
AUTOMATIC GRAIN UNLOADING FOR CROP HARVEST
MACHINE

by

Ziping Liu

A Dissertation

Submitted to the Faculty of Purdue University

In Partial Fulfillment of the Requirements for the degree of

Doctor of Philosophy

School of Mechanical Engineering

West Lafayette, Indiana

December 2021



THE PURDUE UNIVERSITY GRADUATE SCHOOL
STATEMENT OF COMMITTEE APPROVAL

Dr. Gregory M. Shaver, Co-chair

School of Mechanical Engineering

Dr. John T. Evans IV, Co-chair

School of Agricultural & Biological Engineering

Dr. Andrea Vacca

School of Mechanical Engineering

Dr. Daniel A. DeLaurentis

School of Aeronautics and Astronautics

Dr. John H. Lumkes

School of Agricultural & Biological Engineering

Approved by:

Dr. Nicole L. Key

2



ACKNOWLEDGMENTS

First and foremost, I am extremely grateful to my advisors, Professor Gregory Shaver,

and Professor John Evans. They provide me with valuable advice for both academics and

life, continuous support and warm encouragement. I truly appreciate them allowing me

to work on different roles in an interesting project. I learned so much from them which

I could have never imagined before I joined the group. I am also thankful to Professor

Daniel Delaurentis, Professor John Lumkes, and Professor Andrea Vacca, who serve on my

dissertation committee and gave me brilliant feedback.

The work in this thesis was sponsored by John Deere. I would like to thank my contact

at Deere for supporting the research, especially Corwin Puryk, Mark Sahlin, Ryan White,

Mark Chaney, Brian Gilmore, Brandon MacDonald, Adam Royal, Bradley Yanke, Stephen

Corban, Eric Anderson, Emily Horn, Randy Sergesketter, and Craig Amann.

I am so fortunate to work with many amazing people at the Herrick Labs, including Dr.

Cody Allen, who is an extraordinary team leader guiding me and teaching me from my very

first day in the group; Shveta Dhamankar, a diligent engineer, and always dependable friend;

Dr. Xu Zhang, who is not only a brilliant researcher but also a great friend to enjoy the

afternoon break with; Weijin Qiu, who can always share his innovative ideas and stimulate

delightful conversation. Although I did not work in the test cell, but I did have great

fun when chatting with the engine gurus in our group: Mrunal Joshi, Chisom Emegoakor,

Shubham Agnihotri, Vrushali Deshmukh, Devarshi Patel, Adil Shaikh, and Doni Thomas.

Additionally, I truly enjoyed my learning experiences with Mile Droege, Harsha Rayasam,

Brady Black, Ifeoluwa Ibitayo, John Foster, Shubham Ashta, Tyler Swedes, Michael Anthony,

Yunpeng Xu, Aishwarya Ponkshe, Zar Ahmad, Evan Parshall, and Raghav Kakani.

Besides my advisors and labmates, this thesis would not have been possible without

the wonderful colleagues at Purdue who participate in the research project. I would like

to express my sincere gratitude to Professor Tony Vyn, Rachel Stevens, Aaron Etienne,

Logan Heusinger, Jim Beaty, Gautham Vinod, Varun Sudarsanan, Eric Kong, and Cesare

Guariniello.

3



Lastly, and most importantly, I am deeply grateful to my family. My mom Kui and

my dad Yueming are always backing me up, providing me with unconditional love and

unparalleled support. I am forever indebted to them for giving me the experiences that had

made me who I am. I am so thankful that I could meet, get to know, and marry my Wife

Chufan at Purdue. Thank you for sharing my happiness and sorrow. Thank you for being

my muse, my teammate, and most of all, my best friend. Thank you for always being by my

side.

Thank you!

4



TABLE OF CONTENTS

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  8 

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  9 

ABBREVIATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  16 

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  18 

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  21 

2 GRAIN UNLOADING AUTOMATION STRATEGY . . . . . . . . . . . . . . . .  28 

2.1 System architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  28 

2.2 Assumptions and uncertainties . . . . . . . . . . . . . . . . . . . . . . . . .  34 

3 AUTOMATIC UNLOADING SIMULATION TOOLS DEVELOPMENT . . . . .  37 

3.1 Grain fill model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  37 

3.1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  37 

3.1.2 Principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  39 

3.1.3 Simulation results . . . . . . . . . . . . . . . . . . . . . . . . . . . .  45 

3.1.4 Benchmark system development . . . . . . . . . . . . . . . . . . . . .  47 

Grain fill model benchmark system . . . . . . . . . . . . . . . . . . .  47 

Benchmark experiment design and implementation . . . . . . . . . .  48 

Benchmark data processing . . . . . . . . . . . . . . . . . . . . . . .  49 

3.1.5 Experimental validation . . . . . . . . . . . . . . . . . . . . . . . . .  52 

3.1.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  56 

3.2 Vehicle dynamics model . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  57 

3.2.1 System ID in simulation . . . . . . . . . . . . . . . . . . . . . . . . .  57 

3.2.2 System ID from in-field testing . . . . . . . . . . . . . . . . . . . . .  59 

3.2.3 System characteristics with different transmissions . . . . . . . . . .  65 

3.3 Perception model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  67 

3.3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  67 

5



3.3.2 Camera data simulation . . . . . . . . . . . . . . . . . . . . . . . . .  68 

Camera model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  69 

Scenario setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  71 

Lighting condition . . . . . . . . . . . . . . . . . . . . . . . . . . . .  72 

3.3.3 LiDAR data simulation . . . . . . . . . . . . . . . . . . . . . . . . .  77 

Step 1: Render camera image with depth information (in Unreal) . .  78 

Step 2: Retrieve 3D coordinate from depth image (in Simulink) . . .  80 

Step 3: Resample camera image based on LiDAR patterns (in Simulink)  82 

Step 4: Add sensor noise (in Simulink) . . . . . . . . . . . . . . . . .  83 

3.3.4 Perception model application . . . . . . . . . . . . . . . . . . . . . .  84 

Camera placement . . . . . . . . . . . . . . . . . . . . . . . . . . . .  84 

Perception system evaluation . . . . . . . . . . . . . . . . . . . . . .  86 

3.3.5 Experimental validation . . . . . . . . . . . . . . . . . . . . . . . . .  87 

4 AUTOMATIC UNLOADING CONTROLLER DESIGN AND SIMULATION . .  89 

4.1 Controller design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  89 

4.1.1 Fill strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  89 

4.1.2 Movement controls . . . . . . . . . . . . . . . . . . . . . . . . . . . .  90 

4.2 Automatic offloading system model simulation . . . . . . . . . . . . . . . . .  97 

5 HARDWARE INTEGRATION AND IMPLEMENTATION . . . . . . . . . . . . .  101 

5.1 Automatic unloading with human in the loop . . . . . . . . . . . . . . . . .  101 

5.1.1 Controller adaption for hardware implementation . . . . . . . . . . .  102 

5.1.2 In-field testing results . . . . . . . . . . . . . . . . . . . . . . . . . .  105 

5.2 Automatic unloading with perception system in the loop . . . . . . . . . . .  108 

5.2.1 Perception system integration . . . . . . . . . . . . . . . . . . . . . .  109 

5.2.2 Perception system data augmentation . . . . . . . . . . . . . . . . .  111 

Fill metrics adaptation . . . . . . . . . . . . . . . . . . . . . . . . . .  111 

Sensor down time fill level estimation . . . . . . . . . . . . . . . . .  112 

5.2.3 In-field testing results . . . . . . . . . . . . . . . . . . . . . . . . . .  112 

5.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  120 

6



6 GRAIN PROFILE DATA FUSION OF CAMERA-BASED PERCEPTION SYS-

TEM AND GRAIN FILL MODEL . . . . . . . . . . . . . . . . . . . . . . . . . .  121 

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  121 

6.2 Principles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  124 

6.2.1 Initial profile estimation . . . . . . . . . . . . . . . . . . . . . . . . .  127 

6.2.2 Fusion profile height correction . . . . . . . . . . . . . . . . . . . . .  130 

6.2.3 Flow rate estimation . . . . . . . . . . . . . . . . . . . . . . . . . . .  131 

6.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  133 

6.3.1 Manual unloading with continuously working camera perception . . .  133 

6.3.2 Automatic unloading with intermittently working camera perception  137 

6.3.3 Manual unloading with continuously loss camera perception . . . . .  141 

6.3.4 Computation efficiency . . . . . . . . . . . . . . . . . . . . . . . . . .  145 

6.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  148 

6.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  150 

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  152 

7



LIST OF TABLES

3.1 Grain spillage validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  55 

6.1 The estimation source of the parameters in the grain fill model . . . . . . . . . .  126 

6.2 Algorithm run time for the fusion algorithm with 5Hz updating rate . . . . . . .  146 

8



LIST OF FIGURES

2.1 High-level automatic unloading system architecture . . . . . . . . . . . . . . . .  28 

2.2 Grain unloading automation modeling strategy . . . . . . . . . . . . . . . . . .  32 

2.3 Alternative grain unloading automation modelling strategy . . . . . . . . . . . .  33 

3.1 Grain fill model diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  39 

3.2 Grain fill model pipeline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  40 

3.3 Grain fill model simulation 2D schematic . . . . . . . . . . . . . . . . . . . . . .  41 

3.4 Step 1 in grain fill model: generate the tended distribution and find the possible
flowing region. (a) Impact of initial velocity; (b) Possible flowing region of the
incoming grain labelled in a contour plot. . . . . . . . . . . . . . . . . . . . . .  42 

3.5 Grain fill model simulation results. (a) Contour plot of the grain profile (asso-
ciated with Visualization 1); (b) Lateral cross-section of the grain profile at the
auger location (associated with Visualization 2). . . . . . . . . . . . . . . . . . .  46 

3.6 Spillage percentage of grain in grain fill model simulation. . . . . . . . . . . . .  47 

3.7 Grain fill model benchmark system. (a) placement of grain fill model benchmark
system; (b) picture of grain fill model benchmark system mounted on the grain
cart; (c) simulated LiDAR coverage from Unreal engine. . . . . . . . . . . . . .  48 

3.8 Benchmark data processing for point cloud data from empty cart (a) raw LiDAR
point cloud; (b) a picture of the grain cart; (c) grain cart LiDAR point cloud; (d)
unprocessed height map; (e) processed height map for grain fill model benchmark.  50 

3.9 Grain fill model benchmark result (associated with Visualization 3 and Visu-
alization 4): (a) simulated grain fill profile; (b) experimental grain profile; (c)
difference between simulated and experimental profile. . . . . . . . . . . . . . .  53 

3.10 Grain fill model benchmark approaches: (a) approach 1: grain fill model is the
only fill status feedback; (b) approach 2: grain fill model provides supplementary
feedback for perception sensor (e.g., IPM, LiDAR). . . . . . . . . . . . . . . . .  53 

3.11 Grain fill model benchmark result with reinitialization at the beginning of each
grain batch (associated with Visualization 5 and Visualization 6): (a) simulated
grain fill profile; (b) experimental grain profile; (c) difference between simulated
and experimental profile. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  54 

3.12 Spillage location validation for the grain fill model. (a) benchmark system mea-
surement after spillage; (b) spillage location predicted by the grain fill model
shown in red. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  56 

3.13 Vehicle response to Machine Sync nudge in longitudinal direction. (a) small
nudge, nudge size smaller than 1m; (b) larger nudge, nudge greater than 1m. . .  58 

9



3.14 System ID from Machine Sync simulation response for small nudge plant . . . .  59 

3.15 System ID from Machine Sync simulation response for large nudge up plant . .  59 

3.16 GIS visualization of vehicle trajectory during Machine Sync system ID. . . . . .  60 

3.17 Machine Sync system ID configurations. . . . . . . . . . . . . . . . . . . . . . .  61 

3.18 Data processing pipeline for experimental Machine Sync system ID . . . . . . .  61 

3.19 Experimental system ID data prepossessing. (a) raw vehicle GPS; (b) relative
distance between tractor and combine; (c) filtered relative distance between trac-
tor and combine; (d) zoomed-in view of (b) at the boxed region; (e) zoomed-in
view of (c) at boxed region. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  62 

3.20 System ID from step response data for large nudge (greater than 1m), 4-mph
combine, and empty grain cart: normalized step response data with identified
plant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  63 

3.21 Experimental system ID results: (a) large nudge with full grain cart; (b) small
nudge with full grain cart; (c) large nudge with empty grain cart; (d) small nudge
with empty grain cart. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  64 

3.22 Relative location of PST tractor to the combine harvester controlled by Machine
Sync system with sensitivity 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . .  65 

3.23 Machine Sync experimental system ID results comparison between PST tractor
and IVT tractor: (a) small nudge forward; (b) large nudge forward; (c) small
nudge backward; (d) large nudge backward. . . . . . . . . . . . . . . . . . . . .  66 

3.24 Perception model simulation architecture . . . . . . . . . . . . . . . . . . . . . .  69 

3.25 Simulated camera images with different field of views . . . . . . . . . . . . . . .  70 

3.26 Perception model components (a) a perspective view of perception model com-
ponents in Unreal; (b) simulated camera view from auger in perception model. .  71 

3.27 Grain profile and grain flow visualization in perception model (associated with
Visualization 7) (a) The grain profile simulated from grain fill model; (b) auger
camera view in perception model; (c) top-down view of the unloading process. .  73 

3.28 Perception model simulation for night time. (a) perspective view; (b) auger
camera view. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  74 

3.29 Perception model simulation for a rainy day. (a) perspective view; (b) auger
camera view. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  75 

3.30 Perception model simulation for a dusty environment with direct sunlight. (a)
perspective view; (b) auger camera view with 40,000 small dust particles on lens;
(c) auger camera view with 300 large or medium dust particle on lens; (d) auger
camera view with 10,000 small particles on lens. . . . . . . . . . . . . . . . . . .  76 

10



3.31 LiDAR data simulation. (a) depth encoded images; (b) LiDAR data resampling;
(c) simulated LiDAR point cloud. . . . . . . . . . . . . . . . . . . . . . . . . . .  78 

3.32 An example of the depth encoding implementation. . . . . . . . . . . . . . . .  80 

3.33 Illustration of the pinhole camera model . . . . . . . . . . . . . . . . . . . . . .  81 

3.34 Illustration of the LiDAR model built upon the camera model . . . . . . . . . .  82 

3.35 Camera image simulation results with different camera placement. (a) combine
auger; (b) combine body. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  84 

3.36 Camera placement options on combine auger. . . . . . . . . . . . . . . . . . . .  85 

3.37 Camera image simulation results with on-auger camera placement in different
linear location. (a) closer to auger boot; (b) middle of the auger tube; (c) far
from the auger boot. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  85 

3.38 Camera image simulation results with on-auger camera placement in different
radial location. (a) lower left of the auger tube (b) right down below the auger
tube; (c) lower right of the auger tube. . . . . . . . . . . . . . . . . . . . . . . .  86 

3.39 Perception system evaluation pipeline with perception model in Unreal. . . . . .  87 

3.40 Images from camera on the designed location. (a) simulated image; (b) experi-
mental image. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  87 

3.41 Experimental stereo images from stereo camera on auger in different test condi-
tions. (a) normal sunlight; (b) night time; (c) heavy dust. . . . . . . . . . . . .  88 

4.1 automatic offloading controller block diagram with open-loop movement controls.
Note: the automatic offloading system also includes the perception system, but
it is not explicitly included in this figure. . . . . . . . . . . . . . . . . . . . . . .  91 

4.2 automatic offloading controller block diagram with closed-loop movement controls.  92 

