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ABSTRACT 

 

Estimating crop yield is essential to ensure agricultural stability, economic viability, and 

global food security. Provided with accurate crop yield estimation before harvest, farmers, 

breeders, and agriculture researchers can perform crop evaluation, genotype selection, and 

maximize yield by timely intervention. Remote sensing is often used to provide information about 

important canopy state variables for crop yield estimation. However, until recently, a critical 

bottleneck in such research was the lack of high-throughput sensing technologies for effective and 

rapid evaluation of expressed phenotypes under field conditions for holistic data-driven decision 

making. Recent years have witnessed enormous growth in the application of unmanned aircraft 

systems (UAS) for precision agriculture. UAS has the potential to provide information on crops 

quantitatively and, above all, nondestructively. This dissertation aims at utilizing UAS data to 

develop a machine learning based high-throughput phenotyping framework for crop yield 

estimation. In this research, plant parameters such as canopy height (CH), canopy cover (CC), 

canopy volume (CV), normalized difference vegetation index (NDVI), and excessive greenness 

index (ExG) were extracted from fine spatial resolution UAS based RGB and multispectral images 

collected weekly throughout the growing season. Initially, a comparative study was conducted to 

compare two management practices in cotton: conventional tillage (CT) and no-tillage (NT). This 

initial study was designed to test the reliability of the UAS derived plant parameters, and results 

revealed a significant difference in cotton growth under CT and NT. Unlike manual measurements, 

which rely on limited samples, UAS technology provided the capability to exploit the entire 

population, which makes UAS derived data more robust and reliable. 

Additionally, an inter-comparison study was designed to compare CC derived from RGB 

and multispectral data over multiple flights during the growing season of the cotton crop. This 

study demonstrated that using a morphological closing operation after the thresholding 

significantly improved the RGB-based CC modeling. A CC model that uses a multispectral sensor 

is considered more stable and accurate in the literature (Roth and Streit, 2018; Xu et al., 2019). In 

contrast, the RGB-based CC model is unstable and fails to identify canopy pixels when cotton 
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leaves change color after canopy maturation. The proposed RGB-based CC model provides an 

affordable alternative to the multispectral sensors that are more sensitive and expensive.  

After assessing the reliability of UAS derived canopy parameters, a novel machine learning 

framework was developed for cotton yield estimation using multi-temporal UAS data. The 

proposed machine learning model takes three types of crop features derived from UAS data to 

predict the yield. The three types of crop features are multi-temporal canopy features, non-

temporal features (cotton boll count, boll size, boll volume), and irrigation status. The developed 

model provided a high coefficient of determination (R2 ~ 0.9). Additionally, redundant features 

were removed using correlation analysis, and the relative significance of each input feature was 

determined using sensitivity analysis. Finally, an experiment was performed to investigate how 

early the model can accurately predict yield. It was observed that even at 70 days after planting, 

the model predicted yield with reasonable accuracy (R2 of 0.71 over test set). This study reveals 

that UAS derived multi-temporal data along with non-temporal and qualitative data can be 

combined within a machine learning framework to provide a reliable crop yield estimation.  

UAS technology is proven to be robust and reliable. It efficiently works over small-size 

research fields or breeding trial fields. However, extensive aerial coverage using UAS is not 

practically feasible. Alternatively, satellite images have the advantage of covering a vast area, but 

they provide coarser spatial resolution data. To overcome the limitation of UAS and satellite 

sensors, this study explored deep learning-based methodologies to incorporate UAS derived 

canopy attributes as additional information to improve the satellite-based yield estimation. It was 

accomplished through cross-task knowledge transfer architecture and modality hallucination 

architecture. The main idea of this approach is to combine a multi-temporal satellite-based 

representation with an additional, or complementary UAS derived representation to improve crop 

yield estimation so that the models can predict yield without utilizing UAS derived representation 

at the test time. A significant improvement in the prediction accuracy was observed using cross-

task knowledge transfer and modality hallucination architecture. Additionally, the generalization 

capability of the proposed models was demonstrated by training on one experiment field and predicting 

crop yield for another field.  
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1. INTRODUCTION 

1.1 Motivation 

Crops are susceptible to management practices and environmental conditions (Swain et al., 

2007). Consequently, it is critical for agricultural researchers, breeders, or farmers to identify 

where variations exist in crops in a timely fashion to take necessary action accordingly. Manual 

measurements of agronomic characteristics are labor-intensive and time-consuming. Thus, a 

system that could help stabilize or potentially help increase agricultural productivity while 

mediating the overall impact on the environment would be an asset to society (Zhang and Kovacs, 

2012). As a solution, remote-sensing technology offers a more efficient way to obtain a large-scale 

mapping of plant attributes. Specifically, numerous studies have demonstrated that remote sensing 

has been successfully providing a means to obtain extensive spatial information from the landscape 

at a global scale (Davi et al., 2006; Hu et al., 2007; Lamonaca et al., 2008; Pellikka et al., 2009; 

Propastin and Panferov, 2013). Early research done in this direction includes remote sensing data 

acquired using satellites and manned aircrafts. However, the spatial resolution and turnaround time 

of the satellite data often fails to meet regional or local objectives. Airborne platforms could obtain 

scale-appropriate remote sensing data, but they are often costly, preventing high temporal 

resolution data collection. Due to technological advances, recent years have witnessed enormous 

growth in unmanned aircraft systems (UAS) in various applications, including precision 

agriculture. Unlike ground-based high-throughput phenotyping (HTP), UAS can quickly cover an 

entire experiment, providing a rapid assessment of the crop while minimizing the effect of change 

in environmental conditions, such as wind speed, rain, cloud cover, and sunlight. UAS can provide 

high spatial and temporal resolution, providing the capability of generating insightful information 

for numerous applications, such as crop disease identification, crop growth modeling, and crop 

yield estimation.  

Crop yield prediction is critical for farmers, breeders, and agriculture scientists, especially 

in the early stages, as it could inform crop management strategies and help in crop evaluation. An 

enormous amount of research is available in the literature regarding conventional ground sensing 
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methods to estimate crop yield (Feng et al., 2018). However, conventional methods are exhaustive, 

time-consuming, labor-intensive, and often not scalable due to resource availability constraints. In 

the literature, satellite remote sensing data have been extensively utilized for crop yield estimation 

(Ferencz et al., 2004; Hunt et al., 2019; Meng et al., 2019; Novelli et al., 2019; Sayago and Bocco, 

2018; Singh et al., 2002). Though satellite remote sensing data is valuable for extensive areal 

coverage, spatial resolution is still a concern for many precision agriculture applications. The 

ground yield maps for breeding trials generally require higher spatial resolution. Moreover, optical 

satellite images may suffer from occlusion by clouds, and their revisit time is also not flexible.   

Recent developments in exploiting UAS data for yield estimation have revealed that UAS-

based remote sensing has the potential to accurately estimate crop yield (Weiss et al., 2020). Recent 

years have witnessed the emergence of machine learning regression models such as artificial neural 

networks (ANN), support vector regression (SVR), random forest regression (RFR), and Gaussian 

process regression. These models have been successfully deployed to determine an empirical 

relationship between crop yield and crop canopy feature-set derived from UAS containing canopy 

attributes, vegetation indices (Gandhi et al., 2016; Gopal and Bhargavi, 2019; Yu et al., 2016). 

Recently, deep learning models are also gaining popularity for accurate crop yield prediction 

(Khaki et al., 2019; Khaki et al., 2020; Kim et al., 2019; Tri et al., 2017; Wang et al., 2018; You 

et al., 2017). However, recent deep learning-based methodologies involve utilizing multi-year 

weather data along with coarser spatial resolution satellite data for yield prediction over a large 

area. Moreover, the success of deep learning-based yield estimation models is mainly dependent 

on a large number of training samples, which makes them unsuitable for small-scale experiments 

with limited training samples.  

Early research utilizing UAS driven crop canopy feature-sets mostly demonstrated 

correlation of crop yield with reflectance in the spectral bands and vegetation indices derived from 

UAS based sensors (Nebiker et al., 2016; Stroppiana et al., 2015; Zhou et al., 2017). Later, UAS 

based image-driven crop canopy attributes, such as canopy height, canopy volume, and canopy 

cover, were also utilized to estimate crop yield (Feng et al., 2018; Stanton et al., 2017). These 

studies used a single or relatively few regression parameters for crop yield estimation. Exploring 
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the full potential of UAS derived multi-temporal canopy attributes and vegetation indices for crop 

yield estimation is unprecedented in the literature. Moreover, it is also essential to investigate how 

early crop yield estimation can be successfully made in the crop growing season. Information is 

scarce in the literature regarding the suitability of UAS derived various canopy attributes as input 

features for machine learning modeling to estimate crop yield. Additionally, the reliability of UAS 

derived canopy attributes is also under question. Furthermore, one of the vital canopy attributes: 

canopy cover needs a thorough investigation pertaining to finding the most accurate canopy cover 

estimation method. This dissertation aims at filling these research gaps by conducting a reliability 

assessment of canopy attributes over different cropping systems, conducting a comparative study 

for various RGB and multi-spectral based CC estimation, and investigating the suitability of 

various canopy attributes for machine learning based crop yield estimation.  

As mentioned earlier, crop yield prediction before harvest is essential for farmers, breeders, 

and researchers for improved field management, crop performance evaluation, crop marketing, 

and genotype selection. However, crop yield estimation has a broader impact when applied to 

larger areas. Crop yield estimation at national and regional levels is an important metric for the 

decision-makers, such as crop insurance companies, food companies, and government agencies, 

to help ensure agricultural stability, economic viability, and global food security. Despite the need 

for large area crop yield estimation, limited battery, flight time, and large size of the collected data 

prevent UAS from covering large areas. On the other hand, satellite data cover a larger area but 

provide coarser spatial and temporal resolution than UAS imagery. As mentioned earlier, satellite 

remote sensing data have been extensively utilized for crop yield estimation, and an ample number 

of studies are found in the literature using UAS derived data for yield estimation. However, there 

is no existing literature combining UAS and satellite data for yield estimation. This dissertation 

also aims at addressing this research gap by combining UAS’s ability to provide precise high 

spatial resolution data with the extensive areal coverage provided by satellite data to estimate crop 

yield. 
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1.2 Research objective 

This research is based on the observation that there is an increasing need for accurate and 

timely crop yield estimation. Therefore, the overall goal of this research is to develop new remote 

sensing-based methods for crop yield estimation. The specific objectives of this dissertation are as 

follows: 

The first objective is to utilize UAS data collected over the season for crop yield estimation, 

which includes developing a novel machine learning framework for yield estimation, and 

determining the optimal input feature set, along with the relative significance of each variable in 

the input feature set. Additionally, this study aims to determine how early crop yield estimation 

can be achieved in the growing season. 

UAS efficiently works over small-size research or breeding trial fields. However, extensive 

aerial coverage is not practically feasible. Nevertheless, satellite images cover a vast area but 

provide coarser spatial resolution. To overcome these limitations, the second objective of this 

dissertation is to combine UAS and satellite data for large-area crop yield estimation. Considering 

the limited availability of UAS derived information, applying traditional data fusion models is not 

feasible. This study investigates deep learning methodologies that eliminate the need for UAS data 

during test time to overcome this challenge. 

1.3 Overview of the dissertation 

The main objective of this dissertation is to develop new remote sensing-based methods 

for crop yield estimation. To achieve this research objective, first, the reliability of UAS-derived 

canopy parameters was tested; subsequently, a comparative study of canopy cover was performed; 

and later, a method for determining crop yield from UAS was proposed. Finally, the knowledge 

acquired through the preceding three tasks was leveraged to investigate machine learning models 

for integrating satellite and UAS data for large-area crop yield estimation.  

Chapter 2 determines the reliability of UAS-derived canopy parameters through a project 

using multi-temporal UAS data for comparing two management practices in cotton, Conventional-

Tillage, and No-Tillage (Ashapure et al., 2019b).  
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Chapter 3 compares RGB and multispectral sensor-based cotton canopy cover models and 

proposes an RGB-based canopy cover estimation methodology, which provides an affordable 

alternative to more sensitive and expensive multispectral sensors (Ashapure et al., 2019a). 

In chapter 4, a machine learning based cotton yield estimation framework using multi-

temporal UAS data is proposed. In addition to building the machine learning-based framework, 

this chapter tests how early in the season the crop yield can be reliably predicted and also 

determines the relative significance of individual canopy features in the prediction model 

(Ashapure et al., 2020a). 

Finally, in Chapter 5, a deep learning-based modality fusion methodology is proposed based 

on cross task knowledge transfer and modality hallucination to utilize UAS-derived canopy 

parameters as side information to improve multi-temporal satellite-based crop yield prediction. 

Proposed models eliminate the need for UAS data during the test time. 

Finally, a summary and conclusion are provided. 
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2. UAS BASED CROPPING SYSTEM EFFECT ASSESSMENT 

2.1 Background 

The main focus of this dissertation is to develop a machine learning based high-throughput 

phenotyping framework for crop yield prediction using UAS derived plant parameters such as 

canopy height (CH), canopy cover (CC), canopy volume (CV), and vegetation indices. However, 

assessing the reliability of these plant parameters is important before utilizing them as input to the 

yield prediction models. To investigate the reliability of the UAS derived plant parameters, this 

study aims to develop a framework to detect conventional tillage (CT) and no-tillage (NT) 

cropping system effects on cotton growth and development using multi-temporal UAS data. 

Conventional tillage is the most commonly adopted management practice in U.S. agriculture 

(Triplett and Dick, 2008). It consists of tilling the soil before planting to control weeds and 

primarily creating seedbeds for uniform crop establishment. However, the development of new 

technology and the introduction of new efficient herbicides enabled the adoption of alternate 

management practices, such as reduced tillage and no-tillage systems. The latter consists of 

planting crops in unprepared soil with at least 30% mulch cover (Giller et al., 2015). NT systems 

capture and store water more efficiently, reduce erosion and degradation of soil structure, decrease 

input costs and, consequently, sustain long-term crop production (Pittelkow et al., 2015b; Triplett 

and Dick, 2008). Short-term impacts of the NT systems on crop yields are still considered variable. 

A solid understanding of the factors affecting productivity is needed to support evidence-based 

management decisions. Therefore, there is a need to assess the performance of CT and NT systems.  

 
   

 
Content of this chapter is published as follows: Ashapure, A., Jung, J., Yeom, J., Chang, A., Maeda, M., Maeda, A., & Landivar, J. 

(2019). A novel framework to detect conventional tillage and no-tillage cropping system effect on cotton growth and development 

using multi-temporal UAS data. ISPRS Journal of Photogrammetry and Remote Sensing, 152, 49-64. 

 



 

 

23 

2.1.1 Scope and contribution 

It is vital to extend the application of UAS derived plant parameters to quantify agronomic 

differences in crop plants under different cropping systems, which will help agriculture scientists, 

farmers, and breeders make evidence-based management decisions. Traditionally, they rely on 

taking manual measurements of agronomic characteristics, which is labor-intensive and time-

consuming. Moreover, experiments utilizing manual measurements rely on only a few samples, 

leading to statistical uncertainty depending on the sample size. As a solution, remote-sensing 

technology offers a more efficient way to obtain a large-scale mapping of plant parameters. High-

throughput, automated phenotyping approaches for plant parameters are required to facilitate the 

assessment of large breeding populations, or precision agriculture approaches. UAS has emerged 

to serve this need by providing unprecedented spatial, spectral, and temporal resolution data (Roth 

et al., 2018; Singh and Frazier, 2018). An ample amount of research can be found in the literature 

exploring UAS derived canopy parameters (Calders et al., 2015; Chianucci et al., 2016; Hassan et 

al., 2018; Lucieer et al., 2014; Stanton et al., 2017). However, there is no literature attempting to 

quantify agronomic differences in crop plants under different cropping systems using UAS data. 

The present study aims to fill this gap by proposing a novel framework to use multi-temporal UAS 

data to compare two management practices in cotton, CT, and NT. Furthermore, the main 

contribution of the present study is to assess the reliability of UAS derived plant canopy parameters 

to be used as input to the yield estimation model.  

2.2 Study area, sensors, and platforms 

The study was conducted at the Texas A&M AgriLife Research and Extension Center at 

Corpus Christi, Texas (latitude 27°46’59” N, longitude 97°34’13” W) during the 2017 growing 

season. The cotton field considered in the study was part of a larger experiment as presented in 

Figure 2.2, which was initiated in 2011. The experiment was designed to study the long-term 

effects of NT on cotton and sorghum, where cotton and sorghum were rotated every year. Soil 

types in the study site are Victoria Clay series soils (Victoria-Lattas-Clareville). Cotton plots were 

established in a split-plot design with CT (CT1 – CT4) and NT (NT1 – NT4) practices as replications 
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in a non-irrigated field (Figure 2.1) where treatment within CT and NT replications was consistent. 

Three cotton varieties (Deltapine, 1044, and B2RF) were planted on March 25, 2017, and 

harvested on August 1, 2017. Each replication consisted of sixteen rows, 55m long and 0.97m 

apart. The total area of the experimental field was approximately 2.25 acres. Provided the 

experimental field was in a coastal area, wind speed and rain were the potential factors to be 

considered before every flight. Flights were conducted between 10:00 AM to 2:00 PM. The 

temperature variation throughout the growing season varies between 79°F to 96°F with an average 

humidity of 76%. Average monthly rainfall in the region ranges between 50 mm and 90 mm during 

the growing season (NWS, 2016). 

The experimental field was divided into approximately one square meter grids to extract 

various plant canopy parameters. Any grids that did not contain any canopy and the grids around 

edges of the test field were removed from the analyses for fair comparison of cropping systems 

effects. Both RGB (Red, Green, and Blue) and MS (multispectral) sensors were used for this study. 

DJI Phantom 4 Pro (SZ DJI Technology Co., Ltd., Shenzhen, China) was used for RGB data 

collection. The weight of this UAS is 1.4 kg with a flight endurance of up to 30 minutes in mild 

weather conditions. It is equipped with a 3-axis gimbal-stabilized RGB sensor with 20 megapixels 

resolution, with a field of view (FOV) of 74°.  Multispectral data was captured using a multirotor 

platform, DJI Matrice 100 (DJI, Shenzhen, China). The weight of this UAS is 2.4 kg with a flight 

endurance of up to 25 minutes in mild weather conditions. A multispectral sensor, SlantRange 3p 

(Slantrange Inc, San Diego, CA, USA), was mounted on the UAV. SlantRange 3p sensor has a 

resolution of 1280 × 1024, 4.8 micro meter pixel size, 12 mm focal length, and 28° FOV. The 

sensor is equipped with an integrated solar spectrometer for frame-to-frame radiometrically 

accurate reflectance measurements. The sensor captures four spectral bands, including green, red, 

red-edge, and near-infrared bands (peak wavelengths are presented in Table 2.1).  
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Figure 2.1. Experimental field setup consisted of cotton planted under Conventional-tillage 

(CT1~ CT4) and No-Tillage (NT1~NT4) treatments. Insert highlights grid system (1m x 1m) 

applied to the entire test field for data extraction. Experimental field setup is presented with RGB 

orthomosaic of the study area on June 7, 2017. 

 

Figure 2.2. Distribution of ground control points (GCPs) on the larger experimental field 

comprising of alternate cotton and sorghum plots. The cotton plot considered in this experiment 

is highlighted by the dotted yellow rectangle. 
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Table 2.1. Peak wavelength and FWHM for bands present in SlantRange 3p sensor 

SlantRange 3p sensor band Peak wavelength (nm) FWHM (nm) 

Green 560 40 

Red 655 35 

Red-edge 710 20 

Near-infrared 830 110 
 

Table 2.2 presents flight specifications for both RGB and multispectral data. UAS 

considered in this study were equipped with a consumer-grade Global Positioning System (GPS) 

which did not have satisfactory location accuracy for aerial mapping applications. To overcome 

this problem, 14 well-distributed permanent ground control points (GCPs) with high reflectance 

were installed over the study area (Figure 2.2). GCPs were surveyed every time the UAS data was 

collected using a dual-frequency, post-processed kinematic (PPK) GPS, model 20Hz V-Map Air 

(Micro Aerial Project L.L.C., Gainesville, FL). After each flight, the collected raw UAS data was 

processed using Agisoft Photoscan Pro software (Agisoft LLC, St. Petersburg, Russia). The 

software uses structure-from-motion to generate DSM and orthomosaic. Unlike traditional 

photogrammetry, SfM uses information extracted from multiple overlapped (~80-90%) images to 

generate a 3D point cloud without the need for precise camera calibration parameters (Westoby et 

al., 2012). In SfM processing, key points from overlapping images are initially identified using a 

feature matching algorithm such as scale-invariant feature transform (SIFT)(Lowe, 2004). Using 

bundle block adjustment, interior and exterior orientation parameters are computed by providing 

the key points identified using SIFT and coordinates for GCPs. Further, 3D coordinates of the 

matching points are computed. Now that the camera positions and orientations are known, multi-

view stereo (MVS) processing is used to systematically step through the images and use the 

principles of stereo viewing to increase the number of points, creating the dense point cloud. After 

densification of the point cloud, a digital surface model (DSM) was generated. Finally, the DSM 

is used to project every image pixel to generate an orthorectified mosaic or an orthomosaic. 

