
INTELLIGENT DEVICE SELECTION IN FEDERATED EDGE
LEARNING WITH ENERGY EFFICIENCY

by

Cheng Peng

A Thesis

Submitted to the Faculty of Purdue University

In Partial Fulfillment of the Requirements for the degree of

Master of Science

Department of Computer and Information Science

Indianapolis, Indiana

December 2021

THE PURDUE UNIVERSITY GRADUATE SCHOOL
STATEMENT OF COMMITTEE APPROVAL

Dr. Qin Hu, Chair

Department of Computer And Information Science, IUPUI

Dr. Kyubyung Kang

School of Construction Management Technology, Purdue University

Dr. Xukai Zou

Department of Computer And Information Science, IUPUI

Approved by:

Dr. Shiaofen Fang

2

TABLE OF CONTENTS

LIST OF TABLES . 5

LIST OF FIGURES . 6

ABSTRACT . 7

1 INTRODUCTION . 8

2 RELATED WORK . 12

3 ENERGY-EFFICIENT DEVICE SELECTION IN FEDERATED EDGE LEARN-

ING . 15

3.1 SYSTEM MODEL . 15

3.1.1 FEL PROCESS . 15

3.1.2 TIME CONSUMPTION MODEL . 17

3.1.3 ENERGY CONSUMPTION MODEL 18

3.1.4 PROBLEM FORMULATION . 19

3.2 ALGORITHM DESIGN FOR ENERGY-EFFICIENT DEVICE SELECTION 20

3.2.1 PROBLEM REFORMULATION . 20

3.2.2 ALGORITHM DESIGN . 23

3.3 EXPERIMENTAL EVALUATION . 26

3.3.1 FEL ENVIRONMENT SIMULATION 26

3.3.2 MODEL TRAINING SETTINGS . 27

3.3.3 EVALUATION RESULTS . 28

3.3.3.1 TIME AND COMMUNICATION COST 28

3.3.3.2 COMPARISON OF DEVICE SELECTION SCHEMES . . 29

3.3.3.3 COMPARISON OF LEARNING RESULTS 31

4 ENERGY-EFFICIENT DEVICE SELECTION WITH FAST CONVERGENCE

IN FEDERATED EDGE LEARNING USING ONLINE BANDIT LEARNING . . 33

4.1 SYSTEM MODEL . 33

3

4.1.1 FEL PROCESS . 33

4.1.2 TIME AND ENERGY CONSUMPTION MODELS 35

4.1.3 LOSS MODEL . 37

4.1.4 PROBLEM FORMULATION . 38

4.2 ALGORITHM DESIGN FOR ENERGY-EFFICIENT DEVICE SELECTION

WITH FAST CONVERGENCE . 39

4.2.1 GENERAL IDEA OF CMAB . 40

4.2.2 SPECIFIC CALCULATION . 41

4.2.3 PROBLEM REFORMULATION . 43

4.2.4 ALGORITHM DESIGN . 45

4.3 EXPERIMENTAL EVALUATION . 49

4.3.1 FEL ENVIRONMENT SIMULATION 49

4.3.2 MODEL TRAINING SETTINGS . 50

4.3.3 EVALUATION RESULTS . 50

4.3.3.1 COMPARISON EXPERIMENTS 51

4.3.3.2 LEARNING PERFORMANCE AND COST 53

5 DISCUSSION . 57

6 CONCLUSION . 58

REFERENCES . 59

4

LIST OF TABLES

3.1 Comparison of learning results. 32

4.1 Comparison of learning results with different time limits. 55

5

LIST OF FIGURES

3.1 The working process of an FEL round. 16

3.2 The time and communication cost of E2DS. 29

3.3 The comparison results of the number of devices, total data amount, total energy
consumption and energy consumption per device in different schemes. 30

3.4 The convergence trends of the loss function over training data in different schemes. 31

4.1 The working process of an FEL communication round. 34

4.2 The comparison results of loss and accuracy trend in different schemes. 51

4.3 The comparison results of energy and devices in different schemes. 52

4.4 Training loss and accuracy trend with different a. 53

4.5 CPU-cycle frequency trend. 54

4.6 The comparison results of energy consumption and devices with varying time limit. 56

6

ABSTRACT

Due to the increasing demand from mobile devices for the real-time response of cloud

computing services, federated edge learning (FEL) emerges as a new computing paradigm,

which utilizes edge devices to achieve efficient machine learning while protecting their data

privacy. Implementing efficient FEL suffers from the challenges of devices’ limited comput-

ing and communication resources, as well as unevenly distributed datasets, which inspires

several existing research focusing on device selection to optimize time consumption and data

diversity. However, these studies fail to consider the energy consumption of edge devices

given their limited power supply, which can seriously affect the cost-efficiency of FEL with

unexpected device dropouts.

To fill this gap, we propose a device selection model capturing both energy consumption

and data diversity optimization, under the constraints of time consumption and training

data amount. Then we solve the optimization problem by reformulating the original model

and designing a novel algorithm, named E2DS, to reduce the time complexity greatly. By

comparing with two classical FEL schemes, we validate the superiority of our proposed device

selection mechanism for FEL with extensive experimental results.

Furthermore, for each device in a real FEL environment, it is the fact that multiple

tasks will occupy the CPU at the same time, so the frequency of the CPU used for training

fluctuates all the time, which may lead to large errors in computing energy consumption.

To solve this problem, we deploy reinforcement learning to learn the frequency so as to

approach real value. And compared to increasing data diversity, we consider a more direct

way to improve the convergence speed using loss values. Then we formulate the optimization

problem that minimizes the energy consumption and maximizes the loss values to select the

appropriate set of devices. After reformulating the problem, we design a new algorithm

FCE2DS as the solution to have better performance on convergence speed and accuracy.

Finally, we compare the performance of this proposed scheme with the previous scheme and

the traditional scheme to verify the improvement of the proposed scheme in multiple aspects.

7

1. INTRODUCTION

Nowadays, the demand for the timely and reliable response of cloud computing services be-

comes increasingly extensive due to the prevailing of real-time applications on mobile devices,

which reveals multiple critical deficiencies of the traditional central cloud computing. On the

one hand, wireless communication channels may suffer from high latency, low bandwidth,

and instability. On the other hand, the security of the cloud center has long been criti-

cized, and data privacy can be easily breached under the attacks of malicious third parties.

Regarding the first disadvantage, leveraging on the large-scale deployment of 5G technol-

ogy, edge computing has played an important role in providing flexible and efficient services

to end users. To solve the second problem, federated learning (FL) with privacy protection

characteristics can effectively assist in aggregating necessary information to improve training

efficiency, so as to provide automatic and intelligent computing. Combining the advantages

of the above two solutions, federated edge learning (FEL) emerges recently to holistically

address the problem of cloud computing for achieving efficient machine learning with the

help of edge devices while protecting their data privacy at the same time.

However, due to the uncertain communication conditions and computing capabilities

of edge devices without owning independent and identically distributed (IID) data, there

exist huge challenges in efficiently implementing FEL. Faced with such a situation, a lot

of existing studies are devoted to the research of server-oriented optimization in the FEL

process, including resource allocation [1]–[5], intermediate server assistance [6], [7] and device

participation incentive [8]–[10]. Although these methods are optimized under the premise of

a given set of edge devices contributing to FEL, the participation of some devices lacking

computing and communication capabilities or training data can negatively affect the training

performance of FEL.

Beyond the server-oriented optimization, many researchers have tried to improve FEL

from the perspective of devices, which mainly includes three types of studies, i.e., such as

model optimization [11]–[15], resource balance [16]–[18] and device selection [19]–[24]. Among

them, model optimization may sacrifice the accuracy of the final model to a certain extent,

while resource balance usually assigns extra resources to low-quality participants, which can

8

be unfair for other high-quality devices and thus discouraging their future participation.

More importantly, involving all available devices in the learning process in the first two

types of schemes can heavily degrade the overall performance of FEL systems. Thus, device

selection becomes a better solution under the premise of balancing resource consumption

and efficiency. In fact, there are several recent works [19]–[22] focusing on device selection

for FEL. But they fail to include the impact of devices’ energy cost on device selection,

except for time consumption and data diversity. As the power of edge devices is usually

provided by built-in batteries, excessive energy consumption of participated devices may

cause unanticipated dropouts and significantly lower the cost-efficiency of FEL.

To overcome the shortcomings of the existing device selection mechanisms, we consider

minimizing the energy consumption of all selected devices in each round of training, which

is under the constraints of communication and computing time consumption of each device,

as well as the total amount of data for training. In addition, the number of devices selected

for FEL in each round is also designed to be maximized so as to increase the diversity of

data and thus accelerate the speed of model convergence.

However, it is nontrivial to solve the above minimization problem and the time complexity

of intuitively solving this problem increases exponentially with the number of devices, which

imposes a burden on the server to determine the appropriate set of devices in each FEL

round and can further reduce the training efficiency of FEL.

In this paper, we firstly solve the above challenge by defining an optimization problem

considering the time and energy consumption in the communication and calculation phases,

as well as the number of selected devices and the local data sizes of devices. Afterwards, the

optimization problem is solved by designing an efficient algorithm named E2DS with lower

time complexity. The main contributions of this work are summarized as follows:

• By elaborating the FEL procedures, we insert a device selection step in the traditional

FL process, which is determined by the server through solving an optimization problem.

• Considering the limited waiting time constraint of the server and the required size of

training data in FEL, we establish a mathematical model to minimize the total energy

9

consumption of selected devices in the communication and computing processes, as

well as maximize the number of selected devices for data diversity consideration.

• To reduce the calculation complexity of the server in the stage of device selection,

we reformulate the proposed optimization problem and propose an efficient solution,

namely E2DS, that achieves the optimization goal but brings no negative impact to

the system performance of FEL.

• We implement a series of experiments to evaluate the performance of our proposed

E2DS scheme via investigating time and communication cost. Besides, by comparing

with two classical methods, we demonstrate that E2DS can perform better to save

device-average energy consumption while achieving great learning performance, i.e.,

high accuracy with fast convergence.

The details of the model, solution and experiments are presented in Chapter 3 .

Based on this work, we find that in the actual FEL environment, the CPU of each device

is consumed by multiple tasks at the same time, so the CPU-cycle frequency of each device

will fluctuate all the time during the whole FEL task. Since the step of collecting information

of all devices for estimating energy consumption and time consumption occurs at the begin-

ning of each communication round, including the CPU-cycle frequency, this leads to errors

compared with the actual frequency while training. Therefore, instead of selecting devices

only based on the information at the beginning of each communication round, we learn to

obtain the frequency that is closer to the true value, so as to calculate energy consumption

more accurately. In addition, the convergence speed is also an important factor to measure

the performance of an FEL system. In a real FEL scenario, selecting biasing devices with

higher local losses is able to speed up the convergence [23]. Therefore, we consider the loss

value as an important parameter that affects the overall performance of the FEL system.

We formulate the optimization problem, which is to minimize total energy consumption and

maximize the loss values of selected devices at the same time in every communication round,

so as to save energy and accelerate the speed of model convergence. Finally, we design an

improved algorithm called FCE2DS to solve this problem after reformulation, and verify the

10

efficiency and performance through a series of experiments. The main contributions of this

work are summarized as follows:

• To accelerate the convergence speed of the global FEL model, we propose an energy-

efficient loss model that the server can collect and estimate the local loss value from

each device.

• Considering the time limit of each communication round and the required data size

for FEL training, we propose an optimization problem to minimize the total energy

consumption of selected devices in the communication and computing processes, as

well as maximize the total loss values of selected devices.

• To achieve the optimization goal as well as reduce the calculation complexity in the

step of device selection, we reformulate the proposed optimization problem and propose

an FCE2DS solution that has a good performance with the FEL system.

• To eliminate the estimation error of time and energy consumption caused by the fluc-

tuation of the CPU-cycle frequency, we introduce a reinforcement learning method to

learn the frequency in each communication round, so as to approach the real frequency

and calculate the energy consumption more accurately.

• To evaluate the performance of our proposed FCE2DS scheme, a series of experiments

verify the high performance and high energy efficiency of the FCE2DS scheme, com-

pared with E2DS scheme and Traditional scheme.

