration 4 

Variables Reachability Set Antecedent Set Intersection Set  Level 

C1 C1, C3, C4, C5, C9, C11 C1, C5 C1, C5  

C3  C3, C4, C9 C1, C3, C4  C3, C4  

C4 C3, C4, C5, C9, C11 C1, C3, C4, C5, C8, 

C9,  

C3, C4, C5, C9  

C5 C1, C4, C5, C9, C11 C1, C4, C5, C11 C1, C4, C5, C11  

C9 C4, C9 C1, C4, C5, C9 C4, C9 4 

C11 C2, C5, C11 C1, C4, C5, C11 C5, C11  
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Table 4.4: Continued 

Iteration 5 

Variables Reachability Set Antecedent Set Intersection Set  Level 

C1 C1, C3, C4, C5, C11 C1, C5 C1, C5  

C3  C3, C4 C1, C3, C4  C3, C4 5 

C4 C3, C4, C5, C11 C1, C3, C4, C5, C10 C3, C4, C5  

C5 C1, C4, C5, C11 C1, C4, C5, C11 C1, C4, C5, C11 5 

C11 C5, C11 C1, C4, C5, C11 C5, C11 5 

 

Iteration 6 

Variables Reachability Set Antecedent Set Intersection Set  Level 

C1 C1, C4 C1 C1  

C4 C4  C1, C4 C4 6 

 

Iteration 7 

Variables Reachability Set Antecedent Set Intersection Set  Level 

C1 C1 C1 C1 7 

 

The variables have been clustered above based on their driving power and dependence 

power into four categories autonomous, dependent, linkage and independent variables (Malone, D. 

W. 1975). The objective behind the categorization of variables is to develop a cluster analysis 

(Singh, M. D., & Kant, R. 2008). The first cluster of autonomous variables have weak driving 

power and weak dependence power. The autonomous variable i.e., Data interoperability (see 

Figure 4.5) is weakly connected to IoT based wireless sensors network (WSN) data pipeline system 

through Data storage (DS) and Data Scalability (DSC) which might further impact Cost (CT) 

variables. The second cluster consists of dependent variables that have weak driving power and 

strong dependence power. Data Latency (Data transfer rate DL), Communication Range (CR), 
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Data Scalability (DSC) and Type of Sensors (TS) and are the dependent variables with strong 

linkages and dependence on other variables in IoT based WSN data pipeline system. The third 

cluster of linkage variables have strong driving and dependence power. Power consumption (PC), 

Type of Precision Application (TPA), Data Processing (DP) and Type of Wireless 

Communications (TWC) are the linkage variables that influence the other variables. The fourth 

cluster of independent variables have strong driving power and weak dependence power. Cost (CT) 

and Data Storage (DS) are the independent variables in IoT based WSN data pipeline system used 

for ACRE deployment. The subsequent section describes all the clustered variables in an 

Interpretive Structural Model generated from the initial reachability matrix.  

 

Fig. 4.5: Cluster Analysis  

4.3.1 Interpretive Structural Model (ISM)  

The ISM in Figure 4.6 was generated from partitioning of the initial reachability matrix 

(see section 4.2.1). The relationship between the decision variables i and j is presented by an arrow 

which points from i to j. The outward pointed arrows represent the dependency relationship 
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whereas the inward pointed arrow represents the drivability of the decision variable. For example, 

the Cost (CT) variable has the maximum drivability (11) whereas Data Scalability (DSC) and Type 

of Precision Application (TPA) has the maximum dependency (10).   

 

 

Fig. 4.6: Final ISM model highlighting relationships among the decision variables 

 

The transitivity from the relationships were removed in the Interpretive Structural Model 

in Figure. 4.7. The transitive relation between the variables were removed per typical practice in 

the literature (Malone D. W. 1975, Singh & Kant. 2008). 
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Fig. 4.7: Final ISM digraph without transitive relationships 

 

The Interpretive Structural Model (ISM) above defines the relationship among the 11 

decision variables identified from interview data and analyzed through the cluster analysis. Cost 

(CT), Power Consumption (PC), Data Latency (DL), Communication Range (CR), Data 

Scalability (DSC) and Data Storage (DS) are the critical decision variables for a Lean and Green 

Precision Agriculture IoT deployment. Part of the ISM model involving decision variables Cost 

(CT), Type of Wireless Communication (TWC), Data Storage (DS), Data Scalability (DSC), 

Power Consumption (PC) was used to redesign the ACRE testbed. High subscription cost related 
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to non-open-source cloud, high sensor node battery power consumption cost, complex user-

interface and non-interoperable wireless communication were the design issues related to decision 

variables and were redesigned for improvements following informed action research approach. 

The performance real time data from the redeployed IoT sensors was used to empirically validate 

other part of the ISM model involving decision variables Battery Voltage (BV), Data Latency 

(Data transfer rate), Communication Range (CR), Signal to Noise Ratio (SNR) and Received 

Signal Strength Index (RSSI). The correlation analysis developed between these decision variables 

informed sensor node battery power consumption cost and maintenance decisions during 

redeployment of IoT sensors.  

4.4 Internet of Things (IoT) sensors deployments and comparison 

The section describes the ACRE deployments. The initial deployment (sensor node A) had 

issues related to high subscription cost of cloud, high sensor node battery power consumption cost, 

non-open-source cloud and non-interoperable wireless communication. These issues were 

identified through participatory action research. The ISM developed from the focused group 

interviews informed the design improvements for the 2nd deployment, or re-deployment (sensor 

node B). The comparison of action research deployments was based upon the interventions of the 

ACRE testbed, informed by the decision variables (see Table 4.5).  

 

Picture 4.1: Initial deployment (sensor node A) & Redeployment (sensor node B) 



 

 

110 

The picture above shows the deployments, redesigning based upon two types of sensor 

nodes, that have two different Internet of Things (IoT) data pipeline designs. The comparison of 

the deployments is highlighted in Table 4.5. based upon testbed design improvements to make the 

2nd deployment more cost efficient, energy efficient and data interoperable.  

4.4.1 Initial Deployment  

The ACRE deployment data pipeline is described below, highlighting the cost analysis and 

power consumption analysis by the researcher.  

 

 

Fig. 4.8: Initial Deployment of the ACRE Internet of Things (IoT) data pipeline 

    The first deployment before this study had the capacity of integrating 8 different types of sensors 

(Ambient Temperature & Humidity, Soil moisture, Light, Atmospheric pressure, CO2, Wind 

speed & Rain gauge) within an IoT data pipeline. The Total Cost (CT) analysis of the data pipeline 
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consisted of Fixed Cost (FC) and Variable Cost (VC) and is highlighted in Figure 4.8. The Fixed 

Cost (FC) consists of sensor node cost (including sensors) and communication gateway technology 

cost, which was a sub-edge LoRA (Low power wide area) gateway having power consumption of 

5 volts or 27 dbm transmission power consumption. The power consumption by the initial 

deployment (including 8 sensors) was 9 volts with $8/month and $96/year in power consumption 

cost for the sensor batteries, a variable cost. The Variable Cost (VC) also consisted of cloud storage 

subscription costs which was $120/year. The issues related to the sensor node design, power 

consumption, data interoperability and high variable cost were subsequently improved with the 

informed action research from the content analysis of the focus group interviews.   

