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ABSTRACT

Being a widely used structure, composite shells have been studied for a long time. The

features of small thickness, heterogeneity, and anisotropy of composite shells have created

many challenges for analyzing them. A number of theories have been developed for modeling

composite shells, while they are either not practical for engineering use, or rely on assump-

tions that do not always hold. Consequently, a better theory is needed, especially for the

application on challenging problems such as shells involving thermoelasticity, viscoelasticity,

or viscoplasticity.

In this dissertation, a shell theory based on mechanics of structure genome (MSG), a

unified theory for multiscale constitutive modeling, is developed. This theory is capable

of handling fully anisotropy and complex heterogeneity, and because the derivation follows

principle of minimum information loss (PMIL) and using the variational asymptotic method

(VAM), high accuracy can be achieved. Both a linear version and a nonlinear version using

Euler method combined with Newton-Raphson method are presented. This MSG-based shell

theory is used for analyzing the curing process of composites, deployable structures made

with thin-ply high strain composite (TP-HSC), and material nonlinear shell behaviors.

When using the MSG-based shell theory to simulate the curing process of composites,

the formulation is written in an analytical form, with the effect of temperature change and

degree of cure (DOC) included. In addition to an equivalent classical shell theory, a higher

order model with the correction from initial geometry and transverse shear deformation

is presented in the form of the Reissner-Mindlin model. Examples show that MSG-based

shell theory can accurately capture the deformation caused by temperature change and cure

shrinkage, while errors exist when recovering three-dimensional (3D) strain field. Besides,

the influence of varying transverse shear stiffness needs to be further studied.

In order to analyze TP-HSC deployable structures, linear viscoelasticity behavior of com-

posite shells is modeled. Then, column bending test (CBT), an experiment for testing the

bending stiffness of thin panels under large bending deformation, is simulated with both

quasi-elastic (QE) and direct integration (DI) implementation of viscoelastic shell proper-

ties. Comparisons of the test and analysis results show that the model is capable of predicting
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most of the measured trends. Residual curvature measured in the tests, but not predicted

by the present model, suggests that viscoplasticity should be considered. A demonstrative

study also shows the potential of material model calibration using the virtual CBT devel-

oped in this work. A deployable boom structure is also analyzed. The complete process of

flattening, coiling, stowage, deployment and recovery is simulated with the viscoelastic shell

model. Results show that major residual deformation happens in the hoop direction.

A nonlinear version of the MSG-based general purpose constitutive modeling code Swift-

Comp is developed. The nonlinear solving algorithm based on the combined Euler-Newton

method is implemented into SwiftComp. For the convenience of implementing a nonlinear

material model, the capability of using user material is also added. A viscoelastic material

model and a continuum damage model is tested and shows excellent match when compared

with Abaqus results with solid elements and UMAT. Further validation of the nonlinear

SwiftComp is done with a nonlinear viscoelastic-viscoplastic model. The high computational

cost is emphasized with a preliminary study with surrogate model.
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1. INTRODUCTION

1.1 Background and Motivation

Fiber reinforced composite materials have high strength while light weight, which greatly

improve the performance of structures. Because of these advantages, they are more and

more widely used in engineering. Limited by their manufacturing processes, many fiber

reinforced composite structures are shells, having the thickness dimension much smaller

than the other two. Regardless of the material, shells are common structures in different

aspects of engineering, such as domes of constructions, liquid containers, fuselages and wing

skins of airplanes, bodies of automobiles, pressure vessels, hulls of ships etc. When a shell

does not have initial geometry, it is degenerated to a plate

Generally, a shell can be modeled in the same way as any three-dimensional (3D) struc-

tures. Then, thanks to the fast development of computer technology, a direct numerical

simulation (DNS) can be used to obtain the solution, mainly through the finite element

method (FEM). However, due to the small thickness of shells, DNS using 3D FEM can eas-

ily introduce numerical issues such as shear locking or hourglass effect. Besides, in order to

maintain a reasonable element aspect ratio, usually mesh density of the FEM model has to

be very high, greatly increase the computational cost of solving the problem. This disad-

vantage is substantially amplified when the shell is laminated with multiple layers, which

is very common for a shell with composite materials. An alternative for overcoming the

challenges associated with laminated shells is using the smeared properties, averaging the

material properties of several or all layers to simplify the analysis, turning the laminate into

so-called black aluminum. Using smeared properties provides moderate increase in efficiency

but in the mean time induces inaccuracy in certain global behavior and losing information

on stress distribution [ 1 ]. On the other hand, shell theories simplify the analysis by repre-

senting the original 3D body with a surface, utilizing the feature of small thickness of shell

structures. This simplification turns the 3D analysis into a through-the-thickness analysis

and a two-dimensional (2D) global analysis, greatly increase the efficiency. However, most

shell theories relies on certain assumptions. For example, the classical shell theory are based

on the Kirchhoff-Love kinematic hypothesis, assuming that straight lines normal to the shell

13



reference surface remain straight and normal after deformation, and their length does not

change. These kind of assumptions do not always hold true, resulting incorrect solution in

some applications. Consequently, a shell theory relies less on ad hoc assumptions is pre-

ferred, especially on solving some of the challenging problems featuring heterogeneity and

anisotropy.

One of the challenging problems for shell theories is the simulation of the autoclave curing

process of composites. Autoclave curing is one of the most common composite manufacturing

method. In this process, prepregs, which are prefabricated thin plies having unidirectional

continuous fibers impregnated with a matrix material, usually resin, are laid up on a mold

whose design is based on the geometry of the part, and then the prepreg laminate is covered

with several auxiliary layers and sealed with a vacuum bag, as shown in Figure  1.1 . The

whole assembly is put in an autoclave undergoing preset heat and pressure history called cure

cycle, as shown in Figure  1.2 . After curing, the assembly is moved out of the autoclave and

cooled down before removing the part from the tool, usually called detooling. During this

Figure 1.1. Components of the assembly for autoclave curing [ 2 ].

curing process, the laminate experiences large temperature change and phase transformation

of the matrix. Temperature change generates large thermal strain in the laminate and

14



Figure 1.2. Typical autoclave cure cycle [ 2 ].

causing temperature dependency of the material properties, resulting in residual stress in

the laminate. The phase transformation of the resin, measured by degree of cure (DOC), is

another source of residual stress, as during this process the resin has a significant increase

in density and stiffness, and a decrease in volume, usually called cure shrinkage. Residual

stresses generated by these phenomena lead to a preloaded state of the composite part, and

combined with the anisotropy of composites, large deformation can happen after detooling,

causing difficulties on assembling or affecting the performance of the composite parts. In

order to minimize the influence of manufacturing induced residual stress and deformation,

an effective simulation method is required. As most parts manufactured by autoclave curing

are laminates, shell theories potentially provide the most efficient way to solve this type of

problems.

As mentioned previously, the small thickness of shells makes simulation with 3D FEM

costly. When a laminated shell has a very small thickness and a very large surface dimension,

a 3D FEM becomes almost impossible. This is the case when it comes to the analysis of thin-

ply high strain composite (TP-HSC) deployable structures. TP-HSC [  3 ] has a ply thickness
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of only 0.02 to 0.1 mm. Typically, the laminates used are only a few plies thick, and thus

much thinner than conventional composites employed, for instance, in commercial airplanes.

TP-HSC deployable structures gain notice from researchers of space applications due to

their features of light weight and high flexibility. Compared with conventional deployable

structures, TP-HSC deployable structures can be applied to space platforms less than 1 m3,

such as small satellite missions. A TP-HSC boom can be rolled onto a hub, only occupying a

small volume, while after deployment, size of 5-20 m can be achieved [  4 ]. This makes low-cost

deep space exploration using solar sails practical. However, small thickness, large surface

dimension and high flexibility also bring difficulties on analyzing the structure. During the

coiling of a TP-HSC boom, the structure undergoes large bending deformation, leading to

large surface strain, involving both geometric and material nonlinearity. In addition, due to

the intrinsic viscoelasticity of composite matrix, and a long time in stowed condition before

deployment, time dependent behavior is observed during this period [ 5 ]. Combined with

large deformation and high strain, deployment failure can occur because of stress relaxation.

For example, the boom cannot goes back to its original geometry in length direction, making

the solar sail unable to deploy, or it cannot keep its designed cross-section, losing the ability

to support the sail. As a result, an efficient method to simulate these physics is critical to the

development of TP-HSC deployable structures. A 3D solid model is not feasible as already

mentioned, and although a beam model can predict the behavior in the length direction, the

large cross section change during rolling to the hub and deployment are hard to capture. On

the other hand, a shell model can capture the behavior in both directions and maintain a

reasonable computational cost. Consequently, a shell model is the most suitable method for

analyzing TP-HSC deployable structures.

In the research and application of TP-HSC and deployable structures, permanent defor-

mation is also noticed [ 6 ], [ 7 ]. This is mainly because the intrinsic time-dependent behavior

of the resin not only includes viscoelasticity, but also viscoplasticity. The material behavior

can be in elastic regime at the beginning of the stowage while in the long stowage period

yielding can be initiated. Different from the stress relaxation in viscoelasticity, the residual

deformation caused by viscoplasticity will not be fully recovered. Permanent deformation

greatly affects the performance and reliability of space platforms [ 8 ], so it is critical to
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develop a nonlinear modeling technique to analyze this phenomenon. Compared to a 3D

solid model, a nonlinear shell model is more suitable for this purpose. In addition to the

the reasons mentioned previously, a shell model can further outperform 3D models because

nonlinear analysis are usually incremental, so the computational speed improvement can be

more significant. Besides, if shell elements are used for global structural analysis, 3D solid

model can lead to accuracy loss if the shell formula of the global structure solver cannot ac-

curately recover the 3D variables, because in nonlinear analysis, current loading state affects

the behavior of the next increment. As a result, a nonlinear shell theory should be adopted

for analyzing the nonlinear behavior of TP-HSC and deployable structures.

1.2 Literature Review

This section reviews literature related to this study. The first part is focused on the

development of shell theories and MSG. Then the two applications concerned in this study are

reviewed: firstly on the curing of composites, which involves thermoelasticity, and secondly

TP-HSC deployable structures, which emphasizes time-dependency and nonlinearity.

1.2.1 Shell Theories and MSG

Because of the common applications of shell structures, shell theory has been a research

topic for a long time. The development of a shell theory can start with the analysis of

a 2D continuum, as firstly proposed by Cosserat brothers [  9 ]. Other contributors of this

method includes Ericksen [ 10 ], Naghdi [  11 ], [ 12 ], Toupin [  13 ], Green [  14 ], Cohen [  15 ] et al.

Some researchers such as Simo [  16 ], Fox [ 17 ] and Ibrahimbegovic [ 18 ] had put efforts on

the computational implementation of shell theory derived in this way based on numerical

methods such as FEM. However, this derivation method neglect the fact that a shell is a

3D body in real world, resulting in the difficulty of obtaining a constitutive relation based

on 3D materials [ 19 ]. It was suggested by Reissner [  20 ] that experimental methods or a

derivation from the original 3D structure can be adopted to get the constitutive relation.

For this reason, shell theories of this kind are not commonly used in engineering.
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Alternatively, a shell theory can also be derived from 3D continuum. A process called

dimensional reduction is carried out to transform the original 3D continuum problem to a

2D problem to be solved on the reference surface. One way to achieve this is by assuming

the distribution of 3D fields through the thickness, and then 2D variables on the shell ref-

erence surface can be obtained by an integral in the thickness direction. One of the oldest,

and maybe the most widely used assumptions are the Kirchhoff-Love assumptions [  21 ], [  22 ],

extended from the Euler-Bernoulli beam assumptions. Improvements of shell theories based

on the origin work of Love have been done by Goldenveizer [ 23 ], Lurie [ 24 ], Novozhilov [ 25 ],

Koiter [  26 ], Sanders [  27 ], Budiansky [  28 ] et al., including removing inconsistencies, reduc-

ing stress resultant measurements, alternating the strain measurements of the 2D reference

surface, or even release one or some of the assumptions that can lead to a first-order shear

deformation theory. Some higher-order distributions of 3D fields are assumed by researchers,

such as the third-order theory by Reddy [  29 ]. Another way to do the dimensional reduction

is using an asymptotic method to expand the 3D quantities into series of the thickness coor-

dinate, such as the work by Carrera [  30 ]. When applied to composite shells, the complexity

of formulation can greatly increase due to the anisotropy and heterogeneity.

On the other hand, using mechanics of structure genome (MSG), a new theory that unifies

micromechanics and structural analysis presented by Yu [  31 ], [ 32 ], a shell theory is possible

to greatly reduce computational cost while maintaining high accuracy. The MSG is a theory

that a Structure Gene (SG) is chosen to represent the smallest mathematical building block

of the structure, and then following the Principle of Minimum Information Loss (PMIL)

[ 33 ], the constitutive relation is derived for the SG via the Variational Asymptotic Method

(VAM) developed by Berdichevskii [  34 ]. The MSG-based shell theory is extended from Yu

and his co-authors’ work of [  35 ], [  36 ]. Compared to other shell theories, MSG-based shell

theory does not rely on assumptions of the distribution of 3D quantities, and it is capable of

handling fully anisotropy and complex heterogeneity. It has been applied to solve different

problems including smart materials [  37 ]–[ 39 ], functionally graded materials [  40 ] and time

dependent material properties [  41 ]. A detailed introduction of MSG is included in Chapter

 2 .
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1.2.2 Curing Simulation of Composites

Simulation of the curing process of composites consists of two parts, a thermochemical

part that calculates the temperature distribution, phase transformation, DOC, and material

properties depending on these quantities, and then a stress-deformation part that calculates

the residual stress based on the results of the thermochemical part, and the final deformation

after detooling. This study only focuses on the stress-deformation part of the simulation.

Because of the complex nature of the manufacturing process, lots of efforts are made on

different aspects of the process. Early research includes Hahn and Pagano’s work in 1975

[ 42 ], in which a classical lamination theory (CLT) based model was built and temperature

dependent material properties were considered, while only the cooling-down from a stress-

free state was analyzed. In 1983, a comprehensive model was provided by Loos and Springer

[ 43 ], in which through-the-thickness thermochemical and resin flow effects were discussed but

little emphasis was given to residual stress and deformation. In 1990s, White and Hahn [ 44 ]

implemented an experimental study on the generation of residual stress during curing. The

results were further developed into a model for predicting the resultant curvature after the

process [  45 ], [  46 ]. Bogetti and Gillespie [  47 ] did a cross-sectional analysis on heat transfer

and cure kinetics of thick composites, and thereafter a detailed analysis on the generation of

residual stress [  48 ], with the final residual stress obtained using CLT. Johnston [ 49 ] developed

a finite element based method to simulate the curing process with three separated sub-

models: thermochemical, flow, and stress, with all of them under a plane strain assumption.

In the stress model, detooling process was also considered.

In recent years, focus has been laid on improving the performance of residual stress and

deformation prediction. Interaction between the tool and composite part was investigated

by Twigg et al. [  50 ], [ 51 ], and results showed that for a certain layup, part geometry and

processing conditions were the most significant factors to affect part warpage. Clifford et al.

[ 52 ] used FEM to do the analysis with flat region modeled with shell elements and curved

region with solid elements. An over-prediction was observed compared with experiment.

Zobeiry et al. [  53 ] analyzed the application of viscoelastic material models on composites

curing simulation and found that a more sophisticated model provides better accuracy but
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is more computationally expensive and more difficult to calibrate the parameters. Arafath

et al. [ 54 ] developed two higher-order brick elements for dealing with large stress gradient

through the thickness and in the mean time increasing computational efficiency. Arafath et

al. [  55 ], [ 56 ] obtained an analytical solution of stresses and deformation of a composite part

processed on a solid tool while several assumptions were adopted. Ersoy et al. [ 57 ] studied

the spring-in of a curved part by simplifying the curing procedure into two steps. The effect

of shear was analyzed. Kravchenko et al. [  58 ] put forward a multiscale model for predicting

the cure shrinkage and thermal strain in thermoset matrix. Kappel et al. [  59 ] developed a

simulation strategy that can be applied with different finite element models with either solid

or shell elements. Element parameters were obtained from experiments using simple samples.

Ding et al. [ 60 ] found an analytical solution to predict the spring-in of curved composite

parts from the strains in both through-the-thickness and length directions. Gordnian [ 61 ]

developed a thermo-viscoelastic model that can predict the deformation and residual stress of

both thermoset and thermoplastic polymer composites. Li et al. [  62 ] compared the influence

of different constitutive models on residual stress and cure shrinkage. An elastic model was

observed to have large error. Gordnianet al. [  63 ] studied the effect of different cure cycles on

the deformation of the composites parts. Numerical results were compared with experiments.

Chen and Zhang [  64 ] developed a multiscale model with both thermochemical and stress-

deformation analysis. Viscoelastic model was adopted and the warpage of an anti-symmetric

laminate was studied.

A commercial code using Abaqus as the solver called COMPRO [ 65 ] is developed to

simulate the manufacturing process. However, similar to most of the researches presented

here, solid elements are adopted. Using the residual stress output from COMPRO, a detool-

ing research was done by Rique et al. [  66 ] using shell elements, showing the feasibility of

applying MSG-based shell theory on curing simulation of composites.

1.2.3 TP-HSC Deployable Structures

Research on TP-HSC deployable structures falls in three categories: design of the TP-

HSC boom, analysis of constitutive relations, and simulation of global structures. The design
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of boom focusing on optimization of cross-sectional stiffness falls in the field of beam theory,

so it is out of the area of this study. Because of the potential coupling between structure and

material behavior [  3 ], constitutive relation used in the global shell structure analysis should

be directly obtained from the original heterogeneous material instead of a lamination theory

to avoid loss of accuracy [  4 ]. In addition, time-dependent material properties also need to

be considered. Mallikarachchi [  67 ], [  68 ] homogenized thin-walled composites used in tape

spring hinges as Kirchhoff-Love plates, with elastic material properties. Failure analysis was

proceeded based on this framework [ 69 ]. Kwok and Pellegrino [ 70 ] studied the viscoelastic

behavior of a single-ply plain weave composite using the representative volume element

(RVE) analysis. The result was in the form of Prony series of the ABD stiffness matrix,

and validated by simulation and experiment of a tape spring. This work was extended

by Hamillage et al. [ 71 ] to be applied on TP-HSC with multiple plies. Tetsuka et al.

[ 72 ] analyzed the properties of woven composites considering temperature dependency and

viscoelastoplasticity, by using a multiscale method.

In addition to numerical methods, experiments are also designed to evaluate the bending

stiffness of TP-HSC, including the simple vertical test [  73 ], the platen test [  74 ], [  75 ], the large

deformation four-point bending (LD-FPB) test [  76 ], and the latest being the column bending

test (CBT) [ 77 ]. The CBT loads the specimen in compression with pinned ends offset from

the specimen’s neutral axis, generating a stress state close to pure bending. Numerical sim-

ulations of the CBT can be used to evaluate modeling techniques and material constitutive

models, and to improve understanding of test results. In addition, the CBT model can be

used as a tool for calibrating properties based on the experimental data [ 78 ]. Limited work

has been done in modeling the CBT for TP-HSC. Sharma et al. [  79 ] analyzed the CBT

based on Euler’s elastica theory to account for large deformation of one-dimensional (1D)

structural elements, and compared with a kinematic solution and experiments. Nonuniform

deformation along the loading direction was observed. Rose et al. [  80 ] used a CBT sim-

ulation in Abaqus to verify the modeling technique referred to as the coincident element

method. In this method, independent layers of orthotropic elastic and isotropic viscoelastic

shell elements share nodes, so that orthotropic viscoleastic behavior can be simulated with

current Abaqus built-in capabilities. Gomez-Delrio and Kwok [  81 ] analyzed the bending of

21



a TP-HSC plate with a simplified analytical model and a finite element simulation. They

found that the results from these two approaches match well when a uniform distribution

of curvature is assumed. As identified in [  80 ], [  81 ], the most appropriate way of simulating

CBT with the finite element method is using shell elements, due to the small thickness of

TP-HSC.

To understand the influence of large bending deformation and long stowage time, a global

structural analysis of TP-HSC deployable structures is also necessary to support practical

engineering applications. However, due to the complexity of modeling a deployable structure

with one or more booms and a coiling hub, and the highly nonlinear process of coiling and

deployment, many researchers have used simplified models. Bai te al. [ 82 ] studied the

flattening and bending of a lenticular boom using an analytical method. Results were only

accurate for small displacement when compared with experiments. Brinkmeyer et al. [ 83 ]

analyzed the effect of long stowage time to the deployment of a bi-stable tape spring by

comparing an analytical solution with experiments. Failure of deployment caused by long

stowage time was not captured by the analytical solution. Hu et al. [ 84 ] compared two

different methods for flattening a lenticular boom by FEM and experiments. Compression

was found to generate less stress than tension. Borowski et al. [  85 ] studied large bending,

stowage and release of a tape spring. Instead of directly providing the ABD matrix [ 70 ],

stiffness of the FEM simulation model came from 3D material properties of lamina. Gomez-

Delrio and Kwok [ 86 ] developed an analytical solution of viscoelastic tape spring based on

instantaneous folding and deploying. Good agreements with FEM were found on relaxation

only. Cox and Medina [  87 ] studied strain development and buckling of a triangular boom

during rolling, with elastic material properties. Yang et al. [ 88 ] did an optimization on

section moments and dynamic properties of a triangular boom based on FEM simulation of

rolling the boom on the hub for 360◦. Scherbarth and Taha [ 89 ] simulated the stowage and

deployment of a tape spring rolling to a hub, with different time and temperature, using

shell elements with Abaqus Explicit. Results were compared with experiments. Leclerc and

Pellegrino [  90 ] studied the stress concentration of a triangular boom during coiling using

Abaqus. The effect of materials, cross-sections and flattening mechanisms were compared

and found that both a varying cross-section and nip rollers can reduce stress concentration.
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Gomez-Delrio and Kwok [ 91 ] simulated the flattening of a segment of a lenticular boom to

analyze the effect of long stowage time on cross-section, but no coiling process was involved.