The detail of model, solution and experiments are presented in Chapter 4 , and Chapter

 6 concludes the whole paper.

11

2. RELATED WORK

As the applications of FL at the edge become popular, numerous studies have been conducted

to improve FEL performance. The existing research on FEL optimization can be roughly

divided into two categories, server-oriented optimization and device-oriented optimization.

Many researchers worked on server-oriented optimization through resource allocation [1]–

[5], intermediate server assistance [6], [7] and device participation incentive [8]–[10]. Yang et

al. [1] optimized communication bandwidth allocation to accelerate global model aggrega-

tion via superposing wireless multiple-access channels. Abad et al. [2] targeted at reducing

communication delay by introducing mobile base stations for resource allocation. Further,

Ren et al. [3] studied the strategy design using deep reinforcement learning for allocating

communication and computing resources to reduce transmission cost during FEL. In addi-

tion, Chen et al. [4] designed a FL solution to increase model convergence speed by adjusting

spectrum allocation and computing resources. Zhang et al. [5] proposed a resource manage-

ment solution based on multi-agent learning to dynamically allocate spectrum and computing

resources. By introducing intermediate edge servers, an algorithm employing multiple edge

servers to aggregate models were proposed in [6] to speed up the convergence of FL, while

Ye et al. [7] proposed setting up intermediate edge servers for small-scale aggregation to

reduce both total communication and computing cost of mobile devices. Besides, through

incentive mechanism designs, researchers in [8] and [9] studied the criteria for measuring

the contribution of devices to global model updates and motivating devices to participate in

alliance learning. Hu et al. [10] proposed a device participation decision strategy based on

the correlated equilibrium to maximize both the individual and global profits.

As the server-oriented solutions, like resource allocation, will cause extra server load,

and the assistance of the intermediate server requires additional stations to be built, many

researchers have studied device-oriented optimization schemes in FEL, such as ML model

optimization [11]–[15], resource balance [16]–[18] and device selection [19]–[24]. Xu et al. [11]

studied training data preprocessing by introducing the CNN model into FEL to improve

learning performance. Yu et al. [12] considered reducing training rounds using the proactive

content caching algorithm to improve training efficiency. In addition, a model pruning

12

algorithm was proposed in [13] to adjust the model size and reduce training time for devices.

In [14], Li et al. proposed a communication compression solution to reduce the energy

consumption, while Sattler et al. also focused on communication compression, as well as

the robustness of the training model in [15]. Zeng et al. [16] investigated resource so as to

guarantee that all devices can submit local model updates using similar time cost to device

condition, where the weaker channel status and computing capability would be provided

with more bandwidth so as to guarantee that all devices can submit local model updates

using similar time cost. Not only considering bandwidth allocation, Taïk et al. proposed

scheduling algorithm based on data quality also considering the diversity of data size in

different devices to increase the convergence speed in [17]. Ye et al. [18] studied the effect

of bandwidth allocation algorithm with device selection on the improvement of convergence

speed and proved the optimality of the proposed algorithm. Based on device selection,

Wu et al. [19] adjusted the selection set of devices by comparing the efficiency of previous

local model training of devices, while Amiri et al. [20] considered the channel conditions of

devices and the importance of local model updates from each device. The time consumption

in local computing and communication was the criteria for device selection in [21], and

Zhang et al. [22] studied to reduce the impact of non-IID data on FEL performance through

device selection. Besides, Cho et al. [23], [24] investigated the relationship between the loss

value and convergence speed. By selecting the devices with higher local training loss values,

the convergence speed can be rapidly accelerated and the communication efficiency can be

improved.

However, due to the complex environment of edge devices and servers, the aforementioned

studies only consider single factors affecting FEL performance, i.e., time consumption or data

adversity. In addition, as an indispensable resource, energy consumption is rarely considered

in the existing studies, which will lower the cost-efficiency of FEL. To fill the gaps, we

first propose a comprehensive device selection scheme that takes into account the energy

and time consumption in both local calculation and communication process, as well as the

diversity of training data. Furthermore, since the convergence speed is also significant to

the performance of the FEL system, based on the first algorithm we come up with a more

comprehensive scheme that optimizes loss values of devices so as to increase the convergence

13

speed in a more direct way. Overall, through the device selection process before each round

of learning, the total energy consumed during the FEL process will be significantly reduced

with fast convergence.

14

3. ENERGY-EFFICIENT DEVICE SELECTION IN

FEDERATED EDGE LEARNING

3.1 SYSTEM MODEL

In this paper, we consider an FEL system, consisting of one edge server and multiple

devices that have been activated on the edge server. We denote the set of devices as K =

{1, 2, · · · , k, · · · , K}. Considering that numerous devices could exist, a subset of devices will

be selected to participate in each round of FEL for both time and communication efficiency.

For simplicity, we define a binary variable xk ∈ {0, 1} to indicate whether device k is selected

or not, where xk = 1 denotes that device k is chosen for local training in this FEL round

while xk = 0 means not being picked.

In this case, how to optimize the selection of devices based on the cost-efficiency criteria

becomes an essential step to improve the system performance. To that aim, we consider

selecting devices with a trade-off between resource consumption and learning performance

in this paper, where the selected devices can provide the required number of data samples for

model training and satisfy the time limitation of local training and updating while consuming

the minimum amount of total energy.

In this section, we model the optimal device selection problem via elaborating the overall

FEL working process with device selection considering resource consumption formulating an

optimization problem with constraints.

3.1.1 FEL PROCESS

We first define a waiting time limitation, denoted as T wait, for the server to collect local

model updates from selected devices in each round, which is usually a pre-defined constant

parameter for a certain FEL task. Then we present the FEL interaction process between the

edge server and candidate devices during each round in Figure 3.1 , involving six main steps

as described below.

1 Device Information Collection. To determine the best subset of devices satisfying

the basic time limitation T wait and other additional requirements, the server needs to

15

Device 1

Server

① ③ ④⑤

②

⑥

Device K

···

① Device information collection

② Device selection

③ Global model distribution

④ Local learning at devices

⑤ Local model uploading

⑥ Global model aggregation

Device 2

Device set

Device 3

Selected devices

Figure 3.1. The working process of an FEL round.

collect necessary information from devices, including both computation and communi-

cation related parameters, such as local data size, CPU computing power, CPU-cycle

frequency, bandwidth and transmission power.

2 Device Selection. After the server receives requested information from all devices or

reaches the maximum waiting time, the server will start to calculate the best selection

plan of appropriate devices for optimizing system performance, which turns out to be

the research focus of this work and will be solved in the next section.

3 Global Model Distribution. After the device selection step, the server sends the

parameters of the global model to all selected devices.

4 Local Learning at Devices. Once devices receive parameters from the server, they

will use their local data to train the local model.

5 Local Model Uploading. When the local model converges, each device sends the

parameter updates back to the server.

6 Global Model Aggregation. Even some of the devices may fail to submit local

updates within T wait due to networking condition, the server aggregates the received

results to derive the updated global model.

The above steps will be repeated for multiple rounds until the maximum number of FL

rounds or the required model performance is reached.

16

3.1.2 TIME CONSUMPTION MODEL

As we mentioned above, in order to achieve efficient FEL, the server needs to select a

subset of devices that can upload their locally learned model updates within T wait instead

of endless waiting. As we can see from Figure 4.1 , the main time consumption for devices in

each round of FEL is spent for steps 3 to 5 , which will be specifically calculated in this

subsection. It is worthy noting that since other steps, i.e., steps 1 , 2 , and 6 , are mainly

operated by the server with relatively powerful computing and communication capabilities,

which is clearly independent of devices, so we skip discussing the time consumption during

these steps.

Steps 3 - 5 describe the parameters updating process of devices. We denote the time

spent of device k in the step of global model distribution by T D
k and that in the step of local

model uploading by T U
k , which are generally determined by the value of model parameter

size divided by the transmission speed and can be respectively calculated as:

T D
k = Dp

V D
k

,

T U
k = Dp

V U
k

.

In the above equations, Dp is the size of model parameters; V D
k and V U

k are respec-

tively the transmission speeds of downloading and uploading that are closely related to the

condition of communication channels and can be defined as:

V D
k = BD

k log(1 + Pkh2
k

N0
), (3.1)

V U
k = BU

k log(1 + Pkh2
k

N0
). (3.2)

In (3.1) and (3.2), BD
k and BU

k are respectively the download and upload bandwidth of device

k, Pk and hk are respectively the transmission power and the channel gain of device k [21],

and N0 is the background noise. Specifically, BD
k , BU

k and N0 are constant parameters, while

17

Pk and hk are device information provided by each candidate device in the step of device

information collection.

We denote ck as the number of CPU cycles for each device k to complete training one

sample of data, which can be measured locally and reported to the server. And the total

number of CPU cycles needed for device k in each FEL round is ckDk with Dk denoting the

size of its local dataset. Given the CPU-cycle frequency of device k denoted by fk, the time

spent in the local learning step of device k, denoted by T LC
k , can be calculated as[25]:

T LC
k = ckDk

fk

.

Combining the time spent in each step, the total time consumption of device k in each

FEL round, denoted as Tk, can be calculated as:

Tk = T D
k + T LC

k + T U
k .

3.1.3 ENERGY CONSUMPTION MODEL

Similar to the time consumption model defined above, steps 3 to 5 consumes the energy

of any device mainly in each round of FEL, which will be calculated in this subsection. In

the rest of steps, the energy is mainly consumed for the server. Since it is not closely related

to devices, and the energy supply of the server is sufficient, we skip to discuss the energy

consumption during these steps.

Since the energy consumption during transmission is the product of transmission power

and transmission time, we can calculate the energy consumption of device k in the step of

global model distribution and local model uploading, denoted by ED
k and EU

k , respectively,

as follows:

ED
k = T D

k Pk,

EU
k = T U

k Pk.

18

In the step of local learning at devices, the energy consumed of device k, denoted as ELC
k , is

closely related to the data amount and CPU frequency, which is expressed as[26]:

ELC
k = αk

2 ckDkf 2
k .

In the above equation, αk is the effective capacitance coefficient of the computing chip-set

in device k.

Thus, the overall energy consumption for device k, denoted as Ek, in each FEL round

can be expressed as:

Ek = ED
k + ELC

k + EU
k . (3.3)

3.1.4 PROBLEM FORMULATION

Considering that edge devices are usually battery-powered with limited energy supply,

we aim to minimize the total energy consumption of all participated devices so as to avoid

unexpected device dropouts for improving the cost-efficiency of FEL. According to (4.9), the

total energy consumption of selected devices can be expressed as ∑K
k=1 Ekxk.

Besides, the number of participated devices is also an important parameter affecting the

overall performance of FEL. In a real federated learning scenario, the quality and quantity

of data from different devices can be highly diverse, and the data samples usually cannot

meet the assumptions of IID. If the data distribution is severely skewed (i.e, non-IID), the

accuracy of the training results will be severely reduced [27]. Thus, in the device selection

stage, it is significant to increase the number of devices for improving the diversity of training

data, so as to increase the accuracy of the finally trained model. Given xk denoting the state

indicator of each selected device, the number of devices can be calculated by ∑K
k=1 xk.

As we mentioned at the beginning of this section, there is a time limitation T wait for the

server to collect local model updates, which should be a common constraint for all devices.

In addition, the total amount of data for training affects the performance of FEL where

excessive or extremely few data will affect the convergence speed of the training process

and the model accuracy. Here we employ a parameter a to depict the ratio of the required

amount of data in FEL to the total amount of data Dall = ∑K
k=1 Dk.

19

To achieve the above goals, we formulate an optimization problem as follows:

min : η
K∑

k=1
Ekxk − θ

K∑
k=1

xk, (3.4)

s.t. : xk ∈ {0, 1}, (3.4 a)

Tk ≤ T wait, (3.4 b)
K∑

k=1
Dkxk ≥ a ·Dall. (3.4 c)

In the above formulation, the objective (3.4) is to minimize the difference between the

total energy consumption and the total number of selected devices, with η and θ for value

balancing. Constraint (3.4 a) ensures that the state indicator should only be 1 for being

selected, or 0 for not being selected. Constraint (3.4 b) states that the overall time consump-

tion of each selected device should be less than the maximum waiting time T wait set by the

server. And the last constraint (3.4 c) guarantees that the overall data amount of selected

devices has to be enough for training the model in each round.