4.4.2 Action Research Redeployment 

The second deployment (sensor node B) was informed by the focus group interview data 

analysis, following the action research methodology. The sub-edge LoRA radio in the sensor 

deployment A was replaced by LoRAWAN communication gateway network of Ag-IT, which is 

an interoperable solution integrating different type of sensors i.e., GPS (Autonomous) & 

Monitoring (Temperature, Humidity, Soil Moisture & Light) sensors. The issue of data 

interoperability was resolved by adopting completely open-source data pipeline, consisting of a 

cloud Things board network for integrating multiple types of sensors and visualization of real-time 

data. The Things network is an open-source cloud platform was adopted by the researchers in this 

study to develop and deploy an open-source data pipeline to improve. This informed intervention 

of integrating the IoT data pipeline with an open-end cloud platform removed the subscription cost, 

thereby decreasing the total variable cost by 91 % from $216/year to $20/year. The power 

consumption by the redeployment was lowered by 60 %, with half of the capacity of the initial 

deployment, integrating 4 different types of sensors, compared to the 8 sensors in the initial 

deployment. Therefore, the power consumption cost by the sensor node batteries was reduced by 

80 %, from $96/year to $20/year, lowering the capacity from 8 sensors to 4 sensors in the 

redeployment (sensor node B). This validates the findings from the focused group interviews 

describing the relationship between type & number of sensors on power consumption by sensor 

nodes. The relationship between Data interoperability (DI) and Cost (CT) has also been validated 

with the informed intervention of integrating an open-source Thing’s network in the redeployment. 

The ACRE design improvements, with a reduction in variable cost by $204, a reduction in sensor 
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node battery power consumption cost by 80%, an increase in interoperability of wireless 

communication LoRAWAN, integrating Monitoring & GPS (Autonomous) sensors, see Figure 

4.9.  

 

Fig. 4.9: Redeployment of the ACRE Internet of Things (IoT) data pipeline  

 

The ACRE deployment performance comparison is described in Table 4.5. The comparison 

validates part of ISM, in the context of intervened actions by the researcher and subsequent 

findings, confirming the relationship among the variables of Cost (CT), Power Consumption (PC), 

Data Storage (DS), Data Scalability (DSC), Data Interoperability (DI) and Type of Wireless 

Communication (TWC). 



 

 

 

1
1
3
 

Table 4.5: Comparison of Sensor nodes A & B deployments  

Variable  Sensor node A Deployment  Informed Action Research 

intervention- Focused group 

interview findings 

Sensor node B Deployment  Comparison & Validation- 

ISM model 

Cost (CT) Total Cost (CT)=Fixed Cost 

(FC) +Variable Cost (VC)  

Fixed Cost (CT)= Sensor Node 

(including sensors) + Sub-Edge 

LoRa Gateway= $200/unit + 

$100/unit= $300/unit 

Variable Cost (VC)= Sensor 

node batteries cost (BC) + 

Subscription Cost 

(SC)=$96/year +120/year= 

$216/year 

Sensor scale reduction from 8 

to 4 sensors (Temperature, 

Humidity, Soil Moisture & 

Light). The power (battery) 

consumption cost decreased 

by 80% with 50% reduction in 

data scale per unit sensor 

node. Cloud subscription cost 

got eliminated by 

interoperable & open-source 

cloud data storage.  

Total Cost (CT)= Fixed Cost 

(FC) + Variable Cost (VC) 

Fixed Cost (FC)= Sensor Node 

(including sensors) + LoRa 

Gateway= $150/unit + 

$150/unit= $300/unit 

Variable Cost (VC)= Sensor 

node batteries cost (BC) + 

Subscription Cost 

(SC)=$20/year +$0/year= 

$12/year 

Cost (CT)-Power Consumption 

(PC)- Data interoperability (DI)- 

Data Scalability (DSC) 

Power Consumption 

(PC) 

Sensor node batteries power 

consumption= 9 volts (16 D size 

1.5 volts Alkaline batteries). 

Sensor node batteries power 

consumption cost= $8/month 

The power(battery) 

consumption cost decreased 

by 80% with 50% reduction in 

data scale per unit sensor node 

and change in battery type 

from Alkaline to Lithium-Ion 

C cell batteries.  

Sensor node batteries power 

consumption= 3.6 volts (C cell 

Lithium-Ion batteries).  

Sensor node batteries power 

consumption cost=$1.6/month 

Power consumption (PC) -Data 

Scalability (DSC) 

Data 

Interoperability (DI) 

The cloud storage platform used 

in the deployment is not open-

source and interoperable for 

different types of sensors & 

other cloud storages. Moreover, 

there is a subscription cost of 

$10/month or $120/year 

associated.  

The cloud storage for the 

application layer (Data 

storage, processing & 

visualization) is changed to an 

interoperable open-source 

user-interactive Things 

network.  

The Things network cloud 

platform used in the 

deployment is open-source & 

interoperable with no-

subscription cost. The data 

interoperability of the Things 

cloud storage is more as it is 

compatible with both 

monitoring (Temperature, 

Humidity, Soil Moisture & 

Light) & autonomous (GPS) 

sensors.  

Data interoperability (DI)-Data 

Storage (DS) 
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Table 4.5 continued 

Type of Wireless 

Communication (TWC) 

Sub-Edge LoRA gateway 

average power consumption 

(Transmission Power Tx) = 

27dbm=5.5 watts at 5 volts. 

The researchers were able to 

integrate 2 sensor nodes per 

sub-edge LoRA radio 

gateway.  

The subedge LoRA radio 

used in the first deployment is 

replaced with LoRAWAN 

Gateway network with more 

capacity of integrating 

different types of sensor 

nodes with almost the same 

amount of power 

consumption and cost of 

deployment.  

The LoRAWAN gateway 

network used in the 

deployment has the same 

power consumption 

(Transmission Power Tx) = 

27dbm=5.5 watts at 5 volts. 

For the wider area 

LoRAWAN network sensor 

node integration capacity 

increased from 2 to 5 nodes 

integrated with the 

LoRAWAN network.  

Type of Wireless 

Communication (TWC)- Data 

Scalability (DSC) 

Data Storage (DS) The cloud data storage used in 

the deployment is not open 

source which means the 

interoperability between 

different types of sensors 

apart from the monitoring 

sensors in the deployment. 

The autonomous sensors 

(GPS) are not compatible 

with cloud storage.  

The cloud data storage 

platform is changed to an 

interoperable open-source 

Things network having the 

capacity to integrate 

autonomous (GPS) and 

monitoring sensors 

(Temperature, Humidity, Soil 

Moisture & Light) as 

compared to the cloud 

platform used in 1st 

deployment. 

