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ABSTRACT

In a world of ever-increasing demand for energy while preventing adverse effects of climate

change, renewable energy has been sought after as a sustainable solution. To this end,

the last couple of decades have seen an advancement in research and development of solar

photovoltaic (PV) technology by leaps and bounds. This has led to a steady improvement

in the cost-effectiveness of solar PV as compared to the traditional sources of energy, e.g.,

fossil fuels as well as contemporary renewable energy sources such as wind and hydropower.

To further decrease the levelized cost of energy (LCOE) of solar PV, new materials and

technologies are being investigated and subsequently deployed as residential, commercial, and

utility-scale systems. One such innovation is called bifacial PV, which allows collection of

light from the front as well as rear surfaces of a flat PV panel.

In this thesis, we present a detailed investigation of bifacial solar PV farms analyzed across

the globe. We define the problem, explore the challenges, and collaborate with researchers

from academia and the PV industry to find a novel solution.

First, we begin by developing a multi-module computational framework to numerically

model a utility-scale bifacial solar PV farm. This requires integrating optical, electrical,

thermal, and economic models in order to estimate the energy yield and LCOE of a bifacial

PV system. The first hurdle is to re-formulate the LCOE so that the economist and the

technologist can collaborate seamlessly. Thus, we re-parameterize the LCOE expression

and validate our economic model with economists at the National Renewable Energy Lab

(NREL).

Second, we extend the existing optical and electrical models created for stand-alone

bifacial PV panels to models that can simulate a large-scale bifacial solar PV farm. This

brings the challenge of mathematically modeling solar farms and light collection on the rows

of PV panels elevated from the ground by taking into account the mutual shading between

the rows, reflections from the ground, and elevation-dependent light absorption on the rear

surface of the PV panels from several neighboring rows. Next, we integrate temperature-

dependent efficiency models to take into account the effects of location-dependent ambient
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temperature, wind speed, and technology-varying temperature coefficients of the solar PV

system in consideration.

Third, we complete the comprehensive modeling of bifacial solar PV farms by including

two types of single-axis tracking algorithms viz. sun-tracking and power tracking. Using these

algorithms, we explore the best tracking orientation of solar farms i.e., East-West tracking

vs. North-South tracking for locations around the world. We further find the best land type

suitable for installation of these E/W or N/S tracking bifacial solar PV farms.

Fourth, we reduce the computation time of numerical modeling by utilizing the advantages

of machine learning algorithms. We train neural networks using data from the already-

built models to emulate the numerical modeling of a solar farm. Amazingly, we find the

computation time reduces by orders of magnitude while accurately estimating the energy

yield and LCOE of PV farms.

Fifth, we derive, compare, and experimentally validate the thermodynamic efficiency

limits of photovoltaic-to-electrochemical energy conversion for the purpose of storing solar

energy for future needs.

Finally, we present some new ideas and guidelines for future extensions of this thesis as

well as new challenges and problems that need further exploration.
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1. INTRODUCTION

In the wake of dramatic climate change across the globe, renewable energy has received

widespread attention from academia and industry. Amongst the various types of energy

sources, solar energy is one of the front-runners for the renewable energy growth around

the world [ 1 ]–[ 4 ]. To compare the economic viability of various sources of energy, e.g., wind,

hydropower, coal, natural gas, solar energy etc. [ 5 ], [  6 ], the energy research community uses

levelized cost of energy (LCOE) as a techno-economic metric. As shown in Fig.  1.1 , solar

energy is cost-competitive with with other sources of energy [ 7 ], [  8 ]. The costs for utility-scale

solar (about 11% per year) as well as onshore wind (about 5% per year) have been declining

over the past five years [ 7 ], [ 8 ], as shown in Fig.  1.2 . The rate of decline, however, has

reduced over the years.

Figure 1.1. LCOE comparison for various sources of energy. Utility-scale
solar PV is now cost-competitive with traditional sources of energy as well as
wind energy. [ 7 ]
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Figure 1.2. LCOE reduction for on-shore wind energy and utility-scale solar
energy over the years. [  7 ]

There has been persistent and integrated efforts of research institutes, PV industry, and

government initiatives [  4 ], [ 5 ] to reduce LCOE of solar PV. Researchers are exploring new

materials [ 9 ], [ 10 ], the PV companies are optimizing manufacturing and module design [ 11 ],

and farm-installers are developing new farm topologies, e.g., floating solar, and streamlining

installation [ 12 ], [  13 ].

The majority of groundbreaking research progress aimed to lower the LCOE of PV has

been focused on: 1) increasing the efficiency of solar cells (∼ 1% efficient c-Si solar cells

in 1951 [ 14 ] to ∼ 28.8% for GaAs solar cells in 2011 [ 10 ]); 2) reducing CAPEX (the fixed

cost of new factories and equipment) [ 15 ]; 3) adopting low-cost fabrication processes [  16 ]; 4)

exploring earth-abundant materials [ 17 ]; 5) using new cell architectures, from back-surface

field (BSF) to point contacts; 6) Increase PV module size; and/or 7) changing module design

from monofacial to bifacial.

However, understanding and estimating LCOE poses several challenges – from performing

a detailed analysis of several costs involved to estimation of energy output of a solar PV system.

Moreover, optimization of solar farm designs based on cost or energy independently does not

guarantee a minimum in LCOE. Furthermore, reliability of solar modules, another key to
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reduce LCOE of PV, still remains an intractable challenge [ 18 ]. For example, manufacturers

guarantee 25 years of warranty (i.e., guaranteed to retain 80% of the initial power output),

whereas field reports show PV lifetimes of less than 15 years, significantly increasing the

LCOE of solar panels. Hence, it is very critical to develop degradation-resilient solar panels.

Degradation of PV systems, however, is a very complex phenomenon that evolves over years

due to various slow and/or rare events that ultimately cause failure. The existing empirical

approach fails to capture the essential physics of PV reliability [  19 ]. A lack of fundamental

understanding prevents the advancement of predictive LCOE modeling and reliability-aware

designs for PV systems.

As portrayed in Fig.  1.3 , our proposed work will establish a comprehensive framework that

will facilitate an opto-electro-thermo-economical model that is equipped with PV reliability

models. Our reformulation of LCOE into LCOE* will not only allow an ease of communication

between PV economists and technologists, it will more importantly empower the technologist

to find an optimum design of a generalized solar PV farm at any given geographical location

around the world, as seen in Fig.  1.4 .

Figure 1.3. General overview of the thesis framework.

Furthermore, a physics-guided machine learning model for performance and degradation

analysis of PV systems will enable the use of empirical/phenomenological/incomplete physical

models for energy yield estimation and degradation mechanisms to forecast the LCOE and

lifetime of PV modules and systems (forward modeling). What is more interesting is that
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this physics-guided machine learning algorithm will empower us to perform a deconvolution

of efficiency degradation into various underlying degradation mechanisms (inverse modeling)

using large-scale PV field data from sites around the globe. Once developed, this tool can

allow PV industry to manufacture PV modules and systems that are more resilient to varying

weather conditions specific to different geographical locations, thereby increasing the lifetime

of solar PV systems and eventually reducing the LCOE.

Finally, to maximize the outreach of this tool, we published our tool as part of a dataset

in the Digital Environment for Enabling Data Science (DEEDS) platform that allows storage,

preservation, analysis, and collaboration of scientific research.

1.1 LCOE*: Re-thinking Levelized Cost of Energy (LCOE) for Photovoltaic
systems

Levelized cost of energy (LCOE) is the widely accepted metric to compare and assess the

economics of various sources of energy. For solar energy, LCOE refers to the ratio of the

total cost of a PV system and the total energy yield over its lifetime. Alternatively, it can be

defined as the selling price of electricity per unit energy to break-even the cost of installing

and operating a PV system over its lifetime.

LCOE = Total cost over system lifetime
Total electrical energy produced over system lifetime (1.1)

Estimating LCOE requires an integrated effort of PV economists and PV technologists.

While economists deal with the cost analysis (i.e., the numerator in Eq.  1.1 ), the technologists

work on the physical design of a solar PV system for energy evaluation (i.e., the denominator

in Eq.  1.1 ). In order to calculate and minimize LCOE, both economists and scientists

require data from each other. For example, economists need the electrical and mechanical

specifications – power capacity of the farm, module technology, inverter, racks, lifetime etc. –

from the scientists, whereas scientists need available land area (/cost), subsidies and taxes,

bank discount rate etc. – from economists to perform the same LCOE calculation and

optimize the solar farm design. In simple terms, the LCOE formula is an implicit function of

various cost and physical design parameters of a PV system. Due to this implicit nature of
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the formula, the economists and the technologists require a constant exchange of information

to calculate LCOE for a farm or for a region, see Fig.  1.4 (left). Hence, there is a need to

decouple the costs and energy yield aspects of the LCOE formula to provide a simpler, more

transparent, and physically-intuitive perspective of LCOE such that it is easier for economists

and scientists to work in parallel towards the goal of minimizing LCOE.

Figure 1.4. A depiction of how to deconvolve physical and economic parame-
ters of the LCOE formulation for ease of communication between economists
and technologists.

In chapter  2 , we achieve this objective of decoupling the economic and physical design

parameters to facilitate simultaneous assessment of costs by economists and energy yield by

technologists. Using a fundamentally different perspective, we reformulate LCOE in terms

of what we call LCOE* (essential levelized cost of energy). We first analyze the LCOE

formulation and collected the costs into three categories: (1) The costs that vary with the

size of land, (2) the costs that are directly affected by the number of modules, and (3) fixed

costs that neither vary with the size of land nor the number of modules. Once all the costs

are bagged into these three categories and the geographical location-based constants are

brought together the LCOE formula reduces to the so-called “essential levelized cost of energy

(LCOE*)". The new LCOE* formula has a cost parameter, named cost ratio (ML), and

physical design parameters, such as, pitch, height, tilt angle, albedo etc. Fig.  1.4 (right)

schematically portrays how the LCOE* helps decouple the functions of an economist and

a technologist and how it differs from traditional LCOE calculation involving an iterative
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communication, see Fig.  1.4 (left). This way, after receiving the cost parameter (ML) from

the economist, the technologist can work independently on the design optimization of a solar

PV system towards reducing the LCOE. Our results validate the LCOE* formulation by

comparing the LCOE calculated by our approach to the traditional LCOE published in the

literature.

The first step towards estimating LCOE is to re-formulate it into LCOE* that presents an

uncluttered view on LCOE with physical parameters and costs deconvolved. Next, we need

calculate the energy yield of a PV system. Thus, building upon previous modeling works, we

develop an analytical model that estimates the energy output of a bifacial solar PV farm

that includes the effect of mutual shading between rows of PV panels. Then, the cost and

energy models are collated to estimate LCOE* and LCOE. Finally, we optimize the physical

design of the farm in order to minimize the LCOE.

In the next sections, we describe several models and technological innovations to maximize

the energy yield of a bifacial solar farm in order to reduce the LCOE.

1.2 Developing an opto-electro-thermal model for energy estimation of bifacial
solar farms

Towards designing energy-efficient modules and farms [ 20 ]–[ 24 ], a module design based on

bifacial solar panels have shown ∼ 50% increase in power output compared to monofacial

panels [  20 ]. The International Technology Roadmap for Photovoltaic (ITRPV) predicts that

the worldwide market share for bifacial technology will increase to 40% by 2028 [ 21 ]. A

recent literature review by Guerrero-Lemus et al. [ 22 ] explains the optimism surrounding the

initiation, growth, and scalability of this technology. To this end, various standalone module

designs have been recently investigated numerically [ 23 ]–[ 27 ] and experimentally [ 28 ]–[ 31 ].

These demonstrate the dependence of irradiance intensity, spectral distribution, the fraction

of direct, diffuse, and albedo light, etc. on the design of stand-alone bifacial modules. Guo

et al. [ 32 ] have done a global analysis of east-west-facing vertical bifacial modules, Ito et

al. [  33 ] have presented a comparison of vertical bifacial modules and tilted modules, and

Sun et al. [  26 ] have provided a global perspective of bifacial modules with optimized tilt

angle, azimuth angle, and elevation. The bifacial gain of stand-alone modules is significant
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enough to support the optimistic view of the technology. However, there has been a gap in

understanding and modeling of energy for bifacial solar farms. More importantly, the reports

to date focus on bifacial energy gain, but it is unclear if the gain is sufficient to offset the

additional cost of a bifacial solar farm to make the technology commercially viable.

With the foundation of an already developed opto-electrical model for stand-alone PV

modules [ 26 ], we have now developed sophisticated numerical models to include optimized

fixed-tilt, elevation, several temperature-dependent efficiency models and integrated them

together to propose and opto-electro-thermo-economic model for a generalized tilted bifacial

farm. We further improved this model by incorporating sun-tracking and power-tracking

algorithms and finalized the comprehensive numerical software for tracking bifacial solar PV

farms.

In our thesis, we explain in great detail all the aspects of this opto-electro-thermo-economic

model for estimating the energy yield and levelized cost of energy of tracking bifacial solar

farms around the world.

1.2.1 Optimized fixed-tilt solar PV farms

We explore the design optimization of tilted bifacial solar farms for all the locations

across the globe. The results are easily generalized to the remaining locations of the world

if we allow a location-specific turn-on of the solar farm. The objectives are: (i) To find the

key design parameters, (ii) appropriately model the insolation and light collection at the

farm-level, and (iii) subsequently incorporate a parameterized cost analysis (through LCOE*)

to eventually find an optimized design that minimizes the cost of electricity produced.

To estimate the energy yield of a solar farm, the simulation proceeds in three steps. First,

we calculate the amount of sunlight incident at a particular location defined by its latitude

and longitude. We then segregate the the incident light into direct, diffuse, and albedo light

components. Next, we quantify the amount of each light component collected by the solar

panels installed at that location. This is the step where the fixed-tilt and spacing between

the rows of solar panels become essential to the modeling framework. A different design -
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combination of tilt (and N/S or E/W orientation) and row-spacing delivers a unique energy

estimate. Finally, we find the daily and yearly power/energy-output of the bifacial solar farm.

All the solar farm designs are then evaluated to find the best design with an optimum

fixed-tilt angle and row-spacing for that particular location (lat/long). We perform this

analysis worldwide, in order to generate a global map of optimized bifacial solar PV farm

designs and the estimated energy associated to them.

1.2.2 Integrating temperature-dependent efficiency of solar farms

Research studies have explored the effects of temperature-dependent efficiency on stan-

dalone modules with a focus on finding an accurate temperature coefficient. Both bifacial

and monofacial modules have been studied with temperature dependence in previous works.

In our earlier study, we estimated the energy output and LCOE of ground-mounted (unele-

vated) bifacial farms at standard testing conditions (STC). Nonetheless, a study of elevated

bifacial farms based on temperature-dependent efficiency, as a prototypical and practical

farm, remains unexamined.

With the foundation of an opto-electrical model developed earlier, we explored several

temperature-dependent efficiency models and integrated them together to propose and opto-

electro-thermal model for a generalized tilted bifacial farm. We validate our proposed model

with the experimental data from Sandia National Labs. Moreover, we improved the analytical

model for energy generation of PV farms to incorporate elevation (or ground clearance) of PV

panels. This required remodeling the albedo light collection by a panel that can now “see”

the ground under several adjacent rows of PV panels. We used this comprehensive model to

compare energy output, LCOE, and design optimization of: (1) standalone module vs. farm

output, (2) monofacial vs. bifacial farm output, and (3) elevated vs. unelevated farms.

1.2.3 Incorporating tracking algorithms

One way to reduce the levelized cost of energy (LCOE) is to design a photovoltaic (PV)

system to produce the maximum energy for a specified area of the solar farm. Among the cost-

effective options, one can either increase the total irradiance of fixed-tilt farms using bifacial
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modules or increase the normal irradiance on monofacial modules by solar-tracking. Both

technologies are becoming popular as bifacial modules are expected to have ∼ 40% market

share by 2028 [ 34 ], whereas solar-tracking has been implemented by ∼ 70% of newly installed

utility-scale PV systems since 2015 [  35 ], [ 36 ]. Indeed, market analysis from multiple groups

worldwide suggest that single-axis tracking may account for 25-40% of all new utility-scale PV

installation, motivated in part by the adoption of bifacial modules [ 37 ]. The location-specific

viability of bifacial tracking solar farms has not been quantified, however.

To investigate the worldwide performance of bifacial single-axis tracking PV farms with

fixed-tilt bifacial PV farms, we compare the performance of two different tracking algorithms

termed as tracking the sun (TS) and tracking the best orientation (TBO) or power-tracking

[ 38 ]. By using a self-consistent optical- electrical-thermal model, we address the following

key questions: (i) How do the energy yields compare between east/west (E/W) facing and

north/south (N/S) facing bifacial single-axis tracking solar farms? (ii) How does the site-

specific climate affect the performance of these farms? (iii) How do the location-dependent

land costs affect the optimum design and LCOE of these farms? and (iv) What is the

optimum row-spacing (pitch) for minimum LCOE?

1.3 Physics-based Machine Learning for PV performance and reliability

The advent of machine learning and its widespread application allows us to go beyond

the physics-based numerical modeling of PV systems. The machine learning models are

analogous to the compact models of various electrical components that are part of a circuit.

Similarly, machine learnt models are compact and fast modules/packages that are capable of

emulating the previously developed sophisticated numerical models. Therefore, we explored

application of machine learning to PV system performance and reliability.

1.3.1 Why ML-based analysis of PV systems?

Fast-paced growth in the demand and supply of solar PV systems – residential, commercial,

and utility-scale – has accelerated the deployment of PV systems around the world. Parallel

to this field deployment, there has been a concerted effort to model emerging PV systems
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to estimate their energy yield and levelized cost of energy (LCOE). The modeling effort

is particularly important because there has been a proliferation of farm topologies (e.g.,

monofacial, vertical and tilted bifacial, E/W and N/S tracking systems, etc.) available

for deployment. To make this comparison feasible, several models and software have been

developed to predict the energy yield over the lifetime of the PV farm [ 39 ]. SunPower Corp.

has developed EnergyLink that constantly monitors various types of PV systems [ 40 ]. Sandia

National Labs have created a library of codes and software called PVLib that can be used for

PV system analysis [ 41 ]. National Renewable Energy Laboratory (NREL) provides Bifacial

Radiance for energy estimation of bifacial PV systems and RdTools for PV degradation

analysis [ 42 ], [ 43 ]. Driesse et al. [ 44 ] have performed a comparative analysis on several

module efficiency models for energy prediction and rating. Similarly, the Purdue Group has

designed physics-based numerical models for energy yield and LCOE calculation [ 45 ], [  46 ].

These sophisticated models can not only accurately predict the energy yield and LCOE,

but they can also find the optimum design of standalone PV modules and utility-scale solar

PV farms. However, due to their computational and algorithmic complexities, the existing

models require significant computational resources to calculate the worldwide energy yield of

a specific farm configuration, even for a relatively coarse grid of latitudes and longitudes [ 45 ].

Moreover, it is often difficult to validate the model prediction because the location of the

actual farm may not coincide with the simulation grid. Unfortunately, traditional nearest-

neighbor or spline-based interpolation techniques cannot be used because the weather and

terrain can vary dramatically over few miles, let alone several degrees of latitude/longitude

(coarse grid).

1.3.2 ML-based energy prediction

An emerging field of physics-based machine learning allows us to tackle the complexity

and computation time issues of the PV simulation model. Physics-based machine learning

utilizes the already existing physical/empirical models in conjunction with machine learning

tools to perform symbolic regression [ 47 ], for efficient compact modeling [ 48 ], for forecasting

complex dynamical phenomena [ 49 ], to improve the accuracy of ML models in data-deprived
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applications [ 50 ], [ 51 ], and for reduction in computation time, as we will see in this chapter.

A survey of physics-guided and hybrid physics-ML models is presented in Ref. [  52 ]. Moreover,

the following reasons led us to explore a hybrid physics-ML model for estimation of worldwide

energy yield of solar PV farms.

(1) Recent IEA-PVPS report [ 53 ] informs us that there are 15-16 models with various

degrees of accuracy. ML will make this duplication of effort unnecessary, saving enormous

time in code development.

(2) Even with a debugged code, it may take years to generate highly refined results that

can be used to develop policies. ML will do it in minutes.

(3) The model will show that if one uses monthly energy yields of just 4-6 locations,

we can create a worldwide map of yearly energy yield. Richness of the data depends on

latitudinal-diversity of the information, not the number of datapoints themselves. It has

implications of creating databases and validation protocols (Not all locations are the same).

(4) An earth-based modeling can be functionally extrapolated to other planets, giving an

approximate prediction of the energy yield. This transfer learning will become a validation

tool for solar simulators used for planetary missions.

In our thesis, we develop a novel functional interpolation tool based on machine learning,

which can accurately estimate the yearly energy yield (YY) and effective levelized cost of

energy (LCOE*) [  45 ] in minimal computation time. As a new and potentially transformative

approach to computational modeling, this tool addresses many challenges of traditional PV

modeling, namely, the need for supercomputing resources, expertise in scientific computing,

long run-time, etc.

1.3.3 ML-based PV reliability analysis

Physics-guided machine learning (PGML) has come to surface in last couple of years.

These studies have been performed for specific applications. Moreover, with respect to PV

reliability, the currently available acceleration tests are empirical, with little to no physics

known, and hence cannot accurately predict lifetime for solar PV modules in the field. The
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challenge is to find a physics-guided machine learning approach to solve PV reliability issues

and further generalize the theory for broader applications.

The idea is to take an example problem, for example, deconvolution of degradation

mechanisms in PV systems, and find an algorithm to extract essential features (physical

parameters) from tentative physical equations or empirical observations and feed these

essential features as inputs to the machine learning tool. This will enable faster and more

accurate segregation of an intricate amalgamation of several PV degradation mechanisms.

Such an approach will serve two important goals. (i) Generic – A theory/algorithm that

can perform physics-based machine learning to achieve faster and accurate results. (ii)

More specifically, and yet a pressing issue – a holistic methodology for quick diagnosis of

PV reliability by looking at previous data (inverse modeling) and predicting the future

degradation or lifetime of PV modules (forward modeling). To this end, we have (i) developed

a toy PGML model with the help of synthesized data using available empirical/physical PV

degradation forward models; and (ii) used weather data from early-deployment phase to

further improve the toy PGML model.

1.4 Exploring thermodynamic efficiencies of Photovoltaic-Electrochemical sys-
tems

Earth’s rotation around the sun leads to spatial (latitude), seasonal, and diurnal variation

in sunlight intensity. Storing solar energy in various other forms of energy (e.g. chemical,

mechanical, gravitational) provides a solution to this challenge.

Having developed physics-based numerical and and machine learning models, we began

exploring creating compact models for PV-EC combined energy storage systems.For elec-

trochemical (EC) energy storage, a variety of approaches have been proposed, including

batteries, organic and/or inorganic reactions, artificial photosynthesis [  54 ], etc. In this thesis,

we report the thermodynamic performance limit of PV-to-EC energy conversion through an

illustrative example of splitting of water into hydrogen and oxygen.

A generalized configuration for such PV-to-EC conversion is relevant for research efforts

worldwide.We model a system that is characterized by five PV and four EC variables. The

PV variables are: the intensity of sunlight (S), the fraction of incident light reflected from
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the ground (albedo, R), number of series-connected cells in the PV module (M), number of

subcells in a multi-junction (Tandem) solar cell (N) and the set of bandgaps of the solar cell

([Eg])). The EC parameters are: the number of series-connected electrochemical cells (K),

the thermodynamic potential of the reaction (µth), effective exchange current density (J0,ec)

and effective Tafel slope (β).

This set of 9 variables is sufficient to calculate the thermodynamic upper limit of an

‘idealized’ PV-EC system, with the same level of rigor and relevance as the Shockley-Queisser

(SQ) analysis for a stand-alone PV system [  55 ]. Similar to the SQ limit, we realize that

practical considerations, such as series and shunt resistances [  56 ]–[ 58 ], diode non-ideality

factor, self-heating in both PV and EC, spectral difference, and non-ideal Tafel slope, may in

practice make it impossible to reach the PV-EC limit derived here. Nonetheless, the PV-EC

thermodynamic limit provides physical insights and scope of improvement for modeling

experts and experimentalists alike.

1.5 Thesis Outline

The objective of our research is to create, simulate, and analyze a comprehensive numerical

model for energy and LCOE estimation of bifacial solar PV systems. To achieve this goal,

we integrated a set of sub-modules comprising of optical, electrical, thermal, tracking, and

economic model, as shown in Fig.  1.3 . The details of the above-mentioned numerical models

and the analysis of the results of worldwide simulations are described in the upcoming

chapters as enumerated below.

In chapter 2, we delineate a method to re-formulate levelized cost of energy (LCOE)

to deconvolve the cost and physical parameters and call it essential levelized cost of energy

(LCOE*). We further develop and integrate the irradiance, light collection, and electrical

models to estimate the yearly energy yield of a generalized fixed-tilt bifacial solar PV farm.

The estimated energy is fed into the LCOE* formula and the physical parameters are

optimized to minimize LCOE and thus find the best design of the farm. We finally, analyze

the global trends of energy yield, LCOE, and optimum tilt angles.
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In chapter 3, we extend the opto-electro-economic model to include the temperature-

dependent efficiency models. Next, we validate these models with experimental data for

daily energy from Sandia National Labs. We compare the energy yields and LCOE of

bifacial and monofacial solar farms for various PV materials and technologies viz. Silicon,

CdTe, Aluminum Back Surface Field (Al-BSF), Silicon Heterojunction (SHJ), and Passivated

Emitter and Rear Contact (PERC). A worldwide comparison of these technologies with and

without temperature-dependent efficiency models shows us the stark difference between the

two methods for energy and LCOE estimation.

In chapter 4, we complete the comprehensive modeling of bifacial solar farms by incor-

porating tracking algorithms in the package. We analyze two tracking algorithms, namely,

sun-tracking and power-tracking algorithms and compare their performance in calculating

the daily output of farms at four locations around the world. Next, we analyze North-South

facing and East-West facing orientations of bifacial solar farms around the world. We find

that E/W facing farms are favorable for locations lying between 50°N and 50°S whereas N/S

facing farms are more promising for locations lying outside of the 50° latitude band. We also

explore the types of land suitable for tracking bifacial solar farm installation and conclude

that "Savannas" and "Barren lands/deserts" are apt for E/W PV farm deployment.

Once the comprehensive tool was completed, we sought ways to reduce the computation

time for worldwide solar farm simulations. We found physics-based machine learning to be

an aptly suitable solution for the same.

Thus, in chapter 5, we present a methodology to use machine learning as a tool to

learn the previously-created complex opto-electro-thermo-economic models and then use the

trained machine to accurately predict the energy yield, LCOE, and optimum design of a

generalized solar PV farm. This method drastically reduces the computation time to simulate

a million locations worldwide by orders of magnitude, i.e., from years to seconds.

In chapter 6, we investigated the problem of daily and seasonal variation in PV energy

output. This led us to explore a photovoltaic-elctrochemical storage system. We developed

an electrical compact model for a generalized PV-EC system and used water-splitting as an

example to calculate the thermodynamic limits of the efficiency of PV-to-EC energy conversion.

We find that that thermodynamic limit of conversion is 52% and subsequently describe the
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optimum design of this PV-EC system in terms of various physical and electrochemical

parameters.

Finally, in chapter 7, we summarize and conclude the thesis while proposing ideas or

projects that can be explored in the future.
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2. A WORLDWIDE COST-BASED DESIGN AND

OPTIMIZATION OF TILTED BIFACIAL SOLAR FARMS

  

The steady decrease in the levelized cost of solar energy (LCOE) has made it increasing

cost-competitive against fossil fuels. The cost reduction is supported by a combination of

material, device, and system innovations. To this end, bifacial solar farms are expected

to decrease LCOE further by increasing the energy yield; but given the rapid pace of

design/manufacturing innovations, a cost-inclusive optimization of bifacial PV systems at

the farm-level (including land costs) has not been reported. In our worldwide study, we

use a fundamentally new approach to decouple energy yield from cost considerations by

parameterizing the LCOE formula in terms of “land-related cost” and “module-related cost”

to show that an interplay of these parameters defines the optimum design of bifacial farms.

For ground-mounted solar panels, we observe that the panels must be oriented horizontally

and packed densely for locations with high “land-related cost”, whereas the panels should

be optimally tilted for places with high “module-related cost”. For systems with relatively

high module-related costs and for locations with |latitude| > 30°, the bifacial modules must

be tilted ∼ 10 − 15° higher and will reduce LCOE by 2-6% compared to their monofacial

counterparts. The results in this chapter will guide the deployment LCOE-minimized ground-

mounted tilted bifacial farms around the world.

2.1 Introduction

Solar energy is spearheading the renewable energy growth around the world [ 1 ]–[ 4 ].

Levelized cost of energy (LCOE) is used as a metric to compare the economic viability

of various sources of energy, e.g., wind, hydro-power, coal, natural gas, solar energy etc.

[ 5 ], [ 6 ]. So far, solar energy still falls behind its competitors in this comparison [ 2 ], [ 59 ].

There has been persistent and integrated efforts of research institutes, PV industry, and

government initiatives [  4 ], [ 5 ] to reduce LCOE of solar PV. Researchers are exploring new

materials [ 9 ], [ 10 ], the PV companies are optimizing manufacturing and module design [ 11 ],
 ↑ Note: The material in this chapter has been adapted from Ref. [ 45 ].
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and farm-installers are developing new farm topologies, e.g., floating solar, and streamlining

installation [ 12 ], [  13 ].

Towards designing energy-efficient modules and farms [ 20 ]–[ 24 ], a module design based on

bifacial solar panels have shown ∼ 50% increase in power output compared to monofacial

panels [  20 ]. The International Technology Roadmap for Photovoltaic (ITRPV) predicts that

the worldwide market share for bifacial technology will increase to 40% by 2028 [ 21 ]. A

recent literature review by Guerrero-Lemus et al. [ 22 ] explains the optimism surrounding the

initiation, growth, and scalability of this technology. To this end, various standalone module

designs have been recently investigated numerically [ 23 ]–[ 27 ] and experimentally [ 28 ]–[ 31 ].

These demonstrate the dependence of irradiance intensity, spectral distribution, the fraction

of direct, diffuse, and albedo light, etc. on the design of stand-alone bifacial modules. Guo et

al. [ 32 ] have done a global analysis of east-west-facing vertical bifacial modules, Ito et al.