3.2 ALGORITHM DESIGN FOR ENERGY-EFFICIENT DEVICE SELEC-
TION

In this section, we design a specific algorithm to solve the optimization problem defined

in (3.4), which consists of the problem reformulation in Section 3.2.1 and detailed algorithm

design in Section 3.2.2 .

3.2.1 PROBLEM REFORMULATION

From (3.4), we see that the optimization problem is to find the best subset of devices

that minimizes energy consumption and maximizes the number of selected devices, under

the constraints of time consumption and training data size. Solving the above optimization

problem is nontrivial as it requires a complex combinatorial optimization where the differ-

ence between the total energy consumption and the number of selected devices needs to be

20

minimized. An intuitive solution of this problem is to traverse all combinations of devices

and then compare them to obtain the optimal one. Since each device has two states of being

selected and not being selected, it costs the time complexity of O(2K) to traverse K devices

in total, which will undoubtedly cause a huge time consumption in each FEL round and

seriously affect the training efficiency. Therefore, we transform the problem defined in (3.4)

to an efficient maximization problem and propose a solution based on dynamic programming

with a lower time complexity.

For simplicity, we denote K1 as the set of selected devices and K0 as the set of unselected

devices, where K1 ∩ K0 = and K1 ∪ K0 = K. Obviously, the size of K1, denoted as K1, can

be calculated by:

K1 =
K∑

k=1
xk,

and the size of K0, denoted as K0, can be calculated by:

K0 =
K∑

k=1
(1− xk). (3.5)

Clearly, the state indicator of device k in K0 is xk = 0. Then, we can use yk to indicate the

state of device k which is not selected for joining FEL in this round, so we have yk = 1− xk.

In this case, (3.5) can be rewritten as:

K0 =
K∑

k=1
yk.

Next, we respectively denote the sum of energy consumption of devices in set K1 and

that in set K0 as E1 and E0. According to the definitions of two sets mentioned above, E1

and E0 are calculated as:

E1 =
K∑

k=1
Ekxk,

E0 =
K∑

k=1
Ek(1− xk) =

K∑
k=1

Ekyk.

21

Then the total energy consumption of all devices, denoted as Eall, is the sum of E1 and

E0, which is expressed as:

Eall = E1 + E0 =
K∑

k=1
Ekxk +

K∑
k=1

Ekyk. (3.6)

In the above equation, Eall is clearly a fixed value in each FEL round.

In addition, the total data amount Dall, which appears in one of the constraints in

optimization problem (3.4), can also be rewritten according to the above-defined two device

sets K1 and K0. Specifically, the data amounts of devices in K1 and K0 is respectively denoted

by D1 and D0, which are calculated as follows:

D1 =
K∑

k=1
Dkxk,

D0 =
K∑

k=1
Dkyk,

and the total amount of data Dall is the sum of D1 and D0, which is expressed as:

Dall =
K∑

k=1
Dkxk +

K∑
k=1

Dkyk. (3.7)

Since Dall is a fixed value that only related to the set of total devices K in each round,

the constraint (3.4 c) can be transferred to:

K∑
k=1

Dkyk ≤ (1− a) ·Dall. (3.8)

22

According to (3.6) and the transformed constraint (3.8), the optimization problem defined

in (3.4) can be rewritten into:

min : (ηEall − θK)− (η
K∑

k=1
Ekyk − θ

K∑
k=1

yk), (3.9)

s.t. : yk ∈ {0, 1}, (3.9 a)

Tk ≤ T wait, (3.9 b)
K∑

k=1
Dkyk ≤ (1− a) ·Dall. (3.9 c)

As mentioned above, ηEall and θK are fixed values for each FEL round. Since we aim

to minimize the difference between this fixed value ηEall − θK and η
∑K

k=1 Ekyk − θ
∑K

k=1 yk

in the optimization problem (3.9), it is equivalent to maximize (η ∑K
k=1 Ekyk − θ

∑K
k=1 yk).

Thus, problem (3.9) can be reformulated as:

max :
K∑

k=1
yk(ηEk − θ), (3.10)

s.t. : yk ∈ {0, 1}, (3.10 a)

Tk ≤ T wait, (3.10 b)
K∑

k=1
Dkyk ≤ (1− a) ·Dall. (3.10 c)

3.2.2 ALGORITHM DESIGN

In the above, we introduce two fixed values and use the complementary relationship

to transform the original minimization problem defined in (3.4) into a maximization prob-

lem defined in (3.9). To solve it, we propose an Energy-Efficient Device Selection (E2DS)

algorithm which is specified in Algorithm 1 .

Generally, we can see that the above maximization problem can be transferred to a 0-1

Knapsack problem. In the 0-1 Knapsack problem, there are a number of different items and

a knapsack with limited capacity. Each item has its own value and can be selected to be put

23

into the Knapsack or not, and the purpose is to find out which set of items being packed

into the knapsack can maximize the total value under the capacity limitation.

Similarly, in our problem defined in (3.9), there are K different devices that can be

selected or not for joining FEL, the capacity is the maximum remaining data size (1− a) ·Dall

with an extra constraint of time consumption. For the sake of convenience, we denote

Dcap = (1− a) ·Dall as the data size capacity of unselected devices, and vk = ηEk− θ as the

value of device k. Then we denote a sequence V = {v1, v2, · · · , vK} to contain the values of

all devices. The sequence of data size is denoted by D = {D1, D2, · · · , DK}.

Algorithm 1 E2DS
Input: the value set of devices V = {v1, v2, · · · , vK}, the size set of devices D =
{D1, D2, · · · , DK}, the number of devices K, the data size capacity of selected devices
Dcap

Output: the state indicators of all devices for K1 {x1, x2, · · · , xK}
1: {y1, y2, · · · , yK} ← UDD(V ,D, K, Dcap)
2: for i← 1 to K do
3: xi ← 1− yi
4: end for
5: return {x1, x2, · · · , xK}

As shown in Algorithm 1 , there are four input parameters: the value set V presents

the value of each device; the set of weight D presents the dataset size of each device; the

parameter K presents the number of devices in the edge; the parameter Dcap presents the

maximum data size. The set of state indicators of all devices {x1, x2, · · · , xK} describes

the result of device selection, where the state of device k with xk = 1 will be selected to

participate in FEL of this round. Specifically, we design a dynamic programming based

algorithm named Unselected Device Decision (UDD), which will be detailed in Algorithm

 2 , to calculate the set of unselected devices (Line 1). Then, by traversing devices from 1 to

K, all the indicators of devices will be converted (Lines 2 - 4) to meet our objective in (3.4).

In Algorithm 2 , a two-dimensional array DSA(K, Dcap) is defined to store the interme-

diate results of dynamic programming. After initializing the array DSA(K, Dcap) (Lines 1 -

 6), we complete the calculation of DSA(K, Dcap) (Lines 7 - 19). By traversing devices from

1 to K, and data size from 1 to Dcap, DSA(i, D) will be filled in with the calculated optimal

24

Algorithm 2 UDD
Input: the value set of devices V = {v1, v2, · · · , vK}, the size set of devices D =
{D1, D2, · · · , DK}, the number of devices K, the data size capacity of selected devices
Dcap

Output: the state indicators of all devices for K0 {y1, y2, · · · , yK}
1: for D ← 0 to Dcap do
2: DSA(0, D)← 0
3: end for
4: for i← 1 to K do
5: DSA(i, 0)← 0
6: end for
7: for i← 1 to K do
8: for D ← 1 to Dcap do
9: if Di ≤ D then

10: if vi + DSA(i− 1, D −Di) > DSA(i− 1, D) then
11: DSA(i, D)← vi + DSA(i− 1, D −Di)
12: else
13: DSA(i, D)← DSA(i− 1, D)
14: end if
15: else
16: DSA(i, D)← DSA(i− 1, D)
17: end if
18: end for
19: end for
20: for i← K to 1 do
21: if DSA(i, Dcap) > DSA(i− 1, Dcap) then
22: y[i]← 1
23: Dcap ← Dcap −D[i]
24: else
25: y[i]← 0
26: end if
27: end for
28: return {y1, y2, · · · , yK}

solution. After the traversal is completed, the value of DSA(K, Dcap) is the solution of the

entire optimization problem. Then, we update the value of state indicator of all devices

(Lines 20 - 27). Since the final result is already calculated, whether each device is selected or

not can be found by looking up the value of the two-dimensional array DSA in reverse. For

example, if DSA(i, D) = DSA(i− 1, D), it means choosing or not choosing device k leads

to the same optimization result, and then we can know that device k should not be selected

25

to form set K0, i.e., yk = 0 (Line 22). Otherwise, device k should be selected to form set

K0, i.e., yk = 1 (Line 25). Finally, after traversing all devices, set {y1, y2, · · · , yK} will be

returned to Algorithm 1 (Line 28).

Overall, after obtaining the optimal result in Algorithm 2 and converting it into indicators

in Algorithm 1 , we can assign all the values in {x1, x2, · · · , xK} as the states of each device,

where any device k with xk = 1 is the one the server would like to choose to participate in

this round of FEL.

Since there are many methods to prove the correctness of applying dynamic programming

to solve the 0-1 Knapsack problem [28], such as the proof by contradiction, optimization

problem (3.10) is also able to be well solved by Algorithm 1 . The time complexity of the

algorithm is O(KDcap), which is obviously less than that of solving it by a brute-force search

with the time cost of O(2K).

3.3 EXPERIMENTAL EVALUATION

To evaluate the effectiveness and efficiency of our proposed optimization scheme E2DS, we

simulate the environment of FEL and perform experimental verification. We also simulate the

traditional FL (TFL) process without device selection and the device selection scheme named

FedCS in [21]. All three schemes are implemented on a desktop with Intel(R) Core(TM)

i7-9750 CPU @2.60GHz and 16GB RAM running Windows 10 OS.

3.3.1 FEL ENVIRONMENT SIMULATION

We establish a simulated edge computing environment to employ the FEL training pro-

cess, with K = 100 to complete the local learning and a server for device selection as well

as model aggregation.

For the wireless communication simulation, a circular area with a radius of 50 meters

is used as the covered area of the edge server for the experiment, with the edge server

located at the center of the area. Devices are uniformly distributed with a range of 2 meters

to 50 meters from the center of the circle. The channel gain hk of device k follows the

exponential distribution with the equation g0(d0/d)4, where the reference distance d0 = 1

26

meter, and g0 = −40 dB [26]. We assume the download bandwidths of devices BD
k follow

the normal distribution with the mean and standard deviation being 5 MHz and 4 MHz, and

as a practical bandwidth limitation, the upload bandwidth of devices BU
k would be lower

than the download bandwidth, which follows the normal distribution with the mean and

standard deviation of 1 MHz and 0.1 MHz. In addition, we set the transmission power Pk

as a normal distribution where the mean is 0.6 W and the standard deviation is 0.2 W, and

the background noise N0 = 10−8 W. Furthermore, the data size of model parameters is set

as Dp = 25, 000 nats, which is approximately equal to 4.5 KB.

For the local learning step, the training size Dk of each device is set as a normal distri-

bution with the mean and standard deviation being 5 MB and 4 MB, effective capacitance

coefficient αk = 2 × 10−28, the number of CPU cycles ck is normally distributed with the

mean of 15 cycles/bits and the standard deviation of 10 cycles/bits, and the CPU-cycle fre-

quency fk follow a normal distribution with the mean of 0.5 GHz and the standard deviation

of 0.1 GHz.

3.3.2 MODEL TRAINING SETTINGS

To verify the accuracy and efficiency of model training in the FEL environment, we use

the MNIST dataset to complete the classification task in this subsection. By comparing the

convergence speeds and accuracy of training in different FEL schemes, we can analyze the

influence of device selection on FEL performance.