The Thingsboard network is 

interoperable between 

different types of sensors i.e 

both monitoring and 

autonomous (GPS) sensors. 

The researchers deployed and 

integrated 6 sensor nodes with 

the Things board having 4 

monitoring and 2 GPS 

sensors. 

Data Storage-Data 

Interoperability 

Data Scalability (DSC) Data Scalability depends 

upon the number of sensor 

nodes and number of sensors 

integrated. The first 

deployment is with two 

sensor nodes having 8 same 

types of monitoring sensors in 

each node i.e., 16 in total.  

The interoperability of 

Thingsboard open-source 

cloud increases the capacity 

of integrating and aggregating 

data from different types of 

heterogeneous sensors i.e., 

both monitoring and 

autonomous sensors.   

Data scalability increased 

with interoperable and open-

source Things board clouds 

integrating 6 sensor nodes 

with 4 agriculture monitoring 

sensor nodes having 4 sensors 

in each node i.e., 16 

monitoring sensors and 2 GPS 

sensors i.e., 18 in total.  

Data Scalability- Data 

Interoperability 
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Fig. 4.10: Validation of ISM model action research deployments findings 

 

The part of the Interpretive Structure Model (ISM) highlighted in Figure 4.10 above was 

informed the action research redeployments with design improvements. Cost was reduced by $204 

with no subscription cost for an open-source Things Network, Sensor node battery consumption 

cost was reduced by 80%, the design improvements of Data-Interoperable LoRAWAN wireless 

communication gateway integrating both Monitoring & GPS (Autonomous sensors) in the 

redeployment.  

The other part of the ISM model of the correlations between (Data Latency (Data Rate 

(DR)), Communication Range (CR), Power Consumption (Battery Voltage (BV)), Received 

Signal Strength Index (RSSI) and Signal to Noise ratio (SNR)), were empirically validated through 

analysis and comparison of real time performance data from the IoT sensors deployed at ACRE.  
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4.5 Empirical Validation of ISM model- IoT sensors performance data 

The empirical validation of the Interpretive Structural Model is described below, with 

correlation analysis conducted, using the performance data obtained (redeployed sensors 3 & 5 in 

corn plot and Ag Sensors 1,2,4 in soybean plot). The location and distance of the redeployed 

sensors from Low Power Wide Area Network (LoRAWAN) is also shown in the pictures 4.2, 4.3, 

4.4, 4.5 with the orientation of redeployed sensors shown. The real time performance data was 

from a single day, the 1st day of growing season, and was analyzed using multiple regression. The 

rationale behind using 1st day of growing season data was primarily to exclude potential canopy 

growth effects. 

4.5.1 ACRE redeployment description (Corn)  

The ACRE redeployments are labeled Ag sensor 3 (0.5’ ft) and Ag Sensor 5 (1.5’ ft) on 

the map below, shown with communication distance from the LoRAWAN gateway network. The 

Ag sensor 3 and Ag sensor 5 redeployed consist of the same type of sensors (4 external (2- 

Temperature- thermocouples+2- Soil moisture-resistive) + 1 inbuilt light sensor).  The distance of 

the sensor nodes Ag Sensor 3 and Ag sensor 5 are 500.88 m, 500.27 m apart from the LoRAWAN 

gateway network. Communication range and orientation height of redeployed sensors were 

purposefully changed by the researcher to understand the impact on battery power consumption 

and received signal strength. Communication range and orientation height are the factors which 

might be related to battery power consumption of redeployed sensors as informed by ISM model 

and content analysis of interview data. These factors are considered for statistical analysis to 

understand the variation in sensor node battery power consumption and received signal strength 

index which might be critical for cost-effective maintenance decisions.  
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Picture 4.2: Ag Sensor 3 (500.88 m) & Ag Sensor 5 (500.27 m) location of redeployments 

 

The picture above shows the location of redeployments at the Agronomy Center for 

Research and Education. The Low power Wide Area Network (LoRAWAN) gateway tower 

location is marked mentioning distance from the Ag Sensor 3 and 5. Communication range 

distance of redeployed sensor nodes is a decision variable which might be related to battery power 

consumption, data transfer rate and received signal strength index.  
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Picture 4.3: Ag Sensor 3 (0.5’ ft) & Ag Sensor 5 (1.5’ ft) orientation of redeployments 

 

The pictures above show the redeployments orientation height of Ag sensor 3 (0.5’ ft) left 

and Ag sensor 5 (1.5’ ft) in the corn plot near the gantry at ACRE.  The Ag Sensors 3 & Ag sensors 

5 were integrated with Things board cloud as described in the section 4.4.2. (see Figure 4.9). The 

real time performance data for the variables (Received Signal Strength Index (RSSI), Signal to 

Noise Ratio (SNR), Battery Voltage (BV), Data Rate (DR)) are shown in the following section 

with the statistically correlation analysis for empirical validation of the ISM model. The analysis 

of variance (ANOVA) conducted for Battery Voltage (BV), Data Rate (DR), Communication 

Range (CR), Received Signal Strength Index (RSSI) and Signal to Noise Ratio (SNR) described 

in the following sections might be critical to understand the significant factors for variation in 

battery power consumption of sensor nodes.  
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4.5.2 ACRE redeployment description (Soybean)  

The location of Ag Sensors 4 (450.32 m) and 2 (420.50 m) are marked on the maps shown 

below at the Soybean plot.  

 

Picture 4.4: Ag Sensor 4 (450.32 m) & Ag Sensor 2 (420.50 m) location of redeployments 

 

The Ag sensors 2 & 4 were deployed in the Soybean field plot as shown in the pictures 

(see Picture 4.4) with the distance marked from the LoRAWAN gateway tower. The Ag sensor 1 

is a surface type sensor that consists of inbuilt (Temperature, Soil moisture & Light) sensors. The 

orientation height of sensors deployed is shown in the following picture.  
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Picture 4.5: Ag Sensor 4 (6’ ft), Ag Sensor 2 (0.5’ ft), Ag Sensor 1 (surface) orientation of 

redeployments 
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4.5.3 Real time data (SNR, RSSI, BV, DR) dashboard- Ag Sensors (1-5) 

The Signal to noise ratio (SNR) real time data highlighted in Picture 4.6. is for a day (12.00 

am to 12.00 pm) after sensors were deployed and 1st day of growing season with almost no-canopy 

(see Picture 4.6) in the field. Signal-to-Noise Ratio (SNR) is the ratio (difference) between the 

received signal power and the noise floor power level. Typical LoRa SNR values are between -20 

dB and +10 dB (Gitijah, 2019). A value closer to +10 dB means that the received signal is less 

corrupted (Dolha, Negirla, Alexa & Silea, 2019).  

