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ABSTRACT

Due to a combination of algorithmic advances, wide-spread availability of rich data sets,
and tremendous growth in compute availability, Deep Neural Networks (DNNs) have seen
considerable success in a wide variety of fields, achieving state-of-the art accuracy in a
number of perceptual domains, such as text, video and audio processing. Recently, there have
been many efforts to extend this success in the perceptual, Euclidean-based domain to non-
perceptual tasks, such as task planning or reasoning, as well as to non-Euclidean domains,
such as graphs. While several DNN accelerators have been proposed in the past decade,
they largely focus on traditional DNN workloads, such as Multi-layer Perceptions (MLPs),
Convolutional Neural Networks (CNNs), and Recurrent Neural Networks (RNNs). These
accelerators are ill-suited to the unique computational needs of the emerging neural networks.
In this dissertation, we aim to fix this gap by proposing novel hardware architectures that
are specifically tailored to emerging neural workloads.

First, we consider memory-augmented neural networks (MANNSs), a new class of neural
networks that exhibits capabilities such as one-shot learning and task planning that are well
beyond those of traditional DNNs. MANNs augment a traditional DNN with an external
differentiable memory that is used to store dynamic state. This dissertation proposes a novel
accelerator that targets the main bottleneck of MANNSs: the soft reads and writes to this
external memory, each of which requires access to all the memory locations.

We then focus on Transformer networks, which have become very popular for Natural
Language Processing (NLP). A key to the success of these networks is a technique called
self-attention, which employs a softmax operation. Softmax is poorly supported in modern,
matrix multiply-focused accelerators since it accounts for a very small fraction of traditional
DNN workloads. We propose a hardware/software co-design approach to realize softmax
efficiently by utilize a suite of approximate computing techniques.

Next, we address graph neural networks (GNNs). GNNs are achieving state-of-the-art
results in a variety of fields such as physics modeling, chemical synthesis, and electronic
design automation. These GNNs are a hybrid between graph processing workloads and DNN

workloads; they utilize DNN-based feature extractors to form hidden representations for
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each node in a graph and then combine these representations through some form of a graph
traversal. As a result, existing hardware specialized for either graph processing workloads or
DNN workloads is insufficient. Instead, we design a novel architecture that balances the needs
of these two heterogeneous compute patterns. We also propose a novel feature dimension-
blocking dataflow to further increase performance by mitigating the memory bottleneck.

Finally, we address the growing difficulty in tightly coupling new DNNs and a hardware
platform. Given the extremely large DNN-HW design space consisting of DNN selection,
hardware operating condition, and DNN-to-HW mapping, it is infeasible to exhaustively
search this space by running each sample on a physical hardware device. This has led to
the need for highly accurate, machine learning-based performance models which can predict
the latency/power/energy even faster than direct execution. We first present a taxonomy
to characterize the possible approaches to these performance estimators. Based on the
insights from this taxonomy, we present a new performance estimator that combines coarse-
grained and fine-grained to achieve superior accuracy with a limited number of training
samples. Finally, we propose a flexible framework for creating these DNN-HW performance
estimators.

In summary, this dissertation identifies the growing gap between current hardware and
new emerging neural networks. We first propose three novel hardware architectures that
address this gap for MANNSs, Transformers, and GNNs. We then propose a novel hardware-
aware DNN estimator and framework to ease addressing this gap for new networks in the

future.
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1. INTRODUCTION

Deep Neural Networks (DNN) have become increasingly ubiquitous as they continue to im-
prove upon the state-of-the-art results in a wide variety of domains. These DNNs power
many popular services, including Apple’s Siri, Google Translate, and Amazon’s Alexa. The
success of DNNs in recent years stems in large part from a virtuous cycle, wherein increases
in compute power drive larger and larger models which in turn drive a demand for even
more compute power. For example, the famous AlexNet [1] architecture that won the 2012
ImageNet competition handily and kicked off the deep learning revolution was comprised
of roughly 60M weights. The recently released Megatron-Turing NLG [2], by contrast, has
530B parameters, a nearly 9,000x increase in model size in just nine years. NVIDIA’s K20x,
also released in 2012, had a peak single precision performance of 2.90 TFLOPs. Eight years
later, NVIDIA’s A100 has a peak performance for neural networks of 624 TFLOPs for train-
ing and 2496 TFLOPs for inference— an increase of 200x-800x. It is important to note
that this increase in performance for executing neural networks resulted from careful hard-
ware/software co-design; the A100 contains features tailored for deep neural networks such
as specialized cores, low precision compute units, and sparsity-aware hardware. However,
despite this impressive increase in compute, there is still a large gap in the growth of DNN
models versus the growth in compute. This is further exacerbated by the emergence of new
classes of DNNs— such as memory-augmented neural networks (MANNSs), Transformers, and
graph neural networks (GNNs)— for which existing commodity hardware is not specialized
and thus cannot be executed at peak performance. Attempting to close this gap between
the demands of software and the capabilities of hardware, particularly in the face of novel
neural network workloads, is the main focus of this thesis.

In the following sections, we discuss the computational challenges of traditional DNNs,
the unique challenges posed by emerging DNNs, our proposals to address those unique
challenges through the development of novel specialized hardware architectures, and our
effort to facilitate hardware/software co-design for future networks and platforms. Finally,

we outline the remaining chapters of this dissertation.
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1.1 Feed Forward Neural Networks

Feed-forward networks (FFNN), in which layers of neurons are stacked together with
strictly forward connections (i.e., no backward or recurrent connections), are an extremely
popular class of networks. The two most popular types of FFNNs are multilayer perceptions
(MLPs), which consist of only fully-connected layers, and convolutional neural networks
(CNNs), which consist of a mix of fully-connected layers and convolutional layers. Convolu-
tional layers exhibit local weight sharing, wherein neurons located near each other in space
have their weights tied together in order to reduce the number of parameters needed. While
the focus of this thesis is on emerging classes of neural networks specifically, rather than
FFNNs, we believe that it is important to highlight the recent trends in FFNN performance
and computational demands, as these networks are often used as the backbone of the more
complex emerging classes of networks. Thus, these emerging workloads are likely to face a
similar trajectory and will suffer from some of the same bottlenecks in addition to the unique
bottlenecks posed.

To illustrate the high level of compute and memory needed for modern state-of-the-art
FFNNSs, we investigate a large set of networks that have achieved Top-5 accuracy over 90%
on the challenging ImageNet [3] dataset. While there is a large amount of variability in
the metrics of these SOTA networks, a few trends emerge. In Figure 1.1, we see that these
networks tend to require roughly 6 GFLOPs per 224x224-sized image input, with networks
requiring more FLOPs being less common. In Figure 1.2, we see that SOTA networks tend
to have roughly 25M parameters.

Note that although this is already a considerable amount of compute and memory, image
recognition CNNs are one of the smallest classes of FFNs thanks to the limited use of fully-
connected layers. Other classes of networks, such as those used in recommendation systems
like Facebook’s Deep Learning Recommendation Model (DLRM) [5], can have an order of
magnitude more FLOPs and parameters— for example, DLRM requires 540 M parameters.

To address the large compute and memory requirements for modern FFNNs, a wide array
of accelerators with large amounts of compute as well as memory hierarchies specialized to the

specific, fixed data access patterns of FFNNs have been proposed [6]-[11]. Further efficiency
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Distribution of FLOPS (in billions) in SOTA CNNs
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Figure 1.1. SOTA CNNs with Top-5 accuracy on ImageNet tend to require
on the order of 6GFLOPs. Data from Computer Vision Leaderboard [4]

gains in hardware can be realized through exploiting sparsity [12]-[18] and low-precision [16],

[19]-[22].

1.2 Memory Augmented Neural Networks

Memory-augmented neural networks (MANNs)— which augment a traditional Deep Neu-
ral Network (DNN) such as the feed-forward network described above with an external,
differentiable memory— are emerging as a promising direction in machine learning. MANNs
have been shown to achieve one-shot learning and complex cognitive capabilities that are
well beyond those of classical DNNs. However, these increased capabilities come at an in-
creased computational and memory cost; in order to keep accesses to the external memory
differentiable— and therefore, allow accesses to be learnable— every single memory location
must be read (written) to each time. Further, unlike many DNN workloads, there is ex-
tremely little reuse in these so-called soft reads and soft writes of the external memory.
These accesses thus present a unique challenge that results in poor performance of MANNs

on modern CPUs, GPUs, and other accelerators. In this thesis, we first provide a detailed
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Distribution of # of Parameters (in millions) in SOTA CNNs
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Figure 1.2. SOTA CNNs with Top-5 accuracy on ImageNet tend to require
on the order of 25M parameters. Data from Computer Vision Leaderboard [4]

investigation of the computation and memory characteristics of the soft read and soft write
kernels, as well as other MANN-specific kernels. We use this analysis to guide our develop-
ment of MANNA, a specialized hardware inference accelerator for MANNs. MANNA is a memory-
centric design that focuses on maximizing performance in an extremely low FLOPS/Byte
context. The key architectural features from which ManNa derives efficiency are: (i) investing
most of the die area and power in highly banked on-chip memories that provide ample band-
width rather than large matrix-multiply units that would be underutilized due to the low
reuse, (ii) a hardware-assisted transpose mechanism for accommodating the diverse memory
access patterns observed in MANNSs, (iii) a specialized processing tile that is equipped to
handle the nearly-equal mix of MAC and non-MAC computations present in MANNSs, and
(iv) methods to map MANNs to Manna that minimize data movement while fully exploiting

the little reuse present.
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1.3 Transformer Networks

An important subclass of MANNs are Transformer networks, which are currently trans-
forming the field of natural language processing (NLP) through their impressive accuracy
on a variety of tasks. The key aspect of Transformers is their use of “self-attention” layers,
which consist mainly of matrix multiplies and softmax operations. These self-attention lay-
ers are repeated to form a full a network. Due to this heavy use of attention, the softmax
operation accounts for a significant fraction of the total run-time of Transformers. This is in
contrast to standard DNNs where the softmax operation is used only as the last classification
layer and accounts for very little run-time. As a result, DNN accelerators typically do not
optimize this operation, leading to a new bottleneck in these Transformer-based networks.
To address this, we propose Softermax, a hardware-friendly softmax design that exploits ap-
proximate computing to enable the softmax logic to be more tightly coupled with the MAC
operation, allowing for higher softmax throughput and alleviating the bottleneck. Softermax
consists of four parts: (i) reducing the overhead of exponentiation by replacing the expensive
natural number base with the lower cost base two, (ii) implementing low-precision softmax
computations by leveraging the natural resiliency of these networks in contrast to the high-
performance scientific computing applications that these special functions typical target,
(iii) an online, integer-based normalization calculation which reduces the number of passes
through the matrix needed to compute the softmax and (iv) Softermax-aware fine-tuning,
which virtually eliminates the accuracy degradation that may have been introduced through

these approximations.

1.4 Graph Neural Networks

Graph Neural Networks (GNNs) brings the success of deep learning from the Euclidean
domain (e.g., images, video, audio, etc.) to the non-Euclidean domain (e.g., graphs); GNNs
have achieved state-of-the-art results in a wide variety of application domains, such as social
network recommendation systems and chemical synthesis. There are two major kernels used
across all GNNs. One is a feature extraction step, which passes the features of a graph’s

nodes (and/or edges) through a fully-connected layer in order to obtain a new representation.
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The second is an aggregation step, which combines the features within a given node’s graph
neighborhood, thereby incorporating information based on graph structure. These two steps
are stacked to form multiple layers of a network. The final node (edge) features created
via these layers can then be used for various tasks, such as node-, edge-, or graph-level
classification. This heterogeneity in compute kernels introduces new, unique challenges that
current computing platforms— CPUs, GPUs, and special purpose deep learning accelerators
— do not address. Architectures such as GPUs and DNN accelerators that are typically
targeted at dense, regular computations can perform the feature extraction step efficiently,
but are ill-suited to the irregular memory access patterns present in the aggregation step. In
contrast, architectures specialized for graph analytics workloads can perform the aggregation
step efficiently, but are ill-suited for the large amount of regular computation needed to
perform the feature extraction step. To address this shortcoming, we propose GNNERATOR,
a graph neural network accelerator that utilizes two heterogeneous compute engines, one
optimized for feature extraction and one optimized for feature aggregation. We also propose
feature-blocking, a novel dataflow for GNNs that increases the number of nodes that can
be held on-chip during GNN processing, helping to address the memory bottleneck inherent
in GNNs. We provide hardware support for this dataflow in GNNEraTOrR. We develop a
simulation framework to evaluate the performance benefits of the proposed architecture,
to explore previously unexplored areas in the architecture design space for GNNs, and to

analyze the potential bottlenecks for GNN accelerators as GNNs continue to increase in size.

1.5 Learned DNN Performance Estimators

Given the explosion in the number of DNN models proposed, combined with the in-
creasing number of hardware devices on which to run them, it is becoming more and more
difficult to optimally map a given DNN to a given hardware platform. This is particularly
true for modern edge platforms, which typically integrate multiple heterogeneous hardware
[Ps and allow for the configuration of the operating condition of those IPs (i.e., number
of cores active, operating frequency, etc). It is infeasible to run every model directly on

physical hardware, due the latency of the networks, the overhead of loading the networks on

20



the device, and the physical number of devices acting as a bottleneck. As a result, there has
been recent interest in developing sample efficient predictive performance estimators, which
can then be used in downstream applications such as hardware-aware neural architecture
search.

To this end, we first analyze the design space of DNN performance estimators, synthe-
sizing this information into a design taxonomy. Using the insights from this taxonomy, we
propose a novel hardware-aware DNN performance estimator specifically designed for the
unique challenges of heterogeneous edge devices, which presents a reasonable trade-off be-
tween fine-grained and coarse-grained information. We develop a flexible framework for the
rapid development of these performance estimators, and demonstrate the accuracy of the

estimators produced on a variety of use cases.

1.6 Thesis outline

The rest of the thesis is organized as follows. Chapter 2 details the related research efforts
in accelerating different types of DNNs. Chapter 3 provides the necessary background on
DNNSs, emerging classes of DNNs, and DNN-HW performance models. Chapter 4 proposes
Manna, a memory-augmented neural network accelerator. Chapter 5 proposes Softermax,
a set of hardware/software techniques for accelerating Transformers. Chapter 6 proposes
GNNERATOR, a graph neural network accelerator. Chapter 7 describes our performance esti-
mator design taxonomy, our novel hardware-aware performance model designed for hetero-
geneous edge devices, and our framework for generating these estimators. Finally, Chapter 8

concludes the thesis by summarizing its main contributions.
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2. RELATED WORK

Deep neural networks have become a topic of increasing interest for computer system de-
signers, as they have continued to achieve state-of-the-art results in a wide variety of tasks
such as image recognition and speech translation through the use of more and more complex
networks with greater and greater computational and memory requirements. In order to
address these increasing demands of both traditional as well as emerging neural network
architectures, there has been a wide array of research efforts. In this chapter, we categorize
and discuss a variety of these efforts. Specifically, we first discuss research efforts address-
ing traditional neural networks that we believe are of particular interest for also addressing
emerging neural networks. We next discuss research efforts specifically addressing memory-
augmented neural networks (including Transformer-based networks) as well as graph neural
networks, and identify the key differences with our work. Finally, we discuss the relation of

previous efforts in DNN performance estimators to our proposal.

2.1 Deep Neural Networks

As discussed in Chapter 1, existing hardware and software optimizations for traditional
Deep Neural Networks are insufficient for emerging neural workloads such as memory-
augmented neural networks and graph neural networks. However, these emerging neural
networks still use traditional DNNs as the backbone for some of their computations (i.e., the
controller in MANNs and the feature extractors in GNNs). Thus, it is instructive to explore

the state of the field in optimizing DNNs.

2.1.1 Algorithmic optimizations

Due to the immense popularity of DNNs in recent years, there is an extremely large body
of work on algorithmic optimizations for DNNs. For the sake of brevity, we focus mainly on
the families of optimizations that we believe are the most likely to be relevant for MANNs

and GNNs: quantization and sparsity optimizations.
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Quantization. Originally, computations for DNNs were done using 32-bit floating point
representations. However, DNNs are intrinsically quite resilient and can be performed using
far fewer bits. [23] proposed using a quantized forward pass with low-precision weights and
activations, with a full-precision backwards pass using a straight-through estimator (STE)
along with stochastic rounding. A variety of other techniques have been proposed since,
including learning various quantization parameters [24], quantization-aware training [25],
per-layer mixed-precision quantization [26], and blocked precision scaling [22].

Sparsity. Modern DNN workloads exhibit considerable sparsity in various data structures of
the network, such as activations and weights. DNN sparsity can either be static or dynamic.
Static sparsity results from pruning low-valued (and therefore, insignificant) weights from a
network, in a process referred to as network pruning. Network pruning has shown to be very
effective in modern CNNs [27] as well as other architecture types such as RNNs [28]. To
exploit static sparsity, weights are stored in a sparse format, allowing more of them to fit on-
chip and avoiding expensive DRAM accesses. Exploiting dynamic sparsity, which typically

results from use of the ReLU activation function, is more difficult in software.

2.1.2 Specialized accelerators

Specialized accelerators for deep neural networks is an extremely robust field of research,
for both inference [8], [10], [29], [30] as well as training [6], [9]. DNN accelerators typically
fall into two categories: systolic-array based [8] and SIMD-based [6], [9], [10], [29], [30]. Both
categories of accelerators typically provide the compute units with access to small register
files to store inputs, weights, or partial sums, as well as relatively larger on-chip buffers for
an additional level of memory foor the same.

In order to fully exploit the benefits derived from the algorithmic optimizations described
above (i.e., enable performance benefits in addition to the compression benefits), many DNN
accelerators, including commercial products [16], have also begun to integrate hardware
support for quantized and sparse computations.

Quantization. On top of reducing memory storage requirements, quantization also pro-

vides performance benefits by enabling low-precision arithmetic, increasing the amount of
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compute in a given area budget as well as increasing the effective bandwidth. While many ac-
celerators simply directly implement low-precision (typically eight-bit) arithmetic [8], other
accelerators propose further specializations, such as precision-scaling computation [19], [22],
[31] or compensation support [21] in order to enable efficient computation at even lower
precisions.

Sparsity. Like quantization, sparsity also offers benefits beyond reducing memory storage
requirements; by skipping the ineffectual computations introduced by sparsity, sparsity-
aware accelerators can realize large performance gains. There has been much interest in
recent years in techniques to efficiently exploit sparsity while minimizing the area and power
overheads [12]-[15], [17], [32]. One key challenge is load balancing [13], as unstructured
sparsity can result in uneven distribution of work across processing elements. Another key
challenge is efficiently computing intersections of sparse representations [33], often used to

determine which computations are actually effective.

2.2 Memory-Augmented Neural Networks

Memory-augmented neural networks utilize a form of self-attention, realized through
a so-called external differentiable memory, in order to provided capabilities well beyond
traditional DNNs. The accesses to this differentiable memory, as well as the addressing
schemes used to determine the accesses, constitute a large fraction of the run-time of MANNs.
As a result, both the algorithmic optimizations and specialized accelerators for MANNs

target these kernels.

2.2.1 Algorithmic optimizations

Algorithmic optimizations have been proposed to address the large overhead associated
with the differentiable memory. [34] uses a K-nearest neighbor scheme to update only the
k most relevant memories, instead of all locations. A concurrent work explores a similiar
idea, but introduces additional levels of hierarchy [35]. Finally, Q-MANN [36] addresses the

differentiable memory bottleneck through the use of quantization. By replacing the cosine
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similarity with a Hamming distance, Q-MANN is able to perform the soft memory operations

using eight-bit fixed-point calculations without a catastrophic loss in accuracy.

2.2.2 Specialized accelerators

Given the memory-intensive nature of MANNs, many of the hardware-specific research
efforts have focused on processing-in-memory (PiM), often using emerging devices. [37] re-
places the cosine-based similarity computation often used in MANNs with a fixed-point,
hardware-friendly approximation, allowing the computation to be executed using efficient
ternary content addressable memory (TCAM) look-ups. Similarly, X-MANN [38] also re-
places the similarity computation with a lower-cost alternative, allowing the differentiable
memory operations to be realized using resistive crossbars.

There have also been efforts outside of PiM-based architectures. [39], a FPGA-based
architecture, introduces Bayesian-based inference thresholding, allowing the architecture to
stop soft reads early if a certain confidence level is met. MnnFast [40] proposes two key
hardware-software co-design strategies for MANNs. Column-based “lazy softmax” allows for
greater parallelization of a fused key similarity and soft read kernel, while an embedding cache
provides dedicated memory for the memory intensive embedding operation of a MemNN (a

variant of MANN) to reduce cache-thrashing of the other data structures.

2.3 Transformer Networks

An important subclass of MANNs that warrant specific attention are Transformer net-

works

2.3.1 Algorithmic optimizations

Most recent algorithmic works have tried to make Transformers more efficient by targeting
their large number of parameters, rather than targeting the softmax operation. This is
commonly performed through the creation of smaller networks through techniques such as
knowledge distillation [41], inductive biases [42], or approximations [43]. These optimizations

are orthogonal to our effort, as Softermax can still be used in these smaller, more efficient
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networks. There have also been a few efforts towards more efficient Transformers through
the use of lower-precision computation [41], [44], with the most recent efforts also targeting
quantization of the softmax operation [45], [46]. However, as these works are software-only,
there are no actual gains in performance from their softmax quantization techniques. This
is because full-precision special function units are still used for the exponential and division
calculations— in fact, there may actually be a slight performance penalty due to overheads in
casting between data types. Our work, in contrast, is able to exploit low-precision in both

software and hardware, unlocking actual performance gains.

2.3.2 Specialized accelerators

There have been efforts to provide specialized accelerators for Transformer networks as
a whole. A3 [47] provides hardware support for a lower cost attention mechanism , while
SpAtten [48] allows for hardware-aware pruning of Transformers. EdgeBERT [49] provides
hardware support for voltage-scaled early exit from Transformer networks. There have also
been a few recent efforts that offer specialized hardware that target the softmax opera-
tion specifically [47], [50]-[52]. These efforts propose various low-precision exponential and
division units, such as a variable precision softmax unit generator [52], a group lookup table-
based exponential unit [51], a split high-bits/low-bits exponential unit [47], and approximate
units [50]. This allows for exploiting low-precision within the special functions, unlike in the

software only approaches.