MNIST contains 70,000 handwritten digital images with 10 classes. In our experiments,

we set 60,000 of the images for training and 10,000 of those for testing. The dataset is

already preprocessed that every image in MNIST is gray-scale with 28×28 pixel, with the

handwritten numbers displayed in the center. It is closer to the actual situation as the

preprocessing process of the FEL can be completed in advance to speed up FEL.

We compare our proposed E2DS algorithm with the other two schemes, i.e., TFL and

FedCS [21]. Specifically, the first model randomly selects devices for training. FedCS uses

a greedy algorithm to select as many devices as possible at the beginning of each round of

training.

27

For all these schemes, all candidate devices are assigned with the number of Dk images for

local training. To simulate the FEL scenario with non-IID data distribution, we distribute

68.2% of data from the same class to each device, and randomly select 31.8% of data from

the remaining classes.

We build a convolutional neural network as the global model, consisting of three linear

convolution layers (the first with 32 channels, the second with 64 channels, the third with

128 channels, and each followed with 2×2 max pooling), each of which is activated by the

ReLU function, and a final Softmax output layer afterwards.

Then, we set the ratio of the necessary amount of data to the total amount of data

for each round of FEL as a = 0.75 unless otherwise specified, which means there are three-

quarters of the data used in each FEL round. In addition, the maximum waiting time in

each round T wait is set as 3 min, 5 min and 10 min. For the TFL scheme, as there is no

time limitation, we only set the same amount of data for training. For the FedCS scheme,

as there is no data amount limitation, we only set the same time limitation. While for our

proposed E2DS scheme, we set the weight of energy consumption as η = 3 and that of the

device number as θ = 1. Other sets of weight parameters are also examined, which return

similar changing trends, so we omit them to avoid redundancy.

3.3.3 EVALUATION RESULTS

In this subsection, we evaluate the time cost and communication cost of the E2DS algo-

rithm in Section 3.3.3.1 , which verifies the usability and effectiveness of our proposed scheme.

Then, Section 3.3.3.2 verifies that the E2DS algorithm performs better by evaluating the data

diversity and the energy consumption of the three schemes. Finally, in Section 3.3.3.3 we

evaluate the accuracy and the speed of convergence comparing in three schemes.

3.3.3.1 TIME AND COMMUNICATION COST

To test the efficiency of the device selection algorithm, Figure 3.2 shows the time con-

sumption and communication cost when selecting different numbers of devices. In Figure

 3.2 (a), the time consumption increases approximately linearly with the increased number of

28

200 400 600 800 1000

Number of devices

0.0

0.5

1.0

1.5

2.0

2.5

3.0

T
im

e
 c

o
s
t

(s
)

(a) Time cost

200 400 600 800 1000

Number of devices

500

1000

1500

2000

2500

3000

3500

C
o
m

m
u
n
ic

a
ti

o
n
 c

o
s
t

(b) Communication cost

Figure 3.2. The time and communication cost of E2DS.

devices. The growth trend is in line with the time complexity O(KDcap) of Algorithm 1 as

we mentioned earlier. Specifically, the time consumption is larger when a = 0.2 and smaller

when a = 0.8, due to the inversely-proportional relationship between the data capacity Dcap

and a as shown in Dcap = (1− a) ·Dall. In contrast, as Figure 3.2 (b) implies, there is a

positive correlation between the number of devices and the communication cost, because

more devices indicate more necessary information to be collected. At the same time, a and

the communication cost are also positively correlated since a higher a indicates more data

for training and hopefully more devices being selected, leading to more communication cost.

3.3.3.2 COMPARISON OF DEVICE SELECTION SCHEMES

To explore the efficiency of E2DS scheme, we study the performances including the num-

ber of devices, total data amount, total energy consumption and energy consumption per

device of E2DS scheme, TFL scheme and FedCS scheme with different time limitations T wait.

In a practical FEL environment, we assume that more devices mean that the model

has more diverse data. Therefore, if more devices participating in training, the model will

reach better performance. As shown in Figure 3.3 (a), the number of selected devices does not

change with T wait in TFL scheme. Since TFL scheme does not estimate the time consumption

of devices in each round of learning, but the total amount of data is limited to a ·Dall. In

contrast, E2DS scheme is restricted by T wait when selecting devices. When T wait = 3 min,

29

3 5 10

Time limitation (min)

0

20

40

60

80

100

N
u
m

b
e
r

o
f

d
e
v
ic

e
s TFL

FedCS

E2DS

(a) Number of devices

3 5 10

Time limitation (min)

0

100

200

300

400

500

T
o
ta

l
d
a
ta

 a
m

o
u
n
t

(M
B

)

TFL

FedCS

E2DS

(b) Total data amount

3 5 10

Time limitation (min)

0

500

1000

1500

2000

2500

3000

3500

T
o
ta

l
e
n
e
rg

y
 c

o
n
s
u
m

p
ti

o
n
 (

J)

TFL

FedCS

E2DS

(c) Total energy consumption

3 5 10

Time limitation (min)

0

5

10

15

20

25

30

35

A
v
e
ra

g
e
 e

n
e
rg

y
 c

o
n
s
u
m

p
ti

o
n

o
f

e
a
c
h
 d

e
v
ic

e
 (

J)

TFL

FedCS

E2DS

(d) Average energy consumption of
each device

Figure 3.3. The comparison results of the number of devices, total data
amount, total energy consumption and energy consumption per device in dif-
ferent schemes.

fewer devices can be selected; when T wait = 5 min and T wait = 10 min, the number of devices

selected by E2DS scheme exceeds that of TFL scheme. Besides, it is meaningless to compare

the number of devices selected with FedCS scheme, because it selects as many devices as

possible due to the greedy algorithm.

Regarding the total data amount shown in Figure 3.3 (b), according to the experimental

settings, the upper limit of the total data amount of the devices participating in E2DS scheme

is a ·Dall. When T wait = 3 min or T wait = 5 min, the choice of devices is mainly limited by

T wait. Compared with TFL scheme, in T wait = 3 min, though the total data amount in E2DS

scheme is less than that of TFL scheme, E2DS scheme selects more devices. Besides, since

T wait is the only restriction, the total data amount increases as T wait becomes larger in the

FedCS scheme.

30

As for the total energy consumption shown in Figure 3.3 (c), when T wait = 3 min and

T wait = 5 min, E2DS scheme consumes the least energy. In comparison, the energy consump-

tion of TFL scheme is 1.3-3.6 times that of E2DS scheme, while the energy consumption of

the FedCS scheme is 1.5-1.8 times that of E2DS scheme. In particular, when T wait = 10 min,

the energy consumptions of TFL scheme and E2DS scheme are less than 2000 J, while the

FedCS scheme consumes nearly 3500 J. This is because FedCS scheme lacks restriction on

device selection in the same task, and a load of useless energy consumption is generated.

For the average energy consumption of each device, which is the most intuitive aspect

to reflect the effectiveness of the scheme on energy consumption, Figure 3.3 (c) displays that

the average energy consumption of E2DS scheme is the lowest in all cases. Compared with

TFL scheme, the energy consumption reduced by 30%-50%, while there is also 20%-30%

reduction compared with FedCS scheme.

3.3.3.3 COMPARISON OF LEARNING RESULTS

2 4 6 8 10 12 14 16 18 20

Round

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

L
o
s
s

(a) T wait = 3 min

2 4 6 8 10 12 14 16 18 20

Round

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

L
o
s
s

(b) T wait = 5 min

2 4 6 8 10 12 14 16 18 20

Round

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

L
o
s
s

(c) T wait = 10 min

Figure 3.4. The convergence trends of the loss function over training data in
different schemes.

In this subsection, we compare the learning results of E2DS scheme, TFL scheme and

FedCS scheme by changing the value of the time limitation as well as the number of FEL

rounds. Table 3.1 implies the results of the accuracy of the three schemes after training.

All schemes can achieve an accuracy of over 85% after 20 rounds of training. Specifically,

FedCS and E2DS schemes can increase the accuracy to 94%. Especially for E2DS scheme, the

31

accuracy is higher than 85% after the fifth round of training, achieving a higher classification

accuracy than FedCS and TFL schemes.

Table 3.1. Comparison of learning results.

Method T wait Accuracy
Round=5 Round=10 Round=20

TFL - 0.69 0.75 0.85

FedCS
3 min 0.62 0.81 0.92
5 min 0.72 0.81 0.93
10 min 0.72 0.85 0.94

E2DS
3 min 0.68 0.88 0.93
5 min 0.77 0.88 0.94
10 min 0.73 0.89 0.94

Furthermore, in order to show the convergence difference of three schemes in the training

process, the convergence trends of loss function over training data are shown in Figure 3.4 .

It indicates that when T wait = 3 min, the convergence speed of TFL scheme is faster in

the first ten rounds, but the convergence trend becomes roughly the same as the number

of rounds grows. When T wait = 5 min and T wait = 10 min, the convergence trends of the

three schemes are almost the same. Referencing to Figure 3.3 (a), there are more devices

participating in TFL scheme when T wait = 3 min, which accelerates the convergence. When

T wait = 5 min and T wait = 10 min, the number of devices is no longer a bottleneck that

limits the convergence speed, then three schemes show the same convergence trends.

32

4. ENERGY-EFFICIENT DEVICE SELECTION WITH FAST

CONVERGENCE IN FEDERATED EDGE LEARNING USING

ONLINE BANDIT LEARNING

4.1 SYSTEM MODEL

In this paper, we consider a federated edge learning (FEL) system, where the edge is

the server to aggregate model and devices are activated on the server to train their own

private data. The set of devices on the edge is denoted by K = {1, 2, · · · , k, · · · , K}. In fact,

since there are a large number of devices on the edge, and the communication and comput-

ing capabilities of each device are different, devices selection in each communication round

becomes a feasible method in order to improve the efficiency of training and communication.

Under this premise, how to select the optimal set of devices based on cost-effectiveness

standards and training efficiency has become a necessary step to improve system perfor-

mance. For this reason, in this chapter we consider the trade-off between resource consump-

tion and convergence speed to select devices, where the required number of data samples can

be provided by selected devices for model training, and meet the local training and update

time constraint while consuming the minimum value of total energy and maximal value the

total loss.

In this chapter, Section 4.1.1 introduces the FEL system and process, Section 4.1.2 shows

the time and energy consumption models. Besides, we set the loss model in Section 4.1.3 .

Finally, the whole problem formulation is generated in Section 4.1.4 .

4.1.1 FEL PROCESS

Usually in an FEL task, the time limit that the edge server waits for devices to up-

load the model update is predefined as a constant parameter. In this article, we define

the time limit parameter as T wait. The FEL system for device selection includes six main

steps, which is shown in Figure 4.1 . Since in each communication round, the server needs to

choose optimal devices set for training, the server needs Device Information Collection

before devices selection. In this step, the edge server collects the necessary information of

33

all the devices logged in the edge, including the parameters that are related to the specific

task such as local data size and estimated loss value. In addition, parameters which are

related to communication and computing power will also be collected, such as CPU com-

puting power, transmission power and bandwidth. When the server receives the information

returned by all devices or reaches the maximum waiting time, the server calculates the best

choice of suitable devices to optimize system performance as Device Selection, which will

be discussed in detail in the next chapter. After that, the server sends the parameters of

the global model to all selected devices in the step of Global Model Distribution. Once

devices receive parameters, they will use their local data to train the local model in Local

Learning at Devices step. In Local Model Uploading step, when the local model is

trained in certain rounds, each device sends the parameter updates back to the server, as well

as the real time consumption in local learning. After that, the server aggregates the received

parameter results to derive the updated global model in step Global Model Aggregation.

At the same time, the server calculates the CPU-cycle frequency for each selected device in

this communication round, records it and then learns the probability distribution using com-

binatorial multi-armed bandit (CMAB) algorithm. After updating the CPU-cycle frequency

of each device and the global model, the server finishes this communication round of training

and starts the next round with the first step, i.e., Device Information Collection.

Local
learning at

devices
Local
model

uploading

Device
information
collection

 Device
selection

Local
learning at

devices

Global
model

aggregation

Device set

Edge server

···
Global
model

distribution

Figure 4.1. The working process of an FEL communication round.