Validated models capable of simulating the entire process of coiling, stowage and deploying

of a deployable composite boom structure considering the time-dependent material behavior

are still needed, especially for booms with complex cross-sections, such as those for lenticular

booms.

1.2.4 Nonlinear Shell Modeling

Research on the nonlinear behavior of shells has focused on different aspects. Both geo-

metric and material nonlinearity have been discussed. Most of the studies analyze material

nonlinearities, either homogeneous material or composites, with 3D solid models, and then

apply on shells through the lamination theory or developing shell finite elements that use

the 3D constitutive relations. Ramm and Matzenmiller [  92 ] developed a formula for elasto-

plastic shell based on Newton’s method and the concept of degenerated soild, which requires

the normal stress to be zero. Swaddiwudhipong and Liu [  93 ] analyzed the elasto-plastic

response of shells using a shell element based finite element formula with a time marching

sheme. Wang et al. [  94 ] derived a elastic-viscoplastic model for composites and implemented

through plate/shell finite element based on the lamination theory. Peng and Cao [  95 ] studied

the nonlinear elastic behavior of textile composites using a 2-step homogenization method.

Both steps are based on 3D solid model and finally effective shell properties are obtained

through matching the reaction force and displacement of a shell element to the RVE. Chen

et al. [  96 ] derived the analytical formula for heterogeneous spherical nonlinear elastic shells.

Rabczuk et al. [ 97 ] developed a meshfree shell formula that can model various nonlinear shell

behaviors. This model is especially suitable for crack analysis. Caseiro et al. [  98 ] developed

the formula of a shell element for nonlinear shell analysis that calculates the strain using a

new sets of calculating points instead of the conventional integration points. Goncalves et

al. [  99 ] analyzed the buckling and post buckling behavior of sandwich shells using a multi-

scale nonlinear shell theory based on RVE analysis and first-order shear deformation theory.

Currently, number of studies on directly using a nonlinear shell modeling to analyze shell
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behavior with material nonlinearities are limited. Development of a nonlinear shell homog-

enization algorithm that can be applied with various material constitutive models is critical

to analyze the permanent deformation and other nonlinear behavior in shell structures such

as the TP-HSC deployable structures.

1.3 Objectives and Outline

Although there exist a number of shell theories, most of them have limitations on apply-

ing to problems with composite materials. Theories with difficulty on obtaining constitutive

relations are generally not suitable for engineering applications. Ad hoc assumptions of dis-

placement and stress distributions can introduce significant loss of accuracy when considering

the anisotropic and heterogeneous nature of composites. Even though most composite struc-

tures manufactured by autoclave curing are shell structures, because of the complex physics

during this process, simulations of composites curing are mostly done by solid models, which

either greatly increase the computational cost, or decrease accuracy when smeared proper-

ties of sub-laminate are adopted. In order to reduce the error of global analysis on TP-HSC

deployable structures, shell constitutive model should be based on the original heterogeneity

of TP-HSC, while this is only applied on simplified structures like a tape spring.

In order to overcome those above mentioned limitations, MSG-based shell theory is de-

veloped in this work. It is capable of handling fully anisotropy and complex heterogeneity,

as well as multiphysics. For this reason, it is proposed to use the MSG-based shell theory

to solve the challenges brought up by composites curing simulation, TP-HSC deployable

structures, and nonlinear shell analysis with the objectives as listed.

1. Obtaining the general formula of MSG-based shell theory, with the ability to han-

dle full anisotropy and heterogeneity, and expanding it to include the physics during

composites curing, as well as to solve nonlinear problem.

2. Simulating the residual stress development during the curing process of composites,

and deformation after detooling, by using shell elements to model the composite parts.
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3. Analyzing the time-dependent properties of TP-HSC, and simulating the coiling, stowage

and deployment process of TP-HSC deployable boom and hub structures, using shell

models with stiffness obtained from the original heterogeneous material.

4. Developing a nonlinear shell model that can be used for analyzing various types of

nonlinear shell behaviors including time-dependent yielding and permanent deforma-

tion.

All the structural simulations are done with FEM using Abaqus, with shell constitutive

models provided by MSG-based shell theory implemented as user subroutines that define

the stiffness of shell elements.

Outline of this report is arranged as followed. Chapter  1 includes the background and

motivation of this study, a comprehensive literature review, and the objectives and outline

of this study. Chapter  2 introduces the fundamentals of MSG, and presents the formulation

of MSG-based shell theory of both linear and nonlinear analysis. Chapter  3 firstly modifies

MSG-based shell theory to include the physics during composites curing and high order cor-

rections, and then examples are analyzed to demonstrate the capability of MSG-based shell

theory. Chapter  4 validates the capability of MSG-based shell theory on analyzing large

bend deformation of TP-HSC with viscoelasticity and simulates the coiling and deployment

of deployable boom and hub structures. Chapter  5 implements the MSG-based nonlinear

shell model with a user material interface and validates the implementation with viscoelas-

tic, damage, and viscoplastic material models. Chapter  6 summarizes the results of this

dissertation and discuses possible future work.
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2. MSG-BASED SHELL THEORY

2.1 Introduction of MSG

MSG is a unified theory for constitutive modeling of heterogeneous materials and struc-

tures [  31 ], [ 32 ]. MSG separates the original problem into a global macroscopic analysis and

a local microscopic analysis. It is a general-purpose method for different kinds of structures

including 3D solids, 2D plates/shells, and 1D beams. This study focuses on 2D plates/shells,

and because plates can be treated as shells without initial curvature, the term “shell” is used

without the loss of generality.

Constitutive modeling using MSG is achieved by analyzing the structure gene (SG),

defined as the smallest mathematical building block of the structure. The term gene is

chosen to emphasize the fact that it contains all the information required for the constitutive

modeling of a structure, in the same way as in biology gene contains all the information for

organism’s growth and development. For a shell structure, the SG can be 1D, 2D or 3D,

depending on the microstructural characteristics of the origin 3D shell body. As shown in

Figure  2.1 , if the shell has no heterogeneity in its surface directions, such as a laminate with

the laminae considered as homogeneous, the SG is the 1D transverse normal line with each

segment representing a corresponding layer (see Figure  2.1 a); if the shell has heterogeneity

in one of its surface directions, such as a sandwich panel with corrugated core, the SG is

2D (see Figure  2.1 b); if the shell has heterogeneity in both of its surface directions, such

as a woven composite panel, the SG is 3D (see Figure  2.1 c). Every material point in the

2D global shell model has an SG associated with it, the constitutive modeling of which can

provide effective shell properties and dehomogenization relations to recover the original 3D

fields from the global shell behavior.

MSG formulation starts with kinematics that relates the 3D kinematic fields of the origi-

nal structure to those of the macroscopic model and fluctuating functions. For this purpose,

two sets of coordinate systems are introduced. First is the macro coordinates xi, which

represent the coordinates of the global structure. For shells, only xα describe the reference

surface exist and x3 is eliminated. From here and after Greek indices assume 1, 2, and Latin

indices assume 1, 2, 3. Repeated indices indicate summation over their range unless under-
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Figure 2.1. SG for shell structures.

lined or explicitly described. Because an SG represents the smallest building block, its size

is much smaller than the wave length of the deformation of the global structure, a second set

of coordinates, micro coordinates yi, can be introduced. The macro coordinates and micro

coordinates can be related with a small parameter ε, so that yi = xi/ε, but notice that

during the analysis of a specific problem, ε does not need to be assigned a value. Depending

on the dimension of SG, some of yi can be eliminated. For example, only y3 exists for a

1D SG. Based on this coordinate system, a field function f of the original structure can be

written as a function of xi and yi, and its partial derivative can be expressed as [ 100 ]

∂f (xk, yj)
∂xi

= ∂f (xk, yj)
∂xi

∣∣∣∣∣
yj=const

+ 1
ε

∂f (xk, yj)
∂yi

∣∣∣∣∣
xk=const

≡ f,i + 1
ε
f|i (2.1)

Here the equation is in the case of shell structure with 3D SG. After the kinematics is

established, variational statement of the structure can be formed. Variational statement

comes from the governing functional of the original structure, for linear elastic structures
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being the total potential energy, derived through substituting the kinematic relation in to it

and following the PMIL, which states that the difference between the governing functional of

the original 3D heterogeneous model and the macroscopic model should be minimized [ 33 ].

Then, constitutive relations can be solved using VAM. Depending on the global behavior to

be captured, models of different orders can be obtained.

Figure 2.2. Workflow of structural analysis using MSG.

For MSG-based constitutive modeling of shells, effective shell properties can be calcu-

lated directly in terms of the material properties of the materials inside the SG, which can

be obtained from experiments. A MSG-based shell analysis includes two levels: MSG-based

homogenization and structural analysis using shell elements, as shown in Fig.  2.2 . The pro-

cess starts with MSG-based homogenization with the SG identified first. Depending on the

structure to be analyzed, the SG can be microscale and/or mesoscale. Geometry as well as

the constitutive models of the materials are included in the SG. A general-purpose constitu-

tive modeling code SwiftComp [  101 ] is developed based on MSG. It can be used to obtain the

effective shell properties by homogenization. Based on the geometry and material of the SG,

effective properties can be obtained either by SwiftComp. MSG-based homogenization can
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be applied on different kinds of material constitutive models, either linear or nonlinear [ 102 ]–

[ 104 ]. Effective properties calculated based on MSG are used in the global structural simu-

lations. For most nonlinear and some linear material models, developing a user-subroutine

would be necessary. For example, if the solver for structural simulation is Abaqus/Standard,

and then the user-subroutine UGENS is used for implementing the effective shell properties.

Results of the global structural simulation can be used for dehomogenization if the load-

ing history follows step type behavior. The dehomogenization can show the distribution of

displacement, stress and strain inside the SG at a point of interest in the global structural

model.

2.2 Kinematics

B1(x1, x2)

B2(x1, x2)

B3(x1, x2)

b1

b2

b3

R(x1, x2)

u(x1, x2)

r(x1, x2)

wi(x1, x2, x3)Bi(x1, x2)

r(x1, x2, x3)

O

ˆ 

R(x1, x2, x3)ˆ 

Undeformed shape Deformed shape

Figure 2.3. Schematic of shell deformation.
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The position vector of a point in a shell can be determined by its curvilinear coordinates

xi, as shown in Figure  2.3 , where xα are two arbitrary coordinates in the reference surface

and x3 is the normal coordinate. Based on the concept of MSG, micro coordinate y3 = x3/ε

can be introduced. Without loss of generality, xα can be chosen as the line of curvature, in

which case xi will be orthogonal, so that formulation can be simplified. Denoting the normal

vector of the reference surface as b3, which is also the base vector of coordinate x3, and the

position vector of a point on the reference surface as r, the position vector of any material

point in the shell structure r̂ can be expressed as

r̂ (x1, x2, y3) = r (x1, x2) + εy3b3 (2.2)

The vector r represents the intersection point between the reference surface and the normal

line on which the described point is located. When taking the middle surface as the reference

surface, averaging both sides of Eq. ( 2.2 ) gives

〈〈r̂ (x1, x2, y3)〉〉 = r (x1, x2) (2.3)

where 〈〈 〉〉 indicates average over the SG. In this case, r also represents the through-the-

thickness average of r̂. It is noted that we are free to choose any surface, not necessarily the

middle surface, as the reference surface. However, if the reference surface is not the middle

surface, r is not the through-the-thickness average of r̂.

The base vectors of coordinate xα are defined as the tangent vectors

aα (x1, x2) = r,α (2.4)

Then, Lamé parameters of the reference surface can be obtained as

Aα (x1, x2) = √aα · aα (2.5)
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These parameters can be interpreted as distance measurements on the corresponding direc-

tions of the surface. Using Aα, unit vectors in the tangent direction can be introduced as

bα = aα

Aα

(2.6)

Obviously, bi form an orthonormal triad, satisfying

b3 = b1 × b2 = a1 × a2

|a1 × a2|
(2.7)

Using the surface tangent and normal vectors, covariant base vector gi = ∂r̂
∂xi

of the 3D

shell body can be defined as

g1 = a1 + εy3b3,1

g2 = a2 + εy3b3,2

g3 = b3

(2.8)

Partial derivatives of the normal b3 can be obtained based on the differential geometry of

surface, so that

b3,α = Aαkαβbβ (2.9)

where kαβ represents the out-of-plane curvatures of the surface. Since coordinates xα are

chosen to be the lines of curvatures, k12 = k21 = 0. Substituting Eq. ( 2.9 ) back into Eq. ( 2.8 )

gives

g1 = A1 (1 + εy3k11) b1

g2 = A2 (1 + εy3k22) b2

g3 = b3

(2.10)

The contravariant base vectors gi can be calculated using the relation

gi = 1
2√

g
eijkgj × gk (2.11)
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where

g = det (gi · gj) (2.12)

resulting in

g1 = b1

A1 (1 + εy3k11)

g2 = b2

A2 (1 + εy3k22)

g3 = b3

(2.13)

When deformation happens, the material point described by vector r̂ in the undeformed

state will have the position vector R̂ in the deformed state. Every material point in the

undeformed state will have a corresponding position vector in the deformed shape. Similar

to the undeformed state, orthonormal vector triad for the deformed state Bi is introduced.

Relation between bi and Bi is expressed using the direction cosine matrix C (x1, x2)

Bi = Cijbj

Cij = Bi · bj

(2.14)

so that Bi and bi are identical when the shell is undeformed. However, after rotation, Bα

are not necessarily tangential to the deformed shell reference surface. For a general SG, in

adddition to y3, micro coordinates yα = xα/ε can also be introduced. Similar to Eq. ( 2.2 ),

expanding R̂ based on Bi gives

R̂ (xα, yi) = R (xα) + εy3B3 (xα) + εwi (xα, yi) Bi (xα) (2.15)

where wi are fluctuating functions to ensure Eq. ( 2.15 ) to be able to describe all possible

deformation. No assumption is made on the shape of fluctuating functions and their exact

expressions will be determined by MSG later. Unlike bi, Bi is not clearly defined due to the

arbitrariness of the rotation, thus, Eq. (  2.15 ) does not represent a unique mapping for every
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point unless six more constraints are introduced. For the first three constraints, it would be

convenient to set R to be the average of R̂ over the SG, which means

〈〈
R̂
〉〉

= R (2.16)

In this way, the constraints should be

〈〈wi (xα, yi)〉〉 = 0 (2.17)

Before introducing the other three constraints, strains should be defined first. Defining

the covariant base vectors in the deformed state as

Gi = ∂R̂
∂xi

(2.18)

then the deformation gradient tensor F is defined as

F = R̂∇ = ∂R̂
∂xi

gi = Gigi (2.19)

Resolving the deformation gradient tensor along the mixed bases [ 105 ], that is

F = FijBibj (2.20)

gives

Fij = Bi · Gkgk · bj (2.21)

Based on Eq. ( 2.14 ), introducing a global rotation tensor CbB, such that

CbB = biBi = Cijbibj (2.22)

then for small local rotations, the 3D Jauman-Biot-Cauchy strain tensor Γ can be written

as

Γ = 1
2

(
CbB · F + FT ·

(
CbB

)T
)

− ∆ (2.23)
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where ∆ is the identity tensor. Eq. ( 2.23 ) can be written in the component form in unde-

formed state, gives

Γij = 1
2(Fij + Fji) − δij (2.24)

where δij is the Kronecker symbol. For expressing the 3D strains in terms of 2D strains, one

can define 2D generalized strains as [ 31 ], [ 106 ]

R,α = Aα

(
Bα + εαβBβ

)
(2.25)

B3,α = Aα

(
kαβ + καβ

)
Bβ (2.26)

Bα,β = Aβ

[
−
(
kβ2 + κβ2

)
B1 +

(
kβ1 + κβ1

)
B2 +

(
kβ3 + κβ3

)
B3
]

× Bα (2.27)

where εαβ and καβ are 2D generalized membrane strains and curvatures. kα3 can be expressed

in terms of Lamé parameters as

k13 = − A1,2

A1A2
k23 = A2,1

A1A2
(2.28)

Although components κα3 appears in Eq. (  2.27 ), they will not appear in the expression of 3D

strains as long as the fluctuating functions are small. From Eq. (  2.25 ), three more constraints

can be introduced. The first two limit the direction of vector B3, so that it is normal to the

deformed reference surface
R,α · B3

Aα

= 0 (2.29)

It should be noted that these two constraints do not mean that transverse shear deformation

is not allowed, because the transverse shear deformation can be captured by the fluctuating

functions. The last constraint can be introduced as

B1 · R,2

A2
= B2 · R,1

A1
(2.30)

so that ε12 = ε21.
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Considering strains are small compared with unity and fluctuating functions are of similar

magnitude of strains, then using Eq. (  2.13 ), ( 2.21 ), and ( 2.24 ) – ( 2.27 ), 3D strain fields can

be expressed in terms of 2D strains and fluctuating functions as

Γ11 =
ε11 + εy3κ11 +

(
εw1,1 + w1|1

)
/A1 + εw3k11 − εw2k13

1 + εy3k11

2Γ12 =
ε21 + εy3κ21 +

(
εw1,2 + w1|2

)
/A2 − εw2k23

1 + εy3k22

+
ε12 + εy3κ12 +

(
εw2,1 + w2|1

)
/A1 + εw1k13

1 + εy3k11

Γ22 =
ε22 + εy3κ22 +

(
εw2,2 + w2|2

)
/A2 + εw3k22 + εw1k23

1 + εy3k22

2Γ13 =w1|3 +

(
εw3,1 + w3|1

)
/A1 − εw1k11

1 + εy3k11

2Γ23 =w2|3 +

(
εw3,2 + w3|2

)
/A2 − εw2k22

1 + εy3k22

Γ33 =w3|3

(2.31)

Although Eq. (  2.31 ) is directly derived from the definition of 2D and 3D strains, due to its

complexity, it is not convenient to be used for deriving the shell constitutive model relating

2D strains and sectional forces and moments. Consequently, it is necessary to introduce

approximations to simplify the formulation. Following [ 34 ], [ 36 ], this model considers shells

with moderate thickness, i.e. h/R ∼ 10−1 and R > l2/h. Based on these assumptions, terms

of the order h2/R2, h2/lR, h3/l3 and higher will be dropped. Energy introduced by h/R

terms are considered geometric corrections, and h/l and h2/l2 terms are transverse shear

corrections. Furthermore, geometry of the shell is assumed to be constant or slowly varying,

so that derivatives of kαβ and Aα with respect to surface coordinates can be neglected.

Though in current formulation κ12 does not necessarily equal to κ21, it has been proved that

their difference only contribute to the order of h2/R2 or εh3/l2/R [ 107 ], which means within

the current approximation κ12 = κ21. Based on the above approximation, and expanding

1
1 + εy3kαβ

= 1 − εy3kαβ +O

(
h2

R2

)
(2.32)
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Eq. ( 2.31 ) can be simplified to written in a matrix form as

Γ = Γhw + Γεε+ εΓRhw + εΓRεε+ εΓl1w;1 + εΓl2w;2 (2.33)

where

Γ =
⌊

Γ11 Γ22 Γ33 2Γ23 2Γ13 2Γ12

⌋T
(2.34)

w =
⌊
w1 w2 w3

⌋T
(2.35)

ε =
⌊
ε11 ε22 2ε12 κ11 κ22 κ12 + κ21

⌋T
(2.36)

and ( );α = (∂/∂xα) (1/Aα). Γh is an operator matrix for calculating derivatives with respect

to the micro coordinates which depend on the dimension of the SG. For a 3D SG, it is

Γh =



1
A1

∂
∂y1

0 0

0 1
A2

∂
∂y2

0

0 0 ∂
∂y3

0 ∂
∂y3

1
A2

∂
∂y2

∂
∂y3

0 1
A1

∂
∂y1

1
A2

∂
∂y2

1
A1

∂
∂y1

0


(2.37)

If the SG has a lower dimension, Γh can be obtained by vanishing components having the

micro coordinates not used for the SG. Notice that for a shell structure y3 will never be

vanished. Γε is an operator matrix associated with 2D strains and curvatures

Γε =



1 0 0 εy3 0 0

0 1 0 0 εy3 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 1 0 0 εy3


(2.38)
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ΓRh and ΓRε are operators introduced by the initial curvatures

ΓRh =



0 0 k11

0 0 k22

0 0 0

0 −k22 0

−k11 0 0

0 0 0


(2.39)

ΓRε = −y3



k11 0 0 εy3k11 0 0

0 k22 0 0 εy3k22 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 k11+k22
2 0 0 εy3

k11+k22
2


(2.40)

Γl1 and Γl2 are operators for introducing the contribution of partial derivatives with respect

to macro coordinates xα of the fluctuating functions to the 3D strains

Γl1 =



1 0 0

0 0 0

0 0 0

0 0 0

0 0 1

0 1 0


Γl2 =



0 0 0

0 1 0

0 0 0

0 0 1

0 0 0

1 0 0


(2.41)

Notice that in Eq. (  2.33 ), all the terms with the small parameter ε have the order of either

h/R or h/l, so they are higher-order terms compared with the terms without ε. Up to this

point, we have completely formulated the kinematics of a shell.
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2.3 MSG-based Classical Shell Theory

To construct a 2D shell model, we need to formulate the energy of the shell first. The

strain energy of a shell can be expressed as

J = 1
2

ˆ
V

(Γ : C : Γ) g1 × g2 · g3dx1dx2dx3 (2.42)

where V is the volume of the 3D shell body, and C is the fourth-order material stiffness

tensor. The strain energy can be written in terms of areal energy density, such that

J =
ˆ

Ω

1
ω
UdΩ (2.43)

where Ω represents the reference surface. Then,

U =
〈
ρ
(1

2ΓTDΓ
)〉

(2.44)

with

ρ = g1 × g2 · g3

|a1 × a2|
= 1 + εy3 (k11 + k22) +O

(
h2

R2

)
(2.45)

where D is the 6 × 6 material stiffness matrix comes from tensor C. Angle bracket denotes

integral over the domain of the SG. ω represents the area occupied by yα coordinates in the

SG. When the SG is 2D with one of yα disappears, it becomes the length. When the SG is

1D, it is equal to 1.