2.4 Graph Neural Networks

There are two main kernels of GNNs with vastly different needs: the feature extraction
stage and the aggregation stage. Since software packages for accelerating feature extraction
on GPUs are already quite robust, most algorithmic-focused work has been on optimizing
for the memory requirements of the aggregation stage. Specialized accelerators have also

been proposed to meet the heterogenous requirements of GNNs.
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2.4.1 Algorithmic optimizations

As GNNs are still a relatively new area, most of the focus on software optimizations has
been on simply providing optimized implementations for existing hardware. For example, the
popular DGL framework [53] utilizes fused message passing in order to reduce the memory
overhead associated with the aggregation step of GNNs by replacing the defined computa-
tions with equivalent Sparse-Dense Matrix operations. Note that this sparsity is due to the
underlying graph structure of the input and is orthogonal to the potential sparsity in the
feature extraction layers (i.e., fully connected layers). Roc [54] provides a distributed GPU
framework, allowing users to scale to extremely large real-world graphs that would be infea-
sible on a single GPU due to memory constraints. GNNAdvisor [55] proposes a runtime that
sets GPU-related parameters based on characteristics of the input graph (e.g, node degree)
in order to maximize performance. [56] provides detailed insights into the specific bottle-
necks when running GNNs on Intel hardware and proposed optimizations for the identified
bottleneck, the aggregation stage. More recently, algorithmic optimizations have expanded

to include techniques like quantization [57] and eliminating redundant computations [58].

2.4.2 Specialized accelerators

There have been a few recent works directly targeting graph neural networks. Similar to
GNNErRATOR, HyGCN [59] proposes two heterogeneous compute engines, one optimized for the
feature extraction stage and one for the aggregation stage. Unlike in our work, HyGCN only
exploits intranode parallelism, processing a single node’s entire feature across all cores be-
fore moving on to the next node, while we exploit both intranode and internode parallelism—
that is, the parallelism within a node due to feature dimensions and the parallelism between
nodes. GNNA [60] uses smaller compute engines as a base element, and connects multi-
ple of these tiles in a NoC. Unlike HyGCN, the engines do not share on-chip storage, but
rather communicate over an on-chip cross-bar switch. Finally, EnGN [61] proposes a unified
GNN accelerator architecture, in which the feature extraction and aggregation computations
are performed using the same register file and compute units. Much of EnGN’s performance

comes from two sources: dimension-aware stage re-ordering and a degree-aware vertex cache.
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The dimension-aware stage re-ordering is a simple software optimization and is indeed ac-
tually standard in GNN frameworks such as DGL, while the degree-aware vertex cache is

orthogonal to our architecture and can be integrated into GNNERATOR.

2.5 DNN Performance Estimation

One popular method of designing estimators [62]-[65] relies on the composability of
DNNs— the fact that DNNs are composed from a relatively small number of types of layers
(Convolutional, Fully-Connected, ReLLU, etc.). These works create estimators for each layer,
which are then aggregated together to predict for the entire network. The other main
approach [66], [67] predicts the performance of a network directly, instead of on a layer-by-
layer basis.

The efforts described above are largely agnostic to the underlying hardware. [68] ad-
dresses this by building hardware-aware estimators that generalize across different hardware
platforms by using a suite of networks as a "hardware fingerprinting” set. Each hardware
platform is still treated as a fixed platform, however, ignoring the ability to vary the hardware
operating condition. Further, these works all ignore the heterogeneity of new edge platforms,
wherein the DNN may be partitioned across multiple hardware IPs. Finally, these estimators
are created in an ad-hoc manner, with little justification for the chosen estimation strategy,

input features, etc.

2.6 Thesis contributions

The primary contributions described throughout this thesis are different or complemen-
tary to the prior work described above in the following ways.
Specialized accelerators for MANNSs. [37] and [38] rely on emerging device technologies
that are not widely available. Further, these works are also not an end-to-end solution since
they do not accelerate the addressing kernels or the DNN controller. Manna, by contrast,
is a CMOS-based architecture and implements all MANN kernels. The other proposed
architectures, MnnFast [40] and [39], are fixed-function architectures that are specialized

for a specific class of MANNSs, end-to-end memory networks (MemNets), whereas MANNA
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has sufficient programmability to realize a broad class of MANNs (e.g., NTMs and DNCs
from Google DeepMind), which is important given the evolving nature of MANNs. Moreover,
since MemNets do not require soft writes, these accelerators are not designed to support non-
MAC operations that constitute a key kernel in soft writes. Consequently, these architectures
suffer from reduced throughput for such element-wise operations, resulting in inefficient soft
writes. Besides, since MemNets do not update the differentiable memory, these efforts store
a copy of the memory in its transposed form and do not provide any support for on-chip
transpose. For the variants of MANNs that do require soft writes, hardware support is
crucial; our ablation study indicates that support for element-wise operations and on-chip
transpose lead to speedups of 2.8x and 1.4x, respectively.

Software optimizations for Transformers. We are the first to propose the use of a
different, more hardware-friendly base in the softmax operation of Transformers. Further, we
propose a more efficient, integer-based online normalization scheme, mitigating the overheads
present in other online normalization methods.

Specialized accelerators for Transformers. Many of the accelerators previously pro-
posed for Transformers [47]-[49] are orthogonal to Softermax, as these efforts do not target
the softmax operation specifically. Within the softmax operation specifically, low-precision
hardware has been explored before [50]-[52]. None of these efforts, however, use our other
approximate computing techniques, such as base substitution and integer-based online nor-
malization. These techniques work in concert with our low-precision hardware to maximize
hardware efficiency. Further, our Softermax-aware finetuning process allows for the use of a
smaller LUT than in previous efforts.

Software optimizations for GNNs. While we are mostly focused on specialized acceler-
ators, we note that many of the software optimizations proposed for GNNs are either indeed
present in our accelerator or are orthogonal and can be incorporated. As a result of our ar-
chitecture, which consists of an Apply Unit that feeds directly into the Reduce Units, we can
fuse nearly all message passing kernels, not just those which map cleanly into sparse-dense
matrix operations as in DGL.

Specialized accelerators for GNNs. There have been a few recent accelerators for GNNs

proposed: HyGCN [59], EnGN [61], and GNNA [60]. All three of these works require

29



entire features to be resident on-chip at once, reducing the size of the subgraph that can
be processed. Further, none of the three have support for operations that modify features
through a vector-vector operation before aggregations— for example, by multiplying a feature
by a weight for attention-based networks or by an error gradient for training. GNNERATOR
supports this through the Apply Engine and its corresponding instructions. This limits the
usage of these accelerators in emerging GNN workloads, as well as a base architecture for
training hardware.

Predictive performance estimators for DNNs. There have been a number of different
performance estimators proposed that use a variety of different techniques (layer-wise vs
direct network) and different features (layer details, number of MACs, memory footprint,
etc.). It is difficult to understand the impacts of these different hyperparameters. To ad-
dress this, we step back and provided a principled look at the DNN performance estimator
design space, providing a taxonomy of the various designs. Further, we provide a flexi-
ble framework for quickly generating different performance estimators and comparing them
with iso-conditions. Furthermore, unlike previous efforts, we consider the full capabilities
of heterogeneous hardware platforms, allowing for predictions across the range of operating

conditions of a device, as well as across different DNN-to-IP mapping strategies.
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3. BACKGROUND

In this chapter, we provide a brief background on traditional DNNs, as well as the emerging

MANN and GNN workloads.

3.1 Deep Neural Networks

In this work, we refer to traditional Deep Neural Networks (DNNs) as encompassing two
major families of architectures: feed-forward neural networks (FFNNs) and recurrent neural
networks (RNNs).

Feed-forward neural networks. The simplest FFNN is the perceptron [69], which consists
of a layer of input and ouputs units called neurons. These neurons are connected in an all-to-
all pattern and the importance of these connections are defined by the connection’s weight.
To train the perceptron, the error between the predicted output and the correct, labeled
output is computed and used to update the weights in a process referred to as gradient
descent. Multilayer perceptrons build upon this by adding multiple hidden layers, which
are layers of neurons between the input and output layers. A similiar training process is
followed for multilayer networks, with the exact updates required for each layer determined
in reverse order through a process known as backpropogation. Convolutional layers introduce
weight sharing, which builds spatial-based priors into the network. Additional layer types
can include pooling layers, which downsample the network, and activation layers.

Recurrent-neural networks. Recurrent Neural Networks extend FFNNs by introducing a
recurrent connection, thus introducing memory to the network by allowing dynamic state to
persist across iterations of the network. However, RNNs can be difficult to train because the
error gradients through the RNN tend to either explode or vanish when using backpropaga-
tion through time (BPTT). In practice, this means that RNNs tend to either be susceptible
to noisy input or have difficulty learning long-term dependencies [70]. To overcome this
limitation, [71] proposed Long Short-Term Memory networks (LSTMs). LSTMs build upon
a basic recurrent unit by adding a memory cell (C) that stores state. LSTMs also add a
forget gate (f), an input gate (7), and an output gate (o) that control the retaining, addition,
and outputting of this stored state, respectively. Later, [72] proposed a Gated Recurrent
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Unit (GRU) that is similar to LSTMs, but slightly simplified. An additional memory cell is
not used; instead, the flow of information of the hidden state is directly modulated through
the use of gates. The GRU retains analogs to the input and forget gates, but eliminates the
output gate, exposing the entire state instead. RNNs and its variants have resulted in recent
success in some domains, such as neural machine translation [73], [74] and speech recognition
[75], [76]. However, there exists a fundamental constraint on the use of RNNs for storing
dynamic state. The dynamic state is intrinsically coupled to the design of the network. As
a result, the amount of information that can be stored in the network cannot be increased
without increasing the size of the underlying network, thereby increasing the total number

of parameters that must be trained.

3.2 Memory-Augmented Neural Networks

To address the aforementioned scaling problem, memory-augmented neural networks
(MANNS) have been proposed, wherein the dynamic state is explicitly decoupled from the
neural network in an external memory. Several variations of MANNs have been proposed
[77]-[83] to tackle a diverse variety of tasks such as question answering, route planning, scene
understanding, and language transduction. These MANNs have also been used as building

blocks for goal-directed agents in reinforcement learning settings [84].

3.2.1 Neural Turing Machines Overview

While several variants of MANNS exist in the literature, we will focus on DeepMind’s
Neural Turing Machine (NTM) [81] for our exposition. In this section, we provide a detailed
description of NTMs.

As shown in Figure 3.1, NTMs are composed of three main components: a neural network-
based controller, a differentiable external memory, and the read and write heads that control
the interaction between the two. To ensure the external memory is differentiable, NTMs
use soft read and write operations. These soft operations differ from traditional read and

write operations in that the soft operations require access to all the locations in memory.
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Figure 3.1. A high-level representation of the Neural Turing Machine

Attention mechanisms are used to determine how the values of all of the different locations

are combined (read) or updated (write).

Controller. NTMs employ a standard DNN as a controller that generates both the final
output vector as well as the hidden state vector for the read and write heads. A wide range
of DNNs, viz., MLPs of varying depths, RNNs, CNNs, etc., can be utilized as the controller.
Even with a feedforward network-based controller, NTMs are intrinsically sequential algo-
rithms. At each time step ¢, the controller network receives as inputs an external input
vector and the read vectors (ri ') from each read head (h) corresponding to the previous
time step t — 1. The controller then produces an output vector that is sampled at the end
of execution of the NTM, and a hidden state vector that is used by the read/write heads
to interact with the external memory state at the same time step. Throughout this thesis,
we define M! as the differentiable external memory M at time ¢t. M' is composed of My

row vectors, where each row vector M!(i) consists of My, words (dimensions). Thus, M*

comprises of My rows and M,; columns.
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Soft Read. A soft read is a weighted summation over all the locations in M! at time ¢,
producing one read vector, r}, for each read head h. This can be formulated as a vector-
matrix multiplication between the transpose of the weight column vector w! and M’ for
each read head h, as shown in Equation 3.1. The column vector w}, reflects the contribution
of the corresponding rows to the final soft read vector, and is obtained by the attention
mechanism described below.

ri =wl! "MV heH, (3.1)

Soft Write. A soft write involves two steps: an erase and an add operation shown in
Equations 3.2 and 3.3. In the erase step, an erase row vector €, produced by the write
head h is multiplied with the corresponding scalar from the weight column vector wi. The
resulting vector is next subtracted from 1 (a vector of length M), containing all 1s). Finally,
the subtracted vector is multiplied in an element-wise fashion with M(i), resulting in a
modified external memory M!. After erasing, the modified external memory is then updated
by adding a similarly weighted add vector a}. The erase and add steps are repeated for each

row in M, as well as for each write head h, in order to complete the soft write operation.

M'(i) = M'(i) ® [1 — wi (i) - el ] (3.2)

M (i) = M'(i) + wi (i) -al, Vi€ My, V h € H, (3.3)

Read/Write Heads. Each read and write head h consists of a weight matrix Wj,. In each
head, the hidden state from the controller is multiplied by the weight matrix to produce a
set of vectors and scalars (e.g., the key vector, erase vector, etc.) that are used as inputs to

the attention mechanisms present in NTMs.

Attention Mechanism. To determine the weights for soft read and write operations,
NTMs use a series of attention mechanisms that consume the output of the read and write
heads. First, content-based weighting produces a weight vector wcl, of length My for each

read and write head h. Each element of the content weight column vector for a given head
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is based on the similarity between the corresponding row of M* and the key row vector k!
emitted by that head (Equation 3.4).
ki - ME(i)

Stmlk, M) = e T (34)

exp (3, Sim/[kj, M'(i)])
S5 exp(], Simlk,, M!(j)])

After obtaining the similarity for all My memory vectors in M, the similarities are then

Wl (i) = (3.5)

amplified (attenuated) by a scalar 3} and a softmax function is applied to obtain w! (Equa-
tion 3.5). Next, a scalar interpolation gate g}, is used to blend the current weighting with the
weighting produced at the previous time step of the algorithm (Equation 3.6). The result
of the interpolation is then convolved with a rotation vector s}, (Equation 3.7). Finally, the
result of this convolution is sharpened by a scalar A} and normalized in order to combat the
blurring that may occur as a result of the shifting (Equation 3.8). This produces the final
weight vector w!, corresponding to each read and write head key vector, which are then used

in the soft read and write operations.

Wep (1) = g wep (1) + (1 — gh)wer, ' (1) (3.6)
wen(l) = > W (3)s(i—J) (3.7)

w, (i) = W (3.8)

3.2.2 Neural Turing Machines Computational Behavior

For the following experiments, we use the copy task from the original NTM paper [31]
as an illustrative example and execute it on an NVIDIA Turing GPU and an Intel Skylake
Xeon CPU.
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Table 3.1. Summary of kernels in Neural Turing Machines

Kernel Name Key Primitive Mem. Accesses FLOPs/Byte Reduction
Key Similarity Vector-Matrix Mul. OMn My - (H, + Hy)) H,+ H, Row-wise
Content-based Weighting Normalization O(My - (H, + Hy)) 3 -
Location Interpolation  El.-wise Mul/Add/Sub O(My - (H, + Hy)) 2 -
Shift Weighting Circular Conv. O(My - (H, + Hy)) S -
Weight Sharpening Normalization O(My - (H, + Hy)) 3 -
Soft Read Vector-Matrix Mul. O(My - My - H,) H, Column-wise
Soft Write El-wise Mul/Add/Sub O(Myn -My - Hy,) H, -

Memory access characteristics. Table 3.1 categorizes the various NTM kernels depending
on their computational primitives and identifies the number of memory accesses associated
with each kernel. There are three distinct groups of kernels: the controller kernel that
consists of a classical DNN, the addressing kernels that determine how the external memory is
accessed, and the kernels that actually access the external memory. The addressing kernels—
content-based weighting, location interpolation, shift weighting, and weight sharpening—
involve O(My) memory accesses per head, since they are used to create and modify the
weight column vectors wy,. These kernels also have a relatively low FLOPs/Byte ratio (two
or three).

On the other hand, the access kernels— key similarity, soft write, and soft read— are
extremely memory-intensive kernels with many more memory accesses (O(My - Myy)) since
each of these kernels involve accessing every single element in the differentiable memory at
least once for each of the read (write) heads. Furthermore, these kernels exhibit very little
reuse, accessing the external memory in a streaming fashion. Note that the only opportunity
for reuse in such kernels is across multiple heads, which is usually less than a factor of five.
This combination of large memory footprint and extremely low FLOPs/Byte ratio cannot be
mitigated through the standard techniques for DNNs, viz., compression and batching. Since
the differentiable memory content is dynamic, the memory footprint cannot be reduced by
using weight compression techniques [85]. Moreover, the external memory is unique to each
input sequence to the NTM, and therefore it cannot be shared across input batches similar
to RNNs and MLPs. Thus, accelerating NTMs requires designing hardware specifically for
low FLOPs/Byte ratios. It is also important to note that while both key similarity and
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soft reads involve vector-matrix multiplications, the external memory access patterns for
the constituent dot products are fundamentally different. Specifically, dot products for key
similarity are performed across the rows, while dot products for soft read are performed
across the columns. Therefore, it is also important to enable efficient access along both rows

and columns.
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Figure 3.2. Runtime breakdown of different NTM kernels

Kernel breakdown. Figure 3.2 presents a breakdown of the runtime spent during infer-
ence in different MANN kernels across a suite of ten benchmarks. These benchmarks use
differentiable memories that have been scaled to be larger, but still fit in a reasonably-sized
on-chip memory (40MiB). For clarity, the read and write head kernels have been grouped
together, as have all of the addressing kernels. As shown in the figure, the non-controller

kernels, viz., heads, addressing, key similarity, soft reads, and soft writes, dominate the run-
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time, making up roughly 80% of the total. This is particularly true for benchmarks that
require higher differentiable memory capacity (bAbI, inference, traversal, shortest, and
shrdlu). This behavior is expected, since MANNs decouple the dynamic state from the
network itself, allowing the amount of dynamic state stored to grow dramatically without
significantly increasing the size of the controller network. Hence, efficiently realizing these
kernels is key to high performance in MANNS.

Interestingly, the kernels that dominate the total runtime within these runtime-intensive
kernels vary depending on the platform. For the CPU platforms, the dominant kernels, par-
ticularly at larger differentiable memory sizes, are key similarity, soft write, and soft read.
This is because these kernels are extremely memory-intensive compared to the remaining
kernels as shown in Table 3.1. However, on GPUs, the vector-only addressing kernels rep-
resent an unexpectedly large portion of the runtime, comparable to the memory-intensive
access kernels. This is because the memory-heavy access kernels (e.g., key similarity) are
large enough to fully utilize the GPU. The addressing kernels, on the other hand, are much
smaller, resulting in so-called “narrow tasks” that exhibit poor GPU utilization [86] and thus
poor performance due to the GPU kernel call overheads. CPUs, on the other hand, have
fewer cores and thus exhibit good utilization even for limited parallelism in the addressing
kernels. In order to efficiently perform all of the NTM kernels, an accelerator therefore must
be able to efficiently execute both the large, extremely parallel matrix operations as well as

the comparatively smaller vector operations.

29.9%
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Figure 3.3. Relative mix of operations in runtime-intensive NTM kernels

Operation breakdown. Finally, we analyze the relative mix of operations that consti-

tute the runtime-intensive kernels by analytically modeling the number of operations of each
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type that would be executed when running the copy benchmark. As shown in Figure 3.3, we
found that, unlike traditional DNN kernels, the non-controller kernels are roughly equally
comprised (49.8% each) of fused multiply-and-accumulate operations and element-wise vec-
tor operations, specifically multiplication, addition, and subtraction. Thus, an accelerator
for MANNs cannot solely emphasize MAC or dot-product performance but rather a high
throughput is required on a wider variety of operations.

In summary, we make several observations for desiderata in a MANN accelerator. First,
as demonstrated by Figure 3.2, MANN-specific kernels dominate the runtime and therefore
a MANN-specific accelerator is warranted. In particular, such an accelerator should: (i) bal-
ance the on-chip compute and memory resources for extremely low FLOPs/Byte workloads
to maintain high utilization; (ii) provide support for efficient dot products across both rows
and columns of the external memory; and (iii) accommodate the higher use of non-MAC

compute elements.

3.3 Transformer-based Networks

Transformer-based networks can be considered a sub-type of MANNSs. Specifically, these
networks also utilize an analogue of the soft attention reading mechanism found in MANNs
(though they do not emply soft write). However, it is useful to examine these networks in

depth.

3.3.1 Transformers

A Transformer network is a deep neural network (DNN) that consists of one or more
embedding layers, followed by multiple Transformer layers, and finally a task-specific final
layer that is added when fine-tuning for the given task. The Transformer layer is the main
algorithmic innovation in Transformer networks; for brevity, we will mainly focus on this
layer, although our experimental evaluations are performed on complete networks. Trans-
former layers consist of a multi-headed attention block followed by a feed-forward block, as

shown in Figure 3.4.
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Figure 3.4. A Transformer layer consists of a multi-headed self attention
block and a feedforward block. Of particular note is the use of softmax as a
crucial operation in self-attention.

The attention block applies three linear transformations to the input vector in order to
obtain three new matrices: the query matrix (@), the key matrix (K'), and the value matrix
(V). The query matrix and key matrix are then multiplied together and the result is scaled
to the number of feature dimensions. This process can be thought of as an analogue to
the similarity operation found in generic MANNS, depicted in Equation 3.4. Softmax is
then applied to the resultant matrix (this is the weighting operation of MANNs described
in Equation 3.5), followed by dropout, resulting in the self-attention matrix A. This matrix
is finally multiplied by the value matrix V', as in the soft read of MANNs described in
Equation 3.1. These operations can be repeated multiple times in parallel, resulting in
multi-headed attention. The results of each head are concatenated together before being
passed through multiple fully-connected layers in the feed forward stage. After both the
multi-headed attention stage and feed forward stage, there is a set of dropout-add-norm
layers.

We note that, in addition to the typical matrix multiplications, each Transformer layer
also contains less common operations such as softmax and dropout. As shown in Figure 5.1,
these non-matrix multiply operations begin to become larger bottlenecks, especially as recent
Transformer-based networks have moved towards increasing sequence lengths, with the GPT

family of networks moving from a sequence length of 512 to 2048 in the most recent version

87).
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3.3.2 Softmax Bottlenecks

Existing hardware architectures for DL, which have been designed based on the char-
acteristics of DNNs such as CNNs, MLPs and LSTMs, have largely neglected the softmax
operation. This is because softmax is typically used only as the last layer in these networks
in order to generate the final probabilities used in classification tasks, and thus represents
only a small fraction of computation time and energy. However, this is no longer true for
Transformer networks, which use softmax as a key component of the attention mechanism.
For these networks, softmax can become a significant bottleneck, as shown in Figure 5.1.
The softmax operation is inefficient in current hardware for two main reasons. First, soft-
max requires the use of the exponential function. Exponential functions tend to require large
look-up table (LUTS) to compute the result through the use of Taylor expansions. This is
particularly true for general-purpose hardware such as CPUs and GPGPUs, which cater
to exponential computations with high accuracy requirements due to their use in various
scientific computing applications. This large area and power overhead makes it difficult to
instantiate a large number of these units. Second, in order to improve training stability, deep
neural networks typically use a numerically stable softmax, which subtracts the max of the
vector on which softmax is being performed in order to ensure that the result does not blow
up to infinity. However, this stability comes at a cost, as calculating the max introduces an

additional pass through the vector, incurring latency and memory overheads.