Absolute georeferencing accuracy of the UAS generated DSM and orthomosaics was not 

computed. However, the relative accuracy of multi-temporal data was observed to be centimeter-

level on visual inspection, i.e., 2 cm in planimetry and 3 cm in altimetry.     
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Canopy attributes and vegetation indices computation procedure is presented in Appendix 

A.1. Manual height measurements were also taken throughout the season every week to validate 

UAS-based CH data collection (ground-truthing). A ruler was used to measure the cotton plant 

height (apex height). The ground measured height was presented for all the individual replications 

by averaging measurements from the heights of ten random plants per row collected only from 

two middle rows of the replication.  

Table 2.2. UAS data collection timeline and sensor-wise flight specifications. 

Date 

Flight 

Altitude 

(RGB) 

Flight 

Altitude 

(Multis

pectral) 

Overlap 

(RGB)  
Overlap 

(Multis

pectral) 

Spatial 

Resolutio

n, RGB 

(cm) 

Spatial 

Resolution, 

multispect

ral (cm) 

20 May, 2017 30m 40m 80% 60% 0.84 1.69 

30 May, 2017 30m 40m 80% 60% 0.76 1.58 

07 June, 2017 30m 40m 80% 60% 0.80 1.58 

14 June, 2017 30m 40m 80% 60% 0.79 1.65 

19 June, 2017 30m 40m 80% 60% 0.78 1.62 

05 July, 2017 20m 40m 80% 60% 0.51 1.60 

10 July, 2017 30m 40m 80% 60% 0.83 1.64 

18 July, 2017 30m 40m 80% 60% 0.82 1.63 

 

2.3 Methodology 

Four canopy parameters were used to compare the effects of CT and NT cropping systems 

over the entire growing season- canopy height (CH), canopy cover (CC), canopy volume (CV), 

and normalized difference vegetation index (NDVI). These parameters were computed using the 

georeferenced orthomosaics, and digital surface models (DSM) generated from data captured 

using UAS every week (a detailed parameter computation procedure is presented in section A.1). 

Canopy parameters were obtained grid-wise, and the average of all the grids per cropping system 

was used to compare the cropping systems.  A one-tailed test hypothesis was designed to compare 

cropping system effects. The hypothesis used Z statistics (Equation 2.1) with a 95% confidence 

interval. The null hypothesis (H0) suggests that NT is not significantly greater than CT, and the 

alternate hypothesis (Ha) suggests that NT is significantly greater than CT at α = 0.05. 
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Z = 
𝑂𝑛−𝑂𝑡

√𝜎𝑂𝑛
2 +𝜎𝑂𝑡

2
 , 

(2.1) 

Where Z ≥ 1.645 indicates a significant difference at 0.05 significance level, on and ot 

represent the average NT and CT measurements per grid respectively and α the confidence level. 

2.4 Results and discussion 

2.4.1 Treatment effects on plant parameters 

It can be observed in Figure 2.3 and Figure 2.4 that CH values steadily increased since the 

first date of data collection on May 20, reaching a plateau on June 14. A decrease of two 

centimeters in CH under NT and four centimeters in CH under CT was observed after June 14, 

which highlights one of the limitations of the current technology and methodology in resolving 

plant height once the plant canopy starts senescing (Figure 2.4). One of the reasons for the decrease 

in CH was the decrease in the 3D point cloud density, which makes it difficult to detect the actual 

highest point in the plant. Moreover, wind also contributes to the minor inaccuracies in height 

measurements. Lodging could also be a factor late in the season due to the increasing weight 

(cotton bolls) during the growing season. However, this is not seen every season/year, and it is 

highly dependent on environmental and crop conditions. Average CH measured for both CT and 

NT treatments indicated that plants growing under the NT treatment were relatively taller and that 

the difference steadily increased from two centimeters on May 30, 2017, to ten centimeters on July 

10, 2017. Except for the first data collection date (May 20, 2017), statistical analyses confirmed 

that NT plants were significantly taller than those grown under the CT treatment (Table 2.3). 
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Figure 2.3. Canopy height grid maps for each flight in the growing season with legends.  
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Figure 2.4. Average canopy height measured for conventional-tillage (CT) and no-tillage (NT) 

cropping systems and their difference at each flight. 

 

Table 2.3. Average canopy height for conventional-tillage (CT) and no-tillage (NT) cropping 

systems with their standard deviation (SD) and Z statistics results at each flight. 

Date 
NT CT 

z value 
CH (m) SD CH (m) SD 

20-May 0.57 0.06 0.56 0.05 1.41 

30-May 0.71 0.05 0.69 0.06 4.12 

7-Jun 0.85 0.06 0.81 0.06 5.91 

14-Jun 1.00 0.08 0.99 0.09 2.69 

28-Jun 0.99 0.08 0.95 0.11 5.49 

5-Jul 0.98 0.08 0.94 0.08 7.29 

10-Jul 0.96 0.10 0.86 0.16 11.67 

 

Figure 2.5 presents the CC grid maps for each flight in the growing season. Much like CH, 

CC also consistently increased from 47% on May 20, 2017, to 95% on July 5, 2017, for NT plants 

(Figure 2.6). During the same time, CC for CT plants increased from 44% to 84%. However, CC 

reached its peak value on July 10, 26 days later than that of CH. Due to the fact that, even though 

the height of the plant reached its peak, the plant was still densifying; hence the biomass or the 

total areal coverage was still increasing. A decreasing trend was observed in CC under NT and CT 
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plants after July 10. Between July 18 and July 23, a decrease of 28% in CC for NT and 43% in CC 

for CT plants was observed due to the defoliation process, a common practice in cotton fields to 

prepare the crop for harvesting. It can also be observed that plants growing under the NT treatment 

had higher CC than the plants growing under the CT treatment, and the difference consistently 

increased from 3% to 25% between May 20 and July 23, 2017 (Figure 2.6). The statistical test 

confirmed that the NT plants had significantly higher CC than CT plants, with no exception (Table 

2.4). 

 

Figure 2.5. Canopy cover grid maps for each flight in the growing season with legends.  
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Figure 2.6. Average canopy cover (CC) measured for conventional-tillage (CT) and no-tillage 

(NT) cropping systems and their difference at each flight. 

 

Table 2.4. Average canopy cover (CC) for conventional-tillage (CT) and no-tillage (NT) 

cropping systems with their standard deviation (SD) and Z statistics results at each flight. 

Date 
NT CT 

z value 
Average CC (%) SD Average CC (%) SD 

20-May 47.28 8.02 44.64 7.95 3.79 

30-May 68.34 6.55 65.28 6.56 4.52 

7-Jun 77.71 6.85 72.38 7.86 8.83 

14-Jun 85.41 6.93 78.28 8.31 10.02 

5-Jul 89.50 5.54 82.86 8.44 11.02 

10-Jul 95.05 0.68 84.80 2.49 15.56 

18-Jul 91.91 4.82 81.93 14.02 13.83 

23-Jul 63.20 6.09 38.14 15.13 13.96 

 

Figure 2.7 presents the CV grid maps for each flight in the growing season. CH and CC 

reached their plateau on June 14 and July 10, respectively. Since CV is a function of both CH and 

CC, it reached a plateau on June 28, which falls in the middle of peak dates for CH and CC. Later 

in the season, between July 5 and July 18, a decrease of 0.15 m3 for NT plants and 0.27 m3 was 
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observed, attributed to the defoliation process (Figure 2.8). Comparable to CH and CC, NT plants 

had a significantly greater CV than CT plants, and the difference consistently increased from 0.01 

m3 to 0.11 m3 between May 20 and July 18, 2017 (Table 2.5). 

 

 

Figure 2.7. Canopy volume (CV) (m3) grid maps for each flight in the growing season with 

legends. 



 

 

34 

 

Figure 2.8. Average canopy volume (CV) measured for conventional-tillage (CT) and no-tillage 

(NT) cropping systems and their difference at each flight. 

 

Table 2.5. Average canopy volume (CV) for conventional-tillage (CT) and no-tillage (NT) 

cropping systems with their standard deviation (SD) and Z statistics results at each flight. 

Date 

NT CT 

z value Average CV 

(m3) 
SD 

Average CV 

(m3) 
SD 

20-May 0.20 0.05 0.19 0.04 2.06 

30-May 0.34 0.06 0.32 0.05 3.79 

7-Jun 0.47 0.08 0.42 0.07 7.81 

14-Jun 0.66 0.09 0.58 0.11 11.54 

28-Jun 0.71 0.09 0.65 0.14 8.30 

5-Jul 0.68 0.09 0.59 0.13 12.10 

18-Jul 0.53 0.19 0.32 0.20 20.41 

 

NDVI is the canopy trait extracted from spectral information which indicates plant health 

(Novikova et al., 2020), unlike other quantitative parameters such as CC, CH, and CV. Figure 2.9 

presents the NDVI grid maps for each flight in the growing season. Between May 20 and July 5, 

the average NDVI increased consistently (from 0.85 to 0.92 for NT plants and 0.82 to 0.90 for CT 

plants). After reaching their peak on July 5, NDVI values decreased over time for CT and NT 

systems (Figure 2.10). Moreover, it was also observed that plants under NT had greater average 
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NDVI than plants under the CT system. Table 2.6 suggested that the difference between NT and 

CT systems was statistically significant.  

For July 10 and later, as plants matured, average NDVI values were 0.85 or lower, except 

for a patch on the upper side of NT3, where NDVI values were still 0.9 or higher. A similar trait 

was observed in CH, CC, and CV grid maps (Figure 2.3, Figure 2.5, and Figure 2.7), where 

parameter values over the patch were significantly higher compared to the surrounding area. A 

slight depression in the surface area of the patch caused water accumulation, consequently greater 

water availability to plants which resulted in the different growth patterns of the plants in the patch 

area compared to the growth pattern of the plants in the surrounding area. To maintain the 

consistency of the experiment, the patch area was removed from the analysis for a fair comparison.  
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Figure 2.9. NDVI grid maps for each flight in the growing season with legends. 
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Figure 2.10. Average normalized difference vegetation index (NDVI) measured for 

conventional-tillage (CT) and no-tillage (NT) cropping systems and their difference at each 

flight. 

  

Table 2.6. Average normalized difference vegetation index (NDVI) for conventional-tillage (CT) 

and no-tillage (NT) cropping systems with their standard deviation (SD) and Z statistics results at 

each flight. 

Date 
NT CT 

z value 
Average NDVI SD Average NDVI SD 

20-May 0.85 0.07 0.82 0.10 3.43 

30-May 0.89 0.02 0.87 0.02 3.97 

7-Jun 0.89 0.02 0.87 0.02 4.06 

14-Jun 0.90 0.02 0.88 0.03 5.34 

5-Jul 0.92 0.03 0.90 0.04 5.51 

10-Jul 0.85 0.04 0.80 0.05 10.20 

18-Jul 0.83 0.05 0.77 0.05 9.82 

23-Jul 0.73 0.04 0.70 0.03 8.12 

 

Figure 2.11 presents replication-wise and overall yield (lb/ha) for CT and NT cropping 

systems. The yield was obtained using a modified 2-row cotton picker that allowed yield to be 

captured for each plot and row individually. Cotton picker only removes the seed cotton from the 

open boll, leaving plants in the field. After separating lint and seeds, samples were bagged, and 
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lint weights were obtained after harvest. The average yield was significantly higher in the NT 

system (3397 lb/ha) than the CT system (2885 lb/ha). While comparing neighboring replications, 

it was reported that NT yields were higher than CT, with the difference ranging from ~220 lb/ha 

to ~992 lb/ha, except for NT2 and CT2, where CT yield was 40 lb/ha higher compared to NT. 

 

 

Figure 2.11. Replication-wise and overall yield (lb/ha) for conventional-tillage (CT) and no-

tillage (NT) cropping systems. 

 

Plants under the NT system had higher plant parameter values and higher yields than plants 

under the CT system in general. However, this should not be misconstrued as yield always has a 

positive correlation with plant parameters. It is important to have optimum plant size to maximize 

resources utilization. Previous studies (Freeland Jr et al., 2006) suggested that a large size canopy 

will use water and other inputs to maintain the vegetative structures and reduce the efficiency of 

leaves to translate the captured energy to yield, particularly in the case of indeterminate crops like 

cotton. If the plants continue to produce vegetative structures, the production of reproductive 

structures is neglected, resulting in a reduction of yield. Therefore, under a dryland environment, 

it is important to have optimum canopy size. Concurrently, a smaller canopy size will reduce the 

yield as the plant will not be able to capture enough solar radiation, which is the key component 

in photosynthesis and yield. Therefore, site-specific and region-specific studies need to be 
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performed to investigate the successful implementation of the NT cropping system, which is 

beyond the scope of this dissertation. The main focus of this study was to investigate how UAS 

technology can help to quantify the agronomic differences throughout the growing season in 

different cropping systems more efficiently and reliably than traditional methods. However, there 

are region-specific studies supporting the higher performance of the NT system over the CT system 

(Zhao et al., 2017). Previous crop residue substantially increases water infiltration and retention in 

the soil, and better soil moisture availability contributes to higher plant growth and performance. 

The residue left intact from previous years also contributes to the increase of organic matter in NT 

systems supporting microbial activity and biodiversity, allowing many organisms to flourish and 

make a commensal association with the crop (Guo et al., 2016). Moreover, since the soil is not 

being disturbed by disking, plowing, and cultivation, NT systems maintain soil structure and 

contribute to increased soil aggregate stability (Sapkota, 2012). 

2.4.2 Neighboring replication comparison 

Although yield analysis presented in Figure 2.11 suggested that the overall average yield 

for the NT system was significantly greater than the CT system, the neighboring plot-wise yield 

results did not confirm the same. It was reported that NT yields were higher than CT, with the 

difference ranging from ~220 lb/ha to ~992 lb/ha, except for NT2 and CT2, where CT yield was 40 

lb/ha higher compared to NT. Furthermore, differences in the yield among the other replications 

were variable. This called for a neighboring replication-wise comparison of all the canopy 

parameters to see if the difference comes out to be commensurate with the yield analysis. Figure 

2.12, Figure 2.13, Figure 2.14, and Figure 2.15 present the neighboring replications comparison 

of CT and NT cropping systems over CH, CC, CV, and NDVI, respectively.  
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(a) (b) (c) (d) 

Figure 2.12. Average canopy height (CH) measured for conventional-tillage (CT) and no-tillage 

(NT) cropping systems and their difference at each flight for (a) NT1& CT1, (b) NT2 & CT2, (c) 

NT3 & CT3, and (d) NT4 & CT4. 

 

    

(a) (b) (c) (d) 

Figure 2.13. Average canopy cover (CC) measured for conventional-tillage (CT) and no-tillage 

(NT) cropping systems and their difference at each flight for (a) NT1& CT1, (b) NT2 & CT2, (c) 

NT3 & CT3 and (d) NT4 & CT4 

 

   
 

(a) (b) (c) (d) 

Figure 2.14. Average canopy volume (CV) measured for conventional-tillage (CT) and no-tillage 

(NT) cropping systems and their difference at each flight for (a) NT1& CT1, (b) NT2 & CT2, (c) 

NT3 & CT3 and (d) NT4 & CT4 
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(a) (b) (c) (d) 

Figure 2.15. Average normalized difference vegetation index (NDVI) measured for 

conventional-tillage (CT) and no-tillage (NT) cropping systems and their difference at each flight 

for (a) NT1& CT1, (b) NT2 & CT2, (c) NT3 & CT3, and (d) NT4 & CT4 

 

Neighboring replication-wise comparison of canopy parameters suggested that canopy 

parameter values for the NT system are significantly higher than CT parameter values, except for 

plot CT2 and NT2. This distinct behavior possessed by parameter values for plot CT2 and NT2 is 

highly commensurate with the yield difference between CT2 and NT2 (Figure 2.11). It is evident 

that UAS based measurements facilitate tracking the behavior anomaly possessed by a different 

part of the field, which can eventually help agriculture scientists conduct a posterior analysis. It is 

most likely that yields obtained from the second replication were not impacted by tillage 

management due to field variation. NT2 and CT2 have similar canopy parameter values, whereas 

the other three replications differ. Greater canopy parameter values were measured in NT1, NT3, 

and NT4 compared to CT1, CT3, and CT4, respectively. The lack of difference between NT2 and 

CT2 was potentially due to a low-lying area of the field within NT2 and CT2 compared to the 

remaining replications, which is likely to hold soil moisture for a longer time period into the flash 

drought period of June and July 2017 (Zhang et al., 2021). However, soil moisture was not 

measured, and there may be other factors, such as residue in the NT plots, micro-environment of 

soil nutrients, among others which impacted seed emergence, stand count, and ultimately yield 

(Derpsch et al., 2014; Kennedy and Hutchinson, 2001).  
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2.4.3 Manual height measurements 

Initially, manually measured average CH for both the cropping systems were compared 

with UAS derived average CH. Since manual CH measurements consisted of 10 measurements 

taken from only two middle rows per replication, UAS derived average CH measurements derived 

from grids in two middle rows of each replication were considered for the fair comparison. 

Comparable to UAS derived overall average CH (Figure 2.4), UAS derived average CH computed 

only from two middle rows of each replication also indicated that plants growing under the NT 

treatment were generally taller than plants growing under the CT treatment, and the difference 

steadily increased over time from one centimeter on May 20 to seven centimeters on July 23 

(Figure 2.16). Although manually measured average CH indicated an overall increasing trend 

similar to UAS derived average CH, it indicated no statistical difference between treatments for 

half of the flights, as opposed to UAS derived measurements which indicated that the difference 

in the average CH under both treatments was significant for all the flights (Table 2.7). Manual 

measurements consisted of only ten randomly measured CH values over the middle two rows of 

each replication. Small sample size and large standard deviation of the manual measurements led 

to an inconclusive statistic regarding the overall trend of the average CH measurements compared 

to UAS based average CH measurements.   
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Figure 2.16. Manually measured average canopy height (CH) over a sample of 10 measurements 

in two middle rows per replication for conventional-tillage (CT) and no-tillage (NT) cropping 

system and UAS derived average CH considering only two middle rows per replication for CT 

and NT cropping system. 

 

Table 2.7. UAS derived and manually measured average CH for CT and NT cropping systems 

with their standard deviation (SD), and Z statistics results at each flight.  

Date 

UAS-NT UAS-CT 

z 

valu

e 

Date 

Manual-NT Manual-CT 

z 

valu

e 

Avera

ge CH 

(m) 

SD 

Avera

ge 

CH 

(m) 

SD 

Avera

ge CH 

(m) 

SD 

Avera

ge CH 

(m) 

SD 

20-

May 
0.55 

0.0

3 
0.54 0.04 1.71 

18-

May 
0.56 

0.0

4 
0.53 

0.0

4 
2.01 

30-

May 
0.70 

0.0

4 
0.67 0.08 2.80 

26-

May 
0.66 

0.0

4 
0.63 

0.0

6 
1.41 

7-Jun 0.86 
0.0

6 
0.81 0.08 3.87 9-Jun 0.95 

0.0

52 
0.95 

0.0

7 
0.03 

14-

Jun 
1.00 

0.0

3 
0.95 0.06 5.28 

14-

Jun 
1.04 

0.1

5 
0.98 

0.1

0 
1.84 

28-

Jun 
1.05 

0.0

2 
0.99 0.06 5.53 

28-

Jun 
1.08 

0.0

8 
1.02 

0.0

9 
2.34 

5-Jul 1.02 
0.0

4 
0.95 0.08 5.95 5-Jul 1.09 

0.0

6 
0.97 

0.0

6 
5.51 

18-

Jul 
0.97 

0.0

5 
0.89 0.08 6.74 

18-

Jul 
1.02 

0.0

8 
0.97 

0.0

5 
2.35 

23-

Jul 
0.92 

0.0

8 
0.85 0.14 4.88 

25-

Jul 
0.99 

0.0

3 
0.99 

0.0

3 
-0.18 
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A neighboring replication-wise comparison was also performed between CT and NT 

cropping systems to investigate manually measured CH further. It was observed that neighboring 

replication-wise UAS-based height measurements create a smooth growth curve and follow a trend 

(Figure 2.12). In contrast, neighboring replication-wise manual measurements do not seem to be 

consistent, especially for CT (Figure 2.17). Sample size may play a significant role in shaping the 

trend of the data. While manual data collection consisted of measuring ten plants in the two middle 

rows of each replication, UAS measured the entire plant population of that replication. 