When external loads are applied on the shell, we also need to calculate virtual work of

applied loads. When the shell is applied with body force P = PiBi, tractions on the top and

bottom surfaces τ = τiBi and β = βiBi, respectively, the virtual work in the shell due to

applied loads can be calculated as

δW = 1
ω

(〈
P · δR̂

〉
+ τ · δR̂+ + β · δR̂−

)
(2.46)
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where + and − in superscript denote evaluation at the top and bottom surface, respectively.

δR̂ is the virtual displacement, which can be derived by taking the variation of equation

( 2.15 ), such that

δR̂ = δR + εy3δB3 + εδwiBi + εwiδBi (2.47)

In a similar way as the definition of 2D strains, the virtual displacement of the reference

surface can be defined as

δR = δqiBi (2.48)

and the virtual rotation is defined as

δBi =
(
−δψβBβ × B3 + δψ3B3

)
× Bi (2.49)

where δqi and δψi are the virtual displacement and rotation components in the Bi bases

respectively. Substitute Eq. (  2.48 ) and ( 2.49 ) into Eq. ( 2.47 ), then into Eq. ( 2.46 ) gives

δW = 1
ω

[
fiδqi +mαδψα + εδ

(
〈Piwi〉 + τiwi

+ + βiwi
−
)]

(2.50)

where fi and mα are distributed forces and moments defined as

fi = 〈Pi〉 + τi + βi

mα = 〈εy3Pα〉 + h

2 (τα − βα)
(2.51)

For the purpose of constructing a shell model, only fluctuating functions wi are treated as

unknown variables, as virtual displacements and rotations will be handled by the global shell

analysis. As a result, the total potential energy can be formed as

Π = U −W (2.52)

where

W = ε
(
〈Piwi〉 + τiwi

+ + βiwi
−
)

(2.53)
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Then the shell model can be obtained through minimizing the total potential

δΠ = 0 (2.54)

Solving Eq. ( 2.54 ) directly would have a similar difficulty as solving a 3D problem. To

avoid this difficulty, the problem is solved asymptotically based on VAM. To do so, FEM is

used to discretize the SG, so that the fluctuating functions can be expressed as

w (xα, yi) = S (yi)V (xα) (2.55)

where S is the shape function depending on the type of element, and V is the nodal value,

determined by 2D strains at coordinates xα.

To obtain a classical shell model, all higher order terms compared to unity in the total

potential function can be dropped, such that

2Π0 = V TEV + 2V TDhεε+ εTDεεε (2.56)

where

E =
〈
(ΓhS)T D (ΓhS)

〉
Dhε =

〈
(ΓhS)T DΓε

〉
Dεε =

〈
ΓT

ε DΓε

〉 (2.57)

Minimizing Π0 in Eq. ( 2.56 ) subject to the constraints in Eq. (  2.17 ), a linear system can

be obtained as

EV = −Dhεε (2.58)

It is clear that V can be solved from Eq. ( 2.58 ) as a linear function of ε, giving

V = V̂0ε (2.59)
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Substituting Eq. (  2.59 ) back into Eq. (  2.56 ), the total potential in the SG can be obtained

as

2Π0 = εT
(
V̂ T

0 Dhε +Dεε

)
ε = ωεTAε (2.60)

where A is the effective stiffness matrix of the shell. For a classical shell model, A is equivalent

to the 6 × 6 ABD matrix, which can be fully populated, so it can be used as the sectional

stiffness matrix of shell elements in finite element analysis for predicting the global behavior.

With ε obtained from the global shell analysis, fluctuating functions can be written as

w = SV̂0ε (2.61)

Then components in the undeformed base bi of the local displacement field U = R̂ − r̂ can

be calculated as

Ui = ui + εy3(C3i − δ3i) + εwjCji (2.62)

where ui are the components in the undeformed base of global displacement u = R − r. 3D

strain field can be recovered by neglecting terms with ε in Eq. ( 2.33 ), gives

Γ0 =
(
ΓhSV̂0 + Γε

)
ε (2.63)

and 3D stress field can be calculated using the Hooke’s law as

σ = DΓ0 (2.64)

where

σ =
⌊
σ11 σ22 σ33 σ23 σ13 σ12

⌋T
(2.65)

2.4 MSG-based Classical Shell for Nonlinear Analysis

The MSG-based shell theory can be applied to nonlinear analysis with both physical and

geometrical nonlinearities, as the kinematics in Section  2.2 is geometrically exact. In this

section, an implicit algorithm for nonlinear shell modeling is presented. For demonstrating
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the algorithm, formulation in this section considers 1D SG only. Also, even though in

nonlinear analyses strains are larger than those in linear analyses, in most of the cases they

are still small compared with unity, so coupling terms between 2D strains and fluctuating

functions are still neglected in 3D strain fields. Based on these considerations, leading terms

of the 3D strain fields in Eq. ( 2.33 ) can be expressed as

Γ = Γhw + Γεε (2.66)

For 1D SG, Γh is simplified to be

Γh =



0 0 0

0 0 0

0 0 ∂
∂y3

0 ∂
∂y3

0
∂

∂y3
0 0

0 0 0


(2.67)

Define a state function W as

W
(
Γ̇ij

)
= 1

2Γ̇ijC
alg
ijklΓ̇kl (2.68)

where Calg
ijkl is the tangent stiffness of the material. Then, the variational statement for this

problem can be described as: among all the admissible strain rates, the actual strain rates

should minimize the functional

U = 〈W〉 (2.69)

so that

δU = 〈δW〉 =
〈
∂W
∂Γ̇ij

δΓ̇ij

〉
=
〈
σ̇ijδΓ̇ij

〉
= 0 (2.70)
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in which only the fluctuating functions are varied, and subject to the constraints in Eq. ( 2.17 ).

To solve the problem, the 1D SG is discretized using finite elements, so that the fluctuating

functions can be expressed as

w (xα, y3) = S (y3)V (xα) (2.71)

The Newton-Raphson method can be applied to solve the problem with 2D strain ε been

held fixed and V being the variable. However, using the Newton-Raphson method directly

may result in convergence issues, especially when the initial point is far from the solution.

To overcome this, an Euler prediction step can be added prior to the Newton-Raphson

step, which means the loading process is firstly proceeded in the tangent direction of the

loading path, then correction is calculated to obtain the solution. The Euler step obtains the

increments of 3D variables at the beginning of the current loading step, so that the following

Newton-Raphson step can have a better convergence to the final solution. Substituting

Eq. ( 2.66 ) and ( 2.71 ) into Eq. ( 2.69 ) gives

U = 1
2
(
V̇ TEV̇ + 2V̇ TDhεε̇+ ε̇TDεεε̇

)
(2.72)

where Dhε, Dεε and E have the same expression in Eq. (  2.57 ), with D being the 6×6 matrix

form of the tangent stiffness Calg
ijkl. Following the same way in last section, minimizing U in

Eq. ( 2.72 ) gives

V̇ = V̂0ε̇ (2.73)

3D strain fields can be recovered using Eq. ( 2.73 ) as

Γ̇ = Γεε̇+ ΓhSV̂0ε̇ (2.74)

Written in an incremental form gives

∆Γ = Γε∆ε+ ΓhSV̂0∆ε (2.75)
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Substituting Eq. ( 2.73 ) back into Eq. ( 2.72 ) gives

U = 1
2 ε̇

TAε̇ (2.76)

where A is the current effective stiffness matrix of the shell having the same expression as

Eq. ( 2.60 ). By definition, sectional force and moment N can be calculated as

Ṅ = ∂

∂ε̇
〈W〉 = Aε̇ (2.77)

where

N =
⌊
N11 N22 N12 M11 M22 M12

⌋T
(2.78)

Based on the result of the Euler step, the Newton-Raphson step can be proceeded. To

do so, writing Eq. ( 2.70 ) in incremental form

δU∗ = 〈∆σijδ (∆Γij)〉 = 0 (2.79)

discretizing Ep. ( 2.79 ) gives

δU∗ = 〈[σ (V ) − σn] δ [ΓhS (V − Vn)]〉

= δV T
〈
(ΓhS)T [σ (V ) − σn]

〉
= 0

(2.80)

where subscript n represent the value at the beginning of the current step. Notice here that

the stress σ can be calculated based on the nonlinear material model, and generally σ 6= DΓ.

Eq. ( 2.80 ) holds only if

Ψ (V ) =
〈
(ΓhS)T [σ (V ) − σn]

〉
= 0 (2.81)

Suppose the Newton-Raphson loop converged in the previous step, then

〈
(ΓhS)T σn

〉
= 0 (2.82)
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As a result,

Ψ (V ) =
〈
(ΓhS)T σ (V )

〉
= 0 (2.83)

To solve Eq. ( 2.83 ), it requires that

Ψ (Vold + dV ) = Ψ (Vold) + ∂Ψ
∂V

dV = 0 (2.84)

where
∂Ψ
∂V

=
〈

(ΓhS)T ∂σ

∂V

〉
=
〈
(ΓhS)T D (ΓhS)

〉
= E (2.85)

Then using Eq. (  2.85 ), the correction can be computed from Eq. ( 2.84 ) and added to the

solution, i.e.,

Vnew = Vold + dV (2.86)

Resultant sectional force and moment N can be obtained through differentiating U , which

gives

Ṅ = ∂

∂ε̇
〈W〉 =

〈
∂W
∂ε̇

〉
=
〈(

∂Γ̇
∂ε̇

)T
∂W
∂Γ̇

〉

=
〈(

ΓhS
∂V

∂ε
+ Γε

)T

σ̇

〉 (2.87)

Because of Eq. ( 2.83 ), the first term in the bracket of Eq. ( 2.87 ) will be zero when multiplied

with σ̇, so that

Ṅ =
〈
ΓT

ε σ̇
〉

(2.88)

then

N =
ˆ t

0
Ṅdt =

〈
ΓT

ε σ
〉

(2.89)

From the expression of the sectional force and moment in Eq. ( 2.89 ), a Jacobian defining

the relation between 2D strain and sectional force increments can be obtained as

∂N

∂ε
=

〈
ΓT

ε ∂σ
〉

∂ε
=
〈

ΓT
ε

∂σ

∂Γ
∂Γ
∂ε

〉
=
〈
ΓT

ε DΓε

〉
= Dεε (2.90)

45



With a material model, all the parameters required for a nonlinear shell analysis can be

determined. With current 2D strains and their increments as the inputs, one can calculate

deformation dependent state variables and the tangent stiffness of the material. Using this

stiffness in the above analysis, Jacobian and resultant sectional force of the current loading

step can be obtained as outputs for the global shell analysis. Since shells with 2D and 3D

SGs can also exhibit nonlinear behavior, the applicability of the present formulation need to

be verified.

2.5 Summary

In this chapter, concept of SG and the procedure of MSG-based structure analysis are

introduced. A geometric exact kinematics of shell is formulated, with the relation between

3D strains, and 2D strains and curvatures and fluctuating functions written in matrix form.

Classical models for elastic and nonlinear material are presented. For elastic materials,

total potential is formulated with strain energy and external work, and fluctuating function

discretized for solving the problem using FEM. Expressions for recovering 3D fields are

provided. For nonlinear analysis, variational statement is given in terms of strain rates. The

fluctuating functions are solved by using an Euler step to proceed in the tangent direction

first, then using the Newton-Raphson method to calculate the correction. 3D fields are

recovered during the iterations.
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3. CURING SIMULATION OF COMPOSITES

3.1 Shell Model for Composites Curing

In this section, analytical formulation of MSG-based shell theory with 1D SG is presented

based on the kinematics and energy statement in Chapter  2 . Since only 1D SG is considered,

micro coordinates y1 and y2 disappear, and for the convenience of notation, y3 is written

in terms of x3 as y3 = x3/ε, so that y3 also disappears. In this case, the angle brackets

indicating integral over the SG become integral over the thickness. For applying the the-

ory in composites curing, reference surface is changed to the bottom surface with modified

constraints on fluctuating functions to handle the contact with the tool, and terms related

with non-mechanical strains are introduced so that effect of large temperature change and

cure shrinkage can be considered. In addition to a classical model, models with geometric

correction and transverse shear are also derived.

3.1.1 Modification on 3D Formulation

x1

x3

x2

O
Part

Tool

Reference 

surface

Figure 3.1. Schematic of the part and the tool.

In order to model the contact between the composite part and the tool, it is better to

use the bottom surface of the part as the reference surface, since it is on the bottom surface
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where the contact is actually happening. As shown in Figure  3.1 , origin of the x3 coordinate

is on the reference surface, and to make sure that behavior of the reference surface represents

that of the bottom surface of the part, constraints in Eq. ( 2.17 ) are modified to be

w−
‖ (x1, x2, x3) = c‖

w−
3 (x1, x2, x3) = 0

(3.1)

where ( )‖ = b( )1 ( )2c
T, and cα are free variables independent of x3. They can be deter-

mined in by solving an optimization problem later.

In order to derive a model with the transverse shear deformation, an additional term is

added to Eq. ( 2.25 ) that defines the 2D transverse shear strain γα3

R,α = Aα

(
Bα + εαβBβ + 2γα3B3

)
(3.2)

This also changes the constraints in Eq. ( 2.29 ) to

R,α · B3

Aα

= 2γα3 (3.3)

By adding the transverse shear term, the analytical form of Eq. ( 2.33 ) can be written as

Γe = ε+ x3κ+ Iαw‖;α +Rkew3 + x3kε+ x2
3kκ

2Γs = γ + w‖
′ + eαw3;α +Rksw‖

Γ33 = w3
′

(3.4)

where ( )′ = ∂/∂x3, and

Γe =
⌊

Γ11 2Γ12 Γ22

⌋T

2Γs =
⌊

2Γ13 2Γ23

⌋T (3.5)
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and

ε =
⌊
ε11 2ε12 ε22

⌋T

κ =
⌊
κ11 κ12 + κ21 κ22

⌋T

γ =
⌊

2γ13 2γ23

⌋T

(3.6)

and

I1 =


1 0

0 1

0 0

 I2 =


0 0

1 0

0 1



e1 =

 1

0

 e2 =

 0

1


(3.7)

and

k = −


k11

1+x3k11
0 0

0 (k11+k22)/2
1+x3(k11+k22)/2 0

0 0 k22
1+x3k22



Rke =


k11

1+x3k11

0
k22

1+x3k22


Rks = −

 k11
1+x3k11

0

0 k22
1+x3k22



(3.8)

Particularly, when Aα = 1 and kαβ = 0, all parameters in Eq. (  3.8 ) go to zero and the strains

in Eq. ( 3.4 ) degenerate to those of a plate theory as in [ 35 ].
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Under large temperature change, material properties will become temperature dependent.

Considering a material point with large temperature change and following [  108 ], energy can

be written as

f (Γij, T ) = f (0, T ) + Γij
∂f

∂Γij

∣∣∣∣∣
Γij=0

+ 1
2 ΓijΓkl

∂2f

∂Γij∂Γkl

∣∣∣∣∣
Γij=0

(3.9)

where T is the temperature. From the relation between energy and stress

σij = ∂f

∂Γij

= Cijkl (T ) Γij + lij (T ) (3.10)

where Cijkl = ∂2f
∂Γij∂Γkl

∣∣∣
Γij=0

is the fourth-order elasticity tensor and lij = ∂f
∂Γij

∣∣∣
Γij=0

is the

second-order thermal stress tensor. The corresponding strain-stress relation can be expressed

as

Γij = Sijklσkl − Sijkllkl = Sijklσkl +mij (3.11)

where Sijkl is the fourth-order compliance tensor, mij is the second-order thermal strain

tensor. The coefficients of thermal expansion (CTEs) αij can be defined as

αij = ∂Γij

∂T

∣∣∣∣∣
σij=constant

= ∂Sijkl

∂T
σkl + ∂mij

∂T
(3.12)

so that

αij (0, T ) = ∂mij

∂T
(3.13)

Performing integration of the above equation, we obtain

mij =
ˆ T

T0

αij (0, θ) dθ +mij (0, T0) (3.14)

Note that in Eq. (  3.14 ) the CTEs should be the stress-free coefficients depending on the

temperature. mij (0, T0) corresponds to the stress-free thermal strain at the reference tem-

perature T0. By defining

ᾰij = 1
T − T0

ˆ T

T0

αij (0, θ) dθ (3.15)
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as the secant CTEs, Eq. ( 3.14 ) can be rewritten as

mij = ᾰij (T − T0) +mij (0, T0) (3.16)

By adding non-mechanical strain, including thermal strain and cure shrinkage, into the

energy density, and if the material is monoclinic, Eq. ( 2.44 ) becomes

U =
〈
ρ


1
2


Γe

2Γs

Γ33



T 
Ce 0 Cet

0 Cs 0

CT
et 0 C33




Γe

2Γs

Γ33



−


Γe

2Γs

Γ33



T 
Ce 0 Cet

0 Cs 0

CT
et 0 C33




ΓR

e

2ΓR
s

ΓR
33




〉

(3.17)

where Ce, Cet and Cs are the submatrices of the partitioned 6 × 6 material stiffness matrix,

ΓR
e and ΓR

s are non-mechanical strain components arranged in the same manner as Eq. (  3.5 ),

and can be calculated as

ΓR
ij = mij + βijξ (3.18)

where βij are the cure shrinkage coefficients and ξ is DOC.

3.1.2 Classical Model

Using the energy density in Eq. (  3.17 ), Eq. (  2.54 ) can be solved based on VAM. Firstly

a zeroth-order model, equivalent to the classical shell theory, is obtained by dropping all

higher-order terms compared to unity in the total potential function, such that

2Π0 =
〈
(ε+ x3κ)T Ce (ε+ x3κ) + w‖

′TCsw‖
′ + w3

′TC33w3
′

+ 2(ε+ x3κ)TCetw3
′ − 2

[
(ε+ x3κ)T CeΓR

e + (ε+ x3κ)T CetΓR
33

+w3
′TC33ΓR

33 + w3
′TCT

etΓR
e + w‖

′TCs

(
2ΓR

s

)]〉 (3.19)
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Then the variational statement can be written as

δΠ0 =
〈[
w3

′TC33 + (ε+ x3κ)TCet −
(
ΓR

33C33 + ΓR
e

T
Cet

)]
δw3

′

+
[
w‖

′TCs −
(
2ΓR

s

)T
Cs

]
δw‖

′
〉

=0

(3.20)

From Eq. ( 3.20 ), Euler-Lagrange equations for solving w‖ and w3 can be obtained as

[
w3

′TC33 + (ε+ x3κ)TCet −
(
ΓR

33C33 + ΓR
e

T
Cet

)]′
= 0 (3.21)

[
w‖

′TCs −
(
2ΓR

s

)T
Cs

]′
= 0 (3.22)

with boundary conditions

[
w3

′TC33 + (ε+ x3κ)TCet −
(
ΓR

33C33 + ΓR
e

T
Cet

)]+
= 0 (3.23)

[
w‖

′TCs −
(
2ΓR

s

)T
Cs

]+
= 0 (3.24)

The boundary conditions in Eq. (  3.23 ) and (  3.24 ) is introduced based on the fact that wi are

free to vary on top surface, leading to δw+
i 6= 0. The boundary conditions corresponding to

the bottom surface disappears because of the constraints in Eq. ( 3.1 ) that lead to wi being

specified on bottom surface so that δw−
i = 0. Notice that though not explicitly denoted, all

material properties can be different from layer to layer for a laminated shell, so in addition to

boundary conditions, continuity conditions also need to be satisfied at the interfaces between

layers.