34

4.1.2 TIME AND ENERGY CONSUMPTION MODELS

In order to ensure the efficient training of the FEL system, the server selects the set

of devices for training by limiting the maximum upload time of the devices T wait, which is

mentioned above. Moreover, due to the powerful computing and communication capabilities

of the server, the time and energy consumption in multiple steps can be skipped, such as

Device Selection and Global Model Aggregation. Several key steps are more closely

related to the devices themselves, which are worthy of analysis and optimization, such as

steps of Global Model Distribution, Local Learning at Devices, and Local Model

Uploading.

In the Global Model Distribution step, T D
k (t) is defined to represent the time spent of

device k in round t, while T U
k (t) represents the time spent in the Local Model Uploading

step. T D
k (t) and T U

k (t) are generally determined by the size of the model parameters divided

by the transmission speed, which can be calculated as:

T D
k (t) = Dp

V D
k (t) , (4.1)

T U
k (t) = Dp

V U
k (t) . (4.2)

In the above equation, Dp is the size of the model parameter, while V D(t) and V u(t) are

the downloading and uploading transmission speeds in round t that are closely related to the

condition of the communication channel. Specifically, V D(t) and V u(t) can be calculated as:

V D
k (t) = BD

k (t) log(1 + Pk(t)h2
k(t)

N0
), (4.3)

V U
k (t) = BU

k (t) log(1 + Pk(t)hk(t)2

N0
). (4.4)

In the above equations, BD
k (t) and BU

k (t) are respectively the download and upload

bandwidth of device k in round t, while Pk(t) and hk(t) are respectively the transmission

power and the channel gain [21], and N0 is the background noise.

35

Global Model Distribution, Local Learning at Devices, and Local Model Up-

loading

Then, we define the energy consumption of the device k in steps of Global Model

Distribution and Local Model Uploading in round t, denoted by ED
k (t) and EU

k (t), re-

spectively. As the energy consumption during transmission is the product of the transmission

power and the transmission time, ED
k (t) and EU

k (t) can be calculated as:

ED
k (t) = T D

k (t)Pk(t), (4.5)

EU
k (t) = T U

k (t)Pk(t). (4.6)

In order to calculate the time and energy consummation of devices during the local

computing process, we denote ck(t) as the number of CPU cycles for each device k to complete

training one sample of data in round t, which can be measured locally and reported to the

server. And the total number of CPU cycles needed for device k in round t is ck(t)Dk, while

Dk is defined as the size of its local dataset. Then, the CPU-cycle frequency of device k in

round t is denoted by fk(t). Based on these parameters, the time spent in the local learning

step of device k in round t, denoted by T LC
k (t), can be represented as [25]:

T LC
k (t) = ck(t)Dk

Fk(t) .

Since each device has different available CPU resources at different times, even during

local calculations the CPU-cycle frequency may vary greatly. Therefore, instead of selecting

devices based on the real-time frequency, we use the expected value fk(t) of the previous

t− 1 round as the CPU-cycle frequency of the device k in round t, which is shown as:

fk(t) = E[Fk(t)]. (4.7)

36

After considering the time consumption in the step of local learning at devices, the

energy consumption of device k in round t, denoted as ELC
k (t), is also closely related to the

data amount and CPU-cycle frequency. Here ELC
k (t) can be expressed as [26]:

ELC
k (t) = αk

2 ckDkFk(t)2,

where αk is the effective capacitance coefficient of the computing chip-set in device k.

Overall, by combining the time spent in each step, the total time and energy consumption

of device k in round t, separately denoted as Tk(t) and Ek(t), can be calculated as:

Tk(t) = T D
k (t) + T LC

k (t) + T U
k (t), (4.8)

Ek(t) = ED
k (t) + ELC

k (t) + EU
k (t). (4.9)

4.1.3 LOSS MODEL

To facilitate the selection of the marking devices, we define a binary variable xk(t) ∈ {0, 1}

to indicate whether device k is selected or not in round t, where xk(t) = 1 denotes that device

k is selected for local training in this FEL round while xk(t) = 0 means not being chosen.

In the environment of federated learning, the loss value of each device after local calcu-

lation can be used as a standard to reflect the training efficiency. If device k is selected in

round t, the loss value can be generated after the complete local computing process, which

is denoted by Gc
k(t). For devices that are not selected in the t round, the accurate loss value

cannot be obtained without complete training. In order to get an approximate loss value and

consume less energy, we define the the loss value Ge
k(t) of training a mini-batch to estimate

the loss value of the entire round of training, which is calculated as [23]:

Ge
k(t) =

∑
ξ∈ξ̂k(t)

f(k, w, ξ, t)
| ̂ξk(t)|

. (4.10)

37

In the above equation, ̂ξk(t) is the mini-batch which is sampled uniformly at random

from Dk in round t, and f(k, w, ξ, t) is the loss function of device k with parameter w and

sample ξ in round t. Base on these two way to efficiently and accurately collect loss values

from all devices, we denote Gk(t) as the loss value of device k in communication round t,

which is represented as:

Gk(t) =

Ge

k(t), xk(t) = 0,

Gc
k(t), xk(t) = 1.

(4.11)

4.1.4 PROBLEM FORMULATION

Given that edge devices are usually battery-powered and have limited energy supply,

our goal is to minimize the total energy consumption of all participating devices to avoid

accidental device disconnection, thereby improving the cost-effectiveness of FEL.

In addition, the loss value that the selected devices will get during the local computing

step is also an important parameter that affects the overall performance of the FEL system.

In a real federated learning scenario, biasing devices with higher local losses selection can

speed up the convergence. Therefore, in the selection phase, it is important to select the

devices with higher loss values for training, so as to improve the convergence speed of the

final training model.

To include the factors that mentioned above, we denote a reward function Rk(t) as the

difference between the energy consumption and the loss of device k in round t. The reward

function Rk(t) can be represented as:

Rk(t) = ηEk(t)−Gk(t), (4.12)

where η is used for value balance.

Furthermore, the amount of training data will affect the performance of FEL. Too much

or too little data will affect the convergence speed and model precision. Here we use the

parameter a to describe the ratio of the amount of data required in FEL to the total amount

of data Dall = ∑K
k=1 Dk. Except for the data, there is a time limit T W ait for the server to

38

collect local model updates, as defined above, which should be a common constraint for all

devices.

To achieve goals and meet the constraints that mentioned above, we formulate the fol-

lowing optimization question:

min : 1
T

T −1∑
t=0

E[
K∑

k=1
Rk(t)xk(t)], (4.13)

s.t. : xk(t) ∈ {0, 1}, (4.13 a)

Tk ≤ T wait, (4.13 b)
K∑

k=1
Dkxk(t) ≥ a ·Dall. (4.13 c)

In the above formulation, the goal (4.13) is to minimize the expected difference between

the total energy consumption and the total loss of the selected devices. Constraints (4.13 a)

ensure that the status indicator xk(t) should only be selected as 1, not being selected as 0.

The constraint (4.13 b) guarantees that the total time consumption of each selected device

should be less than the maximum waiting time T wait set by the server. The last constraint

(4.13 c) stipulates that the total data volume of the selected device must be sufficient to train

the model in each communication round.

4.2 ALGORITHM DESIGN FOR ENERGY-EFFICIENT DEVICE SELEC-
TION WITH FAST CONVERGENCE

In this section, we mainly introduce a reinforcement learning method to learn the CPU-

cycle frequency, and design an algorithm to solve the optimization problem (4.13) after

reformulation. Firstly we introduce the general idea of CMAB in Section 4.2.1 , then a

specific calculation is represented in Section 4.2.2 . After that, we reformulate the problem

in Section 4.2.3 , and design an algorithm in Section 4.2.4 .

39

4.2.1 GENERAL IDEA OF CMAB

Since the CPU of each device is consumed by multiple tasks at the same time, the

CPU-cycle frequency that can be used for the FL task is more or less lower than the rated

frequency in a practical situation. To obtain a stable and real frequency of the CPU-cycle

that can be used for training of each device, we introduce the CMAB method to learn the

CPU-cycle frequency for approaching the real situation.

Specifically, the edge server is regarded as a player, each device is treated as an arm, and

the action of device selection at the server at the beginning of every communication round is

treated as pulling arms. The reward Rk(t) of k can be considered as a reward in the CMAB

problem.

The goal of our problem is to minimize the difference in energy consumption and loss

values while satisfying the edge resource constraints. By obtaining the communication and

computing power of all devices at the Device Information Collection step, the server

can calculate and estimate the loss value, energy and time consumption as a reference for

devices selection in a communication round.

In practice, however, the CPU-cycle frequency that affects time and energy consumption

is unknown that only the rated value is obtained, not the frequency value dedicated to the

FL task. Therefore, after local training for each communication round, the server calculates

the true CPU-cycle frequency based on the information of time consumed by devices, and

then relearns and updates the frequency information for devices.

In this case, in order to learn the CPU-cycle frequency of each round more accurately,

we need to solve the trade-off problem of exploitation and exploration in the reinforcement

learning problem. In this model, “exploitation” refers to choosing the arm (device) with a

larger reward to participate in training; “exploration” refers to choosing a new arm (device)

to participate in training. After obtaining the trade-off reward value, we dynamically adjust

the device selection strategy under the constraints of time and data size to maximize the

sum of the trade-off reward value. Therefore, through the CMAB problem, we propose an

algorithm to solve the problem of device selection with unknown CPU-cycle frequency.

40

4.2.2 SPECIFIC CALCULATION

We can get the communication and calculation time by recording the time difference

between the server sending data to device k in the Global Model Distribution step and

receiving the result of device k in the Local Model Uploading step in round t, which is

denoted as T F inal
k (t). Then, same as Tk(t), based on (4.1), (4.2), (4.3), (4.4), (4.7), (4.8), the

real CPU-cycle frequency Fk(t) of device k in round t is calculated as:

Fk(t) = ck(t)Dk

T F inal
k (t)− Dp

BD
k

(t) log(1+
Pk(t)h2

k
(t)

N0
)
− Dp

BU
k

(t) log(1+ Pk(t)hk(t)2
N0

)

. (4.14)

According to (4.1) - (4.12), the problem (4.13) can be rewritten as:

1
T

T −1∑
t=0

E[
K∑

k=1
Rk(t)xk(t)] = 1

T

T −1∑
t=0

E[η
K∑

k=1
(Dp

BD
k (t) log(1 + Pk(t)h2

k
(t)

N0
)
Pk(t) + αk

2 ckDkFk(t)2

+ Dp

BU
k (t) log(1 + Pk(t)hk(t)2

N0

Pk(t))xk(t)−
K∑

k=1
Gkxk(t)].

(4.15)

In the above optimization goal, the other parameters included are fixed and accurate

except for the CPU-cycle frequency. According to (4.7), the equation (4.15) can be updated

as:

1
T

T −1∑
t=0

E[
K∑

k=1
Rk(t)xk(t)] = 1

T

T −1∑
t=0

E[η
K∑

k=1
(Dp

BD
k (t) log(1 + Pk(t)h2

k
(t)

N0
)
Pk(t) + αk

2 ckDkfk(t)2

+ Dp

BU
k (t) log(1 + Pk(t)hk(t)2

N0

Pk(t))xk(t)−
K∑

k=1
Gkxk(t)].

(4.16)

To minimize (4.16), it is required to learn the unknown CPU-cycle frequency of each

device, i.e., fk(t). To aim this, we denote nk(t) as the number of communication rounds that

41

the device k is selected to participate in training with this FL task in the first t communication

round. The calculation is defined as:

nk(t) =
t−1∑
τ=0

xk(τ). (4.17)

Then, in order to record a stable CPU-cycle frequency for each device, we maintain an

average value of the previous t of device k, which is defined as f̄k(t). According to the value

Fk(t) of the CPU-cycle frequency of the previous t rounds and the number of times that the

device k is selected in (4.17), we can calculate the average value f̄k(t) as:

f̄k(t) =
∑T −1

τ=0 Fk(τ)xk(t)
nk(t) . (4.18)

Therefore, after receiving the real CPU-cycle frequency Fk(t) in each communication

round, the server will update f̄k(t) and nk(t) for devices, regardless of whether it is selected

to participate in this round of training. Respectively, nk(t) and f̄k(t) can be updated by:

nk(t) =

nk(t− 1), xk(t) = 0,

nk(t− 1) + 1, xk(t) = 1,
(4.19)

f̄k(t) =

f̄k(t− 1), xk(t) = 0,

nk(t− 1)f̄k(t− 1) + Fk(t)
nk(t) , xk(t) = 1.