 

 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 2.17. Manually measured average canopy height (CH) over a sample of 10 measurements 

in two rows per replication for conventional-tillage (CT) and no-tillage (NT) cropping system 

and their difference at each flight for (a) NT1 & CT1, (b) NT2 & CT2, (c) NT3 & CT3, and (d) NT4 

& CT4. 

 

For UAS measurements, CH values under the NT system were significantly higher than 

that of CT, except for CT2 and NT2 (Figure 2.12). However, manual measurements suggest no 

significant difference between cropping systems, except for a few dates. Due to limited sample 

size and high standard deviation, manual CH measurements can be misleading and were not able 

to represent the actual trend of the overall plant population. Increasing sample size for manual 

measurements would result in a better representation of plant population; however, it can be time-

consuming and labor-intensive. Moreover, manual CH measurements are always susceptible to 

human errors. On the other hand, UAS-based measurements are seamless, repeatable, and reliable.  
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UAS served as high precision and cost-effective technology to quantify the difference 

between cropping systems throughout the growing season. Manual measurements proved to be 

more challenging, especially in terms of sample size. Moreover, manually measuring canopy 

parameters like CC and CV is not practically feasible. These limitations in manual data collection 

make UAS-based data more robust and reliable. However, formulating a clear, outlined 

methodology during the UAS flight planning phase is critical to acquiring high-quality data. The 

quality of UAS data is the function of flying altitude, image forward and side overlaps, ground 

sample distance, and the completeness of the DTM reconstructed using the SfM pipeline. 

Additionally, weather conditions also significantly affect the quality of UAS data, especially the 

wind speed. Since our experimental setup was in the coastal region, the high wind had been the 

critical issue. Although all our flights were always conducted under 15mph wind speed, the 

movement of plant leaves during data collection impacts the quality of the point cloud and, in turn, 

the quality of UAS derived CHM. Moreover, since the canopy volume is also a function of canopy 

height, any error in the height measurements also affects the canopy volume measurement.  

Parameters based on spectral information such as NDVI entirely depend on the type and 

quality of the multispectral sensor used. The SlantRange 3p sensor used in this study can be 

radiometrically calibrated with the incident light, allowing temporal NDVI maps to be compared 

despite changes in lighting conditions across different flights throughout the season. NDVI 

measurements can be obtained using other platforms, namely, ground-based sensors, UAS based 

and satellite-based multispectral sensors. Compared to ground-based NDVI measurements, UAS 

based data collection is faster, and it is not labor-intensive. Moreover, it is free from the restrictions 

associated with access to the field due to the application of pesticides or irrigation (Tattaris et al., 

2016). Satellite-based NDVI measurement is more commonly reported in the literature using 

various satellite platforms such as Landsat-8, SPOT-5, MODIS, Sentinel-2, and WorldView-2, to 

name a few (Valderrama-Landeros et al., 2018). Recently, UAS has gained more popularity for 

NDVI computation (Stanton et al., 2017). Although satellite images have the advantage to cover a 

vast area, UAS based sensors are preferable for NDVI computation because of their ability to 

discard non-canopy pixels from the image, which is not possible with satellite-based coarser spatial 
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resolution images. Temporal monitoring of crops requires short revisit times, which is costly and 

ineffective with satellite sensors (Ghazal et al., 2015). Moreover, UAS based sensors are less 

affected by environmental effects such as water vapor, occlusion by cloud, temperature change. 

However, UAS technology also has limitations, such as limited operation time (battery capacity) 

and short-range, questioning its applicability over large areas (Yue et al., 2019).  

The objective of this study was to quantify agronomic differences in cotton plants under 

CT and NT cropping systems in the Coastal Bend of Texas. Overall averages and neighboring 

replications comparison of UAS-based measurements revealed that the NT cropping system 

resulted in the taller canopy, higher percentage CC, biomass (CV), NDVI, and also, higher yield 

than CT. NT systems not only have the potential to sustain or improve yield but nonetheless can 

also benefit farmers through a reduction in labor. According to the study (Staropoli, 2016), NT 

systems can save up to 225 hours of labor per year for a 500-acre farm. NT systems improve water 

infiltration and storage, help rebuild organic matter, decrease erosion risk, and support microbial 

activity. Overall, NT systems are often more sustainable than CT practices. Moreover, the NT 

system is more efficient in saving fuel costs by reducing tractor passes compared to the CT system, 

reducing the farming’s global warming footprint. Despite all the advantages, a global meta-

analysis performed to investigate the circumstances when NT system yields more revealed that 

NT system performance is highly context-dependent (Pittelkow et al., 2015b). High yield in dry 

climates under the NT system is attributed to better water infiltration and more significant soil 

moisture conservation. On the contrary, the yield deteriorates when using the same NT system in 

humid climates, which is caused by fungal diseases developed due to elevated moisture levels in 

the soil. However, as per a meta-study, the decline in the yield in humid climates can be unrelated 

to the cropping system (Pittelkow et al., 2015a). Hence, site-specific and region-specific studies 

need to be performed to investigate the successful implementation of the NT cropping system. In 

addition, UAS technology can help to quantify the agronomic differences throughout the growing 

season in different cropping systems more efficiently and reliably than traditional methods. 
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2.5 Conclusion 

This study presented a novel approach to assess the reliability of multi-temporal UAS data 

to compare CT and NT cotton cropping systems. CH, CC, CV, and NDVI were the four canopy 

parameters used to quantify differences between cropping systems. Overall averages and 

neighboring replications comparisons between cropping systems were performed, and results 

revealed that NT values were significantly higher than CT when UAS-based measurements were 

considered. NT had a taller canopy, higher CC, higher biomass, higher NDVI, and higher yield 

compared to CT. UAS-based parameter estimation is more efficient than manual data in terms of 

time, cost, and labor. Moreover, unlike manual measurements that rely on limited samples, UAS 

technology provides the capability to exploit the entire population. This makes UAS derived data 

more robust and reliable. UAS also permits modifying sample size according to the objective of 

the experiment with less effort. In other words, UAS technology has revolutionized the way we 

can perform varying degrees of analysis with canopy parameters over a temporal scale. In the 

future, this study could be extended to other crops and different management practices. Different 

data collection frequency, varying grid size, and varying sample size could also be an option to 

analyze different outputs.   
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3. A COMPARATIVE STUDY OF RGB AND MULTISPECTRAL 

SENSOR BASED COTTON CANOPY COVER MODELLING 

3.1 Background 

Canopy cover (CC) is commonly expressed as the percentage of total ground areal 

coverage by the vertical projection of plant canopy. Plant canopy cover is strongly related to crop 

growth, water use, and photosynthesis, making it an important trait to be observed throughout the 

growing season (Trout et al., 2008). In addition, CC is an essential ancillary variable in estimating 

the Leaf Area Index (LAI) (Nielsen et al., 2012). Recently, UAS has emerged as an alternate to 

the satellite, airborne imaging sensors or LiDAR sensors to estimate CC, which is more affordable 

and could provide higher temporal and spatial resolution (Ashapure et al., 2019c; Chianucci et al., 

2016; Chu et al., 2016; Fernandez-Gallego et al., 2018; Holman et al., 2016). CC computation 

using multispectral (MS) sensors gained more popularity over RGB sensors. MS sensors are stable 

over time due to their irradiance sensor (Clevers et al., 2017; Pauly, 2014; Roth and Streit, 2018; 

Xu et al., 2019). However, numerous studies have suggested that MS sensors are relatively more 

expensive compared to RGB sensors (Fuentes-Peailillo et al., 2018; Gracia-Romero et al., 2017; 

Heidarian Dehkordi et al., 2020; Herzig et al., 2021; Marcial-Pablo et al., 2019). Manfreda et al. 

(2018) provided a cost comparison of state-of-the-art RGB and MS sensors widely used in remote 

sensing applications. The authors reported that the cost of commonly used RGB sensors ranges 

from $500 to $3,400, with an average cost of $1630. On the other hand, MS sensors have a price 

range of $300 to $34,000, with an average value of $11,000 at the time of publication. Additionally, 

MS sensors impose a higher payload weight on the UAV compared to consumer-grade RGB 

sensors (Grybas and Congalton, 2021; Herzig et al., 2021; Zheng et al., 2018). To have higher 

accuracy of CC estimation, several studies in the past have relied on MS sensors. Even though 
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there exists a large body of literature focusing on the use of MS sensor for CC estimation, adequate 

attention has not been paid to explore the limited spectral information provided by RGB sensors 

to estimate CC. This study aims to fill this knowledge gap present in this important area of research 

by investigating an RGB sensor based CC estimation method. 

   RGB-based CC estimation methods can be divided into two categories: thresholding and 

pixel classification. Thresholding methods require specifying the color thresholds or the ratios to 

identify the canopy pixels. Pixel classification methods use a supervised or unsupervised pixel-

wise classification method to identify canopy pixels. In this study, K-means clustering is used to 

perform pixel-based segmentation. However, other conventional segmentation could also be 

adopted, such as Graph-cut, Fuzzy C-mean, level set segmentation, etc., without the loss of 

generalization (Brox and Weickert, 2006; Chuai-Aree et al., 2001; Yi and Moon, 2012). Although 

pixel classification methods are highly accurate, they are time-consuming and computationally 

extensive. Therefore, it is vital to compare various CC estimation methods to find the most 

affordable, accurate, and computationally efficient CC estimation. 

3.1.1 Scope and contribution 

Despite there being significant literature exploring RGB-based CC estimation (Fang et al., 

2016; Lima-Cueto et al., 2019; Marcial-Pablo et al., 2019; Torres-Sánchez et al., 2014), there is a 

scarcity of research that compares different CC estimations throughout the crop growing season. 

A consistent observation in these case studies was that RGB-based CC estimation is inaccurate in 

the late season. Additionally, improving RGB sensor-based CC estimation performance in the late 

season is not discussed in the literature. The ability to accurately estimate CC in the late season is 

important for an indeterminate perennial crop such as cotton, which is grown and managed as an 

annual crop. Its indeterminate growth pattern allows the crop to simultaneously produce vegetative 

and reproductive structures. As the fruit load develops, the demand for carbohydrates and nutrients 

increases in proportion to the number of developing fruits. However, the supply of carbohydrates 

reaches a limit which is set by canopy light interception. When the demand for carbohydrates 

exceeds the supply, the crop temporarily pauses its vegetative growth and begins a phenomenon 
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commonly named “cutout” (Landivar et al., 2010), which represents physiological maturity. In the 

case of abundant availability of nutrients and water available in the soil, the plant continues to 

grow its vegetative parts. In this condition, a growth regulator is applied to restrict the vegetative 

growth so that the plant directs its energy to reproductive parts. Considering the cutout and the 

application of growth regulators, CC estimation in the late season is essential for managing the 

cotton crop. This study compared RGB-based CC estimation methods with MS sensor-based CC 

estimation and proposed an improved RGB-based CC estimation approach to address this 

knowledge gap. The proposed CC estimation approach will provide a more affordable option to 

breeders and agriculture scientists. 

3.2 Study area, sensors, and platforms 

A field experiment was established at the Texas A&M AgriLife Research and Extension 

Center in Corpus Christi, TX (Latitude 27°46’59” N and longitude 97°34’13” W) in 2017 and 

2018, respectively. The trial consisted of five cotton genotypes in 2017 and ten genotypes in 2018 

from the Texas A&M AgriLife Cotton Breeding Program (presented in Figure 3.1). Genotype 

details are still confidential and not released by the breeders till the writing of this dissertation. 

Soil types in the study site were Victoria Clay series soils (Victoria-Lattas-Clareville). For the 

2017 experiment, seeds were planted on March 22, 2017, and machine harvested on August 5, 

2017. For the 2018 experiment, seeds were planted on March 14, 2018, and machine harvested on 

August 1, 2018, in a skip or solid row pattern (i.e., one- and two-row plots, respectively), and each 

genotype was replicated four times. The fields were divided into 1m x 1m size grids. The number 

of grids in the 2017 and 2018 experiments was 300 and 600, respectively. The total area of the 

experimental field was approximately 1.6 acres in 2017 and approximately 5.1 acres in 2018. 

Provided the experimental field was in a coastal area, wind speed and rain were the potential 

factors to be considered before every flight. Flights were conducted between 10:00 AM to 2:00 

PM. The temperature variation throughout the growing season varied between 79°F to 96°F with 

an average humidity of 76%. Average monthly rainfall in the region ranges between 50 mm and 

90 mm during the growing season (NWS, 2016).  
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Both RGB (Red, Green, and Blue) and MS (multispectral) sensors were used for this study. 

DJI Phantom 4 Pro (SZ DJI Technology Co., Ltd., Shenzhen, China) was used for RGB data 

collection. The weight of this UAS is 1.4 kg with a flight endurance of up to 30 minutes in mild 

weather conditions. It is equipped with a 3-axis gimbal-stabilized RGB sensor with 20 megapixels 

resolution, with an FOV of 74°.  Multispectral data was captured using a multirotor platform, DJI 

Matrice 100 (DJI, Shenzhen, China). The weight of this UAS is 2.4 kg with a flight endurance of 

up to 25 minutes in mild weather conditions. A multispectral sensor, SlantRange 3p (Slantrange 

Inc, San Diego, CA, USA), was mounted on the UAV. SlantRange 3p sensor has a resolution of 

1280 × 1024, 4.8 micro meter pixel size, 12 mm focal length, and 28° FOV. The sensor is equipped 

with an integrated solar spectrometer for frame-to-frame radiometrically accurate reflectance 

measurements. The sensor captures four spectral bands, including green, red, red-edge, and near-

infrared bands (peak wavelengths are presented in Table 3.1). Table 3.2 presents flight 

specifications for both RGB and multispectral data. UAS considered in this study were equipped 

with a consumer-grade GPS which did not have satisfactory location accuracy for aerial mapping 

applications. To overcome this problem, six well-distributed permanent GCPs in the 2017 

experiment and fifteen well-distributed GCPs in 2018 experiments (Figure 3.2) with high 

reflectance were installed over the study area. GCPs were surveyed every time the UAS data was 

collected using a dual-frequency, post-processed kinematic (PPK) GPS, model 20Hz V-Map Air 

(Micro Aerial Project L.L.C., Gainesville, FL). After each flight, the collected raw UAS data was 

processed using Agisoft Photoscan Pro software (Agisoft LLC, St. Petersburg, Russia). The details 

of UAS data processing for this study are described in section 2.2. 
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(a) 

 
(b) 

Figure 3.1. Experimental field setup consisted of cotton in a skip or solid row pattern in (a) Year 

2017 and (b) Year 2018. Experimental field setup is presented with RGB orthomosaic of the 

study area on June 7, 2017, and June 6, 2018. 

 

 
(a) 

 
(b) 

Figure 3.2. Distribution of ground control points (GCPs) on the experimental field in (a) Year 

2017 and (b) Year 2018. 
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Table 3.1. Peak wavelength and FWHM for bands present in SlantRange 3p sensor. 

SlantRange 3p sensor band Peak wavelength 

(nm) 

FWHM (nm) 

Green 560 40 

Red 655 35 

Red-edge 710 20 

Near-infrared 830 110 

 

Table 3.2. UAS data collection timeline and sensor-wise flight specification. 

Date Flight Altitude (m) Overlap (%) Spatial Resolution (cm) 

 RGB Multispectral RGB Multispectral RGB Multispectral 

04/24/2017 20 30 85 75 0.51 0.93 

05/05/2017 20 25 85 70 0.50 0.85 

05/12/2017 20 25 85 70 0.51 0.81 

05/20/2017 20 25 85 70 0.52 0.82 

05/30/2017 20 25 85 70 0.51 0.85 

06/07/2017 20 25 85 70 0.51 0.83 

06/19/2017 20 25 85 70 0.52 0.81 

07/05/2017 20 25 85 70 0.51 0.81 

07/10/2017 20 25 85 70 0.50 0.83 

07/18/2017 20 25 85 70 0.51 0.82 

07/23/2017 20 25 85 70 0.51 0.82 

04/23/2018 35 47 80 70 0.73 1.61 

05/07/2018 35 47 80 70 0.69 1.65 

05/14/2018 35 47 80 70 0.71 1.61 

05/23/2018 35 47 80 70 0.71 1.64 

06/01/2018 37 47 80 70 0.73 1.62 

06/06/2018 35 47 80 70 0.72 1.61 

06/13/2018 35 47 80 70 0.71 1.63 

07/03/2018 35 47 80 70 0.71 1.61 

07/09/2018 35 47 80 70 0.72 1.63 

07/19/2018 35 47 80 70 0.70 1.62 

 

3.3 Methodology 

MS sensor-based CC estimation is considered more accurate and reliable compared to CC 

estimation using RGB sensors (Fernandez-Gallego et al., 2018). However, MS sensors are 

relatively more complex, expensive, and have sensitive detectors. The objective of this study is 
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twofold: the first objective is to compare various RGB-based CC estimation methods with MS 

sensor-based CC estimation, and the second objective is to improve RGB-based CC estimation 

and investigate the best suited RGB-based VI for CC computation. The procedure to compute 

percentage CC is presented in section A.1. An orthomosaic image (RGB or MS) was converted 

into a binary image after separating canopy from non-canopy. Later, percentage CC per grid was 

computed using Equation A.2 of Appendix-A (Figure A.2). Following the procedure, three 

different types of CC estimation were performed, namely, CC estimation using MS sensor, CC 

estimation using a pixel-wise classification of RGB images, and CC estimation using RGB sensor-

based VIs. Finally, a morphological closing operation was performed to improve RGB-based CC 

estimations, and the best suited RGB-based VI to estimate CC was reported based on the 

comparison results.  

3.3.1 CC estimation using MS sensor 

As mentioned in section 3.1, MS sensor-based CC estimation is considered the most 

reliable in the literature. It uses normalized difference vegetation index (NDVI) to separate canopy 

from non-canopy (computed using Equation A.4 of Appendix-A (Rouse Jr et al., 1974)). 

Radiometric calibration of MS data was performed to compare the crop conditions accurately 

across datasets collected in varying lighting conditions throughout the growing season. SlantView 

(SlantRange Inc., San Diego, USA), the software developed for the SlantRange 3p MS sensor, was 

used to convert the raw UAS image values (digital numbers) to reflectance values. A detailed 

visual inspection was performed to find a threshold NDVI value to separate canopy from non-

canopy in the images throughout the growing season regardless of the growth stage. 

3.3.2 CC estimation using a pixel-wise classification of RGB image 

A pixel-wise classification method was implemented to investigate the accurate CC 

estimation using an RGB sensor. With an appropriate spatial resolution of the image, pixel 

classification methods are considered highly accurate in distinguishing canopy from non-canopy 

(Booth et al., 2006; Hulvey et al., 2018; Patrignani and Ochsner, 2015). A pixel-level classification 
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method based on K-means clustering was used in this study. Initially, K-means clustering was 

applied to the RGB orthomosaics, considering five potential classes representing soil, shadow, 

cotton bolls, green canopy, and brown canopy, respectively (presented in Figure 3.3). After 

manually assigning the class labels to the clustered map, it was validated with manually collected 

ground-truth pixels from RGB orthomosaics using visual inspection. Later, soil, shadow, and 

cotton bolls were merged and assigned as a non-canopy class, and green and brown canopy classes 

were merged and identified as a canopy class. Pixel-wise classification-based CC estimation is a 

manually intensive process, as it relies on ground truth sample collection. Hence, the 

implementation was solely intended to investigate the maximum achievable performance using 

RGB-based sensors and to provide a reference of comparison to vegetation indices based CC 

estimation using RGB sensor. Following this point, CC estimation using a pixel-wise classification 

of RGB image will be referred to as RGB reference CC estimation. 
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Figure 3.3. K-means clustering-based pixel classification method workflow where orthomosaic is 

classified into five classes, and later, classes are merged into two clusters: canopy and non-

canopy. The RGB orthomosaic presented was captured on 6/19/2017. 

 

3.3.3 CC estimation using RGB sensor-based vegetation indices  

In this study, four different RGB-based CC estimation methods were considered, namely, 

Canopeo, excessive greenness index (ExG), modified green, red vegetation index (MGRVI), and 

red, green blue vegetation index (RGBVI) to generate the binary images (Table 3.3). The overall 

procedure to compute the CC binary map using RGB vegetation indices is presented inFigure 3.4. 