3.4 Graph Neural Networks

Graph neural networks (GNNs) have attracted significant interest in the machine learning
community, but have not yet been explored in detail by computing system designers. In this
section, we will provide the necessary background for understanding graph neural networks,
followed by a brief introduction into GNNs themselves. A more complete introduction can

be found in recent survey papers [88], [89].
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3.4.1 Graph Definition

A graph G is a data structure defined by two unordered sets: its vertices, V', and the
edges, F, between those vertices. We will denote the i-th node as v;. The directed edge
between nodes i and j is defined as e;j, where ¢ is the source node and j is the destination.
Therefore, we will refer to the source node of a given edge as e; and the destination node of
a given edge as e;. Further, each node and edge may have one or more features associated

with them, referred to as h; and h;;, respectively.

3.4.2 Graph Sharding

Many real-world graphs are too large to fit into any given level of the memory hierarchy
(last-level cache, main memory, etc). This severely degrades performance of graph processing
algorithms, as it makes it extremely difficult to exploit the limited spatial locality available.
To address this, graphs are often broken into smaller pieces, such that each subgraph can
fit in the given level of memory, in a process referred to as graph sharding [90]-[92]. Similar
to [92], we adopt a two-dimensional sharding paradigm, as depicted in Figure 3.5. In this
paradigm, a graph’s edge list is divided in shards such that each shard contains a maximum
of n? edges. A shard is then referred to by the tuple (U, V'), such that shard (U, V') contains
the edges whose source nodes are in the set [U - n, (U 4 1) - n) and whose destination nodes
are in the set [V - n, (V +1)-n).

For the rest of this thesis, we will refer to a sharded graph as graph that has undergone
this preprocessing step. Note that in some cases, a graph may actually fit entirely in the
given level of the memory hierarchy and thus the sharded graph consists of only one graph.

To maintain consistency, we will still refer to this special case as a sharded graph.

3.4.3 Graph Neural Networks

Graph neural networks (GNNs) are a widely diverse family of networks. Many popular
GNN s [93]-[97] consist of two distinct stages: a feature extraction stage, and an aggregation

stage. In the feature extraction stage, the nodes’ (edges’) features are passed through a fully-
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Figure 3.5. Visualization of a two-dimensional graph sharding algorithm that
divides an edge list into shards such that Shard (U, V) is the set of all edges
such that ew € [U - n, (U+1)-n) and ew € [V -n,(V 4+ 1) -n). The resulting
subgraphs can then be processed in either a source-stationary (dotted arrow)
or destination-stationary (slanted arrow) manner.

connected linear layer. In the aggregation stage, a node aggregates feature vectors from its
neighbors and then uses this aggregated feature vector to update its own feature.

These two stages can be combined arbitrarily to make up a single GNN layer. A full GNN
can then be constructed by stacking these layers. By stacking layers, a GNN incorporates
information from nodes that are increasingly far away from the original node. For example,
a single layer GNN only considers a node’s neighbors, while a two layer GNN will consider
nodes in the two-hop neighborhood. Notice, however, that this results in an exponential
increase as the depth increase.

We provide a brief overview of some popular GNNs below in order to further illustrate
this concept.

Graph Convolutional Networks. The Graph Convolutional Network (GCN) [98] is an
extremely popular early GNN. GCNs apply the local weight sharing found in traditional
convolutional neural network to graphs such that every node (edge) feature shares the same
weights. As shown in Equation (3.9), GCN first applies an aggregation stage, where the fea-

tures of a node’s neighbors are summed together. Note that the features are also normalized
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Figure 3.6. Forward pass of one layer in a GraphSagePool network, applied
to a sample graph with four nodes (a). For clarity, we focus only on node
A. First, in a feature extraction stage, each edge’s source node feature h is
passed through a fully-connected layer to obtain the feature z (b). Note that
the nodes are not concatenated, but rather are analogous to different samples
in a minibatch. Next, each node aggregates information from its incoming
edges using a symmetric function such as max to obtain an aggregated feature
vector z (¢). Finally, (d) the aggregated feature and the original node feature
are combined and passed through another linear layer to obtain an updated
node feature, h. This process can be repeated for multiple GNN layers.

both by the degree of the source node u as well as the destination node v. The aggregated

node feature z is then passed through a linear layer to obtain the updated node feature, h,,.

1 1
Z=—— S {—— hVweNuUu
\/|N(U)!Z{\/\N(v)! | R (3.9)

h, =0(W -2)

Graphsage. The popular Graphsage network [99] is similar to the GCN, but adds a ResNet-
like skip connection [100] in the aggregation stage; the node’s original feature h, is combined
(concatenation or addition) with the aggregated node feature before being passed through
the linear layer. Graphsage commonly uses a mean-based aggregator that is nearly identical

to the aggregator used in GCN;, as seen in Equation (3.10).

7 =

1
N > {h,|Vv € N(u) Uu} (3.10)

h, =0(W:(zUh,))
GraphsagePool. The GraphsagePool variant of Graphsage replaces the mean-based ag-

gregator with a symmetric, trainable aggregator, as in Equation (3.11). Specifically, each

node’s feature is fed through a linear layer, defined by W, as shown in Figure 3.6b. The
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resulting features are then aggregated using an element-wise pooling operation (typically,
max) like in Figure 3.6¢c. Finally, this aggregated feature is concatenated with original node

feature and passed through another linear layer as shown in Figure 3.6d.

z = {0(Wpoo - hy)|Vv € N(u) Uu}

z = max(z) (3.11)

3.4.4 GNN Computational Behavior

Feature Extraction Stage. The feature extraction stage is usually implemented as a fully-
connected layer, in which a vertex (edge)’s feature vector is multiplied by a weight vector,
producing a new feature vector— i.e., is a matrix-vector multiplication. However, in order
to allow GNNs to generalize to different sized graphs, GNNs typically shared the weight
matrix across the vertices (edges), meaning that a batch of feature vectors can be processed
together with the same weight matrix, resulting in a matrix-matrix multiplication. Thus,
the feature extraction stage is characterized primarily as a dense, regular computation with
high data reuse of weights. A compute engine for the feature extraction stage, therefore,
should have ample compute, with enough internal bandwidth to feed that compute while
taking advantage of the large amount of weight reuse.

Aggregation Stage. The aggregation stage, by contrast, is a highly sparse, irregular kernel,
much like many other graph-processing workloads. However, there is one key difference
between the aggregation stage and other graph processing kernels. In traditional graph
processing applications, the graph data tends to be quite small, on the order of a few bytes.
In a GNN’s aggregation stage, by contrast, the features being communicated between vertices
can be much larger, on the order of up to thousands of bytes. This has two implications.
First, the large dimension size of the features compared to a traditional graph analytics
workloads means that there is more ample opportunity for intra-node parallelism, as the
dimensions for a given node can be processed independently in parallel. This is in addition

to the inter-node parallelism present in both the feature extraction and aggregation stages

45



that results from large amount of nodes that each need to be updated independently in a
GNN layer. Secondly, the large dimension size of the features can actually help to reduce the
irregular nature of the aggregation stage as compared to other graph-based workloads, as
instead of each vertex needed to load one or two bytes per neighbor, each vertex instead must
load many bytes, which can result in better coalesced memory accesses. A compute engine
for the aggregation stage, therefore, should exploit both the inter- and intra-node parallelism
that results from the longer node features, as well as design the memory system around the
wider accesses seen in the aggregation stage as compared to other graph accelerators such
as Graphicianado [101].

Feature Extraction vs Aggregation Stage. Above, we describe the unique charac-
teristics of the two different kernels present in GNNs, as well as the specific architectural
desiderata that results. However, a crucial question is also the relative importance of the
two stages, as this would dictate the amount of resources that should be dedicated to them.

To that end, we investigate the relative breakdown in execution time between the ag-
gregation kernels and the feature extraction kernels running on a GNN accelerator design
with comparable performance to HyGCN. In particular, we examine this breakdown as a
function of the hidden layer’s dimension size. As shown in Figure 3.7, the aggregation stages
dominate the run time for smaller dimension sizes. This is in line with finding from other
GNN accelerators, such as [59], [61]. However, at larger, more production-like networks sizes,
this trend reverses and the linear layers dominate the run time. Note that the linear layers
always dominates the run time for the GraphSage-Max network; this is a result of the ad-
ditional linear feature extractor present in the pooling stage. This implies that the needs of
the two stages must be carefully balanced, as the bottleneck in GNN processing on a custom
architecture depends on the size of the network; smaller networks are bottlenecked by graph
processing, whereas larger networks are bottlenecked by fully connected, dense layers.

In summary, a GNN accelerator should be designed with following characteristics in mind.
First, in order to efficiently compute the feature extraction stage, the architecture should
contain a large compute array for performing matrix-matrix multiplications, optimized for
a large amount of weight reuse. Second, the graph engine should be optimized for both

the abundant inter- and intra-node parallelism in GNNs as well as the uniquely wide graph
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Figure 3.7. At lower hidden dimension sizes, the aggregation stages dominate
the run time over the feature extraction stages. However, at the large dimen-
sion size of 1024, this trend reverse. Feature extraction always dominates the
run time for the GraphSage-Max network, due to the additional linear layer
present before aggregation

property accesses present in GNNs compared to other graph workloads. Finally, the needs
of the two compute engines must be balanced, as which stage is the bottleneck is dependent

on the size of the GNN being processed.

3.5 DNN Performance Estimators for Edge Devices

DNN performance estimators have been a recent area of interest. These estimators
provide a low-cost way to search the space of potential neural network candidates— and
hardware platforms— for the best combination of software and hardware. This is of particular
interest as developers look to deploying DNNs in the real-world using heterogeneous edge

devices.
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3.5.1 Heterogeneous Edge Devices

There is a vast array of heterogeneous edge devices deployed in the real world today
running neural workloads [102]. The processing platforms in these edge devices consist of
one or more hardware IPs, such as CPUs, GPUs, DSPs and specialized DNN accelerators.
For example, the NVIDIA Jetson TX2 platform [103] has a six-core big. LITTLE ARM CPU
with two high performance Denver cores and four energy-efficient ARM Cortex cores, as
well as a Pascal GPU. Two key design choices exposed by these platforms are heterogeneous
execution and hardware operating conditions.

Heterogeneous execution. A DNN may be partitioned such that different portions ex-
ecute on different IPs within a heterogeneous edge platform. This helps fully utilize the
processing resources within the platform. Further, the unique characteristics of different
parts of a DNN may benefit from the hardware heterogeneity.

Hardware operating conditions. Most edge platforms support multiple hardware oper-
ating conditions, including the number of active CPU cores, the CPU cores’ frequencies, the
memory controller’s frequency, and the GPU’s frequency.

As shown in Figure 7.1, the developer of DNNs for edge platforms is presented with
a dramatically expanded design space. For example, the Jetson TX2 provides over 500
unique hardware operating conditions, adding two orders of magnitude to the already large
search space of DNNs available for a given task. The search space expands even more with
heterogeneous mapping; even for the simple case where the network is split into two parts
that execute on two different IPs, mapping networks such as MobileNetV3 [104] will further

increase the search space by two orders of magnitude.

3.5.2 DNN Performance Estimators

Given the large design space available when deploying DNNs on heterogeneous edge
platforms, it is critical to have a fast way to determine metrics of interest (latency, power,
energy, etc.) for a given DNN, heterogeneous mapping, and hardware operating condition.
Unfortunately, even running on actual hardware is too slow to evaluate this large design

space. This is in large part due to the overheads involved in the software stack for changing
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hardware voltage/frequency, loading new models, etc. Further, running on physical devices
is constrained by the limited number of devices available to run in parallel [105]. Learned
performance estimators, which use a machine learning algorithm to generate the estimate,
have emerged as promising technique. However, due to the aforementioned constraints, an
important consideration in the design of learned estimators is that they should be sample-
efficient, i.e., possible to create with limited training data [106].

Learned estimators can be useful in a variety of applications. We focus on three important
use cases: hardware mapping and configuration for a fixed network, selection of network
variants, and the design of novel networks.

Hardware Mapping and Configuration Search. This corresponds to the scenario
wherein a system designer has a specific DNN that they desire to use, and need to search
for the most efficient mapping and configuration of a hardware platform to optimize the
deployment of that DNN.

Network Variant-Hardware Configuration Co-Design. Network variants come up in
a variety of contexts. For example, transfer-learning— in which an off-the-shelf network is
adapted for a given task—is frequently used when deploying DNNs. By using hardware-aware
performance estimators, designers can also consider the impact of the hardware mapping and
operating conditions when searching for the best network variant.

Novel Network-Hardware Configuration Co-Design. This use case includes hardware-
aware neural architecture search (NAS), where a system designer is searching for the optimal
DNN topology to deploy to an edge device with the optimal hardware configuration. The
universe of possible networks is large and it is infeasible to execute each one directly on

hardware to search this space.
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4. MANNA: AN ACCELERATOR FOR
MEMORY-AUGMENTED NEURAL NETWORKS

4.1 Introduction

Deep Neural Networks (DNNs) have kindled a renewed interest in the field of machine
learning over the past decade. Algorithmic advances, availability of larger datasets, and
tremendous growth in compute capabilities have led to DNNs achieving state-of-the-art
accuracy in a wide variety of perceptual domains, including video, audio, and text processing
[75], [100], [107]. Despite the success and widespread deployment of DNNs, many machine
learning tasks such as task planning, reasoning etc., as well as one-shot learning (the ability
to learn from one or very few examples), remain open challenges for them.

Memory-augmented neural networks (MANNSs) promise to address some of these chal-
lenges by providing the network with access to dynamic (readable and writeable) state [77],
[79], [81], [82]. Unlike recurrent neural networks (RNNs), wherein the dynamic state is in-
trinsically embodied within the topology of the network itself, in MANNs the dynamic state
is decoupled from the neural network. This decoupled dynamic state is realized through a
differentiable external memory that is accessed by read and write heads using soft reads and
writes. A soft read is a read that is comprised of a weighted sum over all of the memory lo-
cations in the external memory. Similarly, a soft write updates every element in the external
memory, with the update to a given location being proportional to that location’s similarity
to a key vector. Crucially, these soft read and write operations are continuous (in contrast
to the discrete nature of reads and writes to single locations), allowing the external memory
to be differentiated and the entire MANN to be trained end-to-end with stochastic gradient-
descent algorithms. Several variants of MANNs have been proposed, such as the Neural
Turing Machine (NTM) [81], Differentiable Neural Computer (DNC) [82], Dynamic Memory
Networks [79], and End-to-End Memory Networks [77]. These recent efforts from Google
DeepMind, Facebook AI Research, and others have demonstrated the ability of MANNs to
solve entirely new classes of problems that are well beyond the capabilities of classical DNNs.
For example, DeepMind’s Differentiable Neural Computer was trained to efficiently navigate

the complex routes that make up the London Underground subway network [82].
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The enhanced capabilities of MANNSs come at a high computational cost. As mentioned
above, the soft nature of the reads and writes results in accesses to all the memory loca-
tions for each operation in order to keep these operations differentiable. This introduces a
serious performance bottleneck, which is exacerbated when dealing with real-world problems
requiring thousands to millions of memory locations [82].

Existing neural network accelerators are ill-suited to address this bottleneck for three
main reasons. First, existing neural network accelerators are designed primarily for (i)
CNNs, which have high FLOPs/Byte ratios and are compute-bound, enabling the use of
large arrays of multiply-and-accumulate (MAC) units, or (ii) fully-connected multilayer per-
ceptrons (MLPs) and RNNs, which are memory-bound but whose FLOPs/Byte ratio can be
increased considerably by batching inputs and reusing weights across the inputs in a batch.

However, this paradigm of designing for compute-bound networks (i.e., high FLOPs/Byte
ratios) and using batching to improve the ratios even for memory-bound networks cannot
be applied to MANNs. The external memory in MANNSs represents dynamic state akin to
the activations in a traditional DNN and is unique to each input. Therefore, it cannot
be shared across a batch, unlike the weights of an MLP or RNN. Thus, an accelerator
designed for compute-bound networks, allocating large amounts of die area to compute units,
is highly inefficient for memory-bound MANNs. Instead, a MANN accelerator needs to be
memory-centric, focusing not on high theoretical throughput but rather on maintaining high
utilization of the available compute units through highly banked on-chip memories.

Second, many existing neural network accelerators are also ill-equipped to cater to the
heterogeneity of memory access patterns found in MANNs. During inference in DNNs, there
is only one access pattern per data structure — for example, a set of activations may be
accessed, but not the transpose of those activations. During inference for MANNs, however,
the external memory is accessed in both a column-wise as well as a row-wise pattern-that
is, both the external memory and the transpose of the external memory are required. Fur-
ther, the external memory is quite large and can be updated on every time step, making it
impractical to efficiently maintain two copies. Therefore, a MANN accelerator must be able

to perform efficient transpose operations on-chip.
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Finally, all existing neural network accelerators are designed for efficiently executing
dot product operations, as matrix-multiply kernels dominate the runtime of current DNNs,
including CNNs, MLPs, and RNNs. In MANNSs, however, MAC operations are not the
dominant operation; non-reductive element-wise addition, subtraction, and multiplication
operations make up a roughly equal portion of the operations in MANNs. As a result,
a MANN accelerator must be designed to perform non-reductive element-wise operations
equally as efficiently as dot products.

To address these shortcomings of existing neural network accelerators, we propose MANNA,
an accelerator developed from the ground up to efficiently execute MANNs. MANnNA is a
memory-centric design that focuses on maximizing on-chip storage and bandwidth and uses
just enough compute to match that bandwidth in order to eschew the die area and power
wasted by underutilized compute elements. ManNNA also utilizes a hardware-based transpose
mechanism to efficiently perform the row-wise and column-wise memory accesses required.
Finally, ManNa is provisioned with an array of processing tiles, each of which are composed of
specialized units (called eMACs) designed to efficiently perform the unique mix of operations
present in MANNS.

We also propose a compiler that efficiently maps kernels to ManNA, exploiting the little
available reuse in order to reduce memory transfers and maximize bandwidth utilization.

In summary, we make the following contributions:

o We provide a detailed investigation of the computational characteristics of MANNS, a

promising emerging class of DNNs.

o We propose MANNA, an end-to-end, CMOS-based accelerator that is able to efficiently

perform all kernels used in memory-augmented neural networks. We provision MANNA

with a memory-to-compute resource allocation reflective of the low FLOPs/Byte in-

herent to MANNSs.

« We implement a hardware-based transpose mechanism to efficiently execute both

vector-matrix and vector-transposed matrix multiplications.
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o We provision MANNA with specialized units (called eMACs), which are designed for the

unique mix of operations that are used in MANNSs.

o We develop an ISA and a compiler that maps MANNSs to MANNA so as to minimize data

transfers and maximize the utilization of on-chip bandwidth.

o We develop an architectural simulator and synthesize RTL implementations of key
components in order to demonstrate the benefits of MaANNA. Our experiments indicate
that MANNA achieves average speedups of 39x (24x) and average energy improvements
of 122x (86x) over an NVIDIA 1080-Ti (2080-Ti) GPU with a Pascal (Turing) archi-

tecture.

The rest of the chapter is organized as follows. Section 4.2 describes the proposed MANNA
architecture and provides insights into how various kernels are executed on MANNA. Section 4.3
details the ISA as well as the proposed compiler. Section 4.4 outlines the experimental setup
used to evaluate the proposed architecture. Finally, Section 4.5 presents the results of our

experiments and Section 4.6 concludes the chapter.

4.2 Manna Architecture

Vector-Buffer

Matrix-Buffer

Vector-Scratchpad

Matrix-
Scratchpad

NoC Router

Controller Tile Manna DiffMem Tile eMACs

Figure 4.1. Overview of Manna

4.2.1 Overview

MANNA is a memory-centric, highly parallel CMOS-based architecture designed explicitly

for memory-augmented neural networks. Figure 4.1 shows the organization of MANNA, whose
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components are described in the following subsections. The building blocks of MaNNA are
DiffMem tiles that execute the MANN-specific kernels (i.e., read and write head operations,
key similarity, addressing, soft read, and soft write) which control the external differen-
tiable memory (hence, the name DiffMem tiles). The entire external memory is partitioned
and distributed across the DiffMem tiles. DiffMem tiles are designed to cater to the low
FLOPS/Byte ratio observed in MANN kernels. As a result, the majority of die area of the
DiffMem Tiles (and MANNA in general) is dedicated to highly banked on-chip memories. This
is in dramatic contrast with other modern architectures used to execute classical DNNs,
as seen in Table 4.1. The DiffMem tiles are then provisioned with just enough processing
elements to match that on-chip memory bandwidth. We also specialize MANNA’s processing
elements to be tailored to the unique mix of operations found in MANN kernels, which ex-
hibit a higher share of non-MAC element-wise operations than the traditional MAC-centric
DNN workloads. Finally, we provision MaNNA with specialized hardware to facilitate efficient
transpose operations to accommodate the heterogeneity in memory access patterns seen in
MANNS.

MannNa also includes Controller tiles, which are used to execute the DNN-based controler.
We tailor the interconnect topology between tiles to the specific communication patterns

that manifest in MANNSs.

Xeon[108] 2080-Ti TPU [§] Manna

Memory 25 10 60 90
Compute 75 90 40 10

Table 4.1. Manna prioritizes high bandwidth on-chip memory over compute
when allocating die area

4.2.2 DiffMem Tiles

DiffMem tiles are used to perform the MANN-specific kernels: read (write) heads, key
similarity, addressing, soft reads, and soft writes. Each tile is provisioned with element-wise
or multiply-and-accumulate units (eMACs). These eMACs are used to perform element-

wise addition, element-wise subtraction, element-wise multiplication, and fused multiply-
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and-accumulate. Each eMAC also consists of a small register file (RF) that is used to
temporarily store inputs and intermediate outputs. The eMACs are connected to a double-
buffered scratchpad (Matrix-Scratchpad) such that each word of the memory’s output is
directly connected to the corresponding eMAC unit. The eMACs are also connected to
another double-buffered scratchpad (Vector-Scratchpad). The Vector-Scratchpad either
broadcasts a shared value to all eMAC units or unicasts each word of the scratchpad’s out-
put to the corresponding eMAC unit. Additionally, there are lateral connections between
neighboring eMACs, which enable efficient transpose operations. The Matrix-Scratchpad
is connected to a larger matrix buffer (Matrix-Buffer) through a direct memory access for
transpose (DMAT) unit that manages data transfers in both regular and transposed form,
between the Matrix-Scratchpad and the Matrix-Buffer. The Vector-Scratchpad is sim-
ilarly connected to a larger vector buffer (Vector-Buffer). However, since these memory
elements store the vector data structures which do not require any hardware transpose sup-
port, a regular direct memory access (DMA) unit is used. The Vector-Scratchpad is also
interfaced to a set of Special Function Units (SFUs). The SFUs contain a scalar power func-
tion unit, an accumulator, and the logic needed to support various activation functions such
as sigmoid, ReLu, etc. Each DiffMem tile also has a small instruction memory and control
unit used to execute the tile’s program. Finally, it also includes an NoC router to perform

reduce and broadcast operations between tiles.