Integrating Eq. (  3.21 ) and (  3.22 ) with respect to x3 and utilize the boundary conditions,

it can be trivially solved that integration constants are zero. Then, the fluctuating functions

wi can be obtained as

w3
′ = C⊥

′E + w0
3R

′ (3.25)
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w‖
′ = 2ΓR

s (3.26)

with E =
⌊
ε κ

⌋T
and

C⊥
′ =

⌊
−CT

et

C33
− x3

CT
et

C33

⌋

w0
3R

′ =CT
et

C33
ΓR

e + ΓR
33

(3.27)

With the solution of fluctuating functions, 2D constitutive model can be obtained by

substituting Eq. ( 3.25 ) and ( 3.26 ) back into Eq. ( 3.19 ), gives

2Π0 = ETA0E − 2ETS0
εκ (3.28)

with

A0 =

 〈C∗
e 〉 〈x3C

∗
e 〉

〈x3C
∗
e 〉T 〈x3

2C∗
e 〉



S0
εκ =


〈
C∗

e ΓR
e

〉
〈
x3C

∗
e ΓR

e

〉


(3.29)

where

C∗
e = Ce − CetC

T
et

C33
(3.30)

The equivalent stiffness matrix in Eq. (  3.29 ) has the same form as the ABD matrices in the

classical shell theory, so they can be used as the sectional stiffness matrix of shell elements

in finite element analysis for predicting the global behavior. With the results from 2D global

analysis, 3D strain fields can be recovered by neglecting smaller terms in Eq. ( 3.4 ), leads to

Γ0
e =ε+ x3κ

2Γ0
s =w‖

′

Γ0
33 =w3

′

(3.31)
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The 3D stress fields can be obtained using the 3D stress-strain relations.

Different from conventional shell theories, the MSG-based shell theory can predict the

thickness change of the shell as the transverse normal strain Γ33 can be directly recovered

from the fluctuating function.

3.1.3 Geometric Corrections

The equivalent classical shell model can have accurate prediction of the shell behavior

for thin shells. However, when the shell has moderate thickness, depending on the loads and

boundary conditions, the classical model can lose significant accuracy. Specifically, when the

shell extension is much greater than bending, i.e. εαβ � καβ, geometric corrections to the

order of h/R become necessary [ 109 ], [ 110 ].

Unlike the classical model or the transverse shear refined model in the next section,

introducing geometric corrections does not need to re-calculate the fluctuating functions

[ 36 ], as only terms of h/R are kept. Keeping h/R terms in the total potential function gives

2Πk =2Π0 +
〈
(ρ− 1) (ε+ x3κ)T Ce (ε+ x3κ) + (ρ− 1)w3

′TC33w3
′

+ 2 (ρ− 1) (ε+ x3κ)TCetw3
′ + 2 (ε+ x3κ)T Ce (Rkew3)

+ 2w3
′TCT

et (Rkew3) + 2x3 (ε+ x3κ)T Cek (ε+ x3κ)

+ 2x3w3
′TCT

etk (ε+ x3κ) − 2
[
(ρ− 1) (ε+ x3κ)T CeΓR

e

+ (ρ− 1) (ε+ x3κ)T CetΓR
33 + (ρ− 1)w3

′TC33ΓR
33 + (ρ− 1)w3

′TCT
etΓR

e

+ (Rkew3)T CeΓR
e + (Rkew3)T CetΓR

33 + x3 (ε+ x3κ)T kTCeΓR
e

+x3 (ε+ x3κ)T kTCetΓR
33

]〉

(3.32)

Substitute Eq. ( 3.25 ) and ( 3.26 ) into Eq. ( 3.32 ) and rearrange, giving

2Πk = ETAkE − 2ETSk
εκ (3.33)
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with

Ak =

 〈ρC∗
e + Ck〉 〈x3 (ρC∗

e + Ck)〉

〈x3 (ρC∗
e + Ck)〉T 〈x3

2 (ρC∗
e + Ck)〉

+ 〈CR〉 (3.34)

Sk
εκ =


〈
ρC∗

e ΓR
e + x3k

TC∗
e ΓR

e

〉
〈
x3
(
ρC∗

e ΓR
e + x3k

TC∗
e ΓR

e

)〉
+ 〈SR〉 (3.35)

where

Ck = x3k
TC∗

e + x3C
∗
e k

CR = CT
⊥

⌊
RT

keC
∗
e x3R

T
keC

∗
e

⌋
+
⌊
RT

keC
∗
e x3R

T
keC

∗
e

⌋T
C⊥

(3.36)

SR = −
⌊
RT

keC
∗
e x3R

T
keC

∗
e

⌋T
w0

3R + CT
⊥R

T
keC

∗
e ΓR

e (3.37)

The energy expression in Eq. (  3.33 ) has the same form as the classical model, but the matrices

in Eq. ( 3.34 ) and ( 3.35 ) contain more terms due to geometric corrections. Specifically, if the

middle surface is taken as the reference surface, a symmetric laminate will have the B

matrix equal to zero in the classical model, while it is not zero when geometric corrections

are taken into consideration. This means that initial geometry of the shell can bring in some

extension-bending couplings.

Similar to the classical model, 3D strain fields can be recovered with solution of the global

shell analysis using the relations

Γk
e = ε+ x3κ+Rkew3 + x3kε+ x2

3kκ

2Γk
s = w‖

′ +Rksw‖

Γk
33 = w3

′

(3.38)

However, because the fluctuating functions wi directly comes from the result of the classical

model, results recovered using Eq. (  3.38 ) will inevitably include an error up to the order

of h/R. This deviation can be avoided by solving the fluctuating function to the order of

h/R, but to do so the total potential need to be expanded to the order of h2/R2. Due to
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the complexity of the expressions as well as in most cases an error of h/R is acceptable, the

solution of fluctuating functions to the order of h/R is believed to be unnecessary.

3.1.4 Transverse Shear Deformation

The equivalent classical shell model provides accurate prediction on the in-plane extension

and bending behavior of the shell, and when the influence of initial geometry is significant,

geometric corrections can effectively improve the solution of the global shell analysis. How-

ever, both models take the same form as the classical shell theory, making the prediction

of transverse shear behavior impossible. When the shell thickness is moderate, depending

on the loading and boundary conditions, transverse shear can greatly affect the global shell

behavior. In order to capture the transverse shear behavior, a refined model to the order of

h2/l2 becomes necessary.

To obtain a model of h2/l2, the fluctuating functions need to be solved to the order of

h/l. Expanding the fluctuating functions gives

w‖ = w0
‖ + v‖

w3 = w0
3 + v3

(3.39)

where w0
‖ and w0

3 are the solution of the fluctuating function from Eq. (  3.26 ) and ( 3.25 )

respectively; v‖ and v3 are the h/l part of the fluctuating functions. Similar to last section,

terms to the order of h/l and h2/l2 need to be included in the total potential, such that

2Π1 =2Πk +
〈
2(ε+ x3κ)TCeIαw

0
‖;α + 2(ε+ x3κ)TCeIαv‖;α

+ 2
(
Iαw

0
‖;α

)T
Cetv3

′ + 2
(
Iαw

0
‖;α

)T
Cetw

0
3

′ + 2
(
Iαv‖;α

)T
Cetw

0
3

′

+ γTCsγ + 2γTCsw
0
‖

′ + 2γTCsv‖
′ + 2γTCseαw

0
3;α + v‖

′TCsv‖
′

+ 2v‖
′TCseαw

0
3;α +

(
eαw

0
3;α

)T
Cseαw

0
3;α + v3

′TC33v3
′

−2
[(
Iαv‖;α

)T
CeΓR

e +
(
Iαv‖;α

)T
CetΓR

33 + γTCs

(
2ΓR

s

)]〉
− 2

[〈
PT

‖ v‖
〉

+ τT
‖ v

+
‖ + βT

‖ v
−
‖ +

〈
P3w

0
3

〉
+ τ3w

0+
3 + β3w

0−
3

]

(3.40)
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The variation of Eq. ( 3.40 ) is

δΠ1 =
〈[(

γ + v‖
′ + eαw

0
3;α

)T
Cs

]
δv‖

′ +
[(
Iαw

0
‖;α

)T
Cet + v3

′C33

]
δv3

′

+
[
(ε+ x3κ)TC∗

e − ΓR
e

T
C∗

e

]
Iαδv‖;α

〉
−
〈
PT

‖ δv‖
〉

− τT
‖ δv

+
‖ − βT

‖ δv
−
‖

= 0

(3.41)

Similar to the derivation of the classical model, Euler-Lagrange equations for v‖ and v3 can

be obtained as [
Cs

(
γ + v‖

′ + eαw
0
3;α

)]′
= Dα

′E;α + g′ (3.42)

[(
Iαw

0
‖;α

)T
Cet + v3

′C33

]′
= 0 (3.43)

with boundary conditions [
Cs

(
γ + v‖

′ + eαw
0
3;α

)]+
= τ‖ (3.44)

[(
Iαw

0
‖;α

)T
Cet + v3

′C33

]+
= 0 (3.45)

where

Dα
′ = −IT

α bC∗
e x3C

∗
e c (3.46)

g′ = IT
αC

∗
e ΓR

e;α − P‖ (3.47)

Boundary conditions corresponding to the bottom surface for the same reason as Sec-

tion  3.1.2 . Then, v3 can be solved as

v′
3 = −CT

et

C33
Iαw

0
‖;α (3.48)

Integrating Eq. ( 3.42 ) with respect to x3 gives

Cs

(
γ + v‖

′ + eαw
0
3;α

)
= DαE;α + g + µ̄‖ (3.49)
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Due to the effect of in-plane traction applied on the top surface, integration constants µ̄‖ are

not zero. Using the boundary conditions in Eq. (  3.44 ), µ̄‖ can be derived to be

µ̄‖ = τ‖ −D+
α E;α − g+ (3.50)

Then

v‖
′ = −γ + C−1

s D∗
αE;α − eαC⊥E;α + C−1

s g∗ − eαw
0
3R;α (3.51)

where

D∗
α = Dα −D+

α (3.52)

g∗ = g + τ‖ − g+ (3.53)

Integrating Eq. ( 3.51 ) gives

v‖ = −x3γ + (D̄α + Lα)E;α + ḡ (3.54)

where

D̄′
α = C−1

s D∗
α − eαC⊥ (3.55)

ḡ′ = C−1
s g∗ − eαw

0
3R;α (3.56)

In order to satisfy the constraints in Eq. ( 3.1 ), constants Lα are introduced, which satisfy

LαE;α = c‖ (3.57)

These constants will be used as optimization parameters for transforming the model to the

form of the Reissner-Mindlin model.

Substituting the solution of fluctuating functions back into the total potential in Eq. (  3.40 )

gives

2Π1 = ETAkE + ET
;αBαβE;β − 2ET

〈
D∗

α
T
〉
γ;α − 2ETF + 2γT 〈g∗〉 (3.58)
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where

Bαβ =
〈
−D∗

α
TC−1

s D∗
β +D∗

α
TeβC⊥ + CT

⊥eT
αD

∗
β

〉
+
〈
Dα

′T
〉
Lβ + LT

α 〈Dβ
′〉

(3.59)

F = Sk
εκ +

〈
−D∗

α
TC−1

s g∗
;α +D∗

α
Teβw

0
3R;αβ + CT

⊥eT
αg

∗
;α

〉
+
〈
CT

⊥P3
〉

+ C+
⊥

T
τ3 − LT

α

(
β‖ − 〈g′〉

)
;α

(3.60)

and Ak and Sk
εκ are the matrices in Eq. (  3.34 ) and (  3.35 ). Although Eq. (  3.58 ) is asymp-

totically correct up to the order of h2/l2, it is not convenient for practical use because it

contains derivatives of 2D strain, making the boundary conditions hard to define. This

problem can be solved if it can be transformed into the form of the Reissner-Mindlin model,

which is commonly used in shell analyses. Comparing Eq. ( 3.58 ) with the total potential of

the Reissner-Mindlin model, which takes the form of

2ΠR = ETAkE + γTGγ − 2ETF − 2γTFγ (3.61)

all partial derivatives of 2D strains must be eliminated. Using the shell equilibrium equations

Gγ − Fγ = DT
αA

0E;α − DT
αF;α +

 m1

m2

 (3.62)

where

D1 =

 0 0 0 1 0 0

0 0 0 0 1 0


T

D2 =

 0 0 0 0 1 0

0 0 0 0 0 1


T (3.63)
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Eq. ( 3.58 ) can be written as

2Π1 = ETAkE + ET
;αB̄αβE;β + γTGγ − 2ETF − 2γTFγ (3.64)

where

B̄αβ = Bαβ + A0DαG
−1DT

βA
0

Fγ = − 〈g∗〉
(3.65)

Notice in Eq. (  3.62 ) A0 instead of Ak is used, as h/R terms introduced from Ak will gener-

ate h2/lR terms when multiplied with in-plane partial derivatives of 2D strains, which are

considered small and can be dropped. At this point, transverse shear stiffness matrix G is

still unknown, and partial derivatives still exist in Eq. (  3.64 ). To obtain the expression in

the form of of the Reissner-Mindlin model, the most ideal case is that B̄αβ can be driven

to zero by defining appropriate G, but this is not achievable even for an isotropic plate, so

the best way is to drive them to as close to zero as possible using an optimization process,

in which way the error between the equivalent Reissner-Mindlin model and asymptotically

correct model can be minimized. Considering symmetry, there are totally 78 quantities that

should be minimized to be zero, 21 terms of B̄11, 36 terms of B̄12 = B̄T
21, and 21 terms of

B̄22. There are 27 parameters that can be solved to drive B̄αβ as close to zero as possible,

3 terms in G and 24 terms in L1 and L2. Since B̄αβ are written in terms of G and Lα, a

column matrix with the 27 parameters can be formed, so that a 78 × 27 coefficient matrix

can be constructed. This will lead to an overdetermined linear system with 78 equations and

27 unknowns, and the least square method can be used to solve for the 27 unknowns with a

minimized error.

By the optimization process, the best transverse shear stiffness matrix G can be obtained

to fit into to the Reissner-Mindlin model. The current equivalent model can be directly

applied in any Reissner-Mindlin shell analyses with equivalent stiffness matrices Ak, G, F

and Fγ calculated from shell geometry and material constants.
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3D displacement fields ui can be easily recovered using Eq. ( 2.3 ). By neglecting smaller

terms not contributing to energy, the 3D strain fields can be recovered to be

Γ1
e = ε+ x3κ+ Iαw

0
‖;α +Rkew

0
3 + x3kε+ x2

3kκ

2Γ1
s = γ + w0

‖
′ + v‖

′ + eαw
0
3;α +Rksw

0
‖

Γ1
33 = w0

3
′ + v3

′

(3.66)

For the same reason as discussed in last section, 3D strains recovered from Eq. ( 3.66 ) will

have an error to the order of h/R. However, due to the fact that total potential is expanded to

the order of h2/l2 and fluctuating functions are solved to the order of h/l, accurate recovery

can be achieved when the shell has no initial curvature, i.e. becomes a plate.

3.2 Case Studies

To validate the formulation developed in Section  3.1 , case studies are necessary. For this

purpose, three kinds of shells are studied. Firstly a unidirectional shell is studied, in which

case 3D exact solution exists, so that the performance of the formulation with geometric

corrections can be rigorously evaluated. Then, a more realistic situation is simulated with

laminated shells as the parts, contacting with tools modeled as 3D solids. Lastly the effect

of transverse shear stiffness is studied using an example.

3.2.1 Unidirectional Shell

Before applying the MSG-based analytical shell formulation to calculate the stress and

deformation in a curing simulation containing the part and the tool, a simple case with an

infinite width, which means it is infinite large in the out-of-plane direction so that plane

strain assumption can be adopted, unidirectional shell under temperature change is studied.

In this case, a 3D exact solution based on plane strain can be obtained, and global shell

analysis can be solved analytically. Geometry of the part is shown in Figure  3.2 , with the

thickness h being 1.488 mm, inner radius R being 20 mm, and angle span ϕ being π/4. The

boundary condition is simply supported at the bottom surface. In this study, a uniform
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Figure 3.2. Geometry of the unidirectional shell.

temperature change of -160 ◦C is applied on the shell, without mechanical loading. The

material is AS4/8552 continuous fiber composite, with the fiber orientation following the

curve. Material properties of the composite is shown in Table  3.1 .

Table 3.1. Material properties of AS4/8552 composite.
E1 (MPa) 122.57 × 103

E2 = E3 (MPa) 9.72 × 103

G12 = G13 (MPa) 5.21 × 103

G23 (MPa) 3.38 × 103

ν12 = ν13 0.27
ν23 0.44

α1 (◦C−1) 0.06 × 10−5

α2 = α3 (◦C−1) 3.65 × 10−5
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Following [  111 ], this original 3D thermoelasticity problem can be solved analytically using

a cylindrical coordinate system. Since this 3D problem is in a plane strain state, constitutive

equations can be written first

εθ =
(
S22 − S2

23
s33

)
σθ +

(
S12 − S23S13

s33

)
σr − S23

S33
αz∆T + αθ∆T

εr =
(
S11 − S2

13
s33

)
σr +

(
S12 − S23S13

s33

)
σθ − S13

S33
αz∆T + αr∆T

γrθ = S66τrθ

(3.67)

where εr, εθ, γrθ, σr, σθ, τrθ are the normal and shear strains and stresses in the cylindrical

coordinates, respectively; Sij are terms of the 6 × 6 material compliance matrix; ∆T is

the temperature change. By introducing a stress function, stresses can be expresses in

terms of the stress function that automatically satisfy the equilibrium equations. Then, the

stresses can be solved using compatibility equation along with traction boundary conditions.

However, when mechanical loads are absent, it can be easily verified that σr = σθ = τrθ = 0

satisfies all equations and boundary conditions. As a result, strains can be calculated using

Eq. ( 3.67 ) by setting all stresses equal to zero. Then, displacement can be obtained using

the strain-displacement relations along with displacement boundary conditions.

εr = ∂ur

∂r

εθ = 1
r

∂uθ

∂θ
+ ur

r

γrθ = 1
r

∂ur

∂θ
+ ∂uθ

∂r
− uθ

r

(3.68)

where ur are uθ are displacements in r and θ directions. With the geometry and material

properties in this case, strains are constants in the whole part, with

εr = −0.00840077 εθ = −0.000220276 γrθ = 0 (3.69)

and displacement ur is

ur = −0.00840077 r + 0.168015 cosθ + 0.0695943 sinθ (3.70)
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When solving this problem as a shell, global curvilinear coordinate x1 goes along with

the curve of the bottom surface in the same direction as θ in Figure  3.2 , and x3 is the normal

coordinates in the same direction as r. Using the MSG-based shell theory, equivalent stiffness

matrices can be obtained, and used for solving the global shell problem analytically. The

normal displacement of the bottom surface u3 is solved to be

u3 = 0.0692272 sinx1

20 + 0.167129 cosx1

20 − 0.167129 (3.71)

By setting r = 20 and θ = x1/20 in Eq. (  3.70 ), it takes the same form as Eq. ( 3.71 ) and the

coefficients are close. Figure  3.3 shows the normal displacement predicted by the MSG-based

shell theory, the 3D exact solution and Abaqus with composite shell section. It can be seen

that the result from the MSG-based shell theory agrees well with the 3D exact solution, while

the displacement is greatly underestimated with Abaqus composite shell section. This is

mainly due to two reasons: when calculating the shell stiffness matrix, the Abaqus composite

shell section cannot take the initial curvature into consideration, and Abaqus composite shell

section is based on ad hoc kinematic assumptions such as the Kirchhoff assumptions used in

CLT, while such assumptions are not used in MSG-based shell theory. However, as described

in Section  3.1.3 , strains predicted by MSG-based shell theory inevitably contain errors due

to the formulation of geometric corrections. Longitudinal and transverse normal strains

through the thickness at θ = π/8 are shown in Figure  3.4 and  3.5 . It can be seen that

contrary to the 3D exact solution that strains are constant in the part, the MSG-based shell

results are varying through the thickness. The largest error of these strains are −4.2329%

and 2.8478% respectively. Considering the aspect ratio h/R = 1.488/20 = 0.0744, error of

this magnitude is expected.

In order to demonstrate the capability of the MSG-based shell theory on handling nonuni-

form temperature change through the thickness, another example with a linear temperature

distribution is presented. The geometry and material properties are identical to the previous

example, but the temperature change is

∆T = −140 − 40
1.488 (r −R) (3.72)
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Figure 3.3. Normal displacement of the bottom surface u3.

In this case, 3D exact solution is not available, so the shell analysis results are compared

with Abaqus DNS with plane strain element CPE8R. Normal displacement of the bottom

surface is shown in Figure  3.6 . It is obvious that the MSG-based shell theory works well

with nonuniform through-the-thickness temperature distribution, which can be confidently

used to capture the phenomenon introduced by varying temperature distribution during

composites curing.