The Canopeo algorithm resulted in a binary map that separates canopy from non-canopy. However, 

applying vegetation indices over the RGB mosaics results in a grayscale image. Therefore, 

thresholding is required to transform the grayscale VI image into a binary image. Similar to NDVI, 

an empirical evaluation was performed to determine a threshold value for each VI that could 

separate canopy from non-canopy. The Otsu method was used for automatic thresholding in 
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previous studies (Marcial-Pablo et al., 2019). However, they were not applied over a multi-

temporal dataset. The Otsu method resulted in accurate thresholding early in the season, as the 

image histogram mostly followed a bimodal histogram. Also, the variances of the spectral clusters 

were small compared to the mean difference. However, later in the season, thresholding by the 

Otsu method was questionable, as the variance in the spectral signature of the canopy increased 

over time, and the image no longer possessed a bimodal distribution (due to the emergence of new 

spectral classes such as open cotton bolls, and brown canopy). 

 

Table 3.3. RGB image-based vegetation indices and their formula 

Vegetation 

index  

Formula  Reference 

Canopeo  𝑐𝑎𝑛𝑜𝑝𝑦 = (𝑖1 < 𝜃2) × (𝑖2 < 𝜃1) × (𝑖3 > 𝜃3)  

    𝑖1 =
𝑟𝑒𝑑

𝑔𝑟𝑒𝑒𝑛
, 𝑖2 =

𝑏𝑙𝑢𝑒

𝑔𝑟𝑒𝑒𝑛
,   𝑖3 = 2 × 𝑔𝑟𝑒𝑒𝑛 −

𝑏𝑙𝑢𝑒 − 𝑟𝑒𝑑  

 𝜃1 = 0.95,   𝜃2 = 0.95,  𝜃3 = 20    

  

(Patrignani 

and 

Ochsner, 

2015) 

ExG 2𝐺n − 𝑅n−𝐵n  

𝑅n =
𝑅

𝑅+𝐺+𝐵
, 𝐺n =

𝐺

𝑅+𝐺+𝐵
, 𝐵n =

𝐵

𝑅+𝐺+𝐵
  

 

(Woebbecke 

et al., 1995) 

MGRVI  𝐺2 − 𝑅2

𝐺2 + 𝑅2
 

 

(Bendig et 

al., 2015) 

RGBVI 𝐺2 − 𝑅 × 𝐵

𝐺2 + 𝑅 × 𝐵
 

(Bendig et 

al., 2015) 
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Figure 3.4. Procedure to generate binary map indicating canopy and non-canopy classes using 

RGB orthomosaic. 

 

RGB-based VIs accurately identified healthy green canopy in the early growth stage. However, 

later in the season, their ability to identify the canopy deteriorated as the canopy started to change 

the color from green to brown (highlighted part of Figure 3.4), especially closer to senescence. 

Therefore, a morphological closing operation was performed to improve further the binary map 

generated using RGB-based vegetation indices. The morphological closing operation is a 

combination of dilation and erosion. It helps to remove small holes while keeping the separation 

boundary intact (Dougherty, 1992). For this experiment, a 3 x 3 kernel window over one iteration 

was used. 

3.4 Results and discussion 

The CC grid maps at each flight for 2017 and 2018 using MS sensors are presented in 

Figure 3.5 and, Figure 3.6 respectively. Visual inspection of the grid maps revealed that the 

average percentage canopy cover increased from ~10% on the first data collection date to ~90% 
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when it reached its plateau (June 19 and June 13 for 2017 and 2018, respectively). Later in the 

season, the average CC lowered down to ~60% between July 18 and July 23 for the 2017 dataset 

due to a common practice in the cotton fields known as defoliation which prepares the crop for 

harvesting. A similar effect was observed in the 2018 experiment between July 9 and July 19. 

Following the methodology presented in Figure 3.3 using RGB images, K-means clustering-based 

classification maps were generated considering five clusters which were later labeled to represent 

soil, cotton-boll, shadow, green canopy, and brown canopy. Subsequently, binary maps were 

generated by merging soil, cotton-boll, and shadow classes to indicate non-canopy and brown and 

green canopy to indicate canopy. The comparison for MS sensor-based CC and RGB reference-

based CC is presented in Figure 3.7 and Figure 3.8 for the 2017 and 2018 experiments. MS sensor-

based and RGB reference-based average CC values were highly correlated throughout the growing 

season ( Figure 3.7 and Figure 3.8), with a high coefficient of determination (R2 of 0.98 and 0.97 

for 2017 and 2018, respectively). The results confirmed that it is possible to achieve the same level 

of performance using the RGB sensor as that of the MS sensors. However, the purpose of RGB 

reference CC estimation was to investigate whether it is possible to achieve the same level of 

performance as that of the MS-sensor CC estimation. 
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Figure 3.5. Canopy cover (CC) grid maps generated at each flight in the growing season using 

the multi-spectral sensor for the 2017 dataset.   
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Figure 3.6. Canopy cover (CC) grid maps generated at each flight in the growing season using 

the multi-spectral sensor for the 2018 dataset. 

 

 

 



 

 

62 

 
(a) 

 
(b) 

Figure 3.7. For the 2017 experiment, (a) Average multi-spectral (MS) sensor and RGB 

reference-based percentage canopy cover (CC) for each flight in the growing season and (b) 

Comparison of MS sensor and RGB reference-based percentage CC with R2. 

 

 
(a) 

 
(b) 

Figure 3.8. For the 2018 experiment, (a) Average multi-spectral (MS) sensor and RGB 

reference-based percentage canopy cover (CC) for each flight in the growing season and (b) 

Comparison of MS sensor and RGB reference-based percentage CC with R2. 

 

Four VIs were considered for computing CC using RGB images: Canopeo, ExG, MGRVI, 

and RGBVI. Along with the MS sensor-based average CC estimation per grid, average CC 

estimation per grid in the growing season for each RGB-based CC estimation method before and 
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after applying morphological closing (MC) is presented in Figure 3.9 and Figure 3.10 for 2017 and 

2018 experiments, respectively. It can be observed from Figure 3.9 that early in the growing season, 

the average CC estimated by all the methods was in agreement with an average variation of less 

than 10% and followed a similar increasing trend with MS sensor-based estimation. However, CC 

estimation using Canopeo and ExG methods reached its peak on June 7, while MGRVI and RGBVI 

reached their peak on June 19. It was evident that ExG and Canopeo accurately identified a healthy 

green canopy. However, later in the season, because of the senescence, the canopy started to 

change color from green to yellow and eventually to brown; they failed to identify the matured 

canopy. Table 3.4 presents an average of RMSEs of thresholding-based CC estimation methods 

computed using all the datasets collected throughout the growing season in 2017 and 2018. The 

average RMSE of percentage CC turned out to be the highest for the Canopeo algorithm, even 

after applying morphological closing (13.3% for the 2017 dataset). RMSE for MGRVI was 3% 

lower compared to Canopeo, and it was able to identify mature canopy. However, it also reached 

its peak relatively early in comparison to MS sensor-based CC. RGBVI resulted in the most 

accurate method to estimate CC with an RMSE of 2.9%, especially later in the season; it 

outperformed other RGB-based methods. Morphological closing significantly improved the CC 

estimation with an improvement in RMSE ranging from 4% to 7%, and average RMSE with MS 

sensor-based CC estimation has substantially reduced (Table 3.4).     
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Figure 3.9. For the 2017 experiment, average canopy cover (CC) estimation per grid using multi-

spectral (MS) sensor-based CC estimation throughout the growing season along with average CC 

estimation using (a) Canopeo, (b) Excess greenness index (ExG), (c) Modified green, red 

vegetation index (MGRVI), and (d) Red green blue vegetation index (RGBVI), before and after 

applying the morphological closing (MC) operation. 
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Figure 3.10. For the 2018 experiment, average CC estimation per grid using MS sensor-based 

CC estimation throughout the growing season along with average CC estimation using (a) 

Canopeo, (b) Excess greenness index (ExG), (c) Modified green, red vegetation index (MGRVI), 

and (d) Red green blue vegetation index (RGBVI), before and after applying the morphological 

closing (MC) operation. 
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Table 3.4. Average root mean square error (RMSE) of thresholding-based canopy cover (CC) 

estimation methods with respect to multi-spectral (MS) sensor-based CC estimation (%) 

throughout the growing season in 2017 and 2018. 

RGB-based method  Average RMSE with respect to MS sensor-based CC 

estimation (%)  

2017 experiment 2018 experiment  

Before MC After MC Before MC After MC 

Canopeo  17.87 13.34 15.56 9.73 

ExG  16.97 13.00 15.51 8.67 

MGRVI  13.11 10.35 14.34 6.95 

RGBVI  7.44 2.94 8.85 2.82 
 

 

A similar trend was observed in the performance of thresholding-based CC estimation 

methods in the 2018 experiment (Figure 3.10). Canopeo and ExG methods had an RMSE of 9.7% 

and 8.7 %, respectively (Table 3.4) but 4% higher than the 2017 experiment. RGBVI resulted in 

the most accurate CC estimation method amongst all, with an RMSE of 2.8% after applying 

morphological closing operation. The morphological closing operation resulted in relatively lower 

RMSEs in the 2018 experiment compared to the 2017 experiment. In the 2018 experiments, the 

spatial resolution of RGB images was 0.2cm lower than in the 2017 experiments. A high resolution 

often leads to more details being observed, which could be undesirable when the information class 

under consideration is more general; consequently, a decrease of the GSD (Table 3.2) might have 

contributed to better classification and later filtering performance in 2017 compared to 2018.  

Recent years have witnessed an upsurge in the UAS and sensor technology that made it 

possible to collect high temporal and spatial resolution data over the crops throughout the growing 

season. The main objective of this study was to provide a comparison framework between MS 

sensor-based CC estimation and RGB-based CC estimation, as scarce attention has been paid to 

exploring different VIs generated using UAS-based sensors to compute the canopy cover. MS 

sensor-based CC estimation is relatively accurate and stable compared to RGB-based CC 

estimation. However, the accuracy of NDVI is a function of the type and quality of the 

multispectral sensor used to collect the image. Temporal NDVI maps were generated from 
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multispectral data collected using a SlantRange 3p sensor that was radiometrically calibrated. 

While RGB-based CC estimation was comparable to MS sensor-based CC estimation in the early 

season, experiments in 2017 and 2018 confirmed that it performed inadequately when the plant 

color deviated from green in the late season.  

Except for the Canopeo method, all other RGB VIs considered in this study required a 

manual threshold to separate canopy from non-canopy. As mentioned in section 3.3, the Otsu 

method could not be used for automatic thresholding in this study. Consequently, RGB and MS 

sensor-based VIs were visually inspected to select a threshold value for all the images in the 

growing season. Since this study was limited to cotton crops, the threshold value might differ for 

other crops, and there might be a different trend observed in response to the senescence in the 

growing season. In the future, an efficient thresholding method that can classify canopy regardless 

of growth stage would help automate the process. 

As previous studies have affirmed that RGB-based CC estimation efficiently works early 

in the season (Fang et al., 2016; Marcial-Pablo et al., 2019), it was also observed that both MS and 

RGB-based CC estimation were in agreement early in the season. Moreover, in previous studies, 

MS sensor-based CC estimation was more accurate in the later season than RGB-based CC 

estimation (Marcial-Pablo et al., 2019). MS sensor-based CC estimation increased as the season 

progressed, but RGB-based CC estimation peaked early and started to drop with an average rate 

of 7% and 8% per week for the 2017 and 2018 experiments, respectively. The inadequacy of RGB-

based CC estimation in the previous studies led to the question, “is it possible to achieve the same 

level of accuracy using RGB-based CC estimation as that of the NDVI-based CC estimation?”. To 

address this question, a K-means clustering-based CC estimation method was implemented, which 

was tested using the ground truth samples for canopy and non-canopy classes. K-means clustering-

based approach resulted in CC estimation highly correlated with MS sensor-based CC estimation 

throughout the growing season (R2 of 0.98 and 0.97 for 2017 and 2018, respectively). However, 

the clustering or classification-based approach is computationally extensive, especially in their 

parameter tuning. Additionally, supervised methods require ground truth collection, which is 

labor-intensive and time-consuming. Consequently, this study was focused on improving RGB-
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based CC estimation using VIs. Towards the senescence, when the canopy started losing its green 

color, RGB-based VIs could not identify the canopy pixels, which resulted in CC maps with 

narrow isthmuses, and thin protrusions. The morphological closing operation proved to be a 

solution to this problem and helped fill tiny holes and keep the boundary of the canopy intact. It 

was noticed in both the experiments (2017 and 2018) that applying morphological closing 

operation reduced the average RMSE of the RGB-based CC estimation by 4% in 2017 and 5% in 

the 2018 dataset. An affordable alternative to the MS sensor can be provided to estimate the CC 

with the proposed study. To have higher accuracy of CC estimation, several studies in the past 

have relied on MS sensors, as it provides more spectral information. This study explored the 

potential of an alternate approach of enhancing CC estimation accuracy by improving the existing 

image processing technique, which requires only RGB information. In the future, the methodology 

will be investigated on other crops as there might be a different trend observed in response to the 

senescence in the growing season. 

3.5 Conclusion 

A comparative study was performed to evaluate CC estimation using an RGB sensor. With 

multi-year CC analysis, MS sensor-based CC estimation was used as a reference to provide a stable 

and accurate estimation. The correlation of RGB reference-based CC estimation with MS sensor-

based CC estimation ensured the feasibility of using RGB sensor to match MS sensor-based CC 

estimation. Analysis of RGB-based methods suggested that RGBVI was more tolerant to the 

change in color of the canopy when the canopy started to senescence. Moreover, when 

morphological closing was applied, RGBVI-based CC estimation was similar to MS sensor-based 

CC estimation with an average RMSE of less than three percent. CC is a good predictor variable 

for plant growth parameters. As multispectral sensors have relatively sensitive detectors and are 

more complex and expensive, proposed RGB-based CC estimation could provide an affordable 

alternate to agriculture scientists and breeders.  
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4. MACHINE LEARNING BASED COTTON YIELD ESTIMATION 

FRAMEWORK USING MULTI-TEMPORAL UAS DATA  

4.1 Background 

One of the main objectives of cotton breeding research is to select genotypes suitable for 

specific environments. For example, in arid and semi-arid areas, the focus is to develop cotton 

genotypes resistant to water stress due to the dry climate and high irrigation costs. Traditionally, 

cotton breeding research has focused on manual field-based evaluation approaches that require the 

entire cotton field to be harvested, and later the best performing genotypes are selected based on 

ranking (Clement et al., 2014; Iqbal et al., 2008; Kazerani, 2012; Shaukat et al., 2013). As this 

process is cumbersome, the scale of the field experiment is constrained by the limited availability 

of resources. As a result, developing automated genotype selection techniques that do not require 

the entire field to be harvested can benefit cotton breeding research.  

Remote sensing-based crop yield estimation methods have the potential to help develop 

tools to improve genotype selection efficiency. Recent developments in exploiting UAS data for 

cotton yield estimation have revealed that UAS-based remote sensing has the potential to 

accurately estimate crop yield (Weiss et al., 2020). Previous research done in this direction 

demonstrated a correlation of crop yield with selective spectral bands and vegetation indices 

derived from images collected using RGB and multi-spectral sensors onboard a UAS (Nebiker et 

al., 2016; Stroppiana et al., 2015; Zhou et al., 2017). Later, UAS based image-driven crop canopy 

attributes such as canopy height were also utilized to estimate crop yield (Feng et al., 2018; Stanton 

et al., 2017). Recent years have witnessed an increasing application of machine learning regression 

models such as artificial neural network (ANN), support vector regression (SVR), random forest 

regression (RFR), and Gaussian process regression to develop empirical relationships between 

crop yield and canopy attributes because they are capable of handling the nonlinear relationship 
 

   

 
Content of this chapter is published as follows:  Ashapure, A., Jung, J., Chang, A., Oh, S., Yeom, J., Maeda, M., ... & Smith, W. 

(2020). Developing a machine learning based cotton yield estimation framework using multi-temporal UAS data. ISPRS Journal 

of Photogrammetry and Remote Sensing, 169, 180-194. 
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between input features and the output target (Gandhi et al., 2016; Gopal and Bhargavi, 2019; Yu 

et al., 2016). Therefore, this study aims to develop a novel machine learning framework to estimate 

the crop yield and determine the optimal input feature set for accurate yield estimation. 

Furthermore, the objective is to develop a model with the flexibility to accommodate multi-year 

and multi-location data for yield estimation. 

4.1.1 Scope and contribution 

Studies utilizing UAS derived canopy attributes for yield estimation in the literature are 

limited to exploiting a single or relatively few regression parameters. This study, therefore, 

explores the potential of UAS derived multi-temporal vegetation indices and canopy attributes to 

estimate the crop yield. Recently, deep learning models are gaining popularity for accurate crop 

yield prediction (Tri et al., 2017; Wang et al., 2018). Deep learning models such as deep Gaussian 

processes (You et al., 2017) and deep convolutional neural networks (CNN) (Khaki et al., 2019; 

Kim et al., 2019) have been utilized to develop crop yield prediction models. Moreover, hybrid 

deep learning models combining CNN with recurrent neural networks (RNN) are also being used 

to improve yield prediction accuracy (Khaki et al., 2020). However, deep models are primarily 

utilized for large-scale yield prediction utilizing multi-year weather data along with satellite data. 

The large size of the network architecture means more trainable parameters, and it is recommended 

that the number of training samples should be at least ten times the number of trainable parameters 

in any deep learning model (Miotto et al., 2018). Consequently, the success of deep learning-based 

yield estimation models is mainly dependent on the availability of training samples which makes 

them unsuitable for small-scale experiments having limited training samples. 

The objective of this study was to present a novel framework that combines UAS derived 

multi-temporal vegetation indices and canopy attributes with qualitative information to predict the 

crop yield. The proposed machine learning framework is based on ANN architecture. Neural 

network models can implicitly detect complex nonlinear relationships between independent and 

dependent variables in a complex system without requiring explicit mathematical representations 

(Sargent, 2001). The main contributions of this study are: 
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• Proposing a framework to estimate crop yield utilizing UAS derived canopy attributes using 

three state-of-the-art machine learning regression models, namely, ANN, SVR, and RFR, and 

compare their efficacy. 

• Redundant features removal from the input feature-set and computing relative significance of 

each feature using sensitivity analysis. 

• Determining how early in the season the proposed model can accurately predict crop yield. 

4.2 Study area, sensors, and platforms 

Field experiments were conducted at the Texas A&M AgriLife Research and Extension Center 

(27°46’59” N, 97°34’13” W) in Corpus Christi, TX, USA. The total area of the experimental field 

was approximately 1.6 acres. Thirty cotton genotypes (Table 4.2) from Texas A&M University 

Cotton Breeding Program were planted on April 1, 2016, and machine harvested on August 20, 

2016. Soil types in the study site are Victoria Clay series soils (Victoria-Lattas-Clareville). 

Provided the experimental field was in a coastal area, wind speed and rain were the potential 

factors to be considered before every flight. Most flights were conducted between 10:00 AM to 

2:00 PM. Moreover, the temperature variation throughout the growing season varied between 79°F 

to 96°F with an average humidity of 76%. Average monthly rainfall in the region ranges between 

50 mm and 90 mm during the growing season (NWS, 2016). Machine harvested data were 

employed as ground reference data in this study. A total of 805 plots were used, and the yield value 

ranged from 0.4 to 14.3lbs with an average of 6.65lbs per plot. Figure 4.1 (a) shows the location 

of the study area and the aerial image of the site in the inset image. The whole field was divided 

into 1m x 10m size plots to compute various vegetation indices and canopy attributes, which can 

be observed in the zoomed area of Figure 4.1 (b). The experiment field was divided into two 

sections based on irrigation conditions: dryland and irrigated ( Figure 4.1 (a)).  

Both RGB (Red, Green, and Blue) and MS (multispectral) sensors were used for this study. 

DJI Phantom 2 Vision + (SZ DJI Technology Co., Ltd., Shenzhen, China) was used for RGB data 

collection. The weight of this UAS is 1.0 kg with a flight endurance of up to 25 minutes in mild 
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weather conditions. It is equipped with a 3-axis gimbal-stabilized RGB sensor with 14 megapixels 

resolution, with an FOV of 85°. Multispectral data was captured using a multirotor platform, 3DR 

IRIS (3D Robotics, Berkeley, CA, USA). A multispectral sensor, Tetracam ADC snap (Tetracam 

Inc., Chatsworth, CA, USA), was mounted on a UAV. Tetracam ADC snap sensor has a resolution 

of 1280 × 1024, 8.43 mm focal length, and 28° FOV. The sensor captures three spectral bands, 

including green, red, and near-infrared bands (peak wavelengths are presented in Table 4.1). The 

UAS data was collected in the 2016 growing season, from April to August. Beginning April 7, 30 

flights were conducted before the crop was harvested on August 20 (Table 4.3). Multispectral data 

collection occurred every seven to ten days compared to four to seven days for the RGB sensor. 