(4.20)

After updating the average CPU-cycle frequency of each device each time, we complete

the “exploitation” part of reinforcement learning. But in order to allow the devices which

are not selected to have more opportunities to update the data to approximate their true

value, which is the “exploration” part, we introduce the variable f̃k(t) as the estimated value

of the CPU-cycle frequency of device k in the t round. In this article, we use the Upper

Confidence Bound (UCB) [29] [30] algorithm to update f̃k(t), which is shown below:

f̃k(t) = f̄k(t) +
√

2 ln K

nk(t) . (4.21)

42

In the above equation, f̃k(t) is composed of two parts, respectively considering the “ex-

ploitation” part and the “exploration” part. Specifically, f̄k(t) represents that the more

times we choose a certain device, the narrower the confidence interval of the device return

estimate and the lower the uncertainty of the estimate, and those devices with a larger mean

tend to be selected multiple times. Meanwhile,
√

2 ln K
nk(t) refers to that the fewer the number

of attempts for a device, the wider the confidence interval and the higher the uncertainty,

which means the device with a wider confidence interval tends to be selected multiple times.

Therefore, the variable f̄k(t) represents the CPU-cycle frequency closest to the true value

of the device, and f̃k(t) gives suggestions for the next round of device selection, based on

the perspectives of giving chances to all devices to update their real information. By doing

so, the situation of selecting only the devices with better initial performance is avoided, and

the server also gives the opportunity for devices with poor initial performance to be selected

and update their information.

Base on this, we define S̃(T) as an average expected variable of our optimization problem

that considers the whole FEL task from the beginning to the T -th round, which can be

rewritten as:

S̃(T) = 1
T

T −1∑
t=0

E[η
K∑

k=1
(Dp

BD
k (t) log(1 + Pk(t)h2

k
(t)

N0
)
Pk(t) + αk

2 ckDkf̃k(t)2

+ Dp

BU
k (t) log(1 + Pk(t)hk(t)2

N0

Pk(t))xk(t)−
K∑

k=1
Gkxk(t)].

(4.22)

4.2.3 PROBLEM REFORMULATION

Now, we can rewrite the optimization problem as follows:

min : S̃(T), (4.23)

s.t. : (4.13 a)(4.13 b)(4.13 c).

43

It is clear that the optimization problem is the optimal subset of devices that minimizes

the total energy consumption and maximizes the total loss under the constraints of time

consumption and training data size. Since the above optimization problem requires complex

combinatorial optimization, the main task is to find a solution, to minimize the difference

between the energy consumption and loss value of the selected devices.

The intuitive solution to this problem is to traverse all device combinations and then

compare them to obtain the best device set. Since each device has two states, selected and

unselected, it will take O(2K) time complexity to traverse all K devices, which will not

only consume a huge amount of time in each communication round but also severely affect

training efficiency. Because of that, we transform the problem defined in (4.13) into an

effective maximization problem, and propose a solution with lower time complexity based

on dynamic programming.

Since in each communication round, the devices registered on the edge are known and

unchanged, the calculated energy consumption and loss values are fixed after the informa-

tion of all devices is collected. We found that for energy, the total energy consumption of

all devices in each round is fixed, and there are only two choices for devices in each com-

munication round (to be selected or not to be selected to participate in training). Based

on this, selecting a set of devices with lower energy consumption to participate in training

is equivalent to selecting a set of devices with higher energy consumption, and allowing the

rest of them to participate in training. As well as energy, after devices with lower loss values

are selected, the rest of devices set will have the highest loss values. Above on, we can see

that if a set of devices with higher sum of reward in round t can be selected and removed,

the rest of devices are the optimal device set that also solves our optimization problem.

We know the state indicator of device k in K is xk(t), which is equal to 1 when device k

is selected in round t. To better distinguish selected set and unselected set, we denote yk(t)

to indicate the state of device k which is not selected for participating in training in round

t, so we have yk = 1− xk. Then, to solve the reformulated optimization, we define S̃y(T) as

44

the average expected sum of reward that considers from the beginning to the T round of the

whole FEL task, which can be calculated as:

S̃y(T) = 1
T

T −1∑
t=0

E[η
K∑

k=1
(Dp

BD
k (t) log(1 + Pk(t)h2

k
(t)

N0
)
Pk(t) + αk

2 ckDkf̃k(t)2

+ Dp

BU
k (t) log(1 + Pk(t)hk(t)2

N0

Pk(t))yk(t)−
K∑

k=1
Gkyk(t)].

(4.24)

In this case, according to (4.24), the objective (4.23) can be rewritten as:

max : S̃y(T), (4.25)

s.t. : yk(t) ∈ {0, 1}, (4.25 a)

Tk ≤ T wait, (4.25 b)
K∑

k=1
Dkyk(t) ≤ (1− a) ·Dall, (4.25 c)

where the data size constraint (4.25 c) means the total data size of selected devices that will

not participate in training should be less than (1 − a) · Dall, instead, it guarantees enough

data size of the devices that will participate in training.

After transforming the optimization problem, we have a maximum problem with an upper

limit rather than a lower limit on the data size constraint. By doing so, we successfully

reformulate the optimization that can be solved using a dynamic programming method,

which is explained in detail in Section 4.2.4 .

4.2.4 ALGORITHM DESIGN

In the above, we find the fact that the sum of energy consumption of all devices that are

logged in the edge server in each communication round is fixed, as well as loss values. Based

on the complementary relationship of selected and unselected devices, we transform the orig-

inal minimization problem defined in (4.23) into a maximization problem defined in (4.25).

45

To solve it, we propose a Fast-Convergent Energy-Efficient Device Selection (FCE2DS) al-

gorithm and specify it in Algorithm 3 .

Based on the device selection solution of E2DS algorithm, the above maximization prob-

lem with an upper limit constraint can be transferred to a 0-1 Knapsack problem. Similarly,

we propose a DeviceSelection algorithm to solve this problem defined in (4.25). Specifically,

for every communication round t, there are K different devices that can be selected or not for

joining FEL, the capacity is the maximum remaining data size (1− a) ·Dall with an extra

constraint of time consumption. In addition, we denote Dcap = (1− a) ·Dall as the data size

capacity of unselected devices, and vk(t) = ηEk(t)−Gk(t) as the value of device k in round

t. Then a sequence V(t) = {v1(t), v2(t), · · · , vK(t)} is defined to contain the reward values

of all devices, while the sequence of data size is denoted by D = {D1, D2, · · · , DK}.

After device selection, the selected devices will participate in one communication round of

local computing to update the global model. Meanwhile, the real CPU-cycle frequency data

of each selected device can be calculated, so as to learn the expected CPU-cycle frequency

using the CMAB learning algorithm. The expected CPU-cycle frequency will continue to

improve the accuracy of energy consumption calculation, and then impact the device selection

in the next communication round.

As shown in Algorithm 3 , there are four input parameters: the number of current com-

munication round t; the size set of devices D = {D1, D2, · · · , DK}; the number of devices

K; the data size capacity of selected devices Dcap. To initiate other parameters (Line 1),

for every devices that logged in the edge server, the average CPU-cycle frequency of first

communication round f̄k(0) is set to 0 (Line 2). Then, since nk(t) will be used as a divisor

in the following equation, we set its initial value to 1 (Line 3). Then, in each communication

round, at the beginning we calculate the reward value of each device according to the re-

ward function (4.12) (Line 6), and next calculate the optimal device selection solution using

DeviceSelection algorithm (Line 7), which will be specifically demonstrated in Algorithm 4 .

After selection, the selected device will participate in the local training process and update

training results to server (Lines 8 - 9). Then, with the latest updated parameters, the number

of being selected nk(t), average frequency value f̄k(t), and estimated frequency value f̃k(t)

are learnt and updated according to equations (4.19) and (4.20) (Lines 10 - 14).

46

Algorithm 3 FCE2DS
Input: the number of current communication round t, the size set of devices D =
{D1, D2, · · · , DK}, the number of devices K, the data size capacity of selected devices
Dcap

1: for k ∈{1,2,…,K} do
2: f̄k(0) ←0
3: nk(0) ←1
4: end for
5: for communication round t = 1,2,… do
6: Calculate reward value set of devices in round t: V(t) = {v1(t), v2(t), · · · , vK(t)}
7: {x1, x2, · · · , xK} ←DeviceSelection(V ,D, K, Dcap)
8: for k ∈{1,2,…,K} and xk = 1 do

Local computing at Device according to xk and update Fk and Gk

9: end for
10: for k ∈{1,2,…,K} do

11: nk(t) =
{

nk(t− 1), xk(t) = 0
nk(t− 1) + 1, xk(t) = 1

12: f̄k(t) =

f̄k(t− 1), xk(t) = 0
nk(t− 1)f̄k(t− 1) + Fk(t)

nk(t) , xk(t) = 1

13: f̃k(t) = f̄k(t) +
√

2 ln K
nk(t)

14: end for
15: end for

In Algorithm 4 , the reward value set of all devices V is input to select devices with D,

K and Dcap. Firstly, similar to Algorithm 2 , a two-dimensional array DSA(K, Dcap) is used

to store and update intermediate results of dynamic programming (Lines 1 - 19). Then, the

output result of unselected devices are calculated according to DSA(K, Dcap) table (Lines

 20 - 27). Finally, by converting the indicator yk(t) of unselected devices to the indicator xk(t)

that device k will be selected in next round when xk(t) = 1 (Lines 28 - 31).

Overall, the computational overhead of our solution is mainly determined by the Device-

Selection part, so the time complexity of our FCE2DS algorithm is O(KDcap), where K is

the number of devices that logged in the edge server in the FEL task, and Dcap is the data

size capacity which is equal to (1− a) ·Dall.

47

Algorithm 4 DeviceSelection
Input: the value set of devices V = {v1, v2, · · · , vK}, the size set of devices D =
{D1, D2, · · · , DK}, the number of devices K, the data size capacity of selected devices
Dcap

Output: the state indicators of all devices for K1 {x1, x2, · · · , xK}
1: for D ← 0 to Dcap do
2: DSA(0, D)← 0
3: end for
4: for i← 1 to K do
5: DSA(i, 0)← 0
6: end for
7: for i← 1 to K do
8: for D ← 1 to Dcap do
9: if Di ≤ D then

10: if vi + DSA(i− 1, D −Di) > DSA(i− 1, D) then
11: DSA(i, D)← vi + DSA(i− 1, D −Di)
12: else
13: DSA(i, D)← DSA(i− 1, D)
14: end if
15: else
16: DSA(i, D)← DSA(i− 1, D)
17: end if
18: end for
19: end for
20: for i← K to 1 do
21: if DSA(i, Dcap) > DSA(i− 1, Dcap) then
22: y[i]← 1
23: Dcap ← Dcap −D[i]
24: else
25: y[i]← 0
26: end if
27: end for
28: for i← 1 to K do
29: xi ← 1− yi
30: end for
31: return {x1, x2, · · · , xK}

48

4.3 EXPERIMENTAL EVALUATION

4.3.1 FEL ENVIRONMENT SIMULATION

To evaluate the effectiveness and performance of the optimization scheme FCE2DS pro-

posed in this section, we establish a simulation environment of FEL and perform experimental

verification. We also simulate the traditional FL (TFL) process without device selection and

the energy-efficient device selection scheme E2DS proposed in [31]. All three schemes are

implemented on a desktop with Intel(R) Core(TM) i7-9750 CPU @2.60GHz and 16GB RAM

running Windows 10 OS.

