
BUILDING THE INTELLIGENT IOT-EDGE: BALANCING
SECURITY AND FUNCTIONALITY USING DEEP

REINFORCEMENT LEARNING
by

Anand Mudgerikar

A Dissertation

Submitted to the Faculty of Purdue University

In Partial Fulfillment of the Requirements for the degree of

Doctor of Philosophy

Department of Computer Science

West Lafayette, Indiana

December 2021

THE PURDUE UNIVERSITY GRADUATE SCHOOL
STATEMENT OF COMMITTEE APPROVAL

Dr. Elisa Bertino, Chair

School of Computer Science

Dr. Puneet Sharma

HPE Labs

Dr. Clifton W. Bingham

School of Computer Science

Dr. Chunyi Peng

School of Computer Science

Dr. Ninghui Li

School of Computer Science

Approved by:

Dr. Kihong Park

2

Dedicated to my parents who have always

supported me in all my endeavors.

3

ACKNOWLEDGMENTS

Throughout the writing of this dissertation I have received a great deal of support and

assistance.

I would first like to gratefully acknowledge my PhD advisor Dr. Elisa Bertino, for her

continued support and guidance throughout this project. Your insightful feedback and ideas

pushed me to sharpen my thinking and brought my work to a higher level.

I would like to thank my mentor during my internships at HPE labs, Dr. Puneet Sharma

whose expertise was invaluable in formulating the research questions and methodology.

I would also like to acknowledge the insightful comments and feedback provided by DAIS-

ITA group which has helped shape the direction of the project.

4

TABLE OF CONTENTS

LIST OF TABLES . 10

LIST OF FIGURES . 11

ABBREVIATIONS . 13

ABSTRACT . 14

1 INTRODUCTION . 15

1.1 Research Problem . 16

1.2 Challenges . 16

1.3 Proposed Solution . 18

1.3.1 E-Spion: Edge Based Intrusion Detection for IoT environments . . . 18

1.3.2 Jarvis: A Constrained DRL Framework tailored for IoT environments 20

1.3.3 Jarvis-SDN: A Constrained DRL Framework for SDN environments 20

1.4 Thesis Outline . 21

2 E-SPION . 22

2.1 Background . 24

2.1.1 IoT Attacks . 24

2.1.2 File-less Attacks . 25

2.1.3 IoT Security Architecture . 26

2.2 Design . 26

2.2.1 Design Overview . 27

2.2.2 Anomaly Detection Engine . 27

2.2.3 Life Cycle of a Device . 29

2.2.4 Hash Chain Verifier . 32

2.3 Implementation Details . 34

2.4 Evaluation . 38

2.4.1 IoT Malware . 38

5

2.4.2 Evaluation Testbed . 39

2.4.3 Detection Efficiency and Analysis . 40

2.4.4 Effectiveness against File-less Attacks 43

2.4.5 Overhead Analysis . 43

2.5 Related Work . 45

2.6 Summary . 48

3 JARVIS: SECURITY CONSTRAINED RL FOR IOT ENVIRONMENTS 49

3.1 Background . 52

3.1.1 IoT Architecture . 52

3.1.2 Deep Q Learning . 52

3.2 System Model and Problem Formulation . 53

3.2.1 IoT Environment . 54

3.2.2 State Transition Model . 54

3.2.3 Problem Definition . 56

3.2.4 Challenges . 56

Unknown Reward Function . 56

Safety/security of state transitions 57

3.3 RL based Solution . 57

3.3.1 Safe State Transition . 57

3.3.2 Reward Function Estimation . 58

3.3.3 Q Learning Algorithm . 60

3.4 Instantiation for a Smart Home Environment 60

3.4.1 Design Details . 61

Logging System . 61

Log Parser . 61

Security Policy Learner . 62

Smart Reward Function . 63

RL Environment . 63

Optimizer . 64

6

Practical Deep Learning . 65

3.4.2 Example: Analysis and Discussion 65

Safety . 65

Effectiveness of Constrained Exploration 66

3.4.3 Dis-utility vs Safety. 67

3.5 Evaluation . 68

3.5.1 Testbed . 68

3.5.2 Safety and Security . 68

3.5.3 False Positives . 69

3.5.4 Functionality . 70

3.5.5 Analysis of the Benefit Space . 71

3.5.6 Limitations of Unconstrained Exploration 72

3.6 Related Work . 73

3.6.1 Benign User Anomaly Examples . 75

3.6.2 Safety Violation Examples . 76

3.6.3 State Space Explosion Mitigation. 77

3.7 Summary . 78

4 JARVIS-SDN: SECURITY CONSTRAINED RL FOR RATE CONTROL IN SDN

ENVIRONMENTS . 81

4.1 Background on Deep Q-Learning . 83

4.2 System Model and Problem Formulation . 84

4.2.1 System Model . 85

4.2.2 Problem Definition . 86

4.2.3 Challenges . 86

4.3 Building Attack Signatures . 87

4.3.1 Design of an IDS Based on Partial Attack Signatures 87

4.3.2 Evaluation Metrics . 89

4.3.3 Comparison to other ML Techniques 90

4.3.4 Evaluation and Analysis . 92

7

4.4 Instantiation of Jarvis-SDN . 93

4.4.1 Implementation Details . 93

4.4.2 Simulation Environment . 93

4.4.3 System Model . 94

4.4.4 Training . 95

4.4.5 Evaluation and Analysis . 95

4.4.6 Comparison to Traditional IDS Metrics 96

4.5 Related Work . 97

4.6 Conclusion and Future Work . 97

5 JARVIS-SDN: SECURITY CONSTRAINED RL FOR ROUTING IN SDN ENVI-

RONMENTS . 99

5.1 Background . 101

5.2 System Model and Problem Formulation . 102

5.2.1 System Model . 102

5.2.2 Problem Definition . 104

5.2.3 Challenges . 105

5.3 RL based Solution . 106

5.3.1 Localized State Model . 106

5.3.2 Security Metric Value System . 107

5.3.3 Q-Learning Algorithm . 109

5.4 Design Details . 110

5.4.1 Network Topology Generator Module 111

5.4.2 Network Flow Database . 112

5.4.3 User Behavior Module . 112

5.4.4 Simulation Environment . 113

5.5 Evaluation Results and Analysis . 113

5.5.1 Security Analysis . 113

5.5.2 Performance Analysis . 114

5.6 Related Work . 115

8

5.7 Conclusion and Future Work . 116

6 ACCELERATING RL LEARNING USING TRANSFER LEARNING 120

6.1 Background . 120

6.1.1 Software Defined Coalitions (SDC) 120

6.1.2 SDC Fragmentation . 122

6.1.3 RL for Developing Network Control Policy 123

6.1.4 Transfer Learning . 124

6.2 Problem Formulation . 126

6.2.1 The Analytic-Service and Fragmentation Scenario 126

6.2.2 Network Control Objectives and Problem Statement 127

6.3 RL for Learning Control Policy in SDC Domains 128

6.3.1 RL-TL based Control Policy Design for Fragmented SDC 129

6.3.2 Reward Knowledge Transfer . 130

6.3.3 General Work-Flow . 130

6.4 Experiments . 131

6.4.1 The Simulated SDC Environment . 131

6.4.2 RL Settings . 132

6.4.3 TL Settings . 133

6.4.4 Experiment Settings and Results . 133

6.5 Conclusion . 135

7 CONCLUSION AND FUTURE WORK . 136

REFERENCES . 137

VITA . 148

PUBLICATIONS . 149

9

LIST OF TABLES

2.1 Metrics for the PBM module . 29

2.2 System calls monitored by SBM . 30

2.3 Metrics for the SBM module . 31

2.4 Performance evaluation for various PBM module classifiers 35

2.5 Performance evaluation for various SBM module classifiers 35

2.6 Malware Executables breakdown according to CPU architecture 39

2.7 Comparison of malicious and baseline logs of the SBM module 44

2.8 Overhead Analysis of the modules of E-Spion 45

2.9 Comparison of different modules of E-Spion . 45

3.1 Smart Home Environment FSM . 80

3.2 Comparison of normal vs safe T/A behavior . 80

3.3 Comparison of action quality for Unconstrained vs Constrained Exploration . . 80

4.1 Attack Taxonomy . 89

4.2 Attack Signature Analysis . 90

5.1 Taxonomy of Security Services in SDN Environments 108

5.2 Attack Taxonomy . 112

6.1 Environment Configurations . 132

10

LIST OF FIGURES

1.1 High Level Overview of Learning Architecture 18

1.2 Jarvis RL Framework . 19

2.1 Architecture of E-Spion . 28

2.2 Hash Chain Verifier . 33

2.3 Experiment Testbed . 38

2.4 Testbed Implementation Details . 39

2.5 Comparison between malicious vs baseline PBM log samples over time according
to (a) CPU usage(usrcpu, syscpu), (b) Memory Usage(vgrow, rgrow) and (c)
Disk Usage (wrdsk, rddsk) . 42

3.1 Deep Q Learning Environment . 53

3.2 Logging and State Modelling for the SmartThings Architecture 62

3.3 Jarvis RL Framework . 64

3.4 Overview of the evaluation setup . 69

3.5 ROC curve for filtering accuracy of the SPL . 70

3.6 Energy Conservation . 72

3.7 Energy Price Minimization . 73

3.8 Temperature Difference Optimization . 74

3.9 Unconstrained vs Constrained Exploration Benefit Space 75

4.1 Deep Q Learning Environment . 83

4.2 Bytes allowed: Malicious (top) and Benign (bottom) 91

4.3 Intra-Episode Actions: DQN and DNN Softmax 92

4.4 Action Space: Malicious (top) and Benign (bottom) 96

5.1 Deep Q Learning Environment . 102

5.2 STE-SDN Framework . 118

5.3 Detection Loss: Brute Force Attacks . 118

5.4 Detection Loss: DDoS Attacks . 118

5.5 Detection Loss: Web Based Attacks . 119

5.6 Latency Loss: Brute Force Attacks . 119

5.7 Latency Loss: DDoS Attacks . 119

11

5.8 Latency Loss: Web Based Attacks . 119

6.1 Software Defined Coalitions (SDC) for armed forces 121

6.2 Architecture of the generic framework for adversarial DA using GANs. 125

6.3 General work-flow of our TL-assisted RL approach. 130

6.4 The simulated SDC environment. 131

6.5 Training curves with DDPG. . 134

6.6 Training curves with sasRL. 135

12

ABBREVIATIONS

IoT Internet of Things

SDN Software Defined Networks

RL Reinforcement Learning

DRL Deep-Reinforcement Learning

IDS Intrusion Detection System

IPS Intrusion Prevention Learning

DoS Denial of Service

DDoS Distributed Denial of Service

VLAN Virtual Local Area Network

SLA Service Level Agreement

13

ABSTRACT

The exponential growth of Internet of Things (IoT) and cyber-physical systems is re-

sulting in complex environments comprising of various devices interacting with each other

and with users. In addition, the rapid advances in Artificial Intelligence are making those

devices able to autonomously modify their behaviors through the use of techniques such as

reinforcement learning (RL). There is thus the need for an intelligent monitoring system on

the network edge with a global view of the environment to autonomously predict optimal

device actions. However, it is clear however that ensuring safety and security in such environ-

ments is critical. To this effect, we develop a constrained RL framework for IoT environments

that determines optimal devices actions with respect to user-defined goals or required func-

tionalities using deep Q learning. We use anomaly based intrusion detection on the network

edge to dynamically generate security and safety policies to constrain the RL agent in the

framework. We analyze the balance required between ‘safety/security’ and ‘functionality’ in

IoT environments by manipulating the exploration of safe and unsafe benefit state spaces in

the RL framework. We instantiate the framework for testing on application layer control in

smart home environments, and network layer control including network functionalities like

rate control and routing, for SDN based environments.

14

1. INTRODUCTION

The deployment of Internet of Things (IoT) combined with cyber-physical systems has re-

sulted in complex environments comprising of various devices interacting with each other

and with users through apps running on computing platforms like mobile phones, tablets,

and desktops. The development of communication protocols for IoT devices, such as 6Low-

PAN, CoAp, and Zigbee, and the progresses in AI have made it possible to interconnect

these different IoT devices and achieve smart autonomous IoT systems. However, smart

IoT-based systems require interconnection and inter-operation among devices, apps, users

and the edge. Such a complex environment of IoT devices and apps dynamically interacting

with each other is prone to security/safety issues [1]–[3]. Another issue is that, in terms of

functionality, each app has specific individual goals. However, when selecting the actions to

be executed, the app does not take into consideration the global view of the environment

where the IoT device is deployed. Such a lack of awareness can lead to decisions and actions

that are not globally optimal in terms of user requirements or goals. Evidently, there is a

need for ‘intelligent’ monitoring systems to ensure safety and maximize functionality with a

global view of all devices and apps and their interactions.

A truly ‘intelligent’ system requires that the IoT devices in the environment work in

concert intelligently to support users in carrying out their activities in a ‘safe’ and ‘optimal’

way using information and intelligence that is hidden in the network connecting these de-

vices, requiring little to no management on a user’s part, and in making intelligent decisions

based on historical and real-time data. The network edge is the ideal place for deployment

of such intelligent monitoring systems as it has access to real-time and historical data re-

quired for learning along with significant computational and storage power to run powerful

machine learning methods. With the recent advances in edge-computing, the fog computing

paradigm [4], [5] used for developing our framework provides advantages over traditional

distributed and cloud computing in terms of security, privacy, scalability, reliability, speed

and efficiency. On top of this, the emergence and successful deployment of software defined

networks (SDN), zero-trust security architecture, and network function virtualization (NFV)

in large scale modern enterprise and 5G networks, it is possible to build “smart” network

15

controllers that leverage machine learning (ML) techniques to learn policies for optimal and

secure traffic engineering.

With the rapid advances in Artificial Intelligence, Reinforcement Learning (DRL) has

emerged as a powerful tool for making these devices be able to autonomously modify their

behaviors. Application of DRL to IoT and SDN environments is a lucrative notion. How-

ever, application of any machine learning intelligence with the single goal of optimization

would never account for unsafe states being reached because of the environment parameters.

Previous work has focused on building application layer RL based solutions to optimize

IoT environments with specific goals, like energy management [6], [7], optimal resource al-

location [8], minimization of energy prices [9] etc. Similar approaches have been used for

optimizing network layer functionalities like routing in SDN environments such as routing

[10]–[13] and rate control/load balancing [14], [15]. The drawback of those RL frameworks,

as mentioned before, is that they focus on optimizing certain goals but do not take into

account safety and security of the environment.

1.1 Research Problem

There is the need for an autonomous control system deployed at the network edge able

to support applications/users, by providing optimal device actions at the application and

network layers to maximize QoS for the users in terms of required functionalities but at the

same time maintaining safety and security the monitored IoT environment.

1.2 Challenges

Our approach to address such a research problem is based on the use of DRL techniques

constrained by the use of safety and security policies. However, the design of such an

approach for complex IoT environments requires addressing several challenges:

1. Security and safety policies depend on the type of intrusions detected in environments

which often have various sources, stages and vectors of infection like malware, network

based attacks, malicious insiders, side-channel attacks, benign user compromises, botnet

attacks etc. Since the attack surface is growing rapidly and changes with the environment,

16

a challenge is thus to be able to specify suitable safety and security policies dynamically

for different IoT environments, deployed devices.

2. RL frameworks learn by ‘freely’ exploring their environment (state space) in order to

find the optimal policies. The challenge is to build a RL framework where the agent is

‘constrained’ by these security/safety policies but at the same time is ‘free to explore’

in order to learn ‘optimal’ and ‘safe’ actions in the IoT ecosystem. A challenge is thus

to identify the correct trade-off between ‘constraint’ in terms of ‘unsafe state space’ and

‘freedom’ in terms of ‘safe state space’ in agent exploration.

3. All RL frameworks work on a model (simulation) of the environment or the environment

itself. Building a model for an IoT environment is challenging because of inherently erratic

distributions of variables like noise, user errors, malfunctions etc. A completely model-

free approach requires actual experiences in order for training, which makes exploration

more dangerous.

4. RL frameworks should be flexible in the sense of being applicable to different environments

with minimum human effort. Thus Ideally, RL frameworks should not only learn optimal

policies, that is, state-action pair rewards, from their experiences but also learn about

the model itself or more specifically state transition probabilities.

5. A policy learnt for one IoT environment very often cannot be directly applied to other

IoT environments because of differences in devices, users, environment specific functions

etc. A challenge is thus to use knowledge gained from learnt policies in one environment

and apply them in the context of a different environment.

6. A single point of failure for security in such environments is the central SDN controller

itself which can be compromised through network layer attacks like DoS, DDoS, Brute-

Force and web based attacks. A challenge is thus to learn optimal policies for the SDN

edge controllers along with application layer edge controllers. This requires learning

security constrained optimization policies for core network functionalities like routing,

rate control etc.

17

Figure 1.1. High Level Overview of Learning Architecture

1.3 Proposed Solution

Towards addressing the stated research problem, we have designed an architecture with

three main components: E-Spion, Jarvis and Jarvis-SDN. The security and safety policies

learnt from E-Spion logs are used to build the model or state transition probabilities of

the Jarvis DRL framework as seen in figure 1.1 . Formally, Jarvis and Jarvis-SDN can

be defined as model-based RL frameworks based on the Dyna-Q framework [16], where: (i)

the model of the environment in terms of safety/security policies is learnt from E-Spion,

and (ii) the optimal policies for the learnt model are learnt by the RL agent from simulated

experiences. We provide more details about each of the three components as follows.

1.3.1 E-Spion: Edge Based Intrusion Detection for IoT environments

E-Spion is anomaly-based system level Intrusion Detection System (IDS) for IoT devices.

It profiles IoT devices according to their ‘behavior’ using system level information, like

running process parameters and their system calls, in an autonomous, efficient, and scalable

manner. These profiles are then used to detect anomalous behaviors indicative of intrusions.

The modular design of our IDS along with a unique device-edge split architecture allows

18

for effective attack detection with minimal overhead on the IoT devices. Our device profile

is built in three layers using three types of device logs (one per each layer) obtained from

three types of information: running process names, running process parameters, and system

calls made by these processes. Since each of these log types has different overheads for

recording, storage, and analyzing, we maintain three separate modules which handle each

type of device log, namely PWM, PBM, and SBM. These modules can run concurrently

with different configuration values (recording intervals, sleep times etc.) according to the

device/network requirements (resource consumption, associated risk etc.). The modules

interact with each other using the common module manager to improve overall detection

efficiency, provide more fine grained intrusion alerts, and reduce overhead on the devices.

The security and safety policies for the environment can be extracted from the E-Spion logs

by searching for anomalous behaviors.

Figure 1.2. Jarvis RL Framework

19

1.3.2 Jarvis: A Constrained DRL Framework tailored for IoT environments

By observing the specific IoT environment, Jarvis first dynamically builds a simulated

environment in terms of devices states and actions. An agent, constrained by security poli-

cies, can traverse the simulated environment in multiple episodes of specific time periods and

find the optimal safe actions in terms of functionality requirements provided by the user. A

Deep Q learning network (DQN) is used to determine the highest rewarding (quality) actions

for each environment state and time instance. A Q learning approach is ideal for such an en-

vironment/ecosystem where, for each state-action pair, we can determine its quality through

a cumulative reward for the time period in terms of the user goals. We train the agent using

a deep neural network (DNN) to maximize the cumulative reward and thus generate the

optimal quality function. A high level outline of the framework is shown in figure 3.3 . It is

important to note that, the security and safety policies used in the Jarvis framework can be

obtained dynamically from E-Spion logs or through other attack signatures of IDS systems

available offline.

1.3.3 Jarvis-SDN: A Constrained DRL Framework for SDN environments

Jarvis-SDN is based on a similar RL framework used for Jarvis but operates at the

network layer rather than the application layer. The goal of the RL framework is optimal

network control. Although there are numerous aspects to network control, in this thesis we

focus on the two core network functionality components required for successful operation of

a network: 1. Routing: Determines the path to take for transferring packets intended from

node A to B to minimize latency, and 2. Rate Control: Determines how much bandwidth

or priority to allocate for each network session between nodes A and B to meet user SLAs.

The security constraints are then encoded as risk metrics into the Jarvis-SDN optimization

criteria to protect the network controller against DoS, DDoS, Brute-Force and Web based

attacks but at the same time learn optimal networking policies. For example, in terms of

routing, ideally a suspicious network flow, which could be a DDoS attack, should be routed

through nodes1
 running a DDoS IDS/IPS on the network. In terms of rate control, the

1↑ By node, we refer to a gateway/access point of an autonomous system (AS) or VLAN network segment

20

malicious looking flows should be throttled until an accurate inference can be made by the

IDS/IPS.

1.4 Thesis Outline

The rest of this thesis is organized as follows. First, in Chapter 2 , we review IDS/IPS

systems designed for IoT and develop E-Spion, a host based IDS specifically for IoT envi-

ronments. In Chapter 3 , we define the model of Jarvis for application layer control in IoT

smart home environments. In Chapter 4 and Chapter 5 , we define the model of Jarvis-SDN

for network layer rate control and routing in SDN environments, respectively.

The instantation of our DRL model Jarvis for application layer control and Jarvis-SDN

for network control requires addressing a key challenge, that is, the application of these tech-

niques at scale. A pure offline RL model degrades with scale as the quality of the simulation

environment also degrades. On the other hand, learning safety and security policies in a

purely online manner is not feasible for obvious reasons. This is a fundamental problem

in application of RL models to real world environments. In 6 , we discuss this challenge in

more detail and provide a solution to this challenge using a Generative Adversarial Network

(GAN) based on the approach of augmenting explorations in the offline environment with

real explorations in the online environment. Finally, in chapter ??, we provide a conclusion

and avenues for future work.

21

2. E-SPION

With the growing use of IoT devices in health care, transportation, home appliances and

smart cities, security of these devices is a primary concern. The lack of security is evident

in the huge number of IoT devices that have been compromised and exploited for launching

large scale DDoS attacks like Mirai in 2016, Hajime in early 2017, BrickerBot and IoT

Reaper later in 2017 and Hakai in 2018[17], [18]. The alarming fact about these attacks is

that these malware are basic and straight-forward when compared to malware used to attack

traditional computer systems. We should thus expect more sophisticated IoT malware in

the future. It might even be the case that such advanced malware are already present on

current devices going completely undetected. An example of such evolution of IoT malware

is the Reaper malware [19] which is a successor to Mirai. It builds on Mirai’s code by

adding various known exploits for different IoT devices/architectures, along with the simple

password guessing techniques of Mirai, to its infection methods. Recently, file-less attacks

have been observed along with traditional malware based attacks against IoT devices[20].

Such attacks are significantly harder to detect and comprise a high percentage of recently

seen attacks in the wild.

To keep up with evolution in malware, we must also keep evolving our security techniques.

Achieving comprehensive security for IoT devices and systems requires combining different

layers of security techniques and systems[21] – among which intrusion detection is one of

the most important. Thus, evolution of intrusion detection techniques for IoT devices is of

utmost importance.

There has been significant research in designing intrusion detection systems (IDSes) for

traditional computer systems, such as Snort [22] and Bro [23], and more recently for IoT

devices, such as Svelte [24], Kalis [25] and Heimdal [26]. Most IDSes for IoT devices are

network traffic based and detect attacks by analyzing the network traffic for either anomalies

or attack signatures. The main problem of these IDSes is that, because of the large amounts

of network traffic in today’s IoT networks coupled with the heterogeneity of IoT devices in

terms of protocols, manufacturers, applications, etc., they tend to miss some attacks and

22

have a significant number of false positives. To overcome those shortcomings, we propose

E-Spion, which monitors and analyzes system data rather then network traffic of IoT devices.

Motivation. System level IDSes like anti-viruses, commonly used for traditional com-

puter systems, employ attack signature based detection. System level anomaly based de-

tection in such IDSes is not practical as a traditional computer system runs a number of

different kinds of applications which might be very similar to malware in terms of comput-

ing operations and commands. So, it becomes very difficult to differentiate between benign

applications and malware, resulting in high numbers of false positives and false negatives.

This, however, is not the case with IoT devices.

In general, IoT devices have a primary function for which computation is required. For

example, a DVR is meant to record and store videos but computation is required for this,

like receiving an input video stream on a network socket and then storing the files in a local

database. Similarly, a television is meant to display, a camera is meant to record videos,

a car is meant to drive safely etc. We see that the computations done on the device are

a means to an end or the main function. This is not the case with traditional computer

systems, like desktops and laptops, where computation is the end goal. These devices can

run multiple applications and allow us to perform computations, like browsing the Internet,

performing calculations, playing games and so on. So, we see intuitively that the IoT devices,

like DVRs, cameras, cars, televisions etc., have a main function and these IoT devices, when

not compromised, should be performing just this main function and nothing else. We also

note that these main functions are periodic in nature and consistently repeat themselves

with different arguments after device specific time intervals. We use these intuitions to build

IoT device profiles later used for anomaly detection.

Approach. At a high level, the goal of our IDS is to identify the main functions of the

IoT device in terms of data collected from the running processes and system calls made by

these processes, in order to create the baseline behavior profile of the IoT device. We then

continuously monitor the device and use this baseline to detect anomalous behavior that

may be indicative of intrusions or other malicious activities.

Contributions. To summarize, we make the following contributions in this chapter:

23

1. A system level IDS that uses anomaly detection to detect attacks on IoT devices in an

efficient and scalable manner.

2. An approach to build baseline behavior profiles of IoT devices according to system infor-

mation (device logs) collected from running processes and system calls on these devices.

3. A device-edge split architecture with the server components running on the network edge-

server performing the bulk of the computational work and the components running on

the IoT device performing minimal work.

4. A three layer anomaly detection engine with each more advanced layer providing more

fine-grained accuracy but at the same time having higher overhead costs on the device.

5. An extensive evaluation of our system using 3973 malware samples assembled from recent

attacks on IoT devices and an analysis of the malware samples in terms of our device

logs.

6. The first IDS for IoT devices effective against 8 types of file-less attacks.

The rest of the chapter is organized as follows. First we give some background on how

IoT attacks are propagated, different types of IoT malware, file-less attacks and the IoT

security architecture in general. Then we discuss in detail the design of our system and its

components in Section 5.4 . Next we discuss some of the key implementation challenges and

analyze the design decisions made in Section 2.3 . We perform the evaluation in terms of

detection efficiency and overhead costs in Section 3.5 . In Section 5.6 , we discuss and compare

related work in this area and finally conclude in Section 5.7 .

2.1 Background

2.1.1 IoT Attacks

Most of the IoT attacks comprise of three operation stages: injection, infection and at-

tack. The injection stage involves gaining ‘control’ of the IoT device (getting root access in

most cases) through credential hijacking, password brute-forcing/dictionary attacks or uti-

lizing known device/system/firmware vulnerabilities [27], [28]. The injection stage follows in

which the attacker ‘prepares’ the device by performing operations on the device like setting

up communication with the bot master (C&C server), downloading required malware/rootk-

24

its, stopping security services etc. Most of the popular IoT attacks involve downloading some

form of malware on to the device in the ’prepare’ stage but the recently seen file-less attacks

do not follow this trend. Some attacks might even skip the prepare step and proceed directly

to the attack stage. Finally the ‘attack’ stage includes performing Denial of Service (DoS),

coordinated DDoS attacks, ransom attacks, bitcoin mining, device specific malicious/unsafe

activities etc. [29], [30].

2.1.2 File-less Attacks

Recently another class of attacks has been observed which does not involve downloading

any malware during the infection stage. This makes attacks harder to detect since malware

fingerprinting is the primary detection technique used in traditional IDSs. The attacks

involve setting up back-doors, port-forwarding etc. using shell scripting or modifying system-

level files. They can be classified into 8 categories [20] described below which we use for our

evaluation.

1. Type 1: Changes the password of the device using the passwd command; it thus locks up

the device and does not allow legitimate users to access it.

2. Type 2: Removes certain config files or system programs using the rm or dd commands.

The goal is to remove watchdog and other security service daemons so that the infec-

tion/malfunction is not detected.

3. Type 3: Stops certain system processes or services using the kill or service commands.

The goal is similar to Type 2 in that the infection is not detected.

4. Type 4: Retrieves system information like architecture, operating system and network-

ing/process information using commands like lscpu, uname, netstat, ps etc. The goal is

to gain more information about the device and network for further attacks.

5. Type 5: Steals user information using the cat command to read stored hashed passwords,

config files etc. The goal is to breach privacy, learn user information and/or behavior

patterns.

6. Type 6: Launches network attacks through malformed HTTP requests to web servers

using the wget or curl commands exploiting known vulnerabilities like HeartBleed, SQL

25

injection etc. The goal is to propagate the attack in the local network and compromise

other devices on the network.

7. Type 7: Uses various shell commands for collecting device/user data like who, help,

lastlog, sleep etc. The goal is to learn how the user uses the device and if other users are

using the device.

8. Type 8: Sets up port forwarding using either the ssh or iptables utilities in order to

use the device as a port forwarding proxy so that the real IP address of the attacker is

masked.

2.1.3 IoT Security Architecture

The IoT security solutions and services can be broadly classified into two categories:

centralized cloud based and distributed edge based. The current trend in enterprise security is

towards providing a security overlay network [31] using a centralized cloud architecture where

the service providers have primary ownership of the data and IDS service. The advantage

of such services is the flexibility in deployment and management, lower infrastructure costs,

performance benefits and a centralized point of control. However, a completely centralized

cloud based security architecture is not scalable [32], [33] for the distributed nature of an

IoT environment because of the huge number of devices, high volume of data, low-latency

requirements, ad-hoc environments and user privacy concerns. The edge based security

architecture proposed in this chapter follows the fog computing paradigm [4], [5] where the

main workload of the IDS is performed at the edge device rather than at the cloud. It is

important to note that the cloud computing resources can be utilized as an additional layer

over the edge as discussed later in Section 2.3 .

2.2 Design

In this section, we first provide an overview of our system design. We then discuss in

detail our anomaly detection engine and the typical life cycle of a device in the network.

Finally, we detail our log authentication scheme (hash-chain-verifier) for secure device log

transfer.