4.3 SISO controller design for small nudge plant. . . . . . . . . . . . . . . . . . . . .  92 

4.4 Augmented block diagram for H∞ mixed-sensitivity loop shaping. . . . . . . . .  93 

4.5 System specification for controller synthesis. (a) weighting function for control
effort; (b) weighting function for tracking error. . . . . . . . . . . . . . . . . . .  94 

4.6 Bode plot of system loop transfer function with H∞ controller. . . . . . . . . . .  95 

4.7 Comparison between closed-loop movement controls and open-loop movement
controls for small nudge plant (nominal plant): (a) reference tracking; (b) dis-
turbance rejection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  95 

4.8 Comparison between closed-loop movement controls and open-loop movement
controls for large nudge plant: (a) reference tracking; (b) disturbance rejection. .  96 

4.9 Simplified high-level system model architecture . . . . . . . . . . . . . . . . . .  97 

11



4.10 Relative grain cart position from automatic offloading simulation with open-loop
controller. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  98 

4.11 Grain profile from automatic offloading simulation with open-loop controller (as-
sociated with Visualization 8). (a) t = 50 s; (b) t = 100 s; (c) t = 250 s. . . . .  98 

4.12 Relative grain cart position from automatic offloading simulation with closed-loop
controller. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  99 

4.13 Grain profile from automatic offloading simulation with closed-loop controller
(associated with Visualization 9). (a) t = 50 s; (b) t = 100 s; (c) t = 250 s. . . .  99 

5.1 Hardware diagram for automatic unloading implementation with human in the
loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  101 

5.2 Controller block diagram for automatic unloading implementation. . . . . . . .  102 

5.3 Schematic for auger location calculation from GPS information. . . . . . . . . .  103 

5.4 Automatic unloading testing condition . . . . . . . . . . . . . . . . . . . . . . .  106 

5.5 A representative frame in automatic unloading operation with Front to Back to
Front fill strategy (associated with Visualization 10) . . . . . . . . . . . . . . . .  107 

5.6 A representative frame in automatic unloading operation with Front to Back to
Front fill strategy (associated with Visualization 11) . . . . . . . . . . . . . . . .  108 

5.7 automatic offloading hardware diagram . . . . . . . . . . . . . . . . . . . . . . .  109 

5.8 Perception system (IPM) (a) An example data returned from perception system.
The heat map shows the grain height relative to the edge, and the red cross
shows the estimated grain impact location; (b) Placement of perception system
and benchmark perception system. . . . . . . . . . . . . . . . . . . . . . . . . .  110 

5.9 Hardware configuration during automatic offloading . . . . . . . . . . . . . . . .  113 

5.10 User interface for automatic offloading . . . . . . . . . . . . . . . . . . . . . . .  113 

5.11 Relative location between vehicles and fill level metrics during automatic of-
floading testing scenario A. Fill strategy: Back to Front. Desired fill level:
hedge,i = −0.3m. Initial profile: half-full. Combine speed: four mph. Open-
loop movement control. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  115 

5.12 Unload scenario of automatic offloading testing scenario A. Associated with in-
cabin video recording in Visualization 12 . . . . . . . . . . . . . . . . . . . . . .  115 

5.13 Grain profile change during automatic offloading testing scenario A, associated
with Visualization 13 (a) t = 55.8s; (b) t = 84.0s; (c) t = 105.2s. . . . . . . . .  116 

5.14 Relative location between vehicles and fill level metrics during automatic offload-
ing testing scenario B. Fill strategy: Middle to Back to Front. Desired fill level:
hedge,i = −0.3m. Initial profile: half-full. Combine speed: 4 mph. Open-loop
movement control. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  116 

12



5.15 Grain profile change during automatic offloading testing scenario B, associated
with Visualization 14 (a) t = 15.2s; (b) t = 51.6s; (c) t = 104.8s. . . . . . . . .  117 

5.16 Rectified camera image from the left lens of stereo camera during test scenario
B, associated with Visualization 15 (a) t = 15s; (b) t = 50s; (c) t = 105s. . . . .  117 

5.17 Relative location between vehicles and fill level metrics during automatic of-
floading testing scenario C. Fill strategy: Front to Back. Desired fill level:
hedge,i = −0.2m. Initial profile: almost full. Combine speed: 4 mph. Open-
loop movement control. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  118 

5.18 Grain profile change during automatic offloading testing scenario C, associated
with Visualization 16 (a) t = 20.0s; (b) t = 30.0s; (c) t = 49.0s. . . . . . . . . .  118 

5.19 Comparison between simulated vehicle location and experimental vehicle location
in automatic offloading test A. . . . . . . . . . . . . . . . . . . . . . . . . . . .  119 

6.1 An example scenario with high dust impacting the performance of perception
system. Associated with Visualization 17 . . . . . . . . . . . . . . . . . . . . . .  121 

6.2 Perception system and auger status in poor lighting and heavy dust . . . . . . .  122 

6.3 The computational pipeline for grain fill profile estimation by fusing the percep-
tion system and grain fill model . . . . . . . . . . . . . . . . . . . . . . . . . . .  124 

6.4 Perception system (IPM) error distribution with similar height. (a) auger off; (b)
auger on. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  124 

6.5 Grain height error bias of the perception system in an unloading operation . . .  126 

6.6 The frequency of the grain height error bias of the perception system in multiple
unloading testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  127 

6.7 Difference between the perception system feedback and benchmark profile when
auger is on. (a) perception system feedback; (b) benchmark profile; (c) three
cross section views highlighted in color. . . . . . . . . . . . . . . . . . . . . . . .  128 

6.8 Computational pipeline for initial profile estimation. . . . . . . . . . . . . . . .  129 

6.9 Closed-loop diagram for correcting the overall height of estimated profile . . . .  130 

6.10 Initial profile estimation for manual unloading test: (a) camera-based perception
system feedback; (b) initial fill profile estimation. . . . . . . . . . . . . . . . . .  133 

6.11 Initial profile estimation process for manual unloading test: (a) peaks extracted
from the IPM feedback; (b) estimated piles with cart geometry; (c) piling angle
estimation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  134 

6.12 Flow rate estimation in manual unloading test . . . . . . . . . . . . . . . . . . .  135 

6.13 The local height growth and its growth rate estimation in manual unloading test  136 

6.14 Grain volume adjustment in manual unloading test . . . . . . . . . . . . . . . .  137 

13



6.15 Grain profile in manual unloading test (associated with Visualization 18): (a)
fusion profile at t = 22 s; (b) fusion profile at t = 40 s; (c) fusion profile at t
= 58 s; (d) perception system measurement at t = 22 s; (e) perception system
measurement at t = 40 s; (f) perception system measurement at t = 58 s; (g)
grain fill model alone at t = 22 s; (h) grain fill model alone at t = 40 s; (i) grain
fill model alone at t = 58 s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  138 

6.16 Grain profile error in manual unloading test (associated with Visualization 18):
(a) fusion profile at t = 22 s; (b) fusion profile at t = 40 s; (c) fusion profile at
t = 58 s; (d) perception system measurement at t = 22 s; (e) perception system
measurement at t = 40 s; (f) perception system measurement at t = 58 s; (g)
grain fill model alone at t = 22 s; (h) grain fill model alone at t = 40 s; (i) grain
fill model alone at t = 58 s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  139 

6.17 Mean absolute error analysis for the neighboring grids around the auger location
in manual unloading test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  140 

6.18 Initial profile estimation in the automatic unloading test (a) camera-based per-
ception system feedback; (b) initial fill profile estimation. . . . . . . . . . . . . .  140 

6.19 Flow rate estimation in automatic unloading test . . . . . . . . . . . . . . . . .  141 

6.20 Grain profile in automatic unloading test (associated with Visualization 19): (a)
fusion profile at t = 40 s; (b) fusion profile at t = 53 s; (c) fusion profile at t
= 66 s; (d) perception system measurement at t = 40 s; (e) perception system
measurement at t = 53 s; (f) perception system measurement at t = 66 s; (g)
grain fill model alone at t = 40 s; (h) grain fill model alone at t = 53 s; (i) grain
fill model alone at t = 66 s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  142 

6.21 Grain profile error in automatic unloading test (associated with Visualization 19):
(a) fusion profile at t = 40 s; (b) fusion profile at t = 53 s; (c) fusion profile at
t = 66 s; (d) perception system measurement at t = 40 s; (e) perception system
measurement at t = 53 s; (f) perception system measurement at t = 66 s; (g)
grain fill model alone at t = 40 s; (h) grain fill model alone at t = 53 s; (i) grain
fill model alone at t = 66 s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  143 

6.22 Mean absolute error analysis for the neighboring grids around the auger location
in automatic unloading test . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  144 

6.23 Flow rate estimation in manual unloading test with long inactive period . . . .  145 

6.24 Grain volume adjustment in manual unloading test with long inactive period . .  146 

6.25 Grain profile in manual unloading test with extended period of inactive camera
perception (associated with Visualization 20): (a) fusion profile at t = 22 s; (b)
fusion profile at t = 40 s; (c) fusion profile at t = 58 s; (d) perception system
measurement at t = 22 s; (e) perception system measurement at t = 40 s; (f)
perception system measurement at t = 58 s; (g) grain fill model alone at t = 22
s; (h) grain fill model alone at t = 40 s; (i) grain fill model alone at t = 58 s. . .  147 

14



6.26 Grain profile error in manual unloading test with extended period of inactive
camera perception (associated with Visualization 20): (a) fusion profile at t =
22 s; (b) fusion profile at t = 40 s; (c) fusion profile at t = 58 s; (d) perception
system measurement at t = 22 s; (e) perception system measurement at t = 40
s; (f) perception system measurement at t = 58 s; (g) grain fill model alone at t
= 22 s; (h) grain fill model alone at t = 40 s; (i) grain fill model alone at t = 58 s.  148 

6.27 Mean absolute error analysis for the neighboring grids around the auger location
in manual unloading test with extended period of inactive camera perception .  149 

15



ABBREVIATIONS

AU Automatic unloading

B2F Back to front

CAD Computer-aided design

CAN Controller Area Network

CPU Central processing unit

DEM Discrete element method

EKF Extended Kalman filter

EnKF Ensemble Kalman filter

F2B Front to back

F2B2F Front to back to front

FOV Field of view

ECU Electronic control unit

GNSS Global Navigation Satellite System

GPS Global Positioning System

HIL Hardware-in-the-loop

IP Internet protocol

IPM Image Processing Module

IVT Infinitely variable transmission

KF Kalman filter

LiDAR Light detection and ranging

MAE Mean absolute error

MS Machine Sync

PST Power shift transmission

RCP Rapid controller prototyping

RGB Red Green Blue

UDP User Datagram Protocol

UKF Unscented Kalman filter

UI User interface

16



SIL Software-in-the-loop

SISO single-input-single-output

SPFH Self propelled forage harvester

17



ABSTRACT

The world is facing a higher demand for food as the population is expected to grow to

9.1 billion by 2050, but the expected growth of arable land is much slower. In the meantime,

the US has seen farm labor shortages for many years. These trends indicate the need for

improving agricultural productivity while lowering the demand for skilled labor for farm

operations. Automation of agricultural operation is one approach to achieve these goals.

An automated unloading system is desirable as it can improve productivity and reduce

the requirement for high-skill labor by lowering the complexity of the unloading on the go

operation.

Agricultural machinery companies have developed various products to automate or assist

parts of the unloading operations. Some researchers built unloading automation systems,

but the limited performance, strict constraints, and the high cost curb their impact on pro-

ductivity improvement or adaption for commercialization. Additionally, several companies

have released product to automate the forage harvester unloading. However, no existing sys-

tem can fully automate the combine harvester unloading on the go. Therefore, a system was

proposed to automate combine harvester unloading on the go by automatically monitoring

grain fill status, determining preferred auger location to fulfill prescribed fill strategy, and

controlling the auger operation and location to achieve the desired fill.

An automatic unloading strategy for grain unloading automation was developed. The

automatic unloading system is built by integrating a controller and a perception system to

the combine harvester with an existing vehicle guidance technology, Machine Sync. Machine

Sync is used to control the combine-tractor relative position by automatically changing the

speed and moving direction of the tractor.

To develop the automatic unloading system, simulation tools were built to model the

unloading on the go process and validate the model accuracy with in-field testing. The tools

include:

• A grain fill model to simulate how grain pile up in a container such as grain cart

or wagon given the grain unloading location and unloading rate. A grain fill model
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benchmark system was built with LiDAR and validated that the grain fill model can

achieve an accuracy of 0.2 m during a static grain cart unloading.

• A vehicle dynamics model to simulate the dynamics of the relative position between

the tractor and the combine harvester. The relative motion between the combine

and the tractor controlled by Machine Sync was treated as an aggregated system. To

characterize the dynamics of the aggregated system, the instrumental variable approach

was used to identify the model parameter based on black-box model simulation results.

After that, a testing pipeline was developed to validate and refine the model parameters

with in-field testing.

• A perception model to simulate the raw data of the perception sensors (i.e., stereo

camera) during unloading with different lighting conditions, vehicle configurations,

and sensor properties. To validate the perception model, stereo camera data were

collected during automatic unloading in some typical conditions and compared them

with the simulation results.

The simulation tools together build a virtual environment to simulate the unloading

process. Based on these tools, the automatic unloading controller was developed. The

controller automatically determines the desired auger location to fill the grain cart based on

the current filling status and prescribed fill strategy. The controller also includes a closed-

loop movement controller synthesized with H∞ mixed sensitivity loop shaping that closes

the loop around Machine Sync to enhance its tracking performance and robustness. After

that, the automatic unloading system was validated in the virtual environment.

After validating the automatic unloading system in simulation, the automatic unloading

system was implemented in hardware and a camera-based perception system (IPM) was

integrated to monitor the unloading status. In-field testing demonstrated that the automatic

offloading system can effectively automate the unloading-on-the-go of a combine harvester

to fill a grain cart to the desired level under nominal harvesting conditions. The achievable

fill level for a 1000-bushel grain cart without spillage ranges from -0.7 m to -0.2 m for the

near-edge grain height relative to cart edge.
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The in-field testing shows that the camera-based perception system (IPM), which is

susceptible to environmental changes, can lose track of the grain cart and cause the automatic

unloading to stop. To make the grain perception more robust to different lighting conditions,

a fusion algorithm was developed by leveraging both the IPM and grain fill model. In-field

testing data demonstrate that the fusion result can achieve higher accuracy, greater coverage,

and better robustness than either the IPM or the grain fill model alone.
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1. INTRODUCTION

The Food and Agriculture Organization (FAO) of the United Nations has reported that the

world is facing a 70 % higher demand for food as the population is expected to grow to 9.1

billion by 2050 [ 1 ]. However, this staggering growth in demand is counter to the available

arable land. Approximately 2-5 million hectares of global arable land is lost every year to

soil erosion, and 3 million ha is lost annually as a result of severe land degradation [ 2 ]. In the

US, the major crop yields are expected to decline because of increasing temperature, water

availability, soil erosion, disease, and pest outbreak [ 3 ]. Moreover, the availability of skilled

labor in the agriculture industry in the US has been declining for decades and the US has

seen farm labor shortages for many years [ 4 ], [ 5 ].

These trends altogether reveal the importance of improving productivity while reducing

the requirements for skilled labor in farming operations. Agricultural machinery feature

automation is a key step to achieve these goals as proposed in “Agriculture 4.0” [ 6 ], [ 7 ].