In order to be able to make a reasonable and sufficient comparison, most of the parameter

settings used in the E2DS experiments are still applicable here. Specifically, for the wireless

communication simulation, a circular area with a radius of 50 meters is used as the covered

area of the edge server for the experiment, with the edge server located at the center of the

area. In the FEL task, there are 50 devices logged in the edge server, which are uniformly

distributed with a range of 2 meters to 50 meters from the center of the circle. The channel

gain hk of device k follows the exponential distribution with the equation g0(d0/d)4, where the

reference distance d0 = 1 meter, and g0 = −40 dB [26]. The download bandwidths of devices

BD
k is set to follow the normal distribution with the mean and standard deviation being 5

MHz and 4 MHz, and as a practical bandwidth limitation, the upload bandwidth of devices

BU
k would be lower than the download bandwidth, which follows the normal distribution

with the mean and standard deviation of 1 MHz and 0.1 MHz. The transmission power Pk

is set as a normal distribution where the mean is 0.6 W and the standard deviation is 0.2

W. For other fixed values, we assume the background noise N0 as 10−8 W, and the data size

of model parameters are set as Dp = 25, 000 nats, which is approximately equal to 4.5 KB.

For the local learning step, the training size Dk of each device is set as a normal dis-

tribution with the mean and standard deviation being 5 MB and 4 MB. To simulate the

FEL scenario with non-IID data distribution, we distribute 30% of data from the same class

to each device, and randomly select 70% of data from the remaining classes. We set the

effective capacitance coefficient αk = 2 × 10−28, the number of CPU cycles ck is normally

distributed with the mean of 15 cycles/bits and the standard deviation of 10 cycles/bits, and

49

both the real and estimated CPU-cycle frequency fk follow the rule of a normal distribution

with the mean of 0.5 GHz and the standard deviation of 0.1 GHz.

4.3.2 MODEL TRAINING SETTINGS

For the experiment of this FEL task, the dataset we use to train and test is MNIST

which includes 60,000 handwritten digital images for training and 10,000 for testing with 10

classes. We compare our proposed FCE2DS algorithm with the other two schemes, i.e., TFL

and E2DS [31]. In order to make the comparative experiment more convincing, we control the

constraints unchanged, which means that all three schemes satisfy the constraints (4.25 a),

(4.25 b) and (4.25 c). Specifically, TFL randomly selects devices until the sum of data size

reach (1− a) ·Dall for training. E2DS is based on the algorithm in [31], which refers to the

optimization of energy consumption and the number of devices under time constraints when

selecting devices. The third scheme shows the performance of FCE2DS algorithm proposed

in this paper.

We use the same convolutional neural network as the global model for all three schemes,

including three linear convolution layers. Specifically, the first layer contains 32 channels,

while the second one has 64 channels and the third one has 128 channels. All layers are

followed with 2×2 max pooling, which are activated by the ReLU function, and a final

Softmax output layer afterward.

Then, we set the ratio of the necessary amount of data to the total amount of data

for each round of FEL as a = 0.75 unless otherwise specified, which means there are three-

quarters of the data used in each FEL round. In addition, the maximum waiting time in

each round T wait is set as 10 min. For the E2DS scheme, we set the default parameter value

shown in [31], where the weight of energy consumption is set as 3 and that of the device

number as 1. In this paper, we set the weight of energy consumption as 0.1.

4.3.3 EVALUATION RESULTS

In this part, Section 4.3.3.1 verifies that the FCE2DS algorithm performs better by eval-

uating the loss trend, accuracy trend, number of devices and the energy consumption of

50

the three schemes. Then, we evaluate the learning performance and cost of the FCE2DS

algorithm in Section 4.3.3.2 , which verifies the usability and effectiveness of our proposed

scheme.

4.3.3.1 COMPARISON EXPERIMENTS

To explore the efficiency of FCE2DS scheme, we study the performances, including the

loss trend, the accuracy trend, the number of devices, and energy consumption per device,

of TFL scheme, E2DS scheme, and FCE2DS scheme.

(a) Loss trend (b) Accuracy trend

Figure 4.2. The comparison results of loss and accuracy trend in different schemes.

Firstly, we compare the loss and accuracy trends in different schemes, where the results

are shown in Figure 4.2 . Specifically, as shown in Figure 4.2a , all three schemes converged

after 50 communication round’s training, but the loss of FCE2DS is the smallest among

them. In the final round 50, the loss of FCE2DS reaches 0.274, while the losses of TFL and

E2DS are respectively 0.369 and 0.357, both larger than that of FCE2DS. Since the loss value

is the most obvious result to show the convergence speed, it is clear to see that FCE2DS

has a better performance in convergence. Then, in Figure 4.2b , we can see that after the

training of 50 communication rounds, all the three schemes reach a high training accuracy.

Separately, the accuracy of E2DS scheme is 96.47%, which is a little larger than the accuracy

of TFL (96.06%), while FCE2DS scheme gets the highest accuracy of 97.48%. Above all,

51

the FCE2DS scheme shows the best performance and wins the comparison of not only the

convergence speed but the accuracy.

0 10 20 30 40 50
Communication round

15
20
25
30
35

Nu
m

be
r o

f d
ev

ice
s TFL

E2DS
FCE2DS

(a) Number of devices

0 10 20 30 40 50
Communication round

10
20
30
40
50
60
70
80

Av
er

ag
e

en
er

gy
co

ns
um

pt
io

n
(J)

TFL
E2DS
FCE2DS

(b) Average energy consumption of each
device

Figure 4.3. The comparison results of energy and devices in different schemes.

Then, Figure 4.3 shows the comparison results of three schemes regarding number of

devices and average energy consumption of devices. As shown in Figure 4.3a , FCE2DS

scheme selects more devices (about 38 devices) in each communication round, compared

with E2DS scheme and TFL scheme (about 10-25 devices in each round). We know that in a

practical FEL environment, more devices mean that the model has more diverse data, which

is better for the model to have a fast convergence performance. The results that FCE2DS

scheme selects more devices confirm that it can get the lowest loss value (shown in Figure

 4.2a). To explain an unusual number of selected devices in the FCE2DS scheme, only 19

devices are selected to participate in the first communication round, that is because the

FCE2DS scheme will randomly choose devices in initialization to take part in the beginning

training. For the energy consumption, Figure 4.3b shows the average energy consumption of

each device in different schemes. Since the number of selected devices is different with all the

three schemes, it is more appropriate to compare the average energy consumption per device

instead of the total energy consumption. We can see that the average energy consumption

of both FCE2DS scheme and E2DS scheme are around 15-25 J per device, which is much

less than the average energy consumption of TFL (about 40-70 J). By comparing FCE2DS

scheme and E2DS scheme, in most of the communication round, the energy in FCE2DS

52

scheme consumes less and is more stable. In conclusion, FCE2DS scheme has a better

performance on energy consumption optimization.

4.3.3.2 LEARNING PERFORMANCE AND COST

0 10 20 30 40 50
Communication round

0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5

Tr
ai

ni
ng

 lo
ss

a=0.75
a=0.50
a=0.25

(a) Training Loss

0 10 20 30 40 50
Communication round

20

40

60

80

100

Tr
ai

ni
ng

 a
cc

ur
ac

y

a=0.75
a=0.50
a=0.25

(b) Training Accuracy

Figure 4.4. Training loss and accuracy trend with different a.

To explore the optimal parameters for training, we change the data size rate a to

0.25/0.5/0.75, and see how the proposed FCE2DS algorithm performs, which is shown in

Figure 4.4 . Specifically, Figure 4.4a shows the difference of training loss value in each com-

munication round. From the figure we can see that the FEL system has the fastest conver-

gence speed when a = 0.75. Similarly, the FEL system gets the highest training accuracy

when a = 0.75. Therefore, 75% of the data size rate to select devices is optimal for this FEL

task to reach a high accuracy and fast convergence speed.

The performance of learning CPU-cycle frequency is shown in Figure 4.5 . For each

communication round, each device can measure the CPU-cycle frequency and send the value

to the server, while other current FEL systems (e.g., the proposed system in [31]) will use the

received frequency to calculate and select devices. In order to facilitate the comparison of the

accuracy of different types of CPU-cycle frequency, we denote the received frequency here as

F r
k . In this paper we learn the frequency f̄k to approach the real CPU-cycle frequency Fk.

As shown in Figure 4.5a , we randomly demonstrate a device’s CPU-cycle frequency trend.

It is obvious that f̄k fluctuates greatly in the first few communication rounds, and becomes

53

0 10 20 30 40 50
Communication round

0.0

0.2

0.4

0.6

0.8

1.0

CP
U-

cy
cle

 fr
eq

ue
nc

y

Fk

Fr
k

Fk

(a) CPU-cycle frequency trend

0 10 20 30 40 50
Communication round

0.0

0.1

0.2

0.3

0.4

0.5

Di
ffe

re
nc

e
of

CP
U-

cy
cle

 fr
eq

ue
nc

y

|Fk Fk|
|Fk Fr

k|

(b) Difference of CPU-cycle frequency

Figure 4.5. CPU-cycle frequency trend.

more and more stable and close to Fk as the number of rounds increases, compared with

F r
k . To show if the proposed system is closer to Fk, we calculate the absolute difference

with Fk of both f̄k and F r
k , which is demonstrated in Figure 4.5b . We can see the blue line

(difference between Fk and f̄k) has smaller fluctuation and is closer to 0 compared with the

54

red line (difference between Fk and F r
k), which means that our system can approach the real

CPU-cycle frequency by online bandit learning.

Table 4.1. Comparison of learning results with different time limits.

T wait Communication Round t
t = 10 t = 30 t = 50

Accuracy

5 min 89.49% 96.14% 96.81%
7.5 min 94.61% 96.99% 97.60%
10 min 92.12% 96.71% 97.48%
15 min 90.85% 94.37% 96.00%

Loss

5 min 0.88 0.41 0.35
7.5 min 0.67 0.36 0.28
10 min 0.76 0.35 0.27
15 min 1.25 0.58 0.41

Then, by changing T wait to 5 minutes, 7.5 minutes, 10 minutes and 15 minutes, we study

how the time limit influences the performance and energy consumption of the FEL system.

The comparison results of learning results with different time limits are shown in Table 4.1 ,

including accuracy and loss at different communication rounds. Besides, the comparison

results of energy and devices in different time limits are shown in Figure 4.6 .

With a detailed analysis, in Table 4.1 , the accuracy and loss values of different time limits

are listed separately at different communication rounds. For the accuracy results, we can

see that the FEL system could reach the highest accuracy and the lowest convergence speed

when T wait = 7.5 min through the whole task. In addition, in Figure 4.6a , it is clear that

when T wait = 7.5 min, there are more devices selected to take part in local training than the

number of selected devices when T wait = 5 min, which means the data amount used to train

the model is greater as well. By combining Table 4.1 and Figure 4.6a to analyze together,

the limit of training data is the reason of the FEL system not reaching the best performance

when T wait = 5 min.

Then, for the experiments with longer T wait (i.e., 10 min and 15 min), as the results shown

in Table 4.1 , the FEL system does not perform as well as that of T wait = 7.5 min. Until the

50-th round, the accuracy and convergence speed are still very slow, which means it needs

more communication rounds to train the model and it is more difficult to have a good training

55

0 10 20 30 40 50
Communication round

0
5

10
15
20
25
30
35
40

Nu
m

be
r o

f d
ev

ice
s

Twait = 5 min
Twait = 7.5 min
Twait = 10 min
Twait = 15 min

(a) Number of devices

0 10 20 30 40 50
Communication round

10
15
20
25
30
35
40

Av
er

ag
e

en
er

gy
co

ns
um

pt
io

n
(J)

Twait = 5 min
Twait = 7.5 min
Twait = 10 min
Twait = 15 min

(b) Average energy consumption of each device

Figure 4.6. The comparison results of energy consumption and devices with
varying time limit.

result. This is because in an edge environment, the more required communication rounds,

the more difficult to maintain the stability and durability of the edge device. Moreover, in

Figure 4.6b , the FEL system is more energy-efficient when T wait = 5 min and 7.5 min, as the

average energy consumption of selected devices is lower, compared with that of T wait = 10

min and 15 min. Above all, T wait = 7.5 min is the most suitable time limit for this FEL

task.