26

2.2.1 Design Overview

Our system, called E-Spion, proposes a novel device-edge split architecture with two

components: a server side (Edge-Server) and a client side (Device) (see Figure 2.1). The

server component is maintained on the edge system or gateway router of the network. The

client component is installed on each IoT device connected to the edge system. The client

component is responsible for recording all system logs on the device and periodically trans-

ferring them to the edge server. The edge-server and IoT devices communicate periodically

via a secure encrypted and authenticated channel. All the computationally intensive op-

erations, i.e. parsing logs to extract features, authentication of logs, training classifiers,

running classifier models, module management etc., are performed on the edge-server. We

have employed such a local edge compute strategy to minimize workload on the IoT devices.

Our device 3-layered behavior profile is built in three layers using three types of device

logs (one for each layer) obtained from three types of information: running process names,

running process parameters, and system calls made by these processes. Since each of these

log types has different overheads for recording, storing and analyzing, we maintain three

separate modules which handle each type of device log, namely Process White listing Module

(PWM), Process Behavior Module (PBM), and System-call Behavior Module (SBM). These

modules can run concurrently with different configuration values (recording intervals, sleep

times etc.) according to the device/network requirements (resource consumption, associated

risk etc.). All three modules are managed by a module manager which helps them inter-

operate efficiently and according to the user/device requirements. The modules interact

with each other using the common module manager to improve overall detection efficiency,

provide more fine grained intrusion alerts and reduce overhead on the devices.

2.2.2 Anomaly Detection Engine

As stated before, our anomaly detection engine is organized into three detection modules

as follows:

PWM. This module uses a white listing based approach and is the least expensive

module. In the learning stage, our system monitors all the benign processes running on the

27

Device Side

Edge Server Side

IoT Device 1 IoT Device
2

IoT Device
3

SysMon SysMon SysMon

New Device?

Learning
Modules

Operational
Modules

Authentication
Module

Flag Device

Log Parser

PWM

PBM

SBM

Log Parser

Malicious Log
Database

Training Set
Assimilator

PWM Whitelist
Generator

PBM Classifier
Trainer

SBM Classifer
Trainer

Device
Logs

Network Edge
Anomaly
Detection

Engine

Figure 2.1. Architecture of E-Spion

device and builds a device specific white-list of all running processes. The system collects all

the running process names and PIDs during the operation stage and compares them with the

device white-list to detect anomalous new processes. The goal is to detect simple malware

which spawn new malicious processes on the device, as efficiently as possible.

PBM. This module monitors the behavior of each running process on the device and

detects any process behaving anomalously. The module monitors various parameters for

each running process on the device during the learning stage. After collecting the logs

during the learning stage, we train a machine learning classifier for each device and use it

for detecting anomalous process behavior. We extract 8 metrics/features (see Table 2.1)

from the parameters and use them in our PBM classifier model. This module is more

expensive than the PWM but it provides more fine-grained detection and is able to detect

more sophisticated malware that have the ability to masquerade as benign processes rather

than spawning new malicious processes.

28

Table 2.1. Metrics for the PBM module
Metric # Metric Name Description
1 SysCPU CPU time consumption of the process in system mode (kernel mode)
2 UsrCPU CPU time consumption of the process in user mode
3 CPU Usage Overall CPU utilization
4 RGROW The amount of resident memory that the process has grown during the last interval
5 VGROW The amount of virtual memory that the process has grown during the last interval.
6 WRDSK The number of write accesses issued physically on disk
7 RDDSK The number of read accesses issued physically on disk
8 Instance Count The number of instances of the process spawned in the interval

SBM. This module monitors the behavior of each running process on the device according

to system calls issued by the process. This is the most expensive module but it provides

the most effective and fine-grained detection strategy. The module monitors 34 different

kinds of system calls issued by each running process as described in Table 2.2 . We list the

metrics/features used for training our classifier in Table 2.3 . For each type of system call

recorded, we monitor four metrics/features: number of calls made (#.1), %of time taken

(#.2), total time taken (#.3) and average time taken per each call (#.4). So, in total we

have 34 ∗ 4 = 136 metrics in our SBM classifier model.

2.2.3 Life Cycle of a Device

For the purpose of our IDS system, a device in the network goes through the following

phases: Initialization, Learning, Operation, and finally Anomaly Detection.

Initialization Phase: When a new device joins the network, a new empty device profile

and public-private key pair are created on the edge-server. Then the private key is uploaded

to the device and all SSH sessions between the edge and device are secured using this key

pair. The corresponding device architecture (Mips, Arm, x86, Spark etc.) specific client side

modules are transferred to the device. The client side modules include Linux shell script

recording modules for the PWM, PBM and SBM modules, scripts to create and maintain

hash chains for log authentication and finally scripts to securely transfer logs from the device

to the edge.

Learning Phase: In this phase, the edge-server receives PWM, PBM and SBM logs

from the device and builds a single 3-layered baseline profile for the device. The PWM logs

29

Table 2.2. System calls monitored by SBM
System Call Description
connect initiate a connection on a socket
_newselect synchronous I/O multiplexing
close close a file descriptor
nanosleep high-resolution sleep
fcntl64 manipulate file descriptor
socket create an endpoint socket for communication
rt_sigprocmask examine and change blocked signals
getsockopt get and set options on sockets
read read from a file descriptor
open open and possibly create a file
execve execute program
chdir change working directory
access check user’s permissions for a file
brk change data segment size
ioctl manipulates the underlying device parameters of special files
setsid creates a session and sets the process group ID
munmap map or unmap files or devices into memory
wait64 wait for process to change state
clone create a child process
uname get name and information about current kernel
mprotect set protection on a region of memory
prctl operations on a process
rt_sigaction examine and change a signal action
ugetrlimit get/set resource limits
mmap2 map or unmap files or devices into memory
fstat64 get file status
getuid32 returns the real user ID of the calling process
getgid32 returns the real group ID of the calling process.
geteuid32 returns the effective user ID of the calling process.
getegid32 returns the effective group ID of the calling process.
madvise give advice about use of memory
set_thread_area set a GDT entry for thread-local storage
get_tid_address set pointer to thread ID
prlimit64 get/set resource limits

are used to build the baseline process white list for the device. The data collected from the

PBM and PWM logs in the learning stage combined with pre-recorded malicious data serves

as the training dataset for these modules. Using these training sets, device specific binary

classifiers are built for both PBM and SBM modules. We discuss in detail our design choice

of binary classifiers over unary classifiers in Section 2.3 .

Training Set Creation and On-the-Fly Classifier Training: In order to train the binary

classifiers for PBM and SBM modules for each new device, we require both benign and

malicious labeled logs in our training set. In our threat model [34], we assume that the

device is uncompromised during the learning stage. In practice, one can also consider the

30

Table 2.3. Metrics for the SBM module
Metric # Metric Name #.1 Metric Name #.2 Metric Name #.3 (seconds) Metric Name #.4 (usecs/call)
1 No. of connect calls %Time of connect calls Time taken by connect calls Time/call of connect calls
2 No. of _newselect calls %Time of _newselect calls Time taken by _newselect calls Time/call of _newselect calls
3 No. of close calls %Time of close calls Time taken by close calls Time/call of close calls
4 No. of nanosleep calls %Time of nanosleep calls Time taken by nanosleep calls Time/call of nanosleep calls
5 No. of fcntl calls %Time of fcntl calls Time taken by fcntl calls Time/call of fcntl calls
6 No. of socket calls %Time of socket calls Time taken by socket calls Time/call of socket calls
7 No. of rt_sigprocmask calls %Time of rt_sigprocmask calls Time taken by rt_sigprocmask calls Time/call of rt_sigprocmask calls
8 No. of getsockopt calls %Time of getsockopt calls Time taken by getsockopt calls Time/call of getsockopt calls
9 No. of read calls %Time of read calls Time taken by read calls Time/call of read calls
10 No. of open calls %Time of open calls Time taken by open calls Time/call of open calls
11 No. of execve calls %Time of execve calls Time taken by execve calls Time/call of execve calls
12 No. of chdir calls %Time of chdir calls Time taken by chdir calls Time/call of chdir calls
13 No. of access calls %Time of access calls Time taken by access calls Time/call of access calls
14 No. of brk calls %Time of brk calls Time taken by brk calls Time/call of brk calls
15 No. of ioctl calls %Time of ioctl calls Time taken by ioctl calls Time/call of ioctl calls
16 No. of setsid calls %Time of setsid calls Time taken by setsid calls Time/call of setsid calls
17 No. of munmap calls %Time of munmap calls Time taken by munmap calls Time/call of munmap calls
18 No. of wait calls %Time of wait calls Time taken by wait calls Time/call of wait calls
19 No. of clone calls %Time of clone calls Time taken by clone calls Time/call of clone calls
20 No. of uname calls %Time of uname calls Time taken by uname calls Time/call of uname calls
21 No. of mprotect calls %Time of mprotect calls Time taken by mprotect calls Time/call of mprotect calls
22 No. of prctl calls %Time of prctl calls Time taken by prctl calls Time/call of prctl calls
23 No. of rt_sigaction calls %Time of rt_sigaction calls Time taken by rt_sigaction calls Time/call of rt_sigaction calls
24 No. of ugetrlimit calls %Time of ugetrlimit calls Time taken by ugetrlimit calls Time/call of ugetrlimit calls
25 No. of mmap2 calls %Time of mmap2 calls Time taken by mmap2 calls Time/call of mmap2 calls
26 No. of fstat calls %Time of fstat calls Time taken by fstat calls Time/call of fstat calls
27 No. of getuid calls %Time of getuid calls Time taken by getuid calls Time/call of getuid calls
28 No. of getgid calls %Time of getgid calls Time taken by getgid calls Time/call of getgid calls
29 No. of geteuid calls %Time of geteuid calls Time taken by geteuid calls Time/call of geteuid calls
30 No. of getegid calls %Time of getegid calls Time taken by getegid calls Time/call of getegid calls
31 No. of madvise calls %Time of madvise calls Time taken by madvise calls Time/call of madvise calls
32 No. of set_thread_area calls %Time of set_thread_area calls Time taken by set_thread_area calls Time/call of set_thread_area calls
33 No. of get_tid_address calls %Time of get_tid_address calls Time taken by get_tid_address calls Time/call of get_tid_address calls
34 No. of prlimit calls %Time of prlimit calls Time taken by prlimit calls Time/call of prlimit calls

scenario where device vendors can perform the learning phase in their isolated environments

and provide device profiles to their users. So, all logs obtained during the learning stage

can also be assumed to be benign. In order to obtain malicious labeled logs, we emulated

different CPU architectures and firmwares using qemu [35] system level emulation and [36].

On these device specific virtual machines, we ran a portion of the IoT malware samples and

collected the device logs for various interval values from all malicious processes spawned for

different CPU architectures. The generation of maliciously labeled logs is done offline, that

is, before the initialization phase, in order to create pre-recorded malicious logs for different

CPU architectures, endianess and intervals. We store these in the malicious log database.

During the learning stage, the training set assimilator creates device specific training data

by combining benign labeled logs from the learning phase and malicious labeled logs from

the the malicious log database according to the device CPU architecture and interval. Our

binary classifier is then trained during the learning stage to distinguish between malicious

31

and benign logs. These classifier models for the PBM and the SBM modules along with

the running process white-list for the PWM module are combined together to form the

complete behavioral baseline profile for the device. In our current implementation, we choose

a random forest classifier for both the PBM and SBM modules as it provides the highest

detection efficiency. We discuss more about the performance of various binary classifiers in

Section 2.3 .

Operational Phase: Once the baseline profiles for all modules are built at the edge,

the operational phase starts. In this phase, the device can operate as desired and we assume

the attacker has full access to the device. The device continuously records and transfers logs

and corresponding hashes to the edge-server according to the configuration values of interval

and windowsize.

The device constantly records logs for each module every interval seconds and transfers

them to the edge every windowsize seconds. Overall, every transfer contains windowsize/in-

terval number of PWM, PBM and SBM logs. We discuss about the choice of values of

windowsize and interval and how it impacts the performance of E-Spion in Section 2.3 .

Anomaly Detection Stage: For each of the logs received, the hash-chain-verifier at

the network edge first checks the integrity of the logs. If the logs fail the integrity check or no

logs are received, then the device is considered compromised or malfunctioning and the IDS

raises an alert. We can find out of the approximate time of infection and the likely source of

compromise by analyzing the received logs. If the integrity check goes through, the logs are

forwarded to the anomaly detection engine at the edge-server. Here, the logs are compared

with the baseline profiles for each of the three modules and, in case an anomaly is detected,

an alert is raised. The PWM module simply compares the current running process list to

the PWM whitelist, while the PBM and SBM modules classify the current device logs using

the binary classifiers trained in the learning stage.

2.2.4 Hash Chain Verifier

This component verifies the integrity of the logs received by the edge-server. It maintains

hash chains of the logs as shown in Figure 2.2 . For the window of time windowsize as defined

32

before, the client generates a hash chain of the device logs during this window of time. We

use the SHA256sum utility [37] to compute the SHA-256 one-way hashes of the logs. The

device logs include the running process lists, process behavior logs, and system call behavior

logs collected for the PWM, PBM and SBM, respectively. A new hash chain link is added

after every interval specified by interval. So, each window contains a hash chain made of

windowsize/interval hash links. We use the Merkle-Damgard construction [38] to compute

these hash links. So, at the start of every hash chain initiation (every windowsize seconds)

the server sends an encrypted random nonce c to the device.

Figure 2.2. Hash Chain Verifier

The hash list uses c as an initialization vector for the hash chain. This value is deleted

as soon as the first hash is created. The hash value and the log are stored. After interval

seconds, the second link of the hash chain is computed using the hash of the previous log and

the hash of the current device log. After which the hash of the previous log is deleted from

the system. This is done every interval seconds for the duration of the window. After the

window closes (windowsize seconds), the final hash value along with the corresponding files

(device logs) in the windowsize are sent to the edge-server. The edge-server then computes

the final hash from the received logs (and random nonce c) and compares it with the hash

value received from the device. If the values do not match, the authentication fails. We do

not go into details about the security of the hash chain verifier, and refer the reader to our

previous paper for details on the threat model and security analysis [34].

33

2.3 Implementation Details

In this section, we discuss key challenges in the implementation of the prototype of

our system and how we have addressed these challenges, namely: deployability, choice of

classifiers, timing/interval choices, modularity and distributed nature of logs.

Deployability. Due to the heterogeneity and resource constrained nature of IoT devices,

deployment of a system level IDS like ours is a challenge, and as with all host based IDSs,

it is the limiting factor. We implement our system with the goal to overcome this challenge

and make sure that deployment of the system is feasible for all IoT devices. We observed

that 71.3% of all IoT devices run some version of Linux as their operating system and “Linux

is becoming the standard OS for all gateway and resource constrained devices” according to

the 2017 IoT developer survey [39]. So in order to maximize deployment, we build our client

side (SysMon) modules using common system tools like atop, ps, sha256sum, openssh and

strace present on all standard Linux distributions. We tested our system on various CPU

architectures and Linux operating systems along with several IoT device emulations using

Firmadyne [36] in order to make the device modules scalable and easy to deploy. It must be

noted that similar tools are available on other OSes and E-Spion variants for them can be

implemented along similar lines.

Choice of Classifiers. The common approach for detecting anomalies involves using

unary or one class classifiers. However, IoT devices are prone to malfunctions and fluctua-

tions in performance [40]. This results in one class classifiers classifying benign malfunctions

and fluctuations as malicious activities, thus causing high numbers of false positives. To avoid

this problem, we use binary classifiers and train our classifiers using existing IoT malware

samples.

For both the PBM and SBM module, we tested different binary classifiers like naive

Bayes, decision tree, logistic regression, random forest, K nearest neighbor (K-NN) and

multi-layer perceptron (feed forward artificial neural network (ANN)) classifiers. We found

that the random forest classifier works best for detecting intrusions for our dataset as shown

in Tables 2.4 and 2.5 . Also, tree based classifiers are the fastest and most efficient to build.

So, we use the random forest classifiers for both our PBM and SBM modules.

34

Table 2.4. Performance evaluation for various PBM module classifiers
Classifier Accuracy (%) ROC Area True Positive Rate False Positive Rate Precision Recall F1-Measure
Naive Bayes 26.24 0.82 0.26 0.15 0.84 0.26 0.23
Logistic Regression 85.72 0.84 0.85 0.66 0.83 0.85 0.82
Decision Tree 97.64 0.94 0.97 0.12 0.97 0.97 0.97
Random Forest 97.75 0.98 0.97 0.10 0.97 0.97 0.97
K-NN 97.66 0.97 0.97 0.10 0.97 0.97 0.97
ANN 95.26 0.89 0.95 0.24 0.95 0.95 0.94

Table 2.5. Performance evaluation for various SBM module classifiers
Classifier Accuracy (%) ROC Area True Positive Rate False Positive Rate Precision Recall F1-Measure
Naive Bayes 100.00 1 1 0.0 1 1 1
Logistic Regression 99.74 0.99 0.99 0.002 0.99 0.99 0.99
Decision Tree 99.94 0.99 0.99 0.001 0.99 0.99 0.99
Random Forest 100.00 1 1 0.0 1 1 1
K-NN 99.98 1 1 0.0 1 1 1
ANN 99.94 1 0.99 0.001 0.99 0.99 0.99

The low accuracy(∼26%) of the naive Bayes classifier in the PBM module can be at-

tributed to its class independence property. From our observation, IoT malware usually em-

ploys a combination of CPU, memory and disk resources; thus the usages of these resources

are correlated to each other. Therefore, assuming that these features are independent of

each other leads to a lower accuracy for the PBM module. However, for the SBM module,

the naive Bayes classifier works perfectly. The reason is that the system calls made by a

process are not directly correlated to other system calls made by the device, so the class

independence property is a fair assumption in the case of the SBM module. We find that all

the binary classifiers give high detection rates for the SBM module. This can be attributed

to the larger number of good features (that is, 136) used for training our SBM classifier.

The regression classifier works better than the naive Bayes classifier with an accuracy of

∼85% for the PBM module. A logistic regression model searches for a single linear decision

boundary in the feature space. Hence, the lower accuracy can be attributed to the fact

that our data does not have a completely linear boundary for decisions. Therefore, the

ideal decision boundary for our dataset would be non-linear. We observe that tree based

classifiers (decision trees and random forests) work best for our system. However, decision

trees are prone to over-fitting which is the reason we choose a random forest classifier over

a decision tree classifier. Although the distance based K-NN classifier and the deep learning

based ANN classifer give comparable results to tree based classifiers, they take more time

35

and computational power to build which is unsuitable for the real-time requirements of IoT

networks.

Timing/Interval choices. The configuration values for the variables windowsize and

interval play a significant role in the detection efficiency and overhead costs of our system.

We performed several tests with different configuration values on different devices in our

testbed (see Subsection 2.4.2). We tested our system with windowsize of 20, 50, 100, 500

and 1000 seconds and interval of 2, 10 and 20 seconds. We found that for all devices,

the detection accuracy remains nearly constant (75%, 97%, 99% for PWM, PBM, SBM

respectively) for all these configurations. This can be attributed to the fact that the devices

behave similarly in all these intervals and the choice of the recording intervals has minimal

impact on the detection accuracy for our current dataset. However, the larger the interval

size, the higher chance the attacker has of evading the system as discussed in [34]. Also, our

system can only detect attacks after windowsize seconds when logs are transferred to the

edge-server. If the windowsize is too high, then the detection time of the attack will also be

higher. Large scale time-critical networks, like vehicular networks, smart-grids etc., require

very short attack detection time because of their real-time safety requirements. So in such

networks, the windowsize should be small enough to detect these attacks in real-time. In

terms of overhead costs, a lower windowsize results in higher communication overhead at the

device as the logs need to be transferred more frequently. A lower interval results in a higher

computational overhead at the device mainly because more hashing operations are required.

Such computational and communication overheads can be detrimental in scenarios where

resource constrained embedded devices are present in the network. So, we leave the choice

of the optimal values of these configuration parameters to the system administrator as it

depends on the system requirements, devices used, deployment scenario and associated risk

for each device. In our current prototype, we use a windowsize of 100 seconds and interval

of 10 seconds for all the devices.

Modularity of Logs. Our system has three detection modules that provide varying

degrees of detection efficiency and overhead costs. We deploy these modules independently

in separate threads rather than sequentially. The outputs from these modules are combined

by the module manager to provide a 3-layered detection output rather than a simple alert.

36

This implementation is essential to weed out false positives and differentiate between benign

malfunctions and attacks. For example, in case of a device malfunction, the PBM module

will raise an alert due to the anomalous process behavior. However, the SBM module will not

raise an alert as no anomalous system calls were issued by the process. These modular logs

provide the module manager enough information to classify this incident as a malfunction

rather than an attack and thus reduce false positives.

The modules have different overhead costs associated with them as well. The modular

design allows activating/deactivating each module as required by the device according to its

resources, associated risk, network conditions etc. For example, a resource constrained device

can be configured to activate the expensive SBM module only when an alert is received from

either PWM/PBM modules. On the other hand, a device with a high associated risk will be

configured to have all modules active at all times. The modular design enhances flexibility

and scalability in the deployment of our system.

Distributed Nature of Logs. In our current prototype, we store the learnt behavior

from the learning stage for each device on the edge and we assume that the device functions

benignly until the end of the learning phase. This assumption holds in our current threat

model but would be a limitation for real world scenarios where devices are compromised

as soon as they connect to the network or are compromised in production. To address

this challenge, we added some additional functionality in our current prototype to move

further towards a fog computing paradigm [4]. The edge-server stores the logs in a cloud

repository accessible by other edge-servers. This repository holds learnt logs from devices

across different E-Spion enabled networks. Such logs enable one to compare behaviors

of the same devices in different networks and to detect anomalous behavior during the

learning stage. A device which has already been compromised during the learning stage

shows significantly different behavior when compared to the same device in another network

which has not been compromised during the learning stage. This distributed nature of logs

allows inter-operation between different E-Spion edge-servers and a fail-check in case of

devices behaving maliciously during the learning phase.

37

2.4 Evaluation

We perform an extensive evaluation of E-Spion on a typical enterprise IoT setup with

3973 of the most recent IoT malware samples. In this section, we provide details on our

malware dataset and evaluation testbed. We then discuss the detection efficiency of our

system and finally provide an analysis of the malware samples in terms of our device logs.

After which we discuss the effectiveness of our system against 8 types of file-less attacks

and finally look at the overhead costs associated with our system. We focus on collecting

IoT malware extensively rather than simulating various network based attacks as seen in

prior work. The reason for this is that the goal of our host-based system is detecting the

compromised host/device during the injection or infection stage rather than the attack stage.

More details on our threat model are given in our previous paper [34].

2.4.1 IoT Malware

IoT malware is downloaded during the infection stage according to the device oper-

ating system and architecture. For evaluating our system, we collected different variants

of IoT malware and built a comprehensive dataset using 3973 malware samples from the

most popular malware families: Zorro, Gayfgt, Mirai, Hajime, IoTReaper, Bashlite, nttpd,

linux.wifatch etc. The malware samples were collected from IoTPOT [41], VirusTotal [42],

and Open Malware [43]. These malware executables are compiled for different CPU ar-

chitectures and endianess. The collected malware executables are classified according to

different device architectures in Table 2.6 . 2572 of the samples are compiled for little endian

processors while 1421 of them are for big endian processors.

Figure 2.3. Experiment Testbed

38

Figure 2.4. Testbed Implementation Details

We have used 20% (795) of our malware samples as training malware samples for the

learning stage and 80%(3178) of them as testing data for evaluation in our experimental

setup.

Table 2.6. Malware Executables breakdown according to CPU architecture
Architecture Number of Malware samples

Mips 935
Arm 912
x86 576
Sparc 299

Renesas/SuperH 310
x86_x64 294
MC68000 294
PowerPC 353
Other 26

2.4.2 Evaluation Testbed

We create a typical motion sensing network using 4 webcams, 5 raspberry pi devices

(4 mounted and 1 tethered), 3 HPE GL10 IoT gateways and 1 Aruba PoE Switch (see

Figure 6.4).

The raspberry pi devices are responsible for recording images from the cameras and

movement from the sensors. The motion sensor is an accelerometer installed on the raspberry

pi device and is responsible for detecting any movement of the raspberry pies. The devices

39

communicate with each other using MQTT (Message Queuing Telemetry Transport). A high

level outline of the functions of the devices in the testbed can be seen in Figure 2.4 .

2.4.3 Detection Efficiency and Analysis

To test our system, we manually download and run 3178 malware executables on the

devices in our testbed. We evaluate the performance of our system by running the malware

samples sequentially. Every time a malware sample is executed, we check if our system is

able to correctly flag each malicious process spawned by the malware. After every run, we

restore the system with a clean OS and execute the next malware sample. In what follows

we discuss the detection accuracy for each layer of our system.

PWM layer. The PWM layer had a detection rate of 79.09%. We see that the simplistic

PWM is able to detect most of the IoT malware samples just through the simple white-listing

of process names. This reinforces our claim that most of the IoT malware is basic and does

not employ any obfuscation or deception techniques. On average, each malware spawns a

mean of 1.79, median of 1 and mode of 2 new processes. 20.91% of the malware spawn

no new processes but rather manipulate or masquerade as a benign process (e.g., white-

listed process). We observe that most malware invokes the prctl system call and uses the

PR_SET_NAME request. We also observed that some malware simply change the name

of the malicious program to a benign one. Most of the malware masquerades as common

system utilities such as sshd, telnetd etc. Another observation we made from the PWM layer

is that some of the malware samples produce a randomly generated process name for each

execution of the sample. This would seem an appropriate approach taken by attackers to

bypass process name blacklisting approaches.

Another key point to note is that we do not see any false positives from the PWM layer.

This can be attributed to the fact that all the processes spawned by benign applications are

already whitelisted during the learning stage and none of the benign applications spawn any

new unwhitelisted processes during the operation stage.

PBM Layer. The PBM layer has a high detection rate of 97.02% but at the same time

a significant false positive rate of 2.97%. As we are monitoring for anomalous activity for all

40

the running processes of the system, the PBM layer is able to capture malware masquerading

as benign processes which the PWM layer is unable to detect. As this is a machine learning

predictive approach, we do encounter false positives in this layer and some benign processes

are incorrectly classified as malicious. We observe that most malware is very aggressive in

terms of CPU and memory usage when it infects the system. Therefore they can be easily

detected by the PBM as this module is able to quickly detect anomalous behavior even for

malware masquerading as benign processes.

To demonstrate the effectiveness of each metric/feature in our PBM module, we compare

baseline logs against the malicious logs over time according to average CPU usage (syscpu,

usrcpu), average memory sage (Vgrow, Rgrow) and average disk usage (wrdsk, rddsk) in

Figure 5. The malicious logs are represented in red while the benign logs are represented

in blue. We observe that the malicious logs are clearly distinguishable from the baseline

logs using just a subset of the metrics.This means that these features individually (CPU,

memory and disk usage) also perform well in terms of detection efficiency. So, in devices

where one of the metrics is inaccessible or unavailable (for example, small embedded devices

which have no disk but just flash memory), the PBM module will still be able to detect

intrusions effectively. We observe that most of the malware has a typical bursty behavior

pattern in that it remains dormant most of the time and performs its malicious activities

in a burst. Benign applications on the other hand have a consistent behavior where their

operations are periodic and constant. These results confirm our original intuition about the

periodic and consistent nature of IoT device processes. We also train our PBM classifier

using the CPU, memory and disk usage metrics individually and observe detection accuracy

of 94.2%, 96.67%, and 91.46%, respectively. Although using the metrics individually has

high detection efficiency, it also results in higher false positive rates of 5.77%, 3.32%, and

8.5% respectively. So, we use all the metrics in conjunction to minimize the number of false

positives.

SBM Layer. The SBM layer has a detection rate of 100% and 0 false positives. This is

the most fine grained detection module. However, it is also the most expensive. Table 2.7

shows a comparison between malicious and benign SBM logs according to the different

system call types in terms of average number of calls made and average % of execution time

41

Figure 2.5. Comparison between malicious vs baseline PBM log samples over
time according to (a) CPU usage(usrcpu, syscpu), (b) Memory Usage(vgrow,
rgrow) and (c) Disk Usage (wrdsk, rddsk)

taken by the system call. We can see that malicious processes use a typical combination of

system calls, like connect, socket, read, write, munmap, ioctl etc., and the behavior is highly

different from benign processes.

42

2.4.4 Effectiveness against File-less Attacks

As seen before, we have categorized file-less attacks into 8 categories. We manually

performed all 8 types of attacks in our E-Spion monitored environment. We observe that

our system is able to effectively detect all 8 types of the attacks in our evaluation testbed.

The reason being that all file-less attacks propagate using either shell or system commands

like passwd, rm, kill etc. on the device using root privileges. Whenever a command is

issued in Unix/Linux, it creates/starts a new process. This new process is flagged by the

PWM layer. Only the Type 8 attack manages to evade the PWM layer when it it uses

the ssh utility to set up the port forwarding. This however is flagged by the PBM layer as

it detects an anomalous use of the whitelisted ssh processes. The SBM layer also detects

the anomalous use of socket, bind system calls made by the SSH processes and flags the

Type 8 attacks. Even more sophisticated file-less attacks which employ benign application

based commands for infection would be detected by our PBM and SBM modules as the

application’s ”behavior” is ”anomalous” or different from the learnt baselines.

2.4.5 Overhead Analysis

We now discuss the performance and storage overheads for the different modules of E-

Spion. An important requirement of our design is that the system should impose minimal

costs on the already resource constrained IoT devices. As we see in Table 2.8 , most of the

computational resources (CPU and memory usage) are required by the server side modules

which run on the more powerful edge-server while the client side modules running on the

IoT device require minimal computational resources. Table 2.8 also shows the overheads

in terms of CPU, memory and disk usage required by the different modules on the device.

We observe that the SBM module is the most computationally expensive while the PWM

is the least expensive. The PWM module requires the least amount of CPU, memory and

disk on the device. In terms of CPU usage and disk usage, the SBM module is the most

expensive. It is important to note that the SBM also slows down benign processes because

it uses the system tool strace. strace pauses the process twice for each syscall, and executes

context-switches each time between the process and strace.