4.2.3 Controller Tiles

The Controller tile is used to execute the DNN controller. Since a wide variety of
DNN topologies may be used for the controller, the Controller tile utilizes a more tradi-
tional, systolic array-based DNN accelerator architecture. A controller tile consists of a
two-dimensional systolic array-based matrix multiplication unit. The matrix multiplication
unit is connected to a Weight Buffer that supplies the weights, and a Unified Buffer
that provides the activations. These activations are then accumulated in a one dimensional

Accumulation Unit, the output of which is connected to the activation units (e.g., ReLu),
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followed by the normalization and pooling units. The outputs are finally stored in the

Unified Buffer to be used as inputs to the next layer.

4.2.4 Implementing MANNs on Manna

My, My,
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72 \
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Figure 4.2. Each DiffMem tile receives a unique, independent section of the
external memory. If M Distrib # NumTiles, as in (a) where M Distrib = 3,
there will be M Distrib sets of tiles in which each tile in the set receive copies
of the same slice of the key vector. If M Distrib = 1, as in (b), every tile will
receive a copy of the whole key vector

Distributing MANN kernels. A key feature of MaNNA is that the entire differentiable
external memory is partitioned and distributed across the DiffMem tiles. This is achieved by
dividing the differentiable memory into independent sections by selecting the number of tiles

(N Distrib) to distribute the rows across, which results in each tile receiving n = % rows

of M. The number of tiles to distribute the columns across is then M Distrib = %,
resulting in each tile receiving m = Mggrib columns of M. Therefore, each physical tile

is responsible for a logical (n,m) tile of the differentiable external memory. The tile is
also responsible for the corresponding slices of the various vectors (e.g., key). Figure 4.2
illustrates this distribution.

The choice of N Distrib and M Distrib affects the performance of the MANNA accelera-
tor, since it impacts the communication patterns and degree of parallelization that can be

achieved in executing the MANN kernels. For example, consider the content weighting kernel
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Figure 4.3. Overview of possible loop orderings for soft read

which is a softmax operation. In order to obtain the content weights, the content similarities
must be normalized. To achieve this, the total sum of the similarities must first be reduced
across the N Distrib tiles that partition the weight vector. The final reduced result must then
be broadcast back to those tiles so that the final result can be used in a map operation (as
described below) to normalize each element in the weight vector. Notice that Equation 3.5
that describes the content weighting— as with all of the other addressing kernels— is only
dependent on My. Therefore, if M Distrib > 1, there will be a subset of tiles for which
no useful computation can be performed. This is due to the fact multiple tiles would have
the same slice of the weight vector. To maximize the amount of work that can be done in
parallel, thereby maintaining high utilization of the available compute resources, we use the

simple heuristic that we will force M Distrib = 1 and therefore N Distrib = NumTiles.

Realizing Map Operations. Many of the operations that make up the addressing kernels
can be envisioned as map operations applied to a given vector. For example, as part of the
content weighting kernel, every element in the w vector is multiplied by the same scalar (.
These kernels are executed as follows. First, the value that is to be mapped to the vector
(e.g., the accumulated value for normalizing) is broadcast to the eMACs and stored in their
RFs. Subsequently, for each element in the vector that the tile is processing, the values are
unicast to the eMAC units such that a different element of the vector is computed in each
eMAC unit. In this way, all eMACs in each tile can be fully utilized for executing map

operations in parallel, with minimal overhead.
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Realizing Vector-Matrix Multiplication. As discussed above, each tile executes a por-
tion of the vector-matrix multiplication in parallel. We store the tile’s entire portion of
the differentiable memory in a large, highly-banked on-chip memory, the Matrix-Buffer.
Vectors are stored in a comparatively much smaller on-chip memory, the Vector-Buffer.
We further break the smaller vector-matrix multiplications into blocks, such that each block
consists of a vector-multiplication between blockN elements of the vector and (blockN x
block M) elements of the matrix, resulting in an output partial sum vector of length blockM.
The portion of the vector and matrix needed for the current block is then brought into
the Vector-Scratchpad and the Matrix-Scratchpad, respectively. To compute the vector-
matrix multiplications of a given block, data is fed from the two scratchpads into the eMAC
units such that one element from the Vector-Scratchpad is broadcast to all of the eMAC
units. Unlike the case of map operations, for vector-matrix multiplication, each eMAC unit
receives a unique memory word from the Matrix-Scratchpad, i.e., vector-matrix multipli-
cation is realized by multiplying one element of the input vector with multiple elements from
the matrix to compute a set of partial sums. The eMACs then read the next element from
the vector, continuing to hold the partial sums resident in the RF. This strategy is referred to
as output stationary, since a subset of the output vector of the vector-matrix multiplication
is completely finished before moving on to the next subset. This strategy does not require
storage for partial sums in the Vector-Scratchpad, but may result in re-reading the same
element from the input vector multiple times if the number of eMAC units is lower than
the block size. Alternatively, the element from the input vector can be kept resident and
the partial sums spilled to the Vector-Scratchpad. This strategy is referred to as input
stationary and results in minimizing the number of reads of the input vector, but introduces
spills (fills) to (from) the Vector-Scratchpad since the partial sums are not kept stationary.
Note that, while the choice between input stationary and output stationary impacts the
number of transfers between the Vector-Scratchpad and the eMACs, the total number of
transfers between the Matrix-Scratchpad and the eMACs remains the same in both cases.
In order to maximize reuse (e.g., in the case of multiple heads), the RF is provisioned with
enough capacity to allow the eMACs to store the temporary value (input or output) from

multiple heads, allowing the eMAC to reuse the element from the Matrix-Scratchpad for
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each head without needing to refetch the input (output) element when moving to the next
element from the Matrix-Scratchpad.

This loop, which computes the vector-matrix multiplication for a given block, is referred
to as the compute loop. Once the multiplication is finished for a given block, we must
determine the ordering of the block loop— that is, which block of the vector-multiplication
will be executed next. Similar to the compute loop, this can be done in an output-stationary
or input-stationary manner. The choice between output-stationary and input stationary
determines the number of data transfers between the Vector-Scratchpad and the Vector-
Buffer. The number of transfers between the Matrix-Scratchpad and the Matrix-Buffer is
invariant, since each element in the Matrix-Buffer is brought into the Matrix-Scratchpad
exactly once. Figure 4.3 summarizes the algorithms that result from these different loop
orderings and their impact on data transfers.

After each tile has completed computing its portion of the larger vector-matrix multipli-
cation, these partial sums must be reduced across the N Distrib tiles in order to obtain the

final result (e.g., the final read vector).

Realizing Vector-Transposed Matrix Multiplication. As discussed, the differentiable
memory is accessed in both row and column directions. Unfortunately, due to the size of
the external memory, as well as the frequency of updates to the memory, it is infeasible to
keep an updated copy of both the external memory and its transpose. This means that it is
impossible to map the external memory to the physical Matrix-Buffer in such as manner
as to result in efficient memory accesses for both soft read and key similarity, as illustrated
in Figure 4.4. Therefore, to maintain high utilization of the on-chip bandwidth, we propose
an efficient, hardware-based transpose mechanism, outlined in Figure 4.5.

The proposed transpose mechanism draws inspiration from a well-known software tech-
nique in the GPGPU domain [109]. This technique relies on splitting the vector-matrix
multiplication into blocks, as outlined above. We first fill the Matrix-Scratchpad with the
entire working set for the current block using efficient reads that utilize the full bandwidth be-
tween the Matrix-Scratchpad and the Matrix-Buffer c Once the Matrix-Scratchpad

is efficiently filled with a block, we begin computing on that block. Notice that since the
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Figure 4.4. Logical-to-physical mapping of the differentiable memory always

results in
for the other

memory accesses for one kernel, but poor memory accesses

Matrix-Scratchpad is double buffered, this sequence can be pipelined, filling the other half

of the scratchpad while the first half is being consumed 9

This approach fully utilizes the bandwidth between the Matrix-Buffer and the Matrix-

Scratchpad, but there still exists a key inefficiency— there would be many bank conflicts

when the eMACs try to read from the Matrix-Scratchpad since we have not done anything

to fundamentally change the layout of the data yet. To avoid these conflicts, the DMAT unit

augments the memory transfers between the Matrix-Buffer and the Matrix-Scratchpad

such that a space is padded between every memory transfer @ Doing so offsets the elements
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Figure 4.5. Padding the transfer from buffer to scratchpad and moving the
partial sums laterally between eMACs allows for conflict-free direct access to

banks

in the Matrix-Scratchpad such that all elements to be read from the scratchpad at a given
time are located in different banks, eliminating bank conflicts.

However, now the eMACs would require a full crossbar structure to access the Matrix-
Scratchpad, instead of direct connections to each bank as before. This is undesirable, as
the crossbar will be expensive in terms of chip area and we want to conserve that area for
enabling more on-chip bandwidth. In order to avoid requiring this full crossbar, we utilize
lateral connections between the eMACs that forward the partial product from one eMAC to
its neighbor 9 This way, each eMAC can still be directly connected to just one bank of
the Matrix-Scratchpad, with the partial sums shifting to keep the proper alignment. When
the product is complete, an additional shift is required to realign the partial sums to their
original location @ However, this additional shift can be pipelined with the beginning of

the next set of elements.
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NoC Design. Given that we have set M Distrib = 1 and N Distrib = NumberofTiles,
only two inter-tile communication patterns are required: reducing across all of the tiles
(e.g., to produce the final read vector) or broadcasting to all the tiles (e.g., the output from
the controller). Since these are the only patterns required, we implement a simple, H-tree
based NoC with a fixed routing strategy, in turn simplifying the design and requiring only
lg(NumTiles) communication steps to complete a given reduction (broadcast). Since the
output of the controller network must be broadcast to all the tiles and the controller network
must receive the final soft read vectors ry, the controller tile is chosen as the root node for

the H-tree network.

4.3 Manna Software

Given the abundance of literature on ISAs for DNN accelerators and on mapping arbitrary

DNNSs to target accelerators, here we focus solely on the Diff Mem Tiles for brevity.

4.3.1 Execution Model and ISA

To provide the flexibility to perform a wide variety of MANNs, MANNA provides an in-
struction set architecture (ISA) that can be used to implement various proposed MANNs.

These instructions are grouped into three categories:

Control. MANN kernels consist entirely of data flows that are easy to generate procedurally.
Therefore, we use a set of control instructions in order to provide MaNNA with the necessary
information to generate the memory accesses needed for a given kernel. 1loop and end-loop
are used to define the block loop, while addr-gen defines the compute loop. The end of the

compute loop is inferred from the end of compute instructions.

Compute. To enable the execution of a wide variety of MANNS, the key computational
primitives of the MANN kernels such as element-wise multiply, vector-matrix multiplica-
tion, softmax, etc. are expressed as a set of course-grained compute instructions. These

instructions perform their operations based on the previous control instructions.
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Communication. Given the execution model outlined in Section 4.2, the communication
patterns used in MANNA are extremely well defined and consist solely of reduce and broadcast
operations that involve all tiles. Therefore, we provide only two communication instructions—
reduce and broadcast. Since the communication patterns are fixed, these instructions
double as synchronization primitives—i.e., when a tile executes a reduce operation, the tile
will wait until it receives the appropriate message from its neighbor, thereby acting as a

fence instruction.

Inst. Type Instruction Function
control 100p Riq, Rparents Riens Rstride Define a block loop
addr_gen Rigq, Rparents Rstrides Rbase, transp Define an iterator over a data structure
combute el-sub R4st, Rsrci» Rerco Elementwise subtraction of two vectors
p el-mul Rgst, Rsrcis Rerco Elementwise multiplication of two vectors
communication reduce Ryst, Rsrc, Raddrs Rien Wait on src tile, reduce, send to dst

Table 4.2. Summary of ISA.

Table 4.2 provides a summary of MANNA’s ISA. To minimize programmer burden, we also

provide a compiler that maps a MANN to MANNA, which we detail below.

4.3.2 Compiler

The MANN compiler takes as inputs a description of the target MANN (e.g., number
of read/write heads, size of external memory) and a microarchitectural description of the
MANNA accelerator (e.g., size of scratchpads, number of tiles). Using this information, the
compiler then generates code for MANNA in two phases— mapping and code generation. This

process is summarized inFigure 4.6.

Code Mapping

First, a given MANN network is mapped to MANNA by setting the tile size for loop tiling and

choosing the ordering of the loops based on the set tile size.
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Loop Blocking. As discussed previously, the key similarity, soft read, and soft write kernels
are executed in a blocked fashion. A key parameter for optimization, thus, is the size of the
tiles for loop blocking. Since the main goal of MANNA is to maximize the utilization of on-
chip memory bandwidth, we use the following algorithm for setting the loop tile size for each
kernel individually. First, we set the M dimension of the block (blockM) to match the Matrix
Buffer’'s memory width in order to maximize bandwidth utilization. This is also required
by the proposed transpose mechanism used to ensure bank-conflict free execution. We then
maximize the N dimension (blockN), while still ensuring that the blocked tile can fit in the
Matrix-Scratchpad. We also account for the additional storage overhead introduced as a

result of padding when computing this dimension.

Loop Ordering. As discussed in Section 4.2, for matrix-vector operations, there are two
sets of pairs of loops that must be ordered. The order of the outer, block loop determines the
number of accesses to the scratchpad, while the order of the inner, compute loop determines
the number of accesses to the buffers. Figure 4.3 summarizes these loop orderings along
with the advantages and disadvantages of each ordering. In order to select between the
four options, the compiler firsts sets the ordering of the block loop, as the accesses to the
scratchpad are more expensive and are therefore of a higher priority to optimize. The
compiler uses a set of equations to analytically model the cost of the output stationary and
input stationary orderings of the block loop and selects the ordering with the lowest cost for
each kernel.

Upon determining the outer loop ordering, the compiler next chooses the best ordering of
the compute loop for each kernel, choosing the ordering that results in the smallest number

of accesses to the buffers.

Code Generation

The code generation phase creates a program for each individual tile. To generate these

programs, the compiler utilizes a library of hand-coded assembly routines for each of the

MANN kernels. These routines are parameterized based on both the results of the mapping
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Figure 4.6. Overview of Phases of Manna Compiler

phase and the microarchitectural parameters. The synchronization between tiles is handled
via the communication instructions described above. Notice that the output of some kernels
are consumed by kernels that use orthogonal resources. For example, the output of the key
similarity kernel (Sim) is followed by the softmax of the content-weighting kernel. Since the
key similarity kernel is computed using the eMACs, while the softmax is computed using the
SFUs, we can begin executing the softmax early, as soon as the outputs of the eMACs are

available. Therefore, some of these kernel templates are actually realized as fused kernels.

4.4 Experimental Setup

Simulation infrastructure. We developed a detailed, cycle-level architectural simulator
in order to evaluate the execution of the benchmarks on Manna. The simulator models all
necessary events that occur in an execution cycle, including compute, memory, and NoC
transactions. To simulate the Controller tile, we used the performance simulator from [20],
which has been verified against an RTL implementation. To estimate power, we implemented
the logic components of MANNA in RTL, synthesized them using the 15 nm Nangate Open Cell
library, and evaluated their power using Synopsys Design Compiler. For the on-chip SRAM

memories, we obtained power estimates using CACTI-P [110]. The power consumed by each
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Table 4.3. Summary of benchmarks.
Benchmark DiffMem Dim. Controller Dim. # Read/Write Heads

copy 1024x256 1x100 1/1
repeat-copy 512x512 1x100 1/1
recall 1024x64 1x100 1/1
dynamic n-grams 1024x128 1x100 1/1
priority sort 512x128 2x100 1/4
bAbI 4096x1024 1x256 4/1
shortest path 3648x1400 2x256 5/1
graph traversal 5056x1000 3x256 5/1
graph inference 3584x1400 3x256 5/1
mini-shrdlu 1280x4000 2x256 3/1

Table 4.4. Summary of platforms.

Platform Area (mm?) Tech. Node (nm) Freq. (MHz) TDP (W) Memory (MiB) BW (GB/s)
Pascal GTX 1080-Ti 470 16 1480 250 11.9 484
Turing RTX 2080-Ti 750 12 1500 250 29.5 616

MANNA 40 15 500 16 38 N/A

component was then incorporated into the cycle-level simulators in order to estimate energy

consumption.

Benchmarks. Table 4.3 shows the list of 10 benchmarks modeled on the tasks presented in
the NTM and DNC papers [81], [82]. These NTM benchmarks use a diverse range of sizes
and aspect ratios for the differential memory, with varying numbers of read and write heads.
copy, rptcopy, recall, ngram, and sort are small, algorithmic examples. bADbI is a question
answering task testing logical reasoning. travers, short, and inf are graph tasks that test
the MANN’s ability to generate directions, find shortest paths, and infer relationships from
structured information, respectively. Finally, shrdlu tests a network’s ability to understand
natural language through the form of dialogues about the state of a synthetic block world.
These benchmarks have been scaled up from the original works in order to reflect the size
of the external memory needed for real-world applications, as projected in the DNC paper

82).
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Manna Configuration. We evaluated a MANNA implementation with sixteen DiffMem tiles
and one Controller tile. Each DiffMem tile is provisioned with: 32 eMAC units, a 2 MiB
Matrix-Buffer; a 16KiB Matrix-Scratchpad; a 32KiB Vector Buffer, and a 4KiB Vector
Scratchpad. The Controller tile is provisioned with an 8x8 matrix-multiply unit, and 5 MiB
of on-chip storage for the unified and weight buffers. All of the compute units utilize full
FP32 precision, in keeping with current MANN software implementations. The entire chip
is clocked at 500 MHz and provides a total of 1.2TB/s of effective bandwidth for accessing

the differential memory.

Comparison with GPUs We compare against two GPU platforms: a Pascal GTX 1080-Ti
(1080-Ti) and a Turing RTX 2080-Ti (2080-Ti). The 1080-Ti has a total of 11.9 MiB of
on-chip memory across the register file, L1, shared memory, and L2, with 484 GB/s memory
bandwidth, whereas the 2080-Ti has a total of 29.5 MiB with a 616 GB/s bandwidth. Both
platforms executed a Pytorch 1.0 implementation that utilized the highly optimized cuDNN

library. These platforms are summarized in Table 4.4.

4.5 Results

In this section, we present the results of our experiments evaluating the benefits of MANNA.

4.5.1 Inference Performance

Figure 4.7 compares the performance of ManNA with the GPU implementations, when
executing the inference phase with no batching for 10 NTM benchmarks (ordered by size
of the external memory). Overall, MANNA achieves 11x - 184x speedup (average 39x) over
the 1080-Ti. The average speedup achieved by MANNA over the 2080-Ti is 24x. There is a
substantial difference in speed up for the small benchmarks (recall-rptcopy) as compared
to the larger benchmarks (bAbI-shrdlu). To illustrate where the benefits come from, as well
as to show why there is such a substantial difference between the small and large benchmarks,
we investigate the kernel-specific performance improvements for the addressing kernels, the

read and write heads, and soft reads in Figure 4.8.
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Figure 4.8. Kernel-specific inference performance
ManNA demonstrates significantly higher improvement in performance on the addressing
kernels because ManNA is able to fully parallelize these kernels across the available processing
elements, while the GPU is severely underutilized on these kernels. Unlike the addressing
kernels, the soft read kernel involves a vector-matrix multiplication against the differentiable
external memory. Thus, at smaller memory sizes, MANNA exhibits a significant speedup over
the GPU platforms, since there is still not enough compute to fully utilize the GPU and mit-
igate the kernel call overheads. However, as the external memory size increases, the amount
of parallelism that can be exposed to the GPU grows rapidly. For the largest benchmarks,
ManNA’s speedup over the GPUs saturates at around 3x, at which point the GPUs are highly
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utilizing all of their cores (Streaming Multiprocessors) and memory bandwidth. We observe
a similar trend for the key similarity and soft write kernels. Finally, the head kernels rep-
resent a middle ground between these two extremes; the read and write head kernels also
involve a vector-matrix multiply, but with a much smaller matrix than the differentiable

memory. Correspondingly, MANNA’s performance improvement is between the two extremes.
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Figure 4.10. PE Utilization for the three platforms

4.5.2 Energy Efficiency

Since MANNSs are sequentially evaluated across time steps, to quantify the energy ef-

ficiency of the system we consider how many time steps each platform could compute for
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fixed amount of energy, i.e., steps/J. Based on this measure of energy efficiency, MANNA shows
substantial improvements of 58x-301x (122x on average) over the 1080-Ti and 86x average
improvement over the 2080-Ti, as shown in Figure 4.9. A majority of this energy efficiency
is derived from the increase in performance demonstrated in Figure 4.7, reducing the amount
of time the system needs to be active to compute a time step. Moreover, MANNA consumes
an order of magnitude lower power than GPUs, which further increases its energy efficiency.
Finally, as shown in Figure 4.10, MANNA exhibits much higher (average 7x over the baseline
GPU) utilization of its processing elements, leading to a higher energy efficiency, as the un-

derutilized on-chip resources of the GPU still draw considerable power without improving

performance.
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Figure 4.11. Manna performance trends with strong scaling

4.5.3 Manna Scaling

Strong scaling. First, we perform a strong scaling analysis in which we compare the
performance of a small, four tile baseline configuration of MANNA to designs having more
tiles, while keeping the workload fixed. The results of this analysis are shown in Figure 4.11.
Although Manna is able to scale quite well for many of the larger benchmarks, there are
some limitations to the strong scaling of MANNA. First, by choosing to distribute the external
memory across the tiles such that M Distrib = 1, we see diminishing returns for smaller

Ny, as in the case of smaller benchmarks, or for instances were N, is similar in size (or
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greater) than Ny. But even for the large benchmarks where Ny >> N, we begin to see
diminishing returns as the scaling factor increases because MANNA becomes limited by the
serial accesses to the SFUs in each tile. Therefore, the speedups achievable through strong
scaling are limited without (i) also allowing parallelization across M}, and (ii) increasing

the number of SFUs accordingly.
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Figure 4.12. Manna performance trends with weak scaling

Weak scaling. In this analysis, unlike the strong scaling analysis, as we grow the number of
DiffMem tiles in ManNA, we correspondingly grow the differential external memory size of the
benchmarks used, while maintaining the aspect ratio. So, if we analyze a system with sixteen
tiles, then both dimensions of the external memories used in the benchmarks are doubled as
compared to those used for the four tile system, resulting in a problem size that is four times
larger. As seen in Figure 4.12, MANNA exhibits near-ideal weak scaling, exhibiting very little
variability as the number of tiles and problem size are both changed. This is due to MANNA’S
ability to exploit the embarrassingly parallel nature of many of the MANN kernels, meaning
the amount of inter-tile communication required is minimal compared to the amount of

memory accesses and compute that each tile performs between communications.