Grain harvest involves coordination between multiple machines and is one of the most

time sensitive operations. Unloading is the process of transferring grain from the on-board

grain hopper of a combine harvester to a tractor-towed grain cart, ideally as the combine

continues to move while harvesting grain. Grain unloading-on-the-go is a desirable operation

that improves productivity, but requires skilled labor and attentive operation throughout

a day of grain harvesting. During unloading-on-the-go, the combine continues to harvest

while unloading grain to a grain cart moving alongside, allowing the combine to reduce

unproductive time [ 8 ]. Delchev et. al. showed that on-the-go unloading can provide up

to 30% time reduction per unit area in harvesting [  9 ]. However, unloading-on-the-go also

requires high-skill labor for both combine and tractor drivers. In particular, the combine

operator must carry out multiple tasks simultaneously:

1. Monitor the filling status inside the grain cart

2. Determine the appropriate location for the auger to unload

3. Communicate with the tractor operator to move the auger to the desired location by

changing the speed and heading of both vehicles
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4. Watch for the clearance between two vehicles and react to obstacles, terrain change,

and waterways in the traveling path

5. Monitor crop harvesting conditions and accordingly adjust harvester settings or vehicle

movement

A system to automate the unloading process can unburden the combine operator of tasks

1-3. Considering the productivity and labor impact of the unloading process, a system to

fully automate the unloading-on-the-go process can help to:

• Improve operator experience and performance. The system will improve user

experience, and reduce driver fatigue during operation. Furthermore, [  10 ] demon-

strated that the automation on agricultural machinery can improve the driving per-

formance.

• Lower the demand for skilled labor. The system can help to offload the combine

operator from the first three tasks in unloading and thus significantly reduce the un-

loading operation complexity. In addition, the system can also help to coordinate the

tractor movement with combine and thus reduce the skill requirements for the tractor

driver.

• Improve productivity. The system could extend the running window of the har-

vester during the tight harvest season by making it possible to continue unloading

during challenging scenarios (e.g., night time), and as a result of a reduction in oper-

ator fatigue. In the meantime, consistently monitoring the system can help to reduce

the chances of spillage during unloading, one source of harvest loss.

To assist operators during unloading-on-the-go, agricultural machine manufacturers and

researchers have proposed or developed various operator-assisting technologies.

Ag Leader built a CartACE system to simplify the unloading-on-the-go operation from

the perspective of the grain cart operator. Leveraging wireless communication and data

sharing between the combine and the tractor, this system automatically designs the tractor

trajectory and controls the steering to move the tractor-towed grain cart alongside the com-

bine harvester when the combine needs to unload. To build this system, a trajectory design
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method was introduced [  11 ] and a method to improve the smoothness of the articulated

system, i.e., the tractor-grain cart pair, was demonstrated in [  12 ]. In [  13 ], a method was

proposed to allow the grain cart driver to know in real-time how full the combine hopper

is, so the tractor operator can prepare to engage in unloading operation in advance. Such a

system can significantly reduce the workload and task complexity of the grain cart operation,

and thus reduce the requirement for highly skill labor during unloading-on-the-go. However,

in this system, the combine operator still has to monitor the filling status and communicate

with the tractor driver to adjust the relative vehicle location to complete a desired fill. As

a result, the CartACE system does not help address the main operational complexity that

the combine driver is facing.

John Deere launched the Machine Sync system in 2011. Machine Sync is a guidance tech-

nology that enables sharing harvest and guidance information across multiple John Deere

Machines. During unloading operation, the Machine Sync system allows the combine oper-

ator to command the relative position between the tractor and the combine via home point

setting and adjust the relative position via nudge commands. Machine Sync system automat-

ically controls the speed and steering of the tractor to move it to the commanded location.

The method connects two agricultural machines with a leader-follower model in [ 14 ], and the

system acquires and controls the relative position between two agricultural machines [ 15 ],

[ 16 ]. Machine Sync has further been shown to allow simplification of the unloading process in

[ 17 ]. Compared with CartACE, the Machine Sync system reduces both the workload of the

tractor operator and the combine operator by reducing the need to communicate with the

tractor operator, since the combine operator can adjust the position of the tractor directly.

However, to achieve the desired fill, the combine operator is still required to monitor the

grain filling status, decide the auger on/off, and command nudges to the tractor manually.

Case IH proposed a guidance system called V2V with a similar leader-follower concept

as that of Machine Sync to allow the combine operator to control the speed and position

of the tractor towing a grain cart and facilitate unloading-on-the-go. [  18 ], [ 19 ] demonstrate

the details on Case IH’s ideas on coordinating multiple agricultural vehicles. However, since

V2V was announced in 2011, the system has not been commercially available.
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Kinze proposed a driverless tractor in its Autonomous Harvest system project [ 20 ].

SmartAg (now part of Raven Industries) announced a similar product called AutoCart.

Neither system is available commercially. According to [  21 ], the AutoCart system does not

require a driver in the tractor cab. For unloading, the combine operator can call the tractor

that tows a grain cart from another location in the field, and the tractor can automatically

plan its path to follow the combine. When it starts following the combine, the combine

operator can start unloading to the grain cart and nudge the tractor location to achieve

the desired fill. However, during the unloading operation the AutoCart system still requires

the combine operator to monitor the grain filling status, make decisions about the auger

movement, and manually command nudges to the tractor.

Among the three combine operator tasks related to grain unloading during unloading-

on-the-go, the above driver assisting technology developed by agricultural companies can

only help to reduce the operator workload in task 3, but they still require the operator to

execute task 1-2 manually. Consequently, the unloading-on-the-go remains a very challenging

operation for the combine driver. To further reduce the unloading workload, some researchers

have proposed systems to automate the other two tasks.

At Kyoto University, Kurita et al. developed a combine harvester robot to automatically

identify the grain container in the field with a stereo camera [ 22 ] and position the combine

auger to the center of the grain container to unload grain [  23 ]. The stereo camera in [  22 ],

[ 23 ] requires installing a planar marker on the grain container for cart recognition and auger

positioning. To further improve the versatility of the unloading system, Cho et al. updated

the perception system with a laser scanner and GNSS sensors to automatically identify

the grain cart and position the auger without the need for planar markers [  24 ]. In their

system configuration, the combine harvester only unloads to a small grain container (length:

1.83 m, width: 1.3 m) so it does not change auger location based on profile change during

unloading. As such, the method cannot be applied to filling up grain carts or wagons with

larger capacity, which are widely used in the United States. Moreover, the system does not

monitor the grain container fullness, so the combine operator has to start/stop the auger

manually.
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Researchers at Iowa State University collaborated with John Deere and the National

Robotics Engineering Center at Carnegie Melon University to develop a SmartUnload sys-

tem. The SmartUnload system used a perception system based on two stereo cameras to

monitor the status of unloading. One stereo camera was on the combine body to locate

the grain cart, and another on the combine auger to monitor filling status [  25 ]. With the

raw data from the perception system on filling status, Jennett developed a computation

framework to augment the perception system data and determine the desired auger loca-

tion based on certain fill strategies [ 26 ]. Finally, the desired auger location was achieved

by controlling the combine auger angle with an on-off or proportional controller [  27 ]. The

SmartUnload system built a complete framework for automating the unloading operation

and developed a system prototype. However, according to the assessment results in [ 27 ],

the performance of this system for controlling fill level in a grain cart was limited because

the perception system was inconsistent under different lighting conditions. In addition, the

perception system required mounting fiducial markers on the grain cart to function properly,

and used two stereo cameras. Furthermore, auger position control through auger rotation

reduced the fillable area inside a cart to prevent spillage, which generally leads to a more

conservative fill and reduced productivity in grain transfer logistics. Moreover, for a given

relative location between the tractor and the combine, controlling the auger location by only

swinging the auger limits unloading range inside the cart. Thus, while using a larger grain

cart, the operator may still have to control the relative location between the two vehicles

manually.

In addition to the aforementioned efforts to automate combine harvester unloading, au-

tomatic offloading has also been pursued for forage harvesters. Forage harvesters chop plants

and unload the forage simultaneously to a trailer truck driving alongside. In a manual setup,

the harvester operator adjusts the angle of the unloading spout with a hydro-handle to aim

the spout at a proper location inside the forage container. John Deere developed an au-

tomatic offloading system called Active Fill Control with Carnegie Melon University. The

Active fill Control system uses a stereo camera to monitor the filling status of the forage

container [ 28 ]. Based on the fill status image, the Active Fill Control system automatically

controls the angle of the unloading spout to execute the fill strategy specified by the opera-
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tor [ 29 ]. The system displays the fill level indicator of the forage container overlayed with a

camera image in real-time [  30 ]. Claas developed a similar system called AutoFill to assist the

forage harvester unloading by automatically aiming the auger spout to an empty portion of

trailer [ 31 ]. Instead of using a stereo camera, the AutoFill system uses a triple-lens camera

(a stereo camera plus a color camera) to measure the fill status and auger angle [  32 ]. New

Holland released IntelliFill system to automate the auger spout control for forage harvester

unloading [  33 ], [ 34 ] based on the fill status and the truck edges as detected by a combination

of Time-of-flight camera and a stereo camera [  35 ]. In these systems, because the range of

spout angle adjustment is usually smaller than the trailer truck length, the forage harvester

operator still needs to manually adjust the relative position between two vehicles to fill the

whole truck.

Forage unloading and combine unloading have some significant differences that affect the

potential of, and viable approaches to, automating the unload-on-the-go process:

1. The material harvested by a combine harvester usually has a higher value than forage,

making spillage much more undesirable

2. The height difference between combine spout and grain cart edge is smaller, in com-

parison to forage harvesting, making it more challenging to find a good placement for

the perception system sensor(s) to see the entire grain cart.

3. In practice, the auger position control in forage harvesters is usually achieved by ad-

justing both the auger spout angle and the relative position of the tractor. However,

the auger position control in combine harvesters is mostly achieved by changing the

relative position of the tractor.

In summary, an automated unloading-on-the-go system for combine harvesting will im-

prove productivity and reduce the requirement for high-skilled labor by lowering the complex-

ity of the unloading-on-the-go operation. Agricultural machinery companies have developed

various products to automate or assist parts of the unloading operations. Some researchers

have built combine harvester unloading-on-the-go automation systems, but their limited per-

formance (e.g., tracking performance, fillable region in cart), strict constraints (e.g., grain
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cart size, use of fiducial patterns), high cost, and the remaining burden on the combine

operator curb their impact on productivity improvement or adaption for commercialization.

Several companies have released products to automate the forage harvester unloading, a

similar application to combine unloading. However, the difference between forage harvester

and combine harvester unloading system design is still too large to allow direct the repli-

cation of forage harvester technology. To the best of our knowledge, no existing system

can fully automate the unloading-on-the-go operation of a combine harvester. A system to

accomplish this is outlined and demonstrated in this paper. This automatic offloading sys-

tem automatically monitors grain fill status, determines preferred auger location to achieve

prescribed fill strategy, and controls the auger status and location to achieve the desired fill

with intervention, as required, from either the combine or the tractor operator.

In Ch.  2 introduces the strategy to automate grain unloading and how the automatic

unloading system was built. Chapter  3 details the simulation tools to enable designing and

validating the automatic unloading system in a virtual environment. Based on the tools,

Ch.  4 introduces how the automatic unloading controller was built and validated in the

virtual environment. After validating the automatic unloading virtually, Ch.  5 shows the

integration of the automatic unloading system in the machinery and in-field validation of

the automatic unloading system. In Ch.  6 , a data fusion strategy is developed to improve

the robustness and accuracy of the grain profile perception.
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2. GRAIN UNLOADING AUTOMATION STRATEGY

2.1 System architecture

The main objective of the automatic unloading project is to develop a system to automate

grain unloading from a combine harvester to a grain cart towed by a tractor while harvesting.

The automatic unloading (AU) system needs to automatically fill up the cart to a desired

fill level following the fill strategy specified by the operator.

Figure 2.1. High-level automatic unloading system architecture

The high-level architecture is shown in Fig.  2.1 for the automatic unloading system.

The automatic unloading system is built by integrating an automatic unloading controller

and a perception system to the vehicles in unloading operation. The automatic unloading

system takes advantages of Machine Sync, a machine-to-machine communication technology,

running on current John Deere vehicles. One function of Machine Sync is to control the

combine-tractor relative position by automatically changing the speed and moving direction

of the tractor.

The automatic unloading controller runs on the combine harvester. It automatically

calculates the desired vehicle locations and auger on/off status to achieve the target fill
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specified by the operator based on the current grain fill profile inside the grain cart. After

that, it sends the desired location and auger on/off command to the combine harvester.

The auger on/off command controls the flow rate of the combine auger. In the meantime,

the Machine Sync system will pass the desired location to tractor and controls the speed

and steering of tractor to move it to the desired location. Ultimately, the tractor location

determines the combine auger location relative to the grain cart, and together with the auger

flow rate, affects how grain pile in the grain cart. Finally, the perception system measures

the grain profile inside the grain cart and provides the fill level feedback to the AU controller,

closing the automatic unloading control loop.

To develop the automatic unloading system presented in Fig.  2.1 , four tasks were accom-

plished in this research:

1. Developed simulation tools to model the unloading on the go process and validated

the model with in-field testing

2. Designed an automatic unloading controller and validate the controller with the sim-

ulation tools

3. Implemented and validated the automatic unloading system in hardware

4. Developed a fusion algorithm for camera-based perception and grain fill model to

improve the quality and robustness of grain profile measurement

Chapter  3 shows the first stage of the automatic unloading system development, building

simulation tools for automatic unloading and validating the tools with in-field testing. Tools

were developed to simulate the major components in the automatic unloading system: the

grain fill model, the vehicle dynamics model, and the perception model.

The grain fill model simulates how grain piles up in a container such as grain cart or

wagon with given grain unloading location and unloading rate. The grain fill model can

not only be used for modeling the unloading operation in automatic unloading simulation

but also serve as a real-time grain profile estimator in the automatic unloading controller.

Traditionally, the simulation of granular material such as grain or sands can be simulated

with discrete element method (DEM) to capture the details of the grain flowing behavior of
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individual particles. However, DEM method takes a long time to simulate especially in large

scale, so it is not suitable to apply in the AU controller. Besides, the level of details in DEM

may not be necessary for unloading application. Therefore, this paper proposed to simulate

the piling dynamics based on the geometric constraint of granular material to achieve fast

computation. The proposed method can simulate the grain fill process in a grain cart in a

significantly shorter time than the physical process. Moreover, an experimental benchmark

system was developed with LiDAR to validate the accuracy of the grain fill model. According

to the experimental validation, the grain fill model achieves ±0.2 m accuracy in most of the

grids inside the container.

Vehicle dynamics model simulates the dynamics of the relative position between the

tractor and the combine harvester, which ultimately leads to the change of auger location

relative to the grain cart. In this vehicle system, Machine Sync is used as the low-level

controller to control the the speed and moving direction of the tractor to achieve the desired

relative location. Therefore, instead of building separate models to describe the detailed

dynamics of the tractor plant and combine plant, the relative motion between the combine

and the tractor controlled by Machine Sync was treated as an aggregated system. As a

result, the aggregated Machine Sync - tractor - combine plant takes the input as commanded

location while outputs the actual relative position. To characterize the dynamics of the MS-

tractor-combine plant, a data-driven system ID method was used to identify the model

parameter via instrumental variable approach. In simulation, the plant parameters from the

output of the black-box Machine Sync model were identified and the first pass of vehicle

dynamics model was built. After that, an experimental system was developed to collect

vehicle dynamics data from vehicles running Machine Sync system and built a data processing

pipeline to further refine the parameters in vehicles dynamics model based on experimental

data.

Perception model simulates the raw data of the perception sensors (i.e., stereo cam-

era) during unloading operation. Modern perception systems usually use Machine learning

algorithms to process the raw data from perception sensors. However, Machine learning

algorithms require enormous amount of labeled data to train and validate the algorithms.