43

Table 2.7. Comparison of malicious and baseline logs of the SBM module
System Call Type Malicious Process:

Avg No of calls
Benign Process:
Avg No of calls

Malicious Process:
Avg Time%

Benign Process:
Avg %Time

connect 10 1 29.375431 0.109712824
_newselect 6 0 7.652097 0

close 882 527 0.79684114 2.8245006
nanosleep 5 409 3.5325627 44.9521
fcntl64 53 34 0.07268107 0.3070208
socket 7 1 1.5146441 0.06425141

ra_sigprocmask 0 2 0 0.009006577
getsockopt 6 0 0.77036035 0

read 2868 984 2.2888484 7.1284814
open 22 1704 0.16306427 13.151322
execve 1 1 3.61E-05 0.0042437743
chdir 1 0 7.06E-04 0
access 11 79 0.066558525 0.848794
brk 3 33 0.005014777 0.19349128
ioctl 3464 498 0.52835435 12.714709
setsid 1 0 0.008818369 0

munmap 2769 18 13.151226 0.5787933
wait4 1 0 12.624713 0.3850142
clone 1 2 0.018954737 0.024077073
uname 1 0 0.0037215038 0.0037744138

mprotect 13 232 0.07808309 1.8957471
prctl 1 0 0.022474075 0

rt_sigaction 12 85 0.20787959 0.2348594
ugetrlimit 1 1 5.62E-04 0.003911133
mmap2 2801 291 12.589997 3.5121188
fstat64 24 656 0.026696749 2.4766097
getuid32 1 3 0.008650763 0.044761505
getgid32 1 1 0.007634516 0.026103668
geteuid32 1 2 0.0027905148 0.028454894
getegid32 1 0 0.0021606325 0.015322265
madvise 1 1 2.76E-04 0.19356513
gettid 1 0 6.24E-04 0

set_thread_area 1 0 3.96E-04 0
set_tid_address 1 0 4.08E-04 0.0020117187

44

Table 2.8. Overhead Analysis of the modules of E-Spion
Device Edge-Server Side

Module CPU Usage(%) Memory Usage(Kb) Disk Usage(Kb) CPU Usage(%) Memory Usage(Kb)
PWM 0.01 2896 67 23 74,684
PBM 0.2 4788 776 24 739,936
SBM 0.6 3912 1340 25 363,680

Table 2.9. Comparison of different modules of E-Spion
Module Accuracy Computational Cost

on Device
Storage Cost
on Device

Slow-Down of
benign applications

Computational Cost
on edge-server False Positives

PWM Moderate Low Low No Low None
PBM High High High No High Moderate
SBM Highest High High Yes Moderate None

On the edge-server side, the PBM module is the most expensive in terms of memory and

PWM is the least expensive. The PBM module requires the most amount of memory for

extracting features because the process behaviour logs are denser than both process whitelists

(PWM) and system call behaviour logs (SBM). As the SBM module only checks for certain

system calls and records a summary of these calls in its logs, extraction of features from the

logs is considerably less expensive than PBM. Both SBM and PBM modules require training

and operating expensive random forest binary classifiers due to which they are 5x and 10x

more expensive respectively than the PWM module in terms of memory usage. In terms of

CPU usage, all 3 modules have similar overhead costs on the server side.

We see that the three modules have varying degrees of computational and storage over-

heads and detection efficiency. Finally in Table 2.9 , we summarize our comparisons of each

module in terms of accuracy and overhead.

2.5 Related Work

Intrusion Detection for IoT. IDSes for IoT devices use different strategies for placing

intrusion detection tools, namely: centralized, distributed, and hybrid. IDSes like [26],

[44], [45], use the centralized IDS placement approach and generally monitor traffic passing

through the border routers. Such a strategy has the advantage of detecting attacks from the

Internet into or out of the IoT network but this is not enough to detect attacks involving just

the nodes of the IoT network. Also, if part of the network is disrupted, a centralized IDS

45

might not be able to monitor all the nodes. Light-weight distributed placement strategies

have been proposed in [46]–[48] where each node is responsible for monitoring and analyzing

their packet payloads, energy consumption and their neighbors respectively. However, these

strategies impose a non-negligible computation overhead on the already resource constrained

devices. Most recent IDSes [24], [49], [50] are hybrid approaches which combine centralized

and distributed approaches. The Kalis IDS [25] has been designed with a flexible placement

strategy, in that it can be placed on the devices, or at some gateway, or onto its own spe-

cialized device. Our system also uses a hybrid placement strategy where the data gathering

module runs on the device while the analysis module runs on the edge-server.

Most existing IDSes for IoT devices and embedded devices, like [46], [51], [52], use

signature-based detection schemes. These IDSes rely on network information gathered by

a packet sniffer, and detect attacks using signature matching over this information. The

approaches that only use signature-based detection are simpler to develop but cannot detect

attacks for which the signature is unavailable. Also, it is difficult for resource constrained IoT

devices to run computationally expensive signature storing and matching schemes. Another

factor is that with the high heterogeneity in terms of protocols, functionality, manufacturers,

device architectures etc., the attack signatures/rule list becomes very large and complicated.

While running through a large signature list is sustainable for a traditional network, small

IoT networks incur heavy overhead and this results in poor performance of the IDS. Also,

going through a large signature list usually results in a higher number of false positives. Con-

versely, anomaly-based techniques are more versatile, as they can detect unknown attacks,

but are harder to implement and more inaccurate, potentially yielding high false positive

rates. A number of such anomaly based schemes detection schemes have been proposed [26],

[44], [47], [49], [50] which rely on detecting anomalies by inspecting packet rates, sizes, pay-

loads, headers, node connections, energy consumption, device profiles etc. Our system is

also an anomaly based detection scheme but focuses on building device profiles using sys-

tem information gained from the running processes and system calls rather than network

information.

This section extends our previous work [34] by introducing modifications to the IDS

implementation and reporting evaluation results concerning the effectiveness of the IDS

46

against recent sophisticated file-less attacks. Overall, our approach is significantly different

from all the previous approaches in the area of IDS for IoT systems as we aim to build

a hybrid light-weight IDS system which is able to detect anomalous behavior in terms of

system level information from running processes and system calls.

Traditional system level techniques. Even though there is little research on system

level IDS technology for IoT, there has been significant research in the area of intrusion

detection using system events and provenance logging for traditional computer systems.

There are two main approaches. The first approach is based on system event logging and

then causally connecting these events during attack investigations to build causal graphs like

Auditd [53] in Linux kernels which maintains audit logs of important system events. The

other approach is using provenance propagation like in PASS [54] which stores and maintains

provenance data where provenance is calculated for certain entities like network sessions

after which the IDS captures the program dependencies during execution. There have been

attempts to build such schemes for distributed systems [55]. ProTracer [56] proposes a light-

weight provenance “tainting” scheme which is a hybrid of both those approaches. The most

comprehensive of such hybrid IDSes is RAIN [57] which achieves higher run-time efficiency

by pruning out unrelated executions in their provenance graphs. Although these approaches

have similar ideas compared to ours, they are not suitable for IoT devices. The implicit

assumption made in these approaches is that each input event has a causal effect on all the

output events. These systems then try to build a model of the behavior of all the benign

applications using this assumption. Such an approach works well for complex applications

running on traditional computer systems as there are large numbers of running processes

and threads interacting with each other on these systems. However, this model would be

an overkill for IoT devices. Most IoT devices have much simpler program execution and a

simpler approach to modeling IoT devices is required. The other major factor to consider is

that these approaches incur large computational and storage costs which are infeasible for

resource-constrained IoT devices. By contrast, our system uses a simpler and more efficient

3-layered approach to model IoT device behavior using system data. Also, we leverage

network edge-servers and thus are able to minimize the workload on the devices. This makes

our approach practical and cost-efficient for IoT devices.

47

2.6 Summary

In this chapter, we have proposed a system-level IDS E-Spion tailored for IoT devices.

It builds a 3-layered baseline profile with varying overhead costs for IoT devices using sys-

tem information and detects intrusions according to anomalous behavior. It is specifically

designed for resource-constrained IoT devices with an efficient device-edge split architecture

and modular 3-layered design. We extensively tested our system with a comprehensive set

of 3973 IoT malware samples and 8 types of file-less attacks. We observed a detection rate

of over 78%, 97% and 99% for our 3 layers of detection, respectively.

48

3. JARVIS: SECURITY CONSTRAINED RL FOR IOT

ENVIRONMENTS

In the consumer market, IoT technology is mostly synonymous with products pertaining to

the concept of “smart home”, covering devices and appliances, such as lighting fixtures, ther-

mostats, home security systems and cameras, that support one or more common ecosystems

consisting of sensors of different kinds, such as motion, sound, light, heat, and touch, that

can be controlled via devices associated with the ecosystems, such as smartphones.

A widely used approach for providing intelligent IoT services is through apps. These apps

can support simple functionality such as “opening the door as an authorized user approaches

the building” or more complex functionality like “navigating the car through a certain area

autonomously”. The apps communicate through API calls from the managing device to

the IoT devices (sensors/actuators) through edge or cloud computing. Trigger-action apps

platforms, like IFTTT [58], Zapier [59], and Apiant [60], allow 3rd parties to develop apps

for these platforms. Such a strategy promotes the creation of communities of developers that

build apps catering to different environments, devices, and protocols.

The development of communication protocols for Internet of Things (IoT) devices, such as

6LowPAN, CoAp, and Zigbee, and the progresses in AI have made it possible to interconnect

different IoT devices and achieve smart autonomous IoT systems. However, smart IoT-based

systems require interconnection and inter-operation among devices, apps, users and the edge.

Such a complex environment of IoT devices and apps dynamically interacting with each other

is prone to security/safety issues [1]–[3]. Another issue is that, in terms of functionality, each

app has specific individual goals (e.g, “turn on the heater if the temperature is below the

user requirement”). However, when selecting the actions to be executed, the app does not

take into consideration the global view of the environment where the IoT device is deployed.

Such a lack of awareness can lead to decisions and actions that are not globally optimal in

terms of user requirements or goals. Evidently, there is a need for intelligent monitoring

systems to ensure safety and maximize functionality with a global view of all devices and

apps and their interactions.

49

To address such drawbacks, in this chapter we introduce Jarvis, a novel constrained RL

framework for autonomously predicting ‘optimal’ and ‘safe’ decisions in an IoT ecosystem.

An agent explores a simulated RL environment in order to find the optimal device actions

according to the user’s goals, such as saving energy and minimizing cost. Examples include

turning off appliances to save energy, using devices during the off-peak hours to minimize

electricity costs, etc. At the same time, the exploration of the agent is constrained by security

and safety policies identified for the environment. For example, actions such as unlocking

doors when user is not home or sleeping, turning off heater during winters, etc. are not

permitted to the agent.

We design the framework to be context-independent and applicable to any IoT environ-

ment. By observing the specific IoT environment, Jarvis dynamically builds a simulated

environment in terms of devices states and actions. An agent, constrained by security poli-

cies, can traverse the simulated environment in multiple episodes of specific time periods

and find the optimal safe actions in terms of functionality requirements provided by the

user. A Deep Q learning network (DQN) is used to determine the highest rewarding (qual-

ity) actions for each environment state and time instance. A Q learning approach is ideal

for such an environment/ecosystem where, for each state-action pair, we can determine its

quality through a cumulative reward for the time period in terms of the user goals. We train

the agent using a deep neural network (DNN) to maximize the cumulative reward and thus

generate the optimal quality function.

One of the main challenges in the design of our framework is that safety and security poli-

cies have to be specified by users and vary across different environments, deployed devices,

and apps. Therefore, full manual specification of policies is not a viable approach. In order

to minimize human effort in defining safety and security policies, Jarvis is designed to iden-

tify benign trigger-action (T/A) behavior in IoT environments by observing events occurring

naturally in the environment or ‘how the environment would function without machine in-

tervention’. We define trigger-action (T/A) behavior based on enterprise platforms [58] and

formal models [61] expressed in terms of device states and actions. Our assumption for safety

and security is that such natural behavior is safe. Any unnatural or anomalous behavior is

considered unsafe or malicious. However, in practice benign device malfunctions and human

50

errors are common. So, an artificial neural network (ANN) is trained to filter these benign

anomalies using back propagation. Jarvis observes the state transitions of the environment

during a specified learning phase and dynamically builds the white-list of “safe policies” or

safe T/A behavior using the ANN. After the learning phase is completed, the RL agent

uses the white-list to constrain the RL environment and thus prevent unsafe/insecure state

transitions. We use the terms ANN and DNN to refer to neural networks, with a single hid-

den layer trained by back propagation and multiple hidden layers trained by reinforcement

learning, respectively. Formally, Jarvis can be defined as a model-based RL framework

based on the Dyna-Q framework [16], where: (i) the model of the environment in terms of

safety/security policies is learnt from actual user experiences through supervised learning,

and (ii) the optimal policies for the learnt model are learnt by the RL agent from simulated

experiences.

To summarize, we make the following contributions:

1. A context independent RL framework Jarvis for IoT environments.

2. A novel approach to constrain RL using safety and security policies.

3. An approach for dynamically learning safety/security policies in terms of triggers and

corresponding actions in IoT environments.

4. An instantiation of Jarvis for a smart home environment and an extensive evaluation of

the security and safety of the system using simulated data from manually crafted safety

violations collected from prior work [1], [2] and user defined anomalous activities from

the SIMADL project [62].

5. An analysis of the functionality benefits of the system using real world data in terms of

three functional requirements: energy conservation, cost minimization, and temperature

optimization.

The rest of this chapter is organized as follows. In Section 5.1 , we briefly review the

general IoT architecture and the Deep Q Learning framework. Next, we formally define our

system model and challenges, and formulate the functionality optimization goal as a Markov

Decision problem (MDP) in Section 5.4 . In Section 3.3 , we define our deep RL based Q

learning framework to solve the problem optimally. Next in Section 3.4 , we instantiate

Jarvis for a smart home environment, provide design details, and analyze the benefits of

51

Jarvis in a small smart home example. We quantitatively evaluate the instantiation in terms

of safety and functionality in Section 3.5 . Finally, we discuss related work in Section 5.6 and

outline a few conclusions in Section 5.7 .

3.1 Background

3.1.1 IoT Architecture

All popular IoT platforms, like Samsung Smartthings, Apple HomeKit, and OpenHAB,

rely on the concept of separation of intelligence from devices. Smart applications can then be

built by combining the intelligence layer with the functions and data provided by the devices.

At a higher level, an IoT architecture can be considered as organized into four components:

devices (sensors, actuators, appliances, etc.), edge (hub, router, connecting devices), cloud

(cloud services, databases, analytics etc.), and control devices (mobile phones, desktops etc.).

All IoT devices are standardized to provide certain ‘capabilities’ which allow devices to alter

certain ‘attributes’ through ‘commands’. Actuators like smart locks, lights, appliances have

capabilities like lock/unlock, power on/off, increase temperature etc. Sensors for motion,

sound, heat etc. have capabilities such as motion detected/no motion, high pitch sound/no

sound/noise, optimal/high/low temperature etc.

These components inter-operate based on an event publish-subscribe architecture. The

devices interact with the edge through device specific handlers which parse device specific

messages (open/close, on/off, heat/cool, brew/do not brew) to/from the device and relay nor-

malized edge-readable events (door opened, device turned on, heating temperature reached

value x, etc.) to the edge. All publications of an event can be seen by the apps that have

subscribed to that particular event.

3.1.2 Deep Q Learning

A Reinforcement learning (RL) framework [63] (see Figure 5.1) is an environment where

for every state transition or state-action pair (s, a), a reward function R(s, a) determines a

reward value r. A RL agent traverses the environment according to a policy πθ(s, a) for a

time period θ and receives a total reward value accrued over all the state transitions involved

52

for a given model of state transition probabilities. In a Q learning framework, the goal is to

find the optimal policy which maximizes the total reward through exploration in such a RL

environment using a Q function which determines the quality or cumulative reward for all

state-action pairs.

Figure 3.1. Deep Q Learning Environment

In a deep Q learning system, a Deep Neural Network (DNN) is used to determine the

optimal Q function using a temporal difference equation defined as follows:

Qt(s, a) = Qt−1(s, a) + α[R(s, a) + γMaxa{Qt(s, a)} −Qt−1(s, a)]

where Qt(s, a) is the current Q function and Qt−1(s, a) is the previous Q function for

the environment. The estimated next state and action are denoted by s and a, respectively.

The learning rate (α) determines to what extent newly acquired information overrides old

information. The discount factor (γ) determines the importance of future rewards.

3.2 System Model and Problem Formulation

In this section, we first discuss modelling an IoT environment as a finite state model

(FSM). After which, we define the state transitions of the environment as “episodes” and

formulate the functionality optimization goal of Jarvis as a MDP. Then, we discuss the

challenges associated with applying such a model to cyber-physical systems.

53

3.2.1 IoT Environment

The IoT environment FSM consists of k devices {D1, D2, .., Dk}, η users {U0, U1, ..., Uη},

and m apps {ap0, ap1,, apm}. By convention, manual operations in the model are denoted

by a pseudo app ap0. Each device in the environment is modelled by a set of device-states

and a set of device-actions. At any point of time, device Di can be in one of a set with a

number iss of device-states: {pi0 , pi1 , ...piss}. At a time instance t, a device-action can be

executed on device Di from a set with a number ias of device-actions: at
i ∈ {ai0 , ai1 , , aias}.

Specifically for IoT platforms, device capabilities and device attributes can be translated to

device actions and device-states respectively.

Each device Di has a transition function δi which is the link between a device-action and

a device-state. For a device Di in state pix and having device action aiy take place on it,

δi(pix , aiy) = pix gives the new state of the device. Along with this, each device Di has a

dis-utility function ωi(pix , aiy) which represents the dis-utility per time instance that results

if the execution of device-action aiy is delayed in state pix . A device can exist in different

locations and thus have varying contexts in terms of accessibility, user permissions etc. To

model this in our framework, we follow the container based approach followed by most

IoT platforms. Each container acts as a boundary between the devices; the containers are

organized hierarchically according to: user accounts, locations and groups. Therefore, device

Di can only be accessed by a set of authorized users ui, ui ⊆ {U0, U1, ..., Uη}, depending on

its location li and its group gi, and corresponding device and app subscription policies.

3.2.2 State Transition Model

For the overall environment state St, at the next time instance t + 1, a set of autho-

rized users U t ⊆ {U0, U1, ..., Uη} can use a set of apps AP t ⊆ {ap0, ap1,, apm} to perform

an action At on a set of devices D ⊆ {D1, D2, .., Dk}, to get the new state of the en-

vironment St+1. So the state transition of the environment is represented as the current

state St = (s0, s1, ., si, ., sk) plus a set of at most k (one per each device) device-actions.

At = {at
0, at

1, ..., at
k} is the set of actions taken at time instance t by a set of users U t through

a set of apps AP t resulting in the next state St+1 at time instance t + 1. The next state

54

is computed using the transition function for each device and corresponding action on the

device such that St+1 = (δ0(s0, at
0), δ1(s1, at

1),, δk(sk, at
k) = ∆(St, At) where ∆ is the overall

transition function of the environment.

Definition 3.2.1. A FSM consists of tuple (SS, AS, ∆) where: SS = ⋃̃ν

i=0 Si is the state

space with ν = ∏k
i=0 iss; AS = ⋃̃υ

i=0 Ai is the action space with υ = ∏k
i=0 ias; and ∆ is the

overall state transition function. The overall state of the FSM at time instance t is defined

as St = (s0, s1, ., si, ., sk), where si is the state of the i-th device such that si ∈ {pi0 , pi1 , ...piss}.

Wemonitor state transitions in the IoT environment in terms of “episodes”. We define two

configuration parameters for an episode: time period T and interval I. The state transitions

occur every I seconds until the timestamp reaches T seconds, after which the state is reset to

the initial state and marks the end of an episode. An episode basically consists of T/I time

instances at which the state transitions of the environment are recorded. For example, for

{T, I} = {60, 1} minutes,the episodes are an hour long with state transitions every minute.

The following constraints apply to all state transitions:

1. Only one action per device per interval is allowed.

2. Only authorized users U t at time instance t can access the app according to app sub-

scription policies.

3. Only authorized app AP t at time instance t for the device can take actions on the device

according to device subscription policies.

4. Only one app can take action on the device per interval. Conflicts are resolved on a first

come first serve basis.

5. In a single interval, each device can only change its state at most one time.

We following definition defines our model of the IoT environment state transitions in

terms of episodes.

Definition 3.2.2. An episode is defined as a tuple (N, S0, T, I). N = {S0, S1, ., St, ..Sn} is

an ordered list of states reached in the episode where each next state St+1 = ∆(St, At) for

an action At and 0 < t ≤ n; n = dT/Ie; S0 is the initial state of the episode; T is the time

period; I is the interval.

55

3.2.3 Problem Definition

We formulate the functionality optimization goal of Jarvis as a MDP. A MDP is a

sequential decision making problem where outcomes are under the control of an agent. The

agent’s goal in this case is to maximize functionality as specified by the user by choosing a

sequence of actions for the upcoming episode of the environment. In our model, functionality

requirements defined by the user are measured through a reward function. The functionality

requirement specified determines the utility (F ()) gained by the user which is one part of

the reward function in the environment. The other part derives from the dis-utility (D())

caused to the user in terms of delays, waiting time, and discomfort. The general structure

of the reward function is defined as follows: R(S, S, t) = F (S, S, t) − D(S, S, t) where S is

the current state, S is the next state of the environment, and t is the current time instance

of the episode. The goal of Jarvis is to maximize the cumulative reward at the end of the

episode which is a MDP problem defined formally as follows.

Definition 3.2.3. A MDP consists of a tuple (F, R, P, T, I, S0). F is the FSM of the

environment; R is the reward function; P is the state transition probability table; T is the

time period; I is the interval, and S0 is the initial state of the environment. The goal of the

agent is to find a strategy of actions in accordance with P , maximizing the total value of R

of the next upcoming episode, for the environment in state Si in F where 0 ≤ i ≤ dT/Ie.

3.2.4 Challenges

There are two key challenges when applying our model to cyber physical systems:

Unknown Reward Function

Quantifying the exact value of “utility” or “reward” gained or lost for any action per-

formed is a challenge. It is worth noting that the R() function described is not strictly Marko-

vian in practice. In practice, F () and D() directly depend on inherently non-Markovian

components, like environment dependant variables (electricity prices, temperature varia-

56

tions etc.) and user behavior, respectively. So, the value of the reward function R for a

given state, action and time instance is not exactly known to the agent.

Safety/security of state transitions

Since the model is used to control a cyber physical environment, some state transitions

can result in safety or security threats to the user specifically or to the general environment.

Therefore, using a uniform state transition probability is impractical and state transitions

must be context and environment dependant. The state transition probabilities of such

unsafe state transitions should be zero. So, environment specific safety policies have to be

identified before setting the model’s state transition probability table P .

3.3 RL based Solution

In this section, we propose a RL based solution to the problem in Definition 5.2.2 subject

to the aforementioned challenges. We propose algorithms to: 1) learn the safety/security

policies in the environment and estimate the safe state transition probability table Psafe, and

2) estimate the reward function Rsmart and learn the optimal and safe behavior in terms of

user required functionality.

3.3.1 Safe State Transition

We identify state transitions which occur naturally in the environment during a specified

learning phase as safe state transitions. The learning phase can either occur during setup

of the environment or during a period defined by the user. During this learning phase, the

user must approve every action taken as safe or manually perform it. This gives assurance

that the corresponding state transition is ‘natural’ and the safety/security of the user is not

violated. All state transitions are learnt in the form of trigger-action (T/A) behavior defined

as:

T: Current State St → A: Next Action At+1

The T/A behavior from the learning phase is recorded to form the training dataset TD.

However during the learning phase, there is the possibility of benign device malfunctions or

57

human errors. To avoid learning this benign anomalous activity as unsafe, we filter TD to

remove these anomalous state transitions using a feed forward ANN. The ANN is trained by

back-propagation using environment specific user labelled benign anomalous activities. The

labelling of benign anomalies can be done offline by the user or through user prompts in real

time according to the environment and user preferences.

All filtered state transitions in the learning phase and their instance counts are stored in

memory. Finally, only state transitions having instance counts greater than the environment

specific threshold ThreshEnv have a uniform probabilistic distribution in the model. All

other state transitions probabilities are assigned null values to prevent unsafe situations.

The details of the approach are outlined in Algorithm 1 .

Algorithm 1: Learning Safe State Transitions
Input: Training Dataset TD, Environment Context Variables {T, I, Threshenv}
Output: State Transition Probability Table Psafe
Initialize: Psafe[:, :] = 0, Count[:, :] = 0
Mem← F ilterANN(TD)
while d← 0 : SizeOf(Mem) do

while t← 0 : T do
(S, A)← get(Mem, d)
Count[S, A]← Count[S, A] + 1
SafeMem← (S, A, Count[S, A])
t← t + I

d← d + 1
while (S, A, Count) ∈ SafeMem do

if Count > ThreshEnv then
S ← ∆(S, A)
Psafe[S, S]← 1

3.3.2 Reward Function Estimation

To address the challenge of unknown reward function, we estimate the reward function

using user input and previous experiences. The estimated (smart) reward function for envi-

ronment state St, action A, and time instance t is defined as:

58

Rsmart(S, A, t) =
κ∑

j=0
(fj)Fj(s, a, t)− I

kT

k∑
i=0

ωi(si, a)(t− t)

where the user inputs define the κ individual functionality requirements in terms of

normalized functionality reward functions Fj. Examples of functionality rewards are: energy

consumed, electricity costs, difference in optimal and current temperature, network usage

etc. fj are the weights associated with each functionality reward according to the user. The

weights instill the concept of machine ‘smartness’ into the system, where the system is able

to learn hypothetical strategies according to a combination of requirements or goals of the

user. The user can alter weights to give more preference to one goal over the other but the

essential strategy choices are made by the system keeping in mind the entire environment.

The second part in the above expression is the sum of all the estimated dis-utility caused

by each device according to the their state and their pre-defined dis-utility values in episodes

with time period T and interval size I. By dis-utility, we mean the discomfort or waiting

time that might be caused to the user. This is an estimate obtained from the past behavior

of the user, i.e., higher dis-utility means that the current state change is highly different

from previous user behavior and vice-versa. t is the closest preferred time instance for the

state-action according to past behavior. The higher the difference in t and t, the higher the

estimated dis-utility is. The normalized ωi function corresponds to the cost of dis-utility for

the specific device. The reason for including the dis-utility in the reward function is to make

sure that the agent in the virtual environment does not take actions purely for functionality

optimization. For example, the agent deciding not to operate any of the appliances when

power conservation is a functionality goal. It would give maximum functionality results

(0 power consumption) but at a high cost with respect to user convenience. The reward

function parameters fj and ωi are chosen to balance utility and dis-utility rewards according

to a utility-disutility ratio χ =
kT

∑κ
j=0 fi

I
∑k

i=0 ωi
. Ideally, the value of χ should be chosen according

to user preferences and environment configuration.

59

3.3.3 Q Learning Algorithm

We use a RL based approach to find the optimal quality function for the environment in

terms of the estimated reward function Rsmart as detailed in Algorithm 2 . The FSM of the

IoT environment is used to build a simulated environment where an agent can run multiple

episodes to find the optimal and safe device actions for upcoming episodes. The agent

balances exploration and exploitation according to the exploration rate ε. The exploration

of the agent is constrained by security and safety policies at each step by using the safe state

transition table Psafe learnt from Algorithm 1 . The Max(Q, c) function returns the c highest

quality action for the given state and time stamp. Random batches from the agents prior

experiences are selected and replayed to learn cumulative rewards according to the discount

factor γ and batch size Bsize. Finally, the random batch with cumulative rewards is used to

further train the DNN in order learn optimal Q table values for each state action pair and

timestamp of the episode.

It is important to note that in our current formulation of the MDP, optimal actions are

chosen with respect to the current state and timestamp of the episode. It is possible that

in complex IoT environments, a more sophisticated policy identification in terms of higher

order temporal trajectories is required. In this case, a MDP model relying on the imme-

diate previous state would be a limitation. However, such a limitation can be overcome

by incorporating temporal parameters for the episode in the state definition of the model.

Such an approach would result in more fine-grained Jarvis’s optimization policies but at

the cost of a higher number of state spaces and computation cost. The identification of ideal

temporal parameters and specifics of the DNN, like number of hidden layers, activation func-

tions, optimizers, network organization (feed forward/recurrent/convolutional), are beyond

the scope of this work and should be chosen according to the device configurations and user

requirements in the specific IoT environment.

3.4 Instantiation for a Smart Home Environment

In this section, we instantiate Jarvis for a smart home environment. We implement

a prototype of Jarvis on the popular Samsung SmartThings [64] IoT platform. In what

60

follows, we first provide design details about the key components of Jarvis. Next, we

qualitatively analyze the benefits of Jarvis using a small smart home example.

3.4.1 Design Details

The main components of the architecture are discussed in what follows.

Logging System

To capture all device related events, this component uses a logger app (see Figure 3.2)

which subscribes to all device capabilities and attribute changes associated with these ca-

pabilities. More specifically, an attribute change on the device results in the creation of an

event which triggers the logger app because of its subscriptions, after which the logger app

proceeds to store the log. The logs in JSON format are shown as follows:

(Event.date, Event.data, User.info, App.info, Group.info, Location.info, Device.label, Ca-

pability.name, Attribute.name, Attribute.value, Capability.command)

Log Parser

The logs are parsed through a normalization function to generate the state model of the

environment. The normalization function quantifies the device Attribute.Value to discrete

device states and Capability.command to discrete device actions. Capabilities and attributes

for a device can be numbers, strings, vectors, enum values etc., so we have manually devel-

oped device specific normalization functions. For all devices in the logs, their unique device

states and actions are modelled as the FSM of the environment. In our prototype, we choose

the time period value T as 1 day, interval value I as 1 min, and learning phase time L as 1

week. We choose these values intuitively as typically users have periodic behavior in terms

of days/weeks and generally do not require demand response times below a minute. During

the learning period, state transitions are recorded as learning episodes according to T, I, L

values.

61

Figure 3.2. Logging and State Modelling for the SmartThings Architecture

Security Policy Learner

The security policy learner (SPL) is responsible for learning the safe state transitions

table (Psafe) from learning episodes using Algorithm 1 . By using results of user studies

like [62] we manually generate labelled benign anomalous state transitions applicable to the

smart home environment. Examples of such behavior, such as leaving fridge/oven door open,

TV/oven on for short periods etc., are shown in section 3.6.1 . The training set TD for the

ANN is generated by randomly choosing state transitions from learning episodes and benign

anomalous state transitions. The Threshenv should ideally be 0 as safety is critical in a smart

home. A feed-forward multi-layer perceptron ANN with a single hidden layer is trained using

back-propagation of TD samples.