Scaling the Differentiable Memory. Finally, we discuss scaling the differentiable mem-
ory to be larger than the capacity of a single MANNA chip. In this case, multiple ManNA
chips can be used in a cluster, with the state distributed across them. This scaling method
increases the parallelism and compute available proportionally with the capacity of the dif-
ferential memory. However, in scenarios where scaling out is prohibitive due to cost or space

constraints, a High Bandwidth Memory (HBM) can be introduced in the memory hierarchy
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of a single MANNA chip without significant degradation in performance. To understand this
further, consider the worst-case scenario in which there is no re-use of the differentiable
memory. Each tile has 32 eMACs, each of which requires 4 bytes of differentiable memory
elements, for a total of 128 bytes each cycle. An HBM2 module can provide 256GB/s of
bandwidth. Since MannA has a 500MHz clock, this means that MANNA can receive 512 bytes
per clock cycle from HBM2, enough to feed four tiles. Thus, with 4 such memory mod-
ules, the 16-tile MaANNA baseline can have enough bandwidth to cater to all its processing
elements. However, adding DRAM is not without its drawbacks. Each HBM2 controller will
add ~ 35mm? area [111], leading to an increase in total chip area from 40mm? to 180mm?.
At a 25W power envelope for each HBM2 module, the TDP of Manna will increase to 116W.
This design would result in an average 17x improvement in energy efficiency for MANNA over

the baseline, down from the 122x improvement for the SRAM-only design.

4.5.4 Ablation Study

We next compare MANNA to three accelerator variants in order to illustrate how the
various architectural features of ManNNA contribute to its performance. The first variant,
MemHeavy, is a design optimized for low FLOPs/byte that dedicates the vast majority of the
die area to large, highly-banked on-chip memories. However, it does not provide hardware
support for transpose or element-wise operations. The second variant builds on the first
variant by adding support for transpose (MemHeavy-Transpose), while the third variant
replaces the traditional MAC units with the proposed eMAC units (MemHeavy-eMAC). As
shown in Figure 4.13, MANNA achieves 2x-4x (3.3x average) performance improvement over
the MemHeavy design. Similarly, it achieves 2.3x, and 1.8x average speedup over the designs

with only hardware-assisted transpose and eMACs, respectively.

4.6 Conclusion

MANNS are a promising direction in machine learning that enable DNNs to achieve cog-
nitive capabilities well beyond those of classical DNNs. In this chapter, we provide a detailed

investigation of the memory and computational characteristics of MANNSs, as well as their
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Figure 4.13. Impact of MANNA’s architectural features.

impact on the design of an efficient accelerator for MANNs. We present MANNA, a specialized
hardware accelerator for MANNs. Manna is better suited to the low FLOPs/Byte ratio in-
herent to MANNSs, allocating most of the on-chip die area to memory. MANNA also utilizes a
hardware-assisted transpose mechanism to accomodate the heterogeneity of memory access
patterns found in MANNs. We evaluate a 16-tile MANNA configuration and demonstrate sig-
nificant performance and energy benefits over GPUs, as well as favorable weak and strong

scaling.
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5. SOFTERMAX: HARDWARE/SOFTWARE CO-DESIGN OF
AN EFFICIENT SOFTMAX FOR TRANSFORMERS

5.1 Introduction

Transformer neural networks have recently become an extremely important deep learn-
ing (DL) workload, achieving state-of-the-art performance in a number of natural language
processing tasks (NLP) [112]. These networks are characterized by their use of Transformer
layers, which utilize self-attention, an attention mechanism that relates different symbols
within a sequence in order to compute a representation of the sequence.

Based on the success of the self-attention mechanism, the Transformer network and its
later variants have quickly come to dominate the field of natural language processing. This
success is not just limited to NLP tasks; Transformer-based networks have recently begun
to also show tremendous promise on tasks previously dominated by Convolutional Neural
Networks (CNNs), such as image recognition [113].

However, the functional performance of Transformers comes at a cost. These networks
are quite large, spanning hundreds of millions to hundreds of billions of parameters in re-
cent networks such as BERT [114], Megatron [115], GPT-2 [116] and GPT-3 [87]. These
networks are continuing to grow in size; OpenAl’s GPT-3 [87] has 175B parameters and an
input sequence length of 2048 tokens in comparison to GPT-2’s 1.5B parameters and se-
quence length of 1024. Looking beyond the high memory and compute overheads associated
with large models, Transformer networks also have a unique mix of computations, as each
attention layer of a Transformer network consists of softmax and dropout operations in ad-
dition to the standard matrix multiply-based fully-connected layers. As shown in Figure 5.1,
these attention operations, particularly the softmax computation, represent a large fraction
of runtime, especially at the longer sequence lengths found in more recent state-of-the-art
networks.

Previous DL inference accelerators have focused on CNNs, MLPs and LSTMs, which
are dominated by matrix-multiply operations. Relatively little attention has been given to
the acceleration of softmax, since it contributes a negligible amount to the runtime of these

networks. With the growing importance of Transformers (e.g., inference for conversational
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Figure 5.1. Runtime breakdown for BERT-Large on a Volta GPU. Softmax
contributes a larger fraction of the run time in Transformers than other DNNs,
particularly at the longer sequence lengths seen in state-of-the-art networks

AI), it has become important to improve the performance of the softmax operation, which

is the focus of this chapter. To that end, we make the following contributions:

o We propose Softermax, a hardware-friendly softmax algorithm that consists of base
replacement, low-precision softmax computations, and an online normalization calcu-

lation

o Taking advantage of the fine-tuning paradigm of Transformer-based networks, we uti-
lize Softermax-aware finetuning to reduce the accuracy loss incurred by our hardware-

friendly algorithm while introducing no additional training overhead

o We detail the microarchitecture necessary to implement Softermax in an inference

accelerator

o We demonstrate that Softermax achieves a 2.35x more energy efficient implementation
while using 0.90x the area in a Tnm FinFET technology, with negligible impact on

network accuracy

The rest of this chapter is organized as follows. In Section 5.2, we detail our algorithmic

adaptions to the traditional softmax algorithm, which ease the implementation of a hardware-
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friendly design. In Section 5.3, we detail the hardware units necessary to implement our
redesigned algorithm. In Section 5.4, we describe our experimental setup and in Section 5.5

we evaluate our Softermax proposal. Finally, Section 5.6 concludes the chapter.

5.2 Softermax Software

The Softermax algorithm, described in Figure 5.2, is comprised of four enhancements
over the standard softmax. First, we propose switching the base used in the exponen-
tial calculation from Euler’s number, e, to 2. Second, we replace full precision computa-
tions with fixed-point, low precision calculations— including for exponentiation and division.
Next, we use a hardware-friendly online normalization scheme to avoid an additional ex-
plicit pass to calculate the max. Finally, we propose Softermax-aware finetuning, wherein
a non-Softermax based pretrained model is fine-tuned for a specific task, using Softermax
in place of the standard softmax layer, in order to account for errors introduced by our first
two techniques. We note that this fine-tuning for downstream tasks is already required for
Transformer-based networks, so we are not introducing additional overheads; we are sim-
ply making the required fine-tuning Softermax-aware. In summary, a Transformer-based
model is first pre-trained using the standard, high-precision softmax, fine-tuned for a specific
downstream task in a Softermax-aware manner to mitigate accuracy loss, and deployed for

inference using Softermax.

5.2.1 Base Replacement

Softmax is used in DNNs for three reasons. First, it produces a probability distribution
which is useful for classification as well as in self-attention, where a probability can be thought
of as a weighting. Second, it is differentiable and therefore can be used with gradient descent-
based optimization. Finally, the use of the natural exponential provides a non-linear function
wherein small differences in input values are exaggerated, leading to much higher probabilities
for higher scores. We note that the use of the natural exponential results in overheads for
both specialized and general-purpose hardware. In specialized hardware, it is usually cheaper

to implement the natural exponential using a power of two compute unit coupled with a
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Figure 5.2. The algorithmic changes proposed in Softermax consist of: (1)
replacing e” with a low-precision implementation of 2%, (2) replacing an explicit
pass to calculate the max with an online version, and (3) replacing the max-
imum function with an integer-based version to simplify the renormalization
calculations.

dedicated hardware multiplier for performing the base e to base two conversion. Similarly, in
general-purpose hardware, there is software overhead to perform this conversion. We further
note that a base two exponential still satisfies the three desirable properties of softmax listed
above, while allowing for a more hardware-friendly implementation. Therefore, Softermax
uses a base-two based softmax. We demonstrate that this substitution leads to negligible

loss in accuracy when Softermax-aware fine-tuning is performed.

5.2.2 Low-precision Softmax Operations

Even with the above base replacement, softmax now consists of a power of two calcu-
lation, an accumulation, and a division. With 32-bit single-precision floating point, these
units can be expensive in terms of area and power. Part of the reason these units are so
expensive is the need for highly accurate results, particularly in general purpose computing
platforms that cater to a wide range of applications. DNNs, by contrast, are quite resilient
to errors introduced through low precision computing. With this in mind, we propose per-
forming all of the softmax compute operations - exponential, accumulation, and division -

in low precision. We note that this is only possible through custom hardware, as commod-
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Figure 5.3. (a) The Unnormed Softmax Unit determines the local max, per-
forms the power of 2 calculation using the current max, and accumulates the
denominator. (b) The Normalization Unit performs the renormalization of
the numerator, as well as the final division of the numerator by the accumu-
lated sum. (c) In an example accelerator [29], the Unnormed Softmax can be
integrated into the post-processing vector unit on a per PE basis, while the
Normalization Unit can be shared across multiple PEs and integrated between
the PEs and the Global Buffer

ity hardware platforms do not support low precision special function units like power and
division. Again, Softermax-aware fine-tuning minimizes accuracy loss as a result of these

low-precision operations.

5.2.3 Hardware-friendly Online Normalization

In the DNN context, softmax is typically used in a “numerically stable” version, wherein
the input vector is preprocessed by subtracting the maximum of the vector from every ele-
ment. This helps with training stability, but at the cost of introducing an additional pass
through the input vector. Prior work [117] has proposed an “online normalizer” calculation,
where the max is calculated continuously along with the normalization value (i.e, the sum-
mation for the denominator). In this case, the maximum of the vector is not subtracted
before applying the exponential; rather; it is the maximum of the vector up to this point.
Thus, the current running sum must be renormalized when a new max is found. To see
why this is the case in a concrete example, assume we are processing the vector [2,1,3]. For
the first element, the running max is two and thus the running sum will be d = 2272 = 1.

For the second element, the running max is still two and thus the running sum will be
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d=1+2'""2=1.5. For the final element, however, we encounter a new maximum value of
three. We cannot simply add to the existing sum as is (i.e., d # 1.5 + 2373 = 2.5) since the
previous accumulations were computed with a different point of reference for the numerically
stable exponentiation. We must instead renormalize the running sum to account for this by
multiplying by 20/dMaer—NewMaz “go that d = 1.5 x 2273 + 2373 = 0.75 + 1 = 1.75. Note
that this result is the same as if we had computed the accumulation using the true global
maximum from the start: d = 2273 + 2173 4 2373 = 1.75. For a mathematically rigorous
proof of this algorithm, we refer the reader to [117].

We propose a simple co-design modification in order to make the online calculation
more hardware-friendly. Specifically, we note that, unlike the original online normaliza-
tion algorithm, we use a base two implementation. With this in mind, we switch the max
function with an integer max function, ensuring that the difference between maxes is al-

ZOldMa:rfNewMax and

ways an integer. Since the renormalization operation is multiplying by
OldMax — NewM azx is guaranteed to be an integer, the renormalization hardware can there-

fore be realized simply using a shifter.

5.3 Softermax Hardware

We propose two compute units, viz. the Unnormed Softmax unit and the Normalization
unit, to realize Softermax (Figure 5.3). The Unnormed Softmax unit calculates the local
maximum, performs the exponential, and accumulates the denominator (lines 4-6 in the final
algorithm in Figure 5.2). The Normalization Unit performs the final renormalization of the
numerator and the division (lines 9-10). We provide greater detail of the implementation of
these units in the subsections below. We also detail how these units may be integrated in

an existing DNN inference accelerator.

5.3.1 Unnormed Softmax Unit

The Unnormed Softmax unit, shown in Figure 5.3(a), consists of three subunits: the

IntMax unit, the Power of Two unit, and the Reduction unit.
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IntMax Unit: The IntMax Unit operates on a slice of an output vector. It applies a
ceiling function to each element in parallel before finding the max of the vector slice, thereby
implementing an IntMax instead of simply max.

Power of Two Unit: Power of two is implemented by decomposing the fixed point input
into integer and fractional parts. The fractional part is implemented as a linear piece-wise

function (LPW) applied to the range [0, 1), defined below.

Tsealed = Jrac(x << 2)// 4 segments in LPW
Ipw = Myt [Int (Tscated)] * frac(Tscatea) + Crut [int(Tscated)]

In our implementation, we use four segments in the LPW equation, while modern general
purpose hardware typically utilize between 64-128 entries, a considerable overhead. To ac-
count for the four segments, our implementation (described above) requires a shift left by two
(multiplication by four) in the first line The fractional part of this scaled value ( frac(Zscated))
is then multiplied by the output of the m LUT. We note that, in cases where the input has
less than two decimal places (i.e., the input has two or fewer fractional bits), the fractional
part will always be zero. Hence, the m LUT is unused and the LPW implementation of the

fractional part is simply:

lpw = Clut [int(mscaled)]

Either way, the output of the LPW is then shifted by the integer part to obtain the final
result.
Reduction Unit: The Reduction unit receives the UnnormedSoftmaz from the power
of two unit and reduces it using a summation tree. It also reads from buffers in case the
output vector is larger than can be computed in one slice. In this case, the current largest
max for the row is read from the buffer along with the current running sum for that row.
The current largest max is compared to the Local Max found and the running sum is renor-
malized as needed using a shifter when there is a difference between the local max and the

current determined max for a row, as required by the online normalization algorithm. The
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renormalized running sum and the local sum are then added together to obtain the new

running sum for the row.

5.3.2 Normalization Unit

The Normalization Unit performs the renormalization of the numerator as well as the
division to obtain the final result. As a result of the integer max used in Softermax, it is
guaranteed that the difference between the local maximum and the global maximum is an
integer. Therefore, due to the base change used in Softermax, the renormalization of the
numerator can be implemented simply using a shifter. The division is implemented using a

linear piece-wise reciprocal unit, followed by an integer multiplier.

5.3.3 Accelerator Integration

The UnnormedSoftmax Unit is designed to integrate into tensor processing hardware,
present in GPU tensor cores [118], TPUs [8], or other dedicated DNN inference accelerators.
For example, using the MAGNet architecture [29] as a baseline, the unit can be integrated
into its post-processing unit (PPU), which performs operations such as pooling and ReLu.
Ideally, the UnnormedSoftmax Unit should be sized such that it matches the MAC through-
put, fully exploiting the low-overhead hardware enabled by Softermax. The Normalization
Unit can be introduced between the processing tile and global memory to complete the

softmax off of the critical path.

5.4 Experimental Setup

Software setup: To evaluate the impact of Softermax on accuracy, we modified the Py-
Torch Huggingface library [119]. Our Huggingface implementation uses a 99.999% percentile
calibrator to generate the scale factors which are then used to to perform quantization-aware
finetuning with 8-bit weights and activations [120]. We further augment our implementation
with custom forward/backward passes for each of the fixed point softmax operations: power
of 2, reciprocal, etc. The forward passes faithfully implement the fixed point, low precision

computations, while the backward passes use the straight through estimator (STE) for the
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conversions to/from fixed point. The bitwidths for each operation are summarized in Ta-
ble 5.1. We note that the input and output of our Softermax are 8-bits each, allowing for
easy integration into existing 8-bit integer vector MAC datapaths, such as those found in

modern GPU tensor cores and DNN inference accelerators.

Table 5.1. Summary of Softermax Bitwidths, Q(Int., Frac.)

Inp. LocalMax Unnormed PowSum Recip. Outp.

Q(6,2)  Q(6,2) Q(1,15)  Q(10,6)  Q(L7) Q(L,7)

Hardware setup: To quantify the area and power overheads associated with Softermax,
we implemented the proposed hardware units using high-level synthesis and integrated the
units into an existing accelerator, MAGNet [29]. We compare our Softermax implementation
to a standard 16-bit floating point precision softmax implementation that uses Synopsys
DesignWare components[121]. We note that this represents an optimistic baseline already,

as current state of the art accelerators [118] use a full 32-bit precision implementation.

5.5 Evaluation

We split our evaluation of Softermax into two parts. First, we demonstrate that our
proposals for making softmax more hardware-friendly do not have a negative impact on
accuracy. Second, we demonstrate that these proposals do in fact result in more efficient

hardware implementations.

5.5.1 Impact on Accuracy

We use the setup described in the previous section to analyze the impact of our proposed
Softermax implementation.

Under these conditions, we find that Softermax results in negligible loss in accuracy.
Table 5.3 details the accuracy results on the BERT-Base and BERT-Large networks, across
the SQUAD and GLUE tasks. To summarize, Softermax results in negligible impact on

accuracy; the worst drop in accuracy is under 0.5%, while the average accuracy actually
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Table 5.2. Experimental Setup

Design Tools

HLS compiler: Mentor Graphics Catapult HLS
Verilog simulator: Synopsys VCS

Logic synthesis: Synopsys Design Compiler Graphical

Power analysis: Synopsys PT-PX

Design Parameters

Weight / Activation precision: 8 bits
Accumulation precision: 24 bits
VectorSize: 16 | 32
NLanes: 16 | 32
Input Buffer Size: 16KB | 32KB
Weight Buffer Size: 32KB | 128KB
Accumulation Collector Size: 6KB | 12KB
Technology Node: TSMC 7nm
Supply Voltage: 0.67V

Table 5.3. Accuracy results for Softermax vs an eight-bit quantized baseline
SQuAD RTE CoLA MRPC QNLI QQP SST-2 STS-B MNLI

BERT Baseline 86.28 62.45 53.65 84.31 90.77  90.71  92.09 87.86 83.27
Base Softermax  85.86 64.26  56.76 84.07 90.41 90.83  92.20 87.78 83.80

BERT  Baseline 89.40  65.70  59.58 86.03 92.09 91.24 92.89 89.39 85.87
Large Softermax 89.46 69.68  60.10 86.27 91.76 90.90 92.66 89.55 85.74

increases 0.9% and 0.7% across all tasks for BERT-Base and BERT-Large, respectively. This
validates the use of Softermax as an acceptable replacement for full-precision, numerically-

stable softmax in Transformer-based networks.

5.5.2 Impact on Hardware Efficiency

Compute Unit Level Analysis. We first compare our proposed Softermax implemen-

tation to a DesignWare-based baseline [121] in isolation— i.e., not integrated into the PE of

83



a DNN accelerator. Specifically, we compare the Unnormed Softmax unit, as implemented
using the techniques outlined in Softermax, to a unit in which the requisite units (max,
exponential, accumulation) are implemented using DesignWare components. We consider a
softmax workload with a sequence length of 384, as used in SQuAD dataset. We see that
Softermax offers a much more efficient implementation, resulting in an Unnormed Softmax
unit that is 4x smaller and 9.53x more energy efficient as demonstrated in Table 5.4. Sim-
ilarly, the Normalization Unit is much more efficient than the baseline, resulting in a unit

that is 1.54x smaller and 2.53x more energy efficient.

Table 5.4. Softermax comparison to DesignWare-based softmax baseline for

SQUAD dataset

Area (um?) Energy (uJ)

Unnormed Softmax Unit 0.25x 0.10x
Normalization Unit 0.65x 0.39x
Full PE 0.90x 0.43x
= 7 - - -
= ® Softermax (16 wide) » DW Baseline (16 wide) _
g 6 Softermax (32 wide) DW Baseline (32 wide)
g 3T
o
g4
2t °
® 1| -
] a
|-|=J 0 1 1 1 1 1
0 100 200 300 400 500 600

Sequence Length

Figure 5.4. Energy consumption of a Softermax-based PE vs a DesignWare
baseline for SELF+Softmax as the sequence length increases. We evaluate 16-
and 32-wide implementations.

PE-level Analysis. Next, we compare Softermax to the DesignWare-based baseline when

integrated into the PE of a DNN accelerator. Specifically, we integrated the Unnormed
Softmax unit into a 32-wide MAGNet PE, with parameters as described in Table 5.2. As
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shown in Table 5.4, we see that Softermax still offers a more efficient solution even when
integrated into a PE and thus accounting for other, non-softmax related components such as
the MAC units and various scratchpads; Softermax is 1.11x more area efficient and 2.35x
more energy efficient than the baseline.

Sequence Length Sweep. Finally, we perform a sweep of the sequence length of the input
vector, evaluating both 32-wide as well as 16-wide PE configurations. As shown in Figure 5.4,
Softermax scales much better than the baseline, both starting from a lower baseline and
having a more shallow slope. This is crucially important in Transformer-based networks,

which are trending towards longer and longer sequence lengths.