Table 4.3 presents flight specifications for both RGB and multispectral data. UAS considered in 

this study were equipped with a consumer-grade GPS which did not have satisfactory location 

accuracy for aerial mapping applications. To overcome this problem, fifteen well-distributed GCPs 

in 2018 experiments (Figure 4.2) with high reflectance were installed over the study area. GCPs 

were surveyed every time the UAS data was collected using a dual-frequency, post-processed 

kinematic (PPK) GPS, model 20Hz V-Map Air (Micro Aerial Project L.L.C., Gainesville, FL). 

After each flight, the collected raw UAS data was processed using Agisoft Photoscan Pro software 

(Agisoft LLC, St. Petersburg, Russia). The details of UAS data processing for this study are 

described in section 2.2, and canopy attributes and vegetation indices computation procedure is 

presented in Appendix A.1. 

  



 

 

73 

 

 

 

 

(a) 

 

(b) 

Figure 4.1. (a) Location of the study area with the aerial image of the site in the inset where half 

of the field was under dryland condition, and another half was under irrigation, (b) A segment of 

the field with overlaid line segments 1m x 10 m each. 
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Figure 4.2. Distribution of permanent ground control points (GCPs) in the experimental field. 

 

Table 4.1. Peak wavelength and full width at half maximum (FWHM) for bands of Tetracam 

ADC snap sensor. 

Tetracam ADC snap sensor band Peak wavelength (nm) FWHM (nm) 

Green 540 100 

Red 650 320 

Near-infrared 820 160 
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Table 4.2. List of cotton genotype varieties planted. 

Genotype no Genotype Name/Code 
 

1 10 WE-11 

2 12 BB 2139 

3 13Q-18 

4 13Q-51 

5 TAM 11K-13 ELSU 

6 10x-64 

7 11 HF4IPSC-21-01 

8 TAM WK-11 Lo 

9 11-11-307BB 

10 11-21-703S 

11 13-2-501FQ 

12 7-7-1303CT 

13 7-7-519CT 

14 CA 4001 

15 CA 4002 

16 CA 4003 

17 CA 4004 

18 DPL 491 

19 PSC 355 

20 TAMCOT 73 

21 5235 

22 5237 

23 5241 

24 5338 

25 5435 

26 5542 

27 STV 6182 

28 PHY333 

29 DPL 1044 

30 UA 103 
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Table 4.3. UAS data collection timeline and sensor-wise flight specification. 

Date 
Flight Altitude (m) Overlap (%) Spatial Resolution (cm) 

RGB Multi RGB Multi RGB Multi 

04/07/2016 30 40 80 60 1.05 2.09 

04/12/2016 30 40 90 60 1.08 2.16 

04/15/2016 35 N/A 90 N/A 1.28 N/A 

04/22/2016 35 40 90 60 1.32 2.14 

04/27/2016 35 35 90 60 1.3 2.11 

05/06/2016 35 40 90 60 1.34 2.14 

05/16/2016 37 40 90 60 1.38 2.16 

05/20/2016 35 40 90 60 1.34 2.18 

05/23/2016 37 N/A 90 N/A 1.42 N/A 

05/27/2016 40 N/A 90 N/A 1.42 N/A 

05/31/2016 40 50 90 90 1.46 2.71 

06/02/2016 35 N/A 90 N/A 1.34 N/A 

06/07/2016 30 50 90 90 1.2 2.68 

06/14/2016 25 50 90 90 0.898 2.7 

06/17/2016 25 45 90 90 0.916 2.61 

06/20/2016 20 45 90 90 0.753 2.55 

06/23/2016 25 40 90 85 0.875 2.42 

06/27/2016 20 45 90 90 0.797 2.52 

06/30/2016 18 N/A 90 N/A 0.714 N/A 

07/08/2016 25 N/A 90 N/A 0.975 N/A 

07/13/2016 25 N/A 90 N/A 0.905 N/A 

07/16/2016 22 45 90 90 0.836 2.6 

07/19/2016 35 45 90 90 1.29 2.6 

07/21/2016 22 45 90 90 0.839 2.6 

07/25/2016 20 45 90 90 0.809 2.51 

07/28/2016 20 N/A 90 N/A 0.767 N/A 

08/02/2016 15 42 90 90 0.596 2.44 

08/08/2016 15 45 90 90 0.599 2.6 

08/12/2016 13 45 90 90 0.492 2.6 

08/18/2016 13 45 90 90 0.596 2.62 
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4.3 Methodology 

A flowchart outlining the overall methodology is presented in Figure 4.3. The first step 

included UAS data collection using RGB and multispectral sensors, along with the GPS survey of 

the ground control points (GCPs). In the second step, raw images and GCP coordinates were 

provided to the SfM photogrammetric processing software, and orthomosaics and DEMs were 

generated. Canopy attributes were generated from orthomosaics and DEMs in the third step. In the 

fourth step, canopy attributes were estimated for each day using the radial basis function (RBF) 

neural network. In the final step, ANN modeling was employed to estimate the yield using the 

optimal subset of input variables. 
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Figure 4.3. Overall process workflow of UAS based crop yield estimation. 

 

UAS data collection is highly application-dependent. For yield estimation, it is very critical 

to account for the growth behavior of the crop under consideration. Especially for a unique crop 

like cotton, which is a tropical perennial plant grown and managed as an annual crop. Cotton has 

an indeterminate growth habit which means its vegetative and reproductive growth has an overlap, 

requiring growth regulators to maintain the crop. The developmental phases of cotton can be 

divided into five main growth stages, namely, germination and emergence, seedling establishment, 
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leaf area and canopy development, flowering and boll development, and maturation (Stewart et al., 

2009). The growth curve of a cotton plant follows a typical sigmoid curve which has a slow growth 

rate in the initial phase, succeeded by an exponential growth rate for leaf area, canopy, flowering, 

and boll development, followed by a slow growth rate in the maturation phase. Under favorable 

moisture and temperature conditions, the growth of the cotton plant follows a well-defined and 

consistent pattern expressed in days. Cotton growth milestones are often given in terms of days 

after planting or between growth stages. Ritchie et al. (2007) provided a general growth pattern of 

the cotton plant as presented in Figure 4.4. As presented in Figure 4.4, the red markers represent 

the optimal number of data points to accurately capture the cotton growth curve. For effective yield 

estimation, collected UAS datapoints must represent the shape of the growth curve. Consequently, 

the data collection should adopt a systematic targeting of critically sensitive periods as suggested 

by knowledge of crop physiology. 

 

Figure 4.4. A typical growth curve of the cotton plant following a sigmoid curve, where the x-

axis represents days after planting and the y-axis represent the nitrogen content in the plant. This 

figure is reproduced from Ritchie et al. (2007), where red markers are the optimal number of data 

points to accurately capture the cotton growth curve.   
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4.3.1 Parameter preprocessing 

In addition to crop physiology, UAS data collection also depends on various factors such 

as the availability of the crew, availability of resources, weather conditions, and availability of the 

field. As a result, maintaining the same time of data collection across multiple years is practically 

not viable. Thus, an interpolation technique was used to determine daily estimates for crop canopy 

attributes. Later, measurements at any time interval of interest can be extracted from the daily 

measurements. In this study, a radial basis function neural network (RBFNN) based regression 

model was used for daily measurement estimation. RBFNNs are single-pass learning models with 

high accuracy interpolation capability that have been successfully utilized for interpolation 

problems (Dash et al., 2016). They can efficiently handle noise in the input data, which is 

particularly useful for remote sensing applications (Pandey et al., 2012; Xiao-Hua et al., 2009). 

Similar to 2-layer ANNs, RBFNNs include an input layer fully connected to a hidden layer with a 

Gaussian radial basis function as the activation function (Figure 4.5). Each input vector is supplied 

to each basis in the hidden layer. The output of the hidden layer is used to compute a weighted 

sum to get the output which is the daily interpolated value of the parameter. 

 

 

Figure 4.5. Architecture of the radial basis function neural network (RBFNN) based regression 

model. 

 



 

 

81 

RBFNN can learn to approximate the underlying trend using many Gaussian curves. 

Shapes of curves are adjustable by changing the weights or centers. This suggests that RBF can be 

used to approximate any unknown nonlinear function given observational data samples (Hien and 

Huan, 2015). This dissertation also aims to provide information on an optimal number of data 

points needed to accurately compute the daily measurements for canopy attributes. An experiment 

was conducted to compute daily measurement estimates, where a part of the available data was 

used for deriving the interpolation model, and the remaining data were used for the evaluation of 

the same. Two methods were considered in this study based on uniform interval and based on crop 

physiology. Following daily measurement estimation, correlation analysis was performed 

categorically to examine the degree of correlation between the canopy attributes, vegetation 

indices, and open cotton boll attributes. Correlated features were discarded to remove the 

redundancy from the input feature set. 

4.3.2 Machine Learning model  

Machine learning regression algorithms have been successfully applied to remote sensing 

applications since they can generate adaptive, robust relationships, and trained machine learning 

models are very fast to apply (Hultquist et al., 2014; Rodriguez-Galiano et al., 2015; Verrelst et 

al., 2012; Were et al., 2015). Three machine learning-based regression models were considered in 

this study, namely, ANN, SVR, and RFR. Numerous studies have demonstrated that these machine 

learning models are among the most powerful machine learning regression methods to handle the 

strong nonlinearity present in remote sensing datasets. Although ANNs are prone to over-fitting 

during training without careful parameter tuning, though it was still considered in this study 

because of their ability to efficiently identify the importance of different independent variables for 

more accurate crop yield estimation (Chlingaryan et al., 2018). Moreover, traditional linear 

regression models lack the ability to model data consisting of nonlinear features. ANN consists of 

a collection of simulated neurons placed in a multi-layer arrangement connected with other 

neurons via weighted links which help them deal with the non-linearity in the input data. ANNs 

are known to learn correlated patterns between inputs and the corresponding target (Chlingaryan 
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et al., 2018). An ANN regression model with three layers (one input layer, one hidden layer, and 

an output layer) was considered in this study. To prepare the input dataset using VIs, canopy 

attributes, and qualitative attributes, a feature vector was formed by concatenating weekly 

extracted values of all the temporal features followed by non-temporal and qualitative features 

(Figure 4.6) that constituted an input sample, with the machine harvested yield per plot used as a 

target feature. Further, the prepared input samples were divided into a training set and a test set 

with 80% and 20% proportions, respectively. The training samples were used to train the machine 

learning models using k-fold cross validation process (Fushiki, 2011). In the k-fold cross-

validation process, the data is randomly partitioned into k equal size sub samples. Each of the k 

sub samples is considered as a validation set, and the remaining sub-samples are considered for 

training. The cross-validation process is then repeated k times. The average of k results provides 

the training and validation accuracies of the algorithm (Jung and Hu, 2015). In this study, 10-fold 

cross-validation was used.  

To compare the efficacy of the ANN regression model, two machine learning regression 

methods were considered as references, namely, support vector regression (SVR) and random 

forest regression (RFR). Support vector machines are popular machine learning models applied 

efficiently in various remote sensing applications (Behmann et al., 2015; Pasolli et al., 2012). It 

transforms a nonlinear regression problem into a linear regression problem with the help of kernel 

functions by mapping the original feature space into a new feature space. In this study, the radial 

basis function (RBF) kernel was used and is regarded as a better kernel function compared to linear 

and polynomial kernels in handlining non-linearity in the input data (Chen and Hay, 2011). The 

model parameters ε (loss function) and error penalty factor (C) were estimated empirically. 

Ensemble methods such as random forest regression are also very efficiently utilized in remote 

sensing applications in the literature (Yang et al., 2017; Zhou et al., 2016). The random forest 

regression method utilizes the ensemble of many regression trees determined independently using 

a bootstrap data set sample. Later, the final prediction is made using majority voting (Hultquist et 

al., 2014). The parameters for RFR, which are the maximum number of trees and the number of 

samples chosen randomly at every split, were determined empirically. 
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Figure 4.6. Forming a feature vector by concatenating all the attributes. 

 

Figure 4.7 presents the network architecture consisting of three layers: an input layer, a 

single hidden layer, and an output layer. The temporal and non-temporal crop canopy and 

qualitative attributes were concatenated (Figure 4.6) and provided as input to the ANN. While 

training the ANN model, a concatenated input feature vector was provided to the model along with 

the machine harvested yield as a target feature. Initial weights were assigned randomly and later 

updated by employing the backpropagation algorithm using Levenberg-Marquardt optimization 

(Moré, 1978) to minimize the global error (mean square error). Two popular optimization 

functions were also tested, namely, stochastic gradient descent (SGD) (Ruder, 2016) and Adam 

(adaptive moment estimation) (Kingma and Ba, 2014). It was observed that the Levenberg 

Marquardt algorithm provided faster convergence. Levenberg Marquardt algorithm, also known 

as the damped least-squares method which uses gradient vector and Jacobian matrix instead of 

calculating the exact Hessian matrix. It combines the advantages of both Gradient-Descent and 

Gauss-Newton methods by decreasing the cost very efficiently for a change in its behavior, which 

helps achieve faster convergence for a convex function.  
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Figure 4.7. Artificial neural network (ANN) network architecture. 

 

The training was stopped when a satisfactory level of performance, i.e., mean squared error 

(MSE) of the normalized yield was 10-3, and the network with the current weights was used to 

predict the yield over the test samples. The MSE during the learning process was calculated by 

Equation 4.1. 

𝑀𝑆𝐸 = ∑(𝑌𝑎 − 𝑌𝑝)
2

𝑛⁄          (4.1) 

Where 𝑌𝑎 represents actual yield and 𝑌𝑝 represents predicted yield. 

4.3.3 Sensitivity analysis 

A stepwise sensitivity analysis (Gevrey et al., 2003) was performed over the input variables. 

This method consists of rejecting one input variable from the set and observing the effect on the 

prediction accuracy. When a variable has an insignificant effect on the output, the model, after 

removing this variable, will still show a high correlation and low MSE. After determining the 

optimal input variable subset, the weight method (Garson, 1991) was used to determine the 

percentage contribution of each variable. The weight method partitions the connecting weights of 

the network to determine the relative significance of the input variables. This method partitions 
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the hidden-output connection weights of each hidden neuron into components associated with each 

input neuron (Gevrey et al., 2003) as follows: 

 

a. For m: 1 to n 

 For i: 1 to k 

         𝜃𝑖𝑚 =
|𝑤𝑖𝑚|

∑ |𝑤𝑖𝑚|𝑘
𝑖=1

 

 end, 

end. 

 

b. For i: 1 to k 

     𝑅𝑆𝑖 =
∑ 𝜃𝑖𝑚

𝑛
𝑚=1

∑ ∑ 𝜃𝑖𝑚
𝑘
𝑖=1

𝑛
𝑚=1

× 100 

    end. 

Where k and n are the number of input and hidden neurons and 𝑅𝑆𝑖  is the relative 

significance of the ith input variable. 

4.4 Results and discussion 

4.4.1 Canopy attribute preprocessing 

Daily estimates of canopy attributes and vegetation indices were interpolated from UAS 

derived data using RBFNN. The estimated daily measurements address some of the variability 

found in UAS derived measurements (Figure 4.8), which are often caused by noise, flight, and 

weather conditions. Because UAS data may not have the same number of flights during the 

growing season and planting date might not be the same across multiple years, estimating daily 

measurement and converting the Julian date to day-after-planting also enables multi-year analysis.  
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Figure 4.8. An example of daily interpolation of canopy attributes: canopy height (CH), canopy 

cover (CC), canopy volume (CV), excess greenness index (ExG), and normalized difference 

vegetation index (NDVI) from unmanned aircraft system (UAS) based measurements using 

radial basis function neural network (RBFNN) for one plot. 
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Table 4.3, a total of 25 flights were conducted throughout the growing season. However, 

in light of the practical constraints associated with a large number of UAS data collection, initial 

experiments were conducted to determine the optimum number of flights needed to determine 

daily measurements accurately. Daily measurement estimates were computed based on uniform 

intervals and based on crop physiology (Figure 4.9). A part of the available data was used for 

deriving the interpolation model, and the remaining data were used for the evaluation of the same. 

The uniform interval-based method involved experiments with UAS data considered roughly on a 

weekly basis, at two-week intervals, and at three-week intervals. The crop physiology-based 

method considered UAS datapoints that represent the shape of the crop growth curve.  The lowest 

average RMSE was obtained with daily interpolation using measurements at the one-week interval 

(Table 4.4). However, the difference between the average RMSEs of one-week and three-week 

intervals was only 0.5 cm. Crop physiology-based time interval resulted in an average RMSE of 

6.4 cm. Although the crop physiology-based method resulted in the highest RMSE amongst all 

cases, the difference between the lowest and the highest RMSEs was only 0.8 cm which is even 

less than one percent of the average height of a fully grown cotton plant. Similar results were 

observed for other canopy attributes also.  
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(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 4.9. Daily measurement estimation of UAS based canopy height using a part of the 

available data for deriving the interpolation model and the remaining data for the evaluation. 

Two methods were considered for the experiments, based on (a) to (c) uniform intervals of one, 

two, and three weeks, respectively, and (d) crop physiology. 
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Table 4.4. Accuracy assessment of daily measurement estimation for UAS based canopy height 

based on uniform interval and crop physiology.   

Method Average RMSE 

over test data 

(cm) 

No samples utilized for 

daily interpolation 

Weekly 5.6 14 

Two weeks interval 5.8 9 

Three weeks interval 6.1 7 

Physiology based interval 6.4 5 

 

Weekly measurements were extracted from estimated daily measurements and 

concatenated to form a feature vector to be used as input to machine learning models. To reduce 

the input feature vector size, an analysis was performed categorically to examine the degree of 

correlation between the canopy attributes, vegetation indices, and open cotton boll attributes. For 

temporal variables, the average of all the correlation coefficients of individual temporal instances 

was considered. A strong correlation was found between the vegetation indices NDVI and ExG 

with a correlation coefficient of 0.97 (Table 4.5). In this case, ExG was chosen to be included in 

the reduced input feature set since it potentially eliminates the need for multispectral sensor data. 

 

Table 4.5. Correlation coefficient matrix for vegetation indices. 

Attribute NDVI ExG 

NDVI - 0.97 

ExG 0.97 - 

 

Table 4.6. Correlation coefficient matrix for canopy attributes. 

Attribute CH CC CV 

CH - 0.97 0.99 

CC 0.97 - 0.98 

CV 0.99 0.98 - 

 

Table 4.7. Correlation coefficient matrix for open cotton boll attributes. 

Attribute BC BS BV 

BC - 0.77 0.81 

BS 0.77 - 0.97 

BV 0.81 0.97 - 
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The correlation coefficient matrix for canopy attributes (Table 4.6) indicated a strong 

correlation between CH, CC, CV, implying that only one canopy attribute may be sufficient as 

part of the reduced input feature set. CV was selected for the model among the canopy attributes 

since it inherently incorporates CH and CC (Equation A.3). The results for the open cotton boll 

attributes suggested a high degree of correlation between BS and BV (Table 4.7), so BV was 

chosen to be included in the reduced input feature set. The reduced input feature set included CV, 

ExG, BC, BV, and Irrigation status (IR). In some cases, plots contained patches of non-target 

plants, such as weeds (Figure 4.10), which may erroneously lead to over estimation of the crop 

yield because of comparable values of canopy attribute and vegetation indices contained in these 

patches. Therefore, plots containing excessive non-target plants were manually removed from the 

analysis after a careful visual inspection of RGB images. However, there were only less than one 

percent of samples removed based on weed infestation.  

  

 

Figure 4.10. Example of excessive non-target plants in the plots indicated by the red boundaries. 
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4.4.2 Regression model implementation  

The training was performed over 644 samples (80%) using the k-fold cross-validation 

method. An empirical evaluation to determine ANN hyperparameters was performed using the 

grid search method. The network performance was evaluated over the k-fold training and 

validation sets, and a test set using the coefficient of determination and RMSE. Selected 

hyperparameters are presented in Table 4.8. A stratified sampling method was used to select the 

samples for training and testing to ensure that the ANN was trained and tested over a wide range 

of yield values. Training error decreased over successive training epochs, reaching convergence 

after the 4th epoch (Figure 4.11). 

Table 4.8. Parameter selection of artificial neural network (ANN) model. 