62

Smart Reward Function

The smart reward function Rsmart is estimated from environment specific normalized

functionality reward functions Fj, the reward weights fj, and the dis-utility functions ωi

provided by the user. The reward functions are generally scalar values available to the user

in the environment through power meters, smart grids, and sensors. For example, if energy

conservation is a functionality requirement, F0 is directly proportional to power consumed

in all device state transitions for the particular time interval which can be monitored by

power meters. ωi’s are chosen by the user according to the environment configurations. For

example, appliances which require immediate action and do not consume a lot of power are

devices with high dis-utility, like lights, door bells, locks etc., have very high values of ωi.

Low dis-utility devices, like HVACs, washing machines, dish washers etc., have high power

costs and no immediate action requirements. The dis-utility value of Rsmart for time instance

t is generated from the delay in state transitions t− t, when compared to ideal time instance

t in learning episodes and the device specific dis-utility ωi. The definition and discretization

of ωi depend on the device and environment configurations, and thus we manually define ωi

values for each device. However, it is important to note this is just a one-time offline cost

after which the devices can be used in other smart home contexts.

RL Environment

Jarvis dynamically builds a RL Q learning environment using the FSM of the smart

home and the functionality requirements specified by the user. It builds a simulated virtual

environment using the openAI gym[65]. We have developed a general environment in the

openAI gym which can be used for various IoT setups and device configurations. An agent

can explore all device states and take any action on any of the devices at every time instance

with interval time I for an episode of time T .

63

Figure 3.3. Jarvis RL Framework

Optimizer

The optimizer deploys a RL agent to traverse the RL environment in EP episodes to

optimize the Q function according to Algorithm 3 (see Figure 3.3). A batch processing DNN,

developed using TensorFlow [66] with two hidden layers and a learning rate of 0.001, is used

to determine the optimal Q function values using first-order gradient-based optimization.

The drawback of using the DNN arbitrarily is that it does not remember experiences from

the previous episodes.

To address such problem, we defined the concept of ‘replay’ in Algorithm 3 , where the

agent remembers the actions and corresponding cumulative rewards, for all previous ‘replays’

of prior episodes and uses the cumulative rewards to optimize the Q function. The system

stores all the experiences of the episode and ‘exploits’ this knowledge during a new episode

64

(see Figure 3.3). The agent uses a random batch from the past experiences to further train

the neural network after every new episode.

Practical Deep Learning

The problem of action space explosion occurs when building the DNN as the action space

increases exponentially. Consider an environment where each device can exist in only 2 states:

on and off. Then even in this minimalist model, there can be a total of 2k actions and we see

that the action space grows exponentially with the number of devices. Maintaining a quality

function of that magnitude for even small environments would be infeasible. To address this

problem, we break up an action into mini-actions. The input to the DNN is the state of the

environment. The output is an array of rewards for each ‘mini-action’ instead of a whole

environment action. A ‘mini-action’ is defined as an intermediate action performed on only

one device in an interval of the episode. In an asynchronous system where the state of the

global system is characterized by the composition of the internal state of each individual

device, a parallel execution can always be serialized into the execution of the individual

device mini-actions. There can be at most k mini-actions possible in one interval of the

episode, i.e one per each device. This allows the neural network to learn quality values

efficiently for the mini-action space (grows linearly) rather than total action space (grows

exponentially). There can only be k mini-actions for each trigger. So, in a single interval,

the agent can take a maximum of k mini-actions to form a complete action.

3.4.2 Example: Analysis and Discussion

The example smart home consists of 5 devices: a smart lock, a door touch sensor, a smart

light, a smart thermostat controller and a temperature sensor. The FSM of the environment

is shown in Table 3.1 .

Safety

To demonstrate the effectiveness of our approach in learning safe state transitions, we

install five common IFTTT [58] apps in the example smart home (see Table 3.2). For

65

instance, App 1 opens the door when a user arrives home. In terms of T/A behavior, the

action (A) here is ‘opening the door’ and the trigger (T) is ‘the door touch sensor or camera

identifying the authorized user at the door’. In our model, this trigger would be represented

as the door sensor being in “Auth. User” or in p11 state.

If no safety policies were identified by Jarvis, the T/A behavior of the apps would be

as described in columns 4-5 of Table 3.2 . ‘X’ indicates that the device can be in any state

(or take any action) and is not directly affected by the app. ‘O’ indicates that no action

should be taken on the device. We see that these triggers and actions are specified without

taking into account the environment context and only consider the individual app and the

devices associated with it. They also do not take into account the security or safety of the

environment. For example, in the context of App 1, it is not safe for the door to be unlocked

when the user is not at home or sleeping. Similarly, turning the thermostat on when the user

is not home or setting the temperature to unsafe high values in App 2’s context. Turning off

temperature and door sensors can also lead to safety issues. Next in columns 6-7, we show

the safe T/A behavior learnt from Algorithm 1 . We can see that Jarvis is able to learn the

natural progression of device states, from which it automatically learns the security policies.

The only exception occurs in the case of emergency situations raised by certain sensors like

smoke alarms, fire sensors etc. The safe functioning of these devices cannot be determined

from natural progression as such scenarios occur only in rare situations. So, we have to

adjust our model to add security/safety policies for such devices manually as our security

policy learner does not in these situations. In Section 3.5 , we discuss using active learning

approaches to learn safe non-natural behavior and make such adjustments autonomously.

Effectiveness of Constrained Exploration

We specify k = 3 example user required functionalities in the smart home environment:

Energy Conservation, Electricity Cost Minimization, and House Temperature Optimization.

We compare the action quality learnt without any security constrains (unconstrained

exploration) to action quality learnt with Jarvis (constrained exploration) in terms of the

given functionalities in Table 3.3 using 8 common T/A behaviors. For instance, turning off

66

the lights and thermostat when the user leaves the house. An unconstrained optimizer with

a goal of conserving energy would turn off all the devices which can cause safety concerns

like turning off essential sensory devices like fire-alarms, door lock sensors and temperature

sensors. In the case of the single goal of temperature optimization, the unconstrained ex-

ploration would lead to turning on the thermostat even when the user is not home which is

a safety as well as energy waste issue. We see that unconstrained optimization of actions

according to functionality leads to unsafe situations, which are avoided using the constrained

exploration of the Jarvis RL environment.

3.4.3 Dis-utility vs Safety.

It is important to notice the difference between the dis-utility in the Rsmart reward func-

tion and the learnt safe transitions Psafe from the SPL component. High dis-utility and

unsafe behavior might share some common patterns but they have different definitions in

our model. While both are probabilistic and are learnt during learning episodes, they differ

in their enforcement: the former is ‘strict’ as it represents user safety in the model, while

the latter is ‘lapse’ as it represents user inconvenience.

We illustrate the difference using the smart home example with energy conservation as

the functionality goal. A user leaves his house meticulously at 8 am and locks the door

during the learning phase. Then while exploring the RL environment, the agent learns

that it gains a higher reward when the lights and thermostat are turned off exactly at 8am

because of the low dis-utility in the reward function. So the agent learns that for the trigger

T1 =“locking the door at 8am”, the action A1=“turning the thermostat and lights off” is the

highest quality action. Now suppose that the user is not so meticulous and leaves sometimes

between 6am-8am. Now the agent finds that the reward for taking A1 is lower as the utility

part is the same but the dis-utility part for this action is higher as the user does not leave

exactly at 8am. So, we see that although the reward is lower, if the user were to leave the

house at 6am instead of 8am, the optimizer will still predict the optimal action A1 even if

the reward is lower. A security policy on the other hand is strict and does not allow any

unsafe action. In the same example, for the trigger T1, the action A2 = “power off the lock”

67

would cause a security concern. The SPL component learns that for T1, the action A2 must

never taken place. So, in the RL environment this T/A behavior would never occur unlike

the high dis-utility case seen before.

3.5 Evaluation

We evaluate the instantiation of Jarvis for a smart home environment quantitatively

in terms of two metrics: security and functionality. We first describe the simulated test-

bed for our evaluation. Next, we evaluate the safety and security policies learnt by the

SPL component. Then, we analyze the effectiveness of the Optimizer in terms of three user

defined functionalities.

3.5.1 Testbed

We build a virtual testbed (see Figure 3.4). It consists of five users and two locations:

Home A and Home B. We use the open smart home simulator (OpenSHS) [67] to build

data sets for home A using simulated daily user activities [68]. The Home B’s datasets are

simulated from real world data collected by user studies [68]. We use 55,156 samples of user

generated benign anomalies [62] for building the training dataset TD for the testbed.

3.5.2 Safety and Security

Building Malicious Data-sets: There has been significant research on identification and

analysis of safety and security violations that occur in smart homes [1], [2], [69]. After

reviewing prior work, we define the following six types of malicious activities:

1. Type 1: T/A safety violations

2. Type 2: Integrity/access control violations

3. Type 3: General security/conflicting actions/race condition violations

4. Type 4: Safety violations by malicious apps

5. Type 5: Insider attacks

We give examples of each type and details of how violations from prior work are repro-

duced for our testbed in Appendix 3.6.2 . In total, we develop 214 security violation instances

68

Figure 3.4. Overview of the evaluation setup

with a breakdown as follows: Type 1 (114), Type 2 (40), Type 3 (40), Type 4 (10), and

Type 5 (10).

Security Analysis: To evaluate safety provided by the SPL, we manually engineer each

of the 214 malicious state transitions in random episodes of the RL environment to generate

21,400 malicious episodes. We then play these malicious episodes in the RL environment

after the learning episodes of the SPL component are complete. We find that the SPL is

able to flag 100% of all the malicious state transitions in the malicious episodes.

3.5.3 False Positives

We evaluate the SPL in terms of false positives resulting from benign user anomalies

that are classified as malicious state transitions. We use data-sets[62] that have samples of

anomalous activity collected from user studies. The participants of the studies were asked

69

to define anomalous activities themselves and then perform additional simulations of these

defined anomalies. These data-sets have activities for a period of one month in smart home A

with interval size of one minute. We engineer instances of benign anomalous state transitions

collected from [62] in random episodes after the learning episodes of the SPL are complete

for smart home A to generate 18,120 benign anomalous episodes.

The benign anomalies are detected and filtered by the ANN used by the SPL. We find

that 99.2% of the benign anomalous episodes are correctly classified by the ANN and the

false positives are 0.8%. The ROC graph is shown in Figure 3.5 .

Figure 3.5. ROC curve for filtering accuracy of the SPL

3.5.4 Functionality

For analysing the functionality optimizer component, we take κ = 3 hypothetical goals

of the user: energy optimization, energy cost minimization, and ideal temperature mainte-

nance. We define normalized reward functions for each as: F0 - meter readings of power

70

usage (energy usage), F1 - electricity costs for power usage according to DAM (day-ahead-

market) prices[70] (energy cost), and F3 - temperature difference between day ahead fore-

casted temperature and HVAC readings. We manually define the values of the dis-utility

reward functions (ωi) for k = 11 devices such that total dis-utility and total utility rewards

are equally balanced: χ = 1 and f1 +f2 +f3 = 1. This makes sure that the optimized actions

never cause more dis-utility than functionality when traversing the environment.

We perform experiments for a range of rewards weights f1, f2, f3 ∈ [0.1, 0.9] for 30 random

days from the dataset from [68]. For each day, Jarvis produces the optimal strategy or Q

table based on the fj values. We compare the normal user behavior with Jarvis optimized

behavior; the results of the comparison are reported in Figures 3.6 , 3.7 , and 3.8 for each

functionality, respectively. We can see that the optimized actions provide an advantage over

normal behavior in the range from fj = 0.1 to fj = 0.9. The shaded region in the graphs

is defined as the safe benefit space of the environment for each individual functionality. It

is important to note the user may take some actions of the day manually and depend on

Jarvis for other actions. In this case, Jarvis still suggests the best possible action from the

safe benefit space for whichever state the environment has reached because of user actions.

3.5.5 Analysis of the Benefit Space

We can see that Jarvis learns to take ‘smart’ decisions by exploring the safe benefit

space. With a variation of fj and χ values, Jarvis is able to learn a variety of hypothetical

environment specific ethics for state space exploration. For instance, configuration values

f1 = 0.9, f2 = 0.05, f3 = 0.05 result in Jarvis having highly energy usage conscious ethics.

On the other hand, for values f1 = 0.2, f2 = 0.2, f3 = 0.6, Jarvis learns more balanced

ethics which emphasizes maintaining house temperature at the expense of energy usage and

costs.

Learning hypothetical human objectives or ethics to model the reward function is a

hard problem because of the intractability of value of information to the user for a given

environment. It is the focus of various active learning schemes [71], [72]. Jarvis provides an

effective way of producing hypotheticals along the safe benefit space for each functionality

71

Figure 3.6. Energy Conservation

defined by the user. The reward function model can then be learnt from user feedback on

these hypothetical behaviors.

3.5.6 Limitations of Unconstrained Exploration

In order to see the benefits and drawbacks of unconstrained exploration, we perform

an experiment to compare the behavior of Jarvis with and without the SPL component.

The results are reported in Figure 3.9 . We can see that unconstrained exploration promises

higher rewards but at the same time has an average of 32 safety violations per episode. We

refer to the grey region of the graph as the overall unsafe benefit space of the environment

(the overall safe benefit space is shown in orange). Since the SPL is probabilistic and prone

to false positives, of the 32 violations, there might be some which are benign and should

be allowed. In this regard, Jarvis has a bias towards ‘safer’ solutions based on Occam’s

razor [73]. This is a valid assumption in IoT environments especially in smart homes where

user safety is paramount. However, there may be violations which are benign (i.e., false

72

Figure 3.7. Energy Price Minimization

positives) or provide enough functionality benefits such that they are acceptable to the user

in certain scenarios. User feedback on these actions in the unsafe benefit space can be used

to correctly classify these actions as benign or malicious. Using such active learning methods

to utilize the unsafe benefit space is a promising future direction of research.

3.6 Related Work

Approaches for securing IoT environments are based on vetting apps by building static

or dynamic smart app models [1]–[3], [61], [74]–[76]. The models are generated using a

combination of device capabilities, user prompts, app permissions, and event subscriptions.

After which, some form of forward symbolic execution [77] is used to explore all feasible

paths in the built graphs. In order to build multi-app models, a set of the apps which share

device events and graph causality are merged together to form a union of the app’s state

models. Then a general purpose model checking, like SPIN [78], is used to detect policy

violations in the generated app models. These app-based modelling approaches are prone

to state space and path explosion problems especially with large numbers of heterogeneous

apps in terms of functionalities, dependencies, and attribute values. These systems work for

73

Figure 3.8. Temperature Difference Optimization

small dynamic models built by limiting app-interactions, interleaving or using just a specific

set of apps and devices triggered in a particular order. On the other hand, the Jarvis

state model is constructed only from device states and actions and hence not affected by the

number or variety of apps running in the environment. Also, the safety and/or security of

the decisions is assessed from pre-defined policies set by users [1], [2]. Defining such policies

for different devices and app configurations requires significant human effort. An approach

for the automated learning of such safety policies in a smart home by observing natural

behavior of the devices is proposed in [79]. Our system is similar in this regard as it learns

security policies by observing prior T-A behavior during the learning phase.

The other drawback of those approaches is that they only detect unsafe/insecure states

and do not consider the functionality requirements or goals of the user. Approaches have

been proposed for building optimization models for individual functionality requirements

like energy usage [80], [81], electricity prices[9], [82], and thermal comfort[83], [84] for smart

homes and smart grids using various statistical and machine learning tools. In [7], a RL

based system is used to manage the energy in a residential setting with a smart grid. For

smart homes, a deep RL based framework is developed using energy and user discomfort as

74

Figure 3.9. Unconstrained vs Constrained Exploration Benefit Space

opposing rewards [6]. Other learning systems are used to maintain the state changes of power

intensive HVAC, washing machines, industrial appliances etc. [85]. However, these systems

are designed to have simplistic state models with specific set of devices, thermal dynamics

and simple environments. These cannot be directly used for the complex and heterogeneous

IoT environment with multiple apps and devices. Also, those approaches do not address

security and safety.

3.6.1 Benign User Anomaly Examples

1. Common benign anomalous user activities:

(a) Leaving Fridge Door Open

(b) Leaving oven on for a long time

(c) Leaving Main Door open

(d) Leaving lights on for a long time

(e) Leaving TV on

75

(f) Leaving wardrobe open

3.6.2 Safety Violation Examples

1. Type 1: Trigger-Action Application specific Safety Violations

(a) The main door is unlocked when user is not home

(b) The main door is unlocked when user is sleeping

(c) The lights of the room are off when motion is detected

(d) The lights of the room are off when a user unlocks the door

(e) The door is opened when there is no motion outside/inside the house

(f) Lights are on when the user is sleeping

(g) Appliances like oven,TV etc. are on when user is sleeping/away from home

(h) Appliances like fridge/security system/fire alarm are off

(i) Appliances interfering with each other eg: turning on heater when ac is on and vice-

versa

2. Type 2: Integrity/Access Control Violations

(a) Unauthorized Users performing actions

(b) Users performing actions in unauthorized groups/locations

3. Type 3: General security/conflicting actions/race condition violations

(a) A single user performing multiple actions repeatedly resulting in conflicting states on

a device

(b) Multiple users performing the same action on the device multiple times

(c) Multiple users performing conflicting actions on the device

(d) User performing an action which acts as a trigger to perform an action on the same

device

4. Type 4: Malicious apps causing safety violations

(a) App turns off lights when motion is detected (e.g., to prevent brightening of the path

outside the house)

(b) App turns lights/devices off after user specified time to save energy

76

(c) App turns lights to dim mode when user leaves home and door is unlocked after some

time

(d) App turns on devices when user is home and turns them off when the user is not

(e) App 1 turns on lights when alarm sounds, App 2 assumes user is home when lights

turn on and locks the door

(f) App turns off all devices when user is sleeping

5. Type 5: Insider attacks

(a) Heater is set to unsafe temperature and door is locked by insider

(b) Oven is left turned on for long time by insider when user is sleeping/not home

(c) Door is unlocked by an insider when no user is at home/sleeping

Constructing Malicious Data-sets: By simulating instances of these activities in smart

home B, we generate malicious labelled state transitions. We build the malicious data-set

for each type as follows. For type 1, we manually go through the trigger-action application

specific security policies defined in [1], [2] and identify activities applicable to the devices

in our testbed. For example, R.1 in [2] is applied to five devices in smart home A, R.14 is

applied to one device in smart home B, and to sixteen devices in smart home A. In total,

we identify 114 such violations by applying policies R1-R30 to our testbed. For type 2, we

survey prior work on access control in IoT environments [74] to construct 40 unauthorized

access instances which violate various security policies in smart homes A and B. For type

3, we construct violation instances from the general security (G1-G4) rules defined in [2].

For type 4, we use the malicious app interactions identified in [1] to build ten instances in

smart home A. For type 5, we emulate common real world insider attacks resulting in thefts,

breaches and safety issues to build ten instances.

3.6.3 State Space Explosion Mitigation.

In terms of the entire environment context, each ‘X’ value can exist in as many states the

device could be in. So, for App 1 there can be a total of 2 ∗ 3 ∗ 4 = 24 triggers as D2, D3, D4

can exist in 2, 3, 4 states respectively. Similarly, there can be 2∗2∗4∗2 = 32 actions possible.

This would result in a total number of 24 ∗ 32 = 768 trigger action pairs for one app in a

77

simplistic smart home. Typically a number large number of apps are deployed in the smart

home. Also, the number of triggers would depend on the number of ‘X’s and the number

of states a device can exist in. It would then be the case that in a large environment it

is infeasible to observe app based T/A behavior. This problem is mitigated by observing

whole environment device T/A behavior rather than individual app T/A behavior. Also,

constraining the state space exploration of the RF agent by only allowing safe trigger action

further reduces the state space used.

3.7 Summary

In this chapter, we have proposed Jarvis, a RL framework for IoT environments that

learns device actions to optimize user defined goals but whose exploration is constrained

by dynamically identified safety and security policies. We have instantiated Jarvis for a

smart home environment and have shown that it provides considerable benefits in terms of

functionality and safety.

78

Algorithm 2: Learning Optimal State Action Quality
Input: Simulated Environment Env; Estimated Reward Function

Rsmart() : {SS, AS} → Z; Maximum Episodes EP ; Exploration (Rate ,
Min, Decay) = (ε, εmin, εdecay); Safe State Transition Table Psafe[S, S]; Batch
Size BSize; Discount Rate γ; Preferable Loss Lp

Output: State Action Quality Function Q : {SS, n} → AS
Initialize: Q[:, :] = 0
while ep← 0 : EP do

Scurr = Env.Init()
Snext = Scurr

while t← 0 : T do
if Random() ≤ ε then

. Exploration: while Psafe[Scurr, Snext] 6= 0 do
Acurr = Random(AS)
Snext ← ∆(Scurr, Acurr)

else
. Exploitation: count = 0

while Psafe[Sprev, Scurr] 6= 0 do
Acurr = Max(Q[Scurr, t], c)
Snext ← ∆(Scurr, Acurr)
c← c + 1

Rcurr = Rsmart(Scurr, Acurr, t)
Mem← (Scurr, Acurr, Rcurr, t)
if Mem > Bsize then

Q = Replay(Bsize)
t← t + I
Scurr ← Snext

ep← ep + 1
procedure Replay(Bsize, Lp)
M iniBatch← Sample(Mem, Bsize)
while (S, A, R, t) ∈M iniBatch do

Snext ← ∆(S, A)
count = 0
while Psmart[Snext, ∆(Snext, Anext)] 6= 0 do

Anext = Max(Q[Snext, t + 1], count)
count← count + 1
Rcum = R + γRsmart(Snext, Anext, t)

M iniBatch[(S, A, R, t)]← (S, A, Rcum, t)
Loss← DNNT rain(Q, M iniBatch)

if ε ≥ εmin AND Loss ≤ Lossp then
ε← ε ∗ εdecay

return Q
end procedure

79

Table 3.1. Smart Home Environment FSM
Device Type Device pi0 pi1 pi2 pi3 ai0 ai1 ai2 ai3
Lock D0 locked(outside) unlocked off locked(inside) Lock Unlock Power Off Power On
Door Sensor D1 Sensing Auth. User Unauth. user - Power Off Power On - -
Light D2 off On - - Power Off Power On - -
Thermostat D3 Heat Cool Off - Increase Temp. Decrease Temp. Power Off Power On
Temp. Sensor D4 Above Opt. Temp Below Opt. Temp Optimum Fire Alarm Power Off Power On - -

Table 3.2. Comparison of normal vs safe T/A behavior
App Description Devices

Involved Trigger Action Safe Triggers Safe Actions

1 Door unlocks when authenticated user arrives at the door D0, D1 (p00 , p11 , X, X, X) (a01 , X, X, X, X)
(p00 , p11 , p20 , p32 , p40)
(p00 , p11 , p20 , p32 , p41)
(p00 , p11 , p20 , p32 , p42)

(a01 , O, a21 , X, X)

2 Maintain optimal temperature in the house D3, D4
(X, X, X, X, p40),
(X, X, X, X, p41)

(X, X, X, a31 , X),
(X, X, X, a30 , X)

(p01 , p10 , X, X, p40)
(p01 , p10 , X, X, p41)

(O, O, O, a31 , X),
(O, O, O, a30 , X)

3 Lights turn on when user arrives home D0, D1, D2 (p00 , p11 , X, X, X) (X, X, a21 , X, X)
(p00 , p11 , p20 , p32 , p40)
(p00 , p11 , p20 , p32 , p41)
(p00 , p11 , p20 , p32 , p42)

(a01 , O, a21 , X, O)

4 Door is opened/lights turned on when fire alarm is raised D0, D2, D4 (X, X, X, X, p43) (a01 , X, a21 , X, X) - -

5 Thermostat/lights turned off when user leaves the house D0, D1, D3 (p00 , p10 , X, X, X) (X, X, a20 , a32 , X)
(p00 , p10 , p20 , X, p40)
(p00 , p10 , p20 , X, p41)
(p00 , p10 , p20 , X, p42)

(O, O, a20 , a32 , O)

Table 3.3. Comparison of action quality for Unconstrained vs Constrained Exploration
Function Trigger Trigger Description High Quality Action High Quality Safe Action Action Description (quality vs safety)

Energy Conservation (p00 , p10 , X, X, X), t User leaves the house and locks the door (a02 , a10 , a20 ,
a32 , a40), t

(O, O, a20 , a32 , O), t
Turn off the lights and thermostat only not all
appliances

Energy Conservation (X, X, X, X, p42), t Optimal temperature is reached (O, O, O, a32 , O), t (O, O, O, a32 , O), t Turn the thermostat off

Electricity Cost Minimization (p02 , p10 , X, X, p40), t
Temperature drops below optimum
and user at home (O, O, O, a30 , O), tp (O, O, O, a30 , O), t

Power on the heater at closest off peak hour t
instead of waiting for optimal non-peak hour tp

Electricity Cost Minimization (p02 , p10 , X, X, p41), t
Temperature goes above optimum
and user at home (O, O, O, a31 , O), tp (O, O, O, a31 , O), t

Power on the cooler at closest off peak hour t
instead of waiting for optimal non-peak hour tp

Electricity Cost Minimization (p02 , p10 , X, X, p42), t Optimal temperature is reached (O, O, O, a32 , O), t (O, O, O, a32 , O), t Turn the thermostat off

Temperature Optimization (X, X, X, X, p40), t Temperature drops below optimum (O, O, O, a30 , O), t (O, O, O, a30 , O), t
Power on the heater to optimize the temperature
but only at t when the user arrives home

Temperature Optimization (X, X, X, X, p41), t Temperature goes above optimum (O, O, O, a30 , O), t (O, O, O, a30 , O), t
Power on the cooler to optimize the temperature
but only at t when the user arrives home

Temperature Optimization (X, X, X, X, p42), t Optimal temperature is reached (O, O, O, a32 , O), t (O, O, O, a32 , O), t Turn thermostat off

80

4. JARVIS-SDN: SECURITY CONSTRAINED RL FOR RATE

CONTROL IN SDN ENVIRONMENTS

The use of machine learning (ML) techniques in the control plane of software defined networks

(SDNs) provides enhanced approaches to traffic engineering, such as maximizing quality

of service (QoS). Generally, QoS is determined by the interplay within various network

functionalities such as rate control, routing, load balancing, and resource management. This

interplay can become very complex. The benefit of ML techniques is that they can model

complexity given sufficient representative data to train upon. However, the diversity and

scale of current networks together with the diversity of traffic behavior hinder the task of

gathering data that captures enough sets of behaviors for training. This poses a challenge

to classical ML. Reinforcement Learning (RL), on the other hand, relies on learning optimal

policies online based on system state using a model-free approach. These policies are more

likely to transfer over to a new environment, and these characteristics make them more

suitable for network control. RL based frameworks have thus already been proposed for

specific functions within networks, such as for controlling routing [13], traffic rate control [14]

and load balancing [15].

Network control solutions require optimization across multiple functionalities, not just a

single one. Current uses of RL for network control focus on optimizing a single functional-

ity, which makes these existing solutions difficult to deploy in real networks. For example,

learning a policy which maximizes the throughput of the network (functionality 1: optimal

routing) can come at the cost of unfair bandwidth consumption by a set of users (function-

ality 2: per user bandwidth fairness). Perhaps even more critical is the case of security

policies. For example, learning a policy which maximizes the throughput of the network

(functionality 1: optimal rate control for QoS) can unknowingly facilitate the propagation

of a high throughput Denial of Service (DoS) attack.

To address those issues, we propose Jarvis-SDN, an adaptation of our constrained RL

framework for IoT [86] to SDNs. In Jarvis-SDN, a RL based agent using Deep Q-Learning

learns optimal policies for a SDN controller to optimize across multiple network function-

alities while maintaining security. Examples of such functionalities include optimal rate

81

control (measured by per user throughput), routing optimization (measured by a metric like

latency), availability of device resources, or path quality (metrics such as loss rate, or jitter).

The basic idea is to define the reward to the agent as a weighted combination of individual

functionality performance metrics, including a metric for security behavior of the system. A

key challenge in applying our previous framework [86] to SDNs is that it is not obvious how

to define performance metrics for security (see [87], [88] for proposals and discussions re-

garding security metrics). Our approach for quantifying security is to measure the ability to

protect against known attacks. We first build offline ‘attack signatures’ from packet captures

of previously seen attacks using different ML techniques: Decision Trees, Random Forests,

Deep Neural Networks (DNN) and Deep Q-Networks (DQN). These attack signatures are

then used by the RL agent to determine a quality value for the network state depending on

the perceived threat a network flow has on the current and near future states of the network.

To summarize, we make the following contributions:
1. A context independent RL framework, Jarvis-SDN, constrained by security policies for

SDN controllers.

2. A novel approach to build quantifiable security metrics (attack signatures) for network

flows using DQN.

3. Extensive evaluation of different ML techniques to build attack signatures using the

CICIDS dataset [89] consisting of network attacks, such as DoS, DDoS, Brute-Force and

Web based attacks. We find that DQN based signatures perform better than other ML

techniques.

4. Through an instantiation of Jarvis-SDN for a SDN controller with the goal of optimal

rate control, we show that the RL agent learns desirable behavior for malicious and benign

flows.

The rest of the chapter is organized as follows. In Section 5.1 , we give some background

on Deep Q-Learning. Next, in Section 4.2 , we formally define the system model and discuss

key challenges. In Section 4.3 , we define and analyze our RL based DQN approach for

building attack signatures. In Section 4.4 , we instantiate the Jarvis-SDN framework in a

simulated network for optimal rate control and analyze its effectiveness. Finally, we discuss

82

related work in Section 5.6 and in Section 5.7 we conclude and outline directions for future

work.