3.2.2 Multi-Layered Structures

In real applications, composite parts are seldom made of composite layers with the same

layup angle. In order to validate the capability of the MSG-based shell theory on composites

curing simulation, laminates with complex layup need to be considered. In addition, during

the curing process, not only temperature change, other factors will also affect the behavior

so they need to be considered. For this purpose, models with a tool and a part with the
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Figure 3.4. Longitudinal normal strain Γ11 through the thickness at θ = π/8.

layup of [90/-45/0/45]2s are constructed in Abaqus. The tool is modeled using solid element

C3D20R. For the MSG-based shell analysis, the part is modeled using shell element S8R,

and for having an identical mesh in the reference surface, solid element C3D20R is chosen for

the DNS. The contact between the part and the tool is modeled using a surface-to-surface

contact in Abaqus, with a tangential friction coefficient of 0.15 and maximum shear stress of

40 kPa. Results from simulation with the MSG-based shell theory are compared with those

from DNS.

Since the purpose of this study is to demonstrate the potential of the MSG-based shell

theory, the whole curing process with continuous temperature and DOC history is simplified

to have four states only. The first state is the initial state before curing, with a temperature

of 20 ◦C and a DOC of 0%. The second state has a temperature of 180 ◦C and a DOC of

80%. The third state is the state after cooling, with a temperature of 20 ◦C and DOC of 80%.

The last state is the state after detooling, with the tool removed. In the MSG-based shell

analysis, stiffness of shell elements as well as non-mechanical section forces and moments are
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Figure 3.5. Longitudinal normal strain Γ33 through the thickness at θ = π/8.

calculated using the lamina properties of composite parts, along with the temperature and

DOC of each state. However, when implementing the shell stiffness into Abaqus through the

user subroutine UGENS, the transverse shear stiffness has to be constant within the section

through the whole analysis due to current limitation of UGENS. For a direct comparison

between the MSG-based shell analysis and DNS, transverse shear moduli G13 and G23 are

fixed at the value of the final state.

The material of the part is AS4/8552, with the shear moduli G13 and G23 being constant

in the whole simulation. Material properties are shown in Table  3.2 . The effect of varying

transverse shear stiffness is discussed in the following subsection. The CTEs are also varying

with temperature. As the fiber properties are not changing, CTE change in fiber orientation

is negligible while in other directions a linear variation with the temperature is assumed

[ 49 ], so that ᾰ11 = 6.00 × 10−7 ◦C−1, ᾰ22 = ᾰ33 = 3.65 × 10−5 ◦C−1. The cure shrinkage

only happens when there is a change in DOC. The cure shrinkage coefficients used here are

β11 = −8.82 × 10−7, β22 = β33 = −3.41 × 10−2. The material properties of the tool does not
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Figure 3.6. Normal displacement of the bottom surface u3.

Table 3.2. Material properties of the composite lamina with constant G13 and G23.
1st state 2nd state 3rd and 4th state

E1 (MPa) 120.54 × 103 122.57 × 103 122.57 × 103

E2 = E3 (MPa) 22.97 9.72 × 103 9.72 × 103

ν12 = ν13 0.33 0.27 0.27
ν23 1.00 0.44 0.44
G12 (MPa) 5.75 5.21 × 103 5.21 × 103

G13 (MPa) 5.21 × 103 5.21 × 103 5.21 × 103

G23 (MPa) 3.38 × 103 3.38 × 103 3.38 × 103

change during the curing process, having a Young’s modulus of E = 69 GPa, Poisson’s ratio

of 0.327 and CTE of 2.36 × 10−5 K−1.

In the first example, the part is an L-shape laminate. Geometry of the part is shown in

Figure  3.7 , with a width of 100 mm and total thickness of 3 mm. Shell and DNS models in

Abaqus are shown in Figure  3.8 . The shell model uses the bottom surface as the reference

surface so it can be seen overlapping with the top surface of the tool. Spring-in angles after
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Figure 3.7. Geometry of the L-shape part.

detooling along with model size in Abaqus are shown in Table  3.3 . It can be seen that

Table 3.3. Spring-in angles and model sizes of the L-shape part with constant
G13 and G23.

Spring-in angle (◦) Number of nodes Number of elements
MSG shell 3.667966 147,935 43,694
DNS 3.744059 2,435,359 574,694

compared with DNS, the MSG-based shell analysis has a high accuracy on predicting the

spring-in angle, with an error of -2.03%, while the number of nodes used in the MSG-based

shell analysis is only about 5% of that in the DNS model, which means computational cost is

greatly reduced. It has been shown that strains recovered with geometric corrections contain

error, but if there is no initial curvature, strains and stresses recovered from the MSG-based

shell theory will be accurate. Longitudinal normal stress σ11 and shear stress σ12 through

the thickness at the center point of the vertical flat region is shown in Figure  3.9 and Figure

 3.10 . It can be seen that layer-wise distributed stresses are accurately captured.

The second example is a C-channel, as shown in Figure  3.11 . The width and total

thickness are the same as the last example, 100 mm and 3 mm respectively. In Table  3.4 ,

model size and spring-in angle of both sides of the MSG-base shell model and DNS model

are presented. Similar to the first example, it is obvious that MSG-based shell analysis can
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(a) Shell model. (b) DNS model.

Figure 3.8. Tool and L-shape part model in Abaqus.

Table 3.4. Spring-in angles and model sizes of the C-channel part with con-
stant G13 and G23.

Spring-in angle (◦) Number of nodes Number of elementsLeft Right
MSG shell 3.574787 3.574782 244,648 71,564
DNS 3.733181 3.733181 3,907,464 921,164

accurately predict the spring-in on both sides of the part, with an error of -4.24% on both

the left and the right, with significantly decreased computational cost.

3.2.3 Effect of Transverse Shear Stiffness

In a real curing process of a composite part, temperature and DOC of the part are chang-

ing continuously with respect to time, resulting continuous histories of all the properties of

the lamina, including elastic moduli, Poisson’s ratios, CTEs and cure shrinkage coefficients.

To capture this physics, simulation using the cure-hardening instantaneously linear elastic

(CHILE) [  45 ] model can be adopted. In the CHILE model, material properties at every
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Figure 3.9. Longitudinal normal stress σ11 through the thickness at the center
of the vertical flat region.

time instants are evaluated based on the temperature and DOC of that instant, and treated

as instantaneously elastic within the increment corresponding to that instant. The CHILE

model is implemented in the commercial code COMPRO, so in this study, material proper-

ties, temperature and DOC are calculated using the thermochemical module of COMPRO,

and for a direct comparison between the analysis using MSG-based shell elements and solid

elements, those properties are imported to Abaqus with the user subroutine UGENS for

the MSG-based shell analysis and UMAT for DNS. As mentioned previously, due to the

limitation of Abaqus, varying transverse shear stiffness could not be accommodated for shell

elements when using the user subroutine UGENS, so the transverse shear stiffness of the shell

model is calculated from final value of the shear moduli. The geometry of the part is similar

with the L-shape part in the first example in Section  3.2.2 , with the total thickness reduced

to 1.488 mm and the flange length increased to 200 mm. Due to increased complexity of

the analysis procedure, symmetry of the part is utilized to simplified the model, as shown
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Figure 3.10. Longitudinal shear stress σ12 through the thickness at the center
of the vertical flat region.

in Figure  3.12 . The layup is [0/90]2s. Element used in the DNS model is changed to C3D8I

for better efficiency. The complete cure cycle lasts 310 minutes, with the first 80 minutes

rising the temperature from 20 ◦C to 180 ◦C, then holding for 150 minutes, and then cooling

down to 20 ◦C with another 80 minutes. After this process follows the detooling. Normal

displacement at the bottom surface of the flat region along the x2 symmetry line is shown

in Figure  3.13 . It can be seen that the MSG-based shell analysis can still match the DNS

with the CHILE model if the transverse shear moduli G13 and G23 are fixed as constants,

but when compared with varying G13 and G23, the shell analysis not only overestimated the

displacement, but also failed to capture the curving of the flat surface. The loss of accuracy

is caused by the inability of varying transverse shear stiffness of shell elements in Abaqus.

In order to verify that this incorrectness comes from the inability of varying transverse

shear stiffness of shell elements during the analysis, we simplify the problem to be solved

analytically to avoid the limitation brought by Abaqus. For this purpose, symmetric bound-
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Figure 3.11. Geometry of the C-channel part.

x1 symmetry
x2 symmetry

Figure 3.12. Model of the part and tool in Abaqus.

ary conditions on x2 faces are applied on both sides so that the it becomes a plane strain

problem in the x1-x3 plane. Also, in order to remove the influence from the deformation of

the tool, it is replaced with a frictionless rigid surface. In addition, the analysis procedure

returns to the four states in Section  3.2.2 , with material properties in each step the same

as in Section  3.2.2 , except that the transverse shear moduli are also varying, as shown in

Table  3.5 . Since plane strain condition is adopted, the global shell problem becomes solv-

ing a set of ordinary differential equations, as shown in Figure  3.14 . The whole process is

solved in three steps, representing the transitions among the four states. The solutions of
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Figure 3.13. Normal displacement u3 at the bottom surface of the flat region
along the x2 symmetry line.

Table 3.5. Material properties of the composite lamina.
1st state 2nd state 3rd and 4th state

G13 (MPa) 5.75 5.21 × 103 5.21 × 103

G23 (MPa) 5.75 3.38 × 103 3.38 × 103

previous steps are used as the initial conditions in the following steps. In the first two steps,

the rigid tool is represented by a displacement boundary condition u3 = 0 along the entire

length, so contrary to a conventional shell problem that solves for deflection, this problem

solves the pressure. The boundary conditions at point A are longitudinal displacement and

rotation u1 = φ1 = 0, and at point C are section force and moment N11 = M11 = 0. At

point B the continuous condition on forces and displacements need to be satisfied. The third

step solves the detooling, in which the displacement boundary condition u3 = 0 is removed,

and boundary conditions of normal displacement u3 = 0 at point A and transverse shear

force Q1 = 0 at point C is introduced. Pressure solved from previous steps becomes the
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Figure 3.14. Illustration of the global shell problem.

driving force of displacement in detooling. Normal displacement u3 after detooling is shown

in Figure  3.15 . It can be seen that even though the error compared with DNS is larger

with analytical solution, the curving in the flat region is successfully captured by varying

the transverse shear stiffness. To figure out the reason of this underestimation, pressure

before detooling is analyzed. By observing the pressure in the curved region and part of

the flat region in Figure  3.16 , it can be found that the pressure from DNS is continuous

at the connecting point between the curved and flat region, while in analytical solution no

continuous condition can be applied on pressure or the differential equations can be over-

constrained. This results in the difference near the connecting point in the curved region,

causing an under estimation of rotation at the connecting point. Since this phenomenon is

induced by the difference between the solving technique of FEM and analytical method, a

possible method to eliminate this difference is developing a user shell element that allows

changing the transverse shear stiffness.
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Figure 3.15. Normal displacement u3 of the flat region.

3.3 Summary

In this chapter, The MSG-based shell theory in Chapter  2 is modified to be applied in

composites curing simulation. SG in this chapter is limited to 1D so that formulation of the

MSG-based shell theory can be written analytically. Reference surface of the shell is set to

be the bottom surface to ensure that the global shell model represent the behavior of the

part bottom surface which is contacting with the tool. Geometric corrections and transverse

shear stiffness are included to model the behavior that cannot be captured by a classical

shell model. The capability of the MSG-based shell theory on capturing curvature change

under non-mechanical loading is validated by a unidirectional shell, and in the mean time

error in strain recovery is explained. In the same shell geometry, the effect of through-the-

thickness temperature change is also captured y the MSG-based shell theory. Demonstrative

examples shows the potential of the MSG-based shell theory on predicting spring-in angle

of multilayered composites. The influence of varying transverse shear stiffness on composite
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Figure 3.16. Pressure on the shell in the curved region and part of the flat region.

curing simulation is also studied, with the possible solution of developing a user shell element

in Abaqus.
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4. SIMULATION OF TP-HSC DEPLOYABLE STRUCTURES

4.1 Viscoelastic Material Model

Because of the material property of the polymer matrix and long stowage time before

deployment, viscoelastic behavior is commonly seen in TP-HSC deployable structures. As a

result, a viscoelastic material model need to be considered for analysing TP-HSC deployable

structures. In this chapter, only linear viscoelastic model is considered. General nonlineari-

ties including nonlinear viscoelasticity are considered in next chapter.

Different from an elastic material behavior, behavior of the material becomes time and

history dependent when considering viscoelasticity. Without loss of generality, the Boltz-

mann superposition integral is applied, so that a general statement of linear viscoelasticity

can be expressed as

σ (t) =
ˆ t

−∞
Crel (t− τ) : dΓ

dτ dτ (4.1)

where t is time, σ is the second-order stress tensor, Crel is the fourth-order tensor of the

relaxation moduli. In addition to the strain, tensor Crel is also a function of time, so an

expression of Crel is necessary to obtained σ. In experiments, a strain Γ0 is applied to the

specimen, then a curve of the stress history σ (t) is recorded, so that the relaxation modulus

of the corresponding direction can be calculated with Erel (t) = σ (t) /Γ0 and fitted to some

equations. One method to do this fitting is to use a Prony series, which takes the form

Erel (t) = E∞ +
n∑

m=1
Eme−t/ρm (4.2)

where E∞ is the long term modulus, Em are Prony coefficients, and ρm are relaxation times.

The elastic modulus E equals to the value of Erel at the start of loading, and obviously,

E = Erel (0) = E∞ +
n∑

m=1
Em (4.3)
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Extending Eq. (  4.2 ) to the fourth-order relaxation modulus tensor of a general anisotropic

material, terms in Crel can be expressed as

Crel
ijkl = Crel

ijkl,∞ +
n∑

m=1
Crel

ijkl,me−t/ρm (4.4)

In order to solve the integral equation in Eq. (  4.1 ), three methods are proposed: direct

time integration (DI), viscoelastic correspondence principle, and quasi-elastic (QE) method

[ 112 ]. The DI method is the most straight forward method, in which Eq. ( 4.1 ) is transformed

into an incremental form, and the stress increment can be expressed as [ 113 ]

∆σij = CT
ijkl∆Γkl + ∆σR

ij (4.5)

where CT
ijkl are terms of the tangent stiffness tensor calculated from the Prony series, ∆σR

ij

are history dependent stresses. The DI method can provide solution for general loading

cases, but the implementation is relatively difficult compared with the other two methods.

The viscoelastic correspondence principle utilizes the existing solution of an elastic problem

spatially similar to the viscoelastic problem to be solved. Using a Laplace transform, equa-

tions and boundary conditions are transformed from time domain to Laplace domain, and

then the problem can be solved with an elastic solution, and the final solution of the original

viscoelastic problem can be obtained by an inverse transform. When a corresponding elastic

solution exist, this method is easy to implement and the accuracy is guaranteed. However,

it is limited by the boundary conditions, as the boundary condition can be altered during

the Laplace transform and its inverse. The QE method use the elastic constitutive equation

to approximate Eq. (  4.1 ), with the elastic stiffness tensor replaced by the relaxation moduli

tensor [ 114 ]. Compared with the other two methods, this is the simplest one as the integral

in time domain is completely eliminated. On the other hand, this simplification makes the

QE method provides accurate results only in the case that the strain input is a step function

Γ (t) = Γ0H (t), because

σ (t) =
ˆ t

−∞
Crel (t− τ) : Γ0

dH (τ)
dτ dτ = Crel (t) : Γ0H (t) (4.6)
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where H (t) is the Heaviside step function. The step function strain input is common in mate-

rial testing experiments, as well as constitutive modeling considering viscoelastic properties.

Thus the QE method is the simplest and most efficient approach for these applications.

In this chapter, linear viscoelastic material model is applied in the MSG-based shell

theory for the simulation of TP-HSC. The effective shell properties can be otained using

the MSG-based homogenization tool SwiftComp [  41 ], and fitted into Prony series. They are

implemented in Abaqus UGENS with either QE or DI methods. The QE implementation is

straightforward, similar to an elastic material, with the main difference being the material

properties being functions of time. The DI implementation is based on the theory developed

by Rique Garaizar [  115 ]. The formulation follows the form of classical shell model, in which

increments of the shell sectional forces ∆N and moments ∆M are calculated using

∆N (tn+1) = Aeq∆ε (tn+1) +Beq∆κ (tn+1) + ΩN

∆M (tn+1) = Beq∆ε (tn+1) +Deq∆κ (tn+1) + ΩM

(4.7)

where Aeq, Beq, and Deq are equivalent tangent stiffness matrices calculated from the Prony

series of the equivalent shell properties, ∆ε is the membrane strain increment, ∆κ is the

curvature increment, ΩN and ΩM are column matrices determined from the loading history,

and tn+1 is the time at increment n + 1. Sectional forces and moments at the end of the

current increment are obtained by adding the increments ∆N and ∆M to the sectional

forces and moments from the previous increment. Details of the derivation of Eq. (  4.7 ) can

be found in [ 115 ].

Although the formulation of linear viscoelasticity was originally developed for small strain

condition, the strain measurement in the formulas can also be logarithmic strain. In the sim-

ulation of TP-HSC deployable structures, since the geometric nonlinearity can be handle by

the global structural solver Abaqus, and in Abaqus when geometric nonlinearity is enabled,

logarithmic strain will be used, the current formulation will be enough for the strain level

observed in TP-HSC deployable structures. Finite strain formulation is unnecessary unless

large shear and local rotation are observed.
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4.2 Column Bending Test Simulation

In this section, simulation of the CBT is presented. The model setup in Abaqus is

introduced, and results of moment relaxation, energy dissipation, and residual deformation

are demonstrated. The CBT is developed at Opterus R&D and improved by NASA Langley

Research Center (LaRC) [ 5 ], [ 77 ] to evaluate the flexure of thin composites. This test method

loads the specimen in the vertical direction, generating a stress state close to pure bending.

In the CBT, the specimen is vertically clamped by upper and lower arms, which are pinned

inside clevises. An initial angle θ exists between the arms and the loading direction, creating

an offset between the specimen and the loading axis. Due to this offset, when the clevises

move towards each other, a moment is generated and the specimen bends. A schematic of

the CBT is shown in Figure  4.1 , with the angle θ, arm length l and gauge length s known,

clevis displacement δ and applied load P controlled or measured, and angle change φ and

offset r calculated. In addition to these values shown in Figure  4.1 , the width of the specimen

d is also a known parameter.

The test consists of four different load steps that represent the conditions similar to the

stowage of a boom: folding, relaxation, unfolding and recovery. In the initial folding step,

the specimen is bent to a set curvature that is representative of the boom during stowage.

In the relaxation step, the specimen is kept at a constant strain for six hours. Then, in the

unfolding step the specimen is unfolded to a zero-load condition. Finally, during the creep

recovery step, it is held at zero-load condition. Time of the steps are shown in Table  4.1 .

Table 4.1. Step time of the CBT.
Step Folding/Unfolding Relaxation Recovery

Time t (s) 120 21,600 7,200

4.2.1 Data Reduction

The deformation of the specimen in CBT is designed to have a small gradient from the

grip to the center, with the center having the largest deformation and moment. This ensures

failure of the specimen occurs at the center during a failure test. The experimental results
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Figure 4.1. Schematic of the CBT with the thick gray lines showing the initial
configuration and the thick black lines showing the deformed configuration [ 77 ].

are processed using kinematic relations [  77 ] from the load and displacement measurements as

summarized in the following. The specimen curvature κ is computed using the total fixture

arm rotation angle change φ and specimen gauge length s

κ(t) = φ(t)
s

(4.8)

Notice that Eq. ( 4.8 ) implies the assumption that the curvature is uniform along the gauge

length, as it is based on the arc length formula. Angle change φ can be calculated using the

following formula
δ

s
= 1 − 2

φ
sinφ2 + 2 l

s

(
cosθ − cos

(
θ + φ

2

))
(4.9)

For the simplicity of notation, dependency of time is not explicitly shown here and in the

following equations. For evaluating the effective stiffness, the moment in the specimen also
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needs to be calculated. The maximum moment Mmax at the middle of the gauge length can

be calculated with the load P and offset r

Mmax = Pr (4.10)

with the load P being measured at the loading head, and offset r calculated with

r

s
= 1
φ

(
1 − cosφ2

)
+ l

s
sin

(
θ + φ

2

)
(4.11)

then the effective stiffness D∗
11 is calculated using

D∗
11 = Mmax/d

κ
(4.12)

In experiments, the full-field curvature can be measured directly with Digital Image

Correlation (DIC). The DIC curvature data is averaged within a rectangular region of interest

(R0) near the center of the specimen, as shown in Figure  4.2 . Due to the nonuniform

(a) Before folding. (b) After folding.

Figure 4.2. DIC image of a specimen and the rectangular region of interest
for averaging [ 116 ].

deformation, the curvature obtained from DIC is closer to the maximum curvature in the

specimen, while the curvature calculated from Eq. ( 4.8 ) is closer to the average curvature of

the whole specimen.
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4.2.2 Finite Element Model of CBT

A finite element model for simulating CBT is built with Abaqus. By reproducing experi-

mental results, effectiveness of the modeling technique and user subroutines can be validated,

so that realistic models of TP-HSC structures such as a deployale boom structure can be

studied. The CBT finite element model in Abaqus CAE [ 117 ] is shown in Figure  4.3 . The

specimen between the clamps is modeled with fully integrated four-node shell elements S4,

and the clamped regions are neglected. In this model, total number of shell elements is

2,800, but due to the simple geometry, the model is not sensitive to mesh density. This is

verified by a coarse mesh with 700 elements. Both meshes give the same normal displace-

ment of 25.01 mm at the center of the specimen. The mesh with 2,800 elements is used for

providing more data points reflecting the nonuniform deformation. The pins are represented

by two reference points. The lower reference point (RP-1) is fixed in all degrees of freedom

(DOFs) except rotation about the x-axis. The upper reference point (RP-2) allows rotation

about the x-axis and displacement in the y-direction with the other DOFs held constant.