[ 33 ] have presented a comparison of vertical bifacial modules and tilted modules, and Sun

et al. [ 26 ] have provided a global perspective of bifacial modules with optimized tilt angle,

azimuth angle, and elevation. The bifacial gain of stand-alone modules is significant enough

to support the optimistic view of the technology.

Unfortunately, a combined effect of panel-to-panel (mutual) and panel-to-ground (self)

shading in a solar farm may erode the perceived advantage of stand-alone bifacial farms.

Recently, Appelbaum [ 60 ] has investigated the effect of shading when bifacial modules in a

farm are installed in multiple rows for east-west and south-north orientations. Khan et al. [ 61 ]

have done a global analysis of vertical bifacial solar farms and observed a 10-20% energy gain

for practical row-spacing. In a more recent study [ 62 ], they have proposed a ground-sculpting

of farms to enhance the power output and achieve ∼ 50% bifacial gain. Moreover, the

vertical farm design reduces soiling and cleaning cost. In fact, limited experimental study in

Tucson (Arizona, USA) and Forst (Lausitz, Germany) do show the vertical bifacial farms

outperforming the optimally tilted bifacial farms for certain months/weather conditions [ 63 ].

It is not clear if these conclusions can be generalized to all locations in the world.

Most importantly, the reports to date focus on bifacial energy gain, but it is unclear if the

gain is sufficient to offset the additional cost of a bifacial solar farm to make the technology

commercially viable. A recent study [ 64 ] has offered a careful and systematic cost-based
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analysis of bifacial PV systems. Although the analysis took various module-related costs

into consideration, it did not include the land-related costs. Moreover, the self-shading for

modules was considered while mutual shading was omitted. In other words, the cost may

have been underestimated, while energy yield overestimated. A generalization of the previous

study that predicts the LCOE-optimized bifacial farm design (including land cost and mutual

shading) would be of great interest.

The calculation of farm-level levelized cost of energy (LCOE) is difficult because some of the

factors (e.g. land cost, module and installation cost, degradation rates, and bankability) may

not be known for years to come. Therefore, in this chapter we reformulate/re-parameterize

the LCOE calculation in a way that allows design optimization and decision making for any

PV technology even when all the cost details are not known. Specifically, the new approach

has the benefit of providing a clear understanding of the impact of various parameters on

bifacial LCOE and a worldwide mapping/analysis will show us a trend in the economic

viability of bifacial PV technology.

Our main contribution in this chapter is that we explore the design optimization of

tilted bifacial solar farms for all the locations across the globe with latitude below 60°.

The results are easily generalized to the remaining locations of the world if we allow a

location-specific turn-on of the solar farm. The objectives are: (i) To find the key design

parameters, (ii) appropriately model the insolation and light collection at the farm-level, and

(iii) subsequently incorporate a parameterized cost analysis to eventually find an optimized

design that minimizes the cost of electricity produced. Our generalized model shown in Fig.

 2.1 will reproduce, as special cases, various types of farms designed to date. For example,

specialized designs are achieved by fixing one of the seven bifacial farm parameters defined

in table  2.1 , namely, β = 90° defines a vertical bifacial farm; p = ∞ yields a stand-alone

(unit length in z-direction) or a single row (infinite length in z-direction) of bifacial PV

module(s); and turning off the back-surface light-collection creates a monofacial solar farm.

Other designs can be obtained by varying several parameters simultaneously.

41



Figure 2.1. (a) A 3-D Schematic of a generalized tilted bifacial solar farm.
(b) A 2-D view of arrays of ground-mounted panels, assuming infinite (or unit)
length for a single row (or a single module) in the third dimension. (c) Derived
designs, namely, standalone module, vertical farm, and monofacial farm, as
derivatives of the general design.

In Sec.  2.2 we explain the models used in our study – In Sec.  2.2.1 , we start with

re-parameterization of LCOE in terms of land cost (CL), module cost (CM), and yearly

energy yield (YY). Next, in Sec.  2.2.2 , we describe the methodology to calculate the local

irradiance by using the available meteorological data. The outcome of this analysis will

provide the illumination/energy incident on the solar farm area. We then discuss, in Sec.
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Table 2.1. Physical and economic parameters of a ground-mounted tilted bifacial farm.
No. Parameters Definition

1. Pitch (p) Row-to-row distance between the bottom edges
of consecutive arrays

2. Height (h) Height of the panels

3. Array tilt angle (β) Angle between the array (panels) and the ground
(horizontal)

4. Array azimuth angle (γ) Angle between the projection of normal to the front
face of the arrays on the ground and the North Pole

5. Albedo (RA) Fraction of incident light reflected from the ground

6. Land cost (cL) The cost of a single solar module per unit height
(includes fabrication and installation costs)

7. Module cost (cM) The cost of a single solar module per unit height
(includes fabrication and installation costs)

 2.2.3 , the light collection model for estimating the fraction of incident light absorbed by

front/rear faces of the solar modules to calculate the power output from the farm in terms of

annual energy yield.

Thenceforth, in Sec.  2.3 , we optimize the bifacial farm to minimize the levelized cost of

energy. Finally, in Sec.  2.4 , we present the results of the simulations and a global perspective

of minimized levelized cost of energy for optimum system parameters. Our conclusions are

summarized in Sec.  2.5 of this chapter.

2.2 MODELING

An LCOE-aware modeling and optimization of bifacial solar farm involves a series of

calculations. In this section, we will focus on three aspects of the modeling framework: (A)

Re-parameterizing LCOE, (B) Irradiance modeling, and (C) Collection of light. These topics

are discussed below.
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2.2.1 Levelized Cost of Energy (LCOE)

LCOE is defined as the ratio of the total cost of a PV system and the total energy yield

of the system over its lifetime [ 65 ], i.e.,

LCOE = Total Cost ($)
Total Energy Y ield (kWh) = Csys(Y = 0) + (∑Y

k=1 Com(k))− Crv(Y )
E(Y )

(2.1)

where Csys(Y = 0) is the fixed cost paid once during installation (i.e., Y=0) of the system.

This includes the cost of modules (cm,0), the cost of land (cl,0), and the balance of system cost

(cbos,0) such as labor, permit, racks, inverters, etc. The recurring operations and maintenance

cost (Com) scales with the cost of maintaining individual modules (com,m) and the cost of

maintaining the land (com,l). Finally, Crv is the residual value of the modules (crv,m), the

land (crv,l), and the equipment to be regained when the farm is decommissioned. Com and

Crv are a function of the lifetime (number of years, Y) for which the solar farm is operated.

The total cost (numerator) in the LCOE expression in Eq.  2.1 can be equivalently written

as the sum of effective module-related cost (CM), effective land-related cost (CL), and fixed

balance of systems cost (Cbos,f ), as shown in the following equation:

LCOE ≡ CM + CL + Cbos,f
E(Y ) (2.2)

where

CM = cm,0 +
(

Y∑
k=1

(com,m(k)(1 + r)−k)
)
− Crv,m(Y )(1 + r)−Y

CL = cl,0 +
(

Y∑
k=1

(com,l(k)(1 + r)−k)
)
− Crv,l(Y )(1 + r)−Y

(2.3)

Subscripts m, l, and bos stand for module, land, and balance of systems. Moreover, r is

the discount rate that normalizes future costs in terms of current cost in order to have a fair

comparison using a single metric.

The key insight of Eq.  2.2 is that the costs associated with a solar farm reflects two

essential costs, namely, effective module-related cost (CM ) and effective land-related cost CL).
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The costs that scale with the number of modules (e.g., module size, material cost, racking,

wiring in panels, inverters etc.) are included in CM . Those costs that vary with the area

of land (e.g., cost of land, fencing, cost for land curing/sculpting, etc.) are collected in CL.

Since the (typically small) fixed cost associated with balance of systems ( e.g. permit cost)

does not scale with the number of modules or the land, hence, we collect them into the

residual cost,Cbos,f . The denominator of Eq.  2.2 describes the total energy yield E(Y ) of the

solar farm:

E(Y ) =
Y∑
k=1

E0(1− d)k(1 + r)−k (2.4)

Here, E0 = P0×TY is the energy output for the first year expressed as the product of first

year power output (P0) and total number of active hours in a year (TY ). The yearly energy

degradation rate (d) defines the lifetime (Y, in years) of the solar farm. The discount rate (r)

accounts for the following fact: If we continue to sell a unit of energy for c $/watt-hour, the

present value of the lifetime revenue must account for the fact that future earnings are less

valuable than present earning.

Given the dimensions of a solar farm and the modules installed, LCOE expression in Eq.

 2.2 can be simplified even further, i.e.,:

LCOE = CM(r)× h×M × Z + CL(r)× p×M × Z + Cbos,f
Y Y (p, h, E, β, γA, RA)×M × Z × h× χ(d, r) (2.5)

where CM is the cost per unit meter of module (height), CL is the cost per unit meter of

land (pitch), M is the number of rows/arrays of modules and Z is the number of modules

in an array (in the z-direction, into the page). Y Y (= E0) is the yearly energy yield per

meter of a pristine module for one period/pitch (p) such that the yearly energy of the farm is

E(Y ) = Y Y ×M × Z × h× χ(d, r), where χ = ∑Y
1 (1− d)k(1 + r)−k × Y Y is a function of

the physical design parameters (p, h, β, γ, RA). Further, the residual cost associated with the

balance of system (cbos,f ) is typically negligible as compared to the essential costs, CM and
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CL [ 13 ], and does not affect the design optimization of the farm. With these considerations,

we arrive at the "essential levelized cost of energy" (LCOE∗), as follows:

LCOE∗ ≡ LCOE.χ

CL
= CM/CL + p/h

Y Y (p, h, β, γ, RA) = p/h+ML

Y Y
(2.6)

Eq.  2.6 defines an important design parameter ML(≡ CM/CL) as the ratio of cost of

module per unit length (height) over cost of land per unit length (pitch). This is one of the

most important conceptual novelty of this work. Although in this chapter we illustrate the

concept with reference to a bifacial PV technology, the approach applies to and will greatly

simplify the design of any PV technology (monofacial, concentrator, etc.). Note that Eq.  2.6 

expresses LCOE explicitly in terms of the seven fundamental farm design variables shown in

Table  2.1 .

The parametric reformulation of LCOE in terms of LCOE* decouples the cost analysis

(embedded in ML) from design considerations (reflected in p/h and YY). In other words, we

can optimize a farm with ML as a parameter, realizing that ML will evolve as the process

technology evolves. Eq.  2.6 shows that LCOE is proportional to LCOE*, since CL and χ are

location-specific constants. Therefore, minimizing LCOE is equivalent to minimizing LCOE*

for a given location. In the following sections, we will estimate the yearly energy yield at

a particular location and then account for the costs to finally arrive at the location-based

LCOE*.

2.2.2 Irradiance model for calculating IDNI and IDHI

To estimate the energy yield of a solar farm, the simulation proceeds in three steps. First,

we calculate the amount of sunlight incident at a particular location defined by its latitude

and longitude. Next, we quantify the amount of light collected by the solar panels installed

at that location. Finally, we find the daily and yearly power/energy-output of the farm.

46



Location-based light intensity

To calculate the temporal solar irradiance data at a particular location, we need to know

the solar trajectory (or Solar path) and the intensity of light [ 26 ], [ 61 ]. The solar path can

be acquired/simulated by using the NREL’s solar position algorithm [ 66 ] which has been

implemented in Sandia PV modeling library (PVLib) [ 41 ]. This gives us the zenith angle

(θz) and azimuth angle (A) of the sun at any time of the day on a given date for the desired

location. Here, θz is the refraction-corrected zenith angle, which depends on altitude and

ambient temperature. We use the Haurwitz clear sky model to generate the Global Horizontal

Irradiance (GHI or IGHI) [ 67 ], [ 68 ] with a time resolution of one minute. The clear sky model,

however, often overestimates insolation, especially when the atmosphere is cloudy or overcast.

Hence, to account for local variation of GHI caused by cloudiness and altitude, we scale

the integrated GHI over time to match the satellite-derived 22-year monthly average GHI

data from the NASA Surface meteorology and Solar Energy database [ 69 ]. Therefore, our

modeling framework takes into consideration the impacts of geographic and climatic factors

to model the location-specific solar irradiance.

Direct and Diffused light from GHI

Since GHI is measured on a flat ground while the solar panels are tilted, we need to

decompose the amount of direct light, called Direct Normal Irradiance (DNI or IDNI), and

the amount of diffused (scattered) light, called the Diffuse Horizontal Irradiance (DHI or

IDHI), which are related to the GHI as follows:

IGHI = IDNI × cos(θZ) + IDHI (2.7)

Since we have one equation and two unknown variables, IDNI and IDHI , thus, we estimate

one of the variables, IDHI , using the Orgill and Hollands model, which empirically calculates
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the diffuse fraction using the clearness index of the sky, defined as the ratio between IGHI
and extraterrestrial irradiance (I0) on a horizontal surface, as shown below.

kt = IGHI
I0cos(θZ) (2.8)

Here, I0 comes from an analytical expression in Ref. [ 70 ].

Once we calculate IDHI using IGHI and kt, Eq.  2.7 gives us IDNI . Further, instead of

the isotropic sky model [  71 ], we deploy the Perez model [  70 ], [ 72 ], [ 73 ] to account for the

anisotropic (angle-dependent) decomposition of IDHI . This fixes the overestimation of energy

yield due to isotropic model [ 30 ]. A similar calculation for estimation and decomposition of

solar insolation has been previously done by others [ 26 ], [  61 ].

Angle of incidence (AOI)

We need to calculate the AOI to find the component of direct light (IDNI) falling on the

tilted panel’s front and/or the back face (depending on the tilt angle). The AOI for N-S

facing tilted panels can be analytically expressed as [ 74 ]:

AOIFront = θF = cos−1(cosθZ cosβ + (sinθZ sinβ cos((γ − 180)− (A− 180)))) (2.9)

and

AOIBack = θB = cos−1(cosθZ cos(180− β) + (sinθZ sin(180− β) cos((γ − 180)− (A))))
(2.10)

where θF and θB are angles of incidence on front and back surfaces of the panel, respectively,

and A is the azimuth angle of the sun.

We now have the irradiance and angle of incidence information to proceed with estimation

of light collection and energy generation by the solar panels.
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2.2.3 Collection of light for calculating YY(p, h, β, γ, RA)

The panels have height h, tilted at an angle β, separated by pitch (or period) p, and are

oriented at array azimuth angle γ = 180° (i.e., south-facing panels) for farms in the northern

hemisphere and γ = 0° (i.e., north-facing panels) for farms in the southern hemisphere (see Fig.

 2.1 ). For simplicity, we assume that the arrays run sufficiently long in East-West direction

that the edge effects can be neglected. Moreover, the bottom edge of the panel is assumed to

be touching the ground. The collection of light on panels requires different approaches for

the three components of irradiance, i.e., direct, diffuse and albedo light, and hence, we will

analyze them individually. We will first calculate the light collection and energy output for

each panel/array and then account for the energies from all the arrays to estimate the total

energy yield from the farm. Our model for light collection is similar to and based on the one

developed by Khan et al. [ 61 ]. We assume the PV module efficiency under direct and diffuse

irradiance to be ηdir = 18.9% and ηdiff = 15.67% [ 61 ], [ 75 ]–[ 77 ], respectively. Reflection

losses at the module surface cause the difference in ηdir and ηdiff efficiencies. Moreover, the

cell efficiency for front and the back faces are experimentally found to differ by 1–2% [ 22 ],

whereas, the typical bifaciality factor for high quality commercial bifacial PV modules is ∼

90% [ 78 ]. For simplicity, we neglect this difference with the understanding that it will slightly

overestimate the energy yield. It is important to note that there can be partial shading of

panels or non-uniform illumination during the day. This can cause some of the solar cells

in a panel to reach reverse breakdown. This is mitigated by placing bypass diodes (3 in

our case) connected across different sub-sections of series-string. The effect of shading and

bypass diodes on the power output of the panel is discussed by Deline et al. [ 79 ]. Our model

accounts for partial shading effects [ 61 ]. Now, let us look at the three individual components

of incident light.

(a) Direct light collection

Starting from IDNI estimated earlier, we find that the component of direct illumination

normal to the front surface of the panel is given by IDNI cosθF . Next, we use an empirical
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model [  80 ] to incorporate the angle-dependent reflectivity (R(θF )) of the panel. Finally,

including the efficiency ηdir, we arrive at the power output per unit panel area.

IF,PanelPV :DNI = IDNI cosθF (1−R(θF )) ηdir; l > shadow

= 0; l 6 shadow
(2.11)

The contribution of power from the shaded area of the panel is assumed to be zero. Thus,

the power output per unit height of a panel is equal to IF,PanelPV :DNI . Now, the power output per

pitch of the farm (IF,FarmPV :DNI) is given by:

IF,FarmPV :DNI = 1
h

∫ h

0
IDNI cosθF (1−R(θF )) ηdir dl

= (h− shadow)
h

IDNI cosθF (1−R(θF )) ηdir
(2.12)

Note that the integral is implemented as a summation from the bottom edge of the panel

to the top edge with a step-size of 0.01 m. Similarly, we can find the direct light collection for

back surface (IB,FarmPV :DNI) with the tilt angle equal to 180°− β and AOIBack = θB. Therefore,

the total power output per unit farm area due to direct light (IFarmPV :DNI ) is the sum of IF,FarmPV :DNI

and IB,FarmPV :DNI .

(b) Diffuse light collection

The estimation of the diffuse light collection is more involved as compared to direct light.

Using the widely-accepted technique of the average diffuse masking angle [ 81 ] overestimates

the magnitude of collected diffuse light, especially for panels with large tilt angles. A view

factor approach has been previously applied to find the average diffuse light collection [ 82 ].

Here we find diffuse light incident on each point on the panel to appropriately find the

incident diffuse light distribution over the panel faces. This model ensures a more accurate

representation of the effect of non-uniform illumination (from direct, diffuse, and albedo

light).
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Figure 2.2. Schematic diagram for diffuse light collection on the panel

The spacing between the arrays is such that there is no mutual shading for direct light

for most part of the day, however, the isotropic diffuse light does result in mutual shading.

The diffuse light falling on the front face of a panel is partially shaded by the panels of the

adjacent arrays. The point at length l from the bottom of the panel views an angle ψ(l)

shaded or masked by the adjacent panel (see Fig.  2.2 ). The angle ψ(l) is geometrically

calculated as:

ψ(l) = tan−1
[

(1− l/h) sinβ
p/h− (1− l/h) cosβ

]
(2.13)

The diffuse light intensity on the front face, at position l along the panel is given by

IDHI × Fdl−sky(l). The view factor from dl to the unobstructed sky, Fdl−sky(l) = 1/2 (1 +

cos(ψ(l) + β)) [ 83 ]. Thus, we arrive at the power generated per unit panel area.

IF,PanelPV :DHI(l) = IDHI × Fdl−sky(l)× ηdiff

= IDHI ×
1
2 (1 + cos(ψ(l) + β)) ηdiff

(2.14)

Hence, the total integrated power output per pitch is given by

IF,FarmPV :DHI = IDHIηdiff/h
∫ h

0

1
2 (1 + cos(ψ(l) + β)) dl (2.15)
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Similarly, for the back surface, with array tilt angle equal to 180°− β, the total power

output per unit farm area due to diffuse light (IFarmPV :DHI) is the sum of IF,FarmPV :DHI and IB,FarmPV :DHI .

(c) Albedo light collection

The estimation of the collection of albedo light is the most complex and lengthy amongst

the three components and the complete formulation can be found in appendix Sec.  2.6.1 .

The final expression is as follows:

IFarmPV :Alb = IFarmPV :Alb,dir + IFarmPV :Alb,diff (2.16)

where total albedo light collected on the panel (IFarmPV :Alb) is the sum of albedo due to direct

light (IFarmPV :Alb,dir) and diffuse light (IFarmPV :Alb,diff ).

(d) Energy Output

Finally, the total power generated due to light collected from all the components of

irradiance is as follows

ITotalPV = IFarmPV :DNI + IFarmPV :DHI + IFarmPV :Alb (2.17)

For energy output, we integrate the power generated over the desired period of time. We

define the energy yield per pitch of a farm over a period of one year as yearly yield (YY).

Y Y (p, h, β, γ, RA) =
∫ 1

0
ITotalPV (p, h, β, γ, RA) dY (2.18)

Next, we will consider the overall optimization of LCOE*.

2.3 Optimization Methodology

Once we have the energy output (YY) from a farm in terms of the fundamental variables

(p, h.β, γ,and RA), we incorporate this information into Eq.  2.6 . For example, let us assume

that albedo (RA = 0.2), array azimuth (γ = 180° or 0°), module height (h = 1m), and ML
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is fixed. Therefore, the optimization of the bifacial farm reduces to the optimization for

2 physical parameters (p, β) to minimize LCOE*. Fortunately, p and β are correlated, as

explained in the next section.

2.3.1 Mutual shading constraint correlating p and β

Mutual shading refers to the shading (or obstruction of direct sunlight) of one array of

panels by the neighboring array. The effect of partial shading has been incorporated using

bypass diodes as shown in previous studies [ 61 ]. Partial shading reduces light collection

and energy output, and the non-uniform illumination increases self-heating and module

degradation [ 60 ], [ 61 ], [ 84 ]. To avoid mutual shading, the arrays are separated by a distance

(pitch) equal to the length of the shadow (at 9am in winter) of an array on the ground. The

length of the shadow is longest when Sun’s elevation is the smallest. This happens on the

shortest day of the year, which is 21st December for the northern hemisphere and 21st June

for the southern hemisphere. Assuming the farm is regularly active from 9 am, the pitch

of the farm is fixed as the length of the longest shadow observed at 9 am on the shortest

day. In principle, the turn-on time may be latitude-dependent; however, our presumption

of 9 am turn-on standardizes the analysis. The zenith angle of the sun together with the

array tilt angle (β) gives us the pitch equal to the longest shadow at 9 am for a specific

location. We calculate the zenith angle (90° – elevation angle) of the sun at 9 am using the

Ephemeris model in the Sandia PV library [ 41 ]. The analytical formula for pitch is derived

using geometry (see Fig.  2.3 ) and expressed below.

SL = h cos(γ − A) sinβ / cot(θzw)

pns/h = SL / h+ cosβ
(2.19)

where SL is the extended shadow length.
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Figure 2.3. Schematic diagram for diffuse light collection on the panel

Consequently, the mutual shading constraint allows us to calculate the pitch as a function

of the array tilt angle, i.e., pns = f(β). The corresponding plot is shown in Fig.  2.13 in the

appendix. Since pns = f(β), and assuming albedo RA = 0.2, the yearly yield YY is now

a function of β alone, i.e., Y Y (p, β;h = 1 m, γ = 0°, RA = 0.2) −→ Y Y (β;h = 1 m, γ =

0°, RA = 0.2). Therefore, for a specific value of ML, LCOE* (Eq.  2.6 ) is optimized by the

optimization of the array tilt angle, namely βopt(ML). Consequently, we vary β from 0° to 90°

(in steps of 1°) and calculate the yearly energy output of the farm (YY) via simulation of the

above-mentioned irradiance and light collection models. Further, we calculate the LCOE*

for a particular value of ML and then find the minimum of LCOE*, and the corresponding

optimum array tilt angle, βopt. With poptns = f(βopt), the minimum essential levelized cost of

energy (LCOE∗
min) is

LCOE∗
min = poptns /h+ML

Y Y (βopt)
(2.20)

The simulations yield interesting and noteworthy results that are discussed in the following

section.
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2.4 Results and Discussions

As noted previously, the LCOE* is dependent on several physical and economic parameters.

Assuming h = 1m, γ = 0° or 180°, and RA = 0.2, and finding a relationship between pitch

and array tilt angle, p = f(β), we finally derived Eq.  2.20 that depends only on two variables,

namely Cost ratio (ML) and array tilt angle (β). In the following discussions, we will

calculate ML-dependent optimum tilt-angle for a specific location (Sec.  2.4.1 ) and globally

(Sec.  2.4.2 (a)), optimum-tilt angle dependent yearly yield (Sec.  2.4.2 (b)), ML-dependent

minimum levelized cost of energy (Sec.  2.4.2 (c)), and LCOE*-reduction of bifacial design

over monofacial (Sec.  2.4.2 (d)). We also analyze results for three special cases of ML over

various β to understand the location-specific design optimization of farms.

2.4.1 Tilt-optimized Bifacial Solar Farm in Washington, D.C.

Before we proceed with the global analysis, it is instructive to examine the optimization

of β to minimize the LCOE∗ for a specific location, e.g., Washington DC (38.91°N, 77.04°W ).

The variation of LCOE* with the array tilt angle is analyzed and plotted for two extreme

cases shown below.

(a) ML → 0 (i.e., cM � cL, the land is much more expensive than the modules)

In this case, we observe from Fig.  2.4 (a) that the minimum LCOE* occurs at an optimum

tilt angle, βopt = 0°. This implies that wherever the land is much more expensive than

the module, the installed panels should be installed flat on the ground, stacked end-to-end

next to each other, to ensure maximum packing of the arrays (i.e., period (p) = height (h)).

Moreover, this case is applicable to most land-constrained designs i.e., mega-city installations

where land is limited.
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Figure 2.4. LCOE* vs. β (a) ML = 0, (b)ML = 100.

(b) ML = 100 (i.e., cM � cL, the land is much more expensive than the modules)

For the other extreme case, where the modules are much more expensive than the land,

Fig.  2.4 (b) shows the variation of LCOE* with array tilt angle for the same location

(38.91°N, 77.04°W ). Intriguingly, we find that there exists an optimum β(∼ 42°) to achieve

minima in LCOE*. The optimum angle for bifacial farm is higher (∼ 10°) compared to

angle-optimized monofacial cells (i.e., β ∼ 32°).

(c) 0 < ML < 100 (i.e., cM ∼ cL)

Several locations in the world might fall in this category, where the land and module costs

are comparable. Historically, ML has ranged from ∼ 0.1 to 15 [ 85 ]. Thus, we specifically

explore the variation of LCOE* and βopt over this typical range of ML (see inset of Fig.

 2.5 (a),(b)). For Washington, DC (38.91°N, 77.04°W ), we find that the minimum LCOE*

increases linearly until ML ∼ 8 and then deviates from linearity (increases sub-linearly) for

higher ML (see Fig.  2.5 (a)). This slope-change is understood by using Fig.  2.5 (b) where the

optimum tilt angle (βopt) increases abruptly at M∗
L ∼ 8. A similar trend is seen in YY vs.

ML. For ML < 8, the higher yearly yield associated with the tilted modules is negated by

the high land cost (low ML).
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Interestingly, the optimum tilt angle (Fig.  2.5 (b)) can be approximated in terms of ML

using the following empirical formula.

βanaopt = c1ML + exp
[
c2

(
1− 1

(ML −M∗
L)c3

)]
(2.21)

where c1 = 0.07, c2 = 3.6 and c3 = 1.6 are location-based empirical constants. Here,

M∗
L ∼ 8 is the threshold cost ratio, below which βopt = 0°. Note that since YY depends on

latitude/longitude of a location, so does the M∗
L for that location. The location-specific M∗

L

(typically 0-10) is calculated numerically (see Fig.  2.15 in appendix).

Figure 2.5. (a) LCOE* vs. ML. (b) Comparison between numerical analytical
values of βopt vs. ML. Inset of (a) and (b) show exactly where the transition
occurs (M∗

L ∼ 8).

Discussion of result from Washington, D.C

To rationalize the trends in LCOE*, we examine the (relative) contributions of essential

costs vs. energy yield. In this regard, we reconsider Eq.  2.6 , where total cost C = p/h+ML
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and yearly energy yield is YY. Hence, the relative error in LCOE* is given by the following

expression.

∆LCOE∗

LCOE∗ ≡
∆C(p/h,ML)
C(p/h,ML) −

∆Y Y (p/h, β)
Y Y (p/h, β) (2.22)

Figure 2.6. (a) For ML = 0, stacking panels next to each-other (i.e., ∆p = 0)
maximizes light collection per unit area of the module. The cosine incidence of
direct light on the panels is shown. (b) For ML = 100, the light collection is
increased with titled and optimally-separated modules.

Here, the cost is a function of p/h and ML whereas yearly energy yield is a function of

p/h and β. With the objective of achieving negative (or less positive) ∆LCOE∗, let us now

examine the results through the above equation, and Fig.  2.6 .

For ML = 0, the land cost is much higher than the module cost, which necessitates

maximum collection of light for the lowest land area (pitch). This is achieved when ∆p→ 0

(as shown in Fig.  2.6 (a)), such that the panels collect all the light falling on the ground

(IGHI) with least amount of land used. Although IGHI is collected completely by the farm,

each of the panels collect cosine of direct light (IDNI cos θZ), see Fig.  2.6 (a)) throughout the

day. Fig.  2.6 shows that ∆p→ 0 reduces the total light collection as compared to ∆p > 0

(i.e., ∆Y Y < 0), but this is counterbalanced by the reduction in the cost of land (∆C < 0).

Overall, LCOE* is reduced (i.e., ∆LCOE∗ < 0). Therefore, in this case, the optimum design

involves stacking the panels next to each other flat on the ground to minimize LCOE*.
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For ML = 100, the land cost is much lower than the module cost, and it is vital to

maximally collect light per unit area of the module. This is attained by collecting direct light

incident perpendicular onto the front face of the panel and collecting the albedo light on both

faces to increase the energy yield i.e., ∆Y Y > 0. This comes at the expense of increased cost

(ML = 100) i.e., ∆C > 0, but overall the magnitude of ∆Y Y is greater than that of ∆C,

therefore, LCOE* decreases (i.e., ∆LCOE∗ < 0). Fig.  2.6 (b) shows the schematic of the

economically viable design where IDNI falls perpendicular to the front face and ∆p depends

on the mutual shading constraint at that location. We now understand the variations in

LCOE* and optimum tilt angle for various cases at a particular location (Washington, D.C.).

This enables us to scrutinize the global trends in optimum tilt angle (βopt), yearly energy

yield (YY), and LCOE*.