 

            Picture 4.6: Real time series data dashboard for Signal to noise ratio (SNR) 

 

The variation between the SNR values for Ag Sensors (1-5) might be due to 

Communication Range (CR) distance, Received Signal Strength Index (RSSI), orientation height 

of sensor deployment and canopy growth as highlighted in the literature (Xu et al., 2011). The 

correlation analysis highlighted in Figure 4.12 explains the correlation of SNR with 

Communication Range distance and Received Signal Strength Index.  
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The researchers worked to empirically explore the variation in Received Signal Strength 

Index after considerable amount of canopy growth and orientation of deployment as box plots 

discussed in section 4.6.2. The Received Signal Strength Indication (RSSI) is the received signal 

power in milliwatts and is measured in dBm.  LoRa typically operates with RSSI values between 

-30 dBm and -120 dBm.  RSSI = -30 dBm is a very strong signal and -120 dBm is a very weak 

signal (Gitijah, 2019; Dolha, S. et al., 2019; Chaudhari & Borkar, 2020). The variation in the RSSI 

value for the Ag Sensors 1-5 might be explained by the variable factors (Communication Range 

(CR), Signal to Noise Ratio (SNR), Data Rate (DR)) due to canopy coverage or orientation height 

of deployment (Xu et al., 2011). The following sections explore the correlations amongst the 

variables measured (RSSI, SNR, CR, BV) using real-time data from the sensors.  

               

 

Picture 4.7: Real time series data dashboard for RSSI.  

 

The RSSI real time data dashboard shown above in picture 4.7 is for a day (12.00 am to 

12.00 pm) after sensors are deployed and the 1st day of growing season. 
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The real time dashboard for Data Rate (DR) is highlighted in Picture 4.8.  The Data Rate 

(DR) depicted in the real-time data dashboard is the Adaptive Data Rate (ADR). The Adaptive 

Data Rate (ADR) is a mechanism for optimizing data rates, airtime, and energy consumption in 

the network.  

 

Picture 4.8: Real time series data dashboard for Data Rate.  

 

Adaptive Data Rate can optimize device power consumption while ensuring that messages 

are still received at gateways. When the ADR is in use, as in the case of Ag Sensors 1-5 deployed, 

the network server will indicate to the end device that it should reduce transmission power or 

increase data rate. End devices which are close to gateways should use a lower spreading factor 

and higher data rate, while devices further away should use a high spreading factor with low Data 

Rate (DR) as it optimizes power consumption and increases network capacity (Kufakunesu, 

Hancke & Abu-Mahfouz, 2020) 

The real time data dashboard for the operational Battery Voltage (BV) of Ag Sensors 1-5 

is shown in picture 4.9. The variation in the operational battery voltages for the Ag Sensors 1-5 

might be due to variation in Received Signal Strength Index (RSSI), Signal to Noise Ratio (SNR), 

Data Rate (DR), and Communication Range (CR) as highlighted in the literature (Pukrongta & 
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Kumkhet. 2019 October; Davcev et al., 2018). The researchers explain the variation in Battery 

Voltage (BV) using ANOVA on 2500 data points from the real time data obtained for a day after 

sensors were deployed and on the 1st day of growing season with almost no-canopy (see pictures 

4.3, 4.5).  

 

Picture 4.9: Real time series data dashboard for Battery Voltage.  

 

The variation in the operating Battery Voltage (BV) for Ag Sensors 1-5 might impact the 

Battery life as power consumption increases for Lithium-Ion batteries per the operating voltage 

and Battery life curve highlighted in Figure 4.11. The variation might be due to factors 

Communication Range (CR), Data Rate (DR), Received Signal Strength Index (RSSI) and Signal 

to Noise ratio (SNR) as empirically analyzed in section 4.6.  
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Fig. 4.11: Operating Battery Voltage vs Battery life for Lithium-Ion batteries 

(Yu, Q. Q., Xiong, R., Wang, L. Y., & Lin, C. 2018) 

This potentially means that for the Ag Sensor 5 operating at less average battery voltage 

3.58 volts might draw more current for the same amount of power transmission signal, resulting 

in more discharge of battery reducing the battery life highlighted in the literature (Raj & Steingart, 

2018; Knight, Davidson & Behrens, 2008). The researchers in this study empirically explore the 

BV variation using ANOVA considering the potential variables (Communication Range (CR), 

Received Signal Strength Index (RSSI), Signal to Noise Ratio (SNR) & Data Rate (DR)) identified 

in the literature and findings of Focused group interviews to explain the variation in the Battery 

Voltage (BV) for the deployed IoT sensors.  

4.6 Empirical Validation of Interpretive Structure Model (ISM)- Correlation Analysis 

The real time data from the Ag sensors 1-5 was analyzed for the variables (Communication 

Range (CR), Data Rate (DR), Battery Voltage (BV), Signal to Noise Ratio (SNR) & Received 

Signal Strength Index (RSSI)). The data set consists of 2505 data points, 501 from each of the 5 
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sensors deployed (Ag Sensors 1-5) during the same period i.e., after sensors are deployed and 1st 

day of growing season with almost no-canopy (see Picture 4.3,4.5) in the field. The data is analyzed 

for correlation heat map in Python Jupyter notebook, highlighting the Pearson correlation 

coefficients. The following code was entered to read and generate the correlation map in Python 

Jupyter notebook.   

 

Picture 4.10: Python code used for plotting correlation matrix heat map.   

 

The Pearson correlation coefficient matrix heat map shown in the Picture 4.11, highlights 

the measure of linear relationship between two variables. The value varies between -1 to +1 and 

highlights the relationship strength in terms of association and should not be interpreted as cause 

and effect as mentioned in the literature (Taylor, 1990). The values < 0.35 are generally considered 

to represent weak correlations, 0.36 to 0.67 moderate correlations and 0.68 to 1.0 high correlations 

according to the literature (Taylor, 1990 & Khamis, 1989).   

 

Picture 4.11: Correlation matrix heat map   
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There is weak positive correlation (0.014) between Signal to Noise Ratio (SNR) and 

Communication Range (CR) distance this might be due to no-canopy in the plain field as there 

was not much signal loss of transmission due to noise and interference, thereby validating the 

literature for static agriculture IoT sensors application (Xu et al. 2011; Pukrongta & Kumkhet, 

2019 October; Navarro, Costa & Pereira, 2020). The relationship between Received Signal 

Strength Index (RSSI) and Communication Range (CR) is moderately positive (0.36) in the 

absolute values of RSSI which means with the increase in communication distance more power 

transmission should be there to receive the signal due to increased distance between sensor node 

and gateway and mentioned in the literature (Xu et al. 2011; Dolha et al. 2019). The relationship 

between Signal to Noise ratio (SNR) and Received Signal Strength Index (RSSI) is moderately 

positive (0.40), highlighting the increase in signal to noise ratio, leads to a moderate increase in 

received signal strength index that might also vary with communication range distance.  