Parameter Value 

Number of hidden layers 1 

Hidden layer neurons 10 

Training Method Levenberg-Marquardt 

Activation function Hyperbolic tangent sigmoid 

Training and Test ratio 80:20 

 

 

 

Figure 4.11. Performance of the network for training for one of the instances of k-fold where the 

x-axis represents iterations, and the y-axis represents training mean square error (MSE). 



 

 

92 

 

The error histogram over the test set is presented in Figure 4.12, which indicated that 

residuals were centered around zero. Additionally, the Shapiro-Wilk normality test (Yap and Sim, 

2011) indicated that the residuals follow a normal distribution with zero mean and a standard 

deviation of 0.06. Since the errors were normally distributed with zero means, the probability of 

the model having significantly large errors was very less. The observed and estimated values 

revealed a high correlation between actual and predicted yield values (Table 4.9), except for a few 

outliers. 

 

 

Figure 4.12. Error histogram of the residual between predicted and actual yield (normalized). 

 

Performance assessment of the model included the average coefficient of determination 

and RMSE for 10-folds (Table 4.9). The observed and estimated values are depicted in Figure 4.13 

for one of the 10-fold results, which revealed a one-to-one correspondence among the actual and 

predicted yield values confirming the high performance of the ANN model. The average of 10-

folds results indicated a high test-time performance of ANN with a coefficient of determination of 

0.86 and RMSE of 0.64 lb for an average of 10-folds. 
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Table 4.9. Model performance assessment. The best-case scenario and an average of ten runs are 

shown. 

Estimators Average of 10-folds 

R2 value for training 0.92 

R2 value for validation 0.85 

R2 value for testing 0.86 

RMSE for training (lb) 0.30 

RMSE for validation (lb) 0.71 

RMSE for testing (lb) 0.64 

 

 

Figure 4.13. Correlation between actual and target yield for training (left), validation (middle), 

and testing (right) of an artificial neural network (ANN). 

4.4.3 ANN model comparison with SVR and RFR 

Empirically determined parameter values of SVR and RFR are presented in Table 4.10. 

The performance of the ANN model was compared with two widely used machine learning 

regression models, namely, SVR and RFR. The performance analysis based on the coefficient of 

determination and RMSE revealed that all three methods successfully captured the complex 

relationships between UAS derived canopy attributes and the yield (Table 4.11). Particularly, the 

performance of RFR and SVR exhibited considerable similarity, and ANN outperformed RFR and 

SVM marginally. However, it cannot be inferred from this study that ANN is superior to SVM and 

RFR for yield estimation since this research included only a single case study. The objective of 
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this research was not to identify the best performing machine learning model for yield estimation 

but to determine the useful features which can serve as inputs to the yield prediction model.     

 

Table 4.10. Parameter setting for support vector regression (SVR) and random forest regression 

(RFR). 

Regression 

method 

Parameters Values 

SVR  𝜀, 𝐶 0.005, 10 

RFR n_𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑜𝑟, max_𝑑𝑒𝑝𝑡ℎ 50, 7 

 

Table 4.11. Model performances comparison between artificial neural network (ANN), support 

vector regression (SVR), and random forest regression (RFR) regression methods using a 

coefficient of determination and RMSE over the training and test cases in best-case and average 

of 10-fold cross-validation. 

Method Average of 10-fold 

Training  Validation Testing 

R2 ± σ  RMSE ± σ 

(lb) 

R2 ± σ  RMSE ± σ 

(lb) 

R2 ± σ RMSE ± σ 

(lb) 

ANN 0.93 ± 0.01 0.26 ± 0.08 0.85 ± 0.02 0.71 ± 0.16 0.87 ± 0.03 0.63 ± 0.14 

SVR 0.89 ± 0.02 0.31 ± 0.11 0.84 ± 0.02 0.98 ± 0.35 0.84 ± 0.01 1.01 ± 0.38 

RFR 0.91 ± 0.02 0.28 ± 0.09 0.84 ± 0.02 0.95 ± 0.31 0.84 ± 0.02 0.92 ± 0.27 

 

When it comes to machine learning models, their suitability is context-dependent. The 

effective utilization of a regression model, coupled with a feature extraction methodology to devise 

a machine learning framework has been intensively discussed in the previous literature. SVR and 

RFR have demonstrated their capability to handle challenging cases pertaining to remote sensing 

data for classification and regression problems, such as the high-dimensionality of the input data, 

the scarcity of training examples, and data heterogeneity (Hengl et al., 2018; Sheykhmousa et al., 

2020). However, SVR does not perform well when the number of the training sample is large 

(Awad and Khanna, 2015). RFR works well with a mixture of numerical and categorical features. 

However, a large number of decision trees required to be generated can make the algorithm too 

slow and ineffective for real-time predictions (İskenderoğlu et al., 2020). A typical ANN can be 
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defined as a parallel computing system comprising of a large number of simple interconnected 

processors (Raczko and Zagajewski, 2017). ANNs are inherently capable of deciphering complex 

nonlinear relationships between independent and dependent variables. The hidden layers of ANN 

enable it to determine the interactions or interrelationships between the input variables (Tu, 1996).  

It is common knowledge that yield is the function of a range of temporal, non-temporal, 

and categorical variables, as discussed in section 4.4.1. There are deep neural network architectures 

that explicitly take care of temporal dependencies; however, they require a large number of training 

samples (Le and Zuidema, 2016; Sun et al., 2019).  Consequently, an ANN with a single hidden 

layer was chosen for this study.   For the problems where there is a lack of adequate understanding 

pertaining to the optimum combination of various inputs, a reasonable strategy is to assume that 

every variable can affect the final output. Subsequently, the use of sensitivity analysis facilitates 

the estimation of the proportional contribution of each input variable. Additionally, mixing 

different types of variables together in an input vector runs the risk of losing the meaning of 

variables. For example, when two instances of the same temporal variable are mixed together, the 

information that they are of the same variable is lost. So, mixing static and temporal variables 

together creates additional ambiguity. Unlike the normalization for each vector dimension 

separately where the temporal dependencies are lost, the group normalization used in this research 

preserved crucial information like temporal order. Additionally, the intention of including one 

categorical variable was to classify the input features into two categories irrigated and non-

irrigated. 

4.4.4 Sensitivity analysis 

In the stepwise sensitivity analysis, variables were eliminated one at a time. The ANN 

model was run ten times, and average values for the correlation coefficient and RMSE were 

computed (Table 4.12). A one-tailed test hypothesis was designed to examine whether removing 

any variable reduced the average R2 significantly over the test set. The hypothesis used the Z 

statistic with a 95% confidence interval being significant when Z > 1.645.  
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Table 4.12. Stepwise sensitivity analysis report results for ten runs for optimal input variables 

subset. One variable was removed at a time, and average R2, average mean square error (MSE), 

and Z statistics are shown. 

Eliminated 

Variable 

Test R2 

(Average of 10-

fold) 

Test RMSE (lb) 

(Average of 10-fold) 

Z (95%) 

CV 0.83 1.12 2.44 

ExG 0.83 1.08 1.92 

BC 0.84 1.00 2.15 

BV 0.85 0.94 1.64 

Irrigation status 0.84 1.04 1.88 

The stepwise sensitivity analysis suggested that removing any variable from the optimum 

input variable set significantly reduced R2 for the test set. With the optimal input variable set, the 

model input vector size was reduced from 75 to 32. Further, the weights method was applied to 

investigate the contribution of each input variable using the optimal input variable subset, and it 

was compared with the impurity-based method using RFR (Figure 4.14). 

 

 

Figure 4.14 Relative contributions (%) of each variable in the optimal input variable subset using 

weight method for artificial neural network (ANN) and impurity-based method for random forest 

regression (RFR). 
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The weights method classified the variables according to their contribution to the model 

output. Canopy volume had the highest contribution (26.41%) followed by ExG (22.63%), IR 

(18.17%), BC (17.55%) and BV (152.4%). Combined CV and ExG contributed close to 50% to 

the yield estimation. Naturally, these canopy attributes are essential components of the mass and 

energy balance of the crop, and understanding the balance between photosynthesis and water use 

is key to understanding crop growth and yield (Weiss et al., 2004). Similar to the weight method, 

the impurity-based method also indicated the major contribution of CV. However, the relative 

difference between the highest and lowest contributors was higher (19.2%) in RFR as compared 

to the weight method (11.17%) in ANN, indicating that RFR was more biased to the highest 

contributor (CV). Additionally, the least importance was granted to the qualitative attributes (IR) 

in RFR based yield prediction. 

4.4.5 Early-stage yield prediction  

An analysis was performed to investigate how early in the growing season the model could 

predict yield with R2 > 0.7 using the test set. Beginning from 100 days after planting (DAP), the 

model was trained and tested with a decreasing number of DAP using a step size of five days 

(presented in Table 4.13). Since BC and BV are end-of-the-season measurements, they were 

excluded from the analysis. The input variables considered were CV, ExG, and the Irrigation status.  
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Table 4.13. Average R2 and mean square error (MSE) for training and test sets, including canopy 

volume(CV), Excess Greenness Index (ExG), and Irrigation Status (IR), over ten runs with 

decreasing days after planting with a step size of 5 days. 

Days 

after 

planting 

Training 

R2 

(Average 

of 10-

fold) 

Training 

RMSE (lb) 

(Average of 

10-fold) 

Validation 

R2 

(Average of 

10-fold) 

Validation 

RMSE (lb) 

(Average of 

10-fold) 

Test R2 

(Average of 

10-fold) 

Test RMSE 

(lb) 

(Average of 

10-fold) 

100 0.90 0.53 0.83 1.09 0.84 1.07 

95 0.90 0.61 0.84 1.11 0.83 1.16 

90 0.90 0.69 0.83 1.13 0.83 1.14 

85 0.87 0.96 0.78 1.23 0.79 1.21 

80 0.84 0.99 0.75 1.28 0.76 1.21 

75 0.83 1.01 0.75 1.26 0.75 1.24 

70 0.82 1.13 0.72 1.28 0.73 1.25 

65 0.79 1.35 0.70 1.56 0.69 1.53 

60 0.75 1.53 0.66 2.33 0.66 2.30 

55 0.69 1.70 0.61 2.41 0.59 2.48 

 

The growth curve of a cotton plant follows a typical sigmoid curve which has a slow growth 

rate in the initial phase, succeeded by an exponential growth rate for leaf area, canopy, flowering, 

and boll development, followed by a slow growth rate in the maturation phase. It was observed 

that the reduction in the accuracy with decreasing DAP commensurate well with the growth curve 

(Figure 4.4) suggested by crop physiology. As the plant still remains in the maturation state, there 

was no significant reduction in the model's performance from 100 to 90 DAP, but a high rate of 

reduction in the R2 values was observed after 85 DAP, representing the tail end of the exponential 

growth phase of the crop. At 70 DAP, the model predicted the yield with a test R2 greater than 0.7, 

indicating the potential use of this methodology as early as 70 DAP to estimate crop yield. The 

test accuracy declined significantly below 70 DAP as the plants grew exponentially at this period, 

and any small change in DAP will significantly impact test accuracy.   

This study explored the feasibility of incorporating UAS derived features to predict yield 

using an artificial neural network model. The study demonstrates how multi-temporal, non-

temporal, and qualitative features can be incorporated into a single feature vector as an input to 

the ANN model to estimate cotton yield. The initial implementation included all the features and 

showed accurate yield prediction results with a low RMSE. Performance comparison revealed that, 



 

 

99 

although the ANN model achieved a higher R2 for the test set compared to SVR and RFR, all the 

three models were able to predict the yield with acceptable accuracy (R2 higher than 0.82 on 

average of 10 runs and higher than 0.85 for best case scenario). If there are some inherent learnable 

patterns in the training set, any machine learning model that can handle non-linearity in the data 

can perform reasonably with appropriate parameter tuning. Thus, preparing the training set that 

comprises the appropriate input features having learnable patterns pertaining to the target is more 

critical compared to the choice of a regression model (Halevy et al., 2009; Sun et al., 2017). 

However, the ANN performed better in a multi-modality scenario where the input variable set 

comprised three different types of features: multi-temporal, non-temporal, and qualitative features. 

Sensitivity analysis using a stepwise elimination of the input variables suggested some redundancy 

in the initial input variable set, except for boll count and irrigation status. Except for these two 

variables, removing any other variables from the set did not significantly change the accuracy of 

the prediction. A correlation analysis was used to eliminate the redundant variables resulting in a 

reduced subset of the input variables. For this research, plant canopy attributes and vegetation 

indices computed using RGB sensor data were adequate for accurate cotton yield prediction. This 

may be used in the future to reduce overall experimental costs and data collection time. Moreover, 

RGB sensors are robust and less expensive when compared to multispectral sensors (Andújar et 

al., 2016; Nock et al., 2013; Paulus et al., 2014). 

  An additional stepwise elimination analysis suggested that the reduced input variable set 

was the optimal subset as removing any of these inputs affected the prediction accuracy of the 

network. With the optimal subset of input variables, the network training time was reduced by 

more than 50%, as the original input vector size was 75, and reduction resulted in a vector size of 

32. Quantifying the significance of individual input variables in the ANN model is very important 

to open the ‘‘black box” model and provide information about the role of each variable in the 

model. In agriculture, finding the variables contributing to crop yield is important as it helps 

farmers and agriculture scientists reduce environmental impact while increasing agricultural 

sustainability (Khoshroo et al., 2018). A sensitivity analysis was carried out using the weights 

method to determine the input variables with the most impact on yield. Results indicated that 
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canopy volume had the most significant impact on cotton yield, followed by the excessive 

greenness index. The difference between the relative contribution of the most important and the 

least important variable was 12%.  

This study also explored how early in the growing season yield can be reasonably predicted. 

The input variable set excluded boll count and boll volume as the open cotton bolls are only visible 

at harvest. Canopy volume, ExG, and the irrigation status were used to predict the yield and tested 

by gradually reducing DAP. The prediction accuracy decreased as the DAP decreased. An 

inspection of the rate of decay in the prediction accuracy revealed that it was commensurate with 

the growth pattern of the canopy attributes used as input variables (Figure 4.8 CV and ExG). For 

the DAP greater than 70, canopy attributes were close to attaining a plateau, and there was no 

significant change in the attribute values with an increase in DAP. However, between 50 to 70 

DAP, the crop growth pattern resembles a steep slope (i.e., linear phase of plant growth as 

presented in Figure 4.8). The ANN model predicted cotton yield with an R2 greater than 0.7 as 

early as 70 DAP. Although many factors, such as biotic and abiotic stresses, may affect the crop 

growth between the end of remote-sensing measurements and harvest, an early-stage yield 

prediction can help farmers and agriculture scientists make crop management and marketing 

decisions based on the predicted yield potential. Breeding trials generally contain thousands of 

plots, and breeders could benefit from a high prediction accuracy model that would assist them in 

selecting suitable genotypes without the need to harvest each plot to determine yield, reducing 

overall program costs. Increased screening efficiency will allow them to explore a larger number 

of genotypes.  

The results demonstrate that UAS technology can be used as high precision and cost-

effective system to extract canopy attributes throughout the growing season for yield prediction. 

Collecting high-quality UAS data is critical for the computation of crop canopy attributes and VIs, 

which can be significantly affected by UAS’s flying altitude, forward and side overlaps, spatial 

resolution, and the entirety of the DTM obtained using the SfM pipeline. Additionally, weather 

conditions play an important role in UAS data collection and should be considered since they affect 

the quality of data products (e.g., orthomosaics and DEMs), which in turn affects the quality of the 
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extracted plant canopy attributes. Additionally, the quality of sensors also determines the quality 

of the vegetation indices computed. A Tetracam ADC snap sensor without a sunlight sensor was 

used in this study for multispectral data collection, which questions the reliability of the data. 

However, NDVI maps were mostly consistent as the data were collected during the same time of 

the day throughout the growing season. Additionally, the sensor used for multispectral data was 

the same throughout the data collection. Moreover, the reliability of the multispectral data was not 

a primary concern of the present study, as it was demonstrated that the optimal feature subset for 

the yield prediction model did not utilize any feature derived from multispectral data.  

4.5 Conclusion and future work 

The ability to combine temporal, non-temporal, and qualitative features to predict crop 

yield is very powerful. In this study, an Artificial Neural Network (ANN) machine learning model 

was developed to predict cotton yield by leveraging high-resolution UAS imagery to derive 

biologically relevant plant canopy attributes. The proposed model predicted cotton yield with an 

R2 value of 0.89 in the best-case scenario and an R2 of 0.85 in an average of ten runs. Redundant 

input variables were eliminated by sensitivity analysis, and an optimal subset of input variables 

was obtained. Plant canopy attributes were derived from RGB data, reducing the overhead of 

collecting multispectral data. Moreover, the ANN training time was reduced by more than 50%, 

with no significant reduction in the prediction accuracy. Findings from this study can serve as a 

valuable tool for cotton breeding research programs. If breeders can incorporate the technology, 

there is potential to increase genotype selection efficiency. With this technology, agricultural 

scientists and crop managers, crop consultants, and farmers can have access to a level of 

information about the crop that was not previously available, helping in the decision-making 

process. Finally, with an accurate early-stage yield prediction, appropriate crop management 

decisions can be taken to improve the efficiency and sustainability of farming operations. 

This study's crop yield estimation was limited to the upper and lower limit of the available 

yield values with no extrapolation beyond the data limits. Moreover, the geographical location was 

also a constraint, as the experiments were limited to a single study site for a single year. In the 
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future, the inclusion of other geographic locations and multi-year data would allow transfer 

learning of the methodology to test the feasibility of the current model across geographic locations 

and time. Additionally, multi-location experiments may demand additional analysis to include 

more input features such as soil type, weather information. This study focused on cotton crop yield 

estimation. Transferability of this methodology was successfully demonstrated for other crops, 

such as corn and tomato (Ashapure et al., 2019c) after replacing attributes specific to the cotton 

crop such as boll count, boll size, and boll volume with the crop attributes specific to tomatoes and 

corn. In the future, similar experiments can be performed to test the efficacy of the methodology 

for other crops. Moreover, sensitivity analysis would result in a different subset of input features 

suggesting the significance of each feature for the crop yield. Generally, recurrent neural networks 

(RNNs) are found to be suitable for temporal data (Lipton et al., 2015; Ndikumana et al., 2018). 

However, RNNs alone are not capable of handling the multi-modality nature of the input data 

involved in this research, which includes multi- and non-temporal data along with qualitative data. 

Moreover, RNNs suffer from the vanishing gradient issue when handling a large sequence of data 

(Le and Zuidema, 2016). Usually, RNNs are combined with CNN and other deep networks, and 

the hybrid model is used for prediction (Khaki et al., 2020). However, it requires enormous training 

data, making them unsuitable for applications involving limited training samples. In the future, the 

availability of multi-year data would provide scope for validating the methodology along with 

multi-year predictions, and the availability of more data would also allow for experiments 

involving more sophisticated machine learning models, including deep learning models.       

Overall, this study successfully demonstrated a yield prediction methodology by proposing 

a machine learning framework that exploits UAS derived crop canopy attributes. An accurate 

prediction of cotton yield and replacing human labor with automated high throughput phenotyping 

will help agricultural research. It will also help towards informed crop management decisions 

based on yield prediction, especially when the breeding trials contain thousands of plots. 
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5. LEVERAGING DEEP LEARNING TO IMPROVE SATELLITE 

DATA BASED CROP YIELD ESTIMATION USING UAS DATA AS SIDE 

INFORMATION  

5.1 Background 

A recent upsurge in the development of UAS largely contributed to the implementation of 

HTP for precision agriculture applications (Singh and Frazier, 2018). With high temporal and 

spatial resolution data, UAS is being utilized successfully to detect crop biomass and yield (Swain 

et al., 2010) and monitor crop growth (Ashapure et al., 2019b) with a great degree of precision. 

These applications have resulted in the reliable and efficient estimation of crop canopy phenotypes 

and vegetation indices (Calders et al., 2015; Chianucci et al., 2016; Harwin and Lucieer, 2012; 

Pádua et al., 2017). Later, these attributes are also utilized for yield estimation (Gandhi et al., 2016; 

Gopal and Bhargavi, 2019). One of the main advantages of UAS derived phenotypic data is that 

they are reliable and can provide more precise phenotypic measurements than manual observations 

in the field. Further, it covers the whole area seamlessly so that a huge number of training data can 

be generated from the UAS data. These large number of training samples can be utilized to develop 

state-of-the-art deep learning models for accurate yield prediction (Khaki et al., 2020; Tri et al., 

2017). Although UAS is capable of providing high spatial and temporal resolution data, large aerial 

coverage is not feasible due to limitations, such as payload, flight time, and large size of the data.  