Kinematic couplings are applied between the upper and lower edge of the specimen and the

corresponding reference points RP-1 and RP-2, as shown in Figure  4.3 by the blue lines.

These couplings connect the displacement of the edges with those of the reference points

rigidly, and ensure that the edges have the same rotation as the corresponding reference

points to mimic the fixture arms in the experiments.

The analysis includes four loading steps: folding, relaxation, unfolding, and recovery.

The experiment of CBT is a quasi-static process so all of the steps are implemented as

general static steps in Abaqus. In the folding step, end shortening, implemented through a

y-displacement boundary condition, is applied to RP-1 such that the specimen bends. Then,

this configuration is kept constant for a specified period of time to allow stress relaxation.

After relaxation, the displacement boundary condition in the y-direction at RP-1 is removed,

so that the reaction forces at the reference points become zero and the specimen is unfolded

by its internal stress. It is noted that the boundary condition change in the model is in-

stantaneous, while, in the test, a prescribed displacement rate was applied until zero load is
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Figure 4.3. CBT model in Abaqus CAE.

reached. The unfolded configuration is also kept for some time, during which the specimen

gradually recovers its original shape. Geometric nonlinearity is enabled in all the steps.

The specimen and test parameters of the CBT model shown in Table  4.2 are used in

order to compare with existing experimental data [ 118 ]. The displacement in the folding

step is applied at a rate of 12.7 mm/min, resulting in a load time of 2 min (the same rate

was used in the test for unfolding), and the times for relaxation and recovery are 6 hours

and 2 hours respectively.

The CBT specimens are constructed using M30S/PMT-F7 plain weave plies with layup

[±45]4 and the material directions x1, x2, x3 shown in Figure  4.3 . The carbon M30S fiber is

treated as an elastic material and the PMT-F7 toughened epoxy resin is assumed to be linear

viscoelastic. The Prony series coefficients of the PMT-F7 resin were fit to the experimental
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Table 4.2. Specimen and test parameters of the CBT model.
CBT fixture arm length l (mm) 25.4

Specimen width d (mm) 25.4
Specimen gauge length s (mm) 27.432
Fixture arm initial angle θ (rad) 0.0712

Fixture total displacement δ (mm) 25.4
Specimen thickness h (mm) 0.276

data obtained by LaRC [  5 ]. For woven composites, effective properties can be obtained

using MSG through a two-step homogenization [  41 ] that first calculates the effective yarn

properties in terms of the fiber and matrix properties, and then the effective shell properties

of the woven fabric are obtained using the yarn and matrix properties. The effective A,B,D

matrices are written as Prony series coefficients, shown in Table  4.3 .

Table 4.3. Prony series coefficients of the shell stiffness matrix for [±45P W ]4 layup [ 119 ].

s λs
A11,s A12,s A66,s D11,s D12,s D66,s

(N/mm) (N/mm) (N/mm) (N·mm) (N·mm) (N·mm)
∞ – 10,930.00 10,000.00 10,110.00 47.33 43.34 43.79
1 37.0 145.40 23.83 44.08 0.63 0.10 0.19
2 102 128.50 23.59 42.00 0.56 0.10 0.18
3 103 108.10 19.69 35.12 0.47 0.08 0.15
4 5×103 46.32 9.37 16.14 0.20 0.04 0.07
5 104 47.54 8.50 15.25 0.20 0.04 0.06
6 5×104 131.80 26.94 46.24 0.57 0.12 0.20
7 105 12.80 2.90 4.81 0.05 0.01 0.02
8 5×105 66.90 14.25 24.13 0.30 0.07 0.11
9 106 39.40 9.12 15.06 0.16 0.03 0.06
10 5×106 0.44 0.08 0.14 0.01 0.00 0.00

In order to directly compare with experimental results, data reduction consistent with

the experiments is necessary for simulation. The curvature of the specimen κ can be calcu-

lated using Eq. ( 4.8 ), but instead of using Eq. (  4.9 ), the fixture arm rotation angle change

is obtained from the rotation of the reference point φrp, and calculated as φ = 2φrp  

1
 . Al-

ternatively, for comparing with the DIC data, κ can also obtained through averaging across
1

 ↑ Comparison of using Eq. (  4.8 ) and Eq. (  4.9 ) vs. Eq. (  4.8 ) with φrp showed the difference was less than
1%.
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all the elements inside a rectangular region near the center. When calculating the moment

Mmax, the load P in Eq. (  4.10 ) equals to the vertical reaction force output at the reference

point of Abaqus, and moment arm r can be calculated with

r = u3 + r0 (4.13)

where u3 is the normal displacement at the center of the specimen obtained from Abaqus

and r0 is the initial offset. Notice that the moment obtained with the r from Eq. (  4.13 ) is

closer to the maximum moment in the specimen as it does not imply the uniform curvature

assumption.

4.2.3 Results

The curvature history during the folding step is shown in Figure  4.4 and  4.5 with the

dashed lines showing the analysis results and the solid lines showing the experimental results.

In Figure  4.4 , Eq. (  4.8 ) is used, and in Figure  4.5 data from the center region R0 is used.

It can be seen that the results from simulations match well with those computed using the

kinematic formulas, and follow the same trend as the experiments, with their magnitudes

being close, having some overprediction. The simulation results using QE and DI methods

overlap each other.

The nonuniform distribution of curvature in the folded specimen is captured by the

simulation, as shown in Figure  4.6 . The simulation result for the curvature κ11, after folding

along the center (red) line in Figure  4.3 is shown in Figure  4.7 , with the distance normalized

by the specimen gauge length. The curvature κ11 at the center is 0.071 mm−1, which is

34% larger than the value of 0.053 mm−1 at the upper and lower edges. The specimen

curvatures after folding obtained by different methods are shown in Table  4.4 . The DIC

result is averaged from four sets of experiments. Experiment average column of the kinematic

row refers to the results from Eq. ( 4.8 ) and (  4.9 ). The measured and predicted curvatures

calculated with kinematic formulas match well with each other. However, the curvature from

the center rectangular region of the simulation is 15.4% larger than the DIC results. The

DIC data obtained from the center, representing the maximum curvature, is smaller than
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Figure 4.4. Curvature history during folding with kinematic formulas.

curvature from the kinematics formula, which is representative to the average. A possible

explanation could be the boundary condition at the clamps. In the kinematic formula and

the finite element model, the upper and lower edges of the specimen have the same rotation

as the corresponding loading head, which means the clamping at the edges are perfectly

rigid that completely eliminate relative rotation. However, a rigid clamp is hard to achieve

in experiments, and relative rotation can happen between the clamp and the specimen edge.

Nonetheless, curvature averaged across the center rectangular region is used in the following.

Table 4.4. Specimen curvature (mm−1) after folding.
Method Exp. avg. Exp. CoV Simulation Error

Kinematic 0.06387 N/A 0.06500 1.8%
Center region 0.06127 1.4% 0.07070 15.4%

The simulation results also captured the nonuniform distribution of the shell section moments

M11 and M22, as shown in Figure  4.8 . In addition to the variation in the gauge length
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Figure 4.5. Curvature history during folding with center R0 region.

direction, the moments also vary in the width direction. Figure  4.9 shows the history of the

moment Mmax during relaxation. The simulation results lie within the range of experimental

curves. Again, the QE and DI results match exactly, which verifies the effectiveness of the

QE implementation for predicting the CBT relaxation.

The history of D∗
11 during relaxation is plotted in Figure  4.10 . It can be observed that

the simulation underpredicts the experimental data. Since the moment relaxation is well

predicted, as shown in Figure  4.9 , the underprediction is likely caused by the overprediction

of the curvature at the end of the folding that can be seen in Figure  4.5 . It should be

emphasized that the effective stiffness D∗
11 is different from the D11, which is a term of the

shell section bending stiffness D, with the value shown in Table  4.3 . A comparison between

D∗
11 and D11 before and after relaxation is shown in Table  4.5 . The D∗

11 obtained from

simulation is 8.3% smaller than the D11 before relaxation and 9.5% smaller after relaxation.
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(a) Contour plot of curvature κ11 at the start of
relaxation.

(b) Contour plot of curvature κ22 at the start of
relaxation.

Figure 4.6. Non-uniform distribution of curvature in the specimen.

Table 4.5. Comparison between D∗
11 and D11 (N · mm).

Before relaxation After relaxation
D∗

11 simulation DI 45.3 43.6
D∗

11 exp. avg. 51.5 49.9
D11 49.4 48.2

This can be explained by the nonuniform deformation and the small but non-negligible

curvature κ22, as shown in Figure  4.6 .

In order to evaluate the capability of the present method of predicting the residual defor-

mation, the predicted and measured curvatures are compared in the unfolding and recovery

stages, as shown in Figure  4.11 . After taking the unloading process into consideration, the

whole loading history is no longer a step function. In this case the QE implementation is

not able to capture any residual deformation, so it is not shown here. The DIC data from

experiment 2 for the unfolding and recovery steps is not available due to a lighting issue.

The comparison of residual deformation after relaxation shows disagreement, especially in

the final steady-state curvature. The curvature values during relaxation, after unfolding and

after recovery are shown in Table  4.6 . The curvature in the “After unfolding” column of

Table  4.6 is approximate because the time resolution of the DIC is 30 s, relatively large

compared with the total unfolding time, and there are time lags between the DIC and the

loading frame.

Observing the curve in Figure  4.11 , one possible cause for the disagreement in residual

curvature is viscoplasticity, as the disparity between the computed and experimental results is
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Figure 4.7. Curvature κ11 along the vertical center line.

Table 4.6. Residual curvature after relaxation (mm−1).
Curvature Relaxation After unfolding (Approx.) After recovery
Simulation 0.07075 0.004859 0.0007431
Exp. avg. 0.06181 0.007605 0.004998
Error 14.5% -36.1% -85.1%

relatively constant through the recovery period. The large strains imposed on the specimens

during the CBT likely caused some degree of plastic deformation. To understand the effect

of viscoplasticity, future work should consider a viscoplastic material model and a nonlinear

shell model as well be attempted in the next chapter.

4.2.4 Demonstration of Calibration

The CBT simulation also has the potential to be used for the calibration of material

properties. To demonstrate this capability, a calibration of the shell bending stiffness in the

axial x1-direction D11 is carried out. This calibration does not involve MSG homogeniza-
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(Avg: 75%)

SM, SM1

+3.652e−01
+6.400e−01
+9.147e−01
+1.189e+00
+1.464e+00
+1.739e+00
+2.014e+00
+2.288e+00
+2.563e+00
+2.838e+00
+3.113e+00
+3.387e+00
+3.662e+00

(a) Contour plot of section moment M11 at the
start of relaxation.

(Avg: 75%)

SM, SM2

+9.425e−02
+3.559e−01
+6.175e−01
+8.792e−01
+1.141e+00
+1.402e+00
+1.664e+00
+1.926e+00
+2.187e+00
+2.449e+00
+2.711e+00
+2.972e+00
+3.234e+00

(b) Contour plot of section moment M22 at the
start of relaxation.

Figure 4.8. Nonuniform distribution of section moments in the specimen.

tion, but it can be integrated into the algorithm in future work to calibrate resin material

properties. In this study, only D11 is calibrated, and other terms in the D matrix are held

constant. The A matrix is estimated based on the relation

Aij = Dij
12
h2 (4.14)

where h is the thickness of the specimen. The parameters to be calibrated are D11,m with

m = 1 to 6, indicating the six terms in the Prony series. The summation of all terms is kept

constant during calibration, so that D11,∞ can be calculated. The calibration is conducted

using the Dakota optimization software [  120 ] as follows. At the beginning of the calibration,

an initial value for D11 is written into a UGENS by Dakota, and this UGENS is used for

a CBT simulation in Abaqus. After that, a post-processing script computes the effective

bending stiffness D∗
11, which is a time-dependent curve and it can be directly compared with

the experimental results. In this case, the average of the four experimental curves is used.

An error is evaluated using error sum of squares (SSE)

SSE =
∑(

D∗
11,simulation −D∗

11,experiment

)2
(4.15)
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Figure 4.9. History of moment Mmax during relaxation.

and the SSE is passed to Dakota, based on which a new set of D11,m is generated and

the UGENS is updated. This iteration process is repeated until the SSE is converged to a

minimum or the number of iterations reaches a preset value.

In this case study, calibration is judged converged by Dakota after 480 iterations, with

the best results obtained at iteration 465. SSE history is shown in Figure  4.12 . The initial

SSE is 99.4, and after calibration, SSE is minimized to be 1.6. It can be seen that the SSE

is, for practical purposes, converged after about 250 iterations. Initial values at iteration 1

of the Prony series coefficients of D11 and the values after calibration at iteration 465 are

shown in Table  4.7 . A longer relaxation time is chosen for the sixth term considering that

potential applications can have stowage time of years. The D∗
11 during relaxation is shown

in Figure  4.13 for the initial material model, the calibrated material model, and the average

of the experiments. It can be observed that compared with the initial properties, using the
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Figure 4.10. History of effective bending stiffness D∗
11 during relaxation.

calibrated data makes D∗
11 have a faster relaxation and a smoother change of the relaxation

rate, agreeing with the experiment better.

4.3 Simulation of a Hub and TP-HSC Boom Deployable Structure

To understand the viscoelastic behavior of TP-HSC in deployable boom structures, both

the boom and coiling hub need to be simulated to study the effect of coiling, stowage, and

deployment. The boom is coiled to the hub by wrapping around it. This coiled configuration

is kept during stowage, which can be as long as several years. For deployment, the hub

is rotated in the opposite direction and the boom unwraps to its natural extended form.

Differences in the boom’s cross-section after deployment and recovery due to the viscoelastic-

viscoplastic nature of the constituent TP-HSC materials can have a large impact on the

structural performance of the boom. For simulating this process, the boom is modeled using
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Figure 4.11. Residual curvature after relaxation.

shell elements and the hub by a rigid cylindrical surface. Compared to the high flexibility of

the boom, the hub has a much larger stiffness, so it can be modeled as a rigid body.

In this study, the boom has a lenticular cross-section, which consist of two Ω-shaped

shells bonded together along flat regions called the webs. Geometric parameters of the

cross-section are listed in Table  4.8 , with the definition of the various shell segments based

on [  121 ], as shown in Figure  4.14 . Notice the subtended angles of segment 1 and 2 have to

be the same because of continuity. The layup in segment 1 consists of a unidirectional axial

ply between two off-axis plain weave plies, [45P W/0UD/45P W ]. In segment 2 and the web,

the layer of plain weave composite on the inner side of the boom is dropped. In the web,

a layer of epoxy film is added for joining the two shells together. Both the epoxy film and

plain weave composites are considered viscoelastic materials. In the finite element model,

these three sections have different effective properties due to different layups and materials.

The length of the boom is 880 mm and the radius of the hub is 90 mm.
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Figure 4.12. Error sum of squares (SSE) history for D∗
11 calibration.

Due to the complexity of the problem, some simplifications have been adopted to avoid

convergence issues. The finite element model of the deployable boom structure is shown in

Figure  4.15 . In addition to the boom and the hub, two rigid plates are also included in the

model to facilitate the modeling of the boom coiling and deployment processes. Different

from reality, the whole boom is flattened all together by moving the rigid plates towards

each other, so that convergence limitations caused by local buckling during the transition

from the lenticular cross-section to the flattened cross-section in the boom segment near the

hub can be avoided. This modeling technique can be justified as coiling and deployment are

finished in a short time compared to the stowage time. The way this simplified flattening

process occurs has little impact on the total energy dissipation, which is the main source of

residual deformation. To also ensure convergence, an implicit dynamic quasi-static step is

used in Abaqus/Standard for flattening, coiling and deploying steps, while a general static

step is used for stowage step for better accuracy. A kinematic coupling between a reference

point located at the center of the hub and the nodes at the hub-end of the boom is applied as
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Table 4.7. Prony series coefficients of D11 before and after calibration.

s λs
D11,s (N·mm)

Initial After calibration
∞ – 49.501800 50.149425
1 10 0.076000 0.091625
2 102 0.513000 0.575500
3 103 0.434500 0.238750
4 104 0.217800 0.946550
5 105 0.487300 0.208550
6 108 1.000000 0.020000

Table 4.8. Cross-sectional geometric parameters of the lenticular boom.
Segment 1

Radius (mm)
Segment 2

Radius (mm)
Subtended
Angle (◦)

Flattened
Height (mm)

Web Width
(mm)

26.5 12 90 130 4.5

the driver for coiling and deployment. After the boom is flattened, rotation is only applied

to the reference point at the center of the hub while the hub itself remains fixed, acting as

a rigid support for the boom to slide on during the coiling process. This technique avoids

applying multiple contacts to fix the boom on the hub, and thus reducing complexity of the

model. A tension force of 104 N in the z-direction is applied on the free end of the boom at

the start of coiling and kept until the deployment is finished. The flattening plates are also

kept in place until deployment is finished. These features greatly help stabilize the model

during deployment so that convergence can be improved. During coiling and deployment,

the hub is rotated with an angular velocity of 40 rad/s (382 rpm), which is much higher than

the speed of 1 rpm in the real application. Counter-intuitively, it is observed that using a

high rotational speed stabilizes the structures more, which allows a larger increment size that

reduces the computational cost, and makes convergence issues occur less frequently. This

may be caused by the way Abaqus/Standard handles the numerical damping in a quasi-

static analysis. The adoption of a fast rotational speed can also be justified by the relatively

short time of coiling and deployment compared with the stowage and recovery times. For

obtaining numerical results, a stowage time of 30 days was used, and a recovery free-standing
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Figure 4.13. History of effective bending stiffness D∗
11 during the relaxation

step before (initial, iteration 1) and after calibration.

period of 24 hours was considered after deployment. This model is referred to as the baseline

model, as an improved version of the model is introduced below.

To investigate the effect of long stowage time, effective viscoelastic shell properties with

the DI implementation in the UGENS is used. Contour plots of the residual curvature in both

directions after the 24-hour recovery are shown in Figure  4.16 . There is no obvious residual

curvature in the longitudinal direction (SK1), while residual curvature with different signs

in segments 1 and 2 can be observed in the hoop direction (SK2). A plot of SK1 along

the symmetry line of the inner shell (shell closest to the hub) is shown in Figure  4.17 and

referred to as the baseline model. Likewise, a plot of SK2 along the Ω-shaped hoop line at

the midspan of the inner shell is shown in Figure  4.18 .

From Figure  4.17 it can be seen that residual curvature in the longitudinal direction

only exists at the boom free ends, which is caused by the boundary effects. Considering

the short length of the boom, and also its high structural stiffness if treated as a beam, it
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Figure 4.14. Lenticular boom cross-section showing the various shell segments.

Figure 4.15. Model of the deployable boom structure in Abaqus CAE.

Figure 4.16. Contour plots of the residual curvatures after recovery.
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Figure 4.17. Residual curvature in the longitudinal direction along the sym-
metry line of the inner shell.

is reasonable to have negligible values outside the boundary regions. On the other hand,

residual curvature in the hoop direction is much more pronounced. The opposite curvature

signs of segments 1 and 2 are caused by their initial curvatures. After 24 hours of recovery,

the maximum residual curvature was reduced by 88.3%.

Table 4.9. Forces applied to the radial hub rollers.
Roller 1 2 3 4 5 6 7
Force (N) 20 21 11 11 6 6 21

In the simplified baseline model, the tension force and flattening plates are present during

the stowage and deployment process. Although this is partly justified by the step times, this

setup is far from reality. It should still be noticed that (1) the existence of an axial tension

force and flattening plates may affect the structural behavior during deployment, and (2)

the effect of an axial tension force during stowage may not be negligible. Consequently, the
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Figure 4.18. Residual curvature in hoop direction vs. hoop position at the
midspan of the inner shell.

Figure 4.19. Improved model of the deployable boom structure in Abaqus/CAE.

baseline model was improved to remove the tension force and flattening plates after coiling.

The improved model has cylindrical rollers to hold the boom in the stowed configuration,

as shown in Figure  4.19 . There are two kinds of rollers in the model, 7 surrounding the
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Figure 4.20. Numbering of the radial hub rollers.

hub radially (blue in Figure  4.19 ) and a pair below and above the boom, called nip rollers

(gray in Figure  4.19 ). Numbering of the 7 radial hub rollers are shown in Figure  4.20 , and

the forces applied on each roller are shown in Table  4.9 , with the magnitudes artificially

increased from the design values to numerically improve stability.