4.1 Background on Deep Q-Learning

A Reinforcement learning (RL) framework [63] (see Figure 5.1) is a probabilistic state

transition environment where state transitions are caused by actions executed by an agent

and every state-action pair (s, a) is assigned a reward value r given by a reward function

R(s, a). A RL agent traverses the environment according to a policy π that selects an action

to execute in a given state for policy parameters θ and receives the rewards accrued over all

the state transitions that happened according to θ. In a Q learning framework, the goal is to

find the optimal policy which maximizes the cumulative reward through a function Q(s, a)

that estimates the expected cumulative reward the agent will get at the end of an episode if

the current state is s, the agent executes a and follows learnt policy πθ.

Figure 4.1. Deep Q Learning Environment

In a deep Q learning system, a deep neural network, referred to as DQN, is used to

determine the optimal Q function using a temporal difference equation defined as follows:

Qt(s, a) = Qt−1(s, a) + α[R(s, a)

+γMaxa{Qt(s, a)} −Qt−1(s, a)]

where Qt is the current estimation of the Q function, Qt−1 is the previous estimation of

Q after t− 1 steps of training. The estimated next state and action are denoted by s and a,

respectively. The learning rate (α) determines to what extent newly acquired information

83

overrides old information. The discount factor (γ) determines the importance of future

rewards.

4.2 System Model and Problem Formulation

The need for intelligent SDN controllers arises in several scenarios. One scenario is the

rate control of traffic from different users within a data center or cloud network environment,

where the behaviour is controlled by means of a centralized controller, as typical in SDN

architectures. The controller needs to dynamically determine how to handle each traffic flow,

and determine the per-flow rate limits according to the server capacity and QoS requirements.

Another scenario is related to a telecommunications or Internet service provider. The service

provider is responsible for accepting packets from connected clients, and route them to

the appropriate egress points. The bandwidth rates per user are dynamically determined

according to the user subscription service level agreement and to maximize overall network

throughput. A third scenario is related to the 5G cellular networks, where network protocols

are designed to implement their control and data planes using SDN technologies. In these

cases, the control plane needs to determine the rate of traffic from a cellular device, depending

on various factors like user channel quality, whether a mobile edge computing server is being

leveraged, or packets are being forwarded to an alternative location for processing. While

the protocols are different than in a data center or the Internet, the operational paradigm

is very similar. In most of these environments, the SDN controller needs to take decisions

based on the inspection of the headers within the IP network packets. Therefore, we focus on

approaches that learn optimal flow rate-control policies based on the inspection of features

extracted from network packet headers.

In general terms, the problem we want to address in this chapter using ML techniques

is the design of an intelligent security-aware SDN controller. The controller is responsible

for dealing with network flows from several users. Depending on the amount of active flows,

anticipated traffic in the near future, and the properties of the current flows (such as potential

attacks), the controller configures the optimal rate limits for each flow. In what follows, we

84

first define the state model underlying our approach. We then formulate our problem and

discuss key challenges.

4.2.1 System Model

State Model: We define the state of the SDN environment as a tuple St = s1
t, s2

t, ..., sn
t

of network flows at time t. The SDN controller manages n network flows from η users. In

the current implementation, we assume that n = η at all times for ease of execution in

the simulation. The flow state si
t of user i at time t is defined in terms of k network flow

parameters si
t = P1i

t, P2i
t, ...Pk i

t. These parameters can take numeric values, such as packet

counts, packet length, packet rate, inter arrival times, or categorical values, such as whether

SYN/FIN/ACK flags are set or not, and protocol type.

State Transition Model: Wemonitor state transitions in the network in terms of “episodes”.

We define two configuration parameters for an episode: time period T and interval I. The

state transitions occur every I time-units until the timestamp reaches T time units, after

which the state is reset to the initial state and marks the end of an episode. An episode

basically consists of T/I time instances at which the state transitions of the environment

are recorded. For example, in our current implementation, for {T, I} = {60, 1}, the episodes

are one minute long with state transitions every second.

Action Space: After each interval, the SDN controller can take various actions corre-

sponding to different rules used to manipulate the flow table as specified in the action set of

the Openflow protocol [90]. For example, in our current prototype, the actions correspond

to allow/drop a percentage of the packets for each flow. More specifically, an action At at

time t, is defined as At = a1
t, a2

t, ..., an
t. Here, ai

t is the action taken on user flow i at time

t. Each action ai ∈ [0, 1] corresponds to the percentage of packets to drop while allowing the

rest. 0 corresponds to allowing all traffic to pass and 1 corresponds to dropping all traffic.

It is important to note that dropping the packets is a crude mechanism of rate control and

is a commonly implemented method by network switches. However, new techniques which

enforce a rate cap by smoothly delaying packets rather than discarding them can be easily

85

incorporated in our system model. So, in the rest of the chapter, we use the terms dropping

and delaying packets interchangeably.

4.2.2 Problem Definition

We formulate the functionality optimization goal of Jarvis-SDN as a Markovian decision

process (MDP). A MDP is a sequential decision making problem where outcomes are under

the control of an agent. The agent’s goal in this case is to maximize the functionality as

specified by the user/application by choosing a sequence of actions for the upcoming episode

of the environment. In our model, functionality requirements defined by the user/application

are measured through a reward function. The specified functionality requirement determines

the utility (F ()) gained by the user/application in the environment, which is one part of the

reward function. The other part, derives from the security metric of the environment (D()).

The general structure of the reward function is defined as follows:

R(St, At) = (1− δ)F (St, At) + δD(St, At)

where St and At are the current state and action at time instance t in the environment. We

analyze the effect that manipulating δ has on the overall functionality goals and security

of the environment in Section 4.4 . The goal of Jarvis-SDN is to maximize the cumulative

reward at the end of the episode which is a MDP problem defined formally as follows.

Definition 4.2.1. A MDP consists of a tuple (R, T, I, S0). R is the reward function; T is

the time period; I is the interval; and S0 is the initial state of the environment. The goal of

the agent is to find an execution strategy of actions, which maximizes the total value of R of

the next upcoming episode, for the environment in state Si where 0 ≤ i ≤ dT/Ie.

4.2.3 Challenges

There are two key challenges when applying the system model to a SDN environment.

1. Unknown Security Metric D(): Quantifying the security metric accurately in a complex

and dynamic environment is not trivial. We address this issue in Section 4.3 by developing

an efficient security metric using RL based attack signatures. Notice that other security

metrics can also be incorporated into our framework.

86

2. Unknown Security Ratio δ: The value of the ratio to optimally balance functionality vs

security depends on the environment and user/application requirements. Finding this value

accurately is not trivial. In Section 4.4 , we analyse tuning the security ratio δ as a hyper

parameter for Jarvis-SDN instantiation with the functionality goal of optimal rate control.

4.3 Building Attack Signatures

In this section, we address the first challenge in building accurate security metrics, re-

ferred to as ‘attack signatures’. Deep packet inspection at wire speed seems impractical with

the growing amount of data and size of networks. Instead, flow based features, which can

be maintained using counters and meters, and are easily available through standard SDN

protocols such as Openflow [90], are less expensive to monitor. Most supervised attack sig-

natures are built from flow parameters similar to the network flow parameters in our states

P1, P2, ..Pk. These parameters are collected from IDS datasets like NSL-KDD [91] and CI-

CIDS[89]. However, these datasets contain features collected for the entirety of the network

flows and not for intervals of the flows as in our framework. This inherently puts the IDS

trained on those datasets at a disadvantage since it delays detection time because the flows

can only be classified as malicious or benign after the attack ends or enough packets of the

malicious flow have reached the controller. In contrast, we build and analyze ‘partial attack

signatures’ using features collected after every interval I in the episode of length T rather

than the entire flow. In this respect, our attack signatures are only a partial representation

of the more comprehensive traditional attack signatures.

4.3.1 Design of an IDS Based on Partial Attack Signatures

We compare four different ML techniques for building attack signatures in order to deter-

mine the most suitable one for our framework: Decision Trees (DT), Random Forests (RF),

Deep Neural Networks (DNN), and Deep Q-Networks (DQN). The first three are feature-

based classification models that predict benign or malicious flows. The DQN approach, on

the other hand, learns optimal quality values using deep Q-Learning on replayed episodes.

We model this DQN framework in the same state-action model of our optimization problem.

87

However, the reward function is modified such that the agent receives negative rewards for

allowing malicious traffic and positive rewards for allowing benign traffic depending on the

hyper parameters β, µ ∈ [0, 1]. Here, µ and β represent the importance of reducing false pos-

itives (Type 2 errors) and false negatives (Type 1 errors), respectively. These rewards are

proportional to the amount of traffic let through. The state-action-reward model is defined

as follows:

State Model: The state of a user i at time instance t, si
t = P1i

t, P2i
t, P3i

t, P4i
t. Here,

P1−4 represent the following features, respectively: P1: #packets sent from user to server,

P2: #bytes sent from user to server, P3: #packets sent from server to user, and P4: #bytes

sent from server to user.

Actions: After every interval, the controller can take 11 possible actions ai ∈ {0, 0.1, 0.2, .., 1}

corresponding to percentage of packets to drop while allowing the rest. 0 corresponds to al-

lowing all traffic to pass and 1 corresponds to dropping all traffic. We discretize the action

space to allow better convergence of the DQN.

Rewards: The reward function is defined as follows.

R(si
t, ai

t) =

(1− ai

t) ∗ (P2i
t) ∗ β if benign episode

−(1− ai
t) ∗ (P2i

t) ∗ µ if malicious episode

We build a simulation environment using the OpenAI gym [65]. For training the DQN,

we replay 20177 malicious and 126714 benign episodes from the CICIDS dataset [89]. During

replay of the episodes, we simulate packet drops by using a state transition function ∆, man-

ually configured according to the network flow features used in the model. The exploration

factor of ε = 1 with a decay rate 0.995 is used to balance exploration (random actions) and

exploitation (using learnt policy) while training. A discount factor γ = 0.95 and learning

rate α = 0.001 are used. The deep neural network used has 2 fully connected hidden layers

comprising of 64 neurons each.

88

Table 4.1. Attack Taxonomy

Attack Type Total Packet
Capture Size (Gb) Categories

Brute Force 11 FTP-Patator, SSH-Patator

DoS 13.4 SlowLoris, Hulk,
GoldenEye, SlowHTTPtest

DDoS 8.8 DDoS LOIT
Web 8.3 XSS, SQL Injection, Brute Force

4.3.2 Evaluation Metrics

For our analysis, we consider four common attacks, Brute Force, DoS, DDoS (Distributed

Denial of Service) and Web-based (see Table 5.2), taken from the CICIDS dataset. This

dataset has full packet captures of attacks and benign behavior recorded over five days. We

define four key performance metrics as follows.

Naive Accuracy: It measures the accuracy of detecting known attacks similar to the ones

in the training dataset.

Robustness: Features collected from networks flows in real time tend to be noisy because

of network errors, packet drops, jitter, throughput throttling, user behavior etc. Introduction

of noise or perturbations in the immutable features is a typical obfuscation technique em-

ployed in adversarial ML attacks. The attack signatures must be robust enough to deal with

noisy data. So, white Gaussian noise is introduced into the testing dataset. The resulting

accuracy is measured as a function of the noise introduced.

Adaptability: It measures the ability of the system to detect new types of attacks. We

consider two forms of adaptability: (1) known attacks with minor modifications, e.g. payload

differences (string changes, varying malware bytecode), and packet fragmentation variations;

(2) new attacks employing similar concepts. Specifically, we exclude FTP-Patator (brute

force), SlowLoris (DoS) and SlowHTTPTest (DoS) attacks during training and use them

for testing. The resulting accuracy in these scenarios is used to represent the adaptability

metric for the attack signatures.

89

Episode metrics: Instead of detecting malicious traffic on a per interval basis, we attempt

to determine whether any malicious interval exists over the range of the episode for unknown

attacks under noisy conditions. We define three episode metrics: (1) Episode Accuracy: Over-

all accuracy; (2) Episode True Positive Rate (TPR): Rate of correctly identifying malicious

episodes; and (3) Episode False Positive Rate (FPR): Rate of incorrectly identifying benign

episodes as malicious.

Table 4.2. Attack Signature Analysis
Signature
Type

Naive
Accuracy

Robustness
Noise(low-high) Adaptability Episode Metrics

(Accuracy, TPR, FPR)
Quality
Value

DT 99.92 70.58-26.60 53.22 44.88 100 99.2 No
RF 99.93 80.14-24.83 53.40 44.88 100 99.2 No
DNN 97.22 95.56-80.24 70.28 59.55 100 72.8 Yes
DQN 88.27 79.53-71.21 59.48 73.77 94 42.4 Yes

4.3.3 Comparison to other ML Techniques

Results from our evaluation are shown in Table 4.2 . We make the following observations

on those results.

Naive Accuracy: All signatures work well in terms of naive accuracy for known attacks.

The tree based signatures (DT/RF) perform slightly better than neural network based sig-

natures (DNN/DQN).

Robustness: Performance of all signatures degrades with the amount of noise added.

Comparatively, neural network based signatures are less affected.

Adaptability: All algorithms have decreased accuracy when trying to identify unknown

and modified attacks. The highest accuracy, 70.28%, is achieved by DNN based signatures.

As we observe, all the attack signatures perform poorly when dealing with unknown or

zero-day attacks in terms of per-interval accuracy. We can infer that these unknown malicious

flows resemble behavior of both known malicious and benign flows in many intervals of an

episode. So, building attack signatures based on episodes rather than individual intervals is

a more suitable approach as we see when analyzing the episode metrics. It is important to

note here that unsupervised learning techniques, like anomaly detection on benign behavior

90

(clustering, SVMs), could be a better approach for identifying unknown attacks. Although

these techniques could be incorporated into our framework, in this work, we only focus on

supervised learning and leave that as future work.

Figure 4.2. Bytes allowed: Malicious (top) and Benign (bottom)
Episode metrics: DQN attack signatures outperform the other signatures in terms of

Episode metrics even though they perform poorly in terms of per interval accuracy. One

reason is that the DQN signatures are learnt from a cumulative reward by replaying attack

ranges rather than individual intervals. The other reason is the structure of the reward

function, which gives a higher negative reward for false positives than false negatives over

the episode range.

The classification based signatures (DT/RF) perform badly for the episode metrics be-

cause they learn optimal discrete values (benign/malicious) rather than smooth quality val-

ues. We can see that, although these signatures are able to correctly identify all the malicious

episodes (episode TPR = 100%), they also result in a high FPR = 99.2%. Such overly strict

signatures are unacceptable as a high percentage of benign flows end up being dropped. On

the other hand, the DQN agent learns quality values Q(St, At) for each interval within the

episode. We can then build an intelligent policy based on quality values that minimizes

the episode FPR and simultaneously maintains a good episode TPR by tuning the hyper-

parameters β and µ. We infer that DQN based agents perform better for new attacks in

terms of false positives. Note that DNN signatures can also generate quality values using

91

state values V (St) from a final softmax layer. However, these quality values do not incor-

porate the state and actions dynamics of the model. Therefore, using these quality values

as metrics in a RL framework for functionality optimization results in random quality val-

ues being assigned to new actions. This results in poor performance of the RL agent (see

Section 4.4.6).

4.3.4 Evaluation and Analysis

To analyse the effectiveness of RL based (DQN) attack signatures, we randomly choose

1000 malicious and benign episodes, and apply the policy learnt to them. We monitor

the amount of malicious bytes let through in case of malicious episodes and the amount

of benign bytes let through for benign episodes as shown in Figure 4.2 . We see that the

attack signatures show the desired behavior in all the episodes. It is important to note that

these attack signatures have been built using a minimal set of observable states at the SDN

controller. With the recent advances in programmable switches and data plane programming

languages, like P4 [92], detailed information about packets and their headers is accessible to

the controller to make even better security decisions.

Figure 4.3. Intra-Episode Actions: DQN and DNN Softmax

To further investigate the behavior of the RL based attack signatures, we analyze the

actions taken by the RL agent in the episode itself. Figure 4.3 shows the behavior averaged

over 1000 malicious and benign episodes. This is desirable behavior as malicious flows get

throttled while benign flows are not. Also, we see that at the beginning of the episodes, the

RL agent is not sure whether the flow is malicious or not. In such situations, we see that

the RL agent exhibits the following desirable behavior. Malicious looking flows are throttled

until the agent is sure they are an attack and then are blocked completely. Benign looking

92

flows are throttled until the agent is sure they are benign and then are allowed. We compare

the behavior with the policy based on state values obtained from the softmax layer of the

DNN classifier. Surprisingly, the softmax layer approach also shows these same desirable

properties and performs better than the RL based signatures. This could be attributed

to the fact that since no other functionality optimizations (F () = 0) are required during

this analysis, the agent does not fully explore the action space and thus the state-action

dynamics of the model have little impact on the optimal policy. However, as we see later

in Section 4.4.6 , the softmax based signatures do not perform well when other functionality

optimizations are needed.

4.4 Instantiation of Jarvis-SDN

In this section, we instantiate our framework with the goal of optimal rate control in our

simulated environment.

4.4.1 Implementation Details

We have built a prototype of Jarvis-SDN and integrated it with a network emulated

in Mininet [93]. The emulated network includes benign and malicious users accessing a

web server. Jarvis-SDN sits in the control plane of the SDN controller. It is able to

access counters maintained for each flow in the flow table of the SDN controller similar to

architectures like [94]. Information from these counters is then used to monitor the state of

each flow in terms of the flow parameters P1 − P4. Similar to approaches discussed in [95],

the actions specified by the RL agent are converted into per flow bandwidth limits.

4.4.2 Simulation Environment

The simulated environment consists of n users accessing a web server in a SDN enabled

environment. Jarvis-SDN running at the SDN controller is responsible for taking optimal

rate control actions on each flow so as to maximize two functionalities: ¶ Rate control for the

server according to a maximum allowed server load threshold: SLT ∼ N (µ1, σ1
2); · User

throughput fairness according to user service level agreements: SLA ∼ N (µ2, σ2
2). We use

93

standard Gaussian distributions to model the server load threshold and user SLA per time

interval. The mean µ1, µ2 and standard deviation σ1, σ2 are chosen manually by observing

the server threshold and benign flows in the simulation. Along with this, we maintain δ

(or d), f1 and f2 as hyper parameters to incorporate security metrics, rate control and user

fairness weights in the objective function, respectively.

4.4.3 System Model

The state and action model of Jarvis-SDN are the same as the ones defined before for

building attack signatures. However, the reward function is modified to include optimal rate

control functionality metrics and security metrics from RL based attack signatures. The

reward function is defined as follows.

R(St, At) = (1− δ)[f1F1(St, At) + f2F2(St, At)] + δD(St, At)
The normalized functionality and security metrics used in the reward function are defined

as follows. We observe that, unlike the case when building attack signatures, here the rewards

are expressed as expectations over all the users flows in the network.

Rate Control: It gives a positive reward proportional to the amount of traffic allowed

when the current load is less than the threshold and a large negative reward C1 for overloading

the server. The positive rewards are proportional to the amount of traffic let through, which

encourages higher throughput.

F1(St, At) = E
i∈η

[F1(si
t, ai

t)]

=

Ei∈η [(1− ai

t) ∗ P2i
t] {SLT (t) > (1− ai

t) ∗ P2i
t}∀i ∈ η

−C1 otherwise.

User Fairness: It gives a positive reward proportional to the amount of traffic allowed

when the service level agreement is upheld and a large negative C2 otherwise. The values

of parameters C1 and C2 are chosen to be greater than the maximum throughput values

possible in the environment.

94

F2(St, At) = E
i∈η

[F2(si
t, ai

t)]

=

Ei∈η [(1− ai

t) ∗ P2i
t] {SLA(t) ≤ (1− ai

t) ∗ P2
t
i}∀i ∈ η

−C2 otherwise.

Security: It is the quality value generated by RL based attack signatures built before.

Here Q is the learnt Q function using the DQN approach. It gives a positive reward when

the flow matches a benign flow and a negative reward when it matches a malicious flow.

D(St, At) = E
i∈η

[D(si
t, ai

t)] ≈ E
i∈η

[Q(si
t, ai

t)]

4.4.4 Training

We use a DQN approach to learn the optimal policy similar to the attack signature gener-

ation model. We conduct experiments with δ values ranging from 0 (no security guarantees)

to 0.99 (high security guarantees). For our experiments, we configure the functionality

weights f1, f2 = 0.5 as constants. We refer the reader to our previous work [86] for more

details about functionality weights.

4.4.5 Evaluation and Analysis

Figure 4.4 shows the actions (averaged over 1000 episodes) taken in a single malicious and

benign episode. We observe that higher values of δ result in better security guarantees for

malicious episodes but at the cost of more false positives per interval during benign episodes.

We further analyze the action space of the environment in terms of range of δ. We represent

the action space (red region) below δ = 0 as the unsafe action space of the model. Similarly,

the blue region above δ = 1 represents the safe action space. The green region represents the

region of interest with a range of δ = [0, 1]. The optimal action policy of the environment

lies in this region.

The analysis of the region of interest in the action space allows one to build ethics or

logical hypotheticals for exploration of the environment by the RL agent. For example,

the RL agent can explore the action space with δ > 0.8, for highly security conscious or

95

Figure 4.4. Action Space: Malicious (top) and Benign (bottom)

risk-averse ethics. Similarly, with δ < 0.2, the RL agent can explore actions with more

adventurous high risk high reward ethics. Learning hypothetical human objectives or ethics

to model the reward function or the exploration process is a hard problem because of the

intractability of value of information (especially security information) to the user for a given

environment. This is the focus of various active learning schemes [71], [72]. The exploration

strategy can be dynamically altered based on user/application feedback on these hypothetical

behaviors. Jarvis-SDN provides an effective way of altering the exploration process by using

such hypotheticals along the region of interest.

4.4.6 Comparison to Traditional IDS Metrics

Figure 4.4 also shows the actions taken by the RL agent using DNN softmax based se-

curity metrics. We see that for both malicious and benign episodes, the RL agent converges

to similar actions. This means that these security metrics perform poorly in the detection of

malicious flows. This confirms our intuition that when the optimization of multiple function-

alities is required, RL agents using softmax based DNNs or traditional IDS security metrics

do not converge to secure policies.

96

4.5 Related Work

As part of previous work we designed and evaluated a framework to constrain RL agents

by security and safety policies for IoT-based smart homes [86]. However in a smart home

scenario, ‘attack signatures’ are well defined in terms of device states and can be learnt

efficiently by observing anomalies against naturally occurring behavior of users. Such an

approach does not work for detecting attacks in networks based on network flows. The

reason is that in networks, there are numerous applications for which it is difficult to build

an accurate baseline of benign behavior. So, an anomaly based detection is inherently prone

to false positives. To address this issue, in this chapter we have used a semi-supervised

learning approach to build attack signatures which provide quantifiable security metrics.

The other reason is that the state space of a network environment is not limited to discrete

device states like in smart homes and thus suffers from the state explosion problem.

Attempts have been made to define quantifiable security metrics [87], [88], [96]. Proposed

approaches include building metrics from user or host vulnerabilities, defense strengths,

attack (or threat) severity and situation understanding of the environment. To the best

of our knowledge, security metrics or attack signatures based on network flow parameters

have not been explored. In terms of encoding security metrics in RL frameworks, there are

two main approaches: (1) transformation of the optimization criterion, and (2) modification

of the exploration process [97]. Our approach falls under the first category as we modify

the objective/reward function using the security metrics. But additionally, we also analyze

the action space according to the hyper parameter δ, which can be used to inject external

knowledge or advice to guide the exploration process of the RL framework. Due to space

limitations, we leave the integration of such an approach into Jarvis-SDN as our future work.

4.6 Conclusion and Future Work

In this chapter we have designed and evaluated Jarvis-SDN, a RL framework for opti-

mizing network functionalities constrained using RL-based network flow attack signatures.

While our initial results show that our framework represents significant progress, we plan to

97

carry out additional experiments to assess its performance for different network conditions,

network functionalities like routing and RL algorithms like policy gradient approaches.

98

5. JARVIS-SDN: SECURITY CONSTRAINED RL FOR

ROUTING IN SDN ENVIRONMENTS

The Traffic Engineering (TE) problem is a fundamental networking problem which deals with

performance evaluation and optimization of operational IP networks. However, as networks

are growing at an exponential rate in terms of scale and heterogeneity in terms of new func-

tionalities, like internet of things (IoT), protocols, hardware/software platforms etc., the TE

problem has become even more challenging. On the other hand, new networking paradigms,

like network function virtualization (NFVs) and software defined networks (SDNs), allow for

more flexibility and efficiency in learning and deploying intelligent TE policies.

Such additional capabilities further increase the complexity of network management

tasks. Therefore approaches have been proposed that leverage machine learning (ML) tech-

niques to automate network management. Such approaches build models of the network

architecture and user1
 behavior, and then learn optimal policies using these models. How-

ever, such static model-based strategies do not work for dynamic network conditions and

requirements. The network policies must evolve on-the-fly to keep up with these dynamic

requirements and changes. To this end, several model-free reinforcement learning (RL)

methods have been proposed [10]–[12], which are able to learn optimal policies in an online

experience-based manner.

In terms of security, the zero trust policy paradigm for enterprises has been recently in-

troduced [98], [99]. Zero trust assumes that there is no implicit trust granted to assets or user

accounts based solely on their physical or network location (i.e., local area networks versus

the Internet) or based on asset ownership (enterprise or personally owned). Zero trust thus

requires that authentication, authorization and other security services be executed before or

during a session accessing an enterprise resource [98]. Under such a security paradigm, it

is essential for the security policies along with networking policies to be self-evolving also

based on the dynamic network conditions and requirements. It is also important to men-

tion that, as modern networks are plagued with various network based attacks like DDoS,

DoS, web based attacks etc., intrusion detection and prevention systems (IDS/IPS) (see Ta-
1↑ By user, we refer to any party communicating over the network, such as applications and end-users.

99

ble 5.1) have been developed to detect such attacks. In SDN environments, IDS/IPSs are

deployed as either physical middle-boxes or virtualized network functions NFVs [100] run-

ning on commercial-off the-shelf (COTS) servers. Therefore, the combined use of network

IDS/IPS, zero trust architectures, and NFVs should substantially enhance network security

in modern SDN environments.

However, existing model-free RL based approaches do not consider network security when

determining routing policies. This is an inherent flaw of“intelligent” network controllers. For

example, ideally a suspicious network flow, which could be a DDoS attack, should be routed

through nodes2
 running a DDoS IDS/IPS on the network. To address such requirement,

we design STE-SDN, a Smart TE framework enabling optimal and secure routing policies

using model-free deep DRL. Specifically, STE-SDN routes networks flows intelligently based

on two goals: (1) Network functionalities: minimize overall network latency, bandwidth,

etc.; and (2) Network security: route suspicious flows through various NFV IDS/IPSs to

minimize network security risks. Like previous DRL approaches, performance metrics, used

as reward in the environment, for network functionalities can be defined in terms of latency,

bandwidth usage, etc. However, metrics for security are not trivial to define. To address

such an issue, we define a value system for secure routing in SDN environments based on the

placement and type of security services (IDS/IPS) in the network. This value system allows

network administrators to encode their domain knowledge of security services into a reward

function, which determines the “intelligence” of the DRL routing model. We demonstrate

the efficacy of the value system by developing a taxonomy of IDS/IPSs for SDN environments

and encoding this domain knowledge into a ‘smart’ reward function.

To summarize, we make the following contributions:

1. We develop a model-free DRL framework for security aware intelligent routing

2. We define a security metric (value system) that can be used to translate domain knowledge

about security services in SDN environments into a reward function for DRL frameworks.

We build a taxonomy of IDS/IPSs for SDN environments and encode this knowledge into

a ‘smart’ reward function using the defined value system.
2↑ By node, we refer to a gateway/access point of an autonomous system (AS) or VLAN network segment

100

3. We build a simulation environment for testing DRL based routing algorithms on the

openai gym[65] using networks flows collected from the CICIDS dataset [89] to model

user behavior and network architecture generated using the Inet network topology gen-

erator [101].

4. We implement and test a DRL-based routing system for different regions of a 5000

node randomly generated network in the simulation environment for three attack classes:

DDoS, Web and Brute-Force.

The rest of the chapter is organized as follows. In Section 5.1 , we give some background on

DRL, specifically Deep Q-Learning. Next, in Section 5.2 , we formally define the system model

and discuss key challenges. In Section 5.3 , we provide details of our RL based solution. In

Section 5.4 , we discuss the design details of an instantiation of our framework in a simulated

network of 5000 nodes with the goal of minimizing overall network latency and maintaining

security. In Section 5.5 , we analyze the effectiveness of our framework with respect to

performance and security in our simulated network. Finally, we discuss related work in

Section 5.6 and in Section 5.7 , we outline conclusions and directions for future work.

5.1 Background

A Reinforcement learning (RL) framework [63] (see Figure 5.1) is a probabilistic state

transition environment where state transitions are caused by actions executed by an agent

and every state-action pair (s, a) is assigned a reward value r given by a reward function

R(s, a). A RL agent traverses the environment according to a policy π that selects an action

to execute in a given state for policy parameters θ and receives the rewards accrued over

all the state transitions that hschoappened according to θ. In a Q learning framework, the

goal is to find the optimal policy which maximizes the cumulative reward through a function

Q(s, a) that estimates the expected cumulative reward the agent will get at the end of an

episode if the current state is s, the agent executes a and follows the learnt policy πθ.

In a deep Q RL system, a deep neural network, referred to as DQN, is used to determine

the optimal Q function using a temporal difference equation defined as follows:

101

Figure 5.1. Deep Q Learning Environment

Qt(s, a) = Qt−1(s, a) + α[R(s, a)

+γMaxa{Qt(s, a)} −Qt−1(s, a)]

where Qt is the current estimation of the Q function, Qt−1 is the previous estimation of

Q after t− 1 steps of training. The estimated next state and action are denoted by s and a,

respectively. The learning rate (α) determines to what extent newly acquired information

overrides old information. The discount factor (γ) determines the importance of future

rewards.

5.2 System Model and Problem Formulation

In general terms, the problem we address in this chapter is the design of an intelligent

security-aware SDN controller. The controller is responsible for dealing with network flows

between several users. Depending on the network architecture, placement of security services

(or NFVs) like IDS/IPSs in the network, and the properties of the network flows (such as

potential attacks), the controller dynamically configures the optimal routes for each flow. In

what follows, we first define the state model underlying our approach; we then formulate our

problem and discuss key challenges.