56

5. DISCUSSION

In this paper, we design algorithms E2DS and FCE2DS to solve the optimization problem

of energy and convergence speed, and then conduct a series of experiments to find the best

time limit to attain the optimal performance of the proposed algorithms. In the experiments,

we find that if the time limit is too small, only a small number of devices can be selected

to participate in the training, which affects the convergence speed. If an excessively large

time limit is set, the time for each communication round will be extended, so the total time

required to complete the task will increase a lot. Therefore, setting a suitable time limit is

extremely important, too large or too small will seriously affect the performance of the FEL

system.

For the FEL task in experiments, by changing the time limit of the communication round

and experimenting multiple times, we manage to find the most suitable value for this task.

However, different FEL tasks and environments contain a variety of devices with different

datasets, communication and computing capabilities. The same parameter settings cannot

make all tasks get the best performance, especially the time limit of each communication

round. It will definitely consume a lot of energy and time if we experiment multiple times

to find the most suitable time limit for every FEL task. Therefore, in a real situation, if

the value of the time limit can be dynamically adjusted according to the performance of the

devices participating in the task, the efficiency of the FEL task can be improved, which is

one of the current limitations of the experiment design.

Besides, in real situations, some devices participating in the FEL task may be charged

by a power source while training. Since such devices will not use built-in battery power to

complete the training process, the energy consumption should be ignored, which will affect

devices being selected or not by the edge server. This paper designs and solves the problem

on the system mechanism, but does not take the power supply status of the device as one of

the factors to select devices.

57

6. CONCLUSION

In this paper, we study the process of FEL in detail and consider the device selection problem

under the constraints of time and training data size of participated devices in each round.

Firstly, in order to optimize both the energy consumption and the data diversity, we

formulate the problem to minimize the energy consumption and maximize the number of

selected devices. Then, due to the exponential time complexity of directly solving the op-

timization problem, we reformulate it to devise an efficient solution for achieving greatly

reduced time complexity, called E2DS. Extensive experiments based on simulation and a

real-world dataset demonstrate the effectiveness and better performance of our proposed

scheme than the other two classical FEL schemes.

Next, because of the volatility of the CPU-cycle frequency, we used CMAB to learn the

frequency of each device to calculate the energy consumption of the device more accurately.

Moreover, since the convergence speed is also important to an FEL system, we formulate

the problem considering minimizing the energy consumption as well as increasing the con-

vergence speed. To solve this more comprehensive problem, after reformulation we design

an algorithm, named FCE2DS, to solve it while still keeping a low complexity. Finally, we

validate the superiority of our proposed device selection mechanism for FEL.

58

REFERENCES

[1] K. Yang, T. Jiang, Y. Shi, and Z. Ding, “Federated learning via over-the-air computa-
tion,” IEEE Transactions on Wireless Communications, vol. 19, no. 3, pp. 2022–2035,
2020.

[2] M. S. H. Abad, E. Ozfatura, D. Gunduz, and O. Ercetin, “Hierarchical federated
learning across heterogeneous cellular networks,” in ICASSP 2020-2020 IEEE Inter-
national Conference on Acoustics, Speech and Signal Processing (ICASSP), IEEE,
2020, pp. 8866–8870.

[3] J. Ren, H. Wang, T. Hou, S. Zheng, and C. Tang, “Federated learning-based compu-
tation offloading optimization in edge computing-supported internet of things,” IEEE
Access, vol. 7, pp. 69 194–69 201, 2019.

[4] M. Chen, N. Shlezinger, H. V. Poor, Y. C. Eldar, and S. Cui, “Joint resource man-
agement and model compression for wireless federated learning,” in ICC 2021-IEEE
International Conference on Communications, IEEE, 2021, pp. 1–6.

[5] W. Zhang, D. Yang, W. Wu, H. Peng, N. Zhang, H. Zhang, and X. Shen, “Optimiz-
ing federated learning in distributed industrial iot: A multi-agent approach,” IEEE
Journal on Selected Areas in Communications, 2021.

[6] L. Liu, J. Zhang, S. Song, and K. B. Letaief, “Client-edge-cloud hierarchical feder-
ated learning,” in ICC 2020-2020 IEEE International Conference on Communications
(ICC), IEEE, 2020, pp. 1–6.

[7] Y. Ye, S. Li, F. Liu, Y. Tang, and W. Hu, “Edgefed: Optimized federated learning
based on edge computing,” IEEE Access, vol. 8, pp. 209 191–209 198, 2020.

[8] L. U. Khan, S. R. Pandey, N. H. Tran, W. Saad, Z. Han, M. N. Nguyen, and C. S.
Hong, “Federated learning for edge networks: Resource optimization and incentive
mechanism,” IEEE Communications Magazine, vol. 58, no. 10, pp. 88–93, 2020.

[9] J. Kang, Z. Xiong, D. Niyato, S. Xie, and J. Zhang, “Incentive mechanism for reli-
able federated learning: A joint optimization approach to combining reputation and
contract theory,” IEEE Internet of Things Journal, vol. 6, no. 6, pp. 10 700–10 714,
2019.

[10] Q. Hu, F. Li, X. Zou, and Y. Xiao, “Correlated participation decision making for
federated edge learning,” in GLOBECOM 2020-2020 IEEE Global Communications
Conference, IEEE, 2020, pp. 1–6.

59

[11] Z. Xu, Z. Yang, J. Xiong, J. Yang, and X. Chen, “Elfish: Resource-aware federated
learning on heterogeneous edge devices,” arXiv preprint arXiv:1912.01684, 2019.

[12] Z. Yu, J. Hu, G. Min, H. Lu, Z. Zhao, H. Wang, and N. Georgalas, “Federated learning
based proactive content caching in edge computing,” in 2018 IEEE Global Commu-
nications Conference (GLOBECOM), IEEE, 2018, pp. 1–6.

[13] Y. Jiang, S. Wang, B. J. Ko, W.-H. Lee, and L. Tassiulas, “Model pruning enables
efficient federated learning on edge devices,” arXiv preprint arXiv:1909.12326, 2019.

[14] L. Li, D. Shi, R. Hou, H. Li, M. Pan, and Z. Han, “To talk or to work: Flexible commu-
nication compression for energy efficient federated learning over heterogeneous mobile
edge devices,” in IEEE INFOCOM 2021-IEEE Conference on Computer Communi-
cations, IEEE, 2021, pp. 1–10.

[15] F. Sattler, S. Wiedemann, K.-R. Müller, and W. Samek, “Robust and communication-
efficient federated learning from non-iid data,” IEEE transactions on neural networks
and learning systems, vol. 31, no. 9, pp. 3400–3413, 2019.

[16] Q. Zeng, Y. Du, K. Huang, and K. K. Leung, “Energy-efficient radio resource allo-
cation for federated edge learning,” in 2020 IEEE International Conference on Com-
munications Workshops (ICC Workshops), IEEE, 2020, pp. 1–6.

[17] A. Taik, Z. Mlika, and S. Cherkaoui, “Data-aware device scheduling for federated
edge learning,” arXiv preprint arXiv:2102.09491, 2021.

[18] D. Ye, S. Chen, and C. Wang, “Fast convergence for federated learning in ofdma
systems,” in 2021 IEEE 32nd Annual International Symposium on Personal, Indoor
and Mobile Radio Communications (PIMRC), IEEE, 2021, pp. 1–6.

[19] W. Wu, L. He, W. Lin, and R. Mao, “Accelerating federated learning over reliability-
agnostic clients in mobile edge computing systems,” IEEE Transactions on Parallel
and Distributed Systems, 2020.

[20] M. M. Amiri, D. Gündüz, S. R. Kulkarni, and H. V. Poor, “Update aware device
scheduling for federated learning at the wireless edge,” in 2020 IEEE International
Symposium on Information Theory (ISIT), IEEE, 2020, pp. 2598–2603.

[21] T. Nishio and R. Yonetani, “Client selection for federated learning with heteroge-
neous resources in mobile edge,” in ICC 2019-2019 IEEE International Conference
on Communications (ICC), IEEE, 2019, pp. 1–7.

60

[22] W. Zhang, X. Wang, P. Zhou, W. Wu, and X. Zhang, “Client selection for federated
learning with non-iid data in mobile edge computing,” IEEE Access, vol. 9, pp. 24 462–
24 474, 2021.

[23] Y. J. Cho, J. Wang, and G. Joshi, “Client selection in federated learning: Convergence
analysis and power-of-choice selection strategies,” arXiv preprint arXiv:2010.01243,
2020.

[24] Y. J. Cho, S. Gupta, G. Joshi, and O. Yağan, “Bandit-based communication-efficient
client selection strategies for federated learning,” in 2020 54th Asilomar Conference
on Signals, Systems, and Computers, IEEE, 2020, pp. 1066–1069.

[25] T. D. Burd and R. W. Brodersen, “Processor design for portable systems,” Journal of
VLSI signal processing systems for signal, image and video technology, vol. 13, no. 2,
pp. 203–221, 1996.

[26] N. H. Tran, W. Bao, A. Zomaya, N. M. NH, and C. S. Hong, “Federated learning over
wireless networks: Optimization model design and analysis,” in IEEE INFOCOM
2019-IEEE Conference on Computer Communications, IEEE, 2019, pp. 1387–1395.

[27] N. Mhaisen, A. Awad, A. Mohamed, A. Erbad, and M. Guizani, “Analysis and optimal
edge assignment for hierarchical federated learning on non-iid data,” arXiv preprint
arXiv:2012.05622, 2020.

[28] P. Gilmore and R. E. Gomory, “The theory and computation of knapsack functions,”
Operations Research, vol. 14, no. 6, pp. 1045–1074, 1966.

[29] P. Auer, N. Cesa-Bianchi, and P. Fischer, “Finite-time analysis of the multiarmed
bandit problem,” Machine learning, vol. 47, no. 2, pp. 235–256, 2002.

[30] A. Sengupta, S. Amuru, R. Tandon, R. M. Buehrer, and T. C. Clancy, “Learning
distributed caching strategies in small cell networks,” in 2014 11th International Sym-
posium on Wireless Communications Systems (ISWCS), IEEE, 2014, pp. 917–921.

[31] C. Peng, Q. Hu, J. Chen, K. Kang, F. Li, and X. Zou, “Energy-efficient device se-
lection in federated edge learning,” in 2021 International Conference on Computer
Communications and Networks (ICCCN), IEEE, 2021, pp. 1–9.

61

	TITLE PAGE
	COMMITTEE APPROVAL
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	ABSTRACT
	INTRODUCTION
	RELATED WORK
	ENERGY-EFFICIENT DEVICE SELECTION IN FEDERATED EDGE LEARNING
	SYSTEM MODEL
	FEL PROCESS
	TIME CONSUMPTION MODEL
	ENERGY CONSUMPTION MODEL
	PROBLEM FORMULATION

	ALGORITHM DESIGN FOR ENERGY-EFFICIENT DEVICE SELECTION
	PROBLEM REFORMULATION
	ALGORITHM DESIGN

	EXPERIMENTAL EVALUATION
	FEL ENVIRONMENT SIMULATION
	MODEL TRAINING SETTINGS
	EVALUATION RESULTS
	TIME AND COMMUNICATION COST
	COMPARISON OF DEVICE SELECTION SCHEMES
	COMPARISON OF LEARNING RESULTS

	ENERGY-EFFICIENT DEVICE SELECTION WITH FAST CONVERGENCE IN FEDERATED EDGE LEARNING USING ONLINE BANDIT LEARNING
	SYSTEM MODEL
	FEL PROCESS
	TIME AND ENERGY CONSUMPTION MODELS
	LOSS MODEL
	PROBLEM FORMULATION

	ALGORITHM DESIGN FOR ENERGY-EFFICIENT DEVICE SELECTION WITH FAST CONVERGENCE
	GENERAL IDEA OF CMAB
	SPECIFIC CALCULATION
	PROBLEM REFORMULATION
	ALGORITHM DESIGN

	EXPERIMENTAL EVALUATION
	FEL ENVIRONMENT SIMULATION
	MODEL TRAINING SETTINGS
	EVALUATION RESULTS
	COMPARISON EXPERIMENTS
	LEARNING PERFORMANCE AND COST

	DISCUSSION
	CONCLUSION
	REFERENCES