Traditionally, the data are collected from in-field testing, which is costly and slow. More-
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over, to ensure the robustness of the algorithms, the data needs to cover various edge cases,

including different vehicle configurations and operating conditions, making the data collec-

tion from in-field testing more challenging. To generate large amount of sensor raw data

for algorithm development and validation, a perception model was developed to simulate

the sensor response during unloading on the go. The perception model can simulate both

a camera sensor or a LiDAR sensor. For camera sensor, it can simulate different lighting

conditions, vehicle configurations and sensor properties. Besides generating raw data, the

perception model was also used to recommend stereo camera placement and proposed an

algorithm validation pipeline with Software-in-the-loop (SIL) perception model simulation.

Finally, the unloading-on-the-go testing was conducted with stereo camera collecting data

in several typical conditions to validate the perception model simulation results.

The simulation tools in Ch.  3 together build a virtual environment to simulate the un-

loading process. Based on these tools, an automatic unloading controller was developed and

its performance was validated in this virtual environment in Ch.  4 .

The automatic unloading controller works in two stages:

1. Control strategy: In the first stage, The controller divides the grain cart into several

sections and determines the fullness in each section based on the grain fill profile

feedback and the fill target specified by the operator. After that the Control strategy

automatically determines the desired section that the auger should move to according

to the user preference. It can fill the cart from front to back (F2B) or from back to

front (B2F) or a combination of F2B and B2F.

2. Movement controller: In the next stage, the movement controller translates the

desired location into specific commands to the vehicles. two movement control frame-

works were developed: an open-loop framework that solely relies on Machine Sync

system to move auger to the desired location and a closed-loop framework that close

the loop around Machine Sync to further improve the tracking performance and the

robustness of the automatic unloading system. The Machine Sync system control was

linearized to a classic single-input-single-output (SISO) linear system control problem
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and applied H∞ mixed sensitivity loop shaping to synthesize the closed-loop controller.

Then, both controllers were evaluated in sub-system testing.

Figure 2.2. Grain unloading automation modeling strategy

After designing the controller and building all the simulation tools, the tools and the

controller were integrated to run the full automatic unloading simulation to validate the

system performance. A co-simulation framework was proposed as shown in Fig.  2.2 that

consists of three major components:

• A system model in MATLAB Simulink that simulates the dynamics of the automatic

unloading (AU) controller as well as the response of plants involved in the unloading

processing including a combine harvester, a tractor, and a grain cart towed by the

tractor.

• A perception model in Unreal engine to visualize the unloading scene in the virtual

3D world so that it can generate raw data for vision sensors.

• A perception system to measure the unloading scenes with vision sensors and analyze

the sensor data to provide unloading status messages to the AU controller. In this

application, a stereo camera-based Image Processing Module (IPM) developed by John

Deere and National Robotics Engineering Center was used as the perception system.
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Figure 2.3. Alternative grain unloading automation modelling strategy

The co-simulation framework is advantageous when demonstrating the overall system

performance. However, simulation and validation of each individual components in the

system are still required to iterate the simulation tools. To enable simulating unloading

process for each component while validating the effectiveness of the controller, the modeling

framework from Fig.  2.2 was adapted to Fig.  2.3 . In the system model, the perceived status

by the AU controller will be the ground-truth simulated by the plant models. Meanwhile,

the perception model simulates pre-defined scenarios and outputs the sensor raw data to

perception system. Since the scenario is pre-defined, one can compare the output from

perception system and the scenario definition for hardware-in-the-loop (HIL) or software-in-

the-loop (SIL) algorithm verification.

The results from system model simulation shown in sec.  4.2 demonstrates that with a good

fill profile feedback, the AU controller can automatically unload the grain from a combine

harvester to a grain cart to a desired fill level without manual intervention. Additionally,

the simulation shows that the controller works with different fill strategies and initial grain

profiles in the cart.
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After validating the automatic unloading system in simulation, Ch.  5 shows the process

to implement and test the automatic unloading system in hardware. The camera-based

perception system (IPM) was integrated to the combine harvester to monitor the grain fill

status. Based on the characteristics of the grain profile feedback from the IPM, algorithms

were developed to augment and utilize its data. Finally, the in-field testing demonstrates

the effectiveness of the automatic unloading on controlling the vehicle location and auger

on/off to achieve a desirable fill with different fill strategies in a nominal environment.

However, poor lighting conditions or algorithm error could cause the camera-based per-

ception system (IPM) to lose track of the grain cart intermittently. Sometimes the automatic

unloading system has to halt operation as a result. To make the perception more robust and

improve the perception accuracy, a data fusion algorithm for the IPM data and the grain

fill model was developed and validated in Ch.  6 . Data from the in-field testing demonstrate

that the perception results from the fusion algorithm have better accuracy, greater coverage,

and are more robust to environmental changes compared with either the IPM or the grain

fill model alone.

2.2 Assumptions and uncertainties

Several major assumptions were made when designing the entire automatic unloading

system:

• The unloading is performed when vehicles are moving in a straight line on a flat terrain

• The combine harvester cruises at a constant speed during harvesting

When modeling the unloading system, the following assumptions were made:

• Grain fill model

– The angle of repose is constant during unloading because grain properties do not

change in such a short period of time

– The vehicles move on a flat terrain

– The grain cart’s jostling magnitude does not change during unloading
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• Vehicle dynamics model

– Combine cruises at constant speed during unloading

– The latency of wireless transmission for Machine Sync is negligible

• Perception model

– Because the lens distortion is rectified before entering the image processing pipeline,

the camera model only simulates the rectified image without lens distortion

– The grain bed inside the cart can be modeled as a continuous surface

– The distance error of a LiDAR sensor is normally distributed

To augment the perception results for grain profile, an algorithm was proposed to fuse the

data from the camera-based perception system (IPM) and the grain fill model. The algorithm

works with the following assumptions that are based on the observed characteristics of the

IPM:

• IPM provides accurate grain height profile measurement when the auger is off

• The overall height of the measured profile (average of available grids) is reliable even

when the auger is on

The uncertainties of the system are important for controller design. When designing the

controller, the following system uncertainties were considered:

• The grain profile measurement from the stereo camera-based perception system. The

height measurement from the perception system is provided in the form of a 2D

heightmap. Because of the error from the camera sensor and depth estimation, the

height measurement can have an error of more than 15 cm. To alleviate the measure-

ment uncertainty, the cart fullness of each row was estimated by the average grain

height both spatially (with neighboring grids) and temporally (with prior measure-

ment).
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• The tracking performance of Machine Sync. In-field testing has demonstrated that the

Machine Sync has nearly no steady-state error in nominal conditions. However, the

smallest nudge of Machine Sync is 6 inches, so the tracking has a 6-in discretization

error.

• Machine Sync dynamics uncertainty. In-field testing shows that Machine Sync dynam-

ics are significantly different based on the nudge size. To deal with this uncertainty, in

controller design, the stability and closed-loop system performance were evaluated for

both small-nudge dynamics and large-nudge dynamics.

• The relative location measurement between combine and harvester. This measurement

comes from the GNSS locations of both machines. Because both machines use StarFire

RTK GPS for localization with a quarter-inch accuracy. Its error is much smaller than

the scale of unloading, so the localization error was not modeled in the virtual tools.
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3. AUTOMATIC UNLOADING SIMULATION TOOLS

DEVELOPMENT

3.1 Grain fill model

3.1.1 Introduction

The piling of granular materials has attracted much interest because of its unique prop-

erties [ 36 ], [  37 ] and wide range of engineering applications including pharmaceutical (e.g.,

capsule, tablets solid processing), agriculture (e.g. seed processing, in-silo grain storage),

construction (e.g., construction material storage), etc. Among the wide range of applica-

tions, some require real-time simulation of the granular material piling process on devices

with low computing power. One particular application of interest is the automatic grain

unloading-on-the-go from an agricultural combine harvester to a tractor-driven grain cart

[ 38 ]. For this application, a model to simulate the grain piling process inside the grain cart is

not only a crucial component for system-level simulation and validation, but also a potential

means to provide real-time fill status estimation for the unloading controller

Many models have been developed to simulate the dynamics of granular flow. One

example is the Discrete element method (DEM), which was first proposed by Cundall &

Strack [  39 ]. DEM-based methods simulate each particle in the granular material as an

individual object. [ 40 ] proposed a computational framework to use DEM to simulate the

piling of granular material. By simulating the dynamics of each individual particle in the

granular material, the DEM-based method can reflect the details of the piling dynamics

and achieve the highest level of accuracy. However, simulating each particle separately also

results in a very high requirement for computation. The increasing number of particles

further increases the computation time for DEM. Consequently, DEM is usually used for

small-scale simulation [ 41 ]. Recent modeling technique advancement and the introduction

of parallel programming have dramatically improved the computing speed of DEM [  42 ] and

have made it feasible to simulate larger-scale applications [  43 ]. However, considering the

number of grain particles in a typical grain cart, the DEM method is still too computational-
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demanding for real-time piling computation for an application like combine harvester grain

transport.

Another category for granular flow simulation is the continuum method. Continuum

methods are usually categorized to 3 regimes: quasi-static [  44 ], inertial [  45 ], [  46 ], and inter-

mediate [  47 ], [  48 ]. The continuum method simulates the granular materials as continuous

media and the time evolution of the material is governed by the mass and momentum con-

servation equations. As a result, continuum methods do not reflect the detailed motion of

individual particles in the granular flow, but do usually have a faster computation compared

to DEM. Some researchers have developed methods to simulate the grain piling process with

continuum-based methods for computer graphics application that can simulate one frame in

the scales of seconds depending on the size of simulation [  49 ], [  50 ]. However, these methods

still require a high computing power machine and the simulation speed is not likely fast

enough to be used as real-time feedback for controllers.

In summary, traditional granular flow models can generate accurate simulation results

for the grain piling process, but they lack the real-time capacity, especially when running

on a low computing power device like an embedded ECU. Moreover, for some applications,

the details of how small particles interact and the detailed shape of the final piling profile

may not be necessary – with example including estimation of the in-cart grain height profile

during a combine harvester-to-grain-cart unloading process, prediction of a sand pile at a

construction site, or the grain accumulation in a grain silo.

As such applications that require real-time computation without fine details of the piling

dynamics and final shape, a computational-efficient geometric method could be preferred.

For granular material, angle of repose is a widely-used geometric characteristic that can be

measured [ 51 ], [ 52 ] and serve as a general principle to describe how grain piles [ 53 ].

Previous research efforts have experimentally identified the angle of repose of silage, and

then simulated the silage pile in the trailer unloaded by a forage harvester by constraining

the new pile shape with the identified angle of repose [  54 ]. Experimental fill profile was

measured from a series of 2D LASER scans and then compared with the simulated profile

to validate the model accuracy. Unfortunately, the experimental results indicated that when

the maximum height of the silage profile is about 2.5m, the maximum height error could be
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as large as 1.13m. Such high maximum error are impractical to be used as a robust grain

profile feedback for a real-time controller.

This paper will outline a novel piling model to predict the profile change and spillage

during the unloading process. The model was developed and validated with corn piling

inside a grain cart, but the same principle could be applied to similar granular material

piling process (e.g., sands, soybeans) if computational efficiency is required. The approach

is demonstrated through the simulation of the grain fill process from a combine harvester to

a grain cart. On one hand, the model is based on the geometric characteristics of granular

material rather than granular particle dynamics to dramatically reduce the computation

complexity. On the other hand, the model also takes in to account more physical constraints

on grain flow and cart jostling besides the angle of repose to enhance its accuracy. As shown

in the following, the model can run in real-time while achieving 0.2-m estimation accuracy,

in comparison to high fidelity LiDAR experimental data.

3.1.2 Principle

Figure 3.1. Grain fill model diagram

The granular material piling model is developed to simulate the grain fill process inside

a grain cart during combine harvester grain unloading as shown in Fig.  2.1 . During the
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unloading, the combine harvester unloads grain to a tractor-driven grain car via an auger

boot. Figure  3.1 summarizes the input, output, and internal parameters of the piling model.

In the grain fill model, the grain profile is discretized as a 2D height matrix h(x, y). At

each time step, the grain fill model updates the grain profile h(x, y) based on the flow rate

of auger V and the impact location of grain (xi, yi) at the current time step. The grain fill

models require the angle of repose α, cart geometry hcart(x, y) and the magnitude of cart

vibration for the calculation.

Figure 3.2. Grain fill model pipeline

Figure  3.2 illustrates the simulation pipeline of the grain fill model and Fig.  3.3 shows a

2D schematic for each step in the pipeline. The key grain characteristics used in this grain

fill model is the angle of repose of the grain. The angle of repose α is the steepest angle

relative to the horizontal plane that granular material such as grain can pile. The angle of

repose of grain is different for different grain types and grain moisture. For instance, [ 55 ]

lists some empirical angles of repose for common grain types in the United States.

During an unloading process, when bulk granular material are poured into a horizontal

plane, the pile will have a conical shape and the angle relative to the horizontal plane of this
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Figure 3.3. Grain fill model simulation 2D schematic

cone is also the angle of repose. With a given impact location, at the current time step, the

grain pile that the incoming grain tends to form can be mathematically described as

hcone (x, y) = hin(ximpact, yimpact) −

√
(x − ximpact)2 + (y − yimpact)2

tan α
(3.1)

where hin is the initial profile, (ximpact, yimpact) is the impact location, and α is the angle of

repose.

In Eq.  3.1 , the required input to generate the expected cone distribution is the impact

location, not the combine harvester auger location. The impact location is not generally

the same as the auger location because of the auger exit grain velocity of in horizontal

direction and wind. For a combine harvester, the initial velocity of the grain flow in the

lateral direction as depicted in Fig.  3.4a plays a significant role on the difference between

the impact location and auger location. The trajectory of the grain flow is approximated
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(a) (b)

Figure 3.4. Step 1 in grain fill model: generate the tended distribution and
find the possible flowing region. (a) Impact of initial velocity; (b) Possible
flowing region of the incoming grain labelled in a contour plot.

as a projectile motion in y-z plane. Therefore, the relation between the auger location and

impact location can be described as

ximpact = xauger

yimpact = yauger + vyt

h (ximpact, yimapct) = zauger + vzt + 1
2gt2

(3.2)

where (ximpact, yimpact) is the impact location, (xauger, yauger, zauger) is the auger location in

3D space, (vy, vz) is the initial velocity of grain in the y-z plane, and g is the gravitational

constant, and t is the time the grain take to travel from the auger boot to the grain pile.

Besides the impact location, the initial velocity of the grain flow will also change the

angle in the expected cone distribution. For example, [  54 ] reports that when the impact

angle φ in Fig.  3.4a decreases, the angle of the cone on the back of the pile α2 also decreases.

By factoring initial velocity into the expected conical shape calculation, Eq.  3.1 is rewritten

as

hcone (x, y) = h0 −

√
(x − xi)2 + (y − yi)2

tan [λ (x, y, φ) α] (3.3)

where the angle of cone, instead of being a constant, will be reduced by a factor of λ, which

depends on the grain property and impact angle φ.
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However, even though the grain tends to distribute as a conical shape like hcone if the

grain is poured on a horizontal plane, the actual distribution h̃cone will be influenced by the

initial grain profile hin. One major influence from the initial profile to grain distribution is

the region that the grain can possibly flow to. Generally speaking, the granular material

flows from the higher region to the lower. As a result, there is a possible flowing region for

the incoming grain bounded by the closest valley to the impact location in the initial profile,

as shown in the example in Fig.  3.4b .

To find the possible flowing region algorithmically, the possible flowing region is solved

from the seed point (impact location) with the downward flowing criteria, i.e., the grain will

only flow to lower region. The first step is to discretize the grain profile as 2D grid hin (xi, yj)

bounded by the cart edge:

hin (xi, yj) , where1 ≤ i ≤ Lcart

d
; 1 ≤ j ≤ Wcart

d
(3.4)

where i is the index of grid in the longitudinal direction of the cart, j is the index of grid

in the lateral direction of the cart, Lcart is the length of cart, Wcart is the width of the cart,

and d is the grid size.