5.2.1 System Model

State Model: The state St = [Pt, Et, srcid, destid] of our environment consists of 4 com-

ponents: (1) Pt: flow based features of the flow to be routed at time t; (2) Et: the current

network edge weights along all the edges of the network at time t; (3) source node identi-

102

fier srcid = [source IP address, source port]; and (4) destination node identifier destid =

[destination IP address, destination port].

The state of the flow, Pt, to be routed in the network at time t is defined in terms of

k network flow parameters Pt = p1
t, p2

t, ...pk
t. These parameters can take numeric values,

like packet counts, packet length, packet rate, inter arrival times, etc., or categorical values,

like SYN/FIN/ACK flag set or not, protocol type, etc. In our current implementation, we

use 80 statistical network traffic features, including duration, number of packets, number of

bytes, length of packets, which are defined in the CICIDS-17 dataset[89]. The edge weights

Et = E1
t, E2

t, ...Ee
t are defined for each of the e edges in the network. These weights

represent the cost of sending packets (in terms of latency) along each edge of the network at

time t. The source and destination ids uniquely identify the source and destination points

of the new flow to be routed in the network.

State Transition Model: Wemonitor state transitions in the network in terms of “episodes”.

We define two configuration parameters for an episode: time period T and interval I. The

state transitions occur every I time-units until the timestamp reaches T time units, after

which the state is reset to the initial state and marks the end of an episode. During every

state transition, a new flow is added in the network between two nodes in the network. The

SDN controller manages n network flows from η users. In the current implementation, we

assume that n = η at all times (one flow per user) for ease of execution in the simulation.

An episode basically consists of T/I time instances at which the state transitions of the

environment are recorded or η number of flows added in the network. For example, in our

current implementation, for {T, I} = {60, 1}, the episodes are one minute long with state

transitions every second. It essentially means that in an episode of 60 seconds, every second

a new flow is added in the network.

Action Space: After each interval, the SDN controller can take various actions corre-

sponding to different routing rules used to manipulate the flow table as specified in the

action set of the Openflow protocol [90]. For example, in our current prototype, the actions

correspond to first determining a set of candidate paths for each new flow added, and then

choosing the optimal one among the candidate paths available based on the edges and their

weights in the network. More specifically, given c candidate paths, an action At at time

103

t, takes value in the range [1, c], where 1 corresponds to choosing the first candidate path,

2 corresponds to choosing the second candidate path and so on. It is important to note

that choosing a single candidate path is a naive routing mechanism, which is a commonly

implemented method by network switches. However, techniques, which allow one to send a

particular flow packet through various candidate paths, are also possible. In this case, our

model can be easily extended by altering the action space to a continuous vector space such

as At = a0, a1, ..., ac where ai ∈ [0, 1] and ∑c
i=0 ai = 1. We define the action space AS as all

the possible actions 0− c for discrete actions and [0, 1] ∗ c for continuous actions.

Definition 5.2.1. An episode is defined as a tuple (N, S0, T, I), where: N = {S0, S1, ., St, ..ST/I}

is an ordered list of states reached in the episode where for each state St, action At is taken

to reach St+1 where 0 < t ≤ T/I; S0 is the initial state of the episode; T is the time period;

and I is the interval.

5.2.2 Problem Definition

We formulate the functionality optimization goal of STE-SDN as a Markovian decision

process (MDP). A MDP is a sequential decision making problem where outcomes are under

the control of an agent. The agent’s goal in this case is to maximize the functionality as

specified by the user by choosing a sequence of actions for the upcoming episode of the

environment. In our model, functionality requirements defined by the user are measured

through a reward function. The specified functionality requirement determines the utility

(F ()) gained by the user in the environment, which is one part of the reward function. The

other part derives from the security metric of the environment (D()). The general structure

of the reward function is defined as follows:

R(St, At) = (1 − δ)F (St, At) + δD(St, At) where St and At are the current state and

action at time instance t in the environment. In Section 5.3 , we define the functions F () and

D() in more details. The goal of STE-SDN is to maximize the cumulative reward at the end

of the episode which is a MDP problem defined formally as follows.

Definition 5.2.2. A MDP consists of a tuple (R, T, I, S0), where: R is the reward function;

T is the time period; I is the interval; and S0 is the initial state of the environment. The

104

goal of the agent is to find an execution strategy of actions, which maximizes the total value

of R of the next upcoming episode, for the environment in state Si where 0 ≤ i ≤ dT/Ie.

5.2.3 Challenges

There are two key challenges when applying our system model to a SDN environment.

1. State Explosion Problem: We observe that the state of the environment includes the edge

weights Et of the network. The number of edge weights grows at a rate of O(n2) where

n is the number of nodes in the network. For a large network, working with a large state

model will likely result in the state explosion problem and thus be computationally infeasible.

In this work, we address this issue by modifying the state to include only candidate path

weights instead of the edge weights. Along with this, we minimize computational costs by

running the candidate path search algorithm in an offline manner instead of a per episode

basis. Although this could result in sub-optimal policies being learnt due to non-availability

(leakage) of information about some key edge weights (not part of candidate paths), our

experimental results reported in Section 5.5.2 show that in practice the learnt policies are

close to optimal.

2. Unknown Security Metrics D(): Quantifying security metrics accurately in a complex

and dynamic environment is not trivial. This problem is compounded by the fact that

alerts issued by security services are not quantifiable without proper domain knowledge

of the attacks. To address this issue we develop an efficient framework for building such

security metrics based on the type of security service and its placement in the network (see

Section 5.3.2). Such a framework allows network administrators to incorporate their security

domain knowledge into a value system, which is then used to build the dynamic reward

function. This reward function acts as a black-box between network users and network

administrator’s but at the same time allows both of them to configure the value system of

the routing environment. To illustrate how the value system would work in practice, we

build a taxonomy of security services for SDN environments and then encode this domain

knowledge into our value system.

105

5.3 RL based Solution

In this section, we define our RL based solution to solve our MDP problem. We first

discuss how we address the challenges discussed in the previous section and then describe in

detail the overall Deep Q-Learning based algorithm.

5.3.1 Localized State Model

To address the state explosion problem, we define the state of the environment as a

localized portion of the network rather than for the whole network. That is, instead of

processing the weights of all the edges in the entire network, we process only the weights of the

edges involved in the candidate paths for each new flow added in the network. Furthermore,

we perform the expensive path computations in an offline manner and only use the total

path weights (sum of all the edge weights in the path) instead of individual edge weights.

c candidate paths are determined a-priori for each node pair in the network using any path

finding algorithm before the model is initialized. Specifically, for all the node pairs in the

environment, a set of c candidate paths are pre-computed before the learning process begins.

So, instead of Et = E1
t, E2

t, ...Eε
t in the state definition, we use CP c = CP 1

t, CP 2
t, ...CP c

t.

So, the overall size of the state space, SS, decreases from ε ≈ O(n2) to c ≈ O(1). Our

approach mitigates the state explosion problem and at the same time gives enough localized

information to the RL agent to take optimal decisions. It is important to note that choosing

a high enough value for c is crucial in order to make sure that the localized view of the

network still gives a close to optimal decision. In other words, c should be chosen such

that there is enough diversity in the available candidate paths that one of them is close to

optimal.

In our current implementation, we use a naive recursive shortest k paths which results

in O(nk) exponential time complexity. Our approach could be improved to O(n) by using

a more sophisticated K shortest path algorithm [102]. However, as all these computations

are performed offline before the environment is initialized, they do not affect the overall

performance of our approach. Also, candidate path finding is not the focus of this work

and we argue that any such algorithm can be employed in our framework. Candidate path

106

finding can be performed in an online manner but this would require a computation cost in

(O(n) using [102]) for each episode run, which is why in our implementation all candidate

paths are found in an offline manner.

5.3.2 Security Metric Value System

We define a security metric (value system) for DRL frameworks by assigning values to

different types of network attack and the corresponding security services that can accurately

detect them. This value system enables domain knowledge about security services and the

attacks that these services are able to stop to be efficiently translated into a reward function.

We define the value system for κ security services denoted by SC1, SC2, ..., SCκ. These

security services are usually deployed in-line with all the m flows going through the gateway

or access point of the autonomous system (AS). If an attack is detected by the security

service SCi for a flow j ∈ [0, m), in general an alert ASCi,j is generated by the security service.

The alert ASCi,j from the security service SC i could either be a binary (attack/benign) flag

(ASCi,j ∈ {1, 0}), or in more sophisticated systems a confidence value (ASCi,j ∈ [0, 1]). By

using these generated alerts for a particular flow, a dynamic smart reward function Rsmart

is defined to generate a reward value which can then be used by the RL agent for learning.

For each type of security service SCi, we define a value system parameter vi = {ω1pi +

ω2cvi}/2 which is a weighted sum of two key hyper-parameters: (1) Priority pi ∈ [0, 1]: it

determines the importance of the alert for that corresponding type of attack in the environ-

ment; and (2) confidence cvi ∈ [0, 1]: it is the confidence value for the reported alert by the

security service. For example, detecting a DDoS attack might be at higher priority in the

environment than a passive sniffing attack. On some networks, a DoS or DDoS attack could

have higher priority than Web based or FTP brute force attacks as the web/FTP servers

are already hardened against such attacks. The confidence values cvi can highly vary and

depend on the design of the security service SCi (see Table 5.1). Both these values require

fine-tuning by network administrators based on the requirements of the environment. How-

ever, the confidence value is generally pre-defined for the security service in advance, so it

stays constant across different environments and does not require much tuning.

107

Table 5.1. Taxonomy of Security Services in SDN Environments
Security Service (SC i) Confidence (cvi) Attacks Covered Alert Type (ASC) Detection Method Application Area/ Key

Features

[103] Low (0.1-0.3) DoS, Port-Scanning Binary (1/0) Anomaly-Based SOHO home/office
networks

[104] Low (0.1-0.2) DDoS, Flooding
Attacks Binary (1/0)

Network-Flow Statistics based
using unsupervised self organizing
maps (SOMs)

Lightweight on
NoX controller

[105] Medium (0.2-0.5) DDoS Binary (1/0) Anomaly-Based using
Deep Learning SDN environments

[106] Medium (0.2-0.5) DDoS Binary (1/0) Statistics based using stacked
autoencoder (SAE) SDN environments

[107] Medium(0.3-0.7)
DDoS, DoS, Probe,
U2R, U2L, Web based
attacks

Confidence Value
Statistics based Advanced ANN
using SOM, M-SOM, Learning Vector
Quantization (LVQ1), HLVQ1

SDN Opendaylight
Controller

Kalis [108] High (0.7-1) Network Attacks: Selective Forwarding,
wormhole, blackhole, jamming Signature Confidence Value Signature/Rule Based IoT Environments

Heimdall [26] Medium (0.4-0.8) DDoS, Web based attacks,
DNS spoofing Binary (1/0) White-List based (IP, Domain name) IoT Environments

[109] High (0.7-1)
DDoS, IP Spoofing, Host Location
Hijacking, Flow Table Overloading,
Flooding Attacks

Confidence Value [0,1]
5-Tuple from 5 layers

ML based 5 Layers: User Authentication,
Deep RL based game theory approach,
Shannon Entropy, GM-SOM,
Location based analysis

5G Environment with
NFVs

[110] High (0.5-1)

network scanning, OpenFlow
flooding, switch compromised
attacks, ARP attacks in both
data plane and control plane

Confidence Value [0,1]
Multi Observation Hidden Markov
Model (HMM) on SDN environment
features

SDN Environment with
Ryu Controller and Openflow
Switch

[111] Medium (0.5-0.8) DDoS Binary (1/0) Kohonen neural network updated with
fuzzy logic rules (FSOMDM)

SDN based Cloud Computing
Environment

Snort, Bro, L7-Linux-Filter Broad (0.1-1) DoS, DDoS, Brute-Force, Web based
etc. Priority Alert (1-10) Signature/Rule based Classical and SDN

Environments

[112] Low (0.1-0.4) Insider Attacks Trust Value [0,1] Trust Computation using Bayesian
Inference

Health Care/IoT based
SDN Environment

[113] High (0.7-1) DoS, DDoS, Brute-Force, Web based
etc.

Priority of Attack
Signature [0,1]

Signature based Parallelized
Deep Packet Inspection (DPI)
Module

SDN Environment

[114] High (0.6-0.9) DoS Priority of Attack
Signature [0,1] Selective DPI

Sensory Modules and modular
design reduced cost of operation
in SDN Environments

[115] High (0.8-1)
Application Based DoS,
DDoS, Brute-Force,
Web based etc.

Priority of Attack
Signature [0,1]

DPI of application Signature
data

Analysis of JSONs of user and
application flows in SDN
Environments

BlindBox, DPIEnc,
[116] High (0.7-1)

Application Based DoS,
DDoS, Brute-Force,

Web based etc.

Priority of Attack
Signature [0,1] DPI on Encrypted Traffic

Obfuscated Rule Encryption and
Probable Cause Decryption
on SDN Environments

To better illustrate the value system, we provide in Table 5.1 a taxonomy of network

security services proposed in the research literature. We assign both a qualitative and quan-

titative confidence range to those services in the context of SDN environments based on our

domain knowledge of these services. For instance, signature based IDS/IPS have a higher

confidence value than anomaly based ones as the latter are more prone to false positives.

Services which employ deep packet inspection (DPI) have a higher confidence value as com-

pared to ones using statistical or machine learning techniques over network flows. Such a

confidence range would serve as a guideline to network administrators for choosing an ap-

propriate confidence value for each security service and fine-tuning it according to network

requirements. We also observe that some services provide a binary alert while others pro-

vide a more fine-grained alert priority/confidence value. It is important to note that such

confidence values for alerts ASC are specific to each service and are different from the other

parameters defined for the value system. Notice that our value system is parametric with

108

respect to the considered services and the confidence and priority values assigned to these

services. Therefore, our framework can be customized to specific settings by including spe-

cific services and fine-tuning their confidence values. Finally, for a flow j, routed through a

path which contains a set of q security services SC i1, SC i2, ..., SC iq on one of the intermediary

ASs, the security metric D(j) is defined as:

D(j) = ASCi1,jvi1 + ASCi2,jvi2 + ... + ASCiq ,jviq

The functionality metric of the environment F (j) can be defined in terms of overall

latency, bandwidth, user satisfaction etc. in the network. In our current implementation,

we define F (j) as the time taken or latency (scaled to 1) for the completion of each new flow

j added in the network. Finally, by combining both the functionality and security metrics,

we define the smart reward function of the framework for each new flow added as follows:

Rsmart(j) = (1− δ)F (j) + δD(j)

It is important to note that we do no consider the computational or communication cost

of the operation of these security services in the reward function in terms of latency, band-

width, etc. This could be introduced as another hyper-parameter to account for operation

costs similar to priority and confidence values. However, in our current framework, we main-

tain such operation cost parameters as trainable parameters rather than hyper-parameters.

Note that the functionality metrics part of the rewards provides enough information about

functionality gains such as latency, bandwidth etc. for these trainable parameters to learn

about cost of operation of the security services.

5.3.3 Q-Learning Algorithm

We now describe our RL based Deep Q-Learning approach to find the optimal quality

function for the environment in terms of the reward function Rsmart as detailed in Algo-

rithm 3 . We build a simulated environment where an agent can run multiple episodes to

find the optimal and most secure routing path for upcoming episodes. The agent balances

109

exploration and exploitation according to the exploration rate ε. The ArgMax(Q) function

returns the highest quality action or candidate path for the given state. Random batches

from the agents prior experiences are selected and replayed to learn cumulative rewards

according to the discount factor γ and batch size Bsize. Finally, the random batch with

cumulative rewards is used to train a Deep Neural Network (DNN) in order learn optimal Q

function values for each state action pair of the episode. The DNN used has 2 fully connected

hidden layers comprising of 128 neurons each. The exploration factor of ε = 1 with a decay

rate 0.995 is used to balance exploration (random actions) and exploitation (using learnt

policy) while training. A discount factor γ = 0.95 and learning rate α = 0.001 are used.

It is important to note that our RL framework can employ any based RL based algorithm

like DDPG [117], Dueling DQN [118], DDQN [119], A3C [120], etc. In our prototype, we

use the naive DQN algorithm as it is the fastest to train and gives close to optimal results

in our environment. Also, the RL algorithm itself is not the focus of our work; rather our

goal is to build a robust RL framework that can effectively employ any of these algorithms

depending on the requirements and constraints of the environment/network.

5.4 Design Details

In this section, we describe how we instantiate our RL framework to solve the traffic

engineering problem in a SDN. To that end, we design a simulation environment on the

OpenAI Gym [65]. In order to simulate a realistic environment, we define three design goals,

namely:

1. Realistic network topology.

2. Networking patterns similar to malicious and benign traffic.

3. Realistic user behavior/mobility patterns.

We design a modular framework consisting of 3 modules, each with a different function.

The first module is the the network topology generator module, responsible for generating a

realistic network topology. The second module is the network flow database, essentially a

store of pre-collected network flows that realistically emulate typical networking patterns for

both malicious and benign traffic. The third module is the user behavior module that deter-

110

mines the policies to simulate realistic user behavior and mobility patterns. These modules

interact with each other through a central Episode Module that is responsible for effectively

combining information from them to generate episodes in the simulation environment.

In what follows we describe each module in more detail and then describe the overall

workflow of the RL framework.

5.4.1 Network Topology Generator Module

We define the network topology of the environment in terms of a directed weighted

graph where the nodes represent autonomous systems (AS) and the weights represent the

cost of packet transfer (dependent on latency, bandwidth, etc.) on that edge. The network

topology for the simulated environment can be generated using two approaches. The first

is to use a known network topology, such as ARPANET [121], NSF Network [122] etc. The

problem with this approach is that these topologies are static, meaning that we cannot carry

out multiple experiments with different network configurations. Also, these topologies are

outdated and unreliable. The other approach, which we adopt, is to use synthetic topology

generation tools, like Inet [101] and BRITE [123]. This approach allows us to carry multiple

experiments on different network configurations, which are more reliable and up to date.

Specifically, in our current prototype, we use the Inet [101] topology generator, which

generates an AS level representation of the Internet. It generates random networks with

characteristics similar to those of the Internet from November 1997 to Feb 2002, and beyond.

We use it to generate a network of 5000 nodes, which is the approximate number of ASs

on the Internet. In terms of security services, we randomly distribute 100 different security

services from our taxonomy (see Table 5.1) across different ASs in the network. We then

perform experiments on randomly chosen localized regions in this large network, to represent

different parts of the Internet (see Section 5.5 for more details). Although we used Inet based

network topologies for our experiments, it is important to note that any static known network

topology or some other topology generator tools can be used for topology generation in our

framework.

111

5.4.2 Network Flow Database

There are numerous public datasets available of network flow features for both malicious

and benign traffic, like NSL-KDD [91], CICIDS17-18 [89], UNB-ISCX [124] etc. So, the

network flow database used in our framework collects flows from these existing datasets in

an offline manner. Also, flow features can be collected in an online manner in the network

by using a network sniffer at gateways. The online approach is useful for collecting unique

benign flows in the network. The offline approach collects both benign and malicious flows.

For our experiments, we use the CICIDS-17 dataset, which profiles the abstract behavior of

human interactions and generates naturalistic benign background traffic of 25 users based on

the HTTP, HTTPS, FTP, SSH, and email protocols [89]. For malicious flows, we consider

three common attacks, that is, Brute Force, DDoS (Distributed Denial of Service) and Web-

based (see Table 5.2).

Table 5.2. Attack Taxonomy

Attack Type Total Packet
Capture Size (Gb) Categories

Brute Force 11 FTP-Patator, SSH-Patator
DDoS 8.8 DDoS LOIT, ARES, Port Scans

Web 8.3 XSS, SQL Injection, Brute Force,
Heartbleed

5.4.3 User Behavior Module

By user behavior, we mean we refer to which user communicates with who and when

in the network. To this end, several prior research efforts [125] have tried to build realistic

communication patterns in networks modelled using recorded user communication patterns

in real networks. One approach could have been to use one of these communication models

in our framework. However, the goal of our work is not only to accommodate existing com-

munication patterns but to also show that our framework is ‘intelligent’ enough to deal with

any new communication pattern that might occur. To this end, we use a randomized net-

112

work communication model. Specifically, two nodes (source and destination) are randomly

chosen in the network and then a network flow is randomly chosen from the network flow

database between these two nodes. We use this procedure for each instance of the episode.

The episode module is responsible for collecting T/I instances using the user behavior

module. Since the source and destination nodes of the flows are randomized, the candidate

paths for every source-destination pair must be pre-computed offline as discussed in Sub-

section 5.3.1 . To do this, we maintain the offline candidate path generator module which

pre-determines the candidate paths for each source-destination pair in the network.

5.4.4 Simulation Environment

Using the data from the episode module, the simulation environment is built where at

every I times, a new flow is added in the environment for a time period T as defined in

Subsection 5.2.1 . At every instance I, the controller takes a routing decision based on the

routing policy. All (state, action, next state, reward, next state) records are stored in the

replay buffer which is used by the RL learning algorithm to optimize the routing policy.

Figure 5.2 provides an overview of all components of the simulation environment.

5.5 Evaluation Results and Analysis

In this section, we analyze the security and performance of our framework for three attack

scenarios: brute force, DDoS and web based from the CICIDS-17 dataset.

5.5.1 Security Analysis

For the security analysis, we compare the overall detection loss (scaled to 1) for random

episodes in the simulated environment with STE-SDN and without. The results are reported

in Fig. 5.3 , 5.4 and 5.4 for each scenario, respectively. By detection loss, we refer to the risk

metric part (D()) of the reward function, which is proportional to the amount of malicious

packets that were routed through some part of the network which has no security services

for this type of attack or has security services that are less suited for this kind of attack.

The goal of STE-SDN is to minimize the detection loss in the network and we see that this is

113

the case for all three scenarios as shown by the results in the figures. We infer that STE-SDN

is security aware and reduces security risk on average in all three scenarios.

5.5.2 Performance Analysis

For performance analysis, we compare the overall latency (scaled to 1) for training

episodes in the simulated environment with STE-SDN and without. The results are reported

in Fig. 5.6 , 5.7 and 5.8 for each scenario, respectively. By latency loss, we refer to the func-

tionality gain part of the reward function (F ()), which is proportional to the latency taken

for routing all the flows in the episode.

We first observe that the latency loss reaches the optimal value in around 50 training

episodes. We see that when using STE-SDN, the optimal latency loss achieved is higher than

the case when STE-SDN is not used. This is the cost we need to pay for better security in

the network. However, we see that for many of the episodes this cost is not that high as

alternate secure candidate paths found by the RL agent have similar latency to the optimal

insecure candidate paths. We can infer that, as the functionality reward (F ()) is also part of

the reward function, STE-SDN is able to “intelligently” optimize the latency or functionality

for these episodes but not at the cost of security.

We also see that there exists a reward differential (green space between orange and

blue plots) in both functionality gain (latency loss) and security risk mitigation (detection

loss) when STE-SDN is used and when it is not. We refer to the state-action space of these

reward differentials as unsafe performance state-action space and unsafe risk state-action

space, respectively (similar to [86], [126]). By exploring these unsafe state-action space, the

risk (security risk) and functionality gain (network latency) trade-off can be managed by

adjusting the reward function hyper-parameters (see Subsection 5.3.2). The values of these

parameters directly impact how the “intelligence” of the network controllers is defined.

We also observe that the unsafe risk state-action space is clearly defined for most episodes,

while the unsafe performance state-action space is less clear (for some episodes where orange

and blue plots converge, it does not exist). From this we can infer that exploring the unsafe

risk state-action space is more feasible in our framework because the rewards are more

114

structured due to our value system (see Subsection 5.3.2). Through careful exploration of

this space and by fine-tuning the parameters in the value system, network administrators

would be able to develop intelligent and specialized TE policies in SDN environments.

5.6 Related Work

The TE problem has been widely investigated and several approaches to solve it have

been proposed. The most common approach is to use link state routing protocols, like

Open Shortest Path First (OSPF), Intermediate System to Intermediate System (IS-IS),

etc. These approaches are more geared towards simplicity rather than optimality. Later,

Xu et al. [127] proposed PEFT, a link state routing with traffic splitting over multiple

paths and an exponential penalty on longer paths to achieve optimal routing solutions.

In the context of SDN, Jain and et al. [128] proposed a TE solution using a bandwidth

function for data transmissions among Google’s data centers. Agarwal et al. [129] proposed

approximate TE solutions for SDN environments. Due to the scale and dynamic nature of

modern day networks, these model based solutions are not effective. Recently, deep model-

free RL based experience driven approaches [10]–[12] have been proposed for dynamic and

large scale networks. However in contrast to our work, these DRL models do not consider

network security.

To the best of our knowledge, ours is the first RL based TE framework that uses knowl-

edge about location and details of security services in the network. Approaches [130]–[132]

have been proposed to address the problem of security services placement in networks to

minimize security risks. These approaches are orthogonal to our work. Whereas their goal is

to find an optimal placement strategy for security services, our goal is to find an optimal TE

strategy to optimize functionality and minimize risk using knowledge about security services

available and their placements in the network.

Approaches have also been proposed to deal with the congestion control aspect of TE,

such as the one by Li et al. [133] that deals with managing sensitive/insensitive traffic

by adding explicit delay terms to the utility function measuring QoS. More recently, deep

RL based approaches, like the one by Huang et al. [14], have been proposed to solve the

115

congestion control problem. Previous work [126] on rate control focuses on encoding security

metrics into the RL framework to deal with network based attacks while at the same time

optimizing rates. However, in contrast to our work, these approaches do not consider the

routing aspect of the TE problem.

5.7 Conclusion and Future Work

In this chapter, we have proposed a DRL based “intelligent” TE framework for SDNs

able to optimize both network functionality and security. Our framework focuses primarily

on the routing aspect of TE. As part of future work, we intend to integrate techniques [126]

for optimal network rate control with the techniques presented in this chapter for end-to-end

routing, in order to build a complete DRL framework for optimal and secure TE for SDN

environments.

116

Algorithm 3: Learning Optimal State Action Quality
Input: Simulated Environment Env with n nodes; Estimated Reward Function

Rsmart() : {SS, AS} → Z; Maximum Episodes EP ; Exploration (Rate ,
Min, Decay) = (ε, εmin, εdecay); Batch Size BSize; Discount Rate γ;
Preferable Loss Lp

Output: State Action Quality Function Q : {SS} → AS
Initialize: Q[:, :] = 0
Offline Candidate Path Algo:
∀(src, dst) ∈ [0, n)→ {CP 1

t, CP 2
t, ...CP c

t}(src,dst); Encode candidate paths into
SS and AS

while ep← 0 : EP do
Scurr = Env.Init()
Snext = Scurr

while t← 0 : T do
if Random() ≤ ε then

. Exploration: Acurr = Random(AS)
Snext ← ∆(Scurr, Acurr)

else
. Exploitation: Acurr = ArgMax(Q[Scurr])

Snext ← ∆(Scurr, Acurr)
Rcurr = Rsmart(Scurr, Acurr, t)
Mem← (Scurr, Acurr, Rcurr, t)
if Mem > Bsize then

Q = Replay(Bsize)
t← t + I
Scurr ← Snext

ep← ep + 1
procedure Replay(Bsize, Lp)
M iniBatch← Sample(Mem, Bsize)
while (S, A, R, t) ∈M iniBatch do

Snext ← ∆(S, A)
Anext = Max(Q[Snext])
Rcum = R + γRsmart(Snext, Anext, t)
M iniBatch[(S, A, R, t)]← (S, A, Rcum, t)

Loss← DNNT rain(Q, M iniBatch)
if ε ≥ εmin AND Loss ≤ Lp then

ε← ε ∗ εdecay

return Q
end procedure

117

Figure 5.2. STE-SDN Framework

Figure 5.3. Detection Loss: Brute Force Attacks

Figure 5.4. Detection Loss: DDoS Attacks

118

Figure 5.5. Detection Loss: Web Based Attacks

Figure 5.6. Latency Loss: Brute Force Attacks

Figure 5.7. Latency Loss: DDoS Attacks

Figure 5.8. Latency Loss: Web Based Attacks

119

6. ACCELERATING RL LEARNING USING TRANSFER

LEARNING

To begin, we introduce the Software Defined Coalitions (SDC) architecture that has been

proposed by the DAIS ITA (ITA) team and discuss the fragmentation scenarios of SDC to

be studied in this work. In addition, we briefly present RL techniques as network control

policies for the SDC and transfer learning for the environment under consideration.

6.1 Background

6.1.1 Software Defined Coalitions (SDC)

To attain the vision of distributed brain and intelligence for joint missions of coalition

forces, we need to understand how different infrastructure components in the coalition can

be composed together to form an efficient, unified, agile infrastructure, in spite of substan-

tial resource constraints, high levels of dynamicity and local policies restricting coalition

participation. The key challenge is to develop the fundamental design principles and tech-

niques by which we can obtain such infrastructure composition for distributed intelligence

and analytics for coalition operations.

Toward this goal of enabling a new level of agility and dynamism, the DAIS ITA Alliance

(https://dais-ita.org/pub) has introduced the new architecture called Software Defined Coali-

tions (SDC), to realize many benefits including programmable coalition management, easy

reconfiguration, on-demand resource allocation, and rapid response to network anomaly/fail-

ures. The notion of SDC represents a major extension of the existing Software Defined Net-

working (SDN) concept to include all types of coalition resources such as communication,

storage, computation, databases, sensors and other forms of resources. Realizing an SDC

infrastructure can lead to a major advancement to support overall coalition needs, for diverse

settings from combat operations to intelligent operations to humanity operations.

The core idea of a Software Defined Network (SDN) is to separate control logic of the

communication network from the data plane of switches and links to support communica-

tions services. An SDN typically consists of multiple network domains, each of which has a

120

single controller responsible for managing switches and links within the domain. Switches

and communication links are connected across the domains to form a data plane for trans-

fer of user data, while domain controllers are also interconnected to form a control plane

for exchanging information for network control purposes. Since the software implementa-

tion of control logic residing within controllers can be readily re-programmed and changed,

such software-defined capability enables centralized management, rapid configuration and

adjustment of communication resources to achieve higher-level goals.