 

Fig. 4.12: Empirical validation of ISM model with correlation analysis 
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The Data Rate (DR) has strong positive correlation (0.79) with Battery Voltage (BV), 

which means increase in Data Rate (DR) increases operating Battery Voltage (BV) of the sensor, 

node, decreasing the discharge current and increasing the battery life of the sensor node. 

Communication Range (CR) and Data Rate (DR) have moderately negative (-0.58) coefficients 

where Communication Range (CR) distance increase leads to decrease in Data Rate (DR), which 

is there for Adaptive Data Rate in static IoT sensors highlighted in the literature (Kufakunesu, 

Hancke & Abu-Mahfouz, 2020). The following section assesses the significance of variables (CR, 

DR, SNR, RSSI) using multivariate ANOVA analysis to explain the variation in Battery Voltage 

(BV) used as a Power Consumption (PC) metric in this study for Lithium-Ion batteries.  

4.6.1 Analysis of Variance for Battery Voltage (BV) before canopy growth 

The variation in the Battery Voltage (BV) is critical to analyze from a variable cost and 

battery life context.  This section explains the variance in operating Battery Voltage using real 

time data (n=2505) from the deployed Ag Sensors (1,2,3,4,5) reported for a 1st day of growing 

season with almost no-canopy (see Pictures 4.3,4.5) in the field. The findings highlighted (see 

Table 4.6) for the Analysis of Variance (ANOVA) with Battery Voltage (BV) as dependent 

variable and independent variables (Communication Range (CR), Received Signal Strength Index 

(RSSI), Signal to Noise Ratio (SNR) and Data Rate (DR)). The results of the analysis (see Table 

4.6) highlight a R2 value 0.665, which signifies the percentage of variation i.e., 66.5 % in the 

dependent variable (BV) is explained by the independent variables (CR, DR, RSSI, SNR) or 

predictors. The equation below highlights the predictor and correlations coefficients for the 

ANOVA output shown in (Appendix C).  

 

𝐵𝑉 = 3.34 + .000153 ∙ 𝐶𝑅 + .000157 ∙ 𝑅𝑆𝑆𝐼 + .0000503 ∙ 𝑆𝑁𝑅 + .0559 ∙ 𝐷𝑅 
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Table 4.6: Multiple Linear Regression analysis for variance 

Y= BV, X= CR, RSSI, DR, SNR  

Regression Statistics 

Multiple R 0.82 

R Square 0.665 

Adjusted R Square 0.665 

Standard Error 0.014 

Observations 2504 

         

Communication Range (CR), Received Signal Strength Index (RSSI) and Data Rate (DR) 

resulted to significant variables, have p values < 0.05 (assuming ∝= 0.05). The significance of the 

variables (CR, RSSI & DR) in explaining variation in dependent variable (BV) is substantiated by 

the findings of the previous section where moderate to strong correlations were exhibited between 

dependent variable and independent variables (see Figure 4.12). Signal to Noise ratio is not a 

significant factor with a p value=0.65 > ∝=0.5. This might be explained by the reason that there 

was no canopy in the field for the real time data analyzed and therefore there is not much signal 

losses due to open fields with no building or canopy growth. The researchers explored the variance 

in the Battery Voltage (BV) from the real time data reported from the deployed Ag Sensors 1-5 

for a day (30th day of the growing season) after the considerable canopy growth for checking the 

impact of canopy biomass on BV (see Picture 4.12). The analysis was conducted to explore the 

variation using (BV) as a dependent variable and (CR, DR, RSSI & SNR) as independent variables. 

The residual value 2499 in the Table 4.6 highlights that lot of degrees of freedom values might be 

left over.  

4.6.2 Analysis of Variance for Battery Voltage (BV) after canopy growth 

The considerable canopy growth (see Picture 4.12) might interfere with the received signals 

due to the canopy biomass above the sensor nodes, highlighted in previous studies (Xu et al. 2011; 

Raj & Steingart, 2018). Therefore, the researchers tried to further explore the variation explained 

with Battery Voltage (BV) as dependent variable and Communication Range (CR), Received 



 

 

130 

Signal Strength Index (RSSI), Data Rate (DR), Signal to Noise Ratio (SNR) as independent 

variables. The analysis might be used for future research to explore the impact of canopy growth 

on battery power consumption of sensor nodes.  

 

Picture 4.12: Ag Sensor 5 (left- corn plot) & Ag Sensor 3 (right- soybean plot) with considerable 

growth of canopy (30th day of the growing season) 

 

The variance in the Battery Voltage (BV) after considerable growth of canopy was just 

6.5 % (R2 = 0.064) explained by the independent variables (CR, SNR, RSSI & DR). The Analysis 

of Variance (ANOVA) applied using real time data (n=2505) points from the Ag Sensors 1-5 on 

the 30th day of growing season where the corn plant can grow approximately 4 feet tall and soybean 

plant 1 feet tall (Tucker, Elgin, McMurtrey, & Fan, 1979). The change in the variation from 66.5% 

to 6.5% explained by the independent variables (CR, SNR, RSSI & DR) may be due to the 
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considerable amount of canopy growth as highlighted in the study (Xu et al., 2011). The equation 

below highlights the predictor and correlations coefficients for the ANOVA output shown in 

(Appendix C). 

 

𝐵𝑉 = 3.64 − 0.000008 ∙ 𝐶𝑅 − 0 ∙ 0005758 ∙ 𝑅𝑆𝑆𝐼 − 0.0001175 ∙ 𝑆𝑁𝑅 − 0.0099 ∙ 𝐷𝑅 

 

Table 4.7: Multiple Regression Analysis for analysis of variance 

Y= BV, X= CR, RSSI, DR, SNR  

Regression Statistics 

Multiple R 0.26 

R Square 0.065 

Adjusted R Square 0.064 

Standard Error 0.020 

Observations 2504 

 

Received Signal Strength Index (RSSI) and Data Rate (DR) are still significant factors 

explaining almost 6.5 % variation in the Battery Voltage (BV). This variation might be explained 

by considerable growth in canopy after a month of seeding. The variation in the Received Signal 

Strength Index (RSSI) by sensor nodes due to canopy biomass around them might interfere with 

the signal as highlighted in the studies (Xu et al. 2011; Dolha et al. 2019). Therefore, researchers 

explain the variation in Received Signal Strength Index (RSSI) comparing the RSSI values for the 

data sets (see Appendix B) before (no-canopy) and after (30th day of growing season) where 

considerable canopy growth resulted in the comparison, shown by boxplots in the following 

section for the data sets of Ag Sensors 1-5.   

4.6.3 Received Signal Strength Index (RSSI) analysis before and after canopy growth 

The Received Signal Strength Index (RSSI) for the real time data was   analyzed (n= 2505, 

Ag Sensors 1-5) during the 1st day of the growing season. The LoRaWAN typically operates with 
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RSSI values between -30 dBm and -120 dBm.  RSSI = -30 dBm is a very strong signal and -120 

dBm is a very weak signal (Gitijah, 2019, Dolha, S. et al., 2019, Chaudhari & Borkar, 2020). 