The possible flowing region evolves inductively. Denote Pi as the possible flowing region

set at step i. At each iteration, the algorithm looks at the boundary grids in the current

region, denoted as Bi. For each grid bi,j that belongs to the boundary Bi, it will look for

its candidate neighboring grid set Ci,j that are not in Pi and has a lower height than the

boundary grid height h(bi,j).

where Ci,j is the candidate set for possible flowing region derived from boundary point

bi,j, N (bi,j) is the neighboring grid to bi,j and h (bi,j) is the height of bi,j.

After getting the candidate sets from all the boundary points, the flowing region will

grow by adding the new candidate sets.

Pi+1 = Pi ∪
NB⋃
j=1

Ci,j (3.5)

where NB is the number of boundary points in Pi.
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The iteration continues until there is no more candidate points
NB⋃
j=1

Ci,j = ∅

After determining the possible flowing region, as shown in Fig.  3.3 , the tended cone

distribution will be rectified as

h̃cone (x, y) =

 hcone (x, y) , if (x, y) ∈ PN

NaN, Otherwise
(3.6)

where PN is the possible flowing region, NaN denotes that a grid in which grain will not be

added at this time step.

With the rectified tended grain distribution h̃cone (x, y), the new grain profile with the

additional grain from the current time step will be a combination of the initial profile and

the tended distribution

hnew (x, y) =


h̃cone (x, y) + ∆h, if h̃cone (x, y) + ∆h > hin (x, y)

hin (x, y) , if h̃cone (x, y) + ∆h ≤ hin (x, y)

hin (x, y) , if h̃cone (x, y) = NaN

(3.7)

here ∆h is the height growth results from the incoming grain at current time step. ∆h can

be solved iteratively by

Lcart/d∑
i=1

Wcart/d∑
j=1

hnew (x, y) − hin (x, y) = ∆V

where ∆V is the amount of grain unloaded into the container at a given time step.

Finally, if the cart is moving, cart jostling will shake down the grain and reduce the angle

in the conical distribution. To simulate the jostling effect, for the grain portion in hnew, a

low-pass Gaussian filter was applied to the grain profile

hout (x, y) = hnew (x, y) ⊗ G (x, y) (3.8)
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where G(x, y) is a 2D Gaussian kernel that can be described as

G (x, y) = 1
2πσ2 e− x2+y2

2σ2 (3.9)

here the standard deviation σ depends on the magnitude of the jostling.

The grain fill model can also be used to estimate spillage. To enable spillage calculation,

the same framework is applied but the range of the grain profile definition is expanded

as shown in Eq.  3.4 . Instead of bounding by the edge of the grain container, the range

of the profile grids will be extended with extra auxiliary grids, which represent the ground.

Consequently, the spillage is the grain amount added to the auxiliary grids, and the container

grids adjacent to these auxiliary grids are the spillage location.

3.1.3 Simulation results

The granular material piling model was implemented in MATLAB r2019a on a Windows

PC (CPU: Intel Core i7-8700, RAM: 16GB). A continuous unloading process from a combine

harvester (model: John Deere S660) to a grain cart (model: Parker 1348) was simulated.

The cart length is 8.5 m and the width is 3.5 m. The maximum auger flow rate is 3.8 bu/s.

The auger boot is 3.85 m high relative to the bottom of the grain cart. The grain flow

from the auger boot has an initial velocity of 1.5 m/s in the horizontal direction and 2 m/s

downward in the vertical direction. The angle of repose of the grain is 23 degrees. The grid

size of the grain profile grid is 8.5 cm. In the unloading process, the auger unloads from the

front of the grain cart to the back. The auger stays at the front for an extended period of

time to create a spillage scenario.

The simulated unloading process takes 384 seconds in the physical world, and the simu-

lation time in the computer is 89 seconds with a simulation step size of 0.2 seconds. Because

the simulation time is about 77% shorter than the time it takes in the physical world, the

grain fill model can be used as a real-time estimator for an automated system from a com-

putational efficiency perspective.

Visualization 1 and Visualization 2 show the simulation results from this unloading pro-

cess. Figure  3.5 shows one representative frame from the simulation results. Figure.  3.5a is
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the contour plot visualization, in which the green triangle marks the auger location at the

current time step. The cone distribution of the grain is following the angle of repose from the

impact location. Figure.  3.5b is the lateral cross-section at the auger location, in which the

orange block labels the cart geometry, the blue block labels the grain, and the red dash line

shows the simulated grain flow trajectory. The influence of the initial velocity of the grain

flow can be examined clearly from the lateral cross-section: the impact location is farther

away from the auger location, and the angle of the pile at the back is smaller than the one

at the front.

(a) (b)

Figure 3.5. Grain fill model simulation results. (a) Contour plot of the grain
profile (associated with Visualization 1); (b) Lateral cross-section of the grain
profile at the auger location (associated with Visualization 2).

Figure  3.6 shows the percentage of spillage during this unloading process, demonstrating

the spillage simulation capacity of the grain fill model. At around t = 230s, because the

auger continues unloading at the front of the cart for an extended period of time, the spillage

at the front of the cart edge increases the grain spillage percentage. After around t = 250s,

the spillage percentage decreases because the auger moves to the back of the cart, and the

following grain are unloaded into the grain cart.
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Figure 3.6. Spillage percentage of grain in grain fill model simulation.

3.1.4 Benchmark system development

Grain fill model benchmark system

To validate the accuracy of the grain fill model, a benchmark system was built to mea-

sure the grain profile experimentally during unloading and the experimental results were

compared with the grain piling model simulation results. The benchmark system was built

around an Ouster OS0-64 LiDAR with 90o vertical field of view, 64-channel vertical reso-

lution, 360o horizontal field of view, and ±1.5 − 5 cm precision. The large field of view of

the LiDAR allows the system to measure the complete profile during the entire unloading

process.

The LiDAR sensor was mounted on the unloading side of the grain cart so it would not

interfere with the combine unloading. An unloading scenario was developed in the Unreal

engine to validate the LiDAR placement as shown in Fig.  3.7a . Figure  3.7c shows the

simulated LiDAR data from Unreal. By placing the LiDAR at 112 cm above the grain cart

with a 65o viewing angle, the LiDAR field of view can cover the entire grain cart. Meanwhile,

most of the LiDAR measurements come from the region of interest, the area inside the grain

cart, so the LiDAR point cloud density for the grain profile can be maximized.

After determining the LiDAR placement on the grain cart, an L-shape bracket was used

to mount the LiDAR on the grain cart at the designed location as shown in Fig.  3.7b . In

experiments, the LiDAR sensor was connected to a Linux PC via an Ethernet cable for

sensor configuration and data logging.

47



(a) (b)

(c)

Figure 3.7. Grain fill model benchmark system. (a) placement of grain fill
model benchmark system; (b) picture of grain fill model benchmark system
mounted on the grain cart; (c) simulated LiDAR coverage from Unreal engine.

Benchmark experiment design and implementation

In the grain fill model benchmark experiment, grain was unloaded from a combine har-

vester (model: John Deere S790) to a static grain cart (model: Brendt 1020 XR). The

harvester unloaded the grain from the back of the cart to the front in multiple small batches.

Each batch of unloading takes 10-15 seconds. After unloading a batch of grain, the auger

was stopped to allow the dust to settle down before LiDAR measurement to minimize dust
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impact on LiDAR data quality. After the dust settled, the experimental data required by

the grain fill model to simulate the same scenario were collected, including:

• LiDAR scans from the benchmark system to obtain benchmark grain fill profile and

experimental angle of repose

• CAN data from combine and tractor to extract auger location from vehicles’ GPS

location

• Grain cart weight reading for auger flow rate estimation

• Weight of spilled grain if applicable

After unloading tests, some constant properties for the grain fill model were measured

including:

• LiDAR scan of an empty grain cart for grain cart geometry

• LiDAR scan on flat ground to calibrate the LiDAR placement

• Density measurement of the grain to convert weight measurements to volume measure-

ments

Benchmark data processing

To validate the accuracy of the grain fill model, the experimental results ought to have the

same format as the grain fill model output, which is a 2D height map. However, the raw data

from a LiDAR sensor is a point cloud containing the 3D coordinate of each point relative to

the LiDAR sensor. Moreover, the experimental LiDAR point cloud includes unrelated data

(e.g., ground, cart tarps) that could impact the ground-truth profile extraction. Therefore,

a data processing pipeline was developed to convert the point cloud data to a ground-truth

2D height map hexp(x.y).

Figure  3.8 shows an example of point cloud data processing to obtain the experimental

height map for benchmarking. As shown in Fig.  3.8a , the raw LiDAR point cloud is in the

LiDAR coordinate and contains data outside the region of interest, the grain cart, so the
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(a) (b)

(c) (d) (e)

Figure 3.8. Benchmark data processing for point cloud data from empty
cart (a) raw LiDAR point cloud; (b) a picture of the grain cart; (c) grain cart
LiDAR point cloud; (d) unprocessed height map; (e) processed height map for
grain fill model benchmark.
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point cloud data outside the grain car were removed first and the points in the region of

interest are then converted to world coordinate, which is used in the grain fill model.

To determine the transformation from LiDAR coordinate to world coordinate, the LiDAR

pose was calibrated by a flat ground LiDAR scan with the same placement. After that, a

flat plane was fitted from the point cloud data of the ground. The normal vector of the

fitted plane is denoted as −→np = [xp, yp, zp]T . Because the normal vector of flat ground on

world coordinate is parallel to [0, 0, 1]T , the transformation from LiDAR coordinate to world

coordinate can be calculated by solving for a 3 × 3 matrix RLW such that

RLW
−→np = [0, 0, 1]T (3.10)

Via the transformation RLW obtained from calibration, the raw LiDAR point cloud is

rotated to the world coordinate. After that, based on the LiDAR placement and the grain

cart geometry, the point cloud was cropped to only retain the portion of point cloud from

inside the grain cart as shown in Fig.  3.8c . One can discretize a 3D point cloud to a 2D

height map by taking the average of all the point inside a 2D grid:

hexp (x, y) =
N∑

i=1
zi (3.11)

where N is the number of points inside the grid x − d
2 ≤ xi < x + d

2 , y − d
2 ≤ yi < y + d

2

However, if the preprocessed point cloud in Fig.  3.8c by Eq.  3.11 was directly discretized

by Eq.  3.11 , the resultant height map did not represent the grain cart geometry. As shown

in Fig.  3.8d , there are 3 major issues preventing this simple discretization from getting the

desired geometry:

1. For boundary grids (as shown in the brown circle in Fig.  3.8d ), the desired ground-

truth geometry should be the height of the edge, but the simple average takes into

account the data points from the wall as well, leading to a lower height value.
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2. For grids that contain tarp or bracket data points (as shown in Fig.  3.8b and red circle

in Fig.  3.8d ), the height map should reflect only the bottom of the grain cart or grain

height, and not be corrupted by the tarp or bracket.

3. Because of the occlusion from the tarps and brackets, some areas at the bottom of the

grain cart (circled in white in Fig.  3.8d ) do not have valid data, leaving holes in the

height map.

To solve these issues, an enhanced height map extraction pipeline was proposed:

1. For boundary grids, the pipeline calculates the grid height by averaging the highest

5% points inside this grid to reduce the impact from wall data points.

2. For non-boundary grids, the algorithm looks for the cluster of points with the lowest

z value in the z distribution and calculate the average height in this cluster. In this

way, the tarp or bracket data with higher z can be excluded.

3. After calculating all the grids with available data, the height value of the remaining

empty grids is calculated by a bi-linear interpolation.

By applying the pipeline, the resultant height map of an empty grain cart is shown in

Fig.  3.8e .

3.1.5 Experimental validation

The same benchmark data processing pipeline was applied for the entire unloading pro-

cess and obtained the experimental ground-truth height map. With the same configurations

as the experiment, the same process was simulated by the grain fill model. The experimental

and simulation results are shown in Visualization 3. Visualization 4 compares the difference

between the experimental and simulated profile. Figure  3.9 shows a typical step in this un-

loading process. The simulated profile has a similar shape to the experimental profile. The

simulated profile error of most grids are within ±0.3 m. The error near the edge is higher

because the replicate padding for the low-pass filter to simulate the jostling effect introduces
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(a) (b) (c)

Figure 3.9. Grain fill model benchmark result (associated with Visualization
3 and Visualization 4): (a) simulated grain fill profile; (b) experimental grain
profile; (c) difference between simulated and experimental profile.

(a) (b)

Figure 3.10. Grain fill model benchmark approaches: (a) approach 1: grain
fill model is the only fill status feedback; (b) approach 2: grain fill model
provides supplementary feedback for perception sensor (e.g., IPM, LiDAR).

error for the boundary data. For the center part of the profile, most error are within ±0.2

m.

Given the computational efficiency of the model, apart from being used in the simulation,

the model can also be used as a real-time grain fill profile estimator in a controller to automate

the granular material piling process. For example, the model can be used as a grain fill model

to provide feedback for grain unloading automation. There are two different approaches to

apply the model as a grain fill profile estimator as shown in Fig.  3.10 . Approach 1 (Fig.  3.10a )

53



uses the grain fill model as the only means for grain fill profile feedback. In this case, the

grain fill model calculates the profile solely based on the vehicle status, including vehicle

GPS and auger status. As a result, the difference between the simulated feedback and the

actual profile will be similar to the results in Fig.  3.9 , in which the grain fill model runs

the whole unloading process from an empty cart without any calibration. Because of the

iterative nature of the grain fill model, the error in the simulated profile accumulates.

Approach 2 in Fig.  3.10b shows another possible application where the grain fill model

works together with a perception system for grain fill profile feedback. Due to various lighting

conditions and heavy dust during unloading operation, a perception system based on LiDAR

or camera could lose track of the profile or be occluded by dust clouds. On one hand, to

complement the perception system, the grain fill model can be used to estimate the grain

height at the occluded area or provide unstopped feedback when the perception system loses

track. On the other hand, the grain profile from the perception system can be used for

calibrating the grain fill model by reinitializing the input profile to the model.

(a) (b) (c)

Figure 3.11. Grain fill model benchmark result with reinitialization at the
beginning of each grain batch (associated with Visualization 5 and Visual-
ization 6): (a) simulated grain fill profile; (b) experimental grain profile; (c)
difference between simulated and experimental profile.
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Table 3.1. Grain spillage validation
Spillage amount (lbs) Spillage volume (bu)

Ground truth measurement 90.23 1.61
Approach 1 251.02 4.48
Approach 2 155.54 2.78

To evaluate the accuracy of the grain fill model in approach 2, the grain fill model

simulated the same process while reinitializing the grain profile at the beginning of each

grain batch. After that, the simulation error was calculated by comparing the difference

after unloading a batch of grain. Each batch has 40-80 bushels of grain and takes about

10-20 seconds to unload. Visualization 5 and Visualization 6 show the results of approach 2.

Figure  3.11 shows a representative frame of the unloading process. Compared with approach

1 in Fig.  3.9 , with an accurate grain profile from a perception system to calibrate the grain

fill model, the models show a better accuracy with error generally within ±0.15m.

In addition to grain height validation, the spillage estimation of grain fill model is also

validated by intentionally overfill the cart. In the same testing, the final batch of grain

was unloaded to the same location and causes 90.23 lbs of spillage according to the weight

measurement of the spilled corns. Table  3.1 summarizes the spillage estimation. Both

benchmark approaches of the grain fill model detects the spillage successfully. In comparison,

approach 2, which updates the initial profile with ground truth data at the beginning of every

batch, demonstrates a better accuracy.