SDC applies the similar concept of separation of control logic from the data plane as in

the SDN. As an illustrative example in Figure 6.1 , an SDC is composed of multiple domains,

where each domain represents a connected sub-network of a coalition partner. Each domain

contains one domain controller and controllers of various domains are connected through

the control plane for the exchange of control information. It is important to note that the

SDC is a logical or virtual architecture. That is, multiple SDCs can actually be running on

and supported by the same set of physical resources owned by coalition partners and each

of such SDCs is referred to as an SDC slice. The example shown in Figure 1 has two SDC

slices denoted as slice 1 and 2. Each SDC slice has a slice controller, which connects with all

domain controllers associated with the slice. These domain and slice controllers, which form

a hierarchical control structure, coordinate to utilize all infrastructure resources to support

services for achieving mission objectives and satisfying coalition policies for the given SDCs.

Figure 6.1. Software Defined Coalitions (SDC) for armed forces

Despite the potential advantages of SDC, major challenges need to be addressed before

the SDC capability can be realized in tactical environments. SDC does not consider only

switches and links, but other resources such as computational servers, storage, databases,

121

sensors and other forms of resources must also be considered. Given such a diversified set

of resources, the control logic for maintaining and sharing resources across domains is more

complicated than those for SDN. The infrastructure and service dynamicity in the tactical

environments further complicate algorithms and techniques required to support the SDC

capability. The DAIS ITA team has addressed these challenges. For example, the funda-

mental understanding of controller synchronization has been studied in [1], while techniques

for controller synchronization has been developed in [2], [3] and [4]. A hybrid control archi-

tecture for SDN and ad-hoc networks to combine the advantages of central and distributed

control mechanisms is proposed in [5] and efficient techniques for sharing of coalition re-

sources across domains in SDC are investigated in [6] and [7]. Although various SDC issues

have been addressed, one area that has not received much attention is how the SDC ar-

chitecture will respond and behave when the infrastructure, which is formed by “joining

up” various domains of resources owned by multiple coalition partners, becomes fragmented

due to unexpected failures of communication links or other system components as well as

planned fragmentation and re-joining for mission purposes. This is the focus in the rest of

this chapter.

6.1.2 SDC Fragmentation

The main idea of SDC is to facilitate dynamic, near real-time configuration and re-

configuration of multiple domains of various resources belonging to different coalition part-

ners to form a single infrastructure for supporting coalition missions. The severe tactical

environments may cause network components and communication links in particular to fail.

Such component failures can lead to a variety of conditions, including disconnection of as-

sets and devices from their domain controllers, disconnection between domain controllers,

as well as disconnection of communication links and gateways between domains. Relatively

speaking, connections among resources, and between resources and their controller within a

domain are more reliable and robust than the connections across domains. It is so because

each domain is typically well designed and maintained as it belongs to a coalition partner or

a branch of armed forces. In contrast, SDC is formed by dynamically “connecting” multiple

122

domains from different owners, which may use heterogeneous sets of technologies and stan-

dards. In this work, we focus on disconnection of domains in the SDC, which is referred to

as SDC fragmentation here. While SDC fragmentation can be caused by unexpected failures

of network components such as communication links and gateways, fragmentation and re-

joining of SDC domains can also be planned in order to meet the mission objectives. That is,

for the mission requirements, a subset of domains can be disconnected (and thus fragmented)

from and re-join the rest of the SDC infrastructure at a later time. This is referred to as

planned SDC fragmentation, in contrast to the unplanned fragmentation due to unexpected

situations such as component failures. Regardless of the types of fragmentation, the SDC

runs as a single infrastructure while connected, and is divided up into a set of disconnected

networks during fragmentation. Naturally, control algorithms for resource allocation and ser-

vice provisioning are highly affected by whether the SDC is connected or fragmented. It is

important to ensure the dynamic configuration and re-configuration of resources and services

can be carried out efficiently in presence of possible domain fragmentation and re-joining.

Since RL techniques (e.g., [3, 4]) have been commonly used to control infrastructures, it is

desirable to understand and improve operations of such learning techniques when the SDC

can change suddenly from being connected to fragmented, and vice versa. In particular,

as SDC fragmentation and re-joining of domains represent sudden changes of operating en-

vironment, the learning-based control algorithms in use are expected to quickly adapt to

such rapid changes while ensuring satisfactory performance and robustness. The control

algorithms should efficiently allocate resources, provide services and continue to learn the

conditions in the fragmented networks so that the algorithms can operate efficiently when

the fragmented networks are re-connected to form a single SDC infrastructure again. Essen-

tially, the challenge here is to enhance the RL techniques to be adaptive to the fragmentation

and re-connection in SDC, as to be elaborated in the following.

6.1.3 RL for Developing Network Control Policy

Network control, like many other system control problems, usually involves solving com-

plex decision-making and optimization problems. Traditional optimisation techniques, when

123

employed for solving network control problems, usually require various simplifications of

the original problem and strict assumptions being met. Given that SDC networks are usu-

ally large and heterogeneous systems, accurately modelling such systems and formulating

tractable optimization problems for SDC is a big challenge in the first place. In addition,

the traditional modelling of network control problems often cannot take full advantage of

the potential large amount of network operation data, which are made available through the

control plane of the SDC infrastructure. To address the shortcomings of traditional network

control based on the optimisation paradigms, novel reinforcement learning (RL)-based [11]

approaches have been applied to designing control policies for the SDC networks [3-4]. At

the high level, RL-based techniques aim at finding the optimal strategy for solving the serial

decision-making problems, in order to maximize the long-term objective of the formulated

decision-making problems. RL algorithms achieve this goal by learning from its past ex-

periences to enforce “good” behaviours and avoid “bad” ones. Therefore, RL algorithms

essentially offer a way for developing network control strategies by learning from the past

control decisions. In the context of SDC control , we formulate the process of control policy

design for SDC as a serial decision-making problem, where existing control decisions and net-

work operation data are the past “behaviours” and “experiences”, from which RL algorithms

can assist in learning the optimized control policies.

6.1.4 Transfer Learning

Transfer learning (TL) allows machine-learning (ML) algorithms to repurpose the knowl-

edge gained by learning one or more source tasks into learning a target task. TL is useful

in scenarios when there is not a lot of training data available in a particular domain, but

there is a lot of existing training data available in a different but similar domain. TL has

been shown to be effective for ML applications like image classification, text processing, and

speech recognition.

In any TL scenario, the source and target may either differ in domain (i.e., the feature

space and the feature distribution of the datasets) or task (i.e., the label space and the

objective predictive function learnt from the training data). Domain adaptation (DA) is a

124

special case of transductive TL; that is, the source and target tasks are the same, and the

domains are related but different. Most DA methods try to align the source and target data

distributions to learn a domain-invariant mapping of the datasets.

Singla et al. [8] use the concept of adversarial domain adaptation by using a generative

adversarial network (GAN) to train a network intrusion detection (NID) classifier. The NID

classifier is trained to detect a new family of attacks (target domain) by leveraging a source

dataset that contains packet data for attack from existing attack families and benign samples

(source domain). An overview of the GAN architecture is shown in Fig. 2. The architecture

consists of two generators which can have shared weights in some layers or all layers, which

take as input the source and target datasets and train to create a domain invariant mapping

so that the discriminator cannot tell whether a sample is from the source dataset or the

target dataset. The discriminator trains to get better at making the domain prediction, i.e.

telling whether the sample belongs to the source dataset or the target dataset. In addition,

the classifier trains to be better at predicting the class of the sample - in the case of the

NID scenario, the classifier predicts whether the sample is an attack sample or a benign

sample. All these components learn simultaneously to achieve their respective optimization

objectives. After enough training the generator along with the classifier can be taken out to

act as a classifier which can classify samples from both the source and target datasets.

Figure 6.2. Architecture of the generic framework for adversarial DA using GANs.

125

6.2 Problem Formulation

6.2.1 The Analytic-Service and Fragmentation Scenario

In this section, we describe a simple but representative networking scenario as the basis

for illustrating the application of the combination of RL and TL techniques for designing

the network control policy. In particular, we consider a SDC consisting of two domains,

i.e., the US and the UK domains. Each domain is equipped with a domain controller. The

domain controller has full knowledge of the status information of all network elements (i.e.,

resources) in its own domain, domain controllers synchronize with each other to update each

other about the status information of network elements residing in their own domains. The

purpose of controller synchronization is to facilitate inter-domain networking tasks.

In this chapter, the networking elements of interest are specialized data servers that are

placed at various locations throughout the domains which host network services. Multiple

types of services (applications) are supported, although each data server can support and

process service requests (i.e., analytic tasks) of one type of service. It is assumed that all

services are available and supported by servers in both US and UK domains. Each server

has an infinite buffer to temporarily store requests waiting for service and process requests

on a FIFO basis. Users residing in the two domains submit requests for services to the

corresponding domain controller. To realize the advantages of SDC, a service request received

in one domain can be routed and processed by a server in the other domain. Specifically,

each domain controller, based on its knowledge of the infrastructure status, forwards every

received request for processing by an appropriate server in the local or remote domain. The

purpose of such server selection for each request by the receiving domain controller is to

optimise the performance metric of the SDC infrastructure as defined below.

The whole SDC of the US and UK domains is represented by a discrete-time model

where service requests depart from the system upon processing completion by the servers,

and arrive at the domain controllers at the time epoch immediately before and precisely

when a time slot begins, respectively. New processing requests for each type of service arrive

at each controller according to a Bernoulli process (see Table 1 for details). At the beginning

of each time slot, each controller selects a server for each newly arrived request and forwards

126

the latter to the selected server for processing. Each server can process requests of one type of

service. It is assumed that data servers hosting the same service can have different processing

speeds (power), but each of the service requests allocated to a given server requires a fixed

amount of time to complete its processing.

The status information of the servers (i.e., the multi-dimensional state description of

the system) is defined as the amount of unfinished work on all servers immediately after

the current time slot begins (i.e., new service requests have just arrived and been assigned

to the selected servers). The amount of unfinished work on a given server is equal to the

total number of time slots required to complete the current request in processing as well as

all requests pending in the server’s buffer. For simplicity at this point, we assume a service

request forwarded from one domain to a server in the other domain does not incur additional

delay or processing overhead. When the two domains are connected, their domain controllers

can regularly synchronize and exchange the up-to-date server status information. During the

control-plane fragmentation, domain controllers cannot exchange such information with each

other, although each controller continues to know the status of its servers in the local domain.

It should be noted that we assume both domains can reach each other through the data plane

at all times, i.e., fragmentation only occurs to the control plane, but not the data plane.

6.2.2 Network Control Objectives and Problem Statement

Based on the scenario described above, the control task of domain controllers is to make

request-forwarding decisions, such that the overall delay in satisfying all requests received

are minimized. In addition, we can identify two states of the SDC, i.e., (i) the SDC’s control

plane is connected and (ii) the SDC’ control plane is fragmented. In the former case, since

domain controllers can synchronize with each other, there is effectively only one logical

controller in the network and global control decisions can be made based on information

obtained from all domains in the SDC network. Whereas in the latter case, each domain

controller can make control decisions only based on network status information within its

local domain. Therefore, the control objective of domain controllers can be further defined as

to develop request-forwarding strategies by using the available network status information,

127

such that (i) the overall service request delays across the whole SDC are minimized when

the control plane is connected, and (ii) the overall service request delays in their respective

domains are minimized when the control plane is fragmented.

The request-forwarding strategies are developed based on the network status information

available to the domain controllers. Since the availability of network status information will

be impacted by whether or not the control plane is fragmented, the request-forwarding

strategies will have to adjust accordingly. Therefore, the second network control objective

of domain controllers is to be able to quickly adapt their request-forwarding strategies when

the status of the control plane, being fragmented or connected, changes.

Without loss of generality, in this chapter we focus our investigation on the scenario where

the control plane emerges from fragmentation. In particular, the problem we aim at address-

ing is two-folded: (i) develop request-forwarding strategies for domain controllers when the

control plane is fragmented, and (ii) quickly adjust the individual request-forwarding strate-

gies developed during fragmentation into a unified one when the control plane becomes

reconnected.

6.3 RL for Learning Control Policy in SDC Domains

We employ RL-based methods for developing request-forwarding strategies in SDC do-

mains, which enable domain controllers to take advantage of the large amounts of past

network operation data it gathers in the SDC. These RL-based methods can be applied for

both connected and fragmented control planes, as the main difference between the two cases

is only the amount of data available to the domain controllers. To this end, we first formu-

late the problem of allocating requests to servers in the time-slotted system as an Markov

Decision Process (MDP) [11], which can be described as a 3-tuple as follows.

State: The state is the amount of unfinished work (measured in time slots) of all data

servers, which is the total amount of time (in unit of time slot) required to complete the

request in service and all pending requests in the server buffer. Action: To determine the

percentage of requests of each service type received in a time slot that are assigned to the

servers (in both domains) supporting the service. If service requests from two domains are

128

assigned to the same server, it is assumed that the intra-domain requests will be served prior

to those from the remote domain. Reward: For a time slot, the reward is calculated as the

reciprocal of the average waiting time (i.e., from the arrival until the processing completion

for a request) for the requests assigned during this time slot according to the action taken.

Then, the past state-action-reward tuples are stored and used by RL-based algorithms

for the development of request-forwarding strategy. In particular, we leverage two off-policy

and offline RL algorithms, i.e., the Deep Deterministic Policy Gradient (DDPG) [9] and

the State Action Separable Reinforcement Learning sasRL [10] algorithms, to accomplish

this. The DDPG is a state-of-the-art model-free and off-policy RL algorithm, which is based

on the deterministic policy-gradient theorem [9]. The DDPG employs several techniques

to improve data usage efficiency and to stabilize the DRL training process, such as replay

buffers and the soft parameter update procedure. In addition, since our goal is to quickly

develop these forwarding strategies, we also employ the sasRL algorithm, which is a new RL

paradigm we recently developed for reducing the complexity of RL problems. As the design

of RL algorithm itself is not tightly coupled with the main theme of this chapter, readers

are referred to [9] and [10] for detailed descriptions of the mechanism behind the DDPG and

the sasRL.

6.3.1 RL-TL based Control Policy Design for Fragmented SDC

We consider the following TL approach for transferring local knowledge (gained during

fragmentation) from the US and UK domains to the global agent after SDC fragmentation

ends. The general idea is to combine the local knowledge from the domains using various

combination strategies like zero-weighted, naïve concatenation and full combination to form

the source dataset (SD). These combination strategies essentially aim to conform the state of

the local domains (SD) into the state of the global domain (TD). New knowledge gained in the

SDC after fragmentation ends forms the target dataset (TD). Finally, a general adversarial

network (GAN) is used to minimize the “domain loss” between SD and TD to improve

convergence of the global RL agent. The details are given as follows.

129

6.3.2 Reward Knowledge Transfer

The SD is generated by combining exploration data from both UK and US domains. The

TD is generated from new explorations in the whole SDC. We use a GAN (see Figure 3) to

generate augmented or synthetic data (i.e., the enhanced exploration data) by minimizing

the “domain loss” between SD and TD. Then we train the global RL agent using this

synthetic data. A key environment specific parameter in this setting is the bias introduced

while training the global agent. For the optimal convergence, the new exploration samples

(TD) should be favoured over stale local domain knowledge (SD). This approach requires

two learning or training steps, one to train the GAN and one to train the global RL agent.

Figure 6.3. General work-flow of our TL-assisted RL approach.

6.3.3 General Work-Flow

Exploration samples are collected by respective local domain controllers required for

generating their own local RL models during fragmentation. Once fragmentation ends and

domains re-combine, these local explorations are exchanged by the controllers to generate

the SD. The controller then proceeds to perform new explorations in the combined SDC

to generate the TD. The controller samples explorations from the SD and the TD biased

towards the TD using a hyperparameter b to feed into the GAN. The GAN then generates

augmented exploration samples using the domain adaptation technique discussed earlier.

130

Finally, the RL model for the combined SDC is learnt from these augmented exploration

samples. We use the DDPG [9] and the sasRL [10] as the RL algorithms for optimizing

the policies, but it is important to note that our technique can be used by any general RL

algorithm, which employs an experience-replay buffer for sampling.

6.4 Experiments

6.4.1 The Simulated SDC Environment

As shown in Figure 4 below, the simulated SDC environment in our experiments consists

of 2 domains, i.e., the US domain and the UK domain. Moreover, we consider 3 types of

analytical service. Each of the US and UK domains has at least one server supporting each

of these services, and every server only provides one type of service.

Figure 6.4. The simulated SDC environment.

We assume that the processing power of servers is abstracted by the number of time

slots required for processing a unit job in the time-slotted system. The distribution of server

processing power is assumed to be uniform. In addition, in the experiments we use Bernoulli

distribution for modelling request arrival for the 3 network services in the SDC network.

Table ?? summarizes the settings for server processing power and request arrivals in our

experiments.

131

Table 6.1. Environment Configurations
US domain (6 servers) UK domain (6 servers)

Request processing
time for Service 1

1st server: 1, 2 or 3 time slots,
uniformly distributed
2nd server: 3, 4 or 5 time slots,
uniformly distributed

1st server: 1, 2 or 3 time slots,
uniformly distributed
2nd server: 3, 4 or 5 time slots,
uniformly distributed

Request processing
time for Service 2

3rd server: 2, 3 or 4 time slots,
uniformly distributed
4th server: 5, 6 or 7 time slots,
uniformly distributed

3rd server: 2, 3, or 4 time slots,
uniformly distributed
4th server: 5, 6 or 7 time slots,
uniformly distributed

Request processing
time for Service 3

5th server: 4, 5 or 6 time slots,
uniformly distributed
6th server: 9, 10 or 11 time slots,
uniformly distributed

5th server: 4, 5 or 6 time slots,
uniformly distributed
6th server: 9, 10 or 11 time slots,
uniformly distributed

Arrivals of new requests
for 3 types of services
per time slot

Bernoulli arrivals: With prob pi
us,

one request arrives for service
i in a time slot for i=1 to 3
services; and
prob (1-pi

us), no arrival

Bernoulli arrivals: With prob pi
uk,

one request arrives for service i in a
time slot for i=1 to 3 services; and
prob (1-pi

uk), no arrival

6.4.2 RL Settings

For the DDPG algorithm, we implement the actor and critic networks as multilayer

perceptrons (MLP), which consists of two hidden layers with 256 and 128 units, respectively.

The discount factor and learning rate are set to 0.99 and 0.0005, respectively. In addition,

we choose the conservative soft update for both the actor and critic networks, which update

the parameters for both networks by 1

For the sasRL algorithm, we also implement it using the actor-critic architecture. The

actor has one input layer, two hidden layers, and one output layer. The number of units in

both the input layer and the output layer is the same as the dimension of the state vector.

There are 64 units in both hidden layers. The critic has two input layers, three hidden layers,

and one output layer. The input layer takes the current and the next state vectors as inputs,

it then concatenates the two inputs to be fed to the hidden layers. Therefore, the number

of units in both input layers equals the dimension of the state vector. There are 128, 64,

and 32 units in three hidden layers, respectively. The transition model also has two input

132

layers, two hidden layers, and one output layer. The input layer takes the current and the

next state vectors as inputs. Therefore, the number of units in the input layer is twice the

dimension of the state vector. There are 64 and 32 units in two hidden layers, respectively.

Readers are referred to [10] for more details on the sasRL architecture.

For both algorithms, we select the rectified linear unit (ReLU) and linear functions as

the activation functions for all neurons in hidden layers and the neurons in the output layers,

respectively. We use the Keras deep learning library for building and training the MLPs,

which represent the actor, the critic, and the transition model described above. In particular,

we use mean square error (MSE) and the Adam optimizer for estimating and minimizing

training losses. The settings for the Adam optimizer are as follows: lr = 0.001, �1 = 0.9, �2

= 0.999, clipnorm = 1.0. The training procedure uses stochastic gradient descent operating

on mini-batches of data (the minibatch size is 32) for gradient updates.

6.4.3 TL Settings

For the GAN implementation, we implement the generator and discriminator as neural

networks, each of which consists of two hidden layers with 64 units each. The learning

rate is set to 0.01. Each of the hidden layers uses a leaky relu activation function with

slope of the negative curve set as (� = 0.2). Each hidden layer is also followed by a batch

normalization layer with momentum 0.8. The output of the discriminator network is a

single neuron sigmoid activation and is optimized using a binary cross-entropy loss function.

The generator network output dimensions are the same as the dimension of the combined

SDC state. When generating augmented data from the generator, a sampling bias factor

(discussed before) of 0.8 is used to bias the generated output towards the new explorations

(TD).

6.4.4 Experiment Settings and Results

In our experiments, we assume that the control plane just emerged from fragmentation

and domain controllers resume synchronizing with each other. Then, we test the proposed

RL+TL approach under 3 scenarios with varying amount of new global data: (1) “real

133

exploration” with 10,000 real state-action-reward tuples, which are collected after control

plane becomes reconnected; (2) “augmented exploration” with 100 real state-action-reward

tuples collected after the control plane reconnection, and 9,900 augmented ones using the TL

technique; (3) “limited exploration” with only 100 state-action-reward tuples collected after

control plane reconnection. For updating parameters at each training iteration, we randomly

pull the same number of samples from the respective sample pools in 3 scenarios. Therefore,

we ensure that the same number of gradient updates are carried out for all 3 scenarios for a

fair comparison. We conduct our experiments using both DDPG and sasRL as the chosen

RL algorithm. Experiment results are shown in Figures 5 and 6 for DDPG and sasRL-based

algorithms, respectively. In these plots, the vertical axis shows the average of accumulated

rewards over a fixed number of time slots, whereas the horizontal axis corresponds to the

number of training iterations. It is clear from the plots that the more state-action-reward

data points we have, the higher the average accumulated reward. More importantly, by

comparing the curves between “augmented exploration” and “limited exploration”, we can

see that although they both only use 100 real state-action-reward data points, the 9,900

augmented data points obtained via the TL technique help to produce results much closer

to those obtained by using 10,000 real data points. Therefore, the TL technique we employ

significantly accelerates the RL-based control policy generation by providing a large amount

of synthetic data as an augmentation to the small amount of real data collected during a

short period of time. In this case, the “augmented exploration” scenario can in theory start

the RL process and learn control policy 100x faster than the “real exploration” scenario, and

still achieve comparable results.

Figure 6.5. Training curves with DDPG.

134

Figure 6.6. Training curves with sasRL.

6.5 Conclusion

In this chapter, we have explored the idea of applying TL techniques for accelerating

RL-based network control in SDC. In particular, we consider the scenario where the control

plane transitions from fragmentation to reconnection, and the domain controllers try to learn

new control policies based on newly collected data after fragmentation ends. By employing

the GAN-based TL technique, large amounts of synthetic data are generated, which are then

used to assist the development of RL-based control policy. Experimental results show that

the RL algorithms that use only 1% of real data and 99% of augmented (obtained through

TL) data can achieve comparable performance to the scenario where 100% of data used

are real. Therefore, we show that TL techniques can significantly accelerate the adaptation

of the RL-based control policy in fragmented SDC. In essence, our results reveal that the

combined RL-TL techniques can provide a rapid and adaptive response to abrupt changes

of operating environments due to the SDC fragmentation. In effect, the RL-TL techniques

enhance the robustness of the SDC architecture in supporting distributed analytic services

despite the possible infrastructure fragmentation.

135

7. CONCLUSION AND FUTURE WORK

In this work, we have developed a constrained RL framework Jarvis, an autonomous control

system deployed at the network edge able to support applications/users, by providing optimal

device actions at the application and network layers to maximize QoS for the users in terms of

required functionalities but at the same time maintaining safety and security the monitored

IoT environment. We address various challenges of constraining DRL frameworks with safety

and security policies for both application and network layers. We also address the single point

of failure of network controllers by developing Jarvis-SDN, specifically for optimizing and

securing core networking functionalities like routing and rate control. Along with this, we

have designed the Jarvis models to be robust and flexible, so that they are applicable across

different networking and environment contexts like IoT smart homes and SDN environments.

Currently, the Jarvis framework functions as a single RL agent framework which focuses

on individual application layer functionalities, like energy saving and electricity cost mini-

mization, and network layer functionalities, like optimal routing and rate control. One area

of future work is to combine these functionalities into a single optimization goal using mul-

tiple RL agents by weighing each functionality reward using a user-defined reward function.

This would be similar to the idea of encoding ethics through reward weight distribution in

the smart reward function discussed in this work; however these weights would be across

different RL agents and thus would avoid single RL agents getting stuck in a local optima.

136

REFERENCES

[1] Z. B. Celik, P. McDaniel, and G. Tan, “Soteria: Automated iot safety and security
analysis,” pp. 147–158, 2018.

[2] Z. B. Celik, G. Tan, and P. D. McDaniel, “Iotguard: Dynamic enforcement of security
and safety policy in commodity iot.,” 2019.

[3] S. Bauer and D. Schreckling, “Data provenance in the internet of things,” 2013.

[4] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, “Fog computing and its role in the
internet of things,” pp. 13–16, 2012.

[5] S. Yi, Z. Qin, and Q. Li, “Security and privacy issues of fog computing: A survey,”
pp. 685–695, 2015.

[6] D. O’Neill, M. Levorato, A. Goldsmith, and U. Mitra, “Residential demand response
using reinforcement learning,” pp. 409–414, 2010.

[7] L. Yu, W. Xie, D. Xie, Y. Zou, D. Zhang, Z. Sun, L. Zhang, and T. Jiang, “Deep rein-
forcement learning for smart home energy management,” arXiv preprint arXiv:1909.10165,
2019.

[8] K. Gai and M. Qiu, “Optimal resource allocation using reinforcement learning for iot
content-centric services,” Applied Soft Computing, vol. 70, pp. 12–21, 2018.

[9] K. M. Tsui and S.-C. Chan, “Demand response optimization for smart home schedul-
ing under real-time pricing,” IEEE Transactions on Smart Grid, vol. 3, no. 4, pp. 1812–
1821, 2012.

[10] Z. Xu, J. Tang, J. Meng, W. Zhang, Y. Wang, C. H. Liu, and D. Yang, “Experience-
driven networking: A deep reinforcement learning based approach,” in IEEE INFO-
COM 2018-IEEE Conference on Computer Communications, IEEE, 2018, pp. 1871–
1879.

[11] J. Zhang, M. Ye, Z. Guo, C.-Y. Yen, and H. J. Chao, “Cfr-rl: Traffic engineering with
reinforcement learning in sdn,” IEEE Journal on Selected Areas in Communications,
vol. 38, no. 10, pp. 2249–2259, 2020.

[12] E. Einhorn and A. Mitschele-Thiel, “Rlte: Reinforcement learning for traffic-engineering,”
in IFIP International Conference on Autonomous Infrastructure, Management and
Security, Springer, 2008, pp. 120–133.

137

[13] G. Stampa, M. Arias, D. Sánchez-Charles, V. Muntés-Mulero, and A. Cabellos, “A
deep-reinforcement learning approach for software-defined networking routing opti-
mization,” arXiv preprint arXiv:1709.07080, 2017.

[14] X. Huang, T. Yuan, G. Qiao, and Y. Ren, “Deep reinforcement learning for multimedia
traffic control in software defined networking,” IEEE Network, vol. 32, no. 6, pp. 35–
41, 2018.

[15] P. Sun, Z. Guo, G. Wang, J. Lan, and Y. Hu, “Marvel: Enabling controller load balanc-
ing in software-defined networks with multi-agent reinforcement learning,” Computer
Networks, p. 107 230, 2020.

[16] R. S. Sutton, “Dyna, an integrated architecture for learning, planning, and reacting,”
ACM Sigart Bulletin, vol. 2, no. 4, pp. 160–163, 1991.

[17] C. Kolias, G. Kambourakis, A. Stavrou, and J. Voas, “Ddos in the iot: Mirai and
other botnets,” Computer, vol. 50, no. 7, pp. 80–84, 2017.

[18] C. Cimpanu, New hakai iot botnet takes aim at d-link, huawei, and realtek routers,
Sep. 2018. [Online]. Available: https://www.zdnet.com/article/new-hakai-iot-botnet-
takes-aim-at-d-link-huawei-and-realtek-routers/ .

[19] A. Greenberg, The reaper botnet has already infected a million networks, Oct. 2017.
[Online]. Available: https://www.wired.com/story/reaper-iot-botnet-infected-million-
networks/ .

[20] F. Dang, Z. Li, Y. Liu, E. Zhai, Q. A. Chen, T. Xu, Y. Chen, and J. Yang, “Under-
standing fileless attacks on linux-based iot devices with honeycloud,” pp. 482–493,
2019.

[21] E. Bertino, “Data security and privacy in the iot,” pp. 1–3, 2016.

[22] M. Roesch et al., “Snort: Lightweight intrusion detection for networks.,” vol. 99, no. 1,
pp. 229–238, 1999.

[23] V. Paxson, “Bro: A system for detecting network intruders in real-time,” Computer
networks, vol. 31, no. 23-24, pp. 2435–2463, 1999.

[24] S. Raza, L. Wallgren, and T. Voigt, “Svelte: Real-time intrusion detection in the
internet of things,” Ad hoc networks, vol. 11, no. 8, pp. 2661–2674, 2013.

[25] D. Midi, A. Rullo, A. Mudgerikar, and E. Bertino, “Kalis a system for knowledge
driven adaptable intrusion detection for the internet of things,” pp. 656–666, 2017.

138

https://www.zdnet.com/article/new-hakai-iot-botnet-takes-aim-at-d-link-huawei-and-realtek-routers/
https://www.zdnet.com/article/new-hakai-iot-botnet-takes-aim-at-d-link-huawei-and-realtek-routers/
https://www.wired.com/story/reaper-iot-botnet-infected-million-networks/
https://www.wired.com/story/reaper-iot-botnet-infected-million-networks/

[26] J. Habibi, D. Midi, A. Mudgerikar, and E. Bertino, “Heimdall: Mitigating the internet
of insecure things,” IEEE Internet of Things Journal, vol. 4, no. 4, pp. 968–978, 2017.

[27] M. Antonakakis, T. April, M. Bailey, M. Bernhard, E. Bursztein, J. Cochran, Z.
Durumeric, J. A. Halderman, L. Invernizzi, M. Kallitsis, et al., “Understanding the
mirai botnet,” pp. 1093–1110, 2017.

[28] J. Wurm, K. Hoang, O. Arias, A.-R. Sadeghi, and Y. Jin, “Security analysis on con-
sumer and industrial iot devices,” pp. 519–524, 2016.