2.4.2 Global Analysis for Tilt-optimized Bifacial Farms

In this section, we will examine the results of worldwide simulations and draw inferences

from these results. Note that beyond |latitude| > 60°, the days are extremely short during

winters and there is no sunlight at 9am on the shortest day. Based on the mutual shading

constraint assumed in this chapter (e.g. 9 am turn-on time), we do not include the results for

|latitude| > 60°. The constraint is can be easily relaxed with a later turn-on time for higher

latitudes and the LOCE can be calculated at any latitude across the world.

Figure 2.7. Global map of optimum array tilt angle associated with the
minimum LCOE* for that location with RA = 0.2: (a) ML = 0 (b) ML = 15
(c) ML = 100
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(a) Optimum tilt angle (βopt)

For Case 1, where module cost is much smaller than the land cost (ML → 0), Fig.  2.7 (a)

clearly shows that the panels should be deployed horizontally on the ground. Similar to

Washington, D.C., this conclusion unequivocally holds for all the locations around the world.

The explanation also remains the same as described earlier in Sec.  2.4.1 .

For Case 2, where modules are much more expensive than land (ML = 100), Fig.  2.7 (c)

illustrates the latitude-dependent optimum tilt angle for a cost-optimized solar farm, the

physical explanation of which was explained in detail in Sec.  2.4.1 . The latitude-wise

increasing trend in optimum angles is broken for places such as Central and East China

(Chongqing and Xi’an) due to the contributions from diffused light.

For Case 3, with comparable module vs. land-cost, typical values of ML(∼ 15), Fig.  2.7 (b)

displays the optimum tilt angle between Case 1 and 2, in accordance with the plot in Fig.

 2.4 (b). Note that, at higher latitudes, as the optimum tilt angle increases (for Cases 2 and

3), the East-West facing vertical bifacial farms become cost competitive with tilted bifacial

farms (although with an increased land area) [ 32 ], [  61 ], [  64 ], [  86 ].

Figure 2.8. Global map of difference in optimum array tilt angle between
bifacial and monofacial designs with RA = 0.2: (a) ML = 0 (b) ML = 15 (c)
ML = 100

Fig.  2.8 demonstrates the difference in the optimum tilt angle for bifacial vs. monofacial

design. For ML > 0, we see βopt for bifacial is greater than that of monofacial farms in order

take advantage of the bifaciality and collect more light at the back surface of the panel.

∆βopt ∼ 10°− 15° for |latitude| > 30° and areas with high diffuse light fraction, e.g. Canada,
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Western Europe, Central China etc. An added benefit to higher tilt angle is a reduction in

cleaning cost due to a decrease in soiling [ 87 ].

(b) Local and Global Yearly Energy Yield (YY)

Next, we analyze the yearly energy output from a tilt-optimized solar farm for two limiting

cases: (i) ML = 0, i.e., the module costs negligible as compared to land. These locations

can be cosmopolitans, megacities, and cities, and, in general, densely populated areas; (ii)

ML = 100 where modules are much more expensive compared to land. These can be remote

locations and sparsely populated areas. Fig.  2.14 in appendix shows the global map for these

two cases. We notice a slight improvement in the yearly yield for ML = 100 as compared

to ML = 0. This is also evident from the simulation for a single location (e.g., Washington

DC) where YY for ML = 0 case is 231 kWh/m2 while YY for ML = 100 is 278 kWh/m2.

This is because the collection of direct light and albedo light are enhanced for ML = 100 as

compared to ML = 0 (both for the same city). We also find that the energy yield steadily

reduces with increasing latitude, except for some specific places like Central and East China,

and West Brazil where the trend is broken. These regions are characterized by lower clearness

index with higher fraction of diffuse light compared to places near the equator.

Figure 2.9. LCOE∗
min global maps, with RA = 0.2: (a) ML = 0 (b) ML = 15

(c) ML = 100.

(c) Minimum Levelized Cost of Energy (LCOE∗
min)

Given the information about optimum tilt-angle (Sec.  2.4.1 , 2.4.2 ) and energy yield (Sec.

 2.4.2 ), we can now calculate minimum LCOE* for locations around the world. Fig.  2.9 shows
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that, unlike the yearly energy yield world maps, the LCOE∗
min for ML = 0 follows a similar

(but inverse) trend as YY for ML = 0, i.e., the maximum in YY are exactly the minima in

LCOE∗
min. On the other hand, these two parameters for ML = 100 do not show an exact

inverse trend. This difference elucidates the role of essential costs in LCOE* calculations.

world maps depend sensitively on module vs. land costs. When the land cost is very high as

compared to module cost (ML = 0), then the LCOE* is dominated by the yearly energy yield,

and hence we observe the similar (but inverse) trend since LCOE* is inversely proportional

to YY. Whereas in the reverse case (ML = 100), LCOE* is dominated by ML. Therefore, we

see in Fig.  2.9 (c) that LCOE* remains almost uniform throughout the globe pertaining to

the much larger value of ML as compared to p/h.

Figure 2.10. Bifacial gain in terms of LCOE* reduction, with RA = 0.2: (a)
ML = 0 (b) ML = 15 (c) ML = 100.

(d) LCOE* improvement of bifacial over monofacial

To scrutinize the viability of bifacial solar farms, it is important to juxtapose the perfor-

mance of bifacial solar farms with their monofacial counterparts. The cost of bifacial modules

has been falling consistently over the years [ 21 ], [ 31 ]. Even though our approach can easily

compare technologies with different ML, the following discussion assumes an optimistic case

where the costs of bifacial and monofacial modules (i.e., ML) are equal. Fig.  2.10 shows the

absolute percentage decrease in LCOE∗
min when we decide to install a bifacial farm vs. a

monofacial farm. Clearly, for ML = 0, bifacial LCOE* is equal to monofacial LCOE* since

the panels are flat on the ground and the back surface does not collect any light. This result

would be different and in favor of bifacial solar farms if the panels are elevated above the
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ground (and spaced apart) so that the albedo light can be collected. Note that the slight

apparent improvement in LCOE* for ML = 0 (and at tilt-angle β → 0°) is a numerical

artifact associated with minimum angle spacing of 1 degree.

For ML = 100, on the other hand, there is a negligible reduction in LCOE* for latitudes

less than +/ − 30° from the equator. We find that LCOE∗
min reduces by ∼ 2 − 6% for

|latitude| > 30°. Since the panels are tilted facing the direct light for ML = 100, hence this

observation indicates that a bifacial farm is more economical than a monofacial farm in terms

of LCOE*, for places where diffuse light is a dominant component of light over direct light.

The analysis in Sec. ??(a) justifies this conclusion.

Finally, due to the improvement in energy yield for bifacial solar farms for these locations,

there is a decrease in LCOE* (∼ 2− 6%) for a bifacial farm compared to a monofacial farm,

which is displayed clearly in Fig.  2.10 (c) (e.g., Northern USA, Germany, UK, and Central

Asia). We have assumed that the monofacial and bifacial costs are similar to produce a

Bifacial GainLCOE∗ of 2− 6%. In other words, bifacial modules should be no more than 2-6%

expensive for the solar farm to be economically viable [ 88 ]. Additional margin in LCOE may

be obtained when the modules are elevated, and the reduced cleaning cost associated with

higher tilt angle is accounted for. These would be important topics of future research.

Note that all of the above global maps with albedo RA = 0.5 are presented in the Appendix

(see Figs.  2.16 - 2.20 ).

2.5 Summary and Conclusions

We have parametrically explored the economic viability of ground-mounted tilted bifacial

solar farms and explained how the farm topology must be optimized for a given location,

and module and land cost considerations. We have redefined the levelized cost of energy

(LCOE) in terms of ‘essential levelized cost of energy’ (LCOE∗) that is ultimately a function

of module to land cost ratio (ML) and array tilt angle (β). The redefined LCOE* decouples

cost analysis from energy yield modeling, thereby dramatically simplifying the optimization

of solar farms based on new technologies. Our model provides an optimistic lower bound

for LCOE (for ground-mounted cells with a fixed albedo). In practice, various non-idealities
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(e.g. efficiency degradation with temperature, power mismatch among the strings due to

spatially and spectrally varying albedo, etc.) will increase the LCOE. Therefore, our idealized

lower-bound LCOE is a necessary (but not sufficient) precondition for the economic viability

of the bifacial technology.

Using a previously developed global irradiance model [ 61 ]. we calculated the spatial

distribution of light on the ground and panel faces while considering all variations of shadows

for all the locations in the world. The collection of direct, diffuse, and albedo light on the

panels were then integrated over time to obtain the yearly yield for the specific solar farm

configuration (defined by panel tilt and array period). Once we correlate the configuration of

a farm to the cost of its installation and the yearly yield, we can determine LCOE*.

The array tilt β defines the array period through the mutual shading constraint, which

in turn sets the number of panels required in a solar farm. Therefore β is implicitly related

to the farm cost (and of course the energy). Note that the mutual shading constraint at 9

am on the shortest day of the year limits the global optimization using array tilt (β) and

period (p) as independent variables. In the end, cost ratio (ML) and array tilt angle (β) are

the handles to control the LCOE*. For a fixed ML, we numerically and analytically found an

optimum tilt angle (βopt) for each location.

Our analysis leads to the following conclusions:

• For places where land is scarce and expensive (ML → 0), panels should be laid flat on

the ground (βopt = 0°) to ensure maximum energy collection over a given land area.

On the contrary, for practical values of ML(∼ 1 − 15) when the land is relatively

inexpensive, panels have location specific optimum tilt (βopt ∼ 0°− 60°) to achieve

least LCOE*.

• PV installers can use an analytical expression of the form of Eq.  2.21 to find the

location-specific optimum array tilt angle (βopt) as a function of ML. Moreover, βopt
is constantly zero until a threshold value (M∗

L) of cost ratio that varies with the

location (latitude/longitude).

• The difference in optimum tilt angle (∆βopt) between bifacial and monofacial designs

can reach up to 10° − 15° for |latitude| > 30° and places with high diffuse light
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fraction, e.g., Canada, Western Europe, Central China, etc. Moreover, higher tilt

angle makes the design soiling-resistant, in turn reducing cleaning cost.

• For the same module-to-land cost ratio and similar lifetimes (reliability), ground-

mounted bifacial solar farm design is more economically viable over monofacial design

for locations where the diffuse fraction is high. The relative reduction in LCOE*

(Bifacial GainLCOE∗) is ∼ 2− 6%, for bifacial solar farm design over monofacial for

locations with higher fractions of diffuse light (low clearness index, kt) e.g., locations

with |latitude| > 30° (Central Europe, Northern parts of North America, and Central

China). Alternatively, bifacial modules can be at most ∼ 2 − 6% more expensive

compared to monofacial modules for a bifacial solar farm to be cost-competitive

compared to a monofacial farm.

Although this is the first report of LCOE-optimized farm design inclusive of land costs,

the present work can be generalized in a number of ways. One can use the current approach

to easily account for location-specific albedo and tilt-angle. Furthermore, currently the

bifacial panels are slightly more expensive (but also known to be more reliable [ 13 ], [ 26 ]) than

monofacial modules. This cost and reliability differences can be accounted for easily in our

formulation. Instead of ground-mounted panels, the farm design can deploy elevated panels.

The elevation of panels could increase the albedo light collection depending on the farm

design, but this gain must be balanced against the increase in the installation (module) cost.

It is also possible to sculpt the ground to increase albedo and re-optimize the configuration.

Moreover, the effect of temperature on estimation of energy output and maintenance costs

can be included to make the analysis more comprehensive.

To conclude, the reduction in LCOE through optimized farm design and continually

reducing bifacial module prices makes bifacial PV technology an economically preferable

alternative over monofacial solar farm.
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2.6 Appendix

2.6.1 Albedo Light Collection

For the albedo light collection, we will start with the same approach used by Khan et al.

[ 61 ] for vertical bifacial panels and generalize it for the tilted bifacial design.

We first account for albedo from direct light. The direct light collected on the ground is

given by:

IGnd:DNI (x) = IDNI cos θZ(t) (2.23)

where s1(t) < x < p− s2(t). Here s1 is the time-varying shadow length in the morning

and s2 is the time-varying shadow length in the afternoon (see Fig.  2.11 ). s1 and s2 can

be calculated using Eq.  2.19 on SL(t). The unshaded part p− s1 on the ground subtends

angle (ψ0, π/2) at the point l on the front panel face (see Fig.  2.11 ) in the morning while

the unshaded part p− s2 subtends (ψ1, ψ2) in the afternoon. These angles are geometrically

calculated as:

ψ0 (l) = tan−1
[

−(p−s1(t)+l cosβ)
l sinβ

]
− β

ψ1 (l) = tan−1
[

−(p+l cosβ)
l sinβ

]
− β

ψ2 (l) = tan−1
[

−(s2(t)+l cosβ)
l sinβ

]
− β


(2.24)

Figure 2.11. Schematic for albedo from direct light: (a) before noon and (b) afternoon
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Using these angles, we find the view factor from the point l from the ground to the

unshaded part of the ground.

Fdl−gnd = 1
2 (1− sinψ0 (l)) , in morning;

= 1
2 (1 sinψ2 (l)− sinψ1 (l)) , in afternoon.

(2.25)

Therefore, the power generated per area of the panel for the front face is given by

IF,PanelPV :Alb.dir (l) = IGnd:DNI ×RA × Fdl−gnd(l)× ηdiff (2.26)

where RA is the fraction of incident light reflected from the ground. Thus, the power

generated per pitch of the farm is given by

IF,FarmPV :Alb.dir (l) = 1/h
∫ h

0
IF,PanelPV :Alb.dir(l)dl (2.27)

Note that the integral is implemented as a summation from the bottom edge of the panel

to the top edge with a step-size of 0.01 m. By incorporating the collection from the back

surface, we will have the total albedo due to direct light (IFarmPV :Alb.dir).

For albedo from the diffuse light we combine the method used by Khan et al. and the

view factors for our tilted panels. Similar to the collection of direct light on the ground, we

find the collection of diffuse light on the ground taking into account the masking due to

adjacent panels/arrays. Fig.  2.12 (a) illustrates the masking and collection of diffuse light at

a point x positioned between two adjacent panels. The angles [θ1, θ2] subtended at point x

by the topmost points of the panels are given by

θ1(x) = π − tan−1
[
h− sin β
h cos β − x

]

θ2(x) = tan−1
[

h− sin β
p− x+ h cos β

] (2.28)
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The view factor from the ground to the sky is Fdx−sky (x) = 1/2 [ sin(π/2− θ2 )− sin(θ1−

π/2)], which can be used to find IGnd:DHI as

IGnd:DHI = 1/p
∫ p

0
IDHI × Fdl−gnd(x)dx (2.29)

Figure 2.12. Schematic for (a) diffuse light collection on the ground (b) view
factor calculation for albedo light collection.

Now, the albedo light collected on the panels from the ground requires us to calculate

the view factor from the ground to the panels (see Fig.  2.11 (b)). This view factor is given

by Fdx−dl−F (x) = 1/2[1− sin(ψg1/2)] for front face, and Fdx−dl−B (x) = 1/2[1− sin(ψg2/2)],

where

ψg1 = π/2− β − tan−1
[

l sin β
p+ l cos β

]

ψg2 = π/2− β − tan−1
[

l sin β
p− l cos β

] (2.30)

Finally, we arrive at the power per unit panel area as follows

IF,PanelPV :Alb.diff (l) = IGnd:DHI ×RA × Fdl−gnd(l)× ηdiff (2.31)

and the power per pitch of farm is

IF,FarmPV :Alb.diff = 1/h
∫ h

0
IF,PanelPV :Alb.diff (l) dl (2.32)
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Adding the light collected at the back surface, we get the total albedo due to diffuse light

(IFarmPV :Alb.diff ). Hence, total albedo light collection is given by

IFarmPV :Alb = IFarmPV :Alb.dir + IFarmPV :Alb.diff (2.33)

2.6.2 Mutual Shading Constraint

The mutual shading constraint at a particular locations on the shortest of day of the year

(21st December for Northern Hemisphere and 21st June for the Southern Hemisphere) gives

us a relation between the pitch (period) of the farm and tilt angle of the panels (arrays). Fig.

 2.13 shows this relationship.

Figure 2.13. The plot shows the pitch as a function of array tilt angle
achieved using the mutual shading constraint on the shortest day of the year
for Washington, D.C.

2.6.3 Yearly Yield

The yearly energy yield for the two extreme cases is shown in Fig.  2.14 . Notice the high

energy yield at Sahara Desert and relatively low yields at places with high fraction of diffuse

light e.g., Central China and places with |latitude| > 30°. The trends of LCOE* and YY are
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perfectly inverse of each other for ML = 0 while ML = 100 shows the effect of high cost ratio

leading to weaker dependence of LCOE* on YY.

Figure 2.14. Global maps showing yearly energy yield of bifacial solar farms,
with RA = 0.2, for (a) ML = 0 (b) ML = 15 (c) ML = 100.

2.6.4 Typical values of M∗
L

Figure 2.15. Typical values of M∗
L with increasing latitude at longitude = 0°.
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2.6.5 Results for RA = 0.5

Figure 2.16. Global map of optimum array tilt angle associated with the
minimum LCOE* for that location with RA = 0.5, for (a) ML = 0 (b) ML = 15
(c) ML = 100.

Figure 2.17. Global map of difference in optimum array tilt angle between
bifacial and monofacial designs with RA = 0.5, for (a) ML = 0 (b) ML = 15 (c)
ML = 100.

Figure 2.18. LCOEmin∗ global maps, with RA = 0.5, for (a) ML = 0 (b)
ML = 15 (c) ML = 100.
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Figure 2.19. Bifacial gain in terms of LCOE* reduction, with RA = 0.5, for
(a) ML = 0 (b) ML = 15 (c) ML = 100.

Figure 2.20. Global maps showing yearly energy yield of bifacial solar farms,
with RA = 0.5, for (a) ML = 0 (b) ML = 15 (c) ML = 100.

2.6.6 Estimating CM ,CL, and χ.

In the main article, we have explained how to convert LCOE to LCOE* so that the

technology and economic considerations can be treated independently. We have also explained

how the farm topology optimized to minimize LCOE*. To translate LCOE* back to LCOE

by Eq.  2.6 , we need to first determine (ML ≡ (CMWh)/(CLWp)), calculate LCOE∗(ML), and

then find LCOE = (CL/χ)LCOE∗ . In other words, the back-conversion requires practical

and location-specific values of CM , CL, and χ.

As an illustrative example, we can consider the cost benchmark report by NREL [ 85 ],

which provides a detailed cost dissection for residential, commercial, and utility-scale PV

systems. Fig.  2.21 shows the historical cost benchmark summary for fixed-tilt 100 MW

utility-scale PV.
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Figure 2.21. Historical trend in LCOE with cost dissection [ 85 ]. These costs
are regrouped into effective module cost (CM) and effective land cost (CL).

According to the definitions of CM and CL, we regroup the cost categories into the effective

module cost (module cost, inverter, hardware BOS, and soft costs – install labor) and effective

land cost (soft costs - others). Since Fig.  2.21 costs are expressed in Dollars per watt ($/W)

while CM and CL involve Dollars per meter ($/m), therefore

CM = CM Wh $/m; CL = CL Wp $/m; ML = CM Wh/CL Wp (2.34)

Here Wh and Wp are W/m of module height and W/m of land, respectively, of a solar

farm. Wh is the product of cell efficiency (fraction) and the input power (1000 W/m2), which

is equal to 191 W/m assuming 1 m width of the module. For Wp, we follow the rule that

1 MW of plant requires 4 acres (4046.86 m2) of land [ 89 ]. For 100 MW fixed-tilt plant

(Fig.  2.21 ), Wp = 100 MW/(400 × 4046.86 m) = 61.77 W/m, assuming unit width of the

land. Assuming a degradation rate d = 0.7%, bank discount rate r = 6.5% and farm lifetime

Y = 25 years, we calculate χ = 12.4. The yearly energy yield is calculated using the farm
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models as described in Section  2.4.2 (b) of the main text of this chapter . We can now estimate

LCOE using the values of CM ,CL, χ,and YY to compare it with real LCOE values.

Figure 2.22. Calculated LCOE vs. standard (real) LCOE for three locations.
(Inset) Yearly trend shows that ML ranges from 7-16 based on [ 85 ].

To validate the conversion of LCOE* to LCOE, let us compare the LCOE predicted by

our approach to the published (or “real”) LCOE for three locations – Phoenix, AZ, Kansas

City, MO and New York City, NY [  85 ]. Since the costs in Fig.  2.22 represent the average

values across USA, thus the ML, CL and χ values are presumed to be the same for all the

locations. However, the yearly energy yields differ substantially and is reflected in their

respective LCOE. The overall agreement is excellent, the slight difference is attributed to the

local variations in ML, d, and Y .
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3. TEMPERATURE-DEPENDENT ENERGY GAIN OF

BIFACIAL PV FARMS: A GLOBAL PERSPECTIVE

  

In the previous chapter, we developed an opto-ectro-economic model for bifacial solar

PV farms. However, as the bifacial farms proliferate around the world, it is important to

investigate the role of temperature on the energy yield and the levelized cost of energy (LCOE)

of bifacial solar farms relative to monofacial farms, stand-alone bifacial modules, and various

competing bifacial technologies. In this chapter, we integrate irradiance and light collection

models with experimentally validated, physics-based temperature-dependent efficiency models

to compare the energy yield and LCOE reduction of various bifacial technologies across the

world. We find that temperature-dependent efficiency changes the energy yield and LCOE

by approximately −10 to 15%. Indeed, the results differ significantly depending on the

location of the farm (which defines the illumination and ambient temperature), the elevation

of the module (increases incident energy), as well as the temperature-coefficients of various

bifacial technologies. The analysis presented in this chapter will allow us to realistically assess

location-specific relative advantage and economic viability of the next generation bifacial

solar farms.

3.1 Introduction

The PV industry is actively developing bifacial module technology to reduce the levelized

cost of energy (LCOE) of the utility-scale solar PV farms [ 1 ]–[ 6 ], [ 9 ], [ 11 ]–[ 13 ], [ 59 ], [ 90 ].

This is because a bifacial solar panel collects light at both the front and rear surfaces as

compared to the monofacial panels that collect only at the front. A recent literature review

by Guerrero-Lemus et al. [ 22 ] explains how bifacial technology has developed from its infancy

in the 1960s to practical applications and scalability. Despite the possibility of higher output

from the same footprint, bifacial PV technology had to wait until recent innovations for

accelerated deployment. The International Technology Roadmap for Photovoltaic (ITRPV)

predicts that the worldwide market share for bifacial technology will increase from 15% in
 ↑ Note: The material in this chapter has been adapted from Ref. [ 46 ].

75



2020 to 40% by 2028 [ 21 ]. Since bifacial solar PV farm deployments are now increasing, it is

important to understand how module-level bifacial gain translates to location and technology-

specific energy yield and LCOE of bifacial farms. Specifically, a realistic assessment of the

relative merits of emerging bifacial PV technologies must account for efficiency losses from

the thermal effects of the bifacial solar panels installed in utility-scale solar farms. Other

spectral and angle-of-incidence effects also affect efficiency during the early morning and late

evening hours of the day. However, these effects are diminished during the operating hours of

the PV farms, which contribute to energy production.

Figure 3.1. Effect of temperature coefficient (TC) and irradiance on efficiency
of monofacial (black) and bifacial (red) solar panels. Note that energy yield is a
product of Plane of Array irradiance (PPOA) and efficiency. Hence, higher energy
yield requires higher efficiency and higher PPOA. (a) Same PV technology; (b)
different PV technologies.

Fig.  3.1 shows a linear relation between efficiency and irradiance (for typical operating

conditions) and summarizes the importance of temperature-aware performance modeling of

solar cells. The output power density (Pout) is determined by the temperature-dependent

efficiency (η(T )) and the input irradiance (IPOA), i.e., Pout = η (T ) IPOA. Therefore, various

technologies can be compared simply by comparing the rectangular boxes in Fig.  3.1 . Since

the cell temperature is a function of the ambient temperature Tamb, input power IPOA,

environmental conditions (such as wind speed, relative humidity, and sky temperature),

mounting configuration and module construction, and technology-specific thermal coefficient
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of maximum power, TC, i.e., Tcell = f(Tamb, IPOA,TC,. . .), the conclusions reached regarding

bifacial gain based on temperature-independent efficiency, ηSTC , [  45 ] may not translate into

practice. Indeed, the bifacial gain may be negative or positive depending on the geographical

location that determines Tamb and IPOA as well as PV technology that affects the TC and the

efficiency gain (ηg = (ηbi/ηmo)STC), where ηmo is the efficiency of the monofacial cells while

ηbi is the normalized output of bifacial cells [ 91 ], [  92 ]. If the bifacial and monofacial panels

have the same temperature coefficients, i.e., (TC)bi = (TC)mono, as in Fig.  3.1 (a)), higher

irradiance would lead to additional heating of bifacial panels, leading to higher degradation of

efficiency. Thus, for the limiting (and hypothetical) extreme case of albedo, RA = 1, bifacial

panels would outperform monofacial panels only when IPOA < (2ηg − 1)/(k(TC)(4ηg − 1))

where k is a location-specific constant and ηg is the bifacial-to-monofacial efficiency gain.

The general condition for arbitrary RA is derived in Eq.  3.25 (see appendix Sec.  3.5.1 ).

On the other hand, when bifacial panels have a lower TC as compared to the monofacial

panels (Fig.  3.1 (b)), even higher irradiance would not degrade the efficiency below that

of monofacial panels. Thus, bifacial PV panels have an optical advantage over monofacial

panels but thermal loss at higher temperatures of operation may potentially negate some of

the optical gains. In short, temperature-dependence fundamentally alters the conclusions

regarding location-specific bifacial energy gain across the world.

Recent studies have therefore focused on the temperature-dependent performance of

stand-alone monofacial and bifacial PV modules [ 93 ]–[ 98 ]. For example, Ref. [ 93 ]–[ 95 ]

contains a systematic and detailed analysis of temperature coefficients for different PV

materials and technologies. The open rear surfaces of a bifacial cell increase power-input

due to albedo and power-loss due to IR radiation. In principle, therefore, the bifacial cells

can operate cooler than a monofacial cell [  97 ]. Several theoretical studies have explored the

temperature-dependence of several performance parameters of solar cells as well as solar

PV systems [ 96 ], [ 98 ]. Lopez-Garcia et al. [ 99 ] have experimentally (indoor and outdoor)

analyzed the temperature coefficients (TC) of bifacial c-Si PV modules. They concluded that

bifacial TC was observed to be lower than monofacial TC. Recent studies [  64 ], [ 100 ]–[ 102 ]

based on a coupled optical-electrical-thermal model of the bifacial photovoltaic module were

performed that observed a 22% bifacial gain in yearly energy yield and suggested tilt and
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elevation optimizations for stand-alone bifacial module performance. In short, many groups

have carefully studied the temperature-dependent performance of stand-alone modules.

Compared to the extensive literature for stand-alone modules, there are only a few reports

of temperature-independent yield loss of various monofacial and bifacial technologies at

the farm level [ 45 ], [  61 ], [  62 ]. The standalone module and a farm differ significantly in

terms of albedo collection related to the row-to-row mutual shading, leading to substantial

changes in self-heating. In comparison to Ref. [ 45 ], this study includes two important

generalizations: (1) Increase of the energy-yield with elevation and (2) the decrease in energy

yield with temperature. Compared to the previous analysis in Ref. [  45 ], our key conclusion

regarding the general location-dependent advantage of bifacial solar modules over monofacial

modules remain the same. However, our new work shows that optimum elevation and lower

temperature coefficient make bifacial cells attractive for places that we previously thought

would only offer marginal improvement.

Figure 3.2. Flow diagram of the modeling framework with physical parameters
for temperature-dependent energy yield estimation.

In this chapter, we model a generalized bifacial solar PV farm that includes the effects

of temperature-dependent efficiency, as portrayed in Fig.  3.2 . The integrated model will

combine optical, thermal, and electrical models with economic analysis to estimate the

energy yield and LCOE of a solar PV farm with a focus on bifacial modules, see Fig.  3.2 .

The effects of temperature on a module and farm at different locations over the globe are
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compared, and it is found that the stand-alone modules are affected by temperature more

than the farms. Moreover, the roles of temperature coefficients of different materials (e.g.,

Aluminum Back Surface Field (Al-BSF) and Silicon Heterojunction (SHJ)) are explored from

the perspectives of efficiency degradation and bifacial gain (bifacial vs. monofacial). Lower

temperature coefficient (0.26%/°C) for SHJ (bifacial) shows reduced efficiency degradation

and yields higher bifacial gain (20-40% globally) compared to Al-BSF (monofacial) that has

a higher temperature coefficient (0.41%/°C). Next, combined dependencies of temperature

and elevation on the energy yield are considered and it is observed that the energy yield

saturates after a threshold value of elevation (typically, E0 = 2m). About 1− 15% increase

in energy yield between elevated (E = 2 m) and unelevated (E = 0 m) bifacial farms is

observed around the world.

In Sec.  3.2 we describe the optical, thermal, and electrical models used in our study, and

the associated equations are organized in Tables  3.1 and  3.2 . In Sec.  3.3 we show the results

and discuss important trends and features. We vary several design parameters of a solar PV

farm e.g., elevation, PV technology, bifacial/monofacial, and TC, to quantify the effects of

temperature-dependent efficiency on energy yield, LCOE, and optimum design (tilt angle) of

the farm. Finally, in Sec.  3.4 , we summarize the study and conclude the chapter.

3.2 Modeling and Validation

An LCOE-aware modeling of bifacial solar farm involves the calculation of irradiance,

collection of sunlight, and an electrical output coupled to economic analysis. The optimized

design (panel orientation, tilt, elevation, and spacing) of the farm then can be evaluated in

terms of energy or LCOE.

Consider a solar farm oriented at an azimuth angle γA from the North, with panels of

height h, tilted at an angle β, elevated from the ground to E, and with pitch p over a ground

of albedo RA as shown in Fig.  3.2 . In the following discussions, we will focus on three aspects

of the modeling framework for the specified solar farm: (A) Re-parameterizing LCOE, (B)

Irradiance modeling, and (C) Collection of light. These topics are discussed below.
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Table 3.1. Equations associated with optical model: Irradiance and light
collection models.