5.6 Conclusion

Transformer networks are an important emerging class of deep learning workloads, which
differ computationally from other DNNs through their extensive use of softmax computa-
tions. Implementations of Transformers on current general-purpose and specialized hardware
platforms are therefore limited by the time and energy of softmax operations. To address
this challenge, we proposed Softermax, a set of software and hardware optimizations to
softmax operations in Transformer networks. Our implementation of Softermax indicates
that it can lead to 4x area and 9.53x energy improvements over conventional softmax units,
translating to 1.11x area improvement and 2.35x energy improvement for softmax compu-
tations within a state-of-the-art DNN accelerator, with no loss in accuracy compared to the

quantized baseline.
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6. GNNERATOR: A HARDWARE/SOFTWARE
FRAMEWORK FOR ACCELERATING GRAPH NEURAL
NETWORKS

6.1 Introduction

Deep Neural Networks (DNNs) have established state-of-the-art accuracy in a wide range
of domains, such as image recognition [1], [100], [122], [123], language translation [73], [124],
natural language processing [114], [125], and voice recognition [75], [126]. For the most part,
these advances in the state-of-the-art have been limited to inputs from the Euclidean domain,
such as images, speech, and text. Recently, however, there has been research in expanding the
success of deep learning to non-Euclidean domains, such as point clouds, graphs, manifold,
etc., resulting in the emerging field of geometric deep learning [127]. Of particular interest is
the application of deep neural networks to graph-based representations. These graph neural
networks (GNNs) are used in a wide variety of applications such as physics modeling [128],
[129], chemical synthesis [130]-[132], recommendation systems [133], medical diagnosis [134]
even electronic design automation (EDA) problems [135], [136]. Recently, GNNs have moved
from the research lab to production systems [93], [137].

These GNNs consist of two main stages: the feature extraction stage and the aggregation
stage. The feature extraction stage is essentially a traditional deep neural network— specif-
ically, a fully-connected layer. In the aggregation stage, each vertex in a graph aggregates
features from its neighbors into a new feature representation, resulting in sparse, random
memory accesses. Thus, the aggregation stage is similar to a traditional graph processing al-
gorithm. However, there is a crucial difference between the aggregation stage in GNNs and
other traditional graph-processing workloads such as PageRank; the node (edge) features
being access in traditional workloads tend to be a few bytes and of a static length, whereas
the features in GNNs can be thousands of bytes long, and are of a dynamic length, since the
feature extraction stage may project the features into a different dimension space. These
stages are then combined in order to form a single GNN layer, and multiple GNN layers are

stacked to form the full GNN.
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As a result of their unique computational characteristics, which are a combination of both
dense computations as well as graph-based computations, existing hardware architectures are
not well suited for GNNs. Neural network accelerators such as Eyeriss [10] or Google’s TPU
[8] do not have support for graph operations. Instead, the graph operations such as feature
aggregation must be performed by casting the operation as a sparse-dense matrix operation,
a popular optimization for high performance graph analytics [138]. This is undesirable for
two main reasons. First, existing DNN accelerators are optimized for the sparsity levels
found in traditional DNNs, which tends to be under 85% for weight sparsity and 60% for
activation sparsity [12]. Graph sparsity, on the other, can be vastly more sparse; the popular
Amazon shopping dataset is 99.998% sparse. Further, realizing the graph operations as
sparse-dense matrix operations limits the operations to those than can be expressed as such,
which artificially constrains the space of future GNN research. Finally, the hardware and
software for these neural network accelerators are not optimized for the memory patterns
present in the graph-based aggregation step, leading to poor utilization of on-chip memories.

Graph analytics accelerators such as [139], [140] are also ill-suited for GNNs. First, these
accelerators simply lack support for the dense, compute-heavy aspect of GNNs found in
the feature extraction stage. Surprisingly, these accelerators are also not well-suited for the
graph-based aggregation stage of GNNs. This is because graph analytics accelerators tend
to be optimized for small graph features, as is typical in traditional graph workloads such as
PageRank. For example, Graphicianado [101] is optimized for supporting graph features of
a few bytes at most; GNN graph features, by contrast, can be thousands of bytes.

Thus, there have been recent efforts to design graph neural network-specific accelerators.
HyGCN [59] and GNNA [60] use heterogenous compute units for the feature extraction and
aggregation stages, which are then tightly coupled together. EnGN [61] proposes a unified
architecture that performs the two stages using the same register file and compute units.
These previous works mainly focus on small GNNs, with small hidden dimensions and only
a single layer, which are unrepresentative of the sizes of networks being currently proposed
and used in production. Further, these works do not consider many parts of the GNN

architecture design space, such as graph communication styles.
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To address these shortcomings, we propose GNNERATOR a new Graph Neural Network

accelerator. GNNERATOR consists of a Graph Engine and a Dense Engine, provisioned to

efficiently execute the aggregation and feature extraction stages, respectivel. GNNERATOR also

contains a Controller that orchestrates the fine-grained pipelining between the two engines.

The Dense Engine is a systolic-array based compute engine that is optimized for the large

amounts of weight-reuse present in GNNs. The Graph Engine consists of multiple Graph

Processing Elements that operate on different nodes of a graph, each of each has multiple

lanes that execute multiple feature dimensions in parallel. Thus, the Graph Engine can

exploit both inter- and intra-node parallelism.

We develop a well-defined execution model and a compiler framework to realize GNNs

on the proposed architecture using this execution model. We evaluate GNNERATOR on a suite

of benchmarks using a GPU baseline, as well as HyGCN. We also analyze the impacts of

larger networks, as well as explore different aspects of the GNN accelerator design space.

In summary, we provide the following contributions:

o We design GNNERATOR, a programmable graph neural network accelerator that exploits

both the intra-node parallelism as as well as the inter-node parallelism abundant in

GNN workloads

o We propose a novel, feature-dimension blocking dataflow for GNNs and provide hard-

ware support for this dataflow in the GNNERATOR accelerator

o We detail the ISA, execution model, and compiler necessary for efficiently executing

GNNs on GNNERATOR

e We develop a simulation framework that implements the above architecture and soft-
ware proposals. We use this framework to demonstrate the benefits of GNNERATOR.
Our experiments indicate that GNNERATOR achieves an average speedup of 8x over an
NVIDIA 2080-Ti GPU and an average speedup of 3.15x over a state-of-the-art GNN
accelerator, HyGCN

o We provide a detailed study of the impact of various, previously unexplored GNN

architectural parameters such as DNN dataflow and graph communication patterns,
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as well as the potential bottlenecks for GNN accelerators as GNN continue to increase

in size (i.e., depth and hidden layer size).

The rest of the chapter is organized as follows. Section 6.2 describes the proposed
GNNERATOR architecture, as well as its ISA. Section 6.3 details how GNNs are mapped to and
executed on GNNERATOR. Section 6.4 explains the proposed GNNERATOR compiler and runtime
environment, including memory layout optimizations used for efficient usage of the on-chip
memories. Section 6.5 outlines the simulation framework used to evaluate the proposed
architecture. Finally, Section 6.6 presents the results of our experiments and Section 6.7

concludes the chapter.

6.2 GNNerator Architecture

GNNERATOR consists of two different compute engines, the Dense Engine and the Graph
Engine. The Dense Engine is used for performing the dense, regular feature extraction
steps of a GNN, while the Graph Engine performs the graph-based aggregation steps. The

interoperation of these engines is controlled by the GNNerator Controller.

6.2.1 Dense Engine Overview

The Dense Engine is a systolic array-based DNN accelerator architecture that consists
of a two-dimensional systolic array-based matrix multiplication unit, an activation unit, and
input, weight, and activation buffers. All on-chip buffers are double-buffered. The input
and weight buffers feed the systolic array. The output of the two-dimensional systolic array
is connected to a one-dimensional activation unit, which performs any required activation
operations (e.g., ReLu). The results from the activation unit are stored in the output buffer,
where they can either be transferred out to DRAM or to the input buffer to be reused as
input to the systolic array. The Dense Engine can be configured as using an input-, output-,
or weight- stationary dataflow using the DNN Stationality hyperparameter. In order to
support fine-grain pipelining of the feature extraction and aggregation stages, the Dense
Engine also contains connections with the Graph Engine that are used to communicate the

current state of the respective computing engines.
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6.2.2 Graph Engine Overview

Figure 6.1. GNNERATOR (top left) consists of two heterogenous compute en-
gines, a Dense Engine and a Graph Engine, that share feature storage. The
Dense Engine (bottom left) is a systolic-array based architecture. The Graph
Engine (top right) consists of a set of fetch and writeback units that orches-
trate off-chip data movement of the graph shards as well as a compute unit.
The compute unit (bottom right) contains units that orchestrate on-chip data
movement as well as units that compute on that data.

The Graph Engine is tailored for the irregular workload of graph processing. It consists

of four major units— the Shard Feature Fetch, the Shard Edge Fetch, the Shard Compute,

and the Shard Writeback Units— as well as a Graph Engine Controller which orchestrates

the processing pipeline between the four major units.

The Shard Edge Fetch and Feature Fetch Units work in parallel to load the edge data and

feature data, respectively, required for computing a given graph shard from main memory

to the on-chip scratchpads. After a shard is loaded, this computation is performed by the

Shard Compute Unit, which steps through the edges associated with the given graph shard
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and performs the given computations. Finally, the Shard Writeback Unit stores output data
from the on-chip scratchpads to main memory. As in the Dense Engine, all of the on-chip
buffers in the Graph Engine are also double-buffered, enabling the pipelining of the above
computations, such that the next shard is being prefetched while the current shard is being
executed.

Internally, the Shard Edge Fetch, Shard Feature Fetch, and Shard Writeback Units are
quite similar, consisting mainly of an automatic address generator that steps through the
necessary addresses for performing the requisite loads (stores). The Shard Compute Unit,
on the other hand, is more complex.

It contains an Edge Fetcher, which steps through the associated edges for the current
graph shard. For each processed edge, the Edge Fetcher distributes the required edge in-
formation (e.g, source node ID) to the Feature Fetcher Units, as well as the Writeback
Unit. These units use this information in order to generate read (write) accesses to the on-
chip scratchpad, similar to the Shard level units. Note that there are three different Feature
Fetch Units. These fetch units feed the actual compute units. The Apply Unit performs
binary operations such as addition or multiplication, the Special Function Unit performs
complex unary operations such as exponentiation or ReLu, and the Reduce unit performs
an aggregation operation, such as maximum or summation. Each of these compute units are
vectorized in order to exploit intra-node parellelism (i.e., the different dimensions of a given
node’s feature).

In order to exploit inter-node parallelism, the Shard Compute Unit contains multiple
copies of the set of units described above, referred to collectively as a Graph Processing
Element (GPE). Each GPE (Edge Fetcher, Input Feature Fetcher, Modified Feature Fetcher,
Writeback, Apply Unit and Reduce Unit) are assigned to a subset of the edges for a given
graph shard. Since the Special Function Unit contains functional units that are area- and
compute-intensive, the number of these units may be less than the other units. To accom-
modate this, a simple round-robin Arbiter is used to grant access to the limited number of
units and a crossbar is used to deliver the results to the appropriate Reduce Unit. In order
to support the push-style dataflow, wherein a source nodes pushes its contribution to all of

its neighbors, the Reduce Units may also contain an atomic lock to ensure that only one
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Reduce Unit is modifying the aggregated feature for a given destination at one time. This
lock is implemented as a simple CAM-structure.

In addition to the units described above, each GPE also contains three sets of memories:
a graph metadata memory (i.e., edge list), an input feature memory, and a modified feature
memory. Every GPE can access the feature memories in the other GPEs through a broad-
casting crossbar, which avoids stalls associated with reading the same feature. However,
atomicity is still ensured as described above. The edge memories are private to each GPE.
The amount of total on-chip capacity for each type of memory is equally distributed across

the number of GPEs, with one SRAM for each GPE.

6.2.3 GNNerator Controller

The GNNerator Controller coordinates the interaction between the Dense Engine and
the Graph Engine. This coordination is mainly dependent on which of the engines is the
producer and which is the consumer for a given computation— that is, if the computation is
a feature extraction followed by an aggregation or the other way around.

Dense first. If the feature extraction is first, then the Dense Engine must run ahead of the
Graph Engine. Hence, the GNNerator Controller reads the state of the Dense Engine and
stalls the Graph Engine until the source nodes for the current shard of the Graph Engine
have been processed by the Dense Engine.

Graph first. If aggregation is first, then the Graph Engine must run ahead of the Dense
Engine. Hence, the GNNerator Controller reads the state of the Graph Engine and stalls
the Dense Engine until the Graph Engine is done with a set of destination nodes (i.e., the

Graph Engine has gone completed a full column of the shard grid).

6.2.4 ISA

In order to ensure the wide variety of emerging GNNs can be executed on GNNERATOR, we
design a custom CISC-based ISA for GNNErRATOR, with two different classes of instructions:
dense instructions and graph instructions. The dense instructions are used to perform course-

grained matrix operations such as matrix-multiply or matrix-add. Other operations common
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to DNNs and which are applied in a dense manner, such as ReLU or softmax, are also
performed using the dense instructions. The graph instructions can be divided into two

categories: compute and memory instructions.

Graph memory instructions. A graph memory instruction consists of nine fields:
memory_type, shard, aggregate, feature_type, sram_base, and dram_base. There are
two memory types: off-chip memory instruction and on-chip memory instructions. Off-chip
memory instructions are used to program the automatic address generators within the Shard
Edge Fetch, Shard Feature Fetch, and Shard Writeback Units, while on-chip memory instruc-
tions are used to program the automatic address generators within the Shard Compute Unit.
The shard field indicates either the graph should be accessed in a sharded manner (such as
when aggregating features) or in a streaming fashion (such as when applying a normaliza-
tion to all nodes without any edge information). The feature_type and aggregate fields
indicate what type of feature is being loaded and how it being used, which has implications
on what address should be generated. For example, a node that is being aggregated must be

written back and reloaded. Finally, the bases indicate where in memory the features begin.

Graph compute instructions. A graph compute instruction is broken up into four fields:
unit, op, srcO, srcl. unit specifies which compute unit the instruction is associated with
(e.g., the Reduction Unit) and op specifies the operation that unit should perform (e.g.,
sum). The source field(s) indicate either the input should be read from the associated
Fetcher or if it should be read from the internal register. Note that there is not destination
field, as each unit always feeds its output directly to its successor and the addresses are

determined by the address generators using the graph memory instructions.

6.3 GNNerator Execution Model

In this section, we describe the execution model adopted by GNNERATOR.

6.3.1 Graph Execution Model Overview

In order to demonstrate the execution model, we use Figure 6.2 as an illustrative example,

showing a simple GNN network defined in pseudocode, using the Deep Graph Library (DGL)
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hneigh =max({Wohge, Yu; € N(v)})
h = Wlhneigh + Wih,e

g.ndata['h_act'] = g.ndata[‘'h’] @ w0

g.update_all(fn.copy_src('h_act', 'm’),
fn.max('m', 'neigh') )

neigh_act = g.ndata[‘neigh'] @ wl

h act = g.ndata['h’] @ w2

out = self act + n_act

g

BEGIN ONCHIP CONVOY

DENSE linear n new h, w0, h act
SHARD CONTROLLER input, u, h_act
SHARD CONTROLLER partial, v, neigh
BEGIN STREAM CONVOY

SET FFO u, h_act

SET_OF agg, Vv, neigh

REDUCE max u h_act, neigh

END STREAM CONVOY

END ONCHIP CONVOY

BEGIN ONCHIP CONVOY

DENSE linear n new neigh, wl, neigh_ act
END ONCHIP CONVOY

BEGIN ONCHIP CONVOY

DENSE linear n agg h, w2, out

END ONCHIP CONVOY

Figure 6.2. A GraphSage-based network defined mathematically (top), us-
ing the popular Deep Graph Library (DGL) framework, and in GNNERATOR
machine code. The bold machine code indicates compute and memory in-
structions, while the other code contains pseudo-instructions that provide in-
structions to the compiler.

framework, and GNNERATOR code. Notice that the GNNERATOR code contains instructions that
are not defined in Section 4.3.1. These pseudoinstructions are compiler directives, which are
used to define on-chip convoys and stream convoys, the two basic units of computation in
the GNNERATOR execution model.

On-chip convoy. An on-chip convoy encompasses one pass through a sharded graph. This
pass defines a "shard program” made of multiple stream convoys.

Stream convoy. An stream convoy defines the longest chain of instructions executed to-
gether in the Shard Compute Unit such that the output of one instruction is consumed by

the following instruction. Thus, a stream convoy has a maximum size of three instructions—
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the case where the output of the Apply Unit is consumed by the SFU which is in turn
consumed by the Reduce Unit and an explicit minimum size of one. Note that a stream
convoy actually always has an implicit size of three instructions, where a nop instruction is
used for units that are unused.

For each shard on-chip convoy, the Graph Engine Controller sets the internal auto-
matic address generation units within the various shard fetch/writeback units based on the
SHARD CONTROLLER instructions. For example, in Figure 6.2, we set feature h as an input
source node feature. As a result, when GNNERATOR is processing shard (U, V), it will ensure
that feature h is loaded from on-chip for nodes [U - n : (U 4 1) - n). Similarly, we set feature
neigh as a partial output for destination nodes. Partial outputs indicate that this feature is
used in a reduction operation and must be written back/reloaded as needed when the shard
controller moves to a new set of destination nodes (i.e., going from shard (U,V) to shard
(U,V +1).

Within each shard on-chip convoy, the chain of instructions defined by the stream
convoy(s) is applied to a shard before moving on to the next shard. Similar to the
SHARD CONTROLLER instruction, the SET_*F instructions set the internal automatic address
generation units of the associated Feature Fetchers within the Shard Compute Unit. These
fetchers combine this information with the edge information provided by the Edge Fetcher
stepping through the shard’s edge list in order to supply the desired inputs to the compute
units, which then apply the GNNERATOR compute instructions contained within the stream
convoy. In the working example, we can see that Feature Fetcher 0 is programmed to load
the feature h for the given source nodes (thus the Edge Fetcher provides it with the source
ID from an edge) and the Modified Feature Fetcher is programmed to store the output
feature neigh which represents the aggregated feature. Note that in the PUSH dataflow,
this feature may also have to reload the output feature as well. The inputs are first provided
to the Apply Unit because Feature Fetcher 0 is connected to that unit. Since there is
no APPLY instruction— nor SFU instruction)— these units simply perform nop instructions in
order to pass the input to the Reduce Unit.

Shard Order In order to compute a given sharded graph, GNNERATOR must step through

the two-dimensional grid depicted in Figure 3.5. This can be done in a source-major or
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Table 6.1. Analytical description of the cost of different ways to traverse the
two-dimensional sharded graph grid

Read Cost Write Cost
SRC Stationary S* I+ (S—1)*S—-S+1 S?—S5+1
DST Stationary (S? — S +1)x* 1 S

destination-major manner, each with different costs. When traversing in a source-major
fashion (i.e., across a row of the shard grid), a set of source vertices and their corresponding
feature(s) are loaded on-chip and remain on-chip for the entire row. The destination vertices,
however, must be written back and reloaded as we move from shard to shard. Conversely,
when traversing in a destination-major fashion, a set of destination vertices and their corre-
sponding feature(s) are loaded on-chip and remain on-chip until they are done aggregating,
while the source features must be reloaded as we move from shard to shard. Note that when
we move to a new set of source vertices, we do not have to write-back like we do in the
destination case. Further, notice that off-chip transfers can be saved by navigating this grid
in an S-pattern. Assuming this S-pattern, we show the read and write costs associated with
the two different orders in Table 6.1, where S is the number of shards and [ is the maximum
number of input features required to be on-chip at one time. Note that there is an additional
factor, the number of nodes per shard, but this factor cancels out across the different orders.
With these costs, assuming equal costs for reads and writes, we can analytically determine
the best ordering; destination stationary is best when there is only one input feature, the
ordering are equal at two input features, and row stationary is better if there are more than
two input features.

Feature Dimension Blocking. To minimize data transfers (i.e., minimize S in the equa-
tions in Table 6.1), we would like to maximize the number of nodes that can be held on-chip
at one time— that is, we would the shards to be as large as possible. However, large shards
are difficult to fit on-chip in the context of GNNs, since each node is associated with one
or more feature, each of each can be of a high dimension. Fortunately, the data storage re-
quirement imposed by high dimension features can be reduced by exploiting the insight that

these dimensions are treated independently during the graph processing phase of GNNs. As
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Algorithm 1: Standard Shard-based Algorithm
Input: Sharded Graph G; Width of Shard Grid W, Height of Shard Grid H,
Hidden Dimension Size D
Output: Updated graph G
1 for w in range (W) do
for h in range (H) do
L for d in range (D) do

AW N

L Glagg-Shard(h,w)[d] = Aggregate(G.Shard(h,w)[d])
G.Shard(:,w)[ : | = FeatureExtract(Gy,.Shard(:,w)| :])

[}

Algorithm 2: Dimension-blocking Algorithm
Input: Sharded Graph G; Width of Shard Grid W, Height of Shard Grid H,
Hidden Dimension Size D, Dimension Block Size B
Output: Updated graph G
for d in range (D) by B do
for w in range (W) do
for h in range (H) do
for b in range(B) do
dim=d+b
L Gagg-Shard(h,w)[dim| = Aggregate(G.Shard(h,w)[dim])

= Y, B U I

7 G.Shard(:,w)| : | = FeatureExtract(Gy,.Shard(:,w)[d : d + B}, G.Shard(:
yw)[])

a result, the graph processing computations can be blocked such that only a portion of the
dimensions are required on chip at one time. In this execution model, the graph metadata
(i.e., edge list) is loaded once. An on-chip convoy is then executed for the entire sharded
graph for a block of dimensions— say, [0, blockD]). After this finishes execution, we move
onto the next block of dimensions— [blockD, 2 - block D)— and re-execute the on-chip convoy
for the next block, while retaining the same graph metadata on chip. This way, we can
reduce the number of data transfers necessary, at the expense of additional memory accesses
to the on-chip edge list, since it must be repeated multiple times to process the full feature,
as well as additional memory accesses in the Dense Engine, as it must reload the partial

sums when moving on to the next set of blockD dimensions.
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6.3.2 Dense Execution Model Overview

The GNNERATOR execution model for the dense engine (i.e, feature extraction) is compar-
atively much more simple; it simply serially executes the set of dense instructions contained
within the on-chip convoy. The interaction between the Dense Engineand the Graph Engin-

eare then handled by the GNNerator Controller as described in Section 6.2.3.