 

Fig. 4.13: Box plots for Ag Sensors Soybean plot- 1 (Surface), 2(0.5’ft), 4(6’ ft) 

Ag Sensors Corn plot- 3 (0.5’ft), 5(6’ ft) 

 

The box plot in Figure 4.13 highlights the variation between and within the RSSI values 

for the Ag Sensors 1-5. The Ag Sensors (1,2,4) are deployed in the soybean plot (see Picture 4.5) 

with different orientations i.e., Ag sensor 1- surface (buried in ground), Ag sensor 2 (0.5’ft from 

ground), Ag sensor 4 (6’ft from ground). The Ag Sensors (3,5) are deployed in the corn plot (see 
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picture 4.3) with different orientations i.e., Ag sensor 3 (0.5’ft from ground) and Ag sensor 5 (6’ft 

from ground). The significance of developing boxplots is to propose a future research prospect 

based on understanding variation of RSSI with orientation and canopy growth. The variation in 

the RSSI values between the Ag Sensors 1-5 might be due to orientations as we can clearly see in 

the box plot that Ag Sensor 5 & Ag Sensor 4 are deployed 6’ ft from the ground having better 

signals average RSSI values (-64, -57) as compared to Ag Sensors 3,2,1 having weak average 

RSSI values (-74, -76, -80). This might be critical for deploying sensors and receiving appropriate 

communication signals. The Received Signal Strength Index of the deployed sensors might 

become weaker with the canopy growing season, as implied by the research findings. Potential 

future research questions might explore the impact on operating Battery Voltage (battery power 

consumption) of sensor nodes with weak signal received as canopy grows beyond 1 month. These 

findings might be critical to implement a lean-green decision making for deploying sensors saving 

on costs associated with battery power consumption. The other interesting potential future research 

might explore and test the findings of this research in other Autonomous precision agriculture 

applications.  
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 CONCLUSIONS, FUTURE WORK & 

RECOMMENDATIONS 

This chapter describes the conclusion summary of the research findings describing the 

potential implications, future research work and recommendations for developing lean-green 

Internet of Things (IoT) wireless sensors data pipeline.  

5.1 Research Questions 

   Based upon the findings of the thesis, this section summarizes the results for research questions, 

methodology followed and potential implications for stakeholders (Row crop producers, Precision 

Agriculture practioners and Digital agriculture technology consultants).  

 

RQ1: What are Lean and Green practices in the context of Indiana row crop production? 

    

     The findings of the structured literature review highlights Lean and Green practices in context 

of Indiana row crop production. Precision Agriculture practices are adopted by producers through 

Lean-Green drivers namely Delivery performance, Profitability, Operational Cost, Overall 

productivity, Hazardous Waste Reduction, Information Sharing and User-end experience (user 

satisfaction). Lean-Green drivers identified might help producers to benchmark agricultural 

operations for optimized usage of farm inputs (Fertilizers, Water resources, Labor productivity & 

Farm Machinery). 

   Another finding highlights Precision Agriculture practices such as variable rate fertilizer (39 %), 

variable rate pesticide (8%), variable rate irrigation (4 %), cloud-based data analytics (21 %) and 

telematics (10 %) are the Internet of Things (IoT) Precision Agriculture technologies having low 

adoption rates among Indiana row crop producers. The finding suggests that there is a gap in the 

literature for understanding the barriers leading to low adoption of IoT based Precision Agriculture 

technologies. There is a need to fill this gap for creating body knowledge leading to improved 

adoption of Precision Agriculture practices among Indiana row crop producers.  
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RQ2: What are barriers to adoption of Precision Agriculture technologies among Indiana row crop 

producers? 

 

         Structured Literature Review followed by content analysis identifies the barriers to adoption 

of IoT based Precision Agriculture technologies among Indiana row crop producers. The findings 

highlight barriers based on Cost (Return on Investment), Power consumption, sensor nodes 

integration, Communication range limitations, Data latency (Data Transfer) requirements, Data 

interoperability, Data scalability, Data storage, Data processing & User-Interface of cloud storage. 

The subsequent finding suggest barriers are classified into three layers of IoT wireless sensors 

framework for Precision Agriculture technologies i.e., Perception layer (Type of Sensors, Sensor 

node integration, Power consumption of sensor node), Communication Layer (Communication 

range limitations, Costs, Data latency, Data scalability, Power consumption) and Data Processing 

& Application layer (Data scalability, Data storage, Data processing, Data interoperability & User-

Interface).  

      The findings fill the knowledge gap and might inform producers about barriers to adoption of 

IoT based Precision Agriculture technologies. The barriers identified were used to develop semi-

structured focused groups interview questions for further understanding and establishing 

relationships developing theoretical framework for Lean and Green adoption.  

 

RQ3: How might a Lean and Green Internet of things (IoT) wireless sensors framework be 

developed for the improved adoption of Precision Agriculture technologies among Indiana row 

crop producers? 

         

        The semi-structured focused group interviews were conducted with subject matter expertise 

(SME’s), (N=18) in IoT based Precision Agriculture practices to understand and define decision 

variables related to barriers following content analysis approach. Interpretive Structural Modeling 

(ISM) approach was used to develop a model describing relationships among decision variables 

(Cost, Power Consumption, Communication Range, Data Latency, Data Scalability, Data Storage, 

Data Processing, Data Interoperability, Type of Sensors, Type of Wireless Communication, Type 

of Precision Application). The ISM model highlighting relationships between variables Cost, 

Power Consumption, Data Scalability, Data Storage and Type of Wireless Communication was 
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validated and informed design improvements in redeployment (sensor node B). The findings based 

on comparison of action research deployments reported design improvements in redeployment 

from initial deployment based on finding Data Interoperable open-source (see Appendix B) Things 

board network cloud storage reducing variable costs by $204. Battery power consumption cost 

decreased by 60 % with decrease in Data scalability from 8 sensors (initial deployment) to 4 

sensors (redeployment). Low Power Wider Area Network (LoRAWAN) wireless communication 

gateway integrated with Monitoring (Temperature, Humidity, Soil Moisture & Light) and 

Autonomous (GPS) sensors in redeployment is interoperable solution as compared to LoRA sub-

edge radio which integrates with Monitoring sensors only. The implications of action research 

findings might inform producers, IoT Precision Agriculture practioners and researchers about cost 

effective, power efficient, data interoperable and open-source solution (see Appendix B) for IoT 

wireless sensors-based Precision Agriculture applications. The ISM model developed might help 

producers to understand the relationships between decision variables or barriers for Lean Green 

adoption.  