In addition, all radial rollers have linear springs with a stiffness of 1 N/mm to provided

larger compressive force if the boom tends to pop out from the hub during deployment. The

nip rollers serve the purpose of controlling the deployment direction, which was initially done

by the flattening plates in the baseline model. The nip rollers are fixed 13 mm apart for

controlling the direction and preventing the boom from oscillating during deployment.

With the same stowage and recovery time as the baseline model, similar residual curvature

distributions in the longitudinal and hoop directions are observed. The plot of curvature

SK1 along the symmetry line of the inner shell is shown in Figure  4.17 and referred to as the

improved model. Likewise, the plot of curvature SK2 along the hoop line at the midspan of

the inner shell is shown in Figure  4.18 . The residual curvature in the longitudinal direction

is still negligible, while there is significant deformation in the hoop direction. The 24-hour

recovery step reduces the residual curvature to 25% of the original value. The complexity of

102



the boom coiling simulation around a hub makes a quantitative comparison between the two

models challenging. One reason for the differences between the two models in Figure  4.18 is

caused by the rollers, as the boom tends to pop out from the hub during deployment, which

is an interesting dynamic phenomenon that requires further investigation.

4.4 Summary

Starting with an introduction of linear viscoelasticity, this chapter presents the finite

element simulation of CBT, and the coiling and deployment of a hub and TP-HSC boom

deployable structure. Linear viscoelastic material properties are considered in both simula-

tions. The effective shell properties obtained from the MSG-based shell theory are expressed

in terms of Prony series and implemented in Abaqus UGENS. During the simulation of CBT,

point-wise distributions of deformation and stress field are captured. With data reduction,

direct comparisons with experimental results are made possible. Both QE and DI methods

are compared and moment relaxation is accurately captured, while only DI method captures

the residual deformation. However, there are deviations in the particular values obtained

from simulation and experiments, possibly caused by boundary condition and viscoplastic-

ity. For the simulation of boom and hub deployable structure, several simplifications were

introduced to avoid convergence difficulties. Numerical studies were carried out with two

models. Results from both models show residual curvature is negligible in the longitudinal

direction, but significant in the hoop direction. As the material model is viscoelastic, residual

deformation can be greatly reduces by a 24-hour recovery.
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5. MSG-BASED NONLINEAR SHELL ANALYSIS

5.1 Nonlinear Shell Analysis with SwiftComp

As mentioned in Chapter  2 , SwiftComp is an MSG-based general purpose homogeniza-

tion tool. However, current version SwiftComp is limited to linear analysis. When doing

a linear structure analysis with SwiftComp, effective properties of the structure, the ABD

matrices for the classical shell model, can be obtained through a homogenization process.

In some cases the homogenization will be carried out in multiple steps. For example, in

unidirectional/plain weave composites a 3D solid homogenization for the matrix and fiber

is carried out first to obtain the effective lamina/yarn properties, then the shell homoge-

nization with the laminae/yarn and matrix to obtain the effective shell properties. The

effective properties will be used as the sectional stiffness of the elements in a structural level

finite element simulation. Results of the structural simulation can be used in SwiftComp

to carry out dehomogenization to obtain the local distribution of strains and stresses inside

the SG. However, in nonlinear analysis, effective properties of the structure is dependent on

the loading state. In this case, the homogenization need to be integrated with the macro-

scopic analysis, such as the global structural analysis, and the effective properties need to be

updated every iteration based on the dehomogenized state variables from the macroscopic

analysis. For performing MSG-based nonlinear shell analyses, a nonlinear version of Swift-

Comp is developed based on the algorithm in Section  2.4 . The flowchart of the nonlinear

SwiftComp is shown in Figure  5.1 . For handling shell structures with laminate or woven

composites, the nonlinear SwiftComp is capable of performing both 3D homogenization and

shell homogenization.
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Figure 5.1. Flowchart of the nonlinear SwiftComp.
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For carrying out nonlinear homogenizations, maximum strains need to be provided in

the SwiftComp input file. A logical array with 6 components indx_ss is created to indicate

which term in the macro strain is prescribed. In order to handle time dependent material

behavior, maximum time, number of increments, and number of load steps also need to be

provided as inputs. Based on the terms of indx_ss, a steering matrix g_ss is generated.

Following [ 104 ], the macro stress and strain can be partitioned as

σ̄ =

 σ̄u

σ̄k

 , ε̄ =

 ε̄k

ε̄u

 (5.1)

where subscript k indicates prescribed components in the strain and stress, and u indicates

the unprescribed components. Increment of the prescribed strain components is calculated

with

∆ε̄ = ε̄max/Ninc (5.2)

where ε̄max is the maximum strain, Ninc is the number of increments. Time increment is

calculated with

∆t = tmax/(Nmaxinc −Nldstp − 1) (5.3)

where Nmaxinc = Nldstp ×Ninc +Nldstp + 1, and Nldstp is the number of load steps. An array

atime is defined following the same way as Abaqus, with atime(1) being the step time at the

beginning of the current increment, and atime(2) being the total time at the beginning of

the current increment.

The prescribed strain is updated at the start of every increment. Then, components of

ε̄k and σ̄k are rearranged to be the same as Eq. ( 5.1 ) using g_ss. A new array can be formed

as

ε̄∗ =

 ε̄k

σ̄k

 (5.4)
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After that, global matrices of Dεε, Dhε, Sh = Ψ =
〈
(ΓhS)T σ

〉
, Eε, and Sε are calculated by

looping through every elements and integration points in the SG. Here

Eε = 〈Γ〉 , Sε = 〈σ〉 (5.5)

for 3D models and

Eε =
〈
ΓT

ε Γ
〉
, Sε =

〈
ΓT

ε σ
〉

(5.6)

for shell models. At each integration point, micro stress and strain, and state variables are

initialized if this is the first increment. If it is not, their values are read from arrays storing

the data from the previous iteration. After the global matrices are assembled, macro stress

and strain are back-calculated using the global matrices and Ω. In the case of 3D models,

ε̃ = 1
ΩEε, σ̃ = 1

ΩSε (5.7)

and in shell models,

ε̃ = ε =
⌊
ε11 ε22 2ε12 κ11 κ22 κ12 + κ21

⌋T

σ̃ = N = 1
ΩSε

(5.8)

where

ε11 = 1
Ω

6Eε(4) (h+ + h−) − 4Eε(1) (h+2 + h−2 + h+h−)
h3

ε22 = 1
Ω

6Eε(5) (h+ + h−) − 4Eε(2) (h+2 + h−2 + h+h−)
h3

2ε12 = 1
Ω

6Eε(6) (h+ + h−) − 4Eε(3) (h+2 + h−2 + h+h−)
h3

κ11 = 1
Ω

6Eε(1) (h+ + h−) − 12Eε(4)

h3

κ22 = 1
Ω

6Eε(2) (h+ + h−) − 12Eε(5)

h3

κ12 + κ21 = 1
Ω

6Eε(3) (h+ + h−) − 12Eε(6)

h3

(5.9)
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and h is the thickness of the plate/shell, h+ and h− are the thickness coordinates of the

top and bottom surfaces respectively. Tilde instead of bar is used to distinguish the back-

calculated macro stress and strain from the maco stress and strain at the start of the in-

crement. ε̃ and σ̃ are also rearranged using g_ss, resulting in a new array ε̃∗. Difference

between ε̄∗ and ε̃∗ is calculated as

dε̄ = ε̄∗ − ε̃∗ (5.10)

If the current iteration is not the first iteration, it will perform the convergence check. If

dε̄ is close to zero, the iteration is judged converged and the current increment is finished.

Micro stress and strain, and state variables are stored for use in the next increment. Macro

stress and strain are stored for output.

If the current iteration is the first iteration or not converged, it will calculate a Jacobian.

If this is the first iteration, the Jacobian will be the tangent stiffness, calculated by calculating

the V̂0 in Eq. (  2.73 ) and using Eq. (  2.76 ). If this is not the first iteration, the Jacobian is

calculated using Eq. (  2.90 ). To calculate the unprescribed components in the macro strain

and stress, the Jacobian needs to be partitioned and rearranged using g_ss, gives

A =

 Auk Auu

Akk Aku

 (5.11)

A∗ =

 Auk − AuuA
−1
kuAkk AuuA

−1
ku

−A−1
kuAkk A−1

ku

 (5.12)

Then, σ̄∗ can be calculated as

dσ̄∗ =

 dσ̄u

dε̄u

 = A∗dε̄∗ (5.13)

If this is the first iteration, dε̄∗ represent the increment of the prescribed values. If this is not

the first iteration, it represents the residual between the current iteration and the prescribed
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values. Macro strain ε̄ is updated using dε̄∗ and dσ̄∗. If this is the first iteration, fluctuating

function is solved by

EV = −Sh −Dhεε̄ (5.14)

Sh is presented to prevent the accumulation of numerical error from previous increment.

If this is not the first iteration, correction of the fluctuating function is solved based on

Eq. ( 2.84 ) as

EdV = −Sh (5.15)

Notice that in Eq. (  5.14 ) and (  5.15 ), V and dV are solved instead of V̂0 in Eq. (  2.73 ) or

dV̂0. The fluctuating function/correction solved in Eq. (  5.14 ) and (  5.15 ) is used for updating

the micro strain, which will be used in the next iteration, and this completes the current

iteration. The next iteration will be executed at least until the convergence check.

The nonlinear SwiftComp has the potential to be linked with global structural analysis,

such as analyzing the nonlinear behavior of TP-HSC in deployable structures. In Abaqus, this

can be done through the user subroutine UGENS, with the UGENS working as an interface

to call and pass data to the nonlinear SwiftComp, and receive the output from the nonlinear

SwiftComp. Figure  5.2 shows the procedure of a two-step nonlinear homogenization. At

Figure 5.2. Procedure of nonlinear homogenization for TP-HSC with SwiftComp.

every integration point in the structural simulation, the UGENS will be called at the start

of every iteration. The UGESN will generate SwiftComp input files, and write the stress

and strain to the input file. The nonlinear SwiftComp will read the input and preprocess,
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and start the shell level homogenization. At each integration point of the shell SG, the

process of 3D solid homogenization will be called. In this step of homogenization, the

tangent stiffness of the lamina or yarn will be calculated based on the nonlinear material

model. This process is done by iterations and loops until the homogenization converges. The

resultant 3D tangent stiffness will be used for shell level homogenization, and similarly, the

shell level homogenization is also done by iterations. If the current iteration is not converged,

it will go back to the 3D homogenization step and re-calculate the tangent stiffness based

on the updated stress and strain at the integration point of the shell SG. Once the shell

homogenization is converged, tangent ABD stiffness will be output and read by UGENS for

the structural level analysis.

5.2 User Material for SwiftComp

To perform nonlinear shell analysis, in addition to a nonlinear homogenization solver,

nonlinear material constitutive models are also necessary. For the easiness of implementing

various nonlinear material models, the user material capability of nonlinear SwiftComp is

developed. This capability allows implementing a nonlinear material into a separated sub-

routine without changing the other part of the SwiftComp code. For the convenience of the

user, the user material for SwiftComp, called SCUMAT, is developed to be similar with the

Abaqus UMAT user subroutine. Format of the SCUMAT is:

module UserMate r i a l

contains

c

SUBROUTINE SCUMAT( s t r e s s , s ta tev , ddsdde ,

1 st ran , dstran , time , dtime ,

2 ndi , nshr , ntens , nstatv , props , nprops ,

3 noe l , npt , kstep , kinc , cmtype )

c

integer ndi , nshr , ntens , nstatv , nprops ,

1 noe l , npt , kstep , kinc , cmtype
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double precision s t r e s s ( ntens ) , s t a t e v ( ns ta tv ) ,

1 ddsdde ( ntens , ntens ) , s t r an ( ntens ) , d s t ran ( ntens ) ,

2 time ( 2 ) , dtime , props ( nprops )

c

c Code f o r d e f i n i n g the use r ma t e r i a l

c

return

end

end module UserMate r i a l

In SCUMAT, the variables to be defined by the user are stress, the stress at the end of the in-

crement, statev, the solution dependent variables (SDV), and ddsdde, Jacobian matrix of the

material model. Other variables that are passed to SCUMAT and can be used for defining

the stress, statev, and ddsdde are: stran—strain at the start of the increment, dstran—strain

increment, time(1)—time of the loading step at the start of the increment, time(2)—time

of the whole analysis at the start of the increment, dtime—time increment, ndi—number

of normal components of the stress and strain, nshr—number of shear components of the

stress and strain, ntens—number of all components of the stress and strain, nstatv—number

of SDV, props—an array with user defined material properties, nprops—the number of user

defined material properties, noel—the element number, npt—the integration point number,

kstep—the step number, kinc—the increment number, and cmtype—the material type num-

ber. It needs to be specified in the SwiftComp input file if user material will be used. This is

done by defining the isotropy indicator isotropy to be 9, and then when defining the material

properties, it should have the form:

material_number i s o t r o p y ntemp

2−s t ep_ f l ag

number_of_mater ia l_propert ies number_of_SDV

temperature d en s i t y

( L i s t o f m a t e r i a l p r o p e r t i e s )
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The 2-step_flag indicates that this analysis is a 2-step homogenization which will call another

nonlinear SwiftComp run if it is 1. The required values are the number of user defined

material properties, the number of SDV, and a list of user defined material properties.

These values are the same as defining a user material in Abaqus. The format of SCUMAT

and inputs needed for the user material provided the best possibility and minimum effort of

converting an Abaqus UMAT into an SCUMAT for SwiftComp.

To validate the user material as well as the nonlinear material capability of the nonlinear

SwiftComp, numerical studies are used to compare with Abaqus. To this end, a plate

test sample was created in Abaqus, with the geometry and boundary conditions shown in

Figure  5.3 . It has only one material and the thickness is 1 mm. By applying a displacement

Figure 5.3. Plate test sample in Abaqus.

U1, a normal strain of ε11 can be generated at the center of the plate, with other strain

terms being free to vary. This results in a stress σ11 and other stress terms being zero.

The comparison with nonlinear SwiftComp shell model can be done by analyzing the stress

and strain through the thickness at the center of the plate and obtain the shell strain and

curvature ε and κ, and the sectional force and moment N and M . The SCUMAT used in

the nonlinear SwiftComp is converted from the Abaqus UMAT.

The first nonlinear material model is a simple viscoelastic model from Abaqus UMAT

documentation [  122 ]. Diagram of the model is shown in Figure  5.4 . Stress-strain relation of
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Figure 5.4. Diagram of the simple viscoelastic model [ 122 ].

the model can be generalized as an isotropic solid [ 122 ]

σ11 + ν̄σ̇11 = λεV + 2µε11 + λ̄ε̇V + 2µ̃ε̇11 (5.16)

σ12 + ν̄σ̇12 = µε12 + µ̃ε̇12 (5.17)

The model has 5 user defined material properties, as shown in Table  5.1 , along with the

values used in the analysis. The displacement U1 is applied to be 0.2 mm, generating a

Table 5.1. User defined properties of the simple viscoelastic material.
λ µ λ̄ µ̃ ν̄
693 195 22587 6496 56

strain of 1%. Since this is a viscoelastic material model, 2 loading rates are used, with the

loading process finished in 1 s or 100 s. Results are shown in Figure  5.5 . It can be seen the no
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Figure 5.5. Loading curve of the simple viscoelastic model.

matter the loading rate, the curves from nonlinear SwiftComp overlap with the curves from

Abaqus, showing the effectiveness of running with time-dependent nonlinear user material.

The second example is a continuum damage model, developed by Zhang and Yu [ 123 ].

This model is originally developed based on an explicit algorithm, so it is not rigorous to

apply it in the implicit nonlinear SwiftComp, but it can still serve for the testing purpose.

In this model, the update of the stress is given in a rate form:

σ̇ =
{
[− (FFF : ε) : E +GGG : ε] : Ñ −1 + Ce

}
: ε̇ (5.18)

where Ce is the elastic stiffness tensor before any damage; E and Ñ are fourth-order coefficient

tensors; FFF and GGG are sixth-order coefficient tensors. When implemented as an SCUMAT,

this rate form is used as incremental form, and strain rate and strain at the start of the

current iteration, ε, are known. All the coefficient tensors can be calculated based on elastic

stiffness, strain state, and other damage related parameters. Details of the model can be
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found in [  123 ]. This model has 12 user defined material constants and 9 SDV, as shown

in Tables  5.2 and  5.3 . In this example the displacement applied is 0.024 mm, generating

Table 5.2. User defined properties of the damage model.
Material Properties (12) Value
Isotropic elatic modulus 38500
Isotropic Poisson’s ratio 0.24
Damage threshold 1.6e-5
Damage model parameter 1 0.5
Damage model parameter 2 0.5
Damage surface shape parameter 1
Damage anisotropy vector (1, 1, 1, 1, 1, 1)

Table 5.3. SDV of the damage model.
SDV (9)
Current damage threshold
Current damage accumulation variable
Damage variable, 6 components
Element delete flag

a normal strain of 0.12%. The strain is not further increased because originally the model

is developed for explicit analysis and implemented as a VUMAT, and a direct conversion

to UMAT makes the model not stable in implicit analysis. Increase the strain will lead to

convergence issue in both Abaqus and nonlinear SwiftComp. Loading curve of the model

is shown in Figure  5.6 . It can be seen from Figure  5.6 that nonlinear SwiftComp have an

excellent match with Abaqus results. These two examples validate that the user material

capability of nonlinear SwiftComp can be used in the same way as Abaqus UMAT and

generates reliable results.

As mentioned in Section  5.1 , for some structures such as laminates or woven composites

shells, a 2-step homogenization consists of a 3D solid step and a shell homogenization step

is necessary. The 2-step homogenization shown in Figure  5.2 is tested with the nonlinear

SwiftComp. The SG used in the 3D solid step is shown in Figure  5.7 , a hexagonal pack

consists of fiber and matrix, representing the lamina. The matrix uses the viscoelastic model

from Abaqus in the previous example, and the fiber is elastic, with the material properties
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Figure 5.6. Loading curve of the damage model.

shown in Table  5.4 . The shell model uses a 1D SG, with 1 element representing a one-layered

shell. Thickness of the shell is 1 mm. In order to better observe the behavior caused by

the material model of the matrix, a bending in the matrix direction is applied. A curvature

of 0.02 1/mm is applied with two curvature rates, resulting in loading time of 1 s and 100

s respectively. Moment-curvature curve are shown in Figure  5.8 . It can be seen that with

a slower loading speed, the shell generates more moment, and the curve is more nonlinear.

As expected, the behavior of the matrix material in the 3D solid step is reflected in the

behavior of the shell model. However, the 2-step homogenization has the drawback of being

computational expensive. Both loading cases take about 6 hours to finish, and the cost will

be greatly increased if the shell model uses a more complex SG such as a 3D SG representing

woven composites. This makes applying the method to structural analysis impractical.

A possible solution to this is to construct a surrogate model based on the results of the

nonlinear homogenization. For example, a surrogate model can be constructed to represent
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Figure 5.7. 2D SG of the fiber reinforced composite.

Table 5.4. Engineering constants of the fiber.
E1 (MPa) 2.94 × 105

E2 (MPa) 2.91 × 104

E3 (MPa) 2.91 × 104

ν23 0.20
ν13 0.20
ν12 0.46
G23 (MPa) 1.13 × 104

G13 (MPa) 1.13 × 104

G12 (MPa) 1.00 × 104

the behavior of the lamina, and then 2-step homogenization can be avoided by using the

surrogate model in the shell homogenization step.

5.3 Nonlinear Viscoelastic-Viscoplastic Shell Analysis

In Chapter  4 , the behavior of TP-HSC is discussed based on the linear viscoelastic consti-

tutive model. However, some of the deviation between finite element simulation and experi-

ments shows that permanent deformation exists when the TP-HSC specimens undergo large

bending deformation. Since permanent deformation can greatly affect the behavior of de-

ployable structures made with TP-HSC, shell analysis with nonlinear viscoelastic-viscoplastic

constitutive material model is necessary. The constitutive material model suitable for this

purpose was developed by Zhang [ 124 ]. The model consists of two parts: a nonlinear vis-

coelastic part that governs the resin behavior before yielding, and a viscoplastic part that
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Figure 5.8. Moment-curvature curves of the 2-step homogenization.

calculates the permanent deformation. In the viscoelastic part, the tangent stiffness C̃ and

stress increment ∆σ can be calculated with:

C̃−1 = J̃I ′ + 1
3B̃I ⊗ I (5.19)

∆σ = C̃ : ∆ε +
N∑

i=1
[1 − exp (−λi∆ψ)] C̃ : (εi)n (5.20)

where J̃ and B̃ are scalars calculated from the shear and the bulk compliance, along with

stress-dependent functions and stress-dependent effective time ψ; I ′ is the deviatoric part of

the fourth-order identity tensor; I is the second-order identity tensor; λi are the inverse of

relaxation time; εi are strain components decomposed based on the 1D generalized Maxwell
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model. When the resin starts yielding, viscoplastic deformation happens. In this case, a

radial return algorithm is used and the stress can be updated with:

σ = β + σ (5.21)

And the tangent operator Calg can be calculated with:

Calg =
I + ∂X

∂β
−

∂X

∂∆v
⊗ ∂P

∂β

∂P
∂∆v

 :
∂Ψ
∂β

−
∂Ψ

∂∆v
⊗ ∂P

∂β

∂P
∂∆v

−1

: C̃ (5.22)

where X is the back stress tenor due to kinematic hardening; β is a stress related tensor

to be updated in the algorithm; v is a viscoplastic multiplier; P = ∆v − v̇∆t; Ψ is another

stress related tensor. Details of this constitutive model can be found in [  124 ].