6.3.3 GNN Accelerator Design Space

In addition to the above, the GNNERATOR execution model can be used to explore a variety
of the hyperparameters that defines the design space for GNN accelerators.
Edge Dataflows. In the pull edge dataflow, the edge list is assumed to be sorted such that
all edges with a common destination node are sequential in a GPE’s edge list memory. That
destination node is then pinned to the given PE until it has finished aggregating contributions
from all of its neighbors. Thus, the Shard Edge Feature determines which GPE’s graph
metadata memory to store an edge in by simply taking the modulo of the destination node’s
ID with respect to the number of GPEs. Since the assigned GPE contains all edges with the
same destination, a GPE always only has to access its own modified feature memory, which
eliminates any possible conflicts and the need for an atomic lock. However, the input feature
for a given edge may be located in a different GPE (i.e., the source node and destination
node map to different GPEs because €; mod #GPEs # €; mod #GPEs) and so each GPE
must be able to read every other GPE’s input feature. In the push edge dataflow, on the
other hand, the edge list is assumed to be sorted such that all edges with a common source
node are sequential in a GPE’s edge list memory. That source node is then pinned to the
given PE until it has finished pushing its contributions to all of its neighbors. Thus, the
Shard Edge Feature determines which GPE’s graph metadata memory to store an edge in
by simply taking the modulo of the source node’s ID with respect to the number of GPEs.
Unlike in the pull edge flow, in the push edge flow, a GPE must be able to access the
modified feature memory of every other GPE since the output feature associated with the
edge’s destination node is not guaranteed to be in the same GPE’s modified feature memory

(again, when e; mod #GPFEs # e; mod #GPFEs). Counter-intuitively, each GPE must also
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be able to access the input feature memory of every other GPE, as the input feature for a
given edge may still be located in a different GPE, despite the edges being assigned to GPE’s
based on the source node ID. This is because, unlike aggregation, which is always performed
on the destination node’s feature, an input feature can be associated with either a source

node or a destination node.

6.4 Programming GNNerator

To program GNNERATOR, we develop a compiler and a runtime environment.

6.4.1 Compiler

The compiler takes as input a GNNerator program, which can be obtained from a graph
neural network framework such as Deep Graph Libary (DGL). This program, consisting of
GNNerator ISA pneumonics as well as pseudoinstructions indicting off- and on-chip con-
voys, defines the graph neural network to be executed. A description of the GNNERATOR
micro-architectural configuration is also provided as an input to the compiler. Using this
information, the compiler first shards the graph into small subgraphs to be executed.

This is done by first analyzing the code to determine the maximum number of node fea-
tures that must be resident on-chip for the given network. In the example code in Figure 6.2,
this would be one input node feature and one output node feature: h_act and neigh. The
maximum number of node features in turn sets the maximum number of nodes that can be
on-chip, as there must be enough memory for each node to have that number of features
on-chip.

However, this only ensures that the nodes can fit on-chip, but we must also make sure
there is space for the edges as well. To do, we attempt to shard the graph based on that op-
timistic nodes per shard. When attempting to shard the graph, we determine the maximum
number of edges that would be required to support that many nodes per shard. Note that
this completely dependent on the graph structure and cannot be determined a priori. If the
maximum number of edges required fits on-chip, the graph sharding processes is complete.

Otherwise, the maximum number of edges is used to estimate the connectivity of the graph,
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Algorithm 3: Algorithm to determine number of nodes that can be kept on-chip

Input: Graph G; GNNERATOR configuration params; number of input features ifeat;
number of output features ofeat

Output: Number of nodes per shard Ngpqrq

N9 . = params.omembytes/(params.blockD - o feat)

2 NP, = params.imembytes/(params.blockD -ifeat)

w

N O O

10
11
12

13
14

S
Eror = params. Ep,q.

/* First, try the largest possible Nguurq */
Nshard = miTL(N:ii]grd? N;T/;Zwl? |GV|)

Eshara = COUNT _EDGES(G, params, Nspara)

if Eoora < Eree then

L return Ngnard

/* Try based on sampled connectivity */
¢ = Eghard/Nrara

Nshard Y, Emax/c

Espara = COUNT _EDGES(G, params, Ngparq)
if Eshard < Emaz then
L return Nopard

/* Default to worst case */

Nsha’rd =V Emax

return Ngpgrd

which is then used to estimate a new number of nodes per shard. We again attempt to shard
the graph, determining the maximum number of edges that would be required to support
that many nodes per shard. If the edges fit on-chip, we terminate the sharding process. Fi-
nally, if the sampled connectivity attempt does not work, we assume a worst case situation,
wherein the nodes per shard is set based on assuming that the network is fully connected,

thus guaranteeing the graph shards produced will fit on-chip. This process is summarized in

Equation 3.

rameters determine during the graph sharding process to populate the final symbols, e.g.,

After sharding the graph, the compiler produces the final machine code, using the pa-

the location in on-chip memory of each of the node features.
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Main Memory Layout Data Waiting to be Stored in GPE Edge Memory
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Figure 6.3. In this example, the main memory has a width of two edges. (a)
Using a naive edge memory layout where the edges are sorted based on the
destination node results in idle cycles for GPE1 while GPEO is being loaded,
as well as requires enough space to buffer three edges at once. (b) Using a
interwoven memory layout eliminates the idle cycles and reduces the number
of edges that must be buffered to only one edge.

Edge Layout Optimization

As discussed in Section 6.2, the Shard Edge Fetcher reads a sharded edge list from main
memory and distributes these edges to the private on-chip edge memories of each GPE. In
order to realize an efficient "pull”-based (”push”-based) dataflow, all of the edges with the
same destination (source) should be consecutive in the on-chip edge memories, as described
in Section 6.2. However, storing edges naively in a consecutive fashion like that results in
inefficient memory transfers. There are two main reasons for this. First, as discussed in
Section 6.2, each GPE contains an edge memory and edges are distributed to these edge
memories such that all edges with the same source (destination) are stored in the same edge
memory. If these edges are consecutive in main memory, then usually only one edge memory
will be used at a time while the other edge memories are idle, waiting for the set of edges
that map to them. Further, even the accesses to the active memory are inefficient. This is
because the DRAM width is often much larger than the memory width of the on-chip edge
memories, which have a width wide enough to allow one edge access per GPE per cycle. As
a result, if all of the edges loaded in a DRAM transaction are destined for the same GPE’s

on-chip memory, there will be many conflicts, As a result, the architecture would require
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more on-chip memory, such as queues, to store the stalled DRAM transactions as they are
processed. To avoid this, the compiler has an optimization pass after the sharding step,
wherein the edges are rearranged in order to pack as many edges from different GPEs into
a DRAM transaction as possible. This is accomplished by first forming # GPE different
edge lists, where each edge list consists of the edges to be assigned to that GPE. These edge
lists are then recombined into a single edge list by storing one edge from each GPE in a
round-robin fashion. This results in both more on-chip edge memories being active at one
time as well as reducing the required on-chip edge storage, as shown in the visual comparison

between the unoptimized and optimized cases in Figure 6.3.

Feature Memory Layout Optimization

For the same reasons, feature memories should not be laid out sequentially in memory— that
is, it is inefficient to store an entire feature for node 0, followed by the same feature for node
1, and so on. This would again result in only one GPE’s on-chip memory being accessed at
one time and increase the amount of on-chip storage needed to buffer DRAM transactions.
We use a similar round robin strategy to optimize the memory layout, with the additional
constraint that the features are divided into chunks of # of Lanes in order to match the

width of the on-chip scratchpads.

6.5 Methodology
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Figure 6.4. An overview of the simulation framework used
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Simulation infrastructure. In order to provide a simulation infrastructure for evaluating
GNNErRATOR we developed both a cycle-level simulator as well as a prototype compiler and
runtime. We developed the cycle-level simulator of GNNErRATOR using the PyMTL3 framework
[141]. We implement cycle-level models of all of the Graph Engine and GNNerator Controller
modules shown in Figure 6.1 and integrate the cycle-accurate SCALe-Sim simulator for the
Dense Engine. In order to run a given GNN, the GNN is first transformed into a GNNERATOR
intermediate representation. This IR, along with the graph(s) to be used in inference and a
configuration file specifying the desired GNNERATOR hardware and software parameters, are
then compiled into a binary and pre-processed graph. The GNNERATOR simulator then ingests
these inputs, and produces both a functional output, which can be compared to a golden
model running on a commodity platform, as well an estimate of the performance and power

of the architecture candidate. This produced is summarized in Figure 6.4.

Table 6.2. Summary of Graph Datasets

Dataset Vertices Edges Feature Dim. Size

CORA 2708 10556 1433 15.6 MB
CITESEER 3327 9104 3703 49 MB
PUBMED 19717 88648 500 40.5 MB

Table 6.3. Summary of Graph Neural Networks

Network Hidden Layers Hidden Dimension Size
GCN [98 I 128
Graphsage [99] 1 128
GraphsagePool [99] 1 128

Benchmarks. In Table 6.2, we summarize the input graph datasets used in our experi-
ments. These datasets represent standard graph datasets used in GCNs. Note that although
the total number of vertices may be small, most of the datasets cannot fit on-chip in ei-
ther platform due to the large feature dimension sizes. We run each of these input graph

datasets on the three graph neural network architectures outlined in Table6.3. We run these

benchmarks using the Deep Graph Library (DGL) [53] with the PyTorch backend.

Platforms. For our experiments, we use an implementation of GNNErATOR that has a Graph
Engine with 32 GPEs, each with 32 lanes. Thus, the Graph Engine can process thirty-two

nodes at one time, with thirty-two dimensions of each node being processed. The Graph
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Table 6.4. Summary of Compute Platforms

GPU GNNerator HyGCN
Compute 4352 cores @ 1.5 Ghz 32x32 Graph, 64x64 Dense @ 1GHz 32x16 Graph, 32x128 Dense @ 1GHz
10 TFLOPs
Peak Compute 13 TFLOPs 2 for Graph, 8 for Dense 9TFLOPs (1 for Graph, 8 for Dense)
. - 30 MiB .
On-chip Memory 29.5 MiB 94 MiB Graph, 6 MiB Dense 24 MiB
Off-chip Memory 616 GB/s 256 GB/s 256 GB/s

Engine contains 24 MiB of on-chip memory, distributed equally between the Input Feature,
Modified Feature, and Edge scratchpads. The Dense Engine consists of a systolic array of
size 64x64, resulting in sixty-four nodes and sixty-four dimensions per node being processed
together. It contains 6 MiB of on-chip memory, equally distributed between the input,
output, and weight buffers. We use a Turing-based RTX 2080-Ti as our GPU baseline.
The 2080-Ti contains 68 Streaming Multiprocessors (SMs), contributing a total of 4352
CUDA cores. Counting both the register file as well as the shared memory, the 2080-Ti has
29.5MiB of on-chip storage. As a result, the peak compute and on-chip storage capacities
of GNNErATOR and the GPU baseline are reasonably balanced, at 10 TFLOPs with 30 MiB
memory and 13 TFLOPs and 29.5 MiB, respectively. This is summarized in Table 4.4.

6.6 Evaluation

In this section, we present the results of our experiments evaluating the benefits of

GNNERATOR.

6.6.1 Performance

Overall Performance. Figure 6.5 shows the normalized speedup with respect to the 2080-
Ti.

We consider two variations of GNNERATOR: the standard baseline GNNERATOR uses the pro-
posed novel dimension-blocking scheme described in Section 6.3 with block D set equal to the
width of the Dense Engine (i.e., 64), while GNNERATOR-full does not use dimension blocking.
GNNERATOR-full demonstrates speed up of 0.7-37x over the GPU baseline, while GNNERATOR

has a speedup of 1.7-37x. GNNERATOR’s additional performance improvement through the
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Figure 6.5. GNNerator achieves an 8x speed up over the 2080-Ti base-
line. Roughly half of this speedup results from the specialized architecture
(GNNerator-full) and the other half comes from the novel dimension blocking
dataflow (GNNerator).

use of dimension-blocking stems from two main sources. First, dimension-blocking allows
for more nodes’ features to be held on-chip, reducing the memory bottleneck of transferring
these features on- and off-chip. Second, dimension-blocking reduces the amount of time the
Dense Engine must wait for the Graph Engine to finish aggregating a node’s neighborhood,

as the Graph Engine only has to aggregate a small fraction of the dimensions before the

Dense Engine can begin.

Table 6.5. Speedups of HyGCN and GNNERATOR relative to a V100
Cora Citeseer Pubmed

HyGCN 2.1x 0.9x 0.8x
GNNerator-full 3.8x 0.7x 0.8x
GNNerator 8.0x 2.9x 1.8x

HyGCN Comparison. Finally, we compare GNNERATOR to HyGCN. We chose HyGCN

as the comparison platform, as it is the most similar architecture to GNNEraTor. HyGCN
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used Pytorch-Geometric running on a V100 as baseline. Thus, in order to provide a fair
comparison, we use the V100 run times obtained in DGL’s whitepaper [53], in which they
provide statistics for both DGL and PyG running on a V100, in order to generate the baseline
used in Table 6.5. As demonstrated in the table, GNNErRATOR-full and HyGCN are quite
similar in performance, with comparable performance improvements over the GPU baseline.
When utilizing dimension-blocking, however, GNNERATOR consistently greatly outperforms

HyGCN, with an average speedup over HyGCN of 3. 15x.

6.6.2 Scaling

In addition to the baseline network configurations outlined in Section 6.5, we examine
the effects of scaling to larger networks. Specifically, we examine the effect of increasing the
hidden layer size, as well as increasing the number of layers. We also investigate a larger

GNNERATOR design.
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Figure 6.6. GNNerator’s speedup reduces from an average of 8x to 1.1x as
the hidden layer size increases from a dimension size of 16 to 1024
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Scaling Hidden Layer Size. First, we hold the number of layers constant at one and
increase the hidden layer size. As seen in Figure 6.6, as the hidden dimension size increases,
the performance gap between GNNErATOR and the GPU baseline decreases.

To examine why we obtained this result, we refer to Figure 3.7, which demonstrates that
as the hidden layer size increases, the run time becomes dominated more and more by the
linear layers. The GPU is particularly well suited to the linear layers, since it has over 2x the
bandwidth and 1.5x the compute available for DNN execution. As a result, the GNNERATOR’S
speedup over the GPU decreases as the workload becomes more ”dense”-dominated— that
is, as the hidden layer size increases. Note that even at small hidden dimension sizes,
GNNERATOR still sees large speedups over the GPU baseline for the Graphsage-Max network.
This is because the GPU cannot efficiently perform the extremely tall but narrow matrix

multiplies that results from the small hidden dimension sizes.

A @ 2 mE. 3

1.1x
1.1x
1.1x
1.0x
1.0x

0.25x 4
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gcn-cora gcn-citeseer gcn-pub gsage-citeseer gsage-cora gsage-pub gsage-max-pub gsage-max-corggsage-max-citeseer ~ Gmean

Figure 6.7. As the number of hidden layers with a large dimension size
increases, the benefits of a specialized accelerator over a GPU continues to
diminish, with no performance benefits at three layers.

Scaling Number of Hidden Layers. We also scale the network size by the number of
hidden layers. Consistent with the approach taken in most of the literature, each hidden

layer contains the same number of hidden dimensions. In our experiments, we set this
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hidden dimension size to 1024 dimensions. Generally speaking, as the number of hidden
layers increases, the performance benefits of a specialized architecture decreases. This is
consistent with the idea that as GNNs become larger and deeper, they tend to become more
GPU-friendly.

Scaling Up GNNerator. Next, we examine the question of where to invest additional
hardware resources in order to maximize the performance return on that investment. We
present three possible versions of a “next-generation” GNNERATOR. One version doubles the
amount of on-chip memory in the Graph Engine, allowing for more larger shards to be
held on-chip. Another version doubles both the height and width of the Dense Engine,
increasing the compute available for the linear layers.The final version doubles the bandwidth
available for the shared feature memory DRAM. Note that these versions were obtained by
investigating the bottlenecks of each engine; since the Graph Engine was rarely stalled by
the compute units and the Dense Engine was not memory-constrained, we do not investigate
these versions.

We find that the best investment is to increase the size of the Dense Engine, resulting
in an average speedup of 1.8x over the baseline design. This is driven primarily by large
speedups for the larger hidden dimension sizes, as seen in Figure 6.8. Increasing the feature
memory bandwidth results in a modest speedup of 1.2x, driven primarily by larger speeds
for small to moderate hidden dimension sizes. Increasing the on-chip memory for the Graph
Engine does not result in a noticeable speedup across all of the datasets. However, it does
result in a modest average speedup of 1.16x for the largest dataset considered, Pubmed.

Figure 3.7 helps to explain why increasing the Dense Engine’s compute results in the
largest speedups, particularly for large hidden dimension sizes. It also helps to explain why
the increase in feature memory bandwidth does not also result in large speedups at large
hidden dimension sizes like it does for smaller sizes; at the larger sizes, the run time is
dominated more by the Dense Engine, which is not helped by an increase in the feautre
memory bandwidth, except for when first loading (storing) the initial input features (output

features).
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Figure 6.8. Adding more DNN Engine Compute results in the largest

speedups relative to the baseline GNNERATOR architecture, with speeds up of
1.1-3.6x.

6.6.3 Architecture Design Space Exploration

In this section, we explore key architectural parameters in the design of GNN accelerators:
the Dense Engine dataflow, the Graph Engine dataflow, and the level of coupling between
the two engines.

DNN dataflow. The dataflow of the DNN Engine is an important parameter that has
been largely ignored in the literature on GNN accelerators to date: there is no reference at
all to it at all in [59]-[61]. However, large gains in performance (2.1x on average) can be
achieved through careful selection of dataflow. Specifically, output- and weight-stationary

DNN dataflows provide substantial speed-ups over the input-stationary dataflow.
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Figure 6.9. Output- and weight-stationary DNN dataflows greatly outper-
form the input-stationary dataflow, particularly for pooling-based benchmarks.

This is particularly true for the pooling-based benchmarks, i.e. the Graphsage-Max
network, as well as for larger hidden dimensions, due to the fact that the DNN Engine
is responsible for a larger fraction of the run time in the network, and so an increase in
performance of the DNN Engine translate to a larger end-to-end increase in performance.
The finding that input stationary does not perform as well as the other dataflows is not
surprising; [142] two general heuristics for DNN workloads: (1) output stationary tends to
be higher performer than the other dataflows and (2) input stationary performs worse when
the input matrix is much larger than the weight matrix, which is typically the case in these
networks. Thus, these heurisitics seem to hold well for GNN workloads as well.

Push vs Pull Dataflow. The style of communication—either push or pull-based
communication— used in traversing a graph algorithm can often result in considerable varia-

tions in the runtime of the algorithm [143]. To this end, we compare a push-based commu-

110



nication pattern with the pull-based communication pattern used in GNNERATOR as well as

other proposed GNN accelerators.|
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Figure 6.10. Using a push-based edge dataflow results in a negligible slow
down compared to a pull-based baseline

As seen in Figure 6.10, there is a negligible slowdown seen when processing in a push-
based style. Note that although Figure 6.10 only shows results for a hidden layer size of 128,
this holds across all hidden layers sizes tested. However, at the same time, as demonstrated
in Figure 6.11, a push-based communication results in a considerable (average 1.3x) increase
in the amount of time GNNERATOR is stalled for compute, due to stalls for the lock required
in push-based communication as described in Section 6.2. This discrepancy is explained by

the fact that GNNERATOR is rarely stalled for compute to begin with, and so the increase does

111



1.4x
1.4x

1.4x A

1.3x

1.2x
1.2x

1.2x
1.2x

1.2x A

1.0x A

0.8x A

0.6x A

0.4x A

Increase in waiting for compute units for PUSH-based

0.0x

pub-gcn-16
pub-gsage-16
pub-gcn-128
pub-gsage-128
pub-gcn-1024
pub-gsage-1024
Gmean

Figure 6.11. For workloads where there are compute stalls in the Graph
Engine, these stalls increase under a push-based dataflow

not affect the total run time much; GNNErATOR’s Graph Engine is much more often stalled

waiting either for the Dense Engine compute or for features to be loaded from memory.

6.7 Conclusion

GNNs are a promising new area of machine learning that aims to bring the success of
deep learning in non-Euclidean domains to graph-based problems. In this work, we detail
the limitations of current hardware to efficient perform GNNs and propose GNNERATOR, a

specialized hardware accelerator for GNNs that is able to exploit the abundant intra- and
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inter-node parallelism inherent in GNNs. GNNERATOR utilizes feature dimension-blocking, a
novel GNN dataflow that allows for processing more nodes in a graph on-chip at one time.
We evaluate GNNERATOR on a suite of benchmarks and demonstrate significant performance

benefits over GPUs, as well as a recently proposed GNN accelerator.

113



7. HARDWARE-AWARE PERFORMANCE ESTIMATORS
FOR HETEROGENEOUS EDGE SYSTEMS

7.1 Introduction

Deep Neural Networks (DNNs) have established themselves as the state-of-the-art for a
variety of machine learning problems, with applications including computer vision, natural
language processing, web search and product recommendation. This success has led to an
explosion in the number of DNNs proposed for a given problem (e.g., image classification),
each of which has its own unique topology, memory footprint, arithmetic intensity, etc. Given
the increasing ubiquity as well as the energy-intensive nature of DNN workloads, there is
tremendous interest in finding the most efficient mapping of a DNN to a given platform. This
is especially important in the context of energy, size and cost constrained edge processing
platforms. However, this goal is complicated by the diverse nature of edge platforms; DNNs
are being deployed on thousands of different edge computing platforms [102], each of which
may consist of a heterogeneous set of hardware IPs, including CPUs, GPUs, DSPs, and
dedicated deep learning accelerators (DLAs).

Moreover, many heterogeneous edge platforms offer multiple hardware operating condi-
tions, allowing the designer to choose the number of active cores, core frequencies, memory
controller frequency, etc. This offers an expanded design space, as shown in Figure 7.1,
allowing the designer to select from a wider range of design points which may offer a better
trade-off between energy consumption and processing speed.

Given such a large design space (combination of choice of DNN, hardware operating
condition and DNN-to-HW mapping), it is infeasible to exhaustively determine the opti-
mal solution even by running each combination on the physical device. This motivates the
use of estimators, which can be used to predict latency, power, energy, etc. 1. Performance
estimators have several applications, including determining the best DNN for a given plat-
form, determining the best mapping and hardware configuration, and hardware-aware neural

architecture search (hardware-aware NAS) [106], [144].

1 For brevity, we refer to latency/power/energy estimators generically as performance estimators.
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Figure 7.1. Considering both the hardware operating conditions and het-
erogeneity of edge hardware platforms expands the DNN-HW search space by
orders of magnitude. Current estimators do not capture these new dimensions.

In this chapter, we focus on learned performance estimators that use machine learning
to produce the estimates. As noted in [105], [L06], it is crucial for these learned estimators
to be able to be created from a limited amount of training data, given the bottleneck of
running on physical devices. There have been a few recent efforts[63], [66]-[68] to produce
such estimators. However, to date, these efforts have not considered the configurability and
heterogeneity of modern edge devices. Moreover, there has not been a systematic char-
acterization and evaluation of the different alternative strategies to the design of learned
performance estimations.