     A correlation model empirically validated the ISM model highlighting Battery Voltage (BV) 

(Power Consumption) for deployed sensors has strong positive correlation (0.79) with Data Rate 

(DR) and moderately negative correlations (-0.3, -0.26) with Communication Range (CR) and 

Received Signal Strength Index (RSSI). This finding implies that sensor nodes deployed at a longer 

distance from LoRAWAN communication gateway must run at lower Data Rate (DR) for low 

battery power consumption and is significant for cost effective maintenance decisions. The finding 

of boxplots highlighting variation in Received Signal Strength Index (RSSI) for sensors 

redeployed suggests orientation and canopy growth are the factors that might impact the signal 

strength which might be critical to explore for making maintenance decisions.   

    The findings of this thesis might inform row crop producers, Precision Agriculture practioners 

and technology consultants about cost and energy efficient design for Lean-green adoption of IoT 

based Precision Agriculture technologies. The ISM model developed might be used by different 

small-medium enterprises (SME’s) to benchmark and establish key performance indicators for 

Lean-Green adoption of precision manufacturing IoT wireless sensor technologies.  
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5.2 Conclusions 

Lean and Green operational barriers or variables identified for Internet of Things (IoT) based 

wireless sensors data pipeline framework through structured literature review are Cost (CT), Data 

Storage (DS), Data Scalability (DSC), Data Latency (Data Rate (DR)), Communication Range 

(CR), Data Processing (DP), Power Consumption (PC), Data Interoperability (DI), Type of 

Sensors (TS), Type of Wireless Communication technologies (TWC) & Type of Precision 

Agriculture application (TPA). The relationship between the variables developed through 

Interpretive Structural Model (ISM) is empirically validated (DSC, DS, DI, CT, TWC, CR, DR, 

PC) through comparison of action research deployments and statistical analysis.    

Data Interoperable open-source cloud integration of Things network increased the data 

scalability in context of integrating different types of sensors i.e., Autonomous (GPS) & 

Monitoring (Temperature, Humidity, Soil Moisture & Light). Data scalability decreases with 

decrease in number of sensors integrated and so does the battery power consumption of the sensor 

node. Operating Battery Voltage (BV) of sensor nodes vary significantly with Data Rate (DR), 

Communication Range (CR) and Received Signal Strength Index (RSSI). Operating Battery 

Voltage (BV) of sensor nodes varies significantly with Communication Range (CR), Received 

Signal Strength Index (RSSI) and Data Rate (DR). Higher communication ranges and lower Data 

Rate (DR) decreases operating Battery Voltage (BV) of sensor nodes which might increase current 

withdrawals thereby increasing power consumption and decreasing battery life of sensor nodes. 

Growth in canopy and orientation of redeployed sensor nodes might impact the strength of 

received signals. Received Signal Strength Index (RSSI) is critical to evaluate for the redeployed 

sensors as it might decrease with canopy growth and orientation needed to be changed for the 

sensors deployed near the ground for stable working receiving appropriate signals.  

5.3 Recommendations & Future Work 

Power consumption of a sensor node increases with Data Scalability as highlighted by the 

findings of action research deployments. Therefore, it is relevant to identify the critical data or 

scale and type of sensors required based upon the type of precision agriculture application and type 

of wireless communication technology used for integration. Data interoperability depends upon 

Data storage and open-source cloud Things network is more interoperable in context of data 
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storage and processing capabilities with integration of heterogeneous sensors (Monitoring & 

Autonomous) highlighted in the deployment of sensor node B. Open-source integration of sensor 

nodes with Things cloud network eliminated the substantial part of variable cost associated with 

subscription. Operating Battery Voltage of a sensor node varies with Communication Range 

distance from communication gateway network, Data Rate and Received Signal Strength Index. 

The sensor nodes deployed at wider distances might operate at lower Battery Voltage (BV) as 

compared to sensor nodes that are closer to the communication gateway network (LoRAWAN). 

Therefore, it is recommended through the findings of our research that as per low Data Rate 

requirements of Monitoring precision agriculture applications sensor nodes located at wider ranges 

from the communication gateway network should operate at lower Data Rate for same power 

consumption during signal transmission as also recommended and highlighted by recent study 

(Kufakunesu, Hancke, & Abu-Mahfouz, 2020). This recommendation is specifically for static 

sensor nodes deployed within 7 miles (maximum coverage range for LoRAWAN) with no 

considerable canopy growth on field. However, as the growing season proceeds Received Signal 

Strength Index (RSSI) decreases with canopy growth and sensors deployed below the canopy 

height might receive low signals as highlighted through research findings. Therefore, it is 

recommended changing the orientation of deployed sensors to keep them above the canopy 

biomass for receiving appropriate signals. The research questions that might be interesting to 

explore and complements the future research aspects are highlighted in Table 5.2. The variation of 

Received Signal Strength Index per day during the growing season of corn & soybean for 

LoRAWAN compatible sensors might be useful to explore through a broader impact study 

highlighting the loss of signal strength with canopy biomass. The other interesting research 

question that might be useful to explore is correlation between Received Signal Strength Index 

and battery Power Consumption in metric of sensor node battery life. The research findings 

highlight that there might be significant reduction in Received Signal Strength Index with canopy 

growth so it might be interesting to explore if there is any significant variation in power 

consumption by sensor node as well to predict battery life as it relates to significant variable cost. 

The research findings are limited to static sensor nodes for monitoring micro-climatic field 

conditions. Therefore, it might be potentially interesting to explore the battery life predictability 

for moving sensor nodes (GPS) and variation with Communication Range (CR) distance for 
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LoRAWAN compatible sensors. The table below highlights the potential future research questions 

and their potential implications.  

Table 5.1:  Future research questions and potential implications.  

Future Research Questions  Potential Implications  

How does the Received Signal Strength Index vary 

per day during the growing season of Corn & 

Soybean for LoRAWAN compatible agriculture 

sensors? 

Predictability of maintenance decisions for sensor 

node orientation needed to be changed due to loss 

of signal strength with canopy growth.   

How does battery life of a static sensor node vary 

per day during the growing season of Corn & 

Soybean for LoRAWAN compatible sensors? 

Predictability of sensor node battery life for static 

monitoring applications with canopy growth per 

day.   

How does battery life of a moving autonomous 

(GPS) sensor node vary with Communication 

Range distance for LoRAWAN compatible 

sensors?  

Predictability of battery life for moving 

autonomous (GPS) sensor nodes and variation 

with Communication Range distance for 

LoRAWAN compatible sensors.  

How Lean & Green IoT wireless sensors framework 

be developed for smart manufacturing applications? 

Optimizing inputs, Logistics decision making, 

Benchmarking, and evaluating Lean-Green IoT 

systems for smart manufacturing.  

 

Interpretive Structural Model developed through this research for Internet of Things (IoT) 

wireless sensors-based data pipeline might be used in logistics decision making, benchmarking 

technology adoption, and evaluating Lean and Green IoT systems for smart manufacturing. This 

might be a future research study exploring Lean and Green IoT wireless sensors framework for 

developing smart manufacturing applications. The potential implications by developing Lean and 

Green IoT framework for smart manufacturing systems might help to optimize inputs and 

resources through precision manufacturing. Lean and Green IoT wireless sensors framework 

might also inform precision technologists and practioners for cost and energy efficient adoption 

of IoT precision manufacturing applications.   
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APPENDIX A.  INTERVIEW SCRIPT 

Hello, my name is                               and I am a Purdue University graduate student conducting 

this focused group interview with (         ) on (date/time).  