Besides UAS based HTP, satellite data is also extensively utilized for precision agriculture 

applications (Rudd et al., 2017; Yang, 2018; Yang et al., 2012). They cover a larger area but 

provide coarser spatial resolution data compared to UAS imagery. Additionally, weather 

conditions are often a huge concern for passive sensors. UAS is relatively less affected by weather 

conditions; furthermore, UAS provides more spatial and temporal resolution flexibility compared 

to satellite data (Xiang and Tian, 2011). The present study aims to develop an effective crop yield 

prediction model by taking advantage of the UAS’s ability to provide precise fine spatial resolution 

data with the vast spatial coverage provided by satellite data.   
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5.1.1 Scope and contribution 

In chapter 4, it was well established that multi-temporal UAS data can be successfully 

employed for crop yield estimation. However, the scale of the experiment was limited by the aerial 

coverage of the UAS. On the contrary, satellite remote sensing data are widely utilized for crop 

yield estimation over a large area (Ferencz et al., 2004; Hunt et al., 2019; Meng et al., 2019; Novelli 

et al., 2019; Sayago and Bocco, 2018; Singh et al., 2002), although coarser spatial resolution is 

still a concern for many precision agriculture applications. Current state-of-the-art crop yield 

prediction using multi-temporal satellite data is valuable for extensive aerial coverage; however, 

their coarser spatial resolution limits the level of detail UAS could provide. There is a knowledge 

gap in the literature regarding combining UAS and satellite data together for crop yield estimation. 

It is vital to address this research gap since an accurate crop yield prediction in a larger area before 

harvest is essential to prevent famine, improve food security, and sustainable development of 

agriculture. To fill this aforementioned knowledge gap, this chapter explores ways in which UAS 

derived information can be provided as side information to improve satellite data-based crop yield 

prediction models. Previous studies (Gupta et al., 2014; Wang et al., 2015) indicate that fusion of 

multi-modal data significantly enhances the performance of deep learning-based detection models. 

However, no access to UAS data at test time is a barrier to the straightforward adoption of the 

traditional fusion-based approaches. To overcome this challenge, this study explores various 

strategies in which UAS data can be used as side information to improve the performance of 

satellite data-based crop yield prediction models. Two different techniques are proposed based on 

cross-task knowledge transfer and modality hallucination, eliminating the need for UAS data at 

test time. The proposed technique efficiently handles selective availability of UAS data leading to 

enhanced crop yield estimation accuracy.  

5.2 Study area, sensors, and platforms 

Field experiments were conducted in Driscoll, TX, USA (27°46’59” N, 97°34’13” W). The 

total area of the commercial cotton field under consideration was approximately 100 acres. A 

single variety of cotton was planted on March 2, 2020, and machine harvested on August 9, 2020. 
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Soil types in the study site are Victoria Clay series soils (Victoria-Lattas-Clareville). The 

temperature variation throughout the growing season varied between 79°F to 96°F with an average 

humidity of 76%. Average monthly rainfall in the region ranges between 50 mm and 90 mm during 

the growing season (NWS, 2016). Figure 5.1 shows the RGB orthomosaic of the study area 

captured on July 2nd, 2020. For the computation of various canopy attributes corresponding to 

Sentinel-2A pixel level, the entire field was divided into 10m x 10m size grids equivalent to the 

Sentinel pixel size.  

 

 

Figure 5.1. RGB orthomosaic of the study area captured on 07/02/2020 with 10m x 10m size 

grids overlaid on top (represented in red color). 

 

Two types of sensors were considered in this study, namely, UAS based RGB sensor and 

satellite-based multispectral sensor. UAS data were collected using DJI Phantom-4 RTK (SZ DJI 

Technology Co., Ltd., Shenzhen, China). The weight of this UAS is 1.4 kg with a flight endurance 

of up to 30 minutes in mild weather conditions. Phantom-4 RTK is equipped with a 3-axis gimbal 

and an RGB sensor with a resolution of 20 megapixels, with an FOV of 60°.  Phantom 4 RTK was 

accompanied by a DJI base station having a GNSS receiver and radio transmitter to send positional 

corrections to the UAS when the data was being collected. A permanent GCP was installed on the 

northeast side of the experimental field. The GCP was surveyed for more than two hours to get the 

precise coordinates using a dual-frequency, post-processed kinematic (PPK) GPS, model 20Hz V-

Map Air (Micro Aerial Project L.L.C., Gainesville, FL). This permanent GCP with known precise 

coordinates was used to place the DJI base station, and radio communication was set up between 
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this base and the UAS. The radio communication was established and maintained throughout the 

data collection during each flight, which allowed real-time positioning of the UAS relative to the 

known base location, which in turn enabled each image to be associated with an RTK corrected 

three-dimensional position. After each flight, the collected raw UAS data was processed using 

Agisoft Photoscan Pro software (Agisoft LLC, St. Petersburg, Russia) to generate DSM and 

orthomosaic. Satellite data considered were Sentinel-2A which has 13 spectral bands (443–2190 

nm) and a swath width of 290 km. During the growing period, five instances were found where 

there was a considerable match between UAS data collection and cloud-free Sentinel-2A data 

availability (presented in Figure 5.2 (a)). Absolute georeferencing accuracy of the UAS generated 

DSM and orthomosaics was not computed. However, the relative accuracy of multi-temporal UAS 

data was observed to be centimeter-level on visual inspection, i.e., 2 cm in planimetry and 3 cm in 

altimetry. Additionally, the visual inspection also confirmed that UAS data aligned adequately 

with satellite data.  

As described in section 4.3, the ideal acquisition frequency for remote sensing data is 

application-dependent. It is very critical to account for the growth behavior of the crop under 

consideration for yield estimation. Under favorable moisture and temperature conditions, the 

growth of the cotton plant follows a well-defined and consistent pattern expressed in days. Ritchie 

et al. (2007) provided a general growth pattern of the cotton plant as presented in Figure 5.2, where 

the red markers represented epochs when the satellite data was available. For effective yield 

estimation, sample data points must be close enough to accurately represent the shape of the growth 

curve. Therefore, the data collection strategy should adopt a systematic targeting of critically 

sensitive periods as suggested by knowledge of crop physiology.  

Table 5.1 presents the UAS data collection timeline and flight specifications. It is evident 

from Figure 5.2 that the satellite data used in this study compare favorably with the trend of the 

cotton growth curve.  

The yield data were also available for an independent field (~400 acres) close to the main 

experiment field at Driscoll, Texas. Figure 5.3 (b) presents the Sentinel-2A time series data over 

an independent test field considered in this study where UAS data were not available. As shown 
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in Figure 5.3 (b), the Sentinel-2A imagery acquired on 7/10/2020 has a partial cloud coverage over 

the northern half of the field (~100 acres), which was not used in this experiment.  

 

  

Figure 5.2. A typical growth curve of the cotton plant following a sigmoid curve, where the x-

axis represents days after planting, and y-axis represent the nitrogen content in the plant (Ritchie 

et al., 2007). Red markers represent the days after planting when the satellite data was available. 

 

Table 5.1. UAS data collection timeline and flight specifications. 

Date 

Flight 

Altitude 

(RGB) 

Overla

p 

(RGB)  

Spatial 

Resolution, 

RGB (cm) 

4/1/2020 90m 70% 2.47 

4/26/2020 90m 70% 2.47 

4/30/2020 90m 70% 2.47 

6/11/2020 90m 70% 2.46 

7/2/2020 90m 70% 2.47 
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(a) 

 

 
(b) 

 

Figure 5.3 (a) Sentinel-2A time-series data (on the top) along with the corresponding matching 

data collected using UAS, using which canopy attribute (canopy height, canopy volume, and 

canopy cover) were computed grid-wise, (b) Sentinel-2A time series data over an independent 

test field. The orange circles on the horizontal axis depict the unevenly distributed satellite data 

acquisition dates over the growing season. 

 

Table 5.2 Sentinel-2A and UAS data collection matching dates. 

UAS data collection 

date 

Sentinel 

date 

Difference (no. of 

days) 

4/1/2020 4/1/2020 0 

4/26/2020 4/23/2020 3 

4/30/2020 5/1/2020 2 

6/11/2020 6/10/2020 1 

7/2/2020 6/30/2020 2 
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5.3 Methodology 

As this research aims to predict the yield over a larger area even at the locations where 

UAS data were not collected, UAS derived canopy attributes can only be utilized as side 

information at the time of training the multi-temporal satellite data-based yield prediction model. 

The proposed methodology demonstrated two different ways to include UAS derived canopy 

attributes as side information to the satellite-based crop yield prediction model: the first approach 

was based on cross-task knowledge transfer where UAS derived information was used as one of 

the outputs along with the yield, and the other approach was based on modality hallucination where 

the UAS derived information is used as one of the inputs to a yield estimation model along with 

the satellite data (block diagram of the methodology is presented in Figure 5.4). 

 

 
(a) 

 

 
(b) 

Figure 5.4. Process flow of the deep learning methodology, where UAS derived canopy 

attributes are used as a side information (a) as one of the outputs along with the predicted yield, 

or (b) as one of the inputs along with satellite data. 
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The overall methodology consists of two stages, including data preprocessing and machine 

learning modeling.   

5.3.1 Data preprocessing 

In this phase, UAS derived canopy attributes utilized as input to the yield prediction model 

were identified as canopy cover, canopy height, and canopy volume. As mentioned in section 5.2, 

the entire field was divided into 10m x 10m size grids, and canopy attributes were computed 

(canopy attribute computation is presented in section A.1 of Appendix A) and aggregated grid-

wise. Yield data in the field was collected using a yield monitor equipped with a differential global 

positioning system (DGPS) receiver. It simultaneously records crop yield and position data, which 

is used to produce yield maps. The blue dots on the leftmost image in Figure 5.5 represent the 

locations provided by the yield monitor where the yield was measured. As these points were not 

uniformly distributed across the field, a spatial distribution technique was used to determine grid-

wise yield from the measured harvested yield provided by the yield monitor.   

 

 

Figure 5.5. Procedure to compute grid-wise yield values using yield monitor. The left image 

contains the yield values provided by the yield monitor (blue dots). The Center image consists of 

Voronoi partitioning of the yield points (green polygons). The right image presents the overlaid 

grids (red polygons) over the Voronoi partitions. 

 

A grid-wise yield computation procedure is shown in Figure 5.5. A Voronoi partition 

(Burrough et al., 2015) is performed using the yield measurements (the blue dots on the leftmost 

image in Figure 5.5) to determine the optimal spatial coverage of each yield point, which is 

presented as green polygons in the center image of Figure 5.5. Finally, the intersection of grids 
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(represented by red color polygons) and Voronoi polygons was performed to determine yield per 

grid by computing the areal sum of all the intersected parts of Voronoi polygons falling within a 

grid. Figure 5.6 shows the yield monitor data over the main experimental field and an independent 

test field along with the corresponding grid-wise aggregated yield data generated following the 

methodology presented in Figure 5.5. 

 

 
(a) 

 

 
(b) 

Figure 5.6. Yield data for the main experiment field (a), and independent test field (b), in 

Driscoll, Texas. Yield monitor data on the left, where the zoomed-in subset highlights the point 

measurements captured by the yield monitor. The right shows the corresponding grid-wise 

aggregated yield data generated following the methodology presented in Figure 5.4. 

      

Due to a calibration issue with the weighing machine of the yield monitor, the total cotton 

weight reported at the ginning facility was not equal to the sum of the cotton weight recorded by 

the yield monitor. This difference in the total cotton weight was proportionally distributed 

throughout the field, assuming that the calibration issue was systematic throughout the field. Once 

the gird-wise information was extracted from three different sources, namely, Sentinel-2A pixel 

values, aggregated UAS derived canopy attributes, and aggregated yield per grid, they were 
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arranged in tensor forms as follows. A temporal tensor denoted Sentinel-2A pixel values of a given 

10m x 10m grid in Equation 5.1: 

𝑋𝑖 = [𝑥𝑖
(1)

,  𝑥𝑖
(2)

, … , 𝑥𝑖
(𝑇)

]       (5.1) 

Where, 𝑋𝑖 is the input feature vector corresponding to 𝑖𝑡ℎ grid on the study area. 𝑇 is the 

total number of temporal observations throughout the growing season, and each  

𝑥𝑖
(𝑡)

|
𝑡=1

𝑇

corresponding to 𝑖𝑡ℎ grid represents a vector of size fourteen, thirteen of which represent 

band values of Sentinel-2A, and the fourteenth value represents normalized day after planting with 

respect to planting and harvest date. As the available satellite data is unevenly distributed in time 

over the period of interest, there is a necessity to have a data acquisition time indicator associated 

with the feature vector comprising of band values. The data acquisition time indicator ensures the 

training of the deep learning model with a precise sense of data acquisition timing of each temporal 

feature vector to provide the flexibility to accommodate the data with a different date of acquisition 

at the time of training and testing. UAS derived aggregated canopy attributes over a given 10m x 

10m grid were denoted by a temporal tensor as follows: 

 𝑈𝑖 = [𝑢𝑖
(1)

,  𝑢𝑖
(2)

, … , 𝑢𝑖
(𝑇)

]         (5.2)  

Where 𝑇 is the number of temporal observations within the period of interest matching with 

Sentinel-2A observations, and each 𝑢𝑖
(𝑡)

|
𝑡=1

𝑇

 represents a vector of size three representing 

aggregated canopy height, total canopy volume, and percentage canopy cover corresponding to 

𝑖𝑡ℎ grid. Aggregated yield corresponding to 𝑖𝑡ℎ grid is represented by a single value 𝑌𝑖.  

5.3.2 Machine learning modeling 

The primary model used in this study to encapsulate the temporal properties of satellite 

data across the period of interest consists of long short-term memory (LSTM) cells, which is a 

special type of recurrent neural network (RNN). LSTMs are capable of modeling longer sequences 

as compared to simple RNN, as its cell structure provides a better gradient flow during 

backpropagation and prevents the model from the vanishing gradient problem (Hochreiter and 
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Schmidhuber, 1997). The internal memory mechanism of LSTM makes it more efficient to handle 

long-term dependencies. Until recently, the popularity of LSTM models was limited to natural 

language processing applications. However, recent years have witnessed their application in many 

scientific areas, including remote sensing and precision agriculture, thanks to their ability to 

automatically discover relevant temporal features from raw data (Masjedi, 2020; Wang et al., 2018; 

You et al., 2017; Zaremba et al., 2014). As mentioned earlier, LSTMs have successfully 

demonstrated their ability to capture relevant abstract features for biomass prediction (Masjedi et 

al., 2019) and large area yield estimation in conjunction with CNN (Sun et al., 2019). However, 

using LSTMs for high-resolution satellite-based pixel-level yield estimation is unprecedented in 

the literature. Moreover, utilizing multi-modality data fusion to enhance high-resolution satellite-

based crop yield estimation is also not discussed.  

A baseline model was developed in this research utilizing only multi-temporal satellite data 

as input before introducing UAS derived information as side information. As shown in Figure 5.7, 

the input to the network is Sentinel-2A pixel values of a given 10m x 10m grid denoted by a 

temporal tensor in equation 5.1.  

 

 

Figure 5.7. Baseline long short term memory (LSTM) based yield estimation model using multi-

temporal satellite data. 

 

An LSTM model is utilized to encapsulate the temporal properties of the input feature in 

the period of interest. The number of layers for the network was determined empirically with the 

help of systematic experiments. The input feature is first parsed through two LSTM layers which 

determine the temporal relationship during the crop growing season. Each LSTM layer consists of 

50 nodes that use the sigmoid function as an activation function. As observed in Figure 5.7, LSTM 
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layers are followed by a fully connected layer of size 25. The empirical analysis determined that 

after two LSTM layers, a single fully connected layer was sufficient to predict crop yield. 

Hyperparameters considered for the baseline network are presented in Table 5.3. The objective of 

the baseline model implementation was to assess the potential of multi-temporal satellite data to 

predict the yield and provide a comparison basis for the deep architectures using UAS derived 

canopy attributes as side information to improve the multi-temporal satellite-based yield 

estimation model.  

Table 5.3. Hyperparameters selection for the baseline network implementation. 

Hyperparameters Values 

Activation function Sigmoid 

Loss function MSE 

Optimization method Adam 

Total no of samples 4130 

Train and test ratio 70:30 

Batch size 10 

No. of epochs 100 

  

Deep cross-task knowledge transfer architecture  

This section demonstrates one of the ways how UAS derived information can be utilized 

as side information to improve multi-temporal satellite-based crop yield prediction. In chapter 4, 

it was demonstrated that UAS derived crop canopy attributes could be successfully utilized to 

predict the crop yield. Additionally, Sentinel-2A data has been successfully utilized to predict 

canopy attributes generated from UAS data (Ashapure et al., 2020b). This research aims to take 

advantage of the intermediate features from the deep network while using satellite data as input to 

predict UAS derived canopy attributes. The idea is to use those intermediate features to train the 

yield prediction model. This methodology stems from the main ideas of transfer learning and 

domain adaptation which learns to share information from one task to another.  

The perception behind this methodology is that deep networks are usually capable of 

learning abstract representations from task 1, and part of the knowledge learned during task 1 can 
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be utilized further for a new task (Bengio et al., 2013). In Particular, the main principle of transfer 

learning is to extract certain transferable abstract representations from the source domain and 

transfer those abstract representations to help improve the performance on a different task in the 

target domain. In the literature, the transfer learning approach has been successfully utilized for 

crop yield prediction to utilize the pre-trained deep learning architecture from one field and use it 

to fine-tune over other locations (Wang et al., 2018). However, using a pre-trained network across 

different modalities for different target tasks is unprecedented. As shown in Figure 5.8, the cross-

task knowledge transfer architecture consists of three main components: common feature 

transform network, UAS data network, and yield prediction network.    

   

 

Figure 5.8. Deep cross-task knowledge transfer architecture using multi-temporal satellite data as 

input to predict UAS derived canopy attributes and crop yield. 

 

The input to the network is multi-temporal Sentinel-2A pixel values, as explained in the 

baseline yield estimation model in Figure 5.7. Input data is provided to a common feature 

transform network which consists of an LSTM layer with 50 output nodes. The output of the 

common feature transform network is provided to both the UAS data network and yield prediction 

network, respectively. UAS prediction network consists of two LSTM layers with 50 and 3 output 

nodes, followed by a flattened layer comprising 15 nodes (three canopy attributes, namely canopy 

height, canopy volume, and canopy cover in five instances). The yield prediction network consists 
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of an LSTM layer with 50 nodes followed by a fully connected layer of size 25 and an output layer 

of size one in the end.  The overall network is trained in a twofold training fashion. Initial training 

was performed combining common feature transform network and UAS data network for UAS 

derived canopy attribute prediction using hyper parameters present in Table 5.3. Later, the 

common feature transform network is combined with yield prediction network to predict the yield 

with an assumption that the common feature transform network is pre-trained in the initial training 

and will utilize that additional knowledge while training for yield prediction model in conjunction 

with common feature transform model. The overall design of this network provides the flexibility 

to selectively utilize UAS data at the time of training and transfer the knowledge to the yield 

prediction module. At the time of testing the yield prediction model, UAS data is not required.   

Deep hallucination architecture  

In recent times, heterogeneous data fusion has gained significant attention from the 

scientific community (Wang et al., 2015; Zhao et al., 2020). It is observed to enhance the 

performance of deep learning-based models significantly. However, it is sometimes difficult and 

expensive to access multi-modal data at the test time, which is a prerequisite for any fusion-based 

detection algorithm. Modality hallucination proposed by Hoffman et al. (2016) provides a viable 

solution to this problem by concocting scarcely available modality features from a complementary 

modality, the data for which are easily obtainable. This research attempts to test the feasibility of 

the concept in crop yield estimation using remotely sensed data. The idea was to utilize UAS 

derived canopy attributes as side information while training a multi-temporal satellite-based crop 

yield estimation model. Figure 5.10 demonstrates the training architecture for the proposed 

modality hallucination architecture. The model consists of mainly two channels that get input from 

satellite data and UAS data. These channels consist of multi-layer LSTMs to encapsulate the 

temporal properties of the input features. However, the goal is to combine the information coming 

from the two modalities and to use the training time privileged UAS data modality to update the 

final satellite only yield estimation. To accomplish this, a separate channel was introduced and 

labeled as the hallucination network (middle network in Figure 5.10 (a)). The hallucination 
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network takes satellite data as input and generates mid-level features similar to mid-level features 

of the UAS modality. An additional regression loss was introduced between the aforementioned 

mid-level hallucination features and corresponding UAS derived mid-level features (target). The 

objective of this loss function is to cause the UAS modality to share information with the satellite 

data modality through this hallucination network. Effectively, this loss leads the hallucination 

network to extract features from the satellite data which mimic the features extracted from the 

corresponding UAS data. 