The overestimate of the spillage amount in both cases indicates a more conservative esti-

mation on spillage for the grain fill model, and could result in a more conservative unloading

target. However, the magnitude of the overestimation is only 2.87 bu for grain fill model only

and 1.17 bu for grain fill model with perception feedback correction before the unloading of

each batch. Considering that the auger flow rate is around 3.5 bu/s, if applied in an actual

unloading scenario, the estimation only advances the auger off by no more than 1 second.

Moreover, for an 1000-bu grain cart, the impact on the carrying capcity insdie the cart is no

more than 0.3% for both cases, which is negligible.
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(a) (b)

Figure 3.12. Spillage location validation for the grain fill model. (a) bench-
mark system measurement after spillage; (b) spillage location predicted by the
grain fill model shown in red.

The spillage location is also assessed qualitatively. The spillage happened when unloading

the last batch of grain. Figure  3.12b shows the estimated spillage location (highlighted in

red) by the grain fill model. Both approach 1 and approach 2 of the grain fill model give

the same estimation of the spillage location, which is at the back of the grain cart. It is

consistent with the observation in the field. Additionally, Figure  3.12a shows the grain profile

after spillage. Consistent with the grain fill model prediction, the grain profile inside the

cart has the same height as the cart edge at the longitudinal back of the cart, indicating the

same spillage location.

3.1.6 Conclusions

In this paper, a computationally efficient model was proposed to simulate the piling

process of granular material inside a container. Based on the geometric characteristics of
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granular material with additional refinements on flow dynamics and jostling effect, the model

can be run in real-time while maintain sufficient accuracy for the general profile estimation.

The model is applied to simulate the grain piling process during agricultural unloading from

a combine harvester to a tractor-driven grain cart. By comparing with the measurement

results from a high-accuracy LiDAR, the in-field testing validates the accuracy of the piling

model during a static grain unloading to be ±0.2m. Given the real-time capacity, the paper

presents two possible approaches for the model to be used as a real-time estimator for the

grain unloading automation applications.

3.2 Vehicle dynamics model

The vehicle dynamics model simulates the dynamics for the relative position between the

tractor and the combine harvester, which ultimately leads to the change of auger location. In

this vehicle system, Machine Sync is used as the low-level controller to control the speed and

the moving direction of the tractor to achieve the desired relative location. Therefore, instead

of modeling the detailed dynamics for the tractor plant and the combine plant separately, the

vehicle dynamics model simulates the relative motion between the combine and the tractor

controlled by Machine Sync as an aggregated system. As a result, the aggregated Machine

Sync - tractor - combine plant takes the input as commanded relative location and outputs

the actual relative position. As a way to identify the system dynamics, a data-driven system

identification method was used to estimate the system model.

3.2.1 System ID in simulation

In practice, the Machine Sync system takes nudge commands from the operator and

updates its target relative position between the two vehicles by a fixed distance, so nudges of

different sizes were commanded to the Machine Sync model to observe the vehicle dynamics

response.

Figure  3.13 shows some representative responses from the Machine Sync system with

nudge commands in the longitudinal direction. Machine Sync system response can be cate-

gorized into two plants based on nudge sizes. Fig.  3.13a shows the small nudge plant response
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(a) (b)

Figure 3.13. Vehicle response to Machine Sync nudge in longitudinal direc-
tion. (a) small nudge, nudge size smaller than 1m; (b) larger nudge, nudge
greater than 1m.

when the nudge size is smaller than 1 m. In this case, for both nudge up (i.e., moving tractor

forward) and nudge down (i.e., moving tractor backward), the actual location overshoots by

about 50% and then converges to the commanded location in more than about 100 seconds.

However, for nudge size greater than 1 m shown in Fig.  3.13b the responses for nudge up and

nudge down are different. The nudge down response is similar to small nudge plant in which

the overshoot is high and the response is sluggish. In comparison, the nudge up response

starts with an undershoot of about 90% and then converges to the commanded location at

a faster rate of about 80 seconds.

After generalizing the Machine Sync dynamics into two distinct plants depending on the

nudge size and direction, the large nudge up plant was modeled as a third-order system

and the small nudge plant was modeled as a second-order system. After that, the response

simulated from the same plant was normalized. Instrumental variable estimation method [ 56 ]

was used to identify the parameters in the transfer function. Figure  3.14 and  3.15 show the

system ID results from small nudge plant and large nudge plant respectively. Both identified

plants show a similar response to the normalized raw simulation data, especially for the

oscillating frequency and overshoot percentage, demonstrating that the identified plants can

represent the Machine Sync - combine - tractor system dynamics in simulation.
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Figure 3.14. System ID from Machine Sync simulation response for small nudge plant

Figure 3.15. System ID from Machine Sync simulation response for large nudge up plant

3.2.2 System ID from in-field testing

An experimental platform was developed to identify the characteristics of the Machine

Sync controlled combine/tractor relative position response. The vehicles used in experiments
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included a combine harvester (model: John Deere S660), a tractor (model: John Deere 8345R

with Infinitely Variable Transmission), and a grain cart (model: Brandt 1020XR). In the

combine and the tractor, two CAN loggers (model: Kvaser Memorator Pro 2xHS v2) were

used to log the CAN data from the combine CAN and the tractor CAN simultaneously.

Figure 3.16. GIS visualization of vehicle trajectory during Machine Sync system ID.

The system ID experiments were carried out on a flat terrain. During testing, AutoTrac

system was engaged to keep the harvester moving in a straight line and the combine throttle

remained unchanged to maintain a stable speed. After the tractor moved into the Machine

Sync operation zone, both the tractor and the combine engaged Machine Sync to take control

of the tractor speed and heading direction. After the tractor stabilized at the first desired

location, a nudge command was sent to the Machine Sync system by the operator from the

combine display. After receiving the nudge signal, Machine Sync controlled the tractor speed

to move it to the new desired location. Figure  3.16 shows a typical example of the vehicle

trajectories during the system ID test. The tractor sped up when the operator nudged

forward and slowed down when the operator nudged backwards.

The nudge tests for Machine Sync system ID were conducted with various combine speeds,

nudge sizes, nudges directions, the grain cart loads. Figure  3.17 summarizes all 280 nudge
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Figure 3.17. Machine Sync system ID configurations.

Figure 3.18. Data processing pipeline for experimental Machine Sync system ID

tests. A data processing pipeline was developed to extract step responses from the GPS

information in the CAN logs as shown in Fig.  3.18 .

First, because the combine CAN data and the tractor CAN data were collected separately,

the CAN bus data from the combine CAN and the tractor CAN were aligned based on the

GPS time in the logs. After data alignment, the relative distance in the nudging direction

was computed from the GPS location. In these experiments, because the vehicles are moving

in north/south line, the relative location in nudge direction dT −C can be calculated from the

latitude by

dT −C = Rearth (λT − λC) (3.12)
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(a)

(b) (c)

(d) (e)

Figure 3.19. Experimental system ID data prepossessing. (a) raw vehicle
GPS; (b) relative distance between tractor and combine; (c) filtered relative
distance between tractor and combine; (d) zoomed-in view of (b) at the boxed
region; (e) zoomed-in view of (c) at boxed region.

62



where Rearth is the radius of the earth, λT is the latitude of the tractor and λC is the latitude

of the combine.

As highlighted in red in Fig.  3.19a , the vehicles were not controlled by Machine Sync

when they were making turns at the end of the rows, so the combine compass bearing was

used to remove the data from turning points. The resultant relative distance during the

effective periods of system ID tests is shown in Fig.  3.19b . Figure  3.19d shows a zoomed-in

view of Fig.  3.19b . The relative distance directly calculated from the GPS has noise, because

tractor GPS and combine GPS data were not acquired at the same time. To address this

issue, a median filter was applied to remove the noise, as shown in Fig.  3.19c and Fig.  3.19e .

Figure 3.20. System ID from step response data for large nudge (greater
than 1m), 4-mph combine, and empty grain cart: normalized step response
data with identified plant

The step response data were then extracted from the filtered distance. By normalizing

the step response and applying the instrumental variable method, the coefficients of the

transfer functions were determined. A similar system ID process was applied for all testing

conditions listed in Fig.  3.17 . Figure  3.20 shows the system identified from step response

data for large nudges when the combine was moving at 4 mph and the tractor was towing

an empty grain cart.

Figure  3.21 demonstrates the Machine Sync dynamics obtained from experimental system

ID. In summary, the dynamics of Machine Sync only depend on the nudge size but do not

seem to change with nudge direction, combine speed, or grain cart loading. When the nudge
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(a) (b)

(c) (d)

Figure 3.21. Experimental system ID results: (a) large nudge with full grain
cart; (b) small nudge with full grain cart; (c) large nudge with empty grain
cart; (d) small nudge with empty grain cart.

size is greater than one meter, Machine Sync can be modeled as a overdamped second-order

system with a six-second settling time.

GL = 0.0453s + 0.4942
s2 + 1.315s + 0.4942 (3.13)

When nudge size is smaller than one meter, Machine Sync can be modeled as a second-

order system with a settling time of 18 seconds and 20% overshoot.

GS = 0.6049s + 0.1021
s2 + 0.5458s + 0.1021 (3.14)

64



3.2.3 System characteristics with different transmissions

The development of the automatic unloading system is majorly based on the system

setup with an IVT (Infinitely Variable Transmission) tractor. However, a number of PST

(Power Shift Transmission) tractors are being used in the US farms. Therefore, the system

ID in-field testing was also conducted for the Machine Sync system with a PST tractor. The

experimental system ID for the PST tractor uses the same methodology as the IVT tractor.

The PST tractor model used in the in-field testing is John Deere 8R340.

Figure 3.22. Relative location of PST tractor to the combine harvester con-
trolled by Machine Sync system with sensitivity 2

When using the Machine Sync system, there are five sensitivity levels that can be selected

to adjust how fast the tractor goes to the desired location. The higher the sensitivity level,

the faster the tractor goes to the desired location. The default sensitivity level is three,

so the system ID results from the IVT tractor shown in Fig.  3.21 is based on sensitivity 3.

However, when using the PST tractor, the tractor is going to have significant oscillation when

the sensitivity level is equal or greater to 2. Figure  3.22 shows an example of the relative

location between two vehicles when the sensitivity is 2. The oscillation remains significant

even after the tractor reaches the desired location, making it uncomfortable for an operator

to stay in the cabin for a long time, and thus not practical for the use of automatic unloading.
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(a) (b)

(c) (d)

Figure 3.23. Machine Sync experimental system ID results comparison be-
tween PST tractor and IVT tractor: (a) small nudge forward; (b) large nudge
forward; (c) small nudge backward; (d) large nudge backward.

Therefore, the system ID experiments were only conducted on the PST tractor with low

Machine Sync sensitivities. Figure  3.23 compares the Machine Sync dynamics difference

between the PST tractor with two different MS sensitivities and the IVT tractor.

With a PST tractor, the Machine Sync dynamics does not change with regard to nudge

direction, grain cart fullness, or vehicle speed either. Similar to IVT tractor, the Machine

Sync system has two different dynamics based on nudge size with a threshold of 1 meter.

However, the Machine Sync dynamics with PST tractor and IVT tractor are drastically

different from each other. For sensitivity 1 response, Machine Sync with PST has a much

longer settling time than IVT. For small nudge (less than 1 meter) response, the PST system

has a 50% overshoot while the IVT system only has about 15% overshoot. For large nudges

(greater than 1 meter), the 5 % settling time is about 11 seconds, longer than 5-second

settling time for an IVT tractor.
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The sensitivity 2 response of a PST tractor shows a similar settling time to the IVT

system. However, it shows greater overshoot than the IVT system for both the small nudge

response and the larger nudge response.

The difference between the system dynamics with different tractors can impact the design

of the automatic unloading controller design. For example, the closed-loop movement con-

troller to improve system dynamics may need to be synthesized differently for the automatic

unloading application on machines with a different transmission.

3.3 Perception model

3.3.1 Introduction

The automation in agricultural machinery provides an immense opportunity while also

poses various challenges to the development of the perception system used in the automated

machinery. Among these challenges, one of the most critical issues is the safety and reliability

of the perception system. To build trust and expand the acceptance of automated machinery

for the operator, the perception system not only needs to work properly in nominal scenarios,

but also has the capacity to deal with various less frequent scenarios. This applies to both

the development and the validation stage of the perception system.

Most recent paradigms for developing a perception system have benefited enormously

from Machine learning [  57 ]. The Machine learning methods that are widely used in auto-

mated machinery, such as reinforced learning, deep learning, require a huge amount of data

for training and testing [  58 ], [ 59 ]. Traditionally, the data are collected from in-field test-

ings. However, in-field testings are labor-intensive and costly. To build a reliable algorithm

that works for different vehicle configuration and operating conditions, the data set used for

training and testing the algorithm also needs to encompass these various conditions.

To address the limitation of obtaining training and testing data from in-field testing,

generating data from a virtual environment for training and testing gains significant atten-

tion recently [  60 ], [  61 ]. Compared with in-field testing, data set generation from virtual

environments are more versatile and cost-effective. Therefore, simulation data have been

widely used for the development of autonomous vehicles including the perception system [ 62 ].
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Furthermore, recent development in game engines provides a solid foundation to generate

photo-realistic images using computer graphics technology. Researchers develop perception

systems that are trained from these types of virtual data [  63 ]. Some researchers report that

perception systems trained with virtual data can be comparable with the ones trained with

real-world data [ 64 ].

The extensive use of virtually generated data in perception system development in on-

road vehicles reveals a great opportunity to apply the same techniques for agricultural ma-

chinery automation. Moreover, in agricultural applications, generating these data sets from

in-field testing could sometimes be challenging. For instance, to collect data for actual ma-

chinery’s operations, the tests can only be conducted in specific windows within a year due

to the nature of the plant growing cycle. Additionally, within these already limited time win-

dows, data collection for edge cases such as various weather conditions will further shrink

the viable time.

Therefore, a perception model in Unreal engine [ 65 ] was developed to simulate the re-

sponse of both stereo-camera based perception systems and LiDAR-based perception systems

during unloading on the go. Additionally, the model can simulate the unloading operations

in different edge cases and different machine configurations to provide a broad range of data.

Besides modeling the unloading process, the perception model was also used to recommend

system configurations and propose a validation pipeline to evaluate the perception system

performance.

3.3.2 Camera data simulation

Figure  3.24 shows the architecture of the perception model of an unloading process for

a stereo camera-based perception system. The key function of a perception model is to

simulate the raw camera images for the stereo camera under different scenario definitions

including vehicle models, lighting conditions, camera parameters. After that, the simulated

stereo camera image can be used to train or validate the perception system algorithm.
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Figure 3.24. Perception model simulation architecture

Camera model

The pin-hole camera model was adopted to simulate the left and right lens of the stereo

camera simultaneously. The projection from the 3D world coordinate (xw, yw, zw) in Unreal

to the 2D camera coordinate in each camera image (uc, vc) can be described as

sc


uc

vc

1


= Ac[Rc, tc]
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
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
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1


(3.15)

where sc is the scaling factor, Rc and tc are the rotation matrix and the translation vector

from the world coordinate to camera lens coordinate, Ac is the intrinsic parameter of the

camera showing the transformation from camera lens coordinate to the imaging plane.

In Eq.  3.15 , the rotation matrix and the translation vector are the extrinsic parameters

of the camera, and the change of camera placement or vehicle location will alter these

parameters. The intrinsic parameters, on the other hands, includes the properties of the
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camera: αx and αy are the focal lens of the camera in horizontal and vertical direction; γ is

the skew factor, and (u0, v0) is the principle point in the image plane.