IGHI = IDNI × cos θZ + IDHI (3.1)

IF, FarmPV :DNI = IDNI cos θF (1−R(θF ))ηdir (3.2)

IF,FarmPV :DHI = IDHI ηdiff/h
∫ h

0

1
2 (1 + cos (ψ (E, l) + β))dl (3.3)

IF,PanelPV :Alb.dir (l) = IGnd:DNI ×RA × Fdl−gnd(E, l)× ηdiff (3.4)

IF,FarmPV :Alb.dir (l) = 1/h
∫ h

0
IF,PanelPV :Alb.dir(E, l)dl (3.5)

IF,PanelPV :Alb.diff (l) = IGnd:DHI ×RA × Fdl−gnd(E, l)× ηdiff (3.6)

IF,FarmPV :Alb.diff = 1/h
∫ h

0
IF,PanelPV :Alb.diff (E, l)dl (3.7)

IFarmPV :Alb = IFarmPV :Alb.dir + IFarmPV :Alb.diff (3.8)

IFarmPV :Alb = IFarmPV :Alb.dir + IFarmPV :Alb.diff (3.9)

Y YT (p, β, h, E, γA, RA) =
∫ 1

0
ITotalPV (T )(p, β, h, E, γA, RA) dY (3.10)
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Table 3.2. Equations associated with thermal models.

η (Tcell) = ηSTC(1− TC(Tcell − TSTC)) (3.11)

Tcell = Tamb + IPOA × ea+(b×WS) + ∆T× IPOA
1000

(3.12)

Tcell = Tamb + cT
τα

uL
IPOA

(
1− η(TCell)

τα

)
(3.13)

Tcell = Tamb + (IPOA − ηIPOA − γIPOA(subband)) ∗ F

1000
(3.14)

Tcell = Tamb + (IPOAtop − ηtop × IPOAtop + IPOAbot − ηbot × IPOAbot

−IPOA(subband)) ∗ F

1000
(3.15)

IPOA = IFarmPV :DNI/ηdir + (IFarmPV :DHI + IFarmPV :Alb)/ηdiff (3.16)

81



3.2.1 Levelized Cost of Energy (LCOE)

LCOE is defined as the ratio of the total cost of a PV system and the total energy yield

of the system over its lifetime [ 65 ], i.e.,

LCOE = Total Cost ($)
Total Energy Yield (kWh) = Csys(Y = 0) + (∑Y

k=1 Com(k))− Crv(Y )
E(Y )

(3.17)

where Csys(Y = 0) is the initial fixed installation cost of the system (i.e., at Y = 0).

Csys(Y = 0) includes the cost of modules (cm,0), the cost of land (cl,0), and the balance of

system cost (cbos,0) such as labor, permit, racks, inverters, etc. The recurring operations and

maintenance cost (Com) scales with the cost of maintaining individual modules (com,m) and

the cost of maintaining the land (com,l). Finally, Crv is the residual value of the modules

(crv,m), the land (crv,l), and the equipment to be regained when the farm is decommissioned.

Com and Crv are a function of the lifetime (number of years, Y ) for which the solar farm is

operated.

Since the costs vary with the number and size of PV modules and the solar-farm land,

the LCOE expression can be described using the dimensions of a solar farm and the modules

installed, as shown in Eq.  3.18 below.

LCOE = CM(r)× h×M × Z + CL(r)× p×M × Z + Cbos,f
Y YT (p, h, E, β, γA, RA)×M × Z × h× χ(d, r) (3.18)

Here CM is the cost per unit meter of the module (height), CL is the cost per unit meter

of land (pitch), M is the number of rows/arrays of modules, and Z is the number of modules

in an array (in the z-direction, into the page). Y Y (= E0) is the yearly energy yield per

meter of a pristine module for one period/pitch (p) such that the yearly energy of the farm is

E (Y ) = Y YT ×M×Z×h×χ(d, r), where χ = ∑Y
k=1 (1− d)k (1 + r)−k×Y YT is a function of

the physical design parameters (p, h, E, β, γA, RA, T ). The lifetime (Y , typically 25 years) of

a solar farm is defined as the time duration before the performance (efficiency) of a solar farm

degrades by 20%. Thus, the degradation rate (d, typically 0.7%/year) defines the lifetime of

a solar farm. The discount rate (r) accounts for the devaluation of predicted future earnings.
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Further, the cost associated with the balance of system (cbos,f) is typically negligible

as compared to the essential costs, CM and CL [ 13 ], [  103 ], and does not affect the design

optimization of the farm. With these considerations, we arrive at the ‘essential levelized cost

of energy’ (LCOE∗), as follows:

LCOE∗ ≡ LCOE.χ

CL

= CM/CL + p/h

Y YT
= p/h+ML

Y YT
(3.19)

Here, ML(≡ CM
CL

) is the ratio of the cost of module per unit length (height) to the cost of

land per unit length (pitch). ML essentially captures the costs of a solar farm whereas p/h

and Y YT (p, h, E, β, γ, RA) contains information about the physical parameters of the farm.

ML varies with the technology and location in the world. In this work, we assume a typical

value of ML = 15 [ 45 ]. Given ML, we can perform the physical design optimization of a solar

farm to find a minimum LCOE∗. Eq.  3.19 shows that LCOE is proportional to LCOE*,

since CL and χ are location-specific constants. Therefore, minimizing LCOE is equivalent

to minimizing LCOE* for a given location. Chapter  2 , Sec.  2.2.1 provides a more detailed

derivation and discussion on LCOE and LCOE*.

Next, we will estimate the amount of sunlight falling on a farm at any location in the

world.

3.2.2 Irradiance Modeling and Light Collection

The energy yield of a bifacial solar farm for a given albedo is numerically modeled in

three steps.

Irradiance model

We calculate the amount of sunlight incident at a location defined by its latitude and

longitude. This requires the Sun’s trajectory (zenith (θZ) and azimuth angle (A)) and the

irradiance [ 61 ]. The Global Horizontal Irradiance (GHI or IGHI) is ideally given by Haurwitz

clear sky model [  67 ], [ 68 ]. We renormalize this irradiance based on the NASA Surface

meteorology and Solar Energy database [  69 ] to find the local variation in GHI. The GHI is
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split into direct light (DNI or IDNI) and diffuse light (DHI or IDHI) using Orgill and Hollands

model [ 70 ].

Light collection on panels

We quantify the amount of light collected by the solar panels installed at that location. The

panels have height h, tilted at an angle β, separated by pitch (or period) p, and are oriented

at an array azimuth angle γA = 180° (i.e., south-facing panels) for farms in the northern

hemisphere and γA = 0° (i.e., north-facing panels) for farms in the southern hemisphere or

γA = 90° for panels facing E-W direction. The collection of light on panels from the three

components of irradiance, i.e., direct, diffuse, and albedo light are formulated separately and

analyzed accordingly. Our approach to model the collection of light follows Ref. [ 45 ] and the

equations are summarized in Table  3.1 . We calculate the angle of incidence (AOI) of light

to find the component of direct light (IDNI) falling on the tilted panel’s front and/or the

back face (depending on the tilt angle). θF is AOI for front face, R is the angle-dependent

reflectivity (R(θF )) of the panel, ψ (l) is the viewing angle at length l, and Fdl−gnd is the view

factor. We extend the ground mounted panel-array model in [ 45 ] to include calculations for

elevated panels. The pattern of light falling on the ground, estimated by the view factor

(Fgnd−sky), and subsequently the albedo light collected by the panels, estimated by the view

factor (Fdl−gnd), both vary with the elevation (E) of the panels. A detailed explanation of

the albedo light model varying with elevation is presented in the appendix.

Energy yield

We finally find the daily and yearly energy-output of the farm. Using the Eqs.  3.2 ,  3.3 ,

and  3.8 in Table  3.1 , we arrive at Eq.  3.9 to find the time-varying spatially distributed light

collection on the panels. This information is used in the circuit model to find the equivalent

power generation. To estimate energy output, we integrate the power generated over the

desired duration of time. We define the energy yield per pitch of a farm over one year as

yearly yield (YY) given by Eq.  3.10 . Now, we can vary the albedo to determine the variation

in YY.
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3.2.3 Temperature-dependent efficiency models

The temperature-dependent efficiency loss involves a complex interplay of increased

absorption due to bandgap reduction vs. increased dark-current and reduced mobility. At

practical illumination intensity, it is well-known that the efficiency η(T ) scales linearly with

the module/cell temperature, see Eq.  3.11 in Table  3.2 where the rate/slope of degradation

is given by the absolute temperature coefficient (TC) [ 96 ], [  104 ].

The module/cell temperature further depends on the ambient temperature (Tamb), wind

speed (WS), module mounting type, the efficiency of the module, and other factors. In

this work, we have considered King (Eq.  3.12 ,  3.2 ), Skoplaki (Eq.  3.13 , Table  3.2 ) and

Alam-Sun (Eq.  3.14 , Table  3.2 ) models to estimate the module/cell temperature based on

location-specific the ambient temperature.

Briefly, King’s model (Eq.  3.12 ) [  94 ], [ 105 ] accounts for the wind speed (WS) and cell

to module temperature differences (∆T ) where the parameters ‘a’ and ‘b’ are negative and

are used as fitting parameters for the module type and deployment. Notice that this simple

model does not explicitly account for output power (efficiency is absent in the analytical

expression) hence, it doesn’t need to be solved self-consistently with Eq.  3.11 , Table  3.2 .

Unlike King’s model, Skoplaki’s model (Eq.  3.13 ) model [ 106 ], [  107 ] accounts for the

module efficiency. It also includes: (i) uL, which is the heat loss coefficient used as a fitting

parameter to the experimental energy yield and found to be 21.5 for our experimental data

(ii) cT is the correction term, which accounts for averaging the ambient temperature and

irradiance. We found that instantaneous data (every 1-min) does not require any correction

term to predict the energy yield. In addition, we found that cT increases with the duration of

the average i.e., daily average requires a smaller correction term than the monthly average.

Finally, the Alam-Sun model (Eq.  3.14 ) generalizes the Skoplaki’s model, which allows

us to account for the temperature rise due to the sub-bandgap absorption. The model uses a

parameter (0 < γ < 1) to account for the fraction of sub-bandgap irradiance/power that is

not absorbed by the solar module. When γ = 0, the Alam-Sun model reduces to the Skoplaki

model. Sub-bandgap absorption is an important consideration because the bifacial glass-glass

modules may have reduced sub-bandgap absorption compared to monofacial glass-backsheet
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modules. The relatively cool bifacial modules (for the same IPOA) would improve the bifacial

gain. A slightly generalized version of the Alam-Sun model is necessary to account for the

asymmetric absorption from the rear side of the module.

These cell temperature estimation models are coupled to the temperature dependence

of efficiency and solved self-consistently. Once the temperature-dependent efficiency is

obtained, we multiply it with the incident light intensity to deliver the energy output (i.e.,

the rectangular box in Fig.  3.1 ). Fig.  3.3 demonstrates the validity of the T-dependent

simulation model with the experimental data from Sandia National Labs, Albuquerque, NM,

USA. We use the experimentally available IPOA along with the Skoplaki model to find that

the experimentally observed energy yield (Black circles) accurately matches the simulated

T-dependent energy yield (Red-solid line). Note that the T-independent efficiency model

overestimates the energy yield (Blue-dashed line). Fig.  3.3 (inset) is a zoomed-in version of

Fig.  3.3 , which shows the accuracy of simulated T-dependent energy yield. Further, Fig.  3.4 

summarizes the importance of the sub-bandgap absorption (Alam-Sun model, Eq.  3.14 ) and

the effect of 0 < γ < 1 on efficiency.

3.2.4 Energy Output with temperature dependence

Finally, the power generated by the panels under STC (described in section  3.2.2 ) is

corrected using the temperature-dependent efficiency model i.e., Eqs.  3.11 ,  3.13 , and  3.16 

from Table  3.2 . For energy output, we integrate the power generated over the desired period

of time. We define the energy yield per pitch of a farm over one year as yearly yield (YY).

Y YT (p, β, h, E, γ, RA) =
∫ 1

0
ITotalPV (T )(p, β, h, E, γA, RA) dY (3.20)

Fig.  3.3 validates our temperature-dependent energy yield prediction with experimental

data from Sandia National Laboratory. The deployed panels were manufactured by Canadian

Solar (CS6K-275M 275W mono-Si) with a module efficiency ηSTC = 16.8%, temperature

coefficient TC = 0.41%/°C, and outer dimensions of 1650 × 992 mm. The modules are

installed S-facing, 35° fixed-tilt at Sandia National Laboratories in Albuquerque, New Mexico

USA (35.05°N, 106.54°W ) at an elevation of 1663 m above sea level and are mounted in a
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Figure 3.3. Daily and Monthly energy yield for Albuquerque, NM, USA.
Simulation is done based on the nameplate efficiency along with and without
its temperature dependence. (Inset) A zoomed-in version of the plot from day
40 to 50. Note that we have not considered other sophisticated models like
spectral irradiance here.

2-up landscape fashion. Row spacing is 4.88 m. They are grid-connected in four strings of 12

modules. Performance data presented in this chapter is derived from string-level I-V curves

that were measured at 30-minute intervals over a period of ∼ 170 days. The T-dependent

energy estimation (dashed blue line) follows the experimental data (black circles) almost

exactly while the T-independent energy (solid red line) is overestimated.

3.3 Results and Discussions

As the first step of calculating the temperature-dependent energy yield and LCOE, we

first examine the temperature dependence of monofacial and bifacial module configurations.

The cell temperature is calculated self-consistently with efficiency and irradiance. Fig.  3.4 

shows the trend in η(T ) between monofacial and bifacial modules. Although the bifacial

modules collect more light (irradiance), the apparent temperature coefficient (slope of the

red line in Fig.  3.4 (b)) is relatively lower. This can be explained using the effect of spectral
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Figure 3.4. (a) Efficiency vs. T for both monofacial and bifacial solar panel.
The TC is same for both the panels, which is reflected in the slopes – however,
bifacial is cooler (shown as blue arrow) and lead to ∼ 90 kWh gain when the
sub-band spectra is assumed transparent (γ = 1). (b) Averaged efficiency vs.
Irradiance for both monofacial and bifacial solar panel where the background
symbols (small open circles) represent the actual data for monofacial string.
The change in the slope indicates the change in the temperature of the panel
due to the sub-band transparency.

irradiance on the modules, as shown in Fig.  3.4 (b). Referring to the Sun-Alam model, γ

is the fraction of sub-bandgap irradiance/power that is not absorbed by the solar module.

Looking at the two extreme cases of γ = 0 (monofacial with an opaque back sheet) and

γ = 1 (bifacial with a transparent back sheet), we see that the efficiency vs. irradiance plot

has a steeper slope for monofacial case. The rapid decrease in efficiency is a consequence of

increased temperature (Fig.  3.4 (a)) due to additional sub-bandgap (or IR) absorption.

Since TC is a significant parameter in temperature-dependent efficiency estimation, it

requires an effort from the solar PV community to reduce TC through material and process

engineering. Note that all the temperature-dependent parameters are denoted by subscript T

while temperature-independent parameters are denoted by subscript 0.
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3.3.1 Self-heating affects a stand-alone module more than modules in a farm

A bifacial module in a solar PV farm collects less irradiance (IPOA) as compared to a

standalone bifacial module due to mutual shading (periodic shading on the ground). Thus,

our self-consistent model predicts the temperature of a standalone module to be somewhat

higher than that of a module in a farm. Note that the temperature difference would change

somewhat (< 3− 4°) once the “heat-island effect” is accounted for [ 108 ]. The relatively small

correction reflects two counter-balancing effects of ground illumination vs. heat-trapping in a

farm vs. in a stand-alone module. In general, the temperature-dependent efficiency (ηT ) and

energy yield (Y YT ) degradation, with respect to temperature-independent ηSTC(or η0) and

Y Y0, are more prominent for a standalone module as compared to a farm, see Fig.  3.5 . We

observe that the degradation in YY is enhanced for standalone bifacial modules as compared

to bifacial farms.

Figure 3.5. Comparing module and farm-level ηT vs. η0 based percentage
change in energy yield for different locations around the world. We observe
that degradation is higher for an elevated (E = 2 m) standalone module as
compared to an elevated farm, except for locations at very high latitude, e.g.,
Stockholm.
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In Fig.  3.5 , we consider four specific locations with increasing latitudes, namely, Dubai

(24.5°N, 55.5°E), Sydney (33.85°S, 150.65°E), Washinton D.C. (38.91°N, 77.04°W ), and Stock-

holm (59.32°N, 17.84°E) with decreasing average annual temperatures 34, 22, 20, 11 °C (high)

and 23, 14, 8, , 5 °C (low), respectively. For locations with hotter climates the percentage

change in Y YT and Y Y0 is negative, due to efficiency degradation at higher temperatures. On

the other hand, for places with very cold climates, like Stockholm, the associated percentage

change is positive and higher for a farm in comparison to a standalone module. The apparent

exception at Stockholm arises due to colder weather i.e., Tamb < TSTC , during most of the year.

Negative ambient temperature and low irradiance (IPOA) for a farm, leads to lower Tcell(farm)

as compared to Tcell(module), see Eq.  3.13 . Thus, from Eq.  3.11 , ηT (farm) > ηT (module)

and ∆Y Y = IPOA ×∆ηT is higher for a farm as compared to a stand-alone module.

3.3.2 Technology and geography dictate the temperature-dependent yield loss
of monofacial vs. bifacial farms

The worldwide maps in Fig.  3.6 depict the dependence of gain/loss in energy yield between

temperature-dependent efficiency (ηT ) vs. constant efficiency (η0 or ηSTC). Clearly, hotter

places like the Sahara Desert, Mexico, and southern India, show a loss in energy yield due to

degradation in efficiency with higher temperature as compared to efficiency at STC (ηSTC).

On the other hand, for colder locations like Siberia, Gobi Desert, and northern Canada and

Europe, with lower average temperatures, show an improvement in efficiency, with respect to

ηSTC , leading to higher energy yield.

This general trend is quantitatively shown in Fig.  3.6 (row 1) for monofacial farms:

globally, we observe −7% to +12% of change in temperature-dependent energy yield (Y YT )

with respect to energy yield (Y Y0) estimated using constant efficiency. Fig.  3.6 (row 2) shows

a lower magnitude of change (−7% to +10%) for bifacial farms. Here we assume the same

temperature coefficient (TC=0.41%/°C) for monofacial and bifacial modules (rows 1 and 2 in

Fig.  3.6 ) with the same Al-BSF technologies. Since the amount of light collected by the bifacial

panels (IPOA) is higher than the monofacial panels, the change in cell/module temperature,

from Eq.  3.13 in Table  3.2 , is higher for bifacial modules leading to a higher change in

efficiency. However, the normalized output (efficiency) for bifacial modules is higher than the
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monofacial modules (as shown by the y-intercepts in Fig.  3.1 (a)). Overall, the combination

of higher normalized output and higher degradation of efficiency for bifacial modules leads to

an approximately similar percentage change in energy yield between temperature-dependent

vs. constant efficiencies. Moreover, Fig.  3.6 (row 3) displays the same quantities for bifacial

silicon heterojunction technology, which has a lower TC (=0.26%/°C). Lower TC leads to

lesser degradation of efficiency with temperature and eventually the range of change in YY

(−5% to +5% ) is lower as compared to Al-BSF (TC=0.41%/°C).

Fig.  3.6 also displays the trend in relative percentage change between minimum LCOE*

estimated using temperature-dependent efficiency (LCOE∗
min,T ) with respect to LCOE*

calculated using constant efficiency (LCOE∗
min,0). Since LCOE* is inversely proportional to

the yearly energy yield (YY), hence, the trends are reversed as compared to energy yield.

Colder places show a decrease in LCOE* by ∼ 8%, whereas places with hotter climates show

a ∼ 8% increase for bifacial farms. The change (−8% to +8%) in LCOE* after temperature

correction is significant and cannot be ignored while estimating the levelized cost of energy

of a solar PV farm.

The design of solar modules in a farm (represented by the optimum tilt angle and the

associated pitch for no mutual shading) does not change significantly. Fig.  3.6 (maps on

the right) shows the difference in the optimum tilt angle when we consider ηT vs. η0. This

difference varies from −3° to +3° around the globe. Hence, for all practical purposes, the

design optimization presented in [ 45 ] does not require adjustments even after temperature-

dependent efficiencies are included. However, an accurate estimation of YY and LCOE* is

achieved using a more accurate temperature-dependent efficiency model.

3.3.3 Technology-choice and geographical location determine the temperature-
dependent bifacial gain

Since it has been established that the temperature-dependent model is essential for the

correct estimation of YY and LCOE*, we will now explain the bifacial gain. We will compare

the Silicon Heterojunction (SHJ) (TC = 0.26%/°C) and Aluminum Back Surface Field

(Al-BSF) (TC = 0.41%/°C) bifacial panel performance to that of Al-BSF monofacial panels

(TC = 0.41%/°C ). The global trends in bifacial gains for YY and LCOE* for constant
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Figure 3.6. Global maps comparing yearly energy yield (YY), LCOE*, and
difference in optimum array tilt angle (∆βopt) for temperature-dependent effi-
ciency (subscript T) and temperature-independent efficiency (subscript 0). Note
that RA = 0.5 and ML = 15. (Row 1) Monofacial Farms, e.g., Al-BSF, (Row 2)
Bifacial farms with a high temperature coefficient (TC=0.41%/°C) , and (Row
3) Bifacial farms with a lower temperature coefficient (TC=0.26%/°C)), e.g.,
Silicon Heterojunction (SHJ) solar cells.

efficiency calculations can be found in [ 45 ]. Fig.  3.7 displays the same parameters for

temperature-dependent Al-BSF (bifacial) (row 1) and SHJ (bifacial) (row 2) versus Al-BSF

monofacial farm calculations. We observe that the bifacial gain for the yearly yield of Al-BSF

is 0-20% for latitudes < 50° and reaches up to 30% for even higher latitudes. The reduction

in LCOE* for bifacial over monofacial is 0-10% around the world. These percentages are

higher than that estimated (2-12%) for temperature-independent (constant) efficiency in
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Ref. [ 45 ]. Whereas, calculations comparing SHJ (bifacial) and Al-BSF (monofacial) show a

much higher bifacial gain for yearly yield (12-45%) and reduction in LCOE* for bifacial over

monofacial parameters (15-25%) around the world. This is due to the higher temperature

coefficient for Al-BSF as compared to SHJ panels leading to larger performance degradation

of Al-BSF panels and lower bifacial gain. The relative gain simply reflects the fact that the

efficiency of bifacial PV degrades less than monofacial PV at a given ambient temperature.

Recall that in Fig.  3.1 , we conceptually compared monofacial and bifacial farms with

different efficiencies and temperature coefficients. The observations shown here clearly align

with our hypothesis of enhanced temperature-dependent performance for bifacial panels with

higher ηSTC(SHJ) = 19.7% and lower temperature coefficient (TC(SHJ) = 0.26%/°C) as

compared to monofacial panels with lower ηSTC (Al−BSF ) = 16.8% and higher temperature

coefficient ((TC(Al −BSF ) = 0.41%/°C).

Clearly, temperature coefficient (TC) is an important parameter for accurate efficiency

and energy estimation and it varies for different PV technologies. Although bifacial modules

collect more light, most bifacial technologies have a lower TC than monofacial ones leading to

further enhanced bifacial gain. Furthermore, bifacial technologies do not absorb sub-bandgap

(IR) radiation leading to lower heating. Fig.  3.8 portrays this trend for panels deployed at

Sandia National Labs, Albuquerque, and validates our hypothesis. Since the temperature

coefficient of Al-BSF (TC = 0.41%/°C) is higher than CdTe (TC = 0.32%/°C), the energy

yield for the former is lower. Further, for both PERC and SHJ, T-dependent estimation

shows higher energy yield for bifacial as compared to monofacial due to lower IR absorption.

We saw similar results for the global maps in Fig.  3.7 . Thus, we explored the change in

energy yield for bifacial farms and monofacial farms with different TC.

3.3.4 Temperature-Dependent Energy Yield of Elevated Farms: Self-Heating
vs. Improved Light Collection

The energy yield increases with elevation due to improved collection of albedo light at the

back face of the panel. Increased light collection increases the temperature, suggesting the

need for a temperature-aware model to find optimum elevation and a corresponding bifacial

gain. Next, we explore the effect of elevation on temperature-dependent energy yield.
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Figure 3.7. Global maps comparing bifacial gain in yearly energy yield,
LCOE*, and difference in optimum array tilt angle for Al-BSF monofacial
farms (TC=0.41%/°C) vs. (Row 1) Al-BSF and (Row 2) Silicon Heterojunction
bifacial farms (TC=0.26%/°C). Note that RA = 0.5 and ML = 15.

Ref. [  26 ] shows that the energy yield of the module starts to saturate after a certain

elevation. We observe a similar trend in the farm-level, i.e., yearly energy yield saturates after

a certain elevation, as shown in Fig.  3.9 . For Washington D.C., USA, YY increases from

345 kWh/m for ground-mounted panel-array (E = 0 m) and saturates to 365 kWh/m at a

high elevation of panels (E = 5 m). At elevations E0 ∼ 1.5 m, 95% of this saturated yield can

be achieved (for h = 1 m). Such elevation threshold, where 95% of the maximum/saturated

yield would be attained is location-specific. For example, in Jeddah, KSA, this elevation

threshold is E0 = 2 m. We observed that this saturating trend is observed globally. Moreover,

the light collection (IPOA) on the panels increases with elevation, leading to a rise in the

temperature-dependent degradation of efficiency (see Eqs.  3.12 ,  3.13 , and  3.14 temperature

models). Thus, on one hand, elevation increases light collection which enhances energy yield.

On the other hand, increasing light collection simultaneously increases the temperature and

decreases efficiency, eventually decreasing the energy yield. Overall, it is observed that the
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Figure 3.8. Energy yield estimated for different technologies illustrating the
temperature effect (left) and monofacial and bifacial effect (right).

energy yield increases until a threshold elevation (E0) and then saturates to a maximum

value.

Fig.  3.10 shows the percentage change in yearly energy yield and LCOE* between an

elevated bifacial farm (with E = 2 m) and previously estimated unelevated bifacial farm

(E = 0 m). We chose E = 2 m since it is beyond the elevation threshold E0 for energy yield

saturation around the world. Evidently, the energy yield improves by 1-20% around the globe

with a monotonically increasing trend with latitude. Consequently, LCOE* decreases by the

same amount with a similar trend worldwide. Interestingly, the optimum tilt angle varies

from −10% to +10% depending on the latitude and the fraction of diffuse light illuminating

the bifacial panels. Thus, elevating the farms by 1 − 2 m enhances the energy yield and

reduces LCOE* (assuming a negligible increase in costs). In practice, elevating the modules

to E = 2 m incurs higher costs due to at least two factors: (1) higher wind loads will require

more steel and deeper foundation; (2) installing at that height increases labor costs due to

the need for ladders and other work aids. To incorporate this increased cost, a higher value

of the cost ratio (ML) in Eq.  3.19 should be used. Consequently, the optimum value of

elevation would be lower, 1 m < E0 < 2 m. Thus, Fig.  3.13 shows the gain in energy yield

for a practical and affordable elevation of E = 1 m with respect to E = 0 m. A detailed
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Figure 3.9. Temperature – dependent yearly energy yield of the farm (with
p = 2 m and h = 1 m) saturates with elevation of panels above the ground.
Here we show the simulation for Washington D.C. as an example.

LCOE-dependent analysis of the elevated bifacial farm design will be a part of a future

analysis.

3.4 Summary and Conclusions

In this chapter, we have analyzed the effects of temperature-dependent efficiency degra-

dation on the energy yield and LCOE of monofacial and bifacial solar PV farms. Our

approach involved combining an irradiance model, an updated light collection model for

elevated farms, and temperature-dependent efficiency models to arrive at the final energy

output of a solar farm. The light collection and temperature estimation models had to be

solved self-consistently in order to arrive at the practical and more accurate efficiency for

a particular location. We applied these models for locations around the world to deliver

the global maps that quantify the percentage change in energy yield and LCOE* between
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Figure 3.10. Global trends in change in yearly energy yield, LCOE*, and
difference in optimum tilt angle of an elevated bifacial farm (E = 2 m) and an
unelevated bifacial farm (E = 0 m).

temperature-dependent and constant temperature calculations while presenting general global

trends.

Our analysis leads to the following key conclusions:

• The generalized Alam-Sun thermal model allows us to account for sub-bandgap

absorption. The effect is significant: Almost, 90 kWh more energy can be generated

from 12 bifacial-module string for a period of 6 months due to the reduced self-heating

associated with the transmittance of sub-band irradiance.

• A comparison between energy yield and LCOE for temperature-dependent efficiency

(η(T )) and temperature-independent efficiency (ηSTC) conveys a percentage change

of −7%(Al−BSF ), −5%(SHJ) for locations close to the equator (|latitude| < 30°)

and +12%(Al−BSF ), +5%(SHJ) for locations close to the poles (|latitude| > 30°).

• The bifacial gain for SHJ (bifacial) vs. traditionally used Al-BSF (monofacial) with

temperature-dependent efficiency conveys a percentage change of +12% for hotter

locations close to the equator (|latitude| < 30°) and can reach up to 25− 45% for

colder places close to the poles (|latitude| > 30°). Whereas, bifacial gain for Al-BSF

shows a percentage change of ∼ 0− 30%. This presents an incredible opportunity

for SHJ bifacial farm deployment.
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• The trend in the difference in optimum tilt angle (∆βopt) for bifacial designs is 0°−30°

when comparing the same technology (Al-BSF(Bifacial) vs. Al-BSF(Monofacial)) or

two different technologies (SHJ(Bifacial) vs. Al-BSF(Monofacial)).

• Elevated farms show two counter-balancing trends, where light collection on the

panels (IPOA) increases leading to an increase in temperature and a decrease in

efficiency. Overall, temperature-dependent elevated farms (E = 1− 2 m) outperform

unelevated farms in terms of yearly energy yield by up to 20% depending on the

latitude.

• Bifacial PV technologies (SHJ) with lower TC and low sub-bandgap (IR) absorption

can outperform their monofacial counterparts. The extent of enhancement in perfor-

mance depends on the bifacial technology used and the geographical location of the

farm.

In conclusion, it is important to accurately calculate the energy yield (YY) and LCOE*.

The bifacial solar farm energy yield using temperature-dependent efficiency fulfills this purpose.