  

 

(a) 

Figure 5.9. (a) Training the modality hallucination architecture. The hallucination branch is 

trained to take satellite data input and mimic the UAS derived canopy attribute mid-level 

activations, (b) Test time modality hallucination architecture. 
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(b) 

Figure 5.10. continued (a) Training the modality hallucination architecture. The hallucination 

branch is trained to take satellite data input and mimic the UAS derived canopy attribute mid-

level activations, (b) Test time modality hallucination architecture. 

 

The training module takes multi-temporal Sentinel-2A pixel values as explained in the 

baseline yield estimation model in Figure 5.7 as input through the satellite data network and 

corresponding UAS derived canopy attributes through the UAS data network. UAS derived 

aggregated canopy attributes over a given 10m x 10m grid were denoted by a temporal tensor in 

equation 5.2, where each 𝑢(𝑡) represents a vector of size three representing aggregated canopy 

height, total canopy volume, and percentage canopy cover per grid. After satellite and UAS data 

were parsed through LSTM (output size 50) and fully connected (output size 25) layers in their 

respective networks, the fully connected layers from both networks were concatenated and 

predicted the corresponding yield with mean square error considered as loss function. Additional 

hyperparameters considered in the network were considered as presented in Table 5.3. The overall 

training of the network is twofold. As mentioned above, initial training is performed to predict the 

yield using both satellite data networks and the UAS data network. In the next step, the 

hallucination network is trained to mimic the UAS data network with the objective that activations 

after the fully connected layers should be similar between the hallucination and UAS data networks. 
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In particular, a loss function is added to minimize the difference between the UAS data activations 

after the fully connected layer 𝐴𝑙
𝑈𝑁𝑒𝑡 and the hallucination activations after fully connected layer 

𝐴𝑙
𝐻𝑁𝑒𝑡 so that the hallucination loss  𝐿𝐻𝑎𝑙𝑙𝑢𝑐𝑖𝑛𝑎𝑡𝑖𝑜𝑛(𝑙) for the given layer is defined by Equation 

5.3 as: 

𝐿𝐻𝑎𝑙𝑙𝑢𝑐𝑖𝑛𝑎𝑡𝑖𝑜𝑛(𝑙) = |𝜎(𝐴𝑙
𝑈𝑁𝑒𝑡) − 𝜎(𝐴𝑙

𝐻𝑁𝑒𝑡)|    (5.3) 

Where 𝜎(𝑥) = 1/(1 + 𝑒−𝑥)  is sigmoidal function. The objective of the hallucination 

network activations is to match the corresponding UAS data mid-level activations; hence the 

parameters of the hallucination network must be independent of satellite as well as UAS data 

networks.  Features extracted by the hallucination network should not be identical to mid-level 

features extracted by the UAS data network, as the inputs are satellite data for the hallucination 

network and UAS derived canopy attributes for the UAS data network. Hallucination loss can be 

theoretically applied at any mid-level; however, the objective is to learn an asymmetric transfer of 

information (to train the hallucination network using pre-learned UAS data network features). 

Consequently, weights and biases of the pre-learned network must be preserved to prevent any 

further training while training for hallucination loss. Therefore, the learning rates of all the 

previous layers with respect to the hallucination loss in the UAS data network were set to zero. 

This essentially freezes the UAS data network up to the fully connected layer in Figure 5.10 (a) so 

that the target UAS data activations are not altered during the hallucination loss backpropagation. 

At test time, only the satellite data passes through both the satellite data network and the 

hallucination network to produce two sets of intermediate features, which are concatenated after 

fully connected layers, which finally provides predicted yield after the activation.  

5.4 Results and discussion 

5.4.1 Implementation details 

All the architectures presented in this chapter were implemented in python using Keras 

(Chollet, 2015) and Tensorflow (Abadi et al., 2016) deep learning libraries. All models were 

developed on a machine with a single GPU (NVIDIA® GeForce® GTX 1080 Ti) along with a dual-
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core Intel i7-6600U 2.60GHz processor. In this study, hyperparameters of each architecture were 

determined using the Keras Tuner tool (O'Malley et al., 2019) and are presented in Table 5.3. Keras 

tuner tool consists of distributable hyperparameter optimization framework for hyperparameter 

search utilizing Bayesian Optimization, Hyperband, and Random Search algorithms. Adam 

optimizer (Kingma and Ba, 2014) with a learning rate of 10−3 was used to minimize the loss 

function (mean squared error between target and predicted yield). The number of training epochs 

chosen for the models considered in this study was 100, which was found to be sufficient for all 

the models to achieve convergence. The satellite time series data were normalized band-wise and 

for each epoch individually. Similarly, UAS derived canopy attributes were also normalized 

attribute-wise for each epoch individually.  

5.4.2 Performance analysis of deep models 

The deep models considered in this study were the baseline model, which utilized only the 

satellite data, along with cross-task knowledge transfer, and hallucination models, which utilized 

UAS data as side information along with satellite data. The prediction accuracy of deep learning 

models was evaluated using MSE and coefficient of determination (R2). Figure 5.11 shows the 

linear fitting of the actual yield and model predicted yield for training, test, and independent test 

set using baseline, cross-task knowledge transfer, and hallucination models, respectively. Figure 

5.12 shows the probability distributions of the estimated error between the predicted and actual 

yield for training, test, and independent test set using baseline, cross-task knowledge transfer, and 

hallucination models. 

The linear fitting of the actual yield and model predicted yield presented in Figure 5.11 (a) 

indicates that multi-temporal satellite data can be successfully utilized to determine the yield, and 

a test R2 of 0.71 confirmed that the baseline model could identify relevant features from multi-

temporal satellite data (Sentinel-2A) for effective yield estimation. However, the test result over 

the independent test site was not encouraging (R2 of 0.56). Coarser spatial resolution certainly 

limits the generalization capability of the satellite-based model. Additionally, partial cloud 

coverage, cloud shadow, and haze contribute to the degradation in the model performance. 
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However, despite showing a promising relationship between multi-temporal satellite data and the 

yield, there is a scope for improvement. Chapter 4 of this dissertation has shown that UAS data 

could provide more reliable crop canopy features for effective crop yield estimation. They can 

provide higher spatial resolution and have no issues with cloud coverage or haze. Consequently, 

models where UAS derived data were provided as side information performed better compared to 

the baseline model, as the UAS data provided complementary information countering the problems 

of the satellite data. A higher correlation was observed between actual yield values and model 

predicted yield values for both cross-task knowledge transfer and hallucination models presented 

in Figure 5.11 (b) and Figure 5.11 (c), respectively. Additionally, their generalization capability 

over the independent test site was found to be better compared to the baseline model. 
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(a) 

 

 
(b) 

 

 
(c) 

Figure 5.11. Linear fitting of the actual yield and model predicted yield for the training set (left) 

and test set (middle) and the independent test set (right) using (a) Baseline model, (b) Cross-task 

knowledge transfer model, and (c) Hallucination model. 
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(a) 

 

 
(b) 

 

 
(c) 

Figure 5.12. Error histogram of the actual yield and model predicted yield for the training set 

(left) and test set (middle) and the independent test set (right) using (a) Baseline model, (b) 

Cross-task knowledge transfer model, and (c) Hallucination model. 

 

The error histogram over training, test, and independent test set presented in Figure 5.12 

indicated that errors were centered around zero. A normality test of the error distributions 

suggested that errors were statistically random. Table 5.4 summarizes the accuracy assessment of 

deep models using R2, MSE, and error in pounds per acre over training, test, and independent test 

sets, where the best value for each assessment criteria is highlighted in bold. MSE was reported 

per sample, which represented yield over 10m x 10m area in the field. Crop yield was also reported 

per acre for the main experimental field and independent test set (1528lbs/acre). Reported error 

per acre represented the absolute difference between pounds per acre computed using model 
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predicted yield and actual reported pounds per acre for both main experimental field and 

independent test site. 

Relatively lower MSE and error per acre and higher R2 for models using both cross-task 

knowledge transfer and hallucination model over baseline model suggest that adding UAS data as 

side information significantly improves model performance for not only training and test sets, but 

for the additional independent test set also. Highlighted values of R2 indicate the higher 

performance of the cross-task knowledge transfer model over the hallucination model. However, 

there was no significant difference in the MSE, especially for the independent test site. Therefore, 

a Student’s t-test was performed to check whether there was a significant difference in the 

performance of cross-task knowledge transfer and modality hallucination architecture (Table 5.5). 

A lower P value (0.001) for the training set indicated that the models were significantly different, 

suggesting a better training performance of cross-task knowledge transfer architecture over the 

modality hallucination. However, P values for the test set and independent test set suggested no 

significant difference in generalization capability between the architectures.  

Table 5.4. Accuracy assessment of deep models over training, test, and independent test cases 

using a coefficient of determination (R2), mean squared error (MSE) per grid, and error per acre. 

Method 

Training Test Independent Test 

R2 
MSE/gr

id (lb2) 

Error/a

cre 

(lb2) 

R2 MSE/g

rid 

(lb2) 

Error/acr

e (lb2) 

R2 
MSE/gr

id (lb2) 

Error/acr

e (lb2) 

Baseline Model 0.79 3.4 39.2 0.72 3.8 48.3 0.57 4.6 101.0 

Cross-task transfer 

Model 

0.88 
2.1 21.5 

0.80 2.8 34.0 0.69 3.2 45.4 

Hallucination model 0.86 2.3 22.2 0.78 2.9 34.8 0.68 3.2 45.9 

 

  

Table 5.5. T-test analysis for cross-task knowledge transfer and modality hallucination 

architecture. 

Method T value P-value 

Training 3.45 0.001 

Test -0.08 0.933 

Independent Test 1.68 0.091 
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Error per acre was also lowest amongst all for the cross-task knowledge transfer model. 

The cross-task knowledge transfer model resulted in yield estimates with the discrepancy of 

34lb/acre for the test set and 45.5lb/acre for the independent test set, which was 2.2% and ~3.0% 

of the reported 1528lb/acre yield for both fields. In comparison, the hallucination model resulted 

in yield estimates with a discrepancy of 34.8lb/acre for the test set and 45.9lb/acre for the 

independent test set, which was 2.3% and 3.0% of the reported yield per acre, which is very similar 

to cross-task knowledge transfer model performance. No benchmark dataset currently exists for 

multi-temporal satellite-based pixel-wise crop yield estimation supplemented by UAS derived 

information. This dataset is the first step towards more reproducible and comparable 

methodological work in this field. 

5.5 Conclusion and future work 

UAS technology efficiently works over small-size research fields or breeding trial fields; 

nevertheless, large aerial coverage using UAS is not feasible. Alternatively, satellite images have 

the advantage of covering vast areas, but they provide coarser spatial resolution data. To overcome 

the limitation of UAS and satellite sensors, a deep learning-based hybrid regression model was 

proposed for yield prediction. This study explored deep learning-based methodologies to 

incorporate additional information in the form of UAS derived canopy attributes to improve the 

multi-temporal satellite-only yield estimation model. This was accomplished through cross-task 

knowledge transfer architecture and modality hallucination architecture which combines a multi-

temporal satellite-based representation with an additional and complementary UAS based 

representation to improve crop yield estimation. Hence, the model was capable of predicting the 

crop yield without utilizing UAS based representation at the test time. The present study provides 

a baseline deep learning model utilizing multi-temporal satellite data for effective crop yield 

estimation with a test R2 of 0.71. Cross-task knowledge transfer architecture and modality 

hallucination architecture outperformed the baseline model with a higher coefficient of 

determination and lower MSE. However, the performance of cross-task knowledge transfer 
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architecture and modality hallucination architecture were not significantly different with respect 

to their generalization capability.  

 

Future work may be extended in the following directions: 

Deep network design: Current deep architectures presented in this study utilized LSTM to 

handle the temporal dimension of the input data as they were found to be better in handling the 

gradient over the time series compared to traditional RNNs. In the future, more network elements 

capable of handling temporal dimensions could be tried, such as deep attention networks (Sorokin 

et al., 2015), transformers networks (Wang et al., 2019) which outperform LSTM networks, 

especially in natural language processing applications.  

Fusion methodologies: The scope of this study was to explore deep learning-based 

information fusion architecture to incorporate different modalities for effective crop yield 

estimation. In addition to transfer learning methodologies considered in this study, adversarial 

domain adaptation can also be tested (Tzeng et al., 2017), as adversarial learning mechanism is 

capable of generating domain invariant features to train robust deep networks across diverse 

domains. Future efforts should also include an ensemble approach, as it is well known that 

ensemble methods tend to outperform the single model approach. 

Investigate more data sources: Current methodology incorporated freely available 

Sentinel-2 data. Initially, Planet data was also considered; however, relatively lower spectral 

resolution and poor radiometric calibration hindered the prediction accuracy. As future work, more 

efforts are required to explore various commercial high-resolution satellite datasets. 

Application to diverse datasets: Future efforts may also focus on extending the proposed 

methodology for multi-year analysis as more data will be available to incorporate. Additionally, 

more data across different locations could also be incorporated to improve the model 

generalization capability. It is not always possible to have the same number of temporal epochs in 

the period of interest across geographical locations with multi-year and multi-location data. Future 

efforts will also focus on handling a different number of epochs for training and test sets.  
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Adaptation for other crops: Proposed methodology focused on the cotton crop; future 

efforts may also test the efficacy of the current methodology for other crops with a focus on crop 

canopy attribute selection for specific crops and inclusion of additional features such as weather, 

treatment, soil property, and irrigation information.  
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SUMMARY AND CONCLUSION 

 

This dissertation focused on developing high throughput phenotyping framework using 

multi-temporal, high spatial resolution UAS based images. The overall objective of this 

dissertation was to investigate the suitability of various UAS derived canopy attributes for crop 

yield estimation and to exploit this limited available information to improve satellite-based large 

area yield estimation. Several studies were undertaken with the aim of developing a yield 

estimation framework using machine learning. Initially, to test the reliability of the UAS derived 

plant parameters, a comparative study was designed for comparison of two management practices 

in cotton, conventional tillage (CT) and no-tillage (NT), which revealed that there was a significant 

difference between cotton growth under CT and NT. Unlike manual measurements, which relied 

on limited samples, UAS technology provided the capability to exploit the entire population. This 

makes UAS derived data more robust and reliable. Additionally, an inter-comparison study was 

designed to compare canopy cover derived from RGB and multispectral sensors over multiple 

flights during the growing season of the cotton crop. An RGB-based canopy cover model was 

proposed, which provided an affordable alternative to the multispectral sensors, which are 

considered relatively more stable but have more sensitive detectors and are relatively more 

complex and expensive.  

After assessing the reliability of UAS derived canopy parameters, a novel machine learning 

framework was developed for crop yield estimation of cotton crops using multi-temporal UAS 

data. This study revealed that UAS derived multi-temporal data along with non-temporal and 

qualitative data can be combined within a machine learning framework to provide a reliable 

estimation of crop yield and provide an effective understanding for crop management. The 

proposed methodology is promising and efficiently works over relatively smaller research fields 

or breeding trial fields; nevertheless, large aerial coverage using UAS is not practically viable. 

Alternatively, satellite images have the advantage of covering a vast area, but they provide coarser 

spatial resolution data. To overcome the limitation of UAS and satellite sensors, a deep learning-

based modality fusion is explored for effective yield prediction. The inherent challenge lies in the 
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fact that with the fact that UAS data is only available over a limited area. Consequently, the 

proposed model can utilize this complementary information only at the time of training, and while 

estimating crop yield over the test samples, the model relies only on satellite data. To incorporate 

the aforementioned constrained, the proposed deep architectures based on cross task knowledge 

transfer and modality hallucination efficiently handle the selective availability of the UAS data by 

utilizing it at the time of training the crop yield prediction model, while the testing model only 

requires the satellite data. The generalization capability of the models was tested over an 

independent test site. The main contribution of this study was to provide a proof of principle for 

learning through side information for effective crop yield estimation utilizing multi-modality 

remote sensing data. To the best of the authors' knowledge, this is the first study that tackles the 

limited availability of UAS and uses it as complementary information to improve satellite-based 

yield estimation. Propose deep learning methodology may be adapted to incorporate diverse 

datasets (multi-year and multi-location) to test the efficacy of the proposed methodology further. 

Additionally, this research is limited to cotton yield estimation, and it could be extended to develop 

yield estimation models for other crops, which is scope for future work.   
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APPENDIX A. CANOPY PARAMETER ETIMATION 

 

For canopy height computation, a UAS baseline flight was conducted before planting to 

generate a digital terrain model (DTM). Further, absolute canopy height or canopy height model 

(CHM) was obtained by subtracting DTM from each DSM generated using later UAS data 

collection in the growing season (Fig. A.1). After computing CHM maps, the average canopy 

height per plot was computed.  

 
Figure A.1. Procedure to extract canopy height from UAS collected imagery. The digital terrain 

model (DTM) represents the soil elevation and is subtracted from the digital surface model 

(DSM) (soil + canopy elevation) to create the canopy height model (CHM) 

 

To compute percentage canopy cover per plot, RGB Orthomosaic was classified into a 

binary map using the Canopeo algorithm (Patrignani and Ochsner, 2015)(Equation A.1), where 

white pixels represent canopy and black pixels represent non-canopy. Later, a ratio of canopy 

pixels over the total number of pixels within a plot was computed using Equation A.2 to compute 

the percentage canopy cover per plot (Fig. A.2). 

  𝑐𝑎𝑛𝑜𝑝𝑦 = (
𝑏𝑙𝑢𝑒

𝑔𝑟𝑒𝑒𝑛
< 𝜃2)AND (

𝑟𝑒𝑑

𝑔𝑟𝑒𝑒𝑛
< 𝜃1) AND (2 𝑔𝑟𝑒𝑒𝑛 − 𝑏𝑙𝑢𝑒 − 𝑟𝑒𝑑 > 𝜃3)      (A.1) 

Where, red, blue, and green represent values of the pixel in the corresponding band and 

𝜃1 = 0.95,   𝜃2 = 0.95,  𝜃3 = 20. 

𝐶𝐶 =
(∑(𝐺𝑆𝐷2)  𝑖𝑓 𝐶𝑎𝑛𝑜𝑝𝑦 )

∑(𝐺𝑆𝐷2)
∗ 100    (A.2) 
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Where, GSD is the ground sample distance which is the distance between two consecutive 

pixel centers measured on the ground. 

 

 

 
Figure A.2. Canopy cover estimation from the orthomosaic images (Red polygons: individual 

crop plots and each plot was ~1m x 10m): shows a natural color orthomosaic image acquired 

from UAS platform, followed by binary classification results of the orthomosaic image (white: 

canopy class, black: non-canopy class) and finally the estimated grid wise CC. 

 

Canopy volume per plot was computed as the summation of the products of the height of 

the pixels and the pixel size within the plot (Equation A.3). 

𝐶𝑉 =  ∑(𝐻𝑖 × 𝐺𝑆𝐷2)     (A.3) 

Where, Hi is the height of the ith pixel. 

NDVI images were computed as the ratio of the difference between near-infrared (NIR) 

and red bands to the sum of NIR and red bands (Rouse et al., 1974) (Equation A.4). To compute 

average NDVI values per plot, the average of all pixel values within each plot was computed. 

NDVI =
(𝑁𝐼𝑅 −𝑅𝑒𝑑) 

(𝑁𝐼𝑅+𝑅𝑒𝑑)
                 (A.4) 

Excessive Greenness Index images were generated using Equation A.5 (Woebbecke et al., 

1995). Later, the average ExG per plot was computed by averaging all the pixels of ExG images 

within each plot.  

𝐸𝑥𝐺 = 2𝐺 − 𝑅 − 𝐵       (A.5) 

Where, 𝑅 =  𝑟𝑒𝑑 max (𝑟𝑒𝑑)⁄ , 𝐺 =  𝑔𝑟𝑒𝑒𝑛 max (𝑔𝑟𝑒𝑒𝑛)⁄  and 𝑅 =  𝑏𝑙𝑢𝑒 max (𝑏𝑙𝑢𝑒)⁄  

 

Non-temporal features considered in this research were cotton boll count, boll size, and 

boll volume, which were computed as suggested by Jung et al. (2018). Initially, an RGB 
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orthomosaic in which the cotton bolls were clearly visible was considered. To differentiate open 

cotton bolls from the background objects, binary classification of the orthomosaic image was 

performed after visual inspection of the boundaries between cotton bolls and background objects. 

Later, a connected component labeling algorithm with a 4-connectivity rule was applied to the 

classified image to identify the individual cotton boll clusters. Further, patch size analysis was 

performed to calculate spatial characteristics of open cotton bolls, including area and equivalent 

diameter. Finally, the spatial characteristics of the individual cotton bolls were summarized for 

each plot, such as boll count, boll size, and boll volume.  
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