Because Unreal uses an ideal pin-hole camera. The focal length will be the same for each

direction of the camera αx = αy = f ; There is no skew effect γ = 0; and principle point will

be the center of the image. As a result, the intrinsic parameter can be simplified to

Ac =


f 0 u0 0

0 f v0 0

0 0 1 0

 (3.16)

By alternating the intrinsic parameter of the camera, the impact of stereo camera pa-

rameter was simulated. For example, the field of view of an ideal camera, which shows how

wide the camera can see, can be calculated from the intrinsic matrix in Eq.  3.16 by

fovy = 2 arctan u0

fy

, fovx = 2 arctan v0

fx

(3.17)

where fovy is the vertical field of view, fovx is the horizontal field of view.

Figure  3.25 shows the impact from different camera horizontal FoVs. With a greater

field of view, the camera can have better coverage of the grain cart and thus obtain more

complete information about the unloading process. Nonetheless, a larger field of view also

results in larger distortion, which could impact the final accuracy of the perception results.

Figure 3.25. Simulated camera images with different field of views
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Scenario setup

After defining how the camera captures images in the Unreal environment to generate

raw data for the perception system, the next step is to build the virtual environment for

unloading on the go operation. As shown in Fig.  3.24 , the scene is constructed with a

combine harvester, a tractor towing a grain cart, and cornfields.

(a) (b)

Figure 3.26. Perception model components (a) a perspective view of percep-
tion model components in Unreal; (b) simulated camera view from auger in
perception model.

The vehicle CAD models are imported to the Unreal environment with the Datasmith

feature. Figure  3.26a shows a perspective view of the perception system with the imported

vehicles and terrain and texture designed in Unreal. After generating the virtual world, a

stereo camera was placed on the combine auger to simulate the response from the perception

sensors. Fig.  3.26b shows the simulated camera image from one of the stereo camera pair.

Besides the objects with fixed geometry such as vehicles and terrain, the unloading process

simulation also involves dynamic objects, such as the grain pile inside the cart and the grain

flow from the auger. The visualization techniques used for static meshes are no longer

applicable to these dynamic objects.

To enable the grain fill profile visualization, a pipeline was created to convert the grain

fill profile (2D array) simulated from the grain fill model in MATLAB Simulink to a 3D

procedural mesh in the Unreal engine. On the Simulink side, the process to simulate the
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2D grain fill profile array has been introduced in sec.  3.1 . After generating the 2D grain fill

map, the height value was parsed to a floating-point number array and then pass the array

to Unreal with a shared memory module developed by Mathworks.

On Unreal side, a procedural mesh was initialized with same vertices number as the gird

number in the grain fill profile. The vertices are defined in the grain cart coordinate with

location as [
xi,j yi,j zi,j

]T

=
[

di dj hi,j

]T

(3.18)

where [xi,j, yi,j, zi,j] is the position of the vertice i in cart longitudinal direction, j in cart

lateral direction; d is the grid size, and hi,j is the height value generated by grain fill model

in the corresponding grid.

With vertices in the mesh defined, the edge are defined by connecting the vertice [i,j]

with neighboring vertices [i+1, j], [i, j+1], and [i-1, j-1] if they exist. Finally, the triangles

in the mesh are defined by the closed neighboring edges.

Another dynamic object is the grain flow. To simulate the grain flow effect, the particle

system in Unreal was used by creating a particle source at the auger boot location. After

that, a number of particles with grain texture will be originated from the auger spout location

with an initial velocity. The particles are subject to a constant downward acceleration to

simulate the gravitation effect. Finally, the particles will disappear after they hit the grain

bed mimicking the actual scenario in the field.

Figure  3.27 is one representative frame in Visualization 7 showing the simulation with the

dynamic grain profile and grain flow incorporated. Figure  3.27a is the grain profile generated

in the grain fill model in Simulink. After passing the profile into Unreal engine, Fig.  3.26b 

and  3.27c show the auger camera view and top-down view of this unloading processing

respectively.

Lighting condition

Lighting conditions are important for stereo camera-based perception system as they

could significantly impact the imaging quality or the overall look of the image, and thus

potentially altering the perception results. Therefore, it is crucial to train and test the
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(a) (b)

(c)

Figure 3.27. Grain profile and grain flow visualization in perception model
(associated with Visualization 7) (a) The grain profile simulated from grain
fill model; (b) auger camera view in perception model; (c) top-down view of
the unloading process.

perception system algorithms with different lighting conditions to enhance the system’s ro-

bustness against various lighting. In this perception model, challenging lighting conditions

are simulated include nighttime, rainy day, and dusty environment with direct sunlight.

Figure  3.28 shows the perception model simulation results for a night time unloading

operation. As shown in Fig.  3.28a , the major light sources during night time become the

artificial lights including the front lights on the combine and the tractor illuminating the

field and the combine auger light illuminating the field. Moreover, Fig.  3.28b demonstrates

the characteristics of camera images during night time. Compared with the simulation result

for a day-time operation in Fig.  3.26b , the portion of the grain cart that is not illuminated
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(a) (b)

Figure 3.28. Perception model simulation for night time. (a) perspective
view; (b) auger camera view.

by artificial light source becomes too dark to observe the features. Apart from the look of

the image, the low lighting can also introduce additional sensor noise, degrading the image

quality [  66 ]. In the perception model, Gaussian noise is added to the image to simulate

the imaging noise at low light condition, and the distribution of the Gaussian noise can be

described as

p (z) = 1√
2πσ

e−(z−z)2/2σ2 (3.19)

where z represents the intensity of an image, p(z) is the probability density function of z, z

is the average value of z, depending on the light intensity, and σ is the standard deviation

of the intensity distribution, which is larger when the environment light becomes weaker.

Rain day is another challenging environment that could have a great impact on percep-

tion system visibility. In Fig.  3.29 , the unloading operation in rain was simulated. Because of

the overcast on a rainy day the sunlight is more diffusive. Besides, the contrast between illu-

minated area and shadow is less obvious compared with the nominal condition in Fig.  3.26a .

Additionally, the foggy environment during the rainy day could reduce the transmissivity

of light, and thus makes the scene at a farther distance blurry. On the simulated camera

image in Fig.  3.29b , a dynamic raindrop effect is also added on the camera lens, because
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(a) (b)

Figure 3.29. Perception model simulation for a rainy day. (a) perspective
view; (b) auger camera view.

the raindrops that stay on the camera lens could cause significant occlusion, and the moving

raindrop may confuse the algorithm.

A dusty environment with direct sunlight is a challenging unloading environment even for

a human operator, so a perception system that could work on such a scenario will be more

valuable. In Fig.  3.30 , such an unloading environment is simulated in Unreal. Figure  3.30a 

shows a perspective view of the unloading process, where sunset creates a large shadow on

the scene and the whole image has a warm tone. The impact of direct sunlight can be

observed more clearly in the simulated camera image in Fig.  3.30b . Because of the high

brightness of the sun in the background, the region of interest (i.e., the grain cart) becomes

very dark. The large dynamic range of the image could pose a unique challenge for the

perception system.

Another challenge in this scenario comes from the dust. The impacts from dust come

from two sources, floating dust particles in the air and dust particles stuck to the camera

lens.

Some moving dust particles were simulated with the particle system in Unreal with a

translucent texture to mimic the dust generated from the impact of the grain flow. Although

dust is translucent, for areas where dust particles are very dense, the dust could occlude

the camera view to the grain profile behind. Besides, because dust particles often have
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(a) (b)

(c) (d)

Figure 3.30. Perception model simulation for a dusty environment with
direct sunlight. (a) perspective view; (b) auger camera view with 40,000 small
dust particles on lens; (c) auger camera view with 300 large or medium dust
particle on lens; (d) auger camera view with 10,000 small particles on lens.

a lighter color than the grain or cart, when the scene is illuminated by direct sunlight as

Fig.  3.30b -  3.30d , the bright color could further exacerbate the impact of large dynamic

range in the scene.

The impact of dust on the lens is simulated in MATLAB with the method introduced

in [  67 ]. This method calculates the dust impact by calculating the light rays transmitting

from physical objects to the camera imaging sensor, and the amount of light occluded by the

particle on the lens. By assuming that the aperture in the camera is circular, in geometric

optics, its projection on the lens plan is also circular. Therefore, the occlusion effect calcu-
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lation can be approximated by the convolution between the projected aperture and the dust

particle. In summary, there are 3 different cases for dust occlusion depending on the dust

particle size relative to the camera aperture:

1. Large dust particles will create a total occlusion area at the particle’s center and the

occlusion effect fades out at its edge. Fig.  3.30c shows some examples of large dust

particles (one marked with a red arrow).

2. Medium-sized particle does not create a total occlusion. Its occlusion effect also peaks

at the center and fade through the edge. Fig.  3.30c shows some examples of medium

dust particles (one marked with a blue arrow).

3. Small particles does not create a total occlusion, and its occlusion effect plateau at

the center of the dust and decreases at the edge. Fig.  3.30b and  3.30d show example

image with small particles on the lens only. This is the most common case for a camera

attached to a harvester as the dust particles in the field usually have a small size. In

comparison, Fig.  3.30b simulates a lens with more dust particles, and thus the whole

image is darker than Fig.  3.30d .

3.3.3 LiDAR data simulation

Another commonly used perception sensor for automation and robotics is the LiDAR

(Light detection and ranging) sensor. However, unlike camera, Unreal does not have native

support for the LiDAR data generation. Therefore, a LiDAR model was developed in the

perception model based on the camera model discussed in Sec.  3.3.2 used in the Unreal

engine.

The LiDAR sensor was modeled in four steps:

1. Because the data is transmitted in the form of image between the Unreal engine and

Simulink. The depth information of the scene is first encoded into depth images.

2. Since LiDAR is a 3D sensor, the 3D coordinate for each camera pixel was then subse-

quently retrieved from the depth image.
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3. Because the LiDAR sensor and camera sensor sample the world in different patterns,

a data resampling was required to generate point cloud data following the LiDAR

pattern.

4. To emulate the sensor error in an actual LiDAR sensor, sensor noise was added to

mimic LiDAR sensor error.

(a) (b)

(c)

Figure 3.31. LiDAR data simulation. (a) depth encoded images; (b) LiDAR
data resampling; (c) simulated LiDAR point cloud.

Step 1: Render camera image with depth information (in Unreal)

A LiDAR sensor provides a 3D measurement of the environment geometry. However,

the virtual camera in Unreal only provides a 2D RGB image, and does not directly provide

depth information for the camera sensor. To simulate a 3D LiDAR sensor, 3D information

from the sensor point of view is required, and therefore must be calculated. Although Unreal

does not directly provide a 3D sensor model, it allows users to retrieve the depth information

for each pixel in the rendered image. The authors developed a pixel shader to encode the

depth information of each pixel into color values (as shown in Fig.  3.31a ).
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In Unreal the depth information is a float number and the color image is stored by an

8-bit integer for each R, G, B channel. To encode the depth value into color image with a

broad range and high precision, the following equations are used for depth encoding:

R(u, v) = G(u, v) = round(min((d(u, v)
α

)γ, 1) × 255) (3.20)

B(u, v) = round((d(u, v) mod β

β
)γ × 255) (3.21)

where R(u, v), G(u, v), B(u, v) are red, green and blue channel of pixel (u, v) on the depth

encoded color image. Each channel is stored by an 8-bit integer so the value is within [0, 255].

d(u, v) is the depth value to be encoded with the unit of cm, α and β are constant scaling

factors with α > β. α should be larger than the maximum value of d to avoid data truncation.

The mod is the modulo function and round is the rounding function. The gamma correction

constant γ = 2.2. Figure  3.32 is an example of the depth encoding implementation in the

Unreal visual scripting editor with α = 1000 and β = 100.

One may notice that only use two color channels were used for depth encoding, specifi-

cally, the red and green channel stores digits of d with greater place value to obtain a large

number range, and B channel stores digits of d with smaller place value to achieve high preci-

sion. Using two channels is adequate to encode the depth value required by our applications,

and the same encoding method can easily be extended to three channels if a larger range or

higher precision is required.

The screen manufacturers usually apply a power-law function on image intensity to make

the monitor color more vivid to human eyes [ 68 ], [  69 ]. This is called gamma correction and it

is not desirable for 3D rendering. To counteract the effect of the monitor’s gamma correction,

Unreal internally applies an inverse gamma correction on texture color. This will cause

inconsistency between the depth encoded image rendered by Unreal and the depth value to

be embedded. Therefore, a gamma function was added in the depth encoding before Unreal

renders the texture with inverse gamma correction.
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Figure 3.32. An example of the depth encoding implementation.

Step 2: Retrieve 3D coordinate from depth image (in Simulink)

After generating the depth encoded image, the 3D coordinate for each pixel (u, v) on the

image can be retrieved. Since the depth value is encoded into R, G, B channels of a color

image, the decoding can be achieved in an inverse manner using Eq.  3.22 

d′(u, v) =
[
round(R(u, v)

256 × α

β
− B(u, v)

256 ) + B(u, v)
256

]
× β, (3.22)

where d′(u, v) is the decoded depth value at pixel (u, v). The depth d′(u, v) is the Z coordinate

on camera sensor coordinate. To retrieve 3D information from a 2D depth image, the camera

model used in Unreal needs to be investigated.

Unreal uses a basic pinhole model [  70 ] as shown in Fig.  3.33 to simulate how the camera

sensor captures an image of the 3D world. Oc is the camera center and XcY cZc is the

camera 3D coordinate. The image plane is perpendicular to the Zc axis with a constant

distance f called focal length and Zc passes through the center of the image plane. A 3D

point P (X, Y, Z) is mapped to a 2D point Pc(u, v) on the camera image where Pc(u, v) is

the intersection between the line OcP and the image plane. Equation  3.23 describes the

mapping relationship from a 3D point to a 2D image pixel

−→
CP = (āu + b̄v + c̄)W (3.23)
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Figure 3.33. Illustration of the pinhole camera model

Since P = [X, Y, Z]T and C = [0, 0, 0]T , Eq.  3.23 can also be written as


X

Y

Z

 =
[

ā b̄ c̄

]


u

v

1

 W. (3.24)

Here ā and b̄ are unit vectors of two axes of the image plane with ā = [1, 0, 0]T and

b̄ = [0, −1, 0]T . c̄ is the vector from camera center to the origin of the image plane.

For a camera sensor with w × h resolution and hfov degrees horizontal field of view,

c̄ =
[
−w

2 , h
2 , w

2 tan(hfov/2)

]T
. W is the augmented dimension in homogeneous coordinate that is

used for simplifying the calculation. In Eq.  3.24 , the coordinate of each camera pixel (u, v)

is known, and the decoded depth d′(u, v) from Eq.  3.22 is the Z coordinate of P . There-

fore, there are three unknowns X, Y, W and three equations in Eq.  3.24 , the 3D coordinate

P (X, Y, Z) can be solved for each pixel Pc(u, v) of the depth image.
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Figure 3.34. Illustration of the LiDAR model built upon the camera model

Step 3: Resample camera image based on LiDAR patterns (in Simulink)

Camera and the LiDAR sensors sample the world in different ways. As shown in Fig.  3.33 ,

the camera pixels on the image plane distribute evenly in horizontal and vertical directions.