Although the design of the farms in terms of the optimum tilt angle is not affected significantly,

the absolute values of energy yield and LCOE for field-deployed temperature-dependent solar

farms differ considerably for several locations around the world. This affects the overall

economic evaluation of location-specific solar farms. Since bifacial panels have a lower

temperature coefficient compared to monofacial panels, therefore, they are advantageous for

relatively steady energy output due to daily and monthly temperature variations, especially for

locations with lower total irradiance. Moreover, using PV materials with lower temperature

coefficients, e.g., Silicon Heterojunction (SHJ) and PERC, would lead to stable outputs and

enhanced performance of bifacial solar farms throughout the world.

Finally, the scope of this study was limited to the initial temperature-dependent effi-

ciency degradation associated with a newly installed solar farm. The long-term analysis of

temperature-dependent degradation mechanisms and PV lifetime are not considered in our

study. Moreover, the spectral dependence of PV efficiency is beyond the scope of this work

and needs further investigation [ 107 ], [ 109 ]–[ 111 ]. Moreover, given the importance of TC, it
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will be important to focus on methods to lower the temperature coefficient of bifacial solar

materials/technologies and reduce cell temperature variation through improved packaging.

These would become a central issue for concentrated solar photovoltaics as well. Further,

one could improve the power output at the back surface by using a different kind of solar

cell, e.g., DSSC, that performs better under low-light illumination [ 112 ]–[ 114 ]. Thus, the

temperature-dependent energy-gain of a tandem [ 92 ], [ 104 ], [ 115 ] or ‘mixed’ bifacial solar cell

will be an interesting and important generalization of the results presented in this chapter.

3.5 Appendix

3.5.1 Threshold IPOA for Y YT (Bifacial) > Y YT (Monofacial)

The objective is to find the threshold plane of array irradiance IPOA for the power output

of temperature-dependent bifacial panels to be more than that of monofacial panels. We

first define efficiency gain (ηg = (ηbi/ηmo)STC) as the ratio of the normalized output of

the bifacial module over the efficiency of the monofacial module at STC. Next, we use

η (TM) = ηSTC(1− TC(TM − TSTC ))(Eq.  3.11 in Table  3.2 ) and Pout = η (T ) IPOA to arrive

at the following equation.

Pout = IPOA ηSTC (1− TC(TM − TSTC)) (3.21)

Assuming TM = Tcell and neglecting the negligible effect of η in Eq.  3.13 of Table  3.2 , we

get

Tcell = Tamb + k IPOA (3.22)

Here k is a location-specific constant. Now, we take bifacial POA irradiance (IPOA)bi =

IPOA(1 +RA), where IPOA is monofacial POA irradiance and RA is the albedo value. Thus,

combining Eqs.  3.21 and  3.22 , we get a generalized form of output power as shown below.

Pout = IPOA (1 +RA)× ηSTC(1− TC(∆T0 + kIPOA(1 +RA))) (3.23)
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where ∆T0 = Tamb−TSTC . For temperature-dependent bifacial output power to be greater

than the monofacial counterpart,

(Pout)bi
(Pout)mono

> 1 =⇒ IPOA (1 +RA) ηbi,STC (1− (TC)bi (∆T0 + kIPOA(1 +RA)))
IPOAηmo,STC (1− (TC)mono (∆T0 + kIPOA)) > 1

(3.24)

Simplifying the above equation gives us,

(1− (TC)bi (∆T0 + kIPOA(1 +RA)))
(1− (TC)mono (∆T0 + kIPOA)) >

1
ηg (1 +RA) (3.25)

Eq.  3.25 is the generalized condition on IPOA for bifacial panels to generate higher power

output compared to monofacial panels. In special cases, where (TC)bi = (TC)mono = TC,

∆T0 = 0, i.e., Tamb = TSTC , and the extreme value of RA = 1, we can derive the following

specialized condition (Eq.  3.26 ) mentioned in the introduction of the main text.

IPOA <
(2ηg − 1)

k × TC × (4ηg − 1) (3.26)

The above equation is physically-intuitive in a sense that bifacial PV would outperform

monofacial PV when the collected plane of array irradiance is lower than a certain threshold

value. Moreover, this threshold value should depend only on the above-mentioned parameters

that vary with the PV technology (ηg, TC) and the geographical location (k, RA).

3.5.2 Albedo Light Collection for Elevated Panels

Albedo light collection for elevated panels requires a rigorous estimation of view factors

from the sky to ground (including masking) i.e., ground pattern as well as the collection of

albedo light reflected from the ground on the panels. Fig.  3.11 and  3.12 display these aspects

schematically. Fig.  3.11 displays the algorithm to calculate the amount of light falling on a

point on the ground from all parts of the sky that are visible. Note that, there would be only

one opening towards the sky for unelevated panels. However, elevated panels allow views of

the sky from neighboring periods as well. For each opening (view) of the sky from a point
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on the ground, we use the view factor formula, VF = 0.5 (cos (θ1) + cos(θ2)). A product of

the total view factor and the intensity of diffuse light gives the total diffuse light falling on a

point on the ground. Similarly, for direct light estimation, whenever the direct beam from

the Sun falls inside any of the openings (views), we include that into total direct light falling

on the point on the ground. A summation of direct and diffuse light falling on that particular

point gives us the total illumination on the point on the ground.

Figure 3.11. Ground pattern: illumination at a point on the ground from the
visible sky.

Figure 3.12. Light collection: illumination collected by the panel that is
reflected from the ground.
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Next, we estimate the amount of ground-reflected light collected on the front and rear

sides of the panel. For unelevated panels, only one period on the ground is visible to the

panels, whereas the panels can see multiple periods for elevated panels, see Fig.  3.12 . The

above-mentioned view factor (VF) formula is now used to find the amount of light falling

from a point on the ground on the panel. An integration over all the points on the ground

seen by the panel gives the total light collected on the panel. A product of the total intensity

of albedo light collected on the panel with the efficiency of the module equals the total power

output of the panel. An overall integration of total power over time finally leads us to the

total energy generated by the panel due to albedo light. A detailed explanation for the

estimation of albedo light collection for elevated farms can be found in Ref. Younas2019,

[ 42 ].

3.5.3 Energy gain for bifacial farms elevated at E = 1 m

An increase in elevation increases the yearly energy yield of a bifacial farm as compared

to an unelevated bifacial farm. However, elevating the farm also increases the racking, labor,

and maintenance costs. Thus, instead of maximizing energy at E = 2 m, an economically

viable option is to elevate the farms at E = 1 m. Fig.  3.13 shows the percentage increase in

energy yield between elevated (E = 1 m) and unelevated (E = 0 m) bifacial farms.
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Figure 3.13. Global trends in the change in yearly energy yield of an elevated
bifacial farm (E = 1 m) and an unelevated bifacial farm (E = 0 m).
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4. GLOBAL ANALYSIS OF NEXT-GENERATION

UTILITY-SCALE PV: TRACKING BIFACIAL SOLAR FARMS

  

In chapters 2 and 3 we integrated optical, electrical, thermal, and economic models to

estimate the energy yield and LCOE of fixed-tilt bifacial solar farms. Through these models

the bifacial gain of East-West vertical and South-facing optimally-tilted bifacial farms are

well established. One wonders if bifacial gain (and the associated LCOE) may be further

improved by tracking the sun. Tracking bifacial PV has advantages of improved temperature

sensitivity, enhanced diffuse and albedo light collection, flattened energy-output, and reduced

soiling. Monofacial tracking already provides many of these advantages, therefore the relative

merits of bifacial tracking are not obvious. In this chapter, we use a detailed illumination and

temperature-dependent bifacial solar farm model to show that bifacial tracking PV delivers

up to 45% energy gain when compared to fixed-tilt bifacial PV near the equator, and ∼ 10%

bifacial energy gain over tracking monofacial farm with an albedo of 0.5. An optimum pitch

further improves the gain of a tracking bifacial farm. Our results will broaden the scope

and understanding of bifacial technology by demonstrating global trends in energy gain for

worldwide deployment.

4.1 Introduction

The global energy demand is approaching unprecedented levels with the projected popu-

lation of ∼ 10 billion people by 2050 [ 117 ]. Protecting the environment while meeting the

energy demands will involve a delicate balancing act in the coming decades. It has been

suggested that renewable energy resources can satisfy the energy demand with the smallest

environmental footprint. Among all renewable energy resources, the direct conversion of solar

energy to electricity by photovoltaic technology (PV) is one of the most promising sources of

green and sustainable energy with the advantage of limited environmental impact and low

maintenance cost.

 ↑ Note: The material in this chapter has been adapted from Ref. [ 116 ]
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One way to reduce the levelized cost of energy (LCOE) is to design a photovoltaic (PV)

system to produce the maximum energy for a specified area of the solar farm. Among the

cost-effective options, one can either increase the total irradiance of fixed-tilt farms using

bifacial modules or increase the normal irradiance on monofacial modules by solar-tracking.

Both technologies are becoming popular as bifacial modules are expected to have ∼ 40%

market share by 2028 [  34 ], whereas solar-tracking has been implemented by ∼ 70% of

newly installed utility-scale PV systems since 2015 [ 35 ], [ 36 ]. Indeed, market analysis from

multiple groups worldwide suggest that single-axis tracking may account for 25-40% of all

new utility-scale PV installation, motivated in part by the adoption of bifacial modules [  37 ].

However, the location-specific viability of bifacial tracking has not been quantified. The

solar-tracking of bifacial PV modules sounds appealing, but the only concern is that whether

bifaciality would be beneficial in solar-tracking configuration, as maximizing direct beam

will cast a deep shadow on the ground and reduce the contribution from the ground albedo.

Fortunately, the recent location-specific case-studies predict the promising potential of bifacial

PV farms in solar-tracking configuration [ 118 ], [ 119 ]. For example, the detailed calculation

by Egido et al. [ 120 ] predicts that a standalone dual-axis tracking bifacial PV module (with

the ground painted white) has almost 80% higher annual energy yield as compared to its

fixed monofacial counterpart. For the same white-paint albedo, a 20% to 90% increase in

energy yield was demonstrated across different months for single-axis tracking of standalone

bifacial PV modules as compared to fixed-tilt bifacial and monofacial modules, respectively.

Similarly, Oria and Sala reported a 70% increase in annual energy yield using single-axis

tracking of standalone bifacial modules with highly reflective albedo collectors as compared

to their fixed monofacial counterparts [  121 ]. Shoukry et al. [  122 ] demonstrated that both

bifaciality and tracking have their own unique contributions depending upon the geographical

locations with bifaciality providing up to 44% advantage as compared to single-axis tracking

that provided 18% energy gain as compared to fixed monofacial counterpart. There are

other studies in the literature that demonstrate the promising potential of standalone bifacial

and/or tracking PV panels both experimentally [ 123 ], [ 124 ] and computationally [  118 ], [ 125 ].

There is an emerging consensus that the irradiance incident on a module can be enhanced

through bifaciality/tracking.
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Figure 4.1. Schematic of a single-axis tracking bifacial solar PV farm (a)
E-W facing (b) N-S facing. The solar path varies with latitude as well as time
making one of the designs geographically more suitable.

Despite these promising initial results, one still wonders if temperature-dependent efficiency

degradation due to additional solar irradiance would erase any performance gain. Indeed,

several research groups have explored the temperature-dependent performance of stand-alone

PV modules [ 26 ], [ 100 ], [ 102 ], [ 126 ]. By combining the irradiance, light collection, and

electro-thermal models, several research groups have demonstrated that the bifacial gain

and corresponding reduction in LCOE depend on the geographical location and one must

optimize the module tilt and row-separation to maximize the bifacial gain [  26 ], [  64 ].

Along with standalone PV modules, several research groups investigated monofacial/bifacial

PV farms both in fixed and/or mobile configurations. Stefano et al. [ 127 ] demonstrated

that the bifaciality of single-axis mobile PV arrays could enhance their performance by 12%.

Stein et al. [ 128 ] reported ∼ 10% bifacial gain for single-axis mobile PV systems. By using

their mathematical model, Janssen et al. [ 119 ] demonstrated that single-axis tracking of

monofacial and bifacial PV arrays could increase energy yield up to 15% and 26% respectively

as compared to standard monofacial fixed-tilt system. A number of studies also reported the

temperature-dependent performance of tracking PV systems based on theoretical analysis or

simulated results [ 129 ]–[ 131 ]. Recently, based on their optical-electrical-thermal model, Patel

et al. [ 46 ] showed that temperature-dependent efficiency could change LCOE of fixed-tilt
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bifacial solar farms by ∼ 10% to 15% worldwide for different module technologies. Using

a collection of solar farms in Brazil, Verissimo et al. suggest that country-specific tracking

results show solar-farm topology can have a significant impact on the energy yield and LCOE

of the system [ 132 ]. Rodriguez-Gallegos et al. [  133 ] have also shown that the single-axis track-

ing bifacial PV system exhibit minimum LCOE worldwide, even though dual-axis tracking

bifacial PV systems produce higher energy. A dual-axis system, however, has higher LCOE

because its higher energy yield is partially counterbalanced by its higher initial, operational,

and maintenance costs as compared to that for the single-axis system. After all, the single-axis

system is simpler to design and operate both in E/W facing orientation to track the sun daily

and in N/S facing orientation to track the sun over the seasons. Without taking into account

location-specific land cost, the research [ 133 ] showed that single-axis bifacial PV farms exhibit

a 16% decrease in LCOE for locations at latitudes within a range of ±60°. These results

further demand a careful evaluation of global-scale LCOE for single-axis tracking bifacial

PV farms by considering the site-specific land costs. Indeed, as discussed in Ref. [ 45 ], the

land-cost dramatically changes the optimum spacing, and the energy yield of a solar farm.

This work is the culmination of our series of studies on standalone and farm-level bifacial

PV design considerations. We performed worldwide analyses investigating the optimum

design parameters for energy maximization of a single bifacial PV module [ 26 ], a vertical

bifacial PV farm [ 61 ], a ground-sculpted bifacial PV farm [  62 ], and cost minimization of

a fixed-tilt bifacial PV farm [ 45 ], [ 46 ]. The purpose of this study is to investigate the

worldwide performance of bifacial single-axis tracking PV farms with fixed-tilt bifacial PV

farms. We compare the performance of two different tracking algorithms termed as tracking

the sun (TS) and tracking the best orientation (TBO) [ 38 ]. By using a self-consistent optical-

electrical-thermal model, we address the following key questions: (i) How do the energy yields

compare between east/west (E/W) facing and north/south (N/S) facing bifacial single-axis

tracking solar farms? (ii) How does the site-specific climate affect the performance of these

farms? (iii) How do the location-dependent land costs affect the optimum design and LCOE

of these farms? and (iv) What is the optimum row-spacing (pitch) for minimum LCOE?
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Figure 4.2. The simulation workflow integrates irradiance, light collection,
and tracking models to calculate the energy yield of a bifacial tracking solar
farm.

This chapter is divided into four sections. Section  4.2 describes the modeling approach.

Section  4.3 discusses the results and the conclusions are provided in Section  4.4 .
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Table 4.1. Equations associated with optical model: Irradiance and light
collection models.

IGHI = IDNI × cos θZ + IDHI (4.1)

IF, FarmPV :DNI = IDNI cos θF (1−R(θF ))ηdir (4.2)

IF,FarmPV :DHI = IDHI ηdiff/h
∫ h

0

1
2 (1 + cos (ψ (E, l) + β))dl (4.3)

IF,PanelPV :Alb.dir (l) = IGnd:DNI ×RA × Fdl−gnd(E, l)× ηdiff (4.4)

IF,FarmPV :Alb.dir (l) = 1/h
∫ h

0
IF,PanelPV :Alb.dir(E, l)dl (4.5)

IF,PanelPV :Alb.diff (l) = IGnd:DHI ×RA × Fdl−gnd(E, l)× ηdiff (4.6)

IF,FarmPV :Alb.diff = 1/h
∫ h

0
IF,PanelPV :Alb.diff (E, l)dl (4.7)

IFarmPV :Alb = IFarmPV :Alb.dir + IFarmPV :Alb.diff (4.8)

IFarmPV :Alb = IFarmPV :Alb.dir + IFarmPV :Alb.diff (4.9)

Y YT (p, β, h, E, γA, RA) =
∫ 1

0
ITotalPV (T )(p, β, h, E, γA, RA) dY (4.10)
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Table 4.2. Equations associated with thermal models.

η (Tcell) = ηSTC(1− TC(Tcell − TSTC)) (4.11)

Tcell = Tamb + cT
τα

uL
IPOA

(
1− η(TCell)

τα

)
(4.12)

IPOA = IFarmPV :DNI/ηdir + (IFarmPV :DHI + IFarmPV :Alb)/ηdiff (4.13)

4.2 Modeling Framework

To model a tracking solar PV farm, one must generalize and integrate several sub-models

developed in previous studies [ 26 ], [ 45 ], [ 46 ], [ 61 ], [ 62 ]. We begin by integrating the irradiance

model and a tracking algorithm to find the intensity of direct light falling on the solar modules.

Next, we used a light collection model with view factors and masking formulae to estimate

the diffuse and albedo light collection. Finally, the thermal model combined with the PV

energy (electrical) model produces the total energy generated by the solar PV farm. A flow

diagram in Fig.  4.2 demonstrates the complexity of a self-consistent model necessary to

predict the performance of a tacking solar farm.

4.2.1 PV farm power and energy model

As shown in Fig.  4.1 , we model a solar farm with the following design parameters: azimuth

angle (γA) from the North; panel height (h); panel angle (β); elevation from the ground (E);

pitch (p); and ground albedo (RA). First, we use the irradiance model and estimate the

ground illumination for a particular time of the day with a time step of 1 minute at a location

specified by its latitude and longitude. We follow the modeling described in [  45 ], [ 46 ], [ 61 ].

We use the PV library from Sandia National Laboratory to calculate the Sun’s trajectory
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(zenith (θZ) and azimuth angle (A)) and the irradiance [  61 ]. The Global Horizontal Irradiance

(GHI or IGHI) is ideally given by Haurwitz clear sky model [ 67 ], [  68 ]. Renormalizing this

irradiance based on the NASA Surface meteorology and Solar Energy database [ 69 ] yields

the local variation in GHI. The 22-year monthly average GHI data from NASA SSE has a

spatial resolution of 1°× 1° (latitude x longitude). The GHI is then split into direct light

(DNI or IDNI) and diffuse light (DHI or IDHI) using Orgill and Hollands model [ 70 ]. Perez

model [ 134 ] further improves the accuracy by estimating both the circumsolar and isotropic

components of diffuse light. The bifacial module output based on this insolation models has

been shown to closely match experiments [ 26 ].

Second, we quantify the amount of light collected by the solar panels installed at

that location. The panels have height h, tilted at an angle β, separated by pitch (or period)

p, and are oriented at an array azimuth angle γA = 180° (i.e., south-facing panels) for

farms in the northern hemisphere and γA = 0° (i.e., north-facing panels) for farms in the

southern hemisphere or γA = 90° for panels facing E-W direction. The collection of light

on panels from the three components of irradiance (i.e., direct, diffuse, and albedo) are

formulated separately and analyzed accordingly. Our approach to model the collection of

light involves the view-factor calculation described in [ 45 ], [ 46 ]. The corresponding equations

are summarized in Table  4.1 with a glossary of the terms defined in Table  4.5 . A correctly

implemented view-factor model gives identical results compared to the ray-tracing approach

[ 135 ].

Third, we incorporate the temperature-dependent efficiency model, which require

the collected light intensity, efficiency at STC, and ambient temperature as inputs and yield

the effective efficiency as output [ 46 ]. The temperature-dependent efficiency loss involves a

complex interplay of increased absorption due to bandgap reduction vs. increased dark-current

and reduced mobility. At practical illumination intensity, it is well-known that the efficiency

η(T ) scales linearly with the module/cell temperature, see Eq.  4.11 in Table  4.2 where the

rate/slope of degradation is given by the absolute temperature coefficient (TC) [  96 ], [  104 ].

Finally, we find the daily, monthly, and yearly energy-output of the farm. Using

the equations  4.2 ,  4.3 , and  4.8 in Table  4.1 , we arrive at Eq.  4.9 to find the time-varying

spatially distributed light collection on the panels. This information combined with the
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thermal model (summarized in Table  4.2 ) is used in the circuit model to find the equivalent

power generation. The circuit model includes the bypass diode model to take into account

the partial shading of the PV panels and their effect on the PV performance [ 61 ], [  79 ]. To

estimate energy output, we integrate the power generated over the desired period of time.

We define the energy yield per pitch of a farm over one year as yearly yield (YY) given by

Eq.  4.10 . The associated levelized cost of energy (LCOE) is modeled and estimated using

the concept of essential levelized cost of energy (LCOE*) as detailed in Refs. [ 45 ], [  136 ].

Following equation describes the relation between LCOE and LCOE* where ML is the ratio

of module-related costs CM and land-related costs CL. χ is a constant that includes the

degradation rate and bank discount rate.

LCOE∗ ≡ LCOE.χ

CL

= CM/CL + p/h

Y Y (p, h, β, γ, RA) = p/h+ML

Y Y
(4.14)

4.2.2 Tracking model

In a PV tracking system, instead of a fixed panel tilt, the tilt angle β(t) varies with

time. There are two types of tracking algorithms: (a) sun-tracking orients the modules to

maximize the direct light, and (b) power-tracking orients the modules to maximize power

or energy.

As the name suggests, a sun-tracking system minimizes the angle between the sun

and the panel. To compute the time-dependent tilt angle of E/W facing modules by the

sun-tracking algorithm, first, we compute the angle of incidence (θAOI) between the direct

light (DNI) and the normal of the module face. Solar tracking (TS) minimizes the angle of

incidence towards 0° so that the face of the solar panel follows the sun (direct light). Fig.  4.3 

shows the hourly variation of the tilt angle β for TS for June and December at Washington

D.C. (38.9°N, 77.0°W ) and Dubai (24.5°N, 55.5°E) in the northern hemisphere.
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Figure 4.3. Using sun-tracking algorithm, we plot the tilt angle as a function
of time for EW facing tracking PV modules (left column) and NS facing tracking
PV modules (right column) for June (Blue) and December (Red) at Washington,
D.C., 38.9°N, 77.0°W (top row) and Dubai, 24.5°N, 55.5°E (bottom row).

For E/W tracking, the panels follow the sun throughout the day, and thus the tilt angle

β(t) goes from +90° (East-facing) to −90° (West-facing) from sunrise to sunset. For N/S

tracking, during summer (June) around sunrise, β(t) is negative i.e., North-facing panels

with γA = 0° becomes close to 0° at solar noon and goes back to negative during sunset. This

is because the sun’s path, from sunrise to sunset, lies almost entirely in the North except

near solar noon where the sun could be in the south of the panels. Whereas, during winter

(December), β(t) remains always positive i.e., South-facing panels with γA = 180° will remain

facing South because the sun’s path is entirely in the South. Further, the panels face the

south-inclined sun normally at solar noon where the β(t) is equal to the zenith angle of

the sun. Thus, the sign of tilt angle (and the array azimuth angle) varies with the sun’s

path according to the latitude of a geographical location throughout the year. The days in

December are shorter than days in June, which is evident from the sunrise and sunset points.

Moreover, θAOI = 0° is not achievable for both months, thus, the algorithm minimizes θAOI
for the closest normal incidence. Finally, the initial angle being ±90° is impractical for a

113



solar farm because in this scenario the first row of panels will cast a row-to-row shadow on

all the other panels.

The second approach involving power-tracking optimizes the time-dependent tilt angles

to achieve maximum power at each time-step—this will also maximize daily energy. The

optimization is governed by the combined effects of (a) relative contributions of instantaneous

DHI and DNI, (b) position of the sun, and (c) panel-to-panel shading. This power-tracking

or the best orientation (TBO) algorithm is targeted towards maximizing output, not the

light collection. Thus, during the early and late part of the day, the system will compromise

light collection to avoid shading loss and maximize power output.

Fig.  4.4 shows the time-dependent optimized tracking angles β (t) in June and December

for Washington D.C. and Dubai. During the early and late parts of the day, the irradiation is

mostly sky-diffuse light. At these times, in contrast to the TS algorithm, the panel optimally

faces the sky (i.e., β (t) ≈ 0) for both E/W and N/S tracking configurations. As the day

progresses, the fractional contribution of DNI increases, and the β (t) will compete between

facing the sky and the sun. This is prominently observed for optimal tilt for E/W tracking

panels in Fig.  4.4 . After a certain time, e.g., 7 am in June, the panels closely follow the

sun. In general, even when the DNI fraction is higher, the β(t) is shallower than sun-tracking

angles to improve the collection of DHI. The N-shape profile of β (t) in E/W tracking is

narrower in winter seasons due to shorter days. For N/S tracking, β(t) is larger in December

compared to June due to the more tilted sun-path.

To compare the tracking algorithms in terms of insolation collection, Rodriguez-Gallegos et

al. [ 38 ] performed a PV tracker performance analysis using these two algorithms – tracking the

sun (TS) and the best orientation (TBO) – for 3 different configurations, namely, horizontal

single-axis tracker (HSAT), tilted single-axis tracker (TSAT), and dual-axis tracker (2T).

They found that TBO shows a higher insolation collection compared to TS but the difference

is below 1.8% for |latitude| < 60° and 3.3%, 7.1%, and 2.9% for HSAT, TSAT, and 2T,

respectively.

A few points regarding practical tracking algorithms are noteworthy. First, the power-

tracking or TBO algorithm requires the panels to back-track at least twice during the day

(observe the peaks and troughs in Fig.  4.4 ). This may cause additional mechanical wear
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and tear of moving parts and electrical issues with the motor. In contrast, the sun-tracking

algorithm continuously follows the sun during the day, which avoids backtracking and related

reliability issues, if any. Second, the maximum value of the tilt angle for tracking the panels

is 60° to avoid rotational load on the axis and avoid mutual shading between the rows of

panels at higher tilt angles. Third, in practice, the panels are kept at an initial tilt of 60°

(not horizontal at 0°) to reduce dew-enhanced soiling that would reduce the output of the

solar panels.

Now that we have described the sun-tracking algorithm, in the following section, we will

discuss the energy yield of solar farms based on the power-tracking algorithm.

Figure 4.4. Using power-tracking algorithm, we plot the tilt angle as a function
of time for E/W facing tracking PV modules (left column) and N/S facing
tracking PV modules (right column) for June (Blue) and December (Red) at
Washington, D.C. (top row) and Dubai (bottom row).

4.3 Power and energy yields at specific locations

In this section, we will summarize the modeling and simulation results through energy

yield and then discuss LCOE-optimized solar farms. For an intuitive understanding of the

results, we first compare the monthly energy output for various farm designs at four locations
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– Dubai (24.5°N, 55.5°E), Washington, D.C.(38.9°N,−77.0°W ), Stockholm (59.3°N, 17.8°E),

and Sydney (33.8°S, 150.6°E). Next, we present the global energy yield maps for fixed-tilt,

East-West (E/W), and North-South (N/S) tracking farm designs. By default, we assume

an east-west (E/W) tracking bifacial farm with a pitch over height, p/h = 2 and elevation

above the ground, E = 1 m (we will discuss pitch and height-optimized design later in

section  4.4 ). We then compare this default design with various other PV farm configurations,

namely, fixed-tilt bifacial farm, E/W tracking monofacial farm, and N/S tracking bifacial

farm. Finally, we will present the effect of varying pitch on the yearly energy yield and

LCOE* for the default EW tracking PV farm design.

Figure 4.5. Daily output power for Washington D.C. and Dubai during summer
months (June) and winter months (December). E/W tracking performs better
in summer months and lower latitudes while N/S tracking has a higher output
during winter months and higher latitudes.

4.3.1 Power output

E/W tracking vs. N/S Fixed-tilt Systems

The power outputs of the PV farm using the power-tracking (or TBO) algorithm along

with N/S fixed-tilt systems are shown in Fig.  4.5 . We find that the energy yields of E/W

tracking bifacial farms are always higher than that of E/W tracking monofacial farms for
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Dubai and Washington, D.C. In June (for both Washington DC and Dubai), E/W tracking

yields higher energy compared to N/S systems slightly before and afternoon, resulting in

overall higher output from E/W tracking PV. In December, as the sun-path is more tilted, the

E/W systems cannot adequately follow the sun (θAOI is high even at noon). Thus, the N/S

tracking and fixed-tilt systems give more output than E/W tracking systems in December.

Although the net gain depends on the location, the counterbalancing energy yield for summer

and winter holds for any location, as discussed in the next section.

N/S tracking vs. N/S Fixed-tilt Systems

The N/S tracking panels have a higher output than N/S fixed-tilt panels as it can avoid

shading in mornings and evenings and correct for panel tilt for seasonal sun-path variations.

For example, in Fig.  4.5 there is a clear effect of partial shading in Washington D.C. in

December for N/S fixed panels as we can observe the lowered output before 9 am or after 3

pm.

Figure 4.6. Monthly energy yield for various farm designs, namely, N/S Fixed
tilt (Blue), N/S Tracking (Red), E/W Bifacial Tracking (Yellow), and E/W
Monofacial Tracking (Purple).
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4.3.2 Monthly/Seasonal energy yield variation

The monthly energy yield for various PV module configurations is shown in Fig.  4.6 .

Various locations in both the northern and the southern hemispheres are explored here.

During summer months in the respective hemispheres, E/W bifacial solar tracking scheme

performs best, whereas, in the other months, N/S bifacial solar tracking scheme performs

better. One of the important points to note is that N/S bifacial fixed-tilt performs best

during Nov. to Jan. in Stockholm. Here, although higher irradiance is collected at bifacial

modules for N/S solar tracking configuration, higher module temperature lowers its efficiency

as compared to its fixed-tilt counterpart. Moreover, the average monthly energy gains for

Dubai, Washington, D.C., Stockholm, and Sydney, respectively are as follows:

1. E/W tracking vs. N/S tracking: 5.75%, 0.16%,- 3.00%, and 1.08%.

2. E/W tracking bifacial vs E/W tracking monofacial: ∼ 11%, ∼ 15%, ∼ 18%, and ∼

13%.

3. N/S tracking vs. N/S fixed tilt: ∼ 6%, ∼ 5%, ∼ 14%, and ∼ 6%.

The yearly minimum and maximum energy gains are shown in Fig.  4.16 . The minimum

is observed in the winter months and maximum in the summer months of the respective

hemisphere. In terms of energy yield, it is apparent from these results that E/W tracking

would be better near the equator and N/S tracking would be beneficial for higher latitudes.