 

The purpose of this research study is to explore the lean (cost, power, data scalability, data 

processing and user-experience) and green (energy and hazardous waste reduction precision 

agriculture applications) Internet of things (IoT) wireless sensors framework for the 

adoption of precision agriculture applications (monitoring row crop diseases, smart 

irrigation, smart fertilizing, and farm-machinery efficient navigation) amongst row crop 

producers in Indiana region. A content analysis will be conducted through focused groups 

semi-structured interviews with subject matter experts in open-agriculture technological 

systems (OATS), Digital agriculture experts (Professors, Graduate Students & Purdue 

ACRE extension members). The findings of the content analysis from the focused group 

interviews will be used to inform the multiple Farm beats sensor boxes deployment at Purdue 

Agronomy Center for Research and Education (ACRE) farm facility following action 

research. The goals of this study are as follows: 

 

1. Identify the different types of sensor combinations that can be used to gather the data 

for developing precision agriculture applications (monitoring row crop diseases, 

smart irrigation, smart fertilizing, and farm-machinery efficient navigation) for an 

average size row crop farm in the Indiana region. 

 

2. Understand the efficient (cost, power, data scalability, data management) and 

effective (communication range, data latency, data interoperability, data processing) 

wireless communication technologies that can be integrated with sensors for 

developing precision agriculture applications (monitoring row crop diseases, smart 

irrigation, smart fertilizing, and farm-machinery efficient navigation) for an average 

size row crop farm in Indiana region.  

 

3. Understand and identify the efficient (cost, power, data management) and effective 

(data latency, data interoperability and data management) data storage and processing 

application programming interfaces for developing precision agriculture applications 

(monitoring row crop diseases, smart irrigation, smart fertilizing and farm-machinery 

efficient navigation) for an average size row crop farm in Indiana region. 

 

4. Understanding the dependencies of variables namely type of sensors, type of wireless 

communication technologies, no. of devices-data scalability, communication range, 

data latency, data interoperability of application programming interfaces with cost, 

power consumption and type of precision agriculture applications (monitoring & 

autonomous).  
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To participate in this research, we ask for approximately (1 hour) of your time through a 

guided semi-structured focused group interview. All research carries risks, but the risks 

associated with this study are minimal and no more than found day to day. The minimal 

foreseeable risks are that your identity might be accidentally repealed to parties other than 

the researchers, should there be a confidentiality breach. However, we are taking several 

measures to protect your identity. There are few direct benefits to you from participating in 

this research, but the research results will benefit: row crop farmers, digital agriculture 

practitioners and open agricultural technology researchers. This interview will be recorded 

for transcription as data collection for subsequent analysis. We do appreciate your time as 

your experience, background & expertise are critical to the success of this study. 

Do you all consent to participating in this study? May we record our conversation? 

 

 

Demographics 

 

1. What is your educational background and current role in the organization you work? 

2. What is your experience with digital agriculture? 

 

 

Perception Layer (Types of sensors) 

 

1. What are the different types of sensors that can be used to develop applications for 

monitoring row crop diseases on an average size farm in the Indiana region? 

2. What are the different types of sensors that can be used to develop applications for 

smart irrigation applications on an average size row crop farm in the Indiana region? 

3. What are the different types of sensors that can be used to develop applications for 

smart fertilizing on an average size row crop farm in the Indiana region? 

4. What are the different types of sensors that can be mounted on farm- machinery for 

efficient navigation during planting and harvesting operations? 

 

 

Communication Layer (Wireless communication technologies) 

 

1. How can we efficiently (cost, power, scalability) and effectively (communication range, 

data latency, data storage and processing) integrate different types of sensors with wireless 

communication technologies for monitoring row crop diseases precision application on an 

average size farm in the Indiana region? 

 

2. How can we efficiently (cost, power, scalability) and effectively (communication range, 

data latency, data storage and processing) integrate different types of sensors with wireless 

communication technologies for smart irrigation autonomous application on an average 

size row crop farm in the Indiana region? 

 

3. How can we efficiently (cost, power, scalability) and effectively (communication range, 

data latency, data storage and processing) integrate different types of sensors with wireless 
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communication technologies for smart fertilizing autonomous application on an average 

size row crop farm in the Indiana region? 

 

4. How can we efficiently (cost, power, scalability) and effectively (communication range, 

data latency, data storage and processing) integrate different types of sensors with wireless 

communication technologies for farm- machinery efficient navigation on an average size 

row crop farm in the Indiana region? 

 

 

Data processing & application layer (Data storage, management and processing applications) 

1. How can we (cost, power, scalability) and effectively (communication range, data 

latency, data interoperability) store and process data for developing monitoring of row 

crop diseases and precision application interfaces? 

 

2. How can we (cost, power, scalability) and effectively (communication range, data 

latency, data interoperability) store and process data for developing autonomous (smart 

irrigation, smart fertilization & Farm machinery navigation) alert application interfaces? 
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APPENDIX B. DATA SETS- IOT SENSORS & THINGS BOARD 

The real time performance data sets used to perform the analysis in section 4.6, 4.6.1 & 4.6.2 is 

attached herewith the link provided.  

 

https://app.box.com/s/lqa6saevky3hq2y7k0jl5lxhty2ehm5m 

 

The Things board open-source cloud rule chain.  

ThingsBoard PE | Device group (purdue.edu) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

https://app.box.com/s/lqa6saevky3hq2y7k0jl5lxhty2ehm5m
https://things-pro.ag.purdue.edu:8080/deviceGroups/826d1390-1be5-11ec-ac75-157f3d72ab3a
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APPENDIX C. ANOVA RESULTS 

ANOVA 

(pg. 129)       

  df SS MS F Significance F 

Regression 4 0.93 0.2324 1243.414439 0 

Residual 2499 0.467 0.000187   

Total 2503 1.40       

 

 Coefficients Standard Error t Stat P-value 

Intercept 3.345356837 0.008099844 413.0149609 0 

Communication 

Range (CR)- meters 0.000152889 9.77455E-06 15.64159128 1.10028E-52 

Received Signal 

Strength Index (RSSI) 0.000157345 4.23919E-05 3.711676929 0.000210387 

Signal to Noise Ratio 

(SNR) 5.0342E-05 0.000111712 0.450639427 0.65228854 

Data Rate (DR)-

bits/sec 0.055938895 0.000884811 63.22126062 0 

 

  

ANOVA 

(pg. 131) 

     

  df SS MS F Significance F 

Regression 1 0.077597665 0.077598 191.4184233 5.27238E-42 

Residual 2502 1.014266832 0.000405 
  

Total 2503 1.091864497       
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