[29] J. Wallen, Five nightmarish attacks that show the risks of iot security, Jun. 2017.
[Online]. Available: https://www.zdnet.com/article/5-nightmarish-attacks-that-
show-the-risks-of-iot-security/ .

[30] S. Cobb, Rot: Ransomware of things, 2017.

[31] K. Salah, J. M. A. Calero, S. Zeadally, S. Al-Mulla, and M. Alzaabi, “Using cloud
computing to implement a security overlay network,” IEEE security & privacy, vol. 11,
no. 1, pp. 44–53, 2012.

[32] P. Calyam, S. Rajagopalan, S. Seetharam, A. Selvadhurai, K. Salah, and R. Ramnath,
“Vdc-analyst: Design and verification of virtual desktop cloud resource allocations,”
Computer Networks, vol. 68, pp. 110–122, 2014.

[33] F. Al-Haidari, M. Sqalli, and K. Salah, “Impact of cpu utilization thresholds and
scaling size on autoscaling cloud resources,” vol. 2, pp. 256–261, 2013.

[34] A. Mudgerikar, P. Sharma, and E. Bertino, “E-spion: A system-level intrusion detec-
tion system for iot devices,” pp. 493–500, 2019.

[35] F. Bellard, “Qemu, a fast and portable dynamic translator.,” vol. 41, p. 46, 2005.

[36] D. D. Chen, M. Woo, D. Brumley, and M. Egele, “Towards automated dynamic
analysis for linux-based embedded firmware.,” 2016.

[37] [Online]. Available: https://linux.die.net/man/1/sha256sum .

[38] J.-S. Coron, Y. Dodis, C. Malinaud, and P. Puniya, “Merkle-damgård revisited: How
to construct a hash function,” pp. 430–448, 2005.

[39] C. Hall, Survey shows linux the top operating system for internet of things devices,
May 2018. [Online]. Available: https://www.itprotoday.com/iot/survey-shows-linux-
top-operating-system-internet-things-devices .

139

https://www.zdnet.com/article/5-nightmarish-attacks-that-show-the-risks-of-iot-security/
https://www.zdnet.com/article/5-nightmarish-attacks-that-show-the-risks-of-iot-security/
https://linux.die.net/man/1/sha256sum
https://www.itprotoday.com/iot/survey-shows-linux-top-operating-system-internet-things-devices
https://www.itprotoday.com/iot/survey-shows-linux-top-operating-system-internet-things-devices

[40] I. Lee and K. Lee, “The internet of things (iot): Applications, investments, and chal-
lenges for enterprises,” Business Horizons, vol. 58, no. 4, pp. 431–440, 2015.

[41] Y. M. P. Pa, S. Suzuki, K. Yoshioka, T. Matsumoto, T. Kasama, and C. Rossow,
“Iotpot: Analysing the rise of iot compromises,” EMU, vol. 9, p. 1, 2015.

[42] VirusTotal, [Online]. Available: https://www.virustotal.com .

[43] O. Malware, [Online]. Available: http://openmalware.org .

[44] E. J. Cho, J. H. Kim, and C. S. Hong, “Attack model and detection scheme for botnet
on 6lowpan,” pp. 515–518, 2009.

[45] L. Wallgren, S. Raza, and T. Voigt, “Routing attacks and countermeasures in the
rpl-based internet of things,” International Journal of Distributed Sensor Networks,
vol. 9, no. 8, p. 794 326, 2013.

[46] D. Oh, D. Kim, and W. W. Ro, “A malicious pattern detection engine for embedded
security systems in the internet of things,” Sensors, vol. 14, no. 12, pp. 24 188–24 211,
2014.

[47] T.-H. Lee, C.-H. Wen, L.-H. Chang, H.-S. Chiang, and M.-C. Hsieh, “A lightweight
intrusion detection scheme based on energy consumption analysis in 6lowpan,” in
Advanced Technologies, Embedded and Multimedia for Human-centric Computing,
Springer, 2014, pp. 1205–1213.

[48] C. Cervantes, D. Poplade, M. Nogueira, and A. Santos, “Detection of sinkhole attacks
for supporting secure routing on 6lowpan for internet of things.,” pp. 606–611, 2015.

[49] P. Pongle and G. Chavan, “Real time intrusion and wormhole attack detection in
internet of things,” International Journal of Computer Applications, vol. 121, no. 9,
2015.

[50] N. K. Thanigaivelan, E. Nigussie, R. K. Kanth, S. Virtanen, and J. Isoaho, “Dis-
tributed internal anomaly detection system for internet-of-things,” pp. 319–320, 2016.

[51] P. Kasinathan, G. Costamagna, H. Khaleel, C. Pastrone, and M. A. Spirito, “An ids
framework for internet of things empowered by 6lowpan,” pp. 1337–1340, 2013.

[52] C. Liu, J. Yang, R. Chen, Y. Zhang, and J. Zeng, “Research on immunity-based
intrusion detection technology for the internet of things,” vol. 1, pp. 212–216, 2011.

[53] T. R. Chavez, “A look at linux audit,” 2006.

140

https://www.virustotal.com
http://openmalware.org

[54] K.-K. Muniswamy-Reddy, D. A. Holland, U. Braun, and M. I. Seltzer, “Provenance-
aware storage systems.,” pp. 43–56, 2006.

[55] A. Gehani and D. Tariq, “Spade: Support for provenance auditing in distributed
environments,” pp. 101–120, 2012.

[56] S. Ma, X. Zhang, and D. Xu, “Protracer: Towards practical provenance tracing by
alternating between logging and tainting.,” 2016.

[57] Y. Ji, S. Lee, E. Downing, W. Wang, M. Fazzini, T. Kim, A. Orso, and W. Lee,
“Rain: Refinable attack investigation with on-demand inter-process information flow
tracking,” pp. 377–390, 2017.

[58] Ifttt, Ifttt. [Online]. Available: https://ifttt.com/ .

[59] Zapier, The easiest way to automate your work. [Online]. Available: https://zapier.
com/ .

[60] Hybrid integration platform (hip). [Online]. Available: https://apiant.com/ .

[61] M. Mohsin, Z. Anwar, G. Husari, E. Al-Shaer, and M. A. Rahman, “Iotsat: A formal
framework for security analysis of the internet of things (iot),” pp. 180–188, 2016.

[62] T. Alshammari, N. Alshammari, M. Sedky, and C. Howard, “Simadl: Simulated ac-
tivities of daily living dataset,” Data, vol. 3, no. 2, p. 11, 2018.

[63] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction. MIT press,
2018.

[64] Smartthings. [Online]. Available: https://www.smartthings.com/ .

[65] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang, and W.
Zaremba, “Openai gym,” arXiv preprint arXiv:1606.01540, 2016.

[66] Abadi et al., “Tensorflow: A system for large-scale machine learning,” pp. 265–283,
2016.

[67] N. Alshammari, T. Alshammari, M. Sedky, J. Champion, and C. Bauer, “Openshs:
Open smart home simulator,” Sensors, vol. 17, no. 5, p. 1003, 2017.

[68] S. Barker, A. Mishra, D. Irwin, E. Cecchet, P. Shenoy, J. Albrecht, et al., “Smart*:
An open data set and tools for enabling research in sustainable homes,” SustKDD,
August, vol. 111, no. 112, p. 108, 2012.

141

https://ifttt.com/
https://zapier.com/
https://zapier.com/
https://apiant.com/
https://www.smartthings.com/

[69] W. Ding and H. Hu, “On the safety of iot device physical interaction control,” pp. 832–
846, 2018.

[70] Day-ahead market. [Online]. Available: http://www.ercot.com/mktinfo/dam .

[71] S. Reddy, A. D. Dragan, S. Levine, S. Legg, and J. Leike, “Learning human objectives
by evaluating hypothetical behavior,” arXiv preprint arXiv:1912.05652, 2019.

[72] B. Settles, “Active learning literature survey,” University of Wisconsin-Madison De-
partment of Computer Sciences, Tech. Rep., 2009.

[73] A. Blumer, A. Ehrenfeucht, D. Haussler, and M. K. Warmuth, “Occam’s razor,”
Information processing letters, vol. 24, no. 6, pp. 377–380, 1987.

[74] Y. J. Jia, Q. A. Chen, S. Wang, A. Rahmati, E. Fernandes, Z. M. Mao, A. Prakash,
and S. J. Unviersity, “Contexlot: Towards providing contextual integrity to appified
iot platforms.,” 2017.

[75] Y. Tian, N. Zhang, Y.-H. Lin, X. Wang, B. Ur, X. Guo, and P. Tague, “Smartauth:
User-centered authorization for the internet of things,” pp. 361–378, 2017.

[76] E. Fernandes, J. Jung, and A. Prakash, “Security analysis of emerging smart home
applications,” pp. 636–654, 2016.

[77] S. Khurshid, C. S. Păsăreanu, and W. Visser, “Generalized symbolic execution for
model checking and testing,” pp. 553–568, 2003.

[78] G. J. Holzmann, The SPIN model checker: Primer and reference manual. Addison-
Wesley Reading, 2004, vol. 1003.

[79] S. Manandhar, K. Moran, K. Kafle, R. Tang, D. Poshyvanyk, and A. Nadkarni, “He-
lion: Enabling a natural perspective of home automation,” arXiv preprint arXiv:1907.00124,
2019.

[80] V. Pilloni, A. Floris, A. Meloni, and L. Atzori, “Smart home energy management
including renewable sources: A qoe-driven approach,” IEEE Transactions on Smart
Grid, vol. 9, no. 3, pp. 2006–2018, 2016.

[81] J. R. Vázquez-Canteli and Z. Nagy, “Reinforcement learning for demand response: A
review of algorithms and modeling techniques,” Applied energy, vol. 235, pp. 1072–
1089, 2019.

142

http://www.ercot.com/mktinfo/dam

[82] F. De Angelis, M. Boaro, D. Fuselli, S. Squartini, F. Piazza, and Q. Wei, “Optimal
home energy management under dynamic electrical and thermal constraints,” IEEE
Transactions on Industrial Informatics, vol. 9, no. 3, pp. 1518–1527, 2012.

[83] L. Yu, T. Jiang, and Y. Zou, “Online energy management for a sustainable smart
home with an hvac load and random occupancy,” IEEE Transactions on Smart Grid,
vol. 10, no. 2, pp. 1646–1659, 2017.

[84] M. Franceschelli, A. Pilloni, and A. Gaspam, “A heuristic approach for online dis-
tributed optimization of multi-agent networks of smart sockets and thermostatically
controlled loads based on dynamic average consensus,” pp. 2541–2548, 2018.

[85] M. Collotta and G. Pau, “An innovative approach for forecasting of energy require-
ments to improve a smart home management system based on ble,” IEEE Transac-
tions on Green Communications and Networking, vol. 1, no. 1, pp. 112–120, 2017.

[86] A. Mudgerikar and E. Bertino, “Jarvis: Moving towards a smarter internet of things,”
in 40th IEEE International Conference on Distributed Computing Systems, IEEE,
2020.

[87] M. Pendleton, R. Garcia-Lebron, J.-H. Cho, and S. Xu, “A survey on systems security
metrics,” ACM Computing Surveys, vol. 49, no. 4, 2017.

[88] W. H. Sanders, “Quantitative security metrics: Unattainable holy grail or a vital
breakthrough within our reach?” IEEE Security & Privacy, vol. 12, no. 2, pp. 67–69,
2014.

[89] I. Sharafaldin, A. H. Lashkari, and A. A. Ghorbani, “Toward generating a new in-
trusion detection dataset and intrusion traffic characterization.,” in ICISSP, 2018,
pp. 108–116.

[90] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson, J. Rexford, S.
Shenker, and J. Turner, “Openflow: Enabling innovation in campus networks,” ACM
SIGCOMM Computer Communication Review, vol. 38, no. 2, pp. 69–74, 2008.

[91] M. Tavallaee, E. Bagheri, W. Lu, and A. A. Ghorbani, “A detailed analysis of the kdd
cup 99 data set,” in 2009 IEEE symposium on computational intelligence for security
and defense applications.

[92] P. Bosshart and et al., “P4: Programming protocol-independent packet processors,”
ACM SIGCOMM Computer Communication Review, vol. 44, no. 3, pp. 87–95, 2014.

143

[93] B. Lantz, B. Heller, and N. McKeown, “A network in a laptop: Rapid prototyping for
software-defined networks,” in Proceedings of the 9th ACM SIGCOMM Workshop on
Hot Topics in Networks, 2010, pp. 1–6.

[94] D. J. Hamad, K. G. Yalda, and I. T. Okumus, “Getting traffic statistics from network
devices in an sdn environment using openflow,” Information Technology and Systems,
pp. 951–956, 2015.

[95] M. Karakus and A. Durresi, “Quality of service (qos) in software defined networking
(sdn): A survey,” Journal of Network and Computer Applications, vol. 80, pp. 200–
218, 2017.

[96] A. Ramos, M. Lazar, R. Holanda Filho, and J. J. Rodrigues, “Model-based quantita-
tive network security metrics: A survey,” IEEE Communications Surveys & Tutorials,
vol. 19, no. 4, pp. 2704–2734, 2017.

[97] J. Garcıa and F. Fernández, “A comprehensive survey on safe reinforcement learning,”
Journal of Machine Learning Research, vol. 16, no. 1, pp. 1437–1480, 2015.

[98] S. W. Rose, O. Borchert, S. Mitchell, and S. Connelly, “Zero trust architecture,” 2020.

[99] C. Katsis, F. Cicala, D. Thomsen, N. Ringo, and E. B. Bertino, “Can i reach you? do
i need to? new semantics in security policy specification and testing,” in SACMAT
’21: The 26th ACM Symposium on Access Control Models and Technologies, ACM,
2021, pp. 165–174.

[100] C. Lorenz, D. Hock, J. Scherer, R. Durner, W. Kellerer, S. Gebert, N. Gray, T. Zinner,
and P. Tran-Gia, “An sdn/nfv-enabled enterprise network architecture offering fine-
grained security policy enforcement,” IEEE communications magazine, vol. 55, no. 3,
pp. 217–223, 2017.

[101] C. Jin, Q. Chen, and S. Jamin, “Inet: Internet topology generator,” 2000.

[102] J. Hershberger, M. Maxel, and S. Suri, “Finding the k shortest simple paths: A new
algorithm and its implementation,” ACM Transactions on Algorithms (TALG), vol. 3,
no. 4, 45–es, 2007.

[103] S. A. Mehdi, J. Khalid, and S. A. Khayam, “Revisiting traffic anomaly detection
using software defined networking,” in International workshop on recent advances in
intrusion detection, Springer, 2011, pp. 161–180.

[104] R. Braga, E. Mota, and A. Passito, “Lightweight ddos flooding attack detection using
nox/openflow,” in IEEE Local Computer Network Conference, IEEE, 2010, pp. 408–
415.

144

[105] T. A. Tang, L. Mhamdi, D. McLernon, S. A. R. Zaidi, and M. Ghogho, “Deep learning
approach for network intrusion detection in software defined networking,” in 2016 in-
ternational conference on wireless networks and mobile communications (WINCOM),
IEEE, 2016, pp. 258–263.

[106] Q. Niyaz, W. Sun, and A. Y. Javaid, “A deep learning based ddos detection system
in software-defined networking (sdn),” arXiv preprint arXiv:1611.07400, 2016.

[107] D. Jankowski and M. Amanowicz, “On efficiency of selected machine learning algo-
rithms for intrusion detection in software defined networks,” International Journal of
Electronics and Telecommunications, vol. 62, no. 3, pp. 247–252, 2016.

[108] D. Midi, A. Rullo, A. Mudgerikar, and E. Bertino, “Kalis—a system for knowledge-
driven adaptable intrusion detection for the internet of things,” in Distributed Com-
puting Systems (ICDCS), 2017 IEEE 37th International Conference on, IEEE, 2017,
pp. 656–666.

[109] I. H. Abdulqadder, S. Zhou, D. Zou, I. T. Aziz, and S. M. A. Akber, “Multi-layered
intrusion detection and prevention in the sdn/nfv enabled cloud of 5g networks using
ai-based defense mechanisms,” Computer Networks, vol. 179, p. 107 364, 2020.

[110] Z. Fan, Y. Xiao, A. Nayak, and C. Tan, “An improved network security situation
assessment approach in software defined networks,” Peer-to-Peer Networking and
Applications, vol. 12, no. 2, pp. 295–309, 2019.

[111] H. Pillutla and A. Arjunan, “Fuzzy self organizing maps-based ddos mitigation mech-
anism for software defined networking in cloud computing,” Journal of Ambient In-
telligence and Humanized Computing, vol. 10, no. 4, pp. 1547–1559, 2019.

[112] W. Meng, K.-K. R. Choo, S. Furnell, A. V. Vasilakos, and C. W. Probst, “Towards
bayesian-based trust management for insider attacks in healthcare software-defined
networks,” IEEE Transactions on Network and Service Management, vol. 15, no. 2,
pp. 761–773, 2018.

[113] Y. Li and R. Fu, “An parallelized deep packet inspection design in software defined
network,” in Proceedings of 2nd International Conference on Information Technology
and Electronic Commerce, IEEE, 2014, pp. 6–10.

[114] T. Chin, X. Mountrouidou, X. Li, and K. Xiong, “Selective packet inspection to
detect dos flooding using software defined networking (sdn),” in 2015 IEEE 35th
international conference on distributed computing systems workshops, IEEE, 2015,
pp. 95–99.

145

[115] B. Renukadevi and S. D. M. Raja, “Deep packet inspection management application
in sdn,” in 2017 2nd International Conference on Computing and Communications
Technologies (ICCCT), IEEE, 2017, pp. 256–259.

[116] J. Sherry, C. Lan, R. A. Popa, and S. Ratnasamy, “Blindbox: Deep packet inspection
over encrypted traffic,” in Proceedings of the 2015 ACM Conference on Special Interest
Group on Data Communication, 2015, pp. 213–226.

[117] Y. Hou, L. Liu, Q. Wei, X. Xu, and C. Chen, “A novel ddpg method with prioritized
experience replay,” in 2017 IEEE international conference on systems, man, and
cybernetics (SMC), IEEE, 2017, pp. 316–321.

[118] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and M.
Riedmiller, “Playing atari with deep reinforcement learning,” arXiv preprint arXiv:1312.5602,
2013.

[119] Z. Wang, T. Schaul, M. Hessel, H. Hasselt, M. Lanctot, and N. Freitas, “Dueling
network architectures for deep reinforcement learning,” in International conference
on machine learning, PMLR, 2016, pp. 1995–2003.

[120] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley, D. Silver, and
K. Kavukcuoglu, “Asynchronous methods for deep reinforcement learning,” in Inter-
national conference on machine learning, PMLR, 2016, pp. 1928–1937.

[121] J. McQuillan, I. Richer, and E. Rosen, “The new routing algorithm for the arpanet,”
IEEE transactions on communications, vol. 28, no. 5, pp. 711–719, 1980.

[122] D. L. Mills and H.-W. Braun, “The nsfnet backbone network,” in Proceedings of the
ACM workshop on Frontiers in computer communications technology, 1987, pp. 191–
196.

[123] A. Medina, A. Lakhina, I. Matta, and J. Byers, “Brite: An approach to universal
topology generation,” in MASCOTS 2001, Proceedings Ninth International Sympo-
sium on Modeling, Analysis and Simulation of Computer and Telecommunication
Systems, IEEE, 2001, pp. 346–353.

[124] A. Shiravi, H. Shiravi, M. Tavallaee, and A. A. Ghorbani, “Toward developing a sys-
tematic approach to generate benchmark datasets for intrusion detection,” computers
& security, vol. 31, no. 3, pp. 357–374, 2012.

[125] B. Chandrasekaran, “Survey of network traffic models,” Waschington University in
St. Louis CSE, vol. 567, 2009.

146

[126] A. Mudgerikar, E. Bertino, J. Lobo, and D. Verma, “A security-constrained reinforce-
ment learningframework for software defined networks,” in International Conference
on Communications, IEEE, 2021.

[127] D. Xu, M. Chiang, and J. Rexford, “Link-state routing with hop-by-hop forwarding
can achieve optimal traffic engineering,” IEEE/ACM Transactions on networking,
vol. 19, no. 6, pp. 1717–1730, 2011.

[128] S. Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski, A. Singh, S. Venkata, J. Wan-
derer, J. Zhou, M. Zhu, et al., “B4: Experience with a globally-deployed software
defined wan,” ACM SIGCOMM Computer Communication Review, vol. 43, no. 4,
pp. 3–14, 2013.

[129] S. Agarwal, M. Kodialam, and T. Lakshman, “Traffic engineering in software defined
networks,” in 2013 Proceedings IEEE INFOCOM, IEEE, 2013, pp. 2211–2219.

[130] S. Yang, L. Cui, Z. Chen, and W. Xiao, “An efficient approach to robust sdn controller
placement for security,” IEEE Transactions on Network and Service Management,
vol. 17, no. 3, pp. 1669–1682, 2020.

[131] D. Santos, A. de Sousa, and C. M. Machuca, “Robust sdn controller placement to
malicious node attacks,” in 2018 21st Conference on Innovation in Clouds, Internet
and Networks and Workshops (ICIN), IEEE, 2018, pp. 1–8.

[132] L. Dridi and M. F. Zhani, “A holistic approach to mitigating dos attacks in sdn
networks,” International Journal of Network Management, vol. 28, no. 1, e1996, 2018.

[133] Y. Li, A. Papachristodoulou, M. Chiang, and A. R. Calderbank, “Congestion control
and its stability in networks with delay sensitive traffic,” Computer Networks, vol. 55,
no. 1, pp. 20–32, 2011.

147

VITA

I am Anand Mudgerikar, a PhD student at Purdue University under the supervision of Dr.

Elisa Bertino. My research interests include Information Security, Cryptography, Computer

Networks and Machine Learning. My current focus is on developing ’safe’ reinforcement

learning frameworks for optimizing user QoS requirements and network functionalities in

IoT environments.

I am also part of the DAIS-ITA project which is a collaborative arrangement between

U.S. and UK governments led by IBM for research in distributed analytics. We are currently

working on using transfer learning in conjugation with reinforcement learning to dynamically

determine optimal policies in distributed network coalitions. I spent my summers of 2017

and 2018 at HPE Labs under the supervision of Dr. Puneet Sharma where I was involved in

development of ’E-Spion: A system level intrusion detection system’ and ’DITO: A honeypot

service for IoT Devices’. Before pursuing my PhD, I also completed my Masters from the

Center for Education and Research in Information Assurance and Security (CERIAS) with

Dr. Elisa Bertino and Dr. Ioannis Papapanagiotou. My research and masters thesis were

focused on development of hardware accelerated cryptographic libraries using GPUs for

authentication in IoT environments.

Before coming to the states for my higher education, I completed my Bachelors in In-

formation and Communication Technology from DA-IICT, India. For my Bachelor’s thesis,

I worked on improving the IPSec standard by incorporating secure multicast functionality

using multi-party key computation under the guidance of Dr. Manik Lal Das. I was also

working with TIFAC, Dept. of Science and Technology, Govt. of India with Dr. Prab-

hat Ranjan where I was responsible for conducting a research study to analyze the security

threats in 3rd party applications and ensuring network security to prevent any unauthorized

access.

148

PUBLICATIONS

Related Publications:

• A. Mudgerikar, E. Bertino Intelligent Security Aware Routing: Using Model-

Free Reinforcement Learning, INFOCOMM 2021 (under submission)

• A. Mudgerikar, E. Bertino, J. Lobo and D. Verma, A Security-Constrained Re-

inforcement Learning Framework for Software Defined Networks, ICC 2021 -

IEEE International Conference on Communications, 2021, pp. 1-6

• Ziyao Zhang, Anand Mudgerikar, Ankush Singla, Kin K. Leung, Elisa Bertino, Di-

nesh Verma, Kevin Chan, John Melrose, Jeremy Tucker, Reinforcement and transfer

learning for distributed analytics in fragmented software defined coalitions,

Proc. SPIE 11746, Artificial Intelligence and Machine Learning for Multi-Domain Oper-

ations Applications III, 117461W (12 April 2021)

• Mudgerikar A. and Bertino E., Jarvis: Moving towards a smarter IoT using

RL, ICDCS 2020

• Mudgerikar A., Bertino E. (2021) IoT Attacks and Malware., In: Chen X., Susilo

W., Bertino E. (eds) Cyber Security Meets Machine Learning. Springer, Singapore.

• Mudgerikar A., Sharma P. and Bertino E., Edge based Intrusion Detection for

the Internet Of Things, ACM Transactions on Management Information Systems,

‘Special Issue on Analytics for Cybersecurity and Privacy’, 2020.

• Mudgerikar A., Sharma P. and Bertino E., E-Spion: System Level Intrusion De-

tection for the Internet Of Things, AsiaCCS 2019.

• Midi D., Mudgerikar A., Rullo N. and Bertino E., Kalis - A System for Knowledge-

driven Adaptable Intrusion Detection for the Internet of Things, ICDCS 2017

• Midi D., Habibi J., Mudgerikar A. and Bertino E., Heimdall: Mitigating the In-

ternet of Insecure Things, IEEE Internet of Things Journal 2017

Related Patent

• Patent Disclosure, Detecting attacks on computing devices , US20190238567A1

Other Publications

149

• Hyunwoo Lee, Anand Mudgerikar, Ashish Kundu, Ninghui Li and Elisa Bertino,IoTEDef:

An Infection-Identifying and Self-Evolving Network Intrusion Detection Sys-

tem for IoT Early Defense, CODASPY 2021

• Mehnaz S., Mudgerikar A. and Bertino E., RWGuard: An Approach for Detec-

tion and Recovery of Cryptographic RansomWare, RAID 2018, pp. 114-136.

• Yavuz A., Mudgerikar A., Singla A., I. Papapanagiotou and Bertino E.,Real-Time

Digital Signatures for Time-Critical Networks IEEE Transactions on Information

Forensics and Security 2017

• Singla A., Mudgerikar A., Papapanagiotou I. and Yavuz A., HAA: Hardware-

Accelerated Authentication for Internet of Things in Mission Critical Ve-

hicular Networks, MILCOMM 2015

• Mudgerikar A. and Das M.L., Secure multicast using IPsec and multi-party

key computation, Int. J. Internet Technology and Secured Transactions, Inderscience

Publications, Vol. 5, No. 2, pp.149-162.

Other Patent

• Patent Disclosure, Hardware Accelerated Priority Based Message Authentica-

tion for Vehicular Networks, OTC:2015-PAPA-67164

150

	TITLE PAGE
	COMMITTEE APPROVAL
	DEDICATION
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	ABBREVIATIONS
	ABSTRACT
	INTRODUCTION
	Research Problem
	Challenges
	Proposed Solution
	E-Spion: Edge Based Intrusion Detection for IoT environments
	Jarvis: A Constrained DRL Framework tailored for IoT environments
	Jarvis-SDN: A Constrained DRL Framework for SDN environments

	Thesis Outline

	E-SPION
	Background
	IoT Attacks
	File-less Attacks
	IoT Security Architecture

	Design
	Design Overview
	Anomaly Detection Engine
	Life Cycle of a Device
	Hash Chain Verifier

	Implementation Details
	Evaluation
	IoT Malware
	Evaluation Testbed
	Detection Efficiency and Analysis
	Effectiveness against File-less Attacks
	Overhead Analysis

	Related Work
	Summary

	JARVIS: SECURITY CONSTRAINED RL FOR IOT ENVIRONMENTS
	Background
	IoT Architecture
	Deep Q Learning

	System Model and Problem Formulation
	IoT Environment
	State Transition Model
	Problem Definition
	Challenges
	Unknown Reward Function
	Safety/security of state transitions

	RL based Solution
	Safe State Transition
	Reward Function Estimation
	Q Learning Algorithm

	Instantiation for a Smart Home Environment
	Design Details
	Logging System
	Log Parser
	Security Policy Learner
	Smart Reward Function
	RL Environment
	Optimizer
	Practical Deep Learning

	Example: Analysis and Discussion
	Safety
	Effectiveness of Constrained Exploration

	Dis-utility vs Safety.

	Evaluation
	Testbed
	Safety and Security
	False Positives
	Functionality
	Analysis of the Benefit Space
	Limitations of Unconstrained Exploration

	Related Work
	Benign User Anomaly Examples
	Safety Violation Examples
	State Space Explosion Mitigation.

	Summary

	JARVIS-SDN: SECURITY CONSTRAINED RL FOR RATE CONTROL IN SDN ENVIRONMENTS
	Background on Deep Q-Learning
	System Model and Problem Formulation
	System Model
	Problem Definition
	Challenges

	Building Attack Signatures
	Design of an IDS Based on Partial Attack Signatures
	Evaluation Metrics
	Comparison to other ML Techniques
	Evaluation and Analysis

	Instantiation of Jarvis-SDN
	Implementation Details
	Simulation Environment
	System Model
	Training
	Evaluation and Analysis
	Comparison to Traditional IDS Metrics

	Related Work
	Conclusion and Future Work

	JARVIS-SDN: SECURITY CONSTRAINED RL FOR ROUTING IN SDN ENVIRONMENTS
	Background
	System Model and Problem Formulation
	System Model
	Problem Definition
	Challenges

	RL based Solution
	Localized State Model
	Security Metric Value System
	Q-Learning Algorithm

	Design Details
	Network Topology Generator Module
	Network Flow Database
	User Behavior Module
	Simulation Environment

	Evaluation Results and Analysis
	Security Analysis
	Performance Analysis

	Related Work
	Conclusion and Future Work

	ACCELERATING RL LEARNING USING TRANSFER LEARNING
	Background
	Software Defined Coalitions (SDC)
	SDC Fragmentation
	 RL for Developing Network Control Policy
	Transfer Learning

	Problem Formulation
	The Analytic-Service and Fragmentation Scenario
	Network Control Objectives and Problem Statement

	RL for Learning Control Policy in SDC Domains
	RL-TL based Control Policy Design for Fragmented SDC
	Reward Knowledge Transfer
	General Work-Flow

	Experiments
	The Simulated SDC Environment
	RL Settings
	TL Settings
	Experiment Settings and Results

	Conclusion

	CONCLUSION AND FUTURE WORK
	REFERENCES
	VITA
	PUBLICATIONS