We have so far used a fixed p/h = 2 for the daily and monthly energy calculations,

however, the same p/h would not generate the maximum energy for all the farm designs due

to the difference in row-to-row shading throughout the day. Thus, for energy maximization

and cost minimization, we need to find the optimum pitch over height ratio (p/h) for specific

farm design, as discussed in the next section.
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4.3.3 Optimum p/h, YY, And LCOEmin

The Pitch of a solar farm – defined as the spacing between the rows of the PV panels – is

an important design parameter. A farm is optimized by first quantifying how yearly energy

yield and LCOE depend on the pitch of a solar farm.

For the daily power output and monthly energy calculations in the previous sections,

we assumed the pitch over height ratio p/h = 2, for all the locations. In practice, higher

p/h improves the energy yield (per panel) due to an increase in albedo light collections and

reduction in mutual shading between the rows of solar panels, see Fig.  4.7 (a).

Figure 4.7. (a) An increasing trend in yearly energy yield with increasing
pitch. The yearly energy yield saturates at higher values of pitch. (b) For a
given value of cost ratio (ML), an optimum pitch provides a minimum LCOE*.
The optimum pitch increases with increase in module to land cost ratio (ML).
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However, once land-cost is brought into consideration (in other words, when the land

is limited), then an optimum value of p/h yields the minimum LCOE. This optimum p/h

is depicted in Fig.  4.7 (b) for an E/W-tracking system at Washington, D.C. We find that

the optimum p/h increases with increasing module-to-land cost-ratio (ML). For a given

module-related cost, a decrease in cost-ratio implies an increase in the land-related costs,

leading to a reduction in the optimum pitch. Moreover, the optimum pitch and the associated

minimum value of LCOE varies with the geographical location.

4.4 Global-scale merits of various farm designs

Given the understanding of power and energy-yield at the four cities across the world,

now we are ready to compare the technologies across the globe. As discussed in Ref. [ 45 ],

however, we must optimize the row-spacing depending on the LCOE-considerations.

In recent years, the ML has ranged from 9 to 15 [ 45 ], [ 136 ]. Therefore, the optimum p/h

for minimum LCOE lies between 2 and 3 for most locations around the world, see Fig.  4.8 (c).

For ML = 12, the global yearly energy yield and minimum LCOE* at optimum p/h are

shown in Fig.  4.8 . (This result led to the default choice of p/h = 2 in Sec.  4.3 .) Nonetheless,

it is preferred that prior to the PV farm deployment, we optimize the farm design through

an analysis of LCOE (proportional to LCOE*) variation with the pitch for each farm site

around the world.

Figure 4.8. Global trends in yearly energy yield (YY), LCOE*, and optimum
pitch/height of an elevated bifacial farm (E = 1 m) for albedo RA = 0.5 and
ML = 12.
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4.4.1 Energy Yield of E-W Tracking Bifacial Solar Farms

Fig.  4.8 (a) shows the yearly energy yield of an E/W tracking bifacial PV farm with

an optimum pitch over height for ML = 12. The yearly energy output per unit panel

height reaches approximately 550 kWh/m for geographical locations close to the equator and

deserts across the globe. These locations receive the highest fractions of direct light and

thus, a tracking system benefits the most at these places. However, for locations with high

diffuse light fraction, i.e., Beijing, Northern Europe, and North America, the yearly yield is

significantly lower, ∼ 200− 300 kWh/m. The E/W tracking PV farms are not advantageous

in these regions. The yearly energy yield in Fig.  4.8 will be taken as a reference for the

comparisons performed in the following sections.

4.4.2 Tracking PV farm vs. fixed-tilt bifacial farm

Let us now determine if a single-axis tracking PV farm should be a preferable choice

of deployment as compared to a fixed-tilt farm at any specific location around the world.

The energy surplus/deficit of a tracking PV farm over a fixed-tilt PV farm depends on the

geographical location, see Fig.  4.9 . The E/W tracking bifacial PV farm outperforms the N/S

fixed-tilt bifacial PV farm by ∼ 45% near the equator and at lower latitudes. The highest

energy gain is observed in desert regions, e.g., Sahara, Atacama, Australian, and Kalahari.

These regions receive a high fraction of direct light irradiance and E/W tracking PV relies on

tracing the direct light, thus leading to increased energy gain. However, for sites with low

direct light fraction and in turn high diffuse fractions, e.g., |latitude| > 45° and Northeast

China, the fixed-tilt bifacial farm is comparable or slightly better in energy gain. Given the

additional land-area needed, higher initial and O&M cost, tracking may not be suitable for

these locations.

Moreover, a comparison between E/W tracking monofacial farm and N/S fixed-tilt bifacial

farm shows that tracking monofacial farm is advantageous only for locations with high

fractions of direct light i.e., |latitude| < 30°, whereas N/S fixed-tilt bifacial farm performs

better for higher latitudes and for regions where the diffuse light fraction is relatively higher.

Fig.  4.13 clearly displays this trend.
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Overall, it will come as no surprise that tracking PV farms are advantageous for locations

with a high direct light fraction while fixed-tilt bifacial farms perform better at sites with the

high diffuse light fraction. Our contribution is to quantify the energy gain associated with

various configurations of optimized solar farms.

Figure 4.9. Percentage gain in yearly energy yield in East-West tracking
bifacial PV farm compared to North-South facing fixed-tilt bifacial farm. The
energy gain for E/W tracking is highest near the equator and in the deserts
around the world whereas fixed-tilt performs slightly better at very high lati-
tudes. For this calculation, the albedo RA = 0.5.

4.4.3 E/W vs. N/S Tracking bifacial farm design

Next, we explore a conventional E/W single-axis tracking PV farm design with an

N/S single-axis tracking one. In contrast to the hourly tracking of direct sunlight in an

E/W tracking PV, an N/S tracking farm tracks the seasonal change in sun path (solar

elevation/zenith angle) and varies comparatively less during the day. Since N/S fixed-tilt

bifacial farm generates more energy output as compared to an E/W tracking farm at higher

latitudes, we expect an N/S tracking farm to perform even better than a fixed-tilt bifacial

farm.

Fig.  4.10 displays a worldwide comparison between an E/W tracking farm and an

N/S tracking farm. As expected, we observe that N/S tracking farm to achieve higher

energy output than E/W tracking farm for locations with high diffuse light fraction, e.g.,

Northern Canada and Siberia. Moreover, in comparison to E/W tracking farm, the (negative)
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percentage yearly energy gain is higher for an N/S tracking farm (Fig.  4.10 ) than an N/S

fixed-tilt bifacial PV farm (Fig.  4.9 ) for higher latitudes. Thus, with ∼ 15% energy gain,

E/W single-axis tracking PV farm is a better design for locations with |latitude| < 50° and

regions with a high direct light fraction. An N/S single-axis tracking farm on the other hand

shows ∼ 5% higher energy yield than the E/W tracking design for sites with |latitude| > 50°

and those with a high diffuse light fraction.

Figure 4.10. Percentage gain in yearly energy yield in East-West tracking
bifacial PV farm compared to North-South tracking bifacial PV farm. The
energy gain for E/W tracking is highest near the equator and in the deserts
around the world whereas N/S tracking performs better at very high latitudes.
For this calculation, the albedo RA = 0.5.

4.4.4 Does Land-type Matter for Energy Yield?

In the previous sections, we analyzed the global energy yields for various tracking and

fixed-tilt PV configurations. However, it is interesting to examine these solar farm designs in

the context of the type of land of the installation site. This investigation may be especially

useful for the new range of agro-photovoltaic (agrivoltaics) applications around the world.

For example, it has been recently claimed that croplands in moderate climatic conditions are

preferred locations for solar farms as well [ 101 ].
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Figure 4.11. (a) Yearly energy yield of E/W tracking bifacial PV farm over
various types of land. (b) A map of the 17 land types corresponding to the
y-axis in (a). “0” corresponds to “Water” while “16” refers to “Barren or
sparsely vegetated” land type. Albedo data is acquired from NASA MODIS
[ 137 ]–[ 139 ].

In addition to the model described in Section  4.2 , we further embed a monthly-average

value of albedo for all the land types around the world. The global monthly albedo data is
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acquired from NASA MODIS [ 137 ]–[ 139 ] and yearly-average value of albedo for the 17 land

types is tabulated in the appendix Table  4.3 . Fig.  4.11 summarizes our result of the analysis

succinctly. We consider 17 types of land as shown on the y-axis of Fig.  4.11 (a) – the data

was collected from Ref. [ 140 ]. These land types are also marked on the world map in Fig.

 4.11 (b), where “16” corresponds to “Barren or Sparsely Vegetated” land, and “0” refers to

“Water”. We observe that, on average, maximum energy yield is expected for the land types

“2” (Evergreen Broadleaf Forest), “4” (Deciduous Broadleaf Forest), and “9” (Savannas).

However, the land types (2 and 4) are rich in biodiversity and we should avoid installing

PV farms there to preserve ecological balance. “Savannas” (9) and “Barren lands/Deserts”

(16) show good potential for E/W tracking farm deployment in terms of yearly energy yield.

Land type “3” (Deciduous Needle leaf Forest) and “15” (Snow and Ice) are the least favorite

for tracking E/W bifacial PV.

In summary, we can infer from Fig.  4.11 that installing E/W tracking bifacial PV farms

in parts of Deserts, and Savannas are highly viable. The regions of croplands and grasslands

have medium potential for energy yield (E/W tracking) and thus can be combined with

agricultural usage and animal husbandry.

4.5 Summary and Conclusion

In this chapter, we have investigated the energy yield and comparative performance of

various solar farm design configurations such as single-axis tracking vs. fixed-tilt and bifacial

vs. monofacial. Our modeling framework combines the irradiance model, light collection

model, temperature-dependent efficiency model, and a single-axis tracking model to estimate

the energy yield of a solar farm. The tracking algorithm constraints the panel tilt angle to

vary such that the angle of incidence is 0° i.e., the direct light falls normally on the panel.

These models are simulated for locations worldwide that finally output global maps that

quantify the percentage change in energy yield while comparing various farm designs.

Our analysis in this study leads to the following key conclusions:

• An E/W single-axis tracking bifacial PV farm generates up to ∼ 45% higher

yearly energy yield than an N/S facing fixed-tilt bifacial PV farm for locations
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at |latitude| < 30° Fig.  4.9 . A higher fraction of direct light leads to higher

energy gain. An E/W tracking monofacial farm vs. fixed-tilt bifacial farm

shows similar global trends with maximum energy gain reaching ∼ 10% near

the equator (Fig.  4.13 ). However, fixed-tilt bifacial farm outperforms tracking

monofacial farm by ∼ 5− 15% for |latitude| > 30° (Fig.  4.14 ).

• As shown in Fig.  4.10 , an E/W single-axis tracking bifacial PV farm tracks the

hourly movement of the Sun whereas an N/S single-axis tracking bifacial farm

mostly tracks the seasonal/monthly movement of the Sun. The former provides

up to ∼ 15% more energy for locations close to the equator (|latitude| < 50°)

and the latter generates up to 5% for locations close to the poles (|latitude| >

50°).

• Monthly/Seasonal variation in energy yield shows that the E/W tracking

produces higher energy output in summer months whereas N/S tracking is

favorable in winter months due to a southward inclination of the solar path

in the Northern hemisphere and vice versa for the Southern hemisphere, as

seen in Fig.  4.6 .

• On an average, maximum PV energy yield is achieved at “Evergreen and

Deciduous Broadleaf Forests” land types. However, to preserve the biodiversity

at these forests, it would be ideal to install E/W bifacial tracking PV on the

next best land type for high energy yield, namely, “Deserts” and “Savannas”,

as illustrated in Fig.  4.11 .

• An optimum pitch over height ratio yields minimum LCOE of an E/W tracking

farm. The value of optimum p/h increases with the module-to-land cost-ratio

(ML) and varies with the geographical location of the farm. Whereas the

yearly energy of the farm increases monotonically with p/h and saturates for

very high values of pitch, as shown in Fig.  4.7 . For a typical value of ML = 12,

the optimum p/h lies between 2 and 3, as seen globally in Fig  4.8 .
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Figure 4.12. In conclusion, EW tracking bifacial farms outperform NS tracking
bifacial farms for |latitude| < 50° and vice-versa for |latitude| > 50°.

Fig.  4.12 summarizes our key conclusion that an E/W single-axis tracking bifacial PV

farm is the best PV farm design for most regions (|latitude| < 50°) around the world. The

energy gain with respect to a fixed-tilt bifacial or an N/S tracking farm varies according to

the incident direct light fraction and the solar path at the geographical location of the solar

PV farm. Moreover, for minimizing LCOE of a farm an optimum pitch can be used according

to the estimated essential module to land cost ratio (ML) for the deployment site. Thus, in

terms of energy maximization, a bifacial tracking PV would be a worthwhile farm technology

in most locations of the world.

In principle, the results can be easily generalized to any bifacial module technology with

appropriate modification of front and backside efficiency. Thus, this study can be extended

to a quantitative investigation of location-specific advantages of different solar cells. Our

conclusions about the latitude-dependent choice of various farms are very general and should

apply to various solar cell technologies.

As future applications of our model beyond the scope of this study, one can consider the

possibility of using bifacial PV for AgroPV applications, for potential reduction in cost due to

reduced height associated with vertical and tracking bifacial modules [ 141 ]–[ 143 ]. Our model

can be extended to include various types of crop-specific tracking algorithm to control shading

and perform co-optimization of the farm design. The role of bifacial PV in floating solar

is unclear. Also, next generation PVK-HIT tandem solar cells could improve the efficiency
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further [ 104 ], [ 144 ], [ 145 ]. Moreover, the reliability and lifetime are important concerns,

especially regarding the mechanical failure of the trackers [  18 ], [ 146 ]–[ 148 ]. The practical

viability of solar tracking vs. power-tracking are not fully understood. Storage-integrated

solar farming is another important aspect to consider in worldwide optimization of farm

design. Finally, spectral dependence of albedo can slightly modify our numerical results,

however that will not change the conclusions. The static global maps displayed in this study

can be explored interactively to find data point values for each location using DEEDS – a

web-based platform for scientific research [ 149 ]–[ 151 ].

4.6 Appendix

4.6.1 Monofacial E/W tracking vs. N/S fixed bifacial

Figure 4.13. Percentage change in yearly energy yield between an EW tracking
monofacial PV farm and a NS facing fixed-tilt bifacial farm.
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4.6.2 Bifacial gain for EW tracking PV farm

Figure 4.14. Percentage change in yearly energy yield between an EW tracking
bifacial PV farm and an EW tracking monofacial farm.

Bifacial Gain = Y Ybifacial − Y Ymonofacial
Y Ymonofacial

× 100 (4.15)

4.6.3 E/W Tracking PV temperature dependence

Figure 4.15. Difference in yearly yield estimation for E/W tracking bifacial
PV farm with and without temperature-dependent efficiency model.

129



4.6.4 Monthly energy gain between various PV farms

Figure 4.16. Difference in monthly energy yield estimation between combi-
nations of E/W tracking, N/S tracking, and N/S fixed tilt bifacial PV farms.
The maximum values are denoted by an Asterix (*) and minimum by a dot (.).
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4.6.5 Yearly average albedo for various land types

Table 4.3. Yearly average albedo for various land types

Land Cover Type [ 140 ] Yearly Average Albedo [  137 ]

Water (0) 0.1

Evergreen Needle leaf Forest (1) 0.174

Evergreen Broadleaf Forest (2) 0.124

Deciduous Needle leaf Forest (3) 0.235

Deciduous Broadleaf Forest (4) 0.128

Mixed Forests (5) 0.153

Closed Shrublands (6) 0.139

Open Shrublands (7) 0.277

Woody Savannas (8) 0.135

Savannas (9) 0.141

Grasslands (10) 0.229

Permanent Wetland (11) 0.228

Croplands (12) 0.157

Urban and Built-Up (13) 0.134

Cropland/Natural Veg. Mosaic (14) 0.145

Snow and Ice (15) 0.765

Barren or Sparsely Vegetated (16) 0.299
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Table 4.4. Glossary of symbols used in this study.

Parameters Definition

TC Temperature Coefficient (%/°C)
Ta Ambient Temperature (°C)
TM Module Temperature (°C)
Pin/Pout Input Optical Power Collected by the Panel / Output Electrical

Power (W/m2)
η Power conversion efficiency (%)
I/Irradiance Input optical power over the plane of array (W/m2)
a,b Fitting parameters in the King’s model (no unit, s/m)
WS Wind Speed (m/s)
cT Correction term used for the daily average temperature data
τ Transmittance of glazing (no unit)
α Absorbed fraction (no unit)
uL Heat loss coefficient (W/m2K)
γ Coefficient of sub-band power contribution to heating (No unit)
θZ Zenith Angle (degrees)
θF Angle of incidence at the front face of the panel
Pitch (p) Row-to-row distance between the bottom edges of consecutive

arrays (m)
Height (h) Height of the panel (m)
E Elevation (m)
β Tilt angle (°)
γA Azimuth angle from measure from the North(°)
RA Albedo (no unit)
C/C Cost / Cost per unit meter
M Number of rows/arrays of modules
Z Number of modules in an array
D Yearly degradation rate in energy conversion (%/year)
Y Lifetime of a farm (in years)
YY Yearly Yield of a PV farm (kWh/m)
R Discount rate (%)
F Fitting parameter in Alam-Sun model, which effectively accounts

for module assembly and its related effects (like transmittance,
glazing, heat loss coefficient)

132



Table 4.5. Glossary of symbols used in this study.

Sub/Super-scripts Definition

a Ambient
Alb Albedo
bos Balance of system
bot Back side
DHI Diffuse Horizontal Irradiance
diff Diffuse
dir Direct
dl Differential element along the height of a panel
DNI Direct Normal Irradiance
F Front
f Fixed cost
Farm PV Farm
GHI Global Horizontal Irradiance
Gnd Ground
in Input
l/L Land
M, cell cell/module
om Operation and maintenance
Panel PV panel
PV Photovoltaic
rv Residual value
STC Standard testing condition
sys System
top top side
Total Total
Z Zenith
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5. MACHINE LEARNING ALLOWS SYNTHESIS AND

FUNCTIONAL INTERPOLATION OF COMPUTATIONAL

AND FIELD-DATA FOR WORLDWIDE UTILITY-SCALE PV

SYSTEMS

In the previous chapters we comprehensively modeled a tracking bifacial solar PV farm,

analyzed the trends in yearly energy yield and LCOE, and found optimum designs for

each location around the world. Now, since there is an accelerated pace of installations

of variety of optimally-designed utility-scale solar farms across the world, therefore, the

field data are streaming in from existing plants. The location-specific field data can be

used to validate these highly sophisticated physics-based numerical models and software

for a solar PV system over its lifetime. By necessity, the results of numerical models are

specific to a finite number of arbitrarily chosen geographical locations and require substantial

computational resources for a worldwide energy estimation, making it difficult to extrapolate

the results to new locations. In this chapter, we demonstrate a novel machine learning-based

tool that reduces the computational time by 4-orders of magnitude with an accuracy of

R2 ∼ 0.99. The tool utilizes the simulation-derived utility-scale solar PV energy yield to

functionally interpolate the location-specific inputs and energy yields. This compact, efficient,

and versatile representation will transform how large-scale modeling is used to predict the

energy yield of various farm configurations for any location around the world.

5.1 Introduction

Fast-paced growth in the demand and supply of solar PV systems – residential, commercial,

and utility-scale – has accelerated the deployment of PV systems around the world. Parallel

to this field deployment, there has been a concerted effort to model emerging PV systems

to estimate their energy yield and levelized cost of energy (LCOE). The modeling effort

is particularly important because there has been a proliferation of farm topologies (e.g.,

monofacial, vertical and tilted bifacial, E/W and N/S tracking systems, etc.) available

for deployment. To make this comparison feasible, several models and software have been
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developed to predict the energy yield over the lifetime of the PV farm [ 39 ]. SunPower Corp.

has developed EnergyLink that constantly monitors various types of PV systems [ 40 ]. Sandia

National Labs has created a library of codes and software called PVLib that can be used for

PV system analysis [ 41 ]. National Renewable Energy Laboratory (NREL) provides Bifacial

Radiance for energy estimation of bifacial PV systems and RdTools for PV degradation

analysis [ 42 ], [ 43 ]. Driesse et al. [ 44 ] have performed a comparative analysis on several

module efficiency models for energy prediction and rating. Similarly, the Purdue Group has

designed physics-based numerical models for energy yield and LCOE calculation [ 45 ], [  46 ].

These sophisticated models can not only accurately predict the energy yield and LCOE,

but they can also find the optimum design of standalone PV modules and utility-scale solar

PV farms. Due to their computational and algorithmic complexities, however, the existing

models require significant computational resources to calculate the energy yield of a specific

farm configuration located anywhere in the world, even for a relatively coarse grid of latitudes

and longitudes [ 45 ]. Moreover, it is often difficult to validate the model prediction because

the location of the actual farm may not coincide with the simulation grid. Unfortunately,

traditional nearest-neighbor or spline-based interpolation techniques cannot be used because

the weather and terrain can vary dramatically over few miles, let alone several degrees of

latitude/longitude (coarse grid).

The emerging field of physics-based machine learning allows us to tackle the complexity

and computation time issues of the PV simulation model. Physics-based machine learning

utilizes the already existing physical/empirical models in conjunction with machine learning

tools to perform symbolic regression [ 47 ], for efficient compact modeling [ 48 ], for forecasting

complex dynamical phenomena [ 49 ], to improve the accuracy of ML models in data-deprived

applications [ 50 ], [ 51 ], and for reduction in computation time, as we will see in this chapter.

A survey of physics-guided and hybrid physics-ML models is presented in Ref. [ 52 ]. The

following reasons led us to explore a hybrid physics-ML model for estimation of worldwide

energy yield of solar PV farms.
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1. A recent IEA-PVPS report [  53 ] informs us that there are 15-16 models with various

degrees of accuracy. ML will make this duplication of effort unnecessary, saving

enormous time in code development.

2. Even with a debugged code, it may take years to generate highly refined results that

can be used to develop policies. ML will do it in minutes.

3. The model will show that if one uses 2 locations per latitude, we can create a

world-map. The ability to accurately perform worldwide prediction from scarce data

depends on latitudinal-diversity of the information, not the number of datapoints

themselves. It has implications of creating databases and validation protocols (Not

all locations are the same).

4. An earth-based modeling can be functionally extrapolated to other planets, giving

an approximate prediction of the energy yield. This transfer learning will become a

validation tool for solar simulators used for planetary missions .

In this study, we develop a novel functional interpolation tool based on machine learning

that can accurately estimate the yearly energy yield (YY) and effective levelized cost of

energy (LCOE*) [  45 ] in minimal computation time. As a new and potentially transformative

approach to computational modeling, this tool addresses many challenges of traditional PV

modeling, namely, the need for supercomputing resources, expertise in scientific computing,

long run-time, etc. First, as shown in Fig.  5.1 , we use the advanced computational models to

calculate the energy yield for a coarse grid of locations (say 60 lats. x 20 longs.) around the

world. This high-quality, high-precision data will serve as the training dataset for the ML

algorithm. Second, the neural network tool is trained with location-specific weather inputs

i.e., global horizontal irradiance (GHI), ambient temperature (Tamb), and clearness index (kt);

and the calculated outputs: YY and LCOE*. The artificial neural network then absorbs this

data to generate a functional relationship (f) between the inputs and outputs. Finally, we

validate the tool/function generated with a test dataset and find it to be remarkably accurate

in predicting the output for any location around the world. Additionally, this tool reduces
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the computational time by four orders of magnitude! The tool is available on DEEDS – an

online data platform for scientific research [  149 ], [  151 ].

Figure 5.1. A schematic describing a machine learning tool as a functional
extension to the sophisticated physics-based numerical model for energy yeild
and effective levelized cost of energy estimation.

5.2 Methodology

5.2.1 Data collection/synthesis

Data collection is the first step in the analysis of a problem. Since machine learning

is data-intensive, data collection and pre-processing is an important pre-requisite. In this

study, we aim to estimate the energy yield of a solar farm at any location around the world.

To this end, data can be collected from already deployed utility-scale solar PV farms or it

can be generated/synthesized using sophisticated energy estimation numerical models. For

this study, we will focus on the latter method of synthesizing data using already available

physics-based numerical models [ 45 ], [ 46 ]. These models have been previously validated for

standalone PV modules (row) as seen in Table 1 of Ref. [ 26 ] and few rows of vertical bifacial
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PV modules. Thus, the validation of our numerical models can be extended to utility-scale

large solar farms as well. Following are the input parameters required for these models: (i)

Latitude and longitude of the geographical location, (ii) Global Horizontal Irradiance (GHI)

at that location, (iii) Ambient temperature (Tamb) at that location, (iv) Clearness index

(kt) at that location. Monthly average values of GHI, Tamb, and kt are derived from the

satellite-based NASA Surface meteorology and Solar Energy (SSE) data archive [ 69 ]. A

higher temporal resolution of GHI, Tamb, and kt increases the accuracy of estimation. Next,

we select the physical dimensions of the solar farm i.e., spacing between the rows, height

of the PV panel, and ground clearance are defined. Then, simulating the PV farm model

delivers us the following the outputs: (i) Yearly energy yield (YY) of the solar PV farm, (ii)

Effective levelized cost of energy (LCOE*), (iii) Optimum tilt angle of fixed-tilt solar PV

farm.

We run these simulations for 1200 location grid of the world with 60 latitudes and 20

longitudes. Fig.  5.2 displays the trend in yearly energy yield (YY) with the input parameters

for all these locations. It appears that YY has a linear relation with GHI and kt, whereas a

non-linear dependence on latitude and ambient temperature. However, the combined effect of

all the input parameters on YY is complex and a straight-forward interpolation is impossible.

Next, we format input and output data according to the machine learning tool used for the

functional interpolation. This interpolation method will offer an accurate YY and LCOE*

estimation given the input parameters for any location around the world. We investigate and

discuss two tools for the machine learning-based estimation in the next sections.
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Figure 5.2. Variation of yearly energy yield (YY) with 4 input parameters:
Latitude, Global Horizontal Irradiance (GHI), Ambient temperature(Tamb),
and Clearness index (kt). True response is simulated using the physics-based
numerical model while predicted response is the output of the regression learning
model.

5.2.2 Machine learning tools

Method 1: Regression Learner

We start with the Regression Learner application (app) in the MATLAB software package.

This app requires the data to be formatted into a columned format. Thus, we format the

1200 location data in the required format. Next, we randomize and split the data into a

training set (1000 locations) and a testing set (200 locations). Once the regression learner
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app is evoked and the data is loaded, we need to include all the inputs and only one output in

a matrix variable column-wise. Finally, we can try various algorithms/models to find the best

one in terms of least root mean square error (RMSE) and R-squared (R2) close to 1. For our

dataset, we find the Gaussian Process Regression to be the most effective fitting algorithm

with an RMSE of 7.03 and R2 = 0.99 (see Fig.  5.3 ). Finally, we export this trained model to

use as an interpolating function.

Figure 5.3. (a) The regression learner graph plots the predicted vs. true
response for yearly yield with R2 = 0.99 and RMSE = 7.03. The black line
signifies an ideal model that predicts the outputs with 100% accuracy i.e.,
R2 = 1. (b) The Neural Network graph shows the data points plotted with the
fitting line. R values of ALL – training (70%), validation (15%), and testing
(15%) – data sets together are 0.99 signifying high accuracy of the model.

Table 5.1. Results of the trained neural network.

No. of samples/datapoints MSE R

Training (70%) 840 18.412 0.999639

Validation (15%) 180 17.535 0.999634

Testing (15%) 180 19.382 0.999604
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Method 2: Neural Networks

The second, and more powerful tool, that we employed is the Neural Network Fitting

tool (nftool) in the MATLAB software package. As the name suggests, the tool engages

artificial neural networks to find the relationship between inputs and outputs. For this tool,

we can organize the data in both column and row-wise formats. The inputs and outputs

are in two separate matrices. In “nftool", we can include multiple output parameters in the

same row-wise matrix. Next, we select 70% of the data (1200 locations) for training, 15%

for validation, and 15% for testing. We choose 10 hidden layers of neural network for this

problem and the Levenberg-Marquardt algorithm for training the neural network. Table I

below, shows the results of the training, validation, and testing with an R ∼ 0.999. Finally,

we export this trained neural network as a working tool that can substitute the physics-based

numerical model for estimation of yearly energy yield and effective levelized cost of energy.

5.2.3 Mechanism of the NN-model

The mathematics behind the working of neural networks is well-described in machine

learning literature. With regards to our PV dataset, for training the Feed Forward Neural

Network, we organize the input data, multiply it with weights and add biases. The processed

input data is then passed through a hidden layer of neurons that are essentially non-linear

mathematical functions e.g., tanh, sigmoid, ReLu etc. The output of the hidden layer is

then passed through an output layer of neurons that comprise of linear functions to yield the

predicted output. The predicted output data is then recursively compared to the actual data

by the machine learning algorithm (Levenberg-Marquardt) to optimize the afore-mentioned

weights and biases to train an accurate model. Fig.  5.4 (a) demonstrates a schematic of this

training process. Once the model is trained to produce accurate results, it can be deployed

in real world for predicting output for unknown scenarios.
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Figure 5.4. (a) A schematic of a neural network with input data, hidden layer
of non-linear neurons, output layer of linear neurons, and the predicted output.
(b) Plots displaying output after each step.

For the PV dataset that we have used, the following equations describe the complete

process shown in Fig.  5.4 .