To address the aforementioned challenges, we first step back and analyze different ap-
proaches to creating learned estimators, providing a new taxonomy for the design space
to guide principled design decisions. Based on this analysis, we propose a new DNN per-
formance estimator for heterogeneous, configurable edge devices that combines fine-grained

layer-wise information and coarse-grained network-level information to achieve superior accu-
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racy with a limited number of training samples. We implement a comprehensive and flexible
framework based on our proposed taxonomy and use it to create and evaluate various DNN
performance estimators.

In summary, we make the following contributions:

o We define a performance estimation taxonomy to characterize the design space of

learned estimators for DNNs on heterogeneous edge platforms.

o Based on the insights from this taxonomy, we design a novel performance estimator
that meets the unique needs of edge devices by combining fine- and coarse-grained

information.

o We detail a comprehensive framework for creating DNN-HW performance estimators

that consider both heterogeneity and hardware configurability.

o We demonstrate high accuracy on a variety of use cases, with errors between 3.3%-
21.8%. The proposed estimators are two orders of magnitude faster than even native

execution, enabling them to be used for large-scale design space exploration.

7.2 Learned Performance Estimators for DNNs: A Taxonomy

There is a wide variety of approaches one can adopt to create learned DNN performance
estimators. We identify two main dimensions to consider in the design of these estimators:

the hierarchy of the estimator and the granularity of the input features.

7.2.1 Estimation Hierarchy

The first dimension to consider is the depth of the hierarchy used when constructing a
DNN estimator. For simplicity, we consider two options in our discussion: one-level (i.e.,
flat) estimation and two-level estimation.

One-level Estimators predict the target metric for the entire network directly. Thus, they

take a flat, coarse-grained approach.
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NetworkModel( Network ) = [ Network

Features Latency

(a) One-Level Estimation

NetworkModel( | [owee |, LayerModel(] ‘e |)=| 20 | ... | 12 |) = |Network

Features Features Latency Latency Latency

(b) Two-Level Estimation

Figure 7.2. Examples of (a) one-level and (b) two-level estimators

Two-level Estimators first make predictions on a layer-by-layer basis using layer-level
performance estimators, resulting in a prediction for each layer. These layer-level estimates
are then incorporated into a network-level estimator (hence, the name two-level).

Two-level estimators provide a benefit by controlling complexity through a divide-and-
conquer approach. This can be quite beneficial, as even just a naive summation layer times
and energies tends to be a good first-order estimate that can be refined by the network-level
estimator. However, this information can also bias the estimator in an incorrect direction—
for example, due to hardware effects present in executing a network as a whole that are not
present in running the layers in isolation.

Two-level estimators raise the question of how to design layer-level performance estima-

tors, which we address next.

7.2.2 Layer-level Performance Estimators

A key characteristic of DNN workloads is that each DNN is comprised of a stack of
different layers, wherein each layer is mostly executed sequentially. There is a relatively
limited number of types of these layers (convolutional, fully-connected, pooling, etc.), though
each layer has a number of parameters associated with it that define it’s computational
and memory footprint. With this in mind, it is useful to develop parameterized layer-level
performance estimators for each of these layer types.

Inputs to the layer-level estimators can be the layer’s parameters, which define the math-
ematical operation of the layer: number of input features, number of kernels, input feature
size, kernel size, stride, etc. Other examples include values which are derived from those pa-

rameters combined with knowledge of the layer type: number of operations, activation and
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weight memory footprint, etc. These features are then used as input to a machine learning
model to produce the desired estimation.

Hardware-aware Estimation. It is important for performance estimators to consider
hardware operating conditions such as varying number of cores, core frequencies, etc. To
account for this, we concatenate the hardware representation directly to the layer represen-
tation. We note that these values are intended to capture the behavior of a layer running on
a specific IP; therefore, each IP will have its own estimator, as opposed to a shared estimator
across IPs. These estimators are referred to as Layer-IP estimators. A Layer-IP estimator

for a CPU is summarized in Figure 7.3.

LayerMO del ( Input # of Kernels Kernel ... | CPU Cores |CPU Frequency ) = Layer

Dimension Size Latency

Figure 7.3. Representation of a Layer-IP Estimator

7.2.3 Layer-level vs Network-level Features

A second key dimension in the design of the top-level network performance estimator is
the granularity of features to use. In this regard, there is a spectrum of choices ranging from
using only layer-level features to using only network-level features.

Layer-level. The features for every layer are concatenated and used as inputs to the perfor-
mance estimator. This can offer greater insight to the workings of a network, as it provides
fine-grained information about each layer. However, this greatly increases the total number
of features used by the network estimator, making it more difficult to train, particularly in
a setting where limited training data is available. In other words, layer-level features can
offer more fine-grained knowledge but will require more training samples due to the greater
number of features— an important trade off for heterogeneous edge platforms, where it is
difficult to generate large training sets for each device.

Network-level. The information from the layers are aggregated to produce features that
summarize the network as a whole: total number of operations for the entire network, total

number of weights, etc. This helps to reduce the total number of input features to the
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estimator, making it easier to train with limited data. However, there is loss of information,
which may make the predictions less accurate.

These two different strategies can be visualized in Figure 7.4.

Layer 0 Layer 1 Layer ... Layer N
. Input. # of Kernels Ke.’“e' . . Inpu'f # of Kernels Ke.rnel . . Input. # of Kernels "e."‘e' . Inpu'f # of Kernels Ke.rnel
Dimension Size Dimension Size Dimension Size Dimension Size
(a) Layer Feature Based Network Representation
Input Weight Activation # of CONV
. P . # of Classes # of MACs & . . # of FC Layers
Dimension Memory Size | Memory Size Layers

(b) Network Feature Based Network Representation

Figure 7.4. Examples of (a) layer-based features and (b) network-based fea-

tures for a network estimator

Based on these two axes, we can define a taxonomy for learned performance estimators

as shown in Figure 7.5.

Fine-grained  Coarse-grained

Fine-grained

information information

Single-Level Model

information
Two-Level Model

Layer Predict layer results
Concatenate layers
Level . Concatenate layers
Predict network results .
Features Predict network results
Network Predict layer results

Aggregate layers

-grai Level :
Coarse-grained Predict network results

Aggregate layers
Predict network results

information Features
Figure 7.5. A taxonomy for the design space of DNN-HW performance estimators.

7.3 Performance Estimators for Heterogeneous Edge Devices

Based on the taxonomy proposed in Section 7.2, we now turn specifically to the design
of a performance estimator for the unique challenges of heterogeneous edge devices. This
estimator must be aware of the different hardware operating conditions of the edge device,
support heterogeneous execution of a DNN on a multiple different hardware IPs, and be
sample efficient to limit the cost of running on many different physical platforms.
Hardware-aware Estimation. As in hardware-aware estimation for layers, we again con-

catenate the hardware representation to the network representation. We note that this
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representation is applied across the entire network; that is, the hardware configuration is for
the network as a whole, not on a per-layer basis.

Heterogeneity. We employ two strategies for exposing heterogeneity to the estimator:
layer-level and network-level. At the layer-level, we employ a one-hot encoding for each
layer, indicating on which IP that layer is being executed. At the network-level, we count
the total number of layers executed on each IP and use that as a feature.

Network feature-based, Two-level Estimators. We propose network feature-based,
two-level estimators as a promising trade-off between fine- and course-grained representa-
tions. As discussed above, network feature-based estimators summarize all of the layer
information into a single representation, thus providing a course-grained representation of
the network as a whole. Two-level estimators, in contrast, explicitly model the performance
of every layer in a given network, thereby offering a representation of the network that uses
much more fine-grained information. Thus, network feature-based, two-level estimators rep-
resent a favorable design point between detail and model complexity, allowing for fine-grained
information without the need for a large number of training samples. This is ideal for the
heterogeneous edge device use case. Layer feature-based, one-level estimators may appear to
have a similar beneficial trade-off. However, the use of layer features as the fine-grained as-
pect of the model results in many more input features to the estimator, as each layer can have
many features, while in two-level estimators there is only one predicted value per layer. We
note that this represents a novel estimator design; to date, existing latency /power estimators
have been limited to: layer feature-based, one-level estimators [68], network feature-based,

one-level estimators [66], and layer feature-based, two-level estimators [63], [64].

7.4 Estimation Framework

In this section, we describe an automated framework to create different types of learned
performance estimators, which consists of Workload Generation, Workload Execution, and
Estimator Generation. Due to space limitations, we only present the framework in terms

of generating a network estimator for a given hardware platform, but the overall framework
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is similar for generating layer estimators, which can then be used in the DNN-Hardware

latency (power) estimators. This framework is depicted in Figure 7.6.

[:] ConfigurationFile @ Stored Object Program Dataset

Workload Configuration Hardware Configuration Estimator Configuration
Networks: AllKerasApps Input Size: 220 Platform: TX2 IPs: CPU, GPU Platform: TX2 Networks: AllKerasApps
# of Classes: 1000 HW Samples: 20 CPU Cores: 1-4 CPU Frequencies: .5-2 GHz Algorithm: XGBoost
Mapping: GPU->CPU Mapping Samples: 20 GPU Frequency: .115-1.3 GHZ Layer Feats.: in_dim, # kernels, predtime

HW Feats.: Cores, Frequency
Network Feats.: None Pred. Target: latency

i v
ICustomNetworks Alzorithms -
WorkloadGen NetworkSimRun > Network Network
EstimatorGen Estimator

——

Network-HW I
Mapping

Workload Generation

'
'
'
'
'
1
'

Workload Execution Estimator Generation

Figure 7.6. Overview of the framework’s three stages. Workload Generation
determines what networks to consider, as well as the hardware configurations
and mappings. Workload Execution executes those choices on the target plat-
form. Estimator Generations offers a flexible way to explore different estima-
tion strategies.

7.4.1 Workload Generation

Workload Generation allows the user to generate examples for the estimator to tailor
it to their specific use case by defining two inputs: the Hardware Configuration and the
Workload Configuration.

Hardware Configuration. The Hardware Configuration details: the platform’s name,
hardware IPs that the platform contains, the hardware knobs which are accessible, and the
allowed values for those hardware knobs.

Workload Configuration. The Workload Configuration defines the sample workloads that
will be generated for the estimator, specifying a number of parameters: networks to use, the
size of the input to the network, and the number of classes. Users also specify how to map
the network to the hardware platform, i.e. all on one IP or heterogeneously. Finally, the

user specifies how many different hardware operating conditions to sample.
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Using these inputs, the Workload Generation stage creates a set of networks to be exe-
cuted in the next stage. These networks also contain a list of mappings that define on which
hardware IP each layer should be executed. Each of these mappings are then associated with

a list of hardware operating conditions that should be executed.

7.4.2 Workload Execution

The next stage of the our estimation framework is Workload Execution. In this stage,
the test cases created in the Workload Generation stage are loaded to the target platform,
the platform is configured according to the test case parameters, and the network is then
executed and profiled for runtime statistics such as latency, power, etc. The results of this
stage is saved as a dataset, which contains both a superset of all the static features as well

as the dynamic run-time statistics generated by execution.

7.4.3 Estimator Generation

In the Estimator Generation stage, the framework creates a latency (power) estimator
whose input features, algorithm, and training/testing test is chosen by the hyperparameters
provided in the Estimator Configuration file. The dataset generated by Workload Execution
contains essentially a super-set of all possible relevant features that could be used. A critical
decision for Estimator Generation, then, is which subset of these features to use. The
algorithm can be any of a wide-range of existing regression techniques, such as Lasso, support
vector machines, XGBoost, etc.. Further, the user can place networks in the training (testing)
split, or have them randomly distributed. Finally, the Estimator Configuration specifies what

the prediction target should be: latency, power, energy, etc.

7.5 Experimental Setup

Hardware Setup. We demonstrate our framework using NVIDIA’s Jetson TX2 embedded
systems board [103]. Crucially, this platform consists of multiple hardware knobs which
can be configured to place the board in different operating conditions. These knobs are

summarized in Table 7.2.
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Software Setup. For our experiments, we use models from the model zoo provided by the
Keras Tensorflow 2.4.1 library. All experiments were performed at a batch size of one using
full-precision and eager execution mode.

Dataset. For the GPU, we use twenty-five networks, with four different hardware operating
conditions. We sample ten different variations of input dimension/number of classes. For
the CPU, we use eight networks, with twenty different hardware operating conditions, and
four different variations of input dimension/number of classes. This difference is due to both
the larger hardware configuration space for the CPU as well as the greater cost in running
these networks on the CPU. These benchmarks are summarized in Table 7.1

Estimators. For layer-level features, we use: input/output dimension, number of kernels,
kernel size, stride, number of operations, and memory size. For network-level features, we
use: layer count for each layer type, total number of operations, total memory footprint. For
two-level estimators, we either include the layer-level time and power estimates as inputs to
the network-level estimator, or aggregate these layer predictions to use as inputs. We use

the XGBoost algorithm as the machine learning model.

Table 7.1. The networks are obtained from the Keras model zoo. The GPU
training set contains all of the networks; the CPU training set contains only
the bolded networks.

DenseNet[121169|201], EfficientNetB[0-7]
Networks InceptionResNetV2, InceptionV3, Xception
MobileNet[V2|V3Large|V3Small]
NASNet[Large|Mobile]
ResNet[50]50V2[101]101V2|152|152V2]

Input Sizes 1102, 1502, 2242, 3202

Table 7.2. Summary of the range of available values for the hardware knobs
present in the TX2 platform.

TX2
GPU Frequency [115MHz-1.3GHz|
CPU ARM Cores 1 - 4]

CPU Frequency  [500MHz-2GHz|
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7.6 Evaluation

We evaluate the performance of the estimators generated by our framework under a
variety of conditions. While network feature, two-level estimators are our novel proposal, we
note that a second contribution of our work is the flexible framework to create performance

estimators that embody a wide range of estimation strategies.

7.6.1 Latency Estimators

Hardware Mapping and Configuration Search. This emulates the scenario where the
user has a given DNN and is trying to determine the most efficient way to map it to a given
hardware platform, while also configuring the platform. We consider the case where layers
are distributed to both the CPU and the GPU to execute- i.e., the network is executed
heterogeneously. For this experiment, we consider NASNetMobile as the given network and
generate multiple random mappings, each with multiple different hardware configurations.
As shown in Table 7.3, which summarizes the mean absolute percent error (MAPE) for
the produced latency estimators, our framework produces quite accurate estimators across
all cases. Specifically, our novel approach of a two-level, network feature-based estimator
performs the best, achieving a latency MAPE of 3.3% and 5.1% for the fixed hardware and
configurable hardware cases, respectively. Not only are our estimators accurate, they are
also much faster than direct execution; the estimator takes an average of 1ms per predicted

sample vs an average of 500ms for execution on the TX2 platform.

Table 7.3. MAPE for latency prediction in a heterogeneous execution case study.
Layer Feat. Network Feat. Layer Feat. Network Feat.
One-Level One-Level Two-Level Two-Level

Fixed HW 10.0% 3.3% 10.0% 3.3%
Configurable HW 6.3% 6.2% 6.5% 5.1%

Network Variant-HW Configuration Co-Design. We next consider the performance of
the estimators generated by our framework in the network variant use case, wherein the end

user is searching through the space of network variants (e.g., transfer-learning) to determine
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the most efficient network-hardware configuration combination. In this instance, we only
consider all CPU or all GPU mappings. Table 7.4 summarizes the MAPE and the Spearman
coefficient (an important measure of relative accuracy) of the latency estimators generated
for both the GPU and CPU hardware IPs of the TX2 platform. We see that our framework
produces accurate estimators, ranging from 5.5%-3.2% error for the GPU and 14.1%-8.9%
error for the CPU, with a maximum Spearman coefficient of 99.5% and 97.4%, respectively.
In this scenario, our proposed strategy does not perform the best, but is still competitive
with the best estimator. We highlight, however, that our estimator does outperform the
other methods at smaller training set sizes. In Figure 7.7, we provide a visualization of the
increase in Spearman coefficient as a function of the number of training samples. We see that,
as expected, layer feature-based estimators require more samples than network feature-based

ones, and similarly, one-level estimators require more training data than two-level estimators.

Table 7.4. MAPE and Spearman coefficient for latency prediction in the
network variant context.
Layer Feat. Network Feat. Layer Feat. Network Feat.
One-Level One-Level Two-Level Two-Level

GPU 52%99.0% 55%|98.4% 3.2% |99.5%  5.5% | 99.1%
CPU 8.9% |97.4% 9.1% ]96.8% 14.1% | 95.4%  13.0% | 95.8%

Novel Network-Hardware Configuration Co-Design. Finally, we consider the perfor-
mance of the estimators generated by our framework in the novel network use case, wherein
the end user is selecting from a large number of diverse models and wants to determine
the most efficient network-hardware configuration combination. As shown in Table 7.5, our
novel approach greatly outperforms the other approaches: by fifteen percentage points for
the GPU and eleven percentage points for the CPU. We highlight that this increase in per-
formance is achieved in the most challenging use case, as the testing networks are completely

out of the domain of the training networks.
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Figure 7.7. Analysis of achieved Spearman coefficient for varying training
set sizes. Layer feature-based estimators require more training samples, as do
one-level estimators.

Table 7.5. MAPE and Spearman coefficient for latency prediction in the
novel network context.
Layer Feat. = Network Feat.  Layer Feat. = Network Feat.
One-Level One-Level Two-Level Two-Level

GPU 30.0% | 62.6% 52.6% | 35.1% 39.8% | 57.0% 15.5% | 93.6%
CPU 33.7% | 63.6% 43.9% | 41.1% 55.4% | 63.2% 21.8% | 82.0%

7.6.2 Power Estimators

and use cases being under 3.5% .

Figure 7.8 shows the performance of the four different power estimators for the CPU IP
for both the network variant and novel network use cases described above. We note that the

accuracy is quite high across all strategies, with the maximum error across all estimators

CPU here; however, the performance for the GPU power estimators are just as accurate.
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Figure 7.8. All CPU estimators perform quite well for predicting power.

7.7 Conclusion

With the recent explosion in the number of DNNs available to choose from, it is increas-
ingly important for system designers to be able to quickly evaluate the performance of a
given DNN on the intended hardware platform. It is infeasible to do so by directly running
all of these networks on the physical hardware, which has led to an increased interest in the
design of accurate latency (power) estimators, which are able to predict the performance of
a network on a given device without actually running it. In this chapter, we first classify
the taxonomy of different estimation models in order to provide a principled approach to
the design of these models. Using the insights from this taxonomy, we design a novel per-
formance estimator specifically for heterogeneous edge devices. Finally, we present a flexible
framework that can be used to generate these hardware-aware performance estimators. We
demonstrate this framework’s ability to generate accurate estimators for the NVIDIA TX2

board on a variety of different use cases.

127



8. CONCLUSION

Deep Neural Networks (DNNs) have seen tremendous success in a variety of tasks, achieving
state-of-the-art results on many benchmarks— particularly within the perceptual domain;
Performance on the ImageNet dataset has long surpassed human-level results. There has
recently been many efforts to translate this success in the perceptual domain to other tasks.
In particular, computer scientists are interested in new capabilities for DNNs such as one-shot
learning and task planning. Furthermore, there have also been efforts to extend this success
from the perceptual domain— more specifically, the Euclidean domain— to the non-Euclidean
domain (e.g., graphs, manifolds, etc.).

As a result, there are emerging neural workloads quickly gaining in popularity which
aim to address these new tasks and challenges. These emerging neural workloads exhibit
unique computational challenges compared to the previous iteration of DNNs. Memory-
augmented neural networks (MANNSs)— which augment a traditional DNN with an external,
differentiable memory— are one such set of new workloads. MANNs have been shown to
achieve one-shot learning and complex cognitive capabilities that are well beyond those of
classical DNNs. However, these new capabilities come at a cost; to perform these tasks,
MANNSs utilize soft reads and writes to the differentiable memory, each of which requires
access to all the memory locations. Further, the self-attention operation required by the
soft reads makes heavy use of the softmax operation, particularly in the popular subtype
of MANNSs known as Transformer-based network. These computational challenges result in
poor performance of MANNs on modern CPUs, GPUs, and other accelerators.

Graph Neural Networks (GNNs) are another promising new class of DNNs that apply
the success of deep learning to a new domain: graphs. GNNs extract features from the nodes
of a graph using a fully-connected layer and aggregate these features using message pass-
ing between the nodes. Thus, GNNs combine two distinct computational patterns: dense,
regular computations and sparse, irregular computations. Existing hardware acclerators are
designed for one type of computation or the other, thus resulting in poor performance in

this hybrid workload.
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There is a pressing need to design new hardware to address the new challenges result-

ing from these neural workloads. Further, as the pace of development in DNNs increases,

it is important to automate aspects of this tighter coupling between new DNNs and new

hardware.

8.1 Thesis Summary

The main contributions of this thesis are as follows:

This thesis first considers MANNSs, in which the main bottlenecks stem from soft
reads and writes, wherein every memory location is accessed multiple times as well
as addressing mechanisms. To address this, we propose Manna, a novel memory-first
accelerator that is better-suited to the low FLOPs/Byte ratio inherent to MANNS.
Manna also utilizes a hardware-assisted transpose mechanism tailored to the memory

access patterns found in MANNS.

Next, we consider Transformer-based networks, an important subclass of MANNSs.
Transformers retain the weighting and soft read operations found in general MANNS,
while eschewing the soft write and addressing kernels, and tend to be deeper than
other MANNs (10 layers rather than 3 layers). As a result, Transformers have a
unique bottleneck: the softmax operation at the heart of the weighting step of the
attention mechanism. We propose Softermax, a set of hardware/software co-design
techniques to minimize the overhead of the softmax operation: (i) base substitution, (ii)

low-precision computations, and (iii) an online, integer-based normalization scheme.

Next, this thesis explores graph neural networks. GNNs have two main computational
patterns: an irregular, graph-based processing step and a regular, DNN-based step.
Existing accelerators for graph workloads and DNN workloads are mismatched for this
hybrid workload. To address this gap, we propose GNNerator, a hybrid architecture
with a Graph Engine and a Dense Engine for the two different processing patterns,

and is able to exploit the abundant intra- and inter-node parallelism inherent in GNNs.
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GNNerator also utilizes feature dimension-blocking, a novel GNN dataflow that allows

for processing more nodes in a graph on-chip at one time.

Finally, we turn to accelerating the tighter coupling between neural workloads and
the underlying hardware, through the development of accurate performance models
which can be used to autonomously search this design space. We first characterize the
performance estimator design space taxonomy. We use the insights from this charac-
terization to propose a novel approach tailored to the heterogeneous edge device use
case, which balances fine-grained and coarse-grained representations of the network.
We propose a framework to predict the performance— both latency and power— of a va-
riety of networks running on edge devices with various hardware operating conditions,
and demonstrate reasonable accuracy. This is a crucial step towards automating a
tighter coupling between new neural network architectures and the hardware on which

they are executed.
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