On the other hand, the LiDAR sensor samples the world evenly in angle instead of in

distance. After getting the depth encoded image from Step 1, the image is resampled based

on LiDAR’s scanning patterns. As illustrated by Fig.  3.34 , the LiDAR sensor scans the

world with evenly spaced angles and thus its point cloud data is typically represented by

spherical coordinates with a distance R, an azimuth angle θ, and a polar angle φ. The goal

is to derive the LiDAR model from the camera model and thus LiDAR coordinate X lY lZ l

is aligned with the camera coordinate. Then the image point Qc(r, θ, φ) corresponding to Q

can be determined on the image plane. Since Qc and Q lie on the same LiDAR ray, they

share the same angles θ and φ. However, Qc has to be on the image plane and it has a

different distance from Q. Consider the fact that the camera image plane is perpendicular
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to Z-axis with a constant distance of focal length, the distance r can be computed based on

the focal length and two angles:

r = f/ sin(θ)/ sin(φ). (3.25)

Here f = w
2 tan(hfov/2) , θ is integer times of LiDAR vertical resolution and φ is integer times of

horizontal resolution. Now the spherical coordinate of Qc can be converted into the camera

image pixel
(
ul, vl

)
by Eq.  3.26 .

ul = round(r sin(θ) sin(φ) + w/2)

vl = round(r cos(θ) + h/2)
(3.26)

Through Eqs.  3.25 and  3.26 , each LiDAR sample point is mapped onto one camera pixel(
ul, vl

)
and then extract the 3D coordinate of this pixel from depth image using Eq.  3.24 in

Step 2. Typically the LiDAR sensor has a larger horizontal field of view than what a camera

sensor has. Therefore, two camera models with the same location but different viewing

angles are stitched together to simulate one LiDAR sensor with an ultra-wide field of view.

Step 4: Add sensor noise (in Simulink)

The LiDAR data generated in Step3 is an ideal sensor data without any noise. The

developed LiDAR model also provides an option to add sensor noise and users can select

either use ideal clean sensor data or use noisy sensor data. This option is helpful for data

processing algorithm development. Algorithm development usually start with clean data to

build the basic algorithm architecture, and is then tested with different levels of noisy data

and iterate algorithm design to achieve a robustness performance in noisy conditions. Assume

that the sensor noise happens on distance measurement with a Gaussian distribution. For a

clean LiDAR data point Q(X, Y, Z), the sensor noise n ∼ N (µ, σ2) is added along direction

r = (X, Y, Z).

Figure  3.31c shows a simulated LiDAR sensor data using the developed LiDAR sen-

sor model. The LiDAR model allows simulation of different LiDAR sensor specifications

including field of view, angular resolution, minimum and maximum measurement range.
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3.3.4 Perception model application

Camera placement

The placement of a stereo camera for a camera-based perception system can impact

the perception quality significantly as different camera locations result in different perspec-

tives and different coverage on the objects of interest. Optimizing the camera placement is

an iterative process between design and testing. However, designing and testing with in-

field testings are time-consuming and costly, especially for multiple machine configurations.

Therefore, the perception model can be used to simulate the impact of camera placement

before testing in the field.

(a) (b)

Figure 3.35. Camera image simulation results with different camera place-
ment. (a) combine auger; (b) combine body.

The most important function of the perception in the automatic unloading system is to

provide fill status feedback for the controller, so the camera needs to be looking at the grain

profile. This leaves two options for the camera placement, combine body or the combine

auger. Figure  3.35 compares the imaging results between placing the camera on the auger

or placing the camera on the combine body. Comparing with the placement on combine

body, by placing the camera on the combine auger, the camera can get a better perspective

on the grain cart and thus a better coverage of the profile in lateral location. Additionally,

the higher location also allows the camera to start seeing the grain profile before it becomes
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higher than the grain cart edge, which provides a longer reaction time for the controller.

On the flip side, placement on the auger has a smaller coverage of the grain profile in the

longitudinal direction, but it can still cover most portion of the cart. Overall, the advantages

of on-auger placement outweigh its disadvantages, so placement on auger is more preferable.

Figure 3.36. Camera placement options on combine auger.

(a) (b) (c)

Figure 3.37. Camera image simulation results with on-auger camera place-
ment in different linear location. (a) closer to auger boot; (b) middle of the
auger tube; (c) far from the auger boot.

For on-auger placement, the placement can be further optimized for different radial lo-

cations and linear locations as shown in Fig.  3.36 . Therefore, different linear locations were

compared in Fig.  3.37 : with a closer camera location to the auger boot, the camera can

have a better perspective to the grain profile (more top-down view). However, on the other

hand, the closer placement to the auger boot also limits the camera coverage. An extreme

case will be similar to Fig.  3.37a , in which the camera can only see the farther edge of the

grain cart, making it challenging for cart edge detection. Therefore, an optimized linear

location will be a location in the middle such that the camera can have a good perspective

for great profile view while still be able to both edges of the grain cart for more robust cart
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(a) (b) (c)

Figure 3.38. Camera image simulation results with on-auger camera place-
ment in different radial location. (a) lower left of the auger tube (b) right
down below the auger tube; (c) lower right of the auger tube.

tracking. The influence of radial location as shown in Fig.  3.38 is most from the occlusion

of the auger. Although placing the camera right down below the auger will minimize the

occlusion as alternative placement at the lower left (Fig.  3.38a ) and lower right (Fig.  3.38c )

of the auger could improve the perspective without occluding the grain cart.

The camera placement practice above is based on qualitative assessment. A more op-

timized placement requires quantitative assessment, which can also be achieved with the

perception model simulation with the evaluation framework discussed in Fig.  3.39 .

Perception system evaluation

An evaluation pipeline was proposed to validate the perception system performance with

the perception model in Fig.  3.39 . The perception system, instead of taking the image

from a physical stereo camera, uses the virtual raw image simulated by the virtual stereo

camera in the perception model. In the meantime, the output from the perception system,

the perceived scenario will be compared with the ground truth scenario provided by the

perception model. The ground truth scenario in the perception model does not need to be

manually labeled like real-world data, because the virtual scenario is pragmatically defined.

Finally, the difference between the perceived scenario and the ground-truth scenario can be

used to quantify the performance of a perception system. With quantified analysis results

for the perception system performance, one can iterate on the perception system algorithm

or design.
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Figure 3.39. Perception system evaluation pipeline with perception model in Unreal.

3.3.5 Experimental validation

To validate the accuracy of the perception model and further improve the perception

model configurations, in-field testing was conducted by unloading on the go in different

conditions with a stereo camera on the auger to collect image data.

(a) (b)

Figure 3.40. Images from camera on the designed location. (a) simulated
image; (b) experimental image.

The placement of the camera is designed and simulated in the perception model. Fig-

ure  3.40 shows a comparison between the simulated image and the experimental image when

the camera is placed at the designed location. Both images show a similar perspective and
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coverage of the grain cart, demonstrating that the perception model can be a useful tool to

simulate the impact of camera placement.

(a) (b)

(c)

Figure 3.41. Experimental stereo images from stereo camera on auger in
different test conditions. (a) normal sunlight; (b) night time; (c) heavy dust.

After placing the camera on the auger, stereo camera images in various conditions were

collected as shown in Fig.  3.41 . The image on the left is from the left lens in the stereo

camera and the image on the left is from the right lens. Images during unloading were

collected with nominal sunlight as shown in Fig.  3.41a , which shows a similar shadow effect

from the sun as the simulated image in Fig.  3.27b . Figure  3.41b shows the stereo camera at

night time. Compared with Fig.  3.28b , the experimental images for night time has similar

noise effect but its different lighting configuration causes illumination on different part of the

image. However, the information revealed from both simulated and experimental data are

similar, the most critical issues for night time operation are non-uniform illumination and

image noises. Figure  3.41c shows the experimental data from a dusty unloading. Similar to

the simulated image in Fig.  3.30d , the experimental image demonstrates a similar translucent

occlusion effect on the camera view from dust. However, because the lens used in the in-field

testing has not been exposed to dust for an extended period of time, the dust-on-lens effect

is not as strong as the simulated image.
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4. AUTOMATIC UNLOADING CONTROLLER DESIGN AND

SIMULATION

4.1 Controller design

A movement controller was designed to close the automatic offloading control loop shown

in Fig.  4.9 and simulate the automatic offloading process in a virtual environment.

4.1.1 Fill strategy

The automatic offloading controller calculates the desired location and auger on/off based

on the current fill status, current impact location, and user-desired behavior. Because a

grain cart is usually longer than it is wide, the relative vehicle movement in the longitudinal

direction has a more significant impact on the fill quality. Therefore, to reduce the system

complexity, the automatic offloading controller keeps the auger at the center in the lateral

location and only controls the auger movement in the longitudinal direction.

To automatically determine the desired auger location, the automatic offloading controller

first partitions the grain profile, which is a 2D array h(x, y), in the longitudinal direction

into R rows. Within each row, the fullness of the cart can be calculated based on the average

height of all the grids in this row (other fullness methods can also/instead be used). The

algorithm compares the average fill level in each row with the desired fill level specified by

the operator to binarize the fullness within each cart into “full” or “not full”. The first and

last row are always be marked as “full” to prevent spillage.

Fi =

 1, hi (x, y) > hdes or i = 1, R

0, Otherwise
(4.1)

where Fi is the binary fullness of the i-th row, hi (x, y) is the average grain height in the

i-th row, and hdes is the desired grain height based on the target fill level specified by the

operator.
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The desired location from the automatic offloading controller is determined by the binary

row fullness and the fill strategy specified by the operator. Three commonly-used strategies

were implemented in the automatic offloading controller:

• Front to back fill strategy (F2B): Filling the grain cart from front to back. The

automatic offloading controller looks for the first ”not full” row from the front of the

cart and sets it as the desired location.

• Back to front fill strategy (B2F): Filling the grain cart from back to front. The auto-

matic offloading controller looks for the first ”not full” row from the back of the cart

and sets it as the desired location.

• Front to back to front fill strategy (F2B2F): Filling the grain cart from front to back

and then top off the cart to the desired fill level from back to front. The algorithm

runs the F2B strategy with a lower fill target and then run the B2F strategy to top off

the cart to the desired level.

In addition to turning the auger off according to the Fill strategy, the automatic offloading

controller turns it off, if for any reason, the auger moves too close to any cart edge to prevent

spillage.

4.1.2 Movement controls

Two different options were considered for generating the position command for the Ma-

chine Sync system: ”open-loop” movement controls and ”closed-loop” movement controls.

Figure  4.1 shows the block diagram of open-loop control. Figure  4.2 shows the block diagram

of the closed-loop movement controller.

The open-loop control approach sends nudges to the Machine Sync system solely based

on the desired location from the automatic offloading fill strategy xdesired. Because Machine

Sync location is defined between the tractor and the combine, the automatic offloading

controller first converts the desired location from the auger-grain cart coordinate system

to the tractor-combine coordinate system based on the vehicle geometry. After that, since

Machine Sync takes nudge commands to update its target location by a fixed distance, the
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Figure 4.1. automatic offloading controller block diagram with open-loop
movement controls. Note: the automatic offloading system also includes the
perception system, but it is not explicitly included in this figure.

automatic offloading controller translates the desired location to nudge commands with a

nudge handler. The nudge handler commands nudges to get the target location in Machine

Sync xMS,commanded as close to the desired location xdesired as possible.

One underlying assumption of the open-loop controller is that the Machine Sync system

will successfully control the relative location between the two vehicles. However, in practice,

external disturbance or plant uncertainty could result in a tracking error of the Machine Sync

system and the assumption would no longer hold true. Consequently, open-loop controls is

not expected to be as robust to disturbance or plant uncertainty.

As a result, another movement control strategy was proposed and developed: the closed-

loop movement control strategy shown in Fig.  4.2 . The closed-loop controller does not

directly command nudges based on desired location from automatic offloading fill strategy

xdesired. Instead, it calculates an adjusted desired location x̂desired based on the tracking

error, which is the difference between the desired location xdesired and the actual location

xactual. By tracking the error, the closed-loop controller is expected to be more robust than

the open-loop controller.

The closed-loop movement controller was synthesized based on the Machine Sync dynamic

model identified from in-field testing as described above in sec. ??. Given that during an
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Figure 4.2. automatic offloading controller block diagram with closed-loop
movement controls.

Figure 4.3. SISO controller design for small nudge plant.

unloading process most auger movements are shorter than one meter, the small nudge plant

of Machine Sync was treated as the nominal plant to design the controller. Additionally,

because the smallest nudge size of the Machine Sync is six inches, the discretization error

from the nudge handler is negligible. Consequently, the movement controller design for the

Machine Sync system can be described as a classic single-input-single-output (SISO) system

as shown in Fig.  4.3 . In Fig.  4.3 , K is the controller to be synthesized, G is the Machine Sync

small nudge plant, the reference input r is the desired location xdes, the control effort u is

the adjusted desired location x̂desired, and the system output y is the actual relative location

xact. After defining the variables, the following transfer functions related to the system can

be defined as
S = (1 + KG)−1 = E

R

T = 1 − S = Y
R

KS = U
R

(4.2)
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where S is the sensitivity function and the transfer function from the reference input r to

tracking error e, T is the complementary sensitivity function and the transfer function from

reference input r to system output y, and KS is the transfer function from reference input

r to control effort u.

Figure 4.4. Augmented block diagram for H∞ mixed-sensitivity loop shaping.

The controller was synthesized with H∞ mixed-sensitivity loop shaping technique [ 71 ].

First, two weighting functions WP and WU were formulated to penalize the tracking error

and control effort respectively as shown in Fig.  4.4 . As a result, the transfer function M for

the augmented plant from r to z can be described as

M =

 WP S

WUKS

 = Z

R
(4.3)

and the overall system requirement for controller synthesis is

‖M‖∞ = max
ω

√
|WP S|2 + |WUKS|2 < 1 (4.4)

Figure  4.5a shows the specification to limit the controller control effort magnitude. In this

way, Machine Sync is less likely to switch from small nudge plant to large nudge plant, and

the high-frequency cut-off on WU is designed to prevent the abrupt change of the Machine

Sync command to avoid large vehicle acceleration or jerk.

Figure  4.5b shows the controller specification on tracking error. The large penalty on

low frequency reduces the steady state error, and the cut-off frequency of 0.7 Hz maintains

the responsiveness of the controller.
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(a) (b)

Figure 4.5. System specification for controller synthesis. (a) weighting func-
tion for control effort; (b) weighting function for tracking error.

With this specification of WP and WU , the H∞ optimal controller is obtained by solving

the following optimization with methods proposed in [ 72 ], [ 73 ]

min
K

‖M (K)‖∞ (4.5)

Figure  4.6 shows the Bode plot of the loop transfer function L = KG, which reflects

the frequency response of the closed-loop system. The closed-loop system has a high phase

margin of 85o while maintaining a grain-crossover frequency of 0.49 rad/s.

In the time domain, the performance of the closed-loop controller can be evaluated by

two criteria: reference tracking and disturbance rejection. Reference tracking evaluates

how fast and accurate the output of the system tracks the reference input. Figure  4.7a 

shows a simulation comparison between the closed-loop system and the open-loop system

when there is a 0.8-m step input. With the addition of a controller, the closed-loop system

settles in 7 seconds, while the open-loop system takes 18 seconds to settle (evaluated by

5% settling time). In addition, the closed-loop controller eliminates the overshoot in step

response, reducing the oscillation of the system. Figure  4.7b compares the disturbance

rejection performance of the system when there are a 0.2-m input disturbance and no change

to the reference input. The open-loop system, because it does not account for the tracking
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Figure 4.6. Bode plot of system loop transfer function with H∞ controller.

(a) (b)

Figure 4.7. Comparison between closed-loop movement controls and open-
loop movement controls for small nudge plant (nominal plant): (a) reference
tracking; (b) disturbance rejection.

error, fails to reject the disturbance and results in a tracking error of 0.2 m. On the contrary,
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the closed-loop system rejects the impact of disturbance and settles to the reference input

in 13 seconds.

(a) (b)

Figure 4.8. Comparison between closed-loop movement controls and open-
loop movement controls for large nudge plant: (a) reference tracking; (b) dis-
turbance rejection.

During unloading operation, even though most desired location changes are smaller than

1m, depending on the grain profile or disturbance to the system, the control strategy can

request an auger position change greater