Input mapping (with M input parameters):

xmapj = (xj − x0,offset)/x0,gain + x0,min (5.1)
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Hidden layer (with N non-linear neurons):

yhiddeni = tanh
 M∑

j

(
w1j x

map
j

)
+ b1i

 (5.2)

Output layer (with 1 linear neuron):

ymap =
N∑
i

(
w2i × yhiddeni

)
+ b2i

)
(5.3)

Input mapping (with M input parameters):

ypredict = (ymap − y0,min) /y0,gain + y0,offset (5.4)

Fig.  5.4 (b) (top left) shows the mapped inputs (xmapj ) using the mapping coefficients

(x0’s). We observe that the inputs are mapped to values between 0 and 1. Further, one of

the inputs (Lat) is taken as the basis and is plotted linearly while other inputs are mapped

onto the basis input. These mapped inputs for our dataset (1200 points) look approximately

symmetric around the middle point (600th point). This middle point is the Equator – the

left of it is the southern hemisphere and the right is the northern hemisphere. Thus, some of

the neurons capture this symmetry as seen in the output (yhiddeni ) of the 4-neuron hidden

layer in Fig.  5.4 b (top right). A weighted combination of the output of neurons from the

hidden layer is then passed through the linear neuron in the output layer to yield the mapped

output (ymap) that ranges between [0,1], see Fig.  5.4 b (bottom left). Finally, the mapped

output is reverse mapped (or unmapped) using the reverse mapping coefficients (y0’s) to

give the predicted output parameter (ypredict) of the neural network, as shown in Fig.  5.4 (b)

(bottom right). While training the model, the algorithm calculates the error between the

predicted output and the actual output and then the training algorithm optimizes the values

of weights (w’s) and biases (b’s) to minimize the error. The trained model can thence be

used for predicted test or field data. Next, we will look at the results of the functional

interpolation.
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5.3 Results and Discussions

To assess the accuracy of the tools/functions developed using regression learning and

neural networks, we compared the actual and predicted outputs. Actual outputs are the ones

simulated using the physics-based numerical models, whereas the predicted outputs are a

result of the trained models from the two above-mentioned machine learning tools.

Fig.  5.2 demonstrates two aspects of this study. First, it shows an independent relationship

between the response i.e., yearly energy yield (YY), and the input parameters as described

in the previous section. Second, it compares the actual (true) response from the numerical

model with the predicted response of the trained regression learning model. The accuracy

of the model can be observed from Fig.  5.3 (a) where predicted and true responses are

plotted for energy yield (YY) estimation. The linear black line implies an ideal model with

an accuracy of R2 = 1. Fig.  5.3 (a) gives us the confidence that the model trained using

the regression learner app can be used for an accurate energy estimation for any location

around the world. The training, validation, and testing results of the model created using

the neural network tool are shown in Fig.  5.3 (b). An R-value of approximately 0.99 for all

the stages of model development displays the accuracy of the model. Remember that we

used all the outputs at once to train the model. Thus, the neural network is highly potent

in generating a function/relationship between the 5 input variables (Lat, Long, GHI, Tamb,

and kt) and the 3 output variables (Y Y, LCOE∗, and βopt). Finally, we export and save the

finalized model that can be easily deployed as a standalone or embedded tool for functional

interpolation, and accurate estimation of yearly energy yield and effective levelized cost of

energy of a utility-scale solar PV farm. Fig.  5.5 displays the overall improvement in the

10000-point interpolated world map with four orders of magnitude in computational speedup

and with new insights not available in the original data. The tool is available on the Digital

Environment for Enabling Data-Driven Science (DEEDS) online platform; Fig.  5.6 shows an

interactive world map.
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Figure 5.5. Estimated yearly energy yield of a solar PV farm using (a) physics-
based numerical models with a coarse grid of 1200 points that requires ∼10
hours of computation time on a workstation with a 20-core node. (b) Neural
network-based functional interpolation of 10000 points computed within a
second using a single core personal computer.
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Figure 5.6. A screenshot of the DEEDS online platform displaying an inter-
active world map. DEEDS is an online platform that preserves end-to-end
scientific research with computation and plotting capabilities.

5.3.1 Linear geographical vs. functional interpolation

In this section, we compare the two methods of interpolating (predicting) YY using

data for 100 (or 1200) geographical locations, namely, linear geographical interpolation

vs. functional interpolation. The first method involves creating a mesh grid of linearly

interpolated latitudes and longitudes. This linearly interpolated mesh grid is further used

to interpolate YY for 1200 locations to 10000 locations. The interpolated YY is labeled as

Y Y Linear
geo in Fig.  5.7 . The second method employs machine learning (Neural networks) to

predict YY for 10000 locations by creating a functionally interpolated mesh grid of all the

input parameters namely, lat/long, GHI, Tamb, and kt (not just latitude and longitude). The

predicted YY using this method is labeled as Y Y NN
func in Fig.  5.7 . The comparison between

predicted YY for 10000 geographical locations using these methods is shown in Fig.  5.7 . It is

evident from the location-dependent percentage error (∼ 20− 60%) in YY prediction that

the method of geographical linear interpolation performs erroneous calculation. Whereas,

NN-based functional interpolation is the more accurate strategy since it utilizes all the input

parameters for YY interpolation. Moreover, we further observe that the percentage error

is higher for regions with high direct light fraction e.g., Kalahari, Great Basin, and other
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deserts around the world. This is because functional interpolation also accounts for GHI,

Tamb, and kt for all the locations.

Figure 5.7. A comparison between the previously used linear geographical
interpolation and NN-based functional interpolation shows a percentage error
ranging from ∼ 20% to 60%. Evidently, functional interpolation is vital for
accurate prediction.

5.3.2 Cross-validation: Two algorithms. Threshold number of sample points
for high model accuracy

Given that functional interpolation is a more accurate scheme, we would like to explore

the threshold number of sample/data points required to develop an accurate NN-based YY

prediction model. The metric that we use for threshold evaluation is RMSE (Root-mean-

squared error), which is estimated using two cross-validation algorithms. The first algorithm

takes NS (say 1200) number of sample points, i.e., inputs and output (Y Yactual), to train the
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NN. The trained NN model is then used to predict YY for 10k input data points. Finally,

using the 10000 predicted Y Y NN
predict values, we find YY values for the original 1200 sample

points and compare the extracted vs. original YY values to find the RMSE (Algo 1). The

second algorithm skips the middle step in the previous algorithm, i.e., we do not predict

10000 points. Instead, we use the 100 (or 1200) sample points (inputs and output) to train

the NN model and then use only the input values of the same 1200 locations to predict

Y Y NN
predict as an output. In Fig.  5.8 , the root-mean squared error (Algo 2) is the error between

the predicted output using algorithm 2, Y Y NN
predict and the actual 1200 simulated values of

YY, Y Yactual.

Figure 5.8. The plot displays the root mean squared error varying with the
number of input samples used as input to train the neural network. A critical
number of 100 samples is sufficient to train an accurate model for prediction.
Algorithms 1 and 2 are described in the main text.
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Fig.  5.8 shows the results (RMSE) of the two above-mentioned cross-validation algorithms

as a function of number of samples (NS). We find that NS=100 is the critical value of samples

required to train a fairly accurate NN model for YY prediction.

Figure 5.9. The global map demonstrates the ability of the NN-based in-
terpolation method to be used for geographical extrapolation. We used the
data-points from North and South America to train the neural network for
YY prediction. The trained model is then used to predict YY for the rest of
the world. When the predicted and actual values are compared, we observe a
highly accurate prediction within 10% of actual YY.

5.3.3 Geographical extrapolation: NA/SA to world

Hitherto, we have seen the power of NN to perform functional interpolation. Subsequently,

the NN-based functional interpolation can be applied to geographical extrapolation as well.

To observe this, we train the model with ∼ 400 data points from North and South America

(NA/SA) and then predict YY for all (1200) the locations around the world. A comparison

between the predicted YY and actual is displayed on the world map in Fig.  5.9 . Since we

made use of the NA/SA data points to train the model, thus the prediction for NA/SA is

accurate with a ratio Y YNN/Y Yactual ≈ 1. Interestingly, however, the prediction for rest
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of the world also shows reasonable accuracy with a ratio between 1 to 1.1, i.e., the error in

prediction is less than 10%. In fact, most of the predictions lie within 5% of actual value.

The geographical extrapolation of the NN model can be reasoned out as follows. The

input variables (Lat, GHI, Tamb, and kt) except longitude (long) exhibit a clear trend with

the output (YY), and these are already accounted for in the trained model. The NN model

creates a functional map/relationship between these input parameters and the output (Fig.

 5.10 ). Since the trained model already knows about the functional form, thus a geographical

extrapolation would still be part of the already learnt functional interpolation. Hence, NN

model’s functional interpolation using NA/SA data can perform a geographical extrapolation

for rest of the world.

Figure 5.10. The correlation plot shows the individual relationships and the
respective R-values of the input (Lat, Long, GHI, Tamb, and kt) and output
variables (YY) with each of the other. A functional (non-noisy) correlation
between output and input variables improves the accuracy of the trained neural
network (NN).
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5.3.4 Generalized Yearly Energy Yield Tool

In the previous sections, we have observed the accuracy of the PVML model for YY

prediction – functional interpolation and geographical extrapolation – of a specific PV farm

design worldwide. The specific farm design meant a single value of physical parameters,

viz. elevation, row-spacing, albedo, was used. Now, we will show the exceptional ability of

neural networks to predict YY of any farm design around the world. Again, we start with

collecting/synthesizing worldwide data for training the NN. As shown in Fig.  5.11 , however,

this time we include several different values of elevation (0.2, 0.5, 1, and 1.5 m) and albedo

(0.2, 0.5, and 0.7) to cover the entire 2D space of practical values used in deployed PV farms.

An array of 1000’s of data points is simulated and fed to the NN tool for training. The

trained model has an R value of 0.999 and MSE = 9.5 as shown in Table II below.

Table 5.2. Results of the trained neural network for a generalized PV system.

No. of samples/datapoints MSE R

Training (70%) 5880 9.548 0.99929

Validation (15%) 1260 9.788 0.99927

Testing (15%) 1260 8.620 0.99936

The trained NN model with 10 neurons in a single hidden layer can accurately predict

YY for various farm designs.
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Figure 5.11. Yearly yield is simulated for practical values of albedo and
elevation above the ground. This covers the practical 2-D space for prediction
of all values of albedo and elevation, in addition to the aforementioned inputs
i.e., lat/long, GHI, Tamb, and kt.

This method of employing machine learning for functional interpolation can be further

used to find levelized cost of energy (LCOE) and optimum farm designs (optimum tilt angle,

optimum row-spacing etc.).

5.4 Conclusion

In this chapter, we demonstrate the methodology and develop a tool to perform a

functional interpolation of yearly energy yield and effective levelized cost of energy of any

utility-scale solar PV system. The tool requires a coarse grid (1200 locations around the

world) of geographical (lat, long), weather (global horizontal irradiance, ambient temperature,

and clearness index) data (inputs), and simulated or field-derived energy yield (output). The

data is fed into a machine learning tool to train a predictive model. We demonstrate the

results of two different tools namely, regression learner tool and neural network tool. The
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models trained using the Gaussian Process Regression algorithm in the regression tool and

Levenberg-Marquardt algorithm in the NN tool. Both models show high accuracy with

R2 = 0.99 and RMSE = 7.03. Once the machine learning model is trained and tested, it

can be used to accurately predict the yearly energy yield for any specific location around the

world in a matter of seconds.

Employing the trained model, we showed that the percentage error between a simple

linear geographical interpolation and NN-based functional interpolation can range from

∼ 20 − 60% for different regions worldwide. Moreover, we found that the critical number of

sample points required for a reasonably accurate (R2 = 0.99) prediction is NS=100. Further,

we investigated the power of NN-based models to accurately predict YY at an extrapolated

geographical location within 10% error margin. Finally, we generalized the NN-model for all

types PV farm designs by including various values of physical attributes of a PV farm, for

example, elevation, row-spacing, albedo, and bifaciality.

In conclusion, we demonstrated a machine learning based scheme that allows an accurate

functional interpolation of simulated and field data for utility-scale solar PV farms. Starting

with only 100 actual field data points, the tool can calculate the yearly energy yield of a

PV farm deployed at any of the 10000 (or 1 million) geographical sites globally with very

low computational times (∼ seconds). This methodology can be further used to predict

several other PV farm-related quantities such as levelized cost of energy, optimum tilt

angles, degradation rates, lifetime etc. Depending on the problem statement, however, the

machine learning based tools may require higher quantity and good quality of field data for

experimental validation. We would encourage the PV community to develop a strategy to

acquire, store, and organize the PV farm data in order to perform precise predictions using

very few data points.
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6. THERMODYNAMIC LIMIT OF SOLAR TO FUEL

CONVERSION FOR GENERALIZED

PHOTOVOLTAIC-ELECTROCHEMICAL SYSTEM

  

Daily and seasonal variability of solar irradiation poses a major hurdle to the widespread

adoption of photovoltaic systems. An integrated photovoltaic (PV)-electrochemical (EC)-

storage system offers a solution, but the thermodynamic efficiency (ηsys) of the “ideal”

integrated system and the optimum configuration needed to achieve the limit are known

only for a few simple cases. Moreover, these limits are often derived through complex

numerical simulations. In this chapter, we show that a simple, conceptually-transparent

and physically-intuitive analytical formula can precisely describe the ηsys of a ‘generalized’

PV-EC integrated system. An M-cell PV module of N-junction bifacial tandem cells is

illuminated under S-suns mounted over ground of albedo R. There are K-EC cells in series,

each defined by their reaction potential, exchange current, and Tafel slope. We derive the

optimum thermodynamic limit ηsys(N,M,K,R, S) for all possible combinations of a PV-EC

design. For a setup with optimal-(M,K) and large N , under 1-sun illumination and albedo

= 0, the ultimate limit is ηsys ∼ 52%. A comparison of our results with experimental results

published by various groups worldwide suggests opportunities for further progress towards

the corresponding thermodynamic limit.

6.1 Introduction

Solar energy is an important source of clean, and renewable energy. There has been

extensive investment, research and development in this field with the objective of maximizing

efficiency and output power from solar cells (device-level)[ 153 ] to solar farms (system-level).

Regardless of the aforementioned efforts, there exists a fundamental issue with solar energy:

Earth’s rotation around the sun leads to spatial (latitude), seasonal, and diurnal variation in

sunlight intensity. Storing solar energy in other forms of energy (e.g. chemical, mechanical,

 ↑ Note: The material in this chapter has been adapted from Ref. [ 152 ].
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gravitational) provides a solution to this challenge. For electrochemical (EC) energy storage,

a variety of approaches have been proposed, including batteries, organic and/or inorganic

reactions, artificial photosynthesis [ 54 ], etc. In this chapter, we report the thermodynamic

performance limit of PV-to-EC energy conversion through an illustrative example of splitting

of water into hydrogen and oxygen.

Figure 6.1. (a) Energy flow diagram of a general PV-EC system (b) Schematic
of the integrated system photovoltaic cell (module of tandem solar cells) -
electrochemical cell.

A review of the literature [ 54 ], [ 56 ]–[ 58 ], [ 154 ]–[ 162 ] shows that various papers on water-

splitting generally consider a subset of the thermodynamically – relevant fundamental

PV-EC parameters. Others derive the efficiency limit (ηsys) by using detailed numerical

simulations including a combination of fundamental and practical parameters [ 162 ], [ 163 ].

These contributions are critically important but reliance on numerical modeling often makes

it difficult to gauge how ηsys depends explicitly on the key physical variables. In this regard,
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here we develop an analytical model that describes the optimum combination of parameters

required to maximize efficiency of the generalized PV-EC integrated system in an intuitively

transparent form, compares the results from different configurations explored by various

groups, and suggests opportunities for significant improvement by using newly developed

bifacial tandem cells.

A generalized configuration for such PV-to-EC conversion (relevant for research efforts

worldwide) is shown in Fig.  6.1 . This system is characterized by five PV and four EC variables.

The PV variables are: the intensity of sunlight (S), the fraction of incident light reflected

from the ground (albedo, R), number of series-connected cells in the PV module (M), number

of subcells in a multi-junction (Tandem) solar cell (N) and the set of bandgaps of the solar

cell ([Eg])). The EC parameters are: the number of series-connected electrochemical cells

(K), the thermodynamic potential of the reaction (µth), effective exchange current density

(J0,ec) and effective Tafel slope (β).

This set of 9 variables is sufficient to calculate the thermodynamic upper limit of an

‘idealized’ PV-EC system, with the same level of rigor and relevance as the Shockley-Queisser

(SQ) analysis for a stand-alone PV system [  55 ]. Similar to the SQ limit, we realize that

practical considerations, such as series and shunt resistances [  56 ]–[ 58 ], diode non-ideality

factor, self-heating in both PV and EC, spectral difference, and non-ideal Tafel slope, may in

practice make it impossible to reach the PV-EC limit derived here. Nonetheless, the PV-EC

thermodynamic limit provides physical insights and scope of improvement for modeling

experts and experimentalists alike.

Note that PV-EC systems may be configured in different ways [ 56 ], [ 155 ], [ 161 ]. Fig.  6.1 

describes an approach called a PV-Electrolyzer design that comprises of two independent

subsystems, namely photovoltaic (PV) cell and electrochemical (EC) cell, see Fig.  6.1 (a).

The photovoltaic part converts solar energy into electrical energy, which is supplied to the

electrochemical cell that further converts this electrical energy into chemical energy in the

form of fuels. This design, with physically independent subsystems, is more stable and reliable

with respect to material degradation as opposed to the PEC designs where the PV parts

are in physical contact with the electrolyte in the electrochemical cell [ 155 ], [ 161 ]. The fuels

generated from cathode and anode are then stored in containers or passed onto another
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electrochemical system to produce other chemicals (e.g. hydrocarbons). We assume that PV

is directly connected to EC, to avoid losses associated with power electronics based couplers.

Thus, the overall efficiency (ηsys) is a product of PV efficiency (ηpv), EC efficiency (ηec ) and

coupling efficiency (ηc), see Fig.  6.1 (a). We will now calculate the individual efficiencies so as

to maximize ηsys.

6.2 I-V CHARACTERISTICS AND EFFICIENCIES OF PV AND EC SYS-
TEMS

6.2.1 I-V Characteristics of an EC System

The generalized electrochemical system comprises of ‘K’ electrochemical cells connected

in series. A single cell consists of two electrodes (called anode (A) and cathode (C)), a

solution (electrolyte) and a salt-bridge (permeable membrane). The current-voltage (I-V)

characteristics of the oxidation and reduction (redox) reactions occurring at the electrodes is

described by Butler-Volmer equations [ 164 ] based on standard cell potential (µth), exchange

current density (J0) and Tafel slope (β) [ 58 ]. An EC cell can be described by a single-diode

characterized by an effective threshold voltage (µth ≡ |µC |+ |µA|), effective exchange current

density (J0,ec) and effective Tafel slope (β ≡ βC + βA), as shown in the equivalent circuit

analysis below.

157



Figure 6.2. (Top) Electrical equivalent circuit for EC-PV subsystems con-
nected in series (Back-to-back-diode model). (Bottom) The redox reaction of
the complex electro-chemical system can be presented by a diode equivalent
circuit.

Based on the Butler-Volmer formulation, the reactions taking place at the two electrodes

(cathode and anode) of an electrochemical cell can be represented by Eq.  6.1 and Eq.  6.2 

respectively [ 165 ]–[ 167 ]. Assuming the electrodes have equal areas, the series current density

passing through them is given by Jec. The reduction reaction dominates at cathode while

oxidation reaction dominates at anode, leading to evolution of chemicals (fuels) associated

158



to that particular electrochemical cell. For example, in a water-splitting reaction, hydrogen

evolution occurs at cathode and oxygen evolution occurs at anode [ 168 ].

Jec = Jox,A − Jred,A = J0,A

[
exp

(
Vpv − Vsol − µA

βred,A

)
− exp

(
Vpv − Vsol − µA

βox,A

)]
(6.1)

Jec = Jred,C − Jox,A = J0,C

[
exp

(
Vsol − µC
βred, C

)
− exp

(
Vsol − µC
βox, C

)]
(6.2)

where J0,A and J0,C are exchange current densities at anode and cathode, respectively,

ηA = Vpv − Vsol − µA and ηC = Vsol + µC are the overpotentials, and β is the Tafel slope

of respective reactions at anode and cathode. The J-V relation of a diode is given by the

following:

J = J0

[
exp

(
qV

nkT

)
− 1

]
(6.3)

Hence, each exponential term in Eq.  6.1 and Eq.  6.2 can be represented as a “diode” with

µA and µC as respective built-in potentials. Therefore, each electrode can be represented by

a pair of back-to-back diodes as depicted in the form of an electrical circuit in Fig.  6.2 (Top).

This EC circuit is connected in series with a PV cell circuit, represented on the right by a

current source and a diode. Note that, while estimating the thermodynamic limit, the shunt

and series resistances need not be considered [  92 ].

When a reaction proceeds, one of the two back-to-back diodes at an electrode begins

dominating its companion, because the first diode is forward biased, while the companion is

reverse biased. In this situation, we can neglect the reverse-biased diode, because it draws

negligible current as compared to the forward-biased diode. Now, we are left with two diodes,

one for each electrode. The parameters for these electrodes are marked by subscript A (or

C), as shown in Eq.  6.4 . The voltage across the EC system is given by the sum of voltage

drops across the diode, as shown in the following equation:

Vec = µth + βC ln
(
Jec
J0,C

)
+ βA ln

(
Jec
J0,A

)
+ JecRsol (6.4)
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where Rsol is the solution resistance. Assuming an idealized case of Rsol = 0, µth =

|µC |+ |µA|, and β ≡ βC + βA, we can rewrite Eq.  6.4 in the following form:

J = J0,ec exp
(
Vcell
β

)
= J0,ec exp

(
Vec
Kβ

)
(6.5)

where the voltages across one cell (Vcell) and across a system of K cells (Vec) are related by

Vcell = Vec/K. Moreover, the effective exchange current density of the EC is given by the

following:

J0,ec = J
βC
β

0,C J
βA
β

0,A exp
(
−µth
β

)
(6.6)

The effective exchange current density can be perceived as the weighted average of the

exchange current densities of individual electrodes. Note that Eq.  6.4 is valid for Vec > µth

. In the final circuit, the EC cell is represented as an effective single diode, as shown in

Fig.  6.2 (Bottom). Now, to calculate the ideal PV-EC efficiency, we assume that: (1) Tafel

slopes are independent of the current, (2) the system is maintained at ambient temperature,

and (3) the resistance of the solution/electrolyte is negligible (i.e., Rsol → 0).With these

assumptions, we obtain the J-V relationship for the EC cell given by Eq.  6.5 . An illustrative

I-V characteristics for K = 1 system for electrolysis of water is shown in Fig.  6.3 .

6.2.2 I-V Characteristics of a PV System

The general PV module is constructed from M number of series-connected cells. Each

cell may have a single junction (SJ) or multi-junction (MJ) with N subcells. The module can

be bifacial (with albedo, R) or it can be illuminated by a solar concentrator (S). As shown in

[ 92 ], the J-V relationship of such a tandem-module can still be described by a superposition

of dark and photo-current, i.e.,

JM(VM , S, R) = −JSC(S,R) + J0,MJ exp
(

qVM
MNkBTD

)
(6.7)

where q is electronic charge, kB is Boltzmann constant, TD is the device temperature, Jsc
is the photocurrent that is a function of S and R, and J0,MJ(≡ qΩD γ exp(−Eg,av/kBT )) is
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the “reverse saturation current” of a tandem cell. Here, ΩD is the geometric mean of emission

angle of each subcell, γ(Eg, T ) is a factor that accounts for photon recycling within the subcells

[ 92 ], and Eg,av is the arithmetic mean of the bandgaps of subcells (Eg,i) that maximizes the

power output of the tandem cell. Equation Eq.  6.7 also describes the performance of a

bifacial cell with front-side intensity, S, and an albedo, R, defined by the fraction of light

reflected off ground and incident on the back surface of the cell. For reference, the bandgap

sequence is given by

Eg,i = i

αN
− (N − i) [α(1 +R)E0 −R]

αN
(6.8)

where i = 1, 2,. . .N −1 is the subcell index, α = 0.428 eV −1 and E0 is the lowest bandgap

of the tandem cell. It is clear from Eq.  6.8 that the set of bandgaps can be uniquely described

by the parameters N,R and E0. Note that the traditional tandem-cell requirement that the

lowest bandgap (E0) subcell resides at the bottom of the tandem stack is dictated by the

relationship N ≤ (1 +R−1) [ 92 ]. Even for relatively high albedo of R = 0.5 =⇒ N ≤ 3. For

most electrochemical reactions µth ≤ 2 V and thus N ≤ 3 suffices for an optimized system.

Being consistent with the traditional PV thermodynamic-limit calculation, the derivation

above presumes shunt/series resistances are absent, and self-heating is negligible. Substituting

N = 1 in Eq.  6.7 gives us the J − V relationship of a photovoltaic module comprising of

series-connected single-junction solar cells. Further, substituting N = 1 and M = 1 yields

the standard J − V characteristics of a single-junction solar cell, as shown in Fig.  6.3 .

6.2.3 Optimum PV-EC System

For a given PV – EC system, we can now find an operating point (Vop, Jop) by solving for

Iec = Ipv =⇒ AecJec(Vop) = ApvJM(Vop), as shown in Fig.  6.3 . Note that the ratio of cell

areas (AF = Apv/Aec) is another system parameter that will appear in the discussions later.

While analyzing the system, a coupling loss described by the difference in maximum power of

PV and the operating power should be taken into consideration as well.
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Figure 6.3. I-V characteristics of PV (M=1,N=1,2,3) and EC (K=1). The
operating point is different from the maximum power point of PV.

Intuitively, when the EC is operated at the MP of the PV (i.e., (V, J)op = (V, J)mp),

the coupling is 100%, and the system is optimized. Therefore, for the global design and

optimization of the PV-EC system, we will choose (V, J)op = (V, J)mp constraint so that

ηc = 1. Since current remains almost constant (see Fig.  6.3 ) for V 6 Vmp, therefore, we

assume that Jmp ∼ Jsc. This allows us to use the analytical form of Jsc as given by the

following equation [  92 ].

Jop = Jsc,N = Jsc,top = S Jsun(1− αEg,top) (6.9)

where Jsun = 83.75 mA/cm2 and α = 0.428 eV−1 are constants. Further, the MP voltage

can be analytically expressed as follows [ 56 ]:

Vmp =
(
MN

q

)[
Eg,av

(
1−

(
TD
TS

)(
Eg,top
Eg,av

))
− kBTD ln

(
ΩD

SΩS

)]
(6.10)

Eg,av = E0

N
+ (N − 1) [α(1 +R)E0 −R + 1]

2αN
(6.11)

Eg,top = N − 1
αN

+ α(1 +R)E0 −R
αN

(6.12)
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where q is the electronic charge, TD is the device temperature, TS is the temperature of

the sun, ΩD is the emission angle of the device and ΩS is the angle subtended by sun on the

device. Eq.  6.8 allows us to calculate the remaining two parameters: Eg,av (the arithmetic

mean of the bandgaps, Eq.  6.11 ) and Eg,top (the bandgap of the topmost subcell, Eq.  6.12 ).

Using Eq.  6.5 for the K electrochemical cells in series, the voltage at point of operation

is given by Eq.  6.13 :

Vop = Vmp = Vec = Kβ ln
(
Jec
J0,ec

)
(6.13)

Next, we substitute Vmp from Eq.  6.10 and Jsc,N from Eq.  6.9 into Eq.  6.13 to arrive at

the key equation of this chapter:

Kβ ln
[(
SJsun(1− αEg,top)

J0,ec

)
AF

]
=
(
MN

q

)[
Eg,av

(
1−

(
TD
TS

)(
Eg,top
Eg,av

))
− kBTD ln

(
ΩD

SΩS

)]
(6.14)

As mentioned earlier, AF = Apv/Aec. Eq.  6.14 determines the optimum parameters

(M,N,E0) for a given EC system (K,µth, J0,ec, β) and particular values of S and R. Note

that Eg,top and Eg,av are functions of E0, the smallest bandgap of the tandem cell. Therefore,

for a given value of (M,N, S,R) for the PV and given EC system, one can solve for E0 from

Eq.  6.14 for an optimal design. As we will show later, for a given EC system, a global

maximum system efficiency requires: (i) co-optimization of (N,E0) at given PV module with

(M,S,R), or (ii) co-optimization of (M,E0) for given tandem (N,S,R).

Since we find the point of operation, i.e., the intersection of I-V characteristics of PV

and EC for maximum power output, Eq.  6.14 provides the optimum parameters for system

design. These parameters can be substituted in the following definition of normalized output

(or overall system efficiency) [ 92 ], [  169 ], to achieve the thermodynamic limit:

ηsys ≡ ηpvηcηec = VmpImp
SPsun(MApv)

× VopIop
VmpImp

× KµthIop
VopIop

= KµthIopIop
M S PsunApv

=
KµthJ

PV
op

M S Psun
(6.15)
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Here, Psun is the solar intensity reaching the PV system (∼ 1 kW/m2 for AM1.5G) and

(V, I)mp is the maximum power point of the PV module. The power required to initiate the

electrochemical process at the thermodynamic equilibrium potential µth is µthIop. The factor

K accounts for the number of ECs in series. The losses in PV and EC are taken into account

with their respective definitions of efficiency [ 55 ], [ 58 ], [ 170 ]. The coupling loss is included

using the coupling efficiency, defined as the ratio of operating power over the maximum power

that can be generated by the PV cell.

It is important to note that maximizing ηsys may not necessarily mean an optimum PV and

EC components. However, since the efficiency of the PV subsystem drops precipitously beyond

the maximum power point, the PV subsystem must operate close to the efficiency of the

stand-alone system. Therefore, optimized EC subsystem efficiency can be easily estimated by

the ratio: ηec ∼ ηsys/ηpv. We conclude this section by highlighting two important assumptions

regarding ηec. First, we use equilibrium potential (lower heating value) of the reaction and

not the thermoneutral potential (higher heating value) because equilibrium potential gives

an upper bound to theoretical system efficiency. Further, we assume a Faradaic efficiency of

100%, which is seldom achieved in practice.

6.3 Results and Discussions

6.3.1 System Setup and Basic Operation

As described in Sec.  6.2 , the PV system can be configured as a module consisting of

series-connected single junction or multi-junction (tandem) cells. For an illustrative example,

we take a water-splitting cell as the electrochemical system (load). The parameters that

define a water-splitting experiment are µth = 1.23 V , J0,ec = 4.06 × 10−36 mA/cm2 and

β = 70 mV/decade [ 58 ].

For an intuitive understanding of the numerical optimization process, consider a single-MJ

cell (M = 1, N = 1, 2, 3) in a PV system optimized for maximum efficiency (i.e., PV-

optimized), as shown in Fig.  6.3 . We find that the double-junction PV (N = 2,M = 1)

provides the best coupling to the water-splitting EC (K = 1) and the highest system efficiency.