5.3.1 Numerical Examples

Firstly, the nonlinear viscoelastic part of the constitutive model introduced is imple-

mented into an SCUMAT and tested with the nonlinear SwiftComp. An experiment done

by Lai and Bakker [  125 ] is used for comparison. The material model has 11 user-defined

Table 5.5. Prony series of the Material [  125 ].
n λn (s−1) Dn × 10−6 (MPa−1)
1 1 23.6358
2 10−1 5.6602
3 10−2 14.8405
4 10−3 18.8848
5 10−4 28.5848
6 10−5 40.0569
7 10−6 60.4235
8 10−7 79.6477
9 10−8 162.1790
D0 270.9000

material constants, 10 of them being the Prony series expressed in terms of compliance, as

shown in Table  5.5 , and the last one being the Poisson’s ratio ν = 0.39. In the mean time,

in order to show the capability of the nonlinear SwiftComp on shell modeling, a shell model
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Figure 5.9. Strain history of a nonlinear viscoelastic shell under creep and recovery.

is used instead of a solid model. For a straightforward comparison, the thickness of the shell

is 1 mm. In the analysis, the shell is loaded with tensile sectional force of 30 N/mm instan-

taneously, and kept for 1800 seconds for creep. After that, the load is reduced to 25 N/mm,

and kept for another 1800 seconds for recovery. Results are shown in Figure  5.9 . We can see

that the strain has an excellent match during the creep, while underestimation exist during

the recovery period, with an error of about 5%. Possible cause of underestimation can be

explained by that plastic deformation already happened in the experiment while it is not

included in the numerical model. Responses of the model under different load magnitudes

are also compared. In the experiments [  125 ], the specimens are loaded with 15, 20, 25, and

30 MPa respectively. Using the same 1 mm thick shell setting, prescribed section forces of 15,

20, 25 and 30 N/mm are applied in the nonlinear SwiftComp. After the creep time of 1800

seconds, the load is completely removed and followed with recovery of another 1800 seconds.

Resultant strains during creep are shown in Figure  5.10 and during recovery in Figure  5.11 .

In these two figures, different line types are used to represent different load magnitudes,
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Figure 5.10. Strain history of a nonlinear viscoelastic shell under different
load magnitude during creep.

with the unit of MPa for experimental results, plotted in black, or N/mm for the SwiftComp

Results, plotted in red. Similar to the previous example, the nonlinear SwiftComp provides

excellent matches for the creep and some deviation can be observed during the recovery. The

deviation is greater with load with larger magnitudes.

Another example is studied with the constitutive model using a hexagonal pack as a

2D SG for 3D solid homogenization, as shown in Figure  5.7 . The capability of 3D solid

homogenization needs to be validated as it is necessary in the 2-step homogenization. The

nonlinear viscoelastic material model is used for the resin matrix and the fiber is elastic,

with the properties shown in Table  5.4 . A tensile load is applied in the fiber direction: 1%

of strain loaded incrementally over 180 seconds. Then the strain is kept for 1800 seconds for

relaxation. Stress history of the whole loading process is shown in Figure  5.12 . Due to the

load being applied in the fiber direction, the curve looks bi-linear, and the stress magnitude

is large compared with those with homogeneous material in previous examples. However,
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Figure 5.11. Strain history of a nonlinear viscoelastic shell under different
load magnitude during recovery.

when focusing on the relaxation part, as shown in Figure  5.13 , the stress relaxation can

be observed. This shows the capability of the nonlinear SwiftComp and the SCUMAT for

capturing the nonlinear viscoelastic behavior for both shell and 3D solid models.

To analyze the material behavior after yielding, the viscoplastic part of the constitutive

model is also implemented into an SCUMAT. This model has totally 18 user-defined material

constants. The viscoelastic part use the same Prony series and Poisson’s ratio as the previous

model, as shown in Table  5.5 . Seven Viscoplasticity related material constants are shown in

Table  5.6 , where σy is the initial yield stress; Q and b are isotropic hardening parameters; C

and a are kinematic hardening parameters; γ is a viscosity parameter; n is a rate-sensitivity

parameter. The model is tested with a homogeneous shell model with a thickness of 0.2

mm. The loading path consists of four parts: loading, relaxation, unloading, and recovery.

The shell is loaded with a curvature of 0.18 mm−1 through a 100-second time period. Two

relaxation times are compared, 9000 seconds and 18000 seconds. Then the shell is unloaded
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Figure 5.12. Stress history of the hexagonal pack.

Table 5.6. Viscoplastic material parameters.
Parameter Value
σy (MPa) 35
Q (MPa) 5.50879
b 53.2535
C (MPa) 1035.167
a 140.2
γ (s−1) 1.00845 ×10−4

n 8.27066

to a moment-free state through 100 seconds, and followed by the recovery of 36000 seconds.

Moment-curvature curve during the loading cycle is shown in Figure  5.14 . During relaxation,

the moment dropped while the curvature remains the same, and longer relaxation time results

in larger total drop. Although the loading and unloading curves look linear, after recovery,

residual curvature can be observed in both cases, as shown in Figure  5.15 . At the end

of the recovery. the residual curvature of the 18000-second relaxation time case is 32.6%
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Figure 5.13. Stress history of the hexagonal pack during relaxation.

larger than the 9000-second case, even though their loaded curvatures are the same. This

means that in both cases the material has yielded, and the plastic deformation happen to

be accumulating during the relaxation, validating that the developed models can capture

viscoplastic behavior.

5.3.2 Surrogate Model with Nonlinear SwiftComp

As mentioned in Section  5.2 , due to the high computational cost of the 2-step homog-

enization. Surrogate models are necessary for nonlinear SwiftComp to be applied in the

global structural simulation. In this preliminary study, the original behavior of the SG is

fitted into a polynomial as the surrogate model. For simplicity, the 2D SG in Figure  5.7 is

used, as well as the same viscoelastic resin and elastic fiber shown in Table  5.1 and Table  5.4 .
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Figure 5.14. Moment-curvature curve of the viscoelastic-viscoplastic shell.

The polynomial surrogate model is generated using Dakota. It uses a quadratic function in

the form of [ 120 ]:

f(x) = c0 +
n∑

i=1
cix1 +

n∑
i=1

n∑
j>i

cijxixj (5.23)

where f(x) represents each response of the surrogate model; xi are terms of the design

parameters vector x; n is the dimension of x; c0, ci and cij are the coefficients of the

polynomial to be fitted by data. Due to the material properties and the geometry of the SG,

there is no coupling between normal and shear behavior. As a result, when investigating the

normal behavior of the SG, the design parameters only need to include the normal terms of

the macro strains ε11, ε22 and ε33. The model consists of 24 responses, representing 3 normal

terms of the macro stresses and 21 terms in the 3D effective stiffness matrix. The coefficients

of the polynomials are determined based on the sample data provided to Dakota. In this

study, the sample data are generated through nonlinear 3D homogenization of the SG, and
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Figure 5.15. Residual curvature of the viscoelastic-viscoplastic shell during recovery.

since this is a preliminary study, separated surrogate models are constructed for different

loading cases and these surrogate models are not for general purposes.

The surrogate model constructed for 3D homogenization of the 2D SG is implemented

in another SCUMAT as if it is a homogenized material, and this SCUMAT substitutes the

3D solid homogenization step in the 2-step homogenization described previously. In the

following example, a tensile strain of 1% is applied on a single-layer shell model, represented

by a 1D SG, in 90 degree. To generate the sample data for surrogate modeling, the 2D SG

is applied with a tensile strain of 1.5% in the matrix direction. A larger strain is used in the

surrogate modeling for the purpose of avoiding extrapolation of the data. Shell analysis with

the surrogate model is compared with the 2-step homogenization with the same setting, and

results are shown in Figure  5.16 . It can be seen that the surrogate model match closely to the

2-step homogenization. Overestimation exist when the strain goes higher, with an maximum

error of 4.3%. Compared to the computational time of approximately 6 hours for the 2-step

homogenization, the computational cost of the analysis with surrogate models is determined

126



0 . 0 0 0 0 . 0 0 2 0 . 0 0 4 0 . 0 0 6 0 . 0 0 8 0 . 0 1 0

0

5

1 0

1 5

2 0

2 5

N 1
1 (N

/m
m)

ε 1 1

 S u r r o g a t e
 2 - s t e p

Figure 5.16. Force-strain curve of the shell with currogate model and 2-step
homogenization.

only by the shell homogenization step and in this example about 1 minute. On the other

hand during the study it is also found that surrogate models are highly sensitive to the

sample data. If the strain state passed to the surrogate model is away from the sample data,

significant loss of accuracy or divergence can happen. To construct a more general-purpose

surrogate model, large amount of sample data generated with different loading conditions is

necessary.

5.4 Summary

In this chapter, the formulation of the MSG-based nonlinear shell model in Section  2.4 is

implemented in a nonlinear version of SwiftComp. Details of the workflow of the nonlinear

SwiftComp is introduced, featuring calculating the un-prescribed macro stresses and strains

based on prescribed macro stresses and strains, and a 2-step homogenization strategy that

can link the MSG-based nonlinear shell analysis with the global structural analysis using
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Abaqus is proposed. For conveniently implementing different types of nonlinear material

constitutive models, a user-material interface called SCUMAT that shares similarity with

Abaqus UMAT is developed. The SCUMAT, along with the nonlinear SwiftComp, is vali-

dated with a viscoelastic model and a continuum damage model by comparing results with

Abaqus. The 2-step homogenization using nonlinear SwiftComp is also demonstrated with

a unidirectional fiber reinforced composite shell. The capability of the nonlinear SwiftComp

is further demonstrated with a nonlinear viscoelastic-viscoplastic constitutive model. The

nonlinear viscoelastic analysis is validated with experimental results using a creep-recovery

loading curve. Combined with viscoplasticity, residual deformation after recovery can be

observed and longer relaxation time results in greater residual deformation. Potential of

nonlinear SwiftComp to run with a surrogate model is also demonstrated, so that the com-

putational time of nonlinear multiscale analysis can be reduced.
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6. CONCLUSIONS AND FUTURE PROSPECTS

6.1 Conclusions

In this dissertation, a shell theory is developed based on the mechanics of structure

genome (MSG). The MSG is a general theory that unifies structure mechanics and microme-

chanics. The MSG-based shell theory derived in this dissertation takes advantage of the

small thickness of shell and the derivation process follows the minimization of total potential

in the shell structure. This MSG-based shell theory is capable of constitutive modeling of

shell structures with full anisotropy and heterogeneity in all directions. Using the MSG-

based shell theory, effective constitutive relations for both classical shell model and the

Reissner-Mindlin model can be obtained. It has the form of a shell stiffness matrix that can

be commonly applied on a 2D global shell problem solver to obtain the global structural

behavior. With the global behavior, such as shell displacements, 2D membrane strains, cur-

vatures, section forces and moments, 3D displacements, strains and stresses in the original

3D structure can be recovered. The MSG-based shell theory is also expanded to handle shells

with nonlinear material properties. The MSG-based nonlinear shell model uses a combined

Euler-Newton method, with a Euler step is implemented first to proceed the loading in the

tangent direction, and then a Newton-Raphson step is used to calculate the correction to

obtain a converged solution. In this work, the MSG-based shell theory is applied to deal with

three type of practical engineering problems: the analysis of composites curing, thin-ply high

strain composites (TP-HSC) deployable structures, and shells with nonlinear behaviors.

In order to simulate the autoclave curing process of composites, the MSG-based shell

theory is modified to use the bottom surface as the reference surface, so that effect of the

contact between the composites part and the tool can be captured rigorously. Since only

1D structure gene (SG) is considered, the formulation is written in an analytical form. The

effects of temperature change and cure shrinkage are included in the variational statement,

and the change of material properties in terms of them are also modeled. In addition to

the classical shell model, refined model that includes the correction due to initial curvature

and transverse shear deformation are also developed. The resultant stiffness matrix has

the same form as that of the Reissner-Mindlin model. Numerical examples are studied for
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validating the present theory. The capability of accurately predicting the displacements of

an initially curved part under non-mechanical load is demonstrated with a unidirectional

shell, greatly outperforming the Abaqus composite shell section. On the other hand, the

limitation on 3D strain recovery is also presented. The capability of handling nonuniform

through-the-thickness temperature distribution is also validated with the same unidirectional

shell structure. The accurate match with direct numerical simulation (DNS) in the analysis of

a multilayered L-shape and C-channel parts going through a simplified curing cycle shows the

potential of the MSG-based shell theory on predicting spring-in and residual stress introduced

during composites curing, with greatly reduced computational cost with much lower number

of elements and nodes required. However, the 2D global shell solver used in the study,

Abaqus, has the limitation of fixing the transverse shear stiffness as constants through the

whole analysis. In a more realistic simulation with the cure-hardening instantaneously linear

elastic (CHILE) model, simulation with MSG-based shell theory cannot match the DNS

unless the transverse shear stiffness is also fixed in the DNS. It is found by another qualitative

study that the error is caused by the change of transverse shear stiffness during curing.

Further research is recommended to overcome this problem.

Before simulating a TP-HSC deployable boom structure, linear viscoelasticity theory to

be used in the simulation is introduced. A column bending test (CBT) and a lenticular

boom coiling/deploying around a hub are studied using the MSG-based shell theory. The

CBT simulation results are compared with experiments, and the curvature during folding,

moment and bending stiffness during relaxation, and residual curvature immediately after

unfolding show good qualitative agreement. The results from quasi-elastic (QE) and direct

integration (DI) implementations match with each other during folding and relaxation, but

only the DI implementation captures the curvature during recovery. Some deviations in the

particular values obtained from simulation and experiments were noted. The overprediction

of the curvature results in an underprediction of the effective stiffness relaxation over the

6-hour process. After recovery at zero load, it is found that the model underpredicts the

residual curvature by an order of magnitude compared to the experimental results. One

possible reason for this deviation in residual curvature is that the material experiences vis-

coplasticity, which is not included in the current material model, particularly because the
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disparity between the model and the experiment is relatively constant through the recov-

ery period. A calibration of the specimen bending stiffness D11, which is the shell element

stiffness used in simulation, using Dakota is also presented for demonstration purposes. The

error sum of squares of the bending stiffness calculated using the same formula as experiment

D∗
11 is reduced from 99.4 to 1.6. In the simulation of the TP-HSC deployale boom and hub

structure, the boom is modeled using shell elements and the hub using rigid elements. Due

to the complexity of the model, several simplifications were introduced to avoid convergence

difficulties. Numerical studies were carried out with two models. Results from both models

show residual curvature is negligible in the longitudinal direction, but significant in the hoop

direction. A 24-hour recovery greatly reduces residual deformation after deployment by more

than 70%.

A nonlinear version of SwiftComp is developed for the MSG-based nonlinear shell analy-

sis. The nonlinear SwiftComp uses the algorithm of a combined Euler-Newton method, with

a Euler prediction step followed by a Newton correction step to ensure convergence. The

prescribed load applied incrementally and in each increment solved by iteration. A 2-step

nonlinear homogenization process for the nonlinear SwiftComp to handle laminates and wo-

ven composites and link the MSG-based nonlinear shell modeling with the global structural

analysis is also proposed. For the convenience of implementing nonlinear material models,

user material capability is implemented in the nonlinear SwiftComp. A user material can be

defined in a subroutine SCUMAT, which can be easily converted from an Abaqus UMAT.

Validation of the user material capability is done by comparing with Abaqus model. A

simple viscoelastic material and a continuum damage model are tested and both show ex-

cellent match with the Abaqus results. The 2-step homogenization capability is also tested,

while high computational cost is realized. A nonlinear viscoelastic-viscoplastic constitutive

model developed for analyzing the permanent deformation of TP-HSC is implemented using

SCUMAT. Comparison with experimental results in literature shows the nonlinear Swift-

Comp can accurately reproduce the nonlinear behavior observed in experiments. Studies

with other SG and model types further validates the capability of nonlinear SwiftComp. To

reduce the high computational cost of 2-step nonlinear homogenization, a preliminary study

on using surrogate models to substitute the 3D solid homogenization step of the 2-step ho-
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mogenization is carried out. Results show that the surrogate model can have close results

compared with 2-step homogenization, with an error less than 5%, while greatly reduce the

computational time. It is also found that surrogate models are highly sensitive to sample

data, which means to construct a general-purpose surrogate model, large amount of data

need to be prepared.

6.2 Future Prospects

This work shows the effectiveness of the MSG-based shell theory. On the other hand,

some limitations of the current theory and its implementation are also observed. To further

improve the capability of MSG-based shell theory, future studies in several aspects can be

recommended.

During the simulation of composites autoclave curing, it has been found that the 3D strain

recovery in a curved shell has qualitative disagreement with the direct numerical simulation

(DNS) results. The magnitude of the deviation is acceptable within a shell of simple layup

and geometry, while the accuracy loss can be hard to estimate with complex structures in

engineering applications. The main reason of this error is the fluctuating function not been

updated in the geometric correction. Based on MSG, the strain energy can be expanded

based on the small parameters of a shell, h/l and h/R

J ∼
(
hl2
)(

1 + h

R
+ h

l
+ h2

l2
+ h2

R2 + h2

lR
+ ...

)
µε2 (6.1)

and the fluctuating function can be perturbed as

wi = w0
i + w1

i + wR
i (6.2)

with the wR
i representing the fluctuating with the order of h/R. To solve it, terms with the

order of h2/R2, h2/lR and h2/l2 need to be kept in the strain energy and since coupling

terms exist, the fluctuating related with transverse shear deformation w1
i need to be solved

together. With the updated fluctuating function, the prediction of 3D fields in curved parts

should be improved.
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Another limitation when simulating the composites curing is the change of transverse

shear stiffness. Based on the analysis in Chapter  3 , the limitation of Abaqus that fixes the

shell transverse shear stiffness is the main cause of the disagreement with DNS. To overcome

this limitation, a user defined shell element using the Abaqus UEL user-subroutine can

be developed. With the UEL shell element, fully coupled 8 × 8 stiffness matrix can be

implemented with user defined properties.
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κ
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(6.3)

In the simulation of CBT, overpridiction is observed with the curvature after folding.

The kinematics coupling used in the finite element model is a rigid coupling that force the

rotation at the coupled boundary to be equal to the reference point, while in experiments the

clamps can be flexible. To reduce the error from the boundary condition, better modeling of

the clamp should be developed. A possible way is introducing rigid surfaces to represent the

clamps along with the contact with the specimen. Then, instead of the coupling between

the reference point and the specimen, the coupling should be applied on the clamps.

During the simulation of the TP-HSC deployable boom structure, the finite element

model suffered from convergence issue due to the complexity of the model. The process

of coiling and deployment can be considered dynamic so using Abaqus/Explicit instead of

the Abaqus/Standard solver may be more suitable. However, a UGENS equivalent user-

subroutine for the explicit solver, VUGENS, was not available until recent, and it lacks

documentation. A preliminary study was done with the CBT finite element model, and the

curvature κ11 along the center line of the specimen after folding is shown in Figure  6.1 . In

explicit analysis, simulation speed can be manually adjusted by the technique of variable

mass scaling. Then using this technique, size of the time increment dt can be prescribed,

and then the solver will automatically apply different scaling factors to the density of each

element so that the whole structure can still be stable. The larger dt, the larger the scaling

factor. However, when the scaling factor becomes too large, structural behavior can be
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Figure 6.1. Curvature along the center line after folding.

affected, as modifying the density can change the dynamic characteristics of the structure.

It can be seen from Figure  6.1 that with a smaller dt, excellent match with Abaqus/Standard

can be achieved. The technique can be applied to more effectively simulate deployable boom

structures.

Although the nonlinear SwiftComp is validated to be capable of generating good results

with various material constitutive models, during the analysis with the nonlinear viscoelastic-

viscoplastic model, stability issue with the nonlinear SwiftComp is observed. Divergence

can happen when the local stresses inside the SG become large. Error accumulation is

also observed. Though in most engineering practices, the stress would not be that large to

make this issue significant, it is recommended to further improve the formulation and the

implementation of the nonlinear SwiftComp so that it can be more robust in different types

of applications.

134



The preliminary study on using a polynomial surrogate model in a 2-step nonlinear ho-

mogenization proves the feasibility of this method to reduce the computational cost. The

high cost of nonlinear homogenization also makes adopting this method a necessity for ap-

plying the MSG-based nonlinear shell modeling in multiscale structural analysis. However,

for developing more general-purpose surrogate models, machine learning is recommended.

Among different machine learning techniques, neural network is the most widely used tool,

been successfully applied in nonlinear constitutive modeling [  126 ]–[ 128 ]. When applying sur-

rogate models with multiscale structural analysis, surrogate models can be constructed for

different scales: a model for the lamina/yarn level that can be used it for shell modeling,

and a model for the laminate/woven penal level that can be implemented in UGENS for

the global structural analysis. Sample data can be obtained through nonlinear SwiftComp,

without relying on experiments.
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