This is because the point of operation (V, I)op is closest to (V, I)mp. Fig.  6.3 shows that current
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is negligible at the point of intersection of the I-V of a single junction cell (N = 1,M = 1)

and the EC. For a triple junction (N = 3,M = 1) tandem cell, the overall efficiency is also

lower than that of double junction cell due to poorer coupling efficiency (current matching).

On the other hand, (N = 1,M = 2) delivers the highest system efficiency as compared to

(N = 1,M = 1 or 3), as shown in Appendix Fig.  6.10 . This analysis implies that the optimum

system efficiency depends on the number of subcells (N) in the tandem PV as well as the

number of series-connected cells (M) in the module.

6.3.2 PV-EC System Limit: Comparison with Literature

To illustrate the power of Eq.  6.14 in defining the thermodynamic limits of a variety of

systems, Fig.  6.4 compares the experiments presented in the literature [ 156 ], [ 158 ]–[ 160 ] with

the thermodynamically limited efficiencies.

The thermodynamic limits are calculated numerically (exact solution), and then analyt-

ically using Eq.  6.15 for the specific PV (i.e., [Eg], S, R,M,N) and EC setup used in the

respective references. (See appendix Fig.  6.8 for cross-validation between analytical and

numerical results.) There are several highlights: The analytical results (up-triangle) are in

almost perfect agreement with numerical solution (open circles), demonstrating the validity

of the results.

The considerable gap between thermodynamic limit and efficiency achieved in the labora-

tories shows that there is room for considerable improvement and opportunity to quantify and

reduce losses in practical systems. One of the reasons for the gap between global maximum

and laboratory results is that the experimental groups often use the cells that are readily

available, but the bandgaps may not be optimum. We can calculate the global maximum

efficiency for the same (M,N,K, S,R) but with an optimum set of bandgaps, shown by green

symbols in Fig.  6.4 , using Eqs.  6.14 and  6.15 . The optimization proceeds as follows. For a

given combination of (M,N), the maximum system efficiency varies with R. In fact, this

efficiency is attained for an optimum bandgap of the lowest bandgap subcell (E0), which

determines the set of bandgaps of the multi-junction cell. A similar analysis was performed,
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numerically, by Shu Hu et al. [ 168 ] for tandem photoelectrochemical systems (which is

different from the PV-Electrolyzer design considered here).

Format: Sx: (S,R,M,N,K,AF)[Ref.]

S1: (1.35,0,1,2, 1,1) [ 158 ] S3: (500,0,1,2,1, 0.19/30) [ 156 ]

S2: (10,0,2,3,3,1/4) [  159 ] S4: (42,0,1,3,2,0.316/6.25) [  160 ]

Figure 6.4. Comparison of reported solar to hydrogen efficiencies with the
thermodynamic limit calculated analytically and numerically. Global maximum
gives the best efficiency for that particular system with an optimum set of
bandgaps.

6.3.3 PV-EC System Limit: K=1 Case

For best system efficiency, E0 varies with R. This is evident from Fig.  6.5 (a) and

Fig.  6.10 (b), which have (1,2) and (2,1) as their respective combinations of (M,N). The

contour plot in Fig.  6.5 (a) distinctly shows the effect of increasing albedo (R) on overall

efficiency. From Fig.  6.5 (b), we also realize that ηsys for a tandem PV increases from 33%

(R = 0) to ∼ 50% (R = 1) (50% increase). Similar improvements are also expected for other

combinations of M,N,R.
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Figure 6.5. (a) System efficiency as a function of E0 and R for N = 2,M =
1, K = 1 – indicating an optimum in E0. (b) System efficiency increases with
higher albedo and varies with N (or M). Of course, each point in this plot has
a corresponding optimum E0.

6.3.4 PV-EC System Limit: General Case

If we revisit Eq.  6.14 , we observe that, for N-junction tandem, we cannot independently set

both M and K for an optimized design. In fact, (M/K)-ratio would be another optimization

parameter for maximizing ηsys.

In most practical cases, for example on rooftops or solar farms, single junction solar cells

are used. Therefore, let us first study the optimum combination of (M,K) for a module

of SJ (N = 1) solar cells connected to a K- cell electrochemical system. For any SJ cell

with bandgap Eg, and known EC, one can readily calculate (M/K) for optimum design

using Eq.  6.14 . The corresponding ηsys is found from Eq.  6.15 . The optimum ηsys and the

corresponding (M/K) are shown as a function of Eg in Fig.  6.6 . For a water-splitting EC

system, ηmax ∼ 26.46% for M/K ∼ 1.67 ∼ 8/5, implying that an optimum combination of 8

SJ cells in series with 5 EC cells will yield the best overall-system efficiency. Further, this

efficiency is achieved at Eg = 1.33 eV , that in fact is the optimum SJ PV bandgap. This is a

significant new result that can be explained as follows.
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Figure 6.6. Variation of efficiency (η) and cell ratio (M/K) with Eg (bandgap
of single junction cell). Notice that maximum ηsys occurs at 1.33 eV, which is
also the optimum bandgap of best ηpv achievable (where ηec ∼ 0.8).

Due to logarithmic change in Vop with current (see Eq.  6.13 ), the EC efficiency ηec does

not change significantly as long as the change in current is relatively small (i.e., S is essentially

a constant). Now, with ηc=1, we find that the system efficiency (ηsys) is maximized when ηpv
is asymptotically close to its maximum [ 90 ], [ 167 ]. The difference in ηpv and ηsys arise due to

kinetic losses in EC, which are incorporated in ηec. Therefore, choosing an (M/K)-ratio so

as to couple optimum-PV to the EC will indeed give the optimum system design. While we

have explained the result in the context of SJ-PV and EC coupling, this analysis also holds

true for tandem-PV and EC coupling, see below.

Fig.  6.7 shows optimum ηpv and overall optimized ηsys for N -junction tandems. The

corresponding optimum (M/K)-ratio calculated from Eq.  6.14 is also shown in the same

plot. The Vmp of the optimum tandem increases with N, which is compensated by decreasing

(M/K)-ratio to ensure perfect coupling between the PV module and the EC cells. The system

efficiency ηsys increases from 26.46% to 34.82% for N = 1 to 2, and starts to saturate for

N > 4. We predict the ultimate limit of ηsys → 52.09% as N → ∞ under 1-sun with no

albedo (S = 1, R = 0).
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Figure 6.7. Variation of efficiency (ηpv, ηsys) and optimum cell ratio (M/K)
with number of subcells (N) in a multi-junction cell. For every N , the corre-
sponding optimum cell ratio gives the thermodynamic limit of system efficiency.

Although this chapter focuses on the theoretical (thermodynamic) efficiency limit of

a PV-EC system, it is important to note that a practical system will seldom reach this

efficiency limit because of the variation of intensity and spectral content of solar illumination

throughout the day and over the seasons. Indeed, a practical system may optimize for slightly

different combination of PV-EC parameters. One may even consider adding additional

components, such as maximum power point trackers and DC-DC converters, to recover a

fraction of energy lost due to “non-ideal” illumination. The advantage must be balanced

against concerns regarding efficiency, reliability and cost of these new components. Therefore,

system optimization for stand-alone and grid-integrated system under practical weather and

illumination conditions will an important topic of future research.

6.4 Summary and Conclusions

To summarize, we have developed an analytical theory to find the thermodynamic limit

of solar to fuel conversion. Given (S,R) and an EC (K,µth, J0,ec, β), system efficiency is an

implicit function of number of EC cells (K), number of subcells (N), number of module

cells (M), albedo (R) and bandgap (E0) i.e., ηsys = f(S,R,N,M,K,E0, AF ). Therefore,
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an optimum combination of (M,N,E0) provides the thermodynamically limited maximum

efficiency that is evident from Fig.  6.5 . The analytical formulation mentioned above provides

a convenient way to find this limit and the associated parameters viz. (M/K,N,E0) and

provides insights into the system with respect to recent developments in using bifaciality (R)

and concentrated light (S).

The difference between the global maximum and experimental values in Fig.  6.4 should

encourage refinement and optimization of the PV-EC design. We have considered an idealized

system i.e., Rsol = 0, and it is evident that overall optimized systems, with optimumM,N,E0

and K can achieve much higher efficiencies compared to the laboratory results reported in the

literature [  171 ]. The analytical model developed in this work can be easily used to integrate

other kinds of loads [ 54 ] to the PV system. This work can also be extended to include hourly

variations in solar illumination to find daily storage capabilities and location-based optimal

design.

6.5 Appendix

6.5.1 Comparing analytical and simulation results

System operating point (Iop, Vop) can be exactly determined by numerically finding the

point of intersection of the I − V curves of PV and EC. Substituting the values of current in

Eq.  6.15 of the main text can be used to calculate the efficiency. On the other hand, the

analytical Eq.  6.14 in the main text provides the optimum parameters of the system that

can be used to find the current and hence the efficiency using Eq.  6.15 .

Fig.  6.8 demonstrates that the analytical results for M = 2, 3 (and N = 1, K = 1),

respectively, compare well with the numerical simulation results. The analytical results hold

true for µth < V < Vmp and hence, E0 should be large enough so that voltage across the PV

can overcome the threshold voltage of EC.
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Figure 6.8. Analytical vs. numerical results for M = 2, 3;N = 1 and K = 1.

As the number of SJ solar cells increase the module voltage is simply an addition of single

cell voltages, implying that voltage required from a single cell decreases, which further implies

requirement of a lower value of bandgap for each cell. Fig.  6.9 depicts how optimum E0

decreases with increase in the number of cells in the module.

Figure 6.9. For SJ module PV, the energy bandgap required for efficiently
powering the EC (K = 1), decreases with increasing number of subcells.
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As an alternative example for the PV-EC system limit: K = 1 case, Fig.  6.10 shows

results for a PV system that has modules (1, 2 and 3) of single junction solar cells. Fig.

 6.10 (a) displays the optimization in M while the contour plot in Fig.  6.10 (b) reaffirms the

effect of increasing albedo (R) on overall efficiency.

Figure 6.10. (a) I-V characteristics of SJ module PV (N = 1,M = 1, 2, 3)
and EC (K = 1) show that there is an optimum value of M required for best
coupling and highest system efficiency. (b) For M = 2, N = 1, K = 1 system
efficiency is plotted for for various values of E0 and R.
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7. CONCLUSIONS AND FUTURE WORK

To conclude this thesis, in this chapter we sequentially summarize each of the topics discussed

in the previous chapters. Next, we describe some future ideas and new challenges that can

be extended from our thesis. Finally, we present our closing remarks of the thesis.

7.1 Summary of Chapter 2: LCOE* and fixed-tilt bifacial solar farms

We parametrically explored the economic viability of ground-mounted tilted bifacial solar

farms and explained how the farm topology must be optimized for a given location, and

module and land cost considerations. We have redefined the levelized cost of energy (LCOE)

in terms of ‘essential levelized cost of energy’ (LCOE*) that is ultimately a function of

module to land cost ratio (ML) and array tilt angle (β). The redefined LCOE* decouples

cost analysis from energy yield modeling, thereby dramatically simplifying the optimization

of solar farms based on new technologies. Our model provides an optimistic lower bound

for LCOE (for ground-mounted cells with a fixed albedo). In practice, various non-idealities

(e.g. efficiency degradation with temperature, power mismatch among the strings due to

spatially and spectrally varying albedo, etc.) will increase the LCOE. Therefore, our idealized

lower-bound LCOE is a necessary (but not sufficient) precondition for the economic viability

of the bifacial technology.

Using a previously developed global irradiance model [  61 ], we calculated the spatial

distribution of light on the ground and panel faces while considering all variations of shadows

for all the locations in the world. The collection of direct, diffuse, and albedo light on the

panels were then integrated over time to obtain the yearly yield for the specific solar farm

configuration (defined by panel tilt and array period). Once we correlate the configuration of

a farm to the cost of its installation and the yearly yield, we can determine LCOE*.

The array tilt β defines the array period through the mutual shading constraint, which in

turn sets the number of panels required in a solar farm. Therefore, β is implicitly related

to the farm cost (and of course the energy). Note that the mutual shading at 9 am on the

shortest day of the year constraints the global optimization using array tilt (β) and period

(p) as dependent variables. In the end, cost ratio (ML) and the array tilt angle (β) are the
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handles to control the LCOE*. For a fixed ML, we numerically and analytically found an

optimum tilt angle (βopt) for each location.

Our analysis leads to the following key conclusions:

1. For places where land is scarce and expensive (ML → 0), panels should be laid flat on

the ground (βopt = 0°) to ensure maximum energy collection over a given land area.

On the contrary, for practical values of ML(∼ 1 − 15) when the land is relatively

inexpensive, panels have location-specific optimum tilt (βopt ∼ 0°− 60°) to achieve

the lowest LCOE*.

2. PV installers can use an analytical expression of the form of Eq.  2.21 to find the

location-specific optimum array tilt angle (βopt) as a function of ML. Moreover, βopt
is constantly zero until a threshold value (M∗

L) of cost ratio. The threshold value

depends on the location (latitude/longitude) of the solar farm.

3. The difference in the optimum tilt angle (∆βopt) between bifacial and monofacial

designs can reach up to 10°− 15° for |latitude| > 30° and places with high diffuse

light fraction, e.g., Canada, Western Europe, Central China, etc. Moreover, higher

tilt angle makes the design soiling-resistant, in turn reducing the cleaning cost.

4. For the same module-to-land cost ratio and similar lifetimes (reliability), ground-

mounted bifacial solar farm design is more economically viable over monofacial design

for locations where the diffuse fraction is high. The relative reduction in LCOE*

(Bifacial GainLCOE∗) is ∼ 2− 6%, for bifacial solar farm design over monofacial for

locations with higher fractions of diffuse light (low clearness index, kT ) e.g., locations

with |latitude| > 30° (Central Europe, Northern parts of North America, and Central

China). Alternatively, bifacial modules can be at most ∼ 2 − 6% more expensive

compared to monofacial modules for a bifacial solar farm to be cost-competitive

compared to a monofacial farm.
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Future Direction

Although this is the first report of LCOE-optimized farm design inclusive of land costs,

the present work can be generalized in a number of ways. One can use the current approach

to easily account for location-specific albedo and tilt-angle. Furthermore, currently the

bifacial panels are slightly more expensive (but also known to be more reliable [ 13 ], [ 26 ]) than

monofacial modules. This cost and reliability differences can be easily accounted for in our

formulation. Instead of ground-mounted panels, the farm design can deploy elevated panels.

The elevation of panels could increase the albedo light collection depending on the farm

design, but this gain must be balanced against the increase in the installation (module) cost.

It is also possible to sculpt the ground to increase albedo and re-optimize the configuration.

Moreover, the effect of temperature on estimation of energy output and maintenance costs

can be included to make the analysis more comprehensive.

To conclude, the reduction in LCOE through optimized farm design and continually

reducing bifacial module prices makes bifacial PV technology an economically preferable

alternative over monofacial solar farm.

7.2 Summary of Chapter 3: Temperature-dependent efficiency models for bifa-
cial solar farms

In this chapter, we have analyzed the effects of temperature-dependent efficiency degra-

dation on the energy yield and LCOE of monofacial and bifacial solar PV farms. Our

approach involved combining an irradiance model, an updated light collection model for

elevated farms, and temperature-dependent efficiency models to arrive at the final energy

output of a solar farm. The light collection and temperature estimation models had to be

solved self-consistently in order to arrive at the practical and more accurate efficiency for a

particular location. We applied these models for locations around the world to deliver the

global maps that quantify the percentage change in energy yield (YY) and LCOE* between

temperature-dependent and constant temperature calculations while presenting general global

trends.

Our analysis leads to the following key conclusions:
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1. A comparison between energy yield and LCOE for temperature-dependent efficiency

(η(T )) and temperature-independent efficiency (ηSTC) conveys a percentage change

of −7% (Al-BSF), −5% (SHJ) for locations close to the equator (|latitude| < 30°)

and +12% (Al-BSF), +5% (SHJ) for locations close to the poles (|latitude| > 30°).

2. The bifacial gain for SHJ (bifacial) vs. traditionally used Al-BSF (monofacial) with

temperature-dependent efficiency conveys a percentage change of +12% for hotter

locations close to the equator (|latitude| < 30°) and can reach up to 25− 45% for

colder places close to the poles (|latitude| > 30°). Whereas, bifacial gain for Al-BSF

shows a percentage change of ∼ 0− 30%. This presents an incredible opportunity

for SHJ bifacial farm deployment.

3. Elevated farms show two counter-balancing trends, where light collection on the

panels (IPOA) increases leading to an increase in temperature and a decrease in

efficiency. Overall, temperature-dependent elevated farms (E = 1− 2 m) outperform

unelevated farms in terms of yearly energy yield by ∼ 1 − 20% depending on the

latitude.

4. Bifacial PV technologies (SHJ) with lower TC and low sub-bandgap (IR) absorption

can outperform their monofacial counterparts. The extent of enhancement in perfor-

mance depends on the bifacial technology used and the geographical location of the

farm.

In conclusion, it is important to accurately calculate the energy yield (YY) and LCOE*.

The bifacial solar farm energy yield using temperature-dependent efficiency fulfills this purpose.

Although the design of the farms in terms of the optimum tilt angle is not affected significantly,

the absolute values of energy yield and LCOE for field-deployed temperature-dependent solar

farms differ considerably for several locations around the world. This affects the overall

economic evaluation of location-specific solar farms. Since bifacial panels have a lower

temperature coefficient compared to monofacial panels, therefore, they are advantageous for

relatively steady energy output due to daily and monthly temperature variations, especially for

locations with lower total irradiance. Moreover, using PV materials with lower temperature
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coefficients, e.g., Silicon Heterojunction (SHJ) and PERC, would lead to stable outputs and

enhanced performance of bifacial solar farms throughout the world.

Future Direction

The scope of this study was limited to the initial temperature-dependent efficiency degra-

dation associated with a newly installed solar farm. The long-term analysis of temperature-

dependent degradation mechanisms and PV lifetime are not considered in our study. Moreover,

the spectral dependence of PV efficiency is beyond the scope of this work and needs further

investigation [ 107 ], [  109 ]–[ 111 ]. Moreover, given the importance of TC, it will be important to

focus on methods to lower the temperature coefficient of bifacial solar materials/ technologies

and reduce cell temperature variation through improved packaging. These would become

a central issue for concentrated solar photovoltaics as well. Further, one could improve the

power output at the back surface by using a different kind of solar cell, e.g. DSSC, that

performs better under low-light illumination [ 112 ]–[ 114 ]. Thus, the temperature-dependent

energy-gain of a tandem [ 92 ], [ 104 ], [ 115 ] or ‘mixed’ bifacial solar cell will be an interesting

and important generalization of the results presented in this chapter.

7.3 Summary of Chapter 4: Tracking algorithms and their analysis for bifacial
solar farms

In this chapter, we have investigated the energy yield and comparative performance of

various solar farm design configurations such as single-axis tracking vs. fixed-tilt and bifacial

vs. monofacial. Our modeling framework combines the irradiance model, light collection

model, temperature-dependent efficiency model, and a single-axis tracking model to estimate

the energy yield of a solar farm. The tracking algorithm constraints the panel tilt angle to

vary such that the angle of incidence is 0° i.e., the direct light falls normally on the panel.

These models are simulated for locations worldwide that finally output global maps that

quantify the percentage change in energy yield while comparing various farm designs.

Our analysis in this study leads to the following key conclusions:
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1. An E/W single-axis tracking bifacial PV farm generates up to ∼ 45% higher yearly

energy yield than an N/S facing fixed-tilt bifacial PV farm for locations at |latitude| <

30°, see Fig.  4.9 . A higher fraction of direct light leads to higher energy gain. An

E/W tracking monofacial farm vs. fixed-tilt bifacial farm shows similar global trends

with maximum energy gain reaching ∼ 10% near the equator (Fig.  4.13 ). However,

fixed-tilt bifacial farm outperforms tracking monofacial farm by ∼ 5 − 15% for

|latitude| > 30° (Fig.  4.14 ).

2. As shown in Fig.  4.10 , an E/W single-axis tracking bifacial PV farm tracks the

hourly movement of the Sun whereas an N/S single-axis tracking bifacial farm mostly

tracks the seasonal/monthly movement of the Sun. The former provides up to ∼ 15%

more energy for locations close to the equator (|latitude| < 50°) and the latter

generates up to 5% for locations close to the poles (|latitude| > 50°).

3. Monthly/Seasonal variation in energy yield shows that the E/W tracking produces

higher energy output in summer months whereas N/S tracking is favorable in winter

months due to a southward inclination of the solar path in the Northern hemisphere

and vice versa for the Southern hemisphere, as seen in Fig.  4.6 .

4. An optimum pitch over height ratio yields minimum LCOE of an E/W tracking

farm. The value of optimum p/h increases with the module-to-land cost-ratio (ML)

and varies with the geographical location of the farm. Whereas the yearly energy

of the farm increases monotonically with p/h and saturates for very high values of

pitch, as shown in Fig.  4.7 . For a typical value of ML = 12, the optimum p/h lies

between 2 and 3, as seen globally in Fig  4.8 .
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Figure 7.1. In conclusion, EW tracking bifacial farms outperform NS tracking
bifacial farms for |latitude| < 50° and vice-versa for |latitude| > 50°.

Fig.  7.1 (same as Fig.  4.12 ) summarizes our key conclusion that an E/W single-axis

tracking bifacial PV farm is the best PV farm design for most regions (|latitude| < 50°)

around the world. The energy gain with respect to a fixed-tilt bifacial or an N/S tracking farm

varies according to the incident direct light fraction and the solar path at the geographical

location of the solar PV farm. Moreover, for minimizing LCOE of a farm an optimum pitch

can be used according to the estimated essential module to land cost ratio (ML) for the

deployment site. Thus, in terms of energy maximization, a bifacial tracking PV would be a

worthwhile farm technology in most locations of the world.

In principle, the results can be easily generalized to any bifacial module technology with

appropriate modification of front and backside efficiency. Thus, this study can be extended

to a quantitative investigation of location-specific advantages of different solar cells. Our

conclusions about the latitude-dependent choice of various farms are very general and should

apply to various solar cell technologies.

Future Directions

As future applications of our model beyond the scope of this work, one can consider

the possibility of using bifacial PV for AgroPV applications, for potential reduction in cost

due to reduced height associated with vertical and tracking bifacial modules Younas2019,
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[ 141 ], [ 142 ]. Our model can be extended to include various types of crop-specific tracking

algorithms to control shading and perform co-optimization of the farm design. The energy

yield of E/W bifacial tracking farms for various land types is presented in this study to show

that croplands are well-suited for these PV farms. Similarly, N/S tracking solar PV farms

can also be built on agricultural lands with optimum spacing and design to self-sustain the

energy needs of the agricultural farms while minimally altering the crop yield. N/S tracking

farms could be specifically interesting to explore since these would provide lower shadow

depth in the mornings and evenings for the sunlight to reach the crops. In fact, in the past

few years, several AgroPV farms with monofacial and bifacial tracking have been deployed in

Italy and China, as collated in Table 1 of Ref. [ 172 ].

The role of bifacial PV in floating solar is unclear. In our models, we do not include the

direct effects of relative humidity (RH). For floating solar PV, the relative humidity would

be an essential parameter that needs to be taken into account.

Moreover, next generation PVK-HIT tandem solar cells could improve the efficiency

further [  104 ], [ 144 ], [ 145 ]. Furthermore, the reliability and lifetime are important concerns,

especially regarding the mechanical failure of the trackers [  18 ], [ 146 ]–[ 148 ]. The practical

viability of solar tracking vs. power-tracking are not fully understood. Storage-integrated

solar farming is another important aspect to consider in worldwide optimization of farm

design. Finally, spectral dependence of albedo can slightly modify our numerical results,

however, that will not change the conclusions. The static global maps displayed in this study

can be explored interactively to find data point values for each location using DEEDS – a

web-based platform for scientific research [ 149 ]–[ 151 ].

7.4 Summary of Chapter 5: Physics-based machine learning for performance
of solar farms

In this chapter, we demonstrate the methodology and develop a tool to perform a

functional interpolation of yearly energy yield and effective levelized cost of energy of any

utility-scale solar PV system. The tool requires a coarse grid (1200 locations around the

world) of geographical (lat, long), weather (global horizontal irradiance, ambient temperature,

and clearness index) data (inputs), and simulated or field-derived energy yield (output). The
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data is fed into a machine learning tool to train a predictive model. We demonstrate the

results of two different tools, namely, Regression learner tool and Neural Network fitting tool.

The models trained using the Gaussian Process Regression algorithm in the regression tool

and Levenberg-Marquardt algorithm in the NN tool. Both models show high accuracy with

R2 = 0.99 and RMSE = 7.03. Once the machine learning model is trained and tested, it

can be used to accurately predict the yearly energy yield for any specific location around the

world in a matter of seconds.

Employing the trained model, we showed that the percentage error between a simple

linear geographical interpolation and NN-based functional interpolation can range from

∼ 20 − 60% for different regions worldwide. Moreover, we found that the critical number

of sample points required for a reasonably accurate (R2 = 0.99) prediction is NS = 100.

Further, we investigated the power of NN-based models to accurately predict YY at an

extrapolated geographical location within 10% error margin. Finally, we generalized the

NN-model for all types PV farm designs by including various values of physical attributes of

a PV farm, for example, elevation, row-spacing, albedo, and bifaciality.

In conclusion, we demonstrated a machine learning based scheme that allows an accurate

functional interpolation of computational and field data for utility-scale solar PV farms.

Starting with only 100 actual field data points, the tool can calculate the yearly energy

yield of a PV farm deployed at any of the 1 million geographical sites globally with very

low computational times (∼ seconds). This methodology can be further used to predict

several other PV farm-related quantities such as levelized cost of energy, optimum tilt

angles, degradation rates, lifetime etc. Depending on the problem statement, however, the

machine learning based tools may require higher quantity and good quality of field data for

experimental validation. This work would encourage the PV community to develop a strategy

to acquire, store, and organize the PV farm data in order to perform precise predictions using

very few data points.
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7.5 Summary of Chapter 6: Ideal efficiencies for PV-EC storage systems

To summarize this chapter, we have developed an analytical theory to find the thermo-

dynamic limit of solar to fuel conversion. Given (S,R) and an EC (K,µth, J0,ec, β), system

efficiency is an implicit function of number of EC cells (K), number of subcells (N), number

of module cells (M), albedo (R) and bandgap (E0) i.e., ηsys = f(S,R,N,M,K,E0, AF ).

Therefore, an optimum combination of (M,N,E0) provides the thermodynamically limited

maximum efficiency that is evident from Fig.  6.5 . The analytical formulation mentioned above

provides a convenient way to find this limit and the associated parameters viz. (M/K,N,E0)

and provides insights into the system with respect to recent developments in using bifaciality

(R) and concentrated light (S).

Future Directions

The difference between the global maximum and experimental values in Fig.  6.4 should

encourage refinement and optimization of the PV-EC design. We have considered an idealized

system i.e., Rsol = 0, and it is evident that overall optimized systems, with optimumM,N,E0

and K can achieve much higher efficiencies compared to the laboratory results reported in the

literature [  171 ]. The analytical model developed in this work can be easily used to integrate

other kinds of loads [ 54 ] to the PV system. This work can also be extended to include hourly

variations in solar illumination to find daily storage capabilities and location-based optimal

design.

7.6 Future work

Although our goal to create a comprehensive multi-module numerical model for bifacial

solar farms was achieved, we further want to push the boundaries of applied PV research.

Hitherto, we already began working on using machine learning for PV performance and

reliability analysis. Moreover, we also inspected PV storage system efficiencies. In this regard,

we have some ideas and projects that can be pursued in future as described below.
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7.6.1 Worldwide forward and inverse degradation model

On the basis of the above-mentioned toy model for reliability of PV systems, one can

develop a complete sophisticated forward and inverse model for PV degradation mechanisms.

Forward model: The goal is to predict lifetime of a solar PV system starting with a

satellite-based or field meteorological dataset (NSRDB, NREL), see Fig.  7.2 . From weather

data, we can acquire physical parameters, for example, Ultra-violet light intensity, relative

humidity, ambient temperature, snowing or soiling rate for various locations around the world.

Next, we can develop and utilize multi-module degradation mechanism toolbox to estimate

the time-dependent electrical parameters (refer to the double-diode compact model in Fig.

??) of the PV system. As an aside, the degradation mechanism toolbox can be a package

of computationally fast machine learnt sub-modules for each mechanism. Combining these

time-varying degradation of electrical parameters allows us to predict the lifetime of the PV

system. Performing this prediction workflow for several latitudes/longitudes will provide us a

global map of the lifetime PV systems.

Figure 7.2. Worldwide forward and inverse modeling framework.

Inverse model: Converse to the above process of predicting lifetime, the aim of the inverse

model is to deconvolve and identify the degradation mechanisms by analyzing the patterns
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in the electrical signatures. This approach would require synthesized or field-measured

time-dependent IV curves and electrical parameters of a PV system. Next, we would

use convolutional neural networks for recognizing the pattern of degradation of electrical

parameters so that they ca be connected to the associated degradation mechanism. Once we

identify the dominant mechanisms at a particular location, the manufacturing process can be

tweaked to become more resilient towards the local weather conditions and the corresponding

degradation pathways. This will eventually enhance the lifetime of the PV system. Again, we

can generalize our approach so that the inverse model can be extended to the entire world.

7.7 Final Thoughts

With a steady increase in world population and subsequently the ever-increasing sustain-

able and renewable energy demand, solar photovoltaics has been one of the key solutions. To

reduce the costs of generating electricity using solar PV, utility-scale solar PV farms have

been found to be most economically viable.

Therefore, in this thesis, we set out with a goal of modeling, simulating, and analyzing

the latest technology of bifacial solar PV farms. We have delineated the challenges and

solutions in pursuit of this goal. Moreover, we went above and beyond our goal to further

incorporate computationally fast and easy to handle machine learnt toolbox to accurately

emulate our numerical models. After working on the performance aspect of PV systems, we

demonstrated a toy model to analyze the PV degradation pathways and improve reliability

of these systems. Furthermore, we present a future guide for solving the so called machine

leaning based “forward-inverse" problem for performance and reliability of solar PV systems

worldwide.

Through this work, we aspire to solve existing problems and inspire next generation of

researchers to pursue new challenges in the field of photovoltaics, specifically, and science, in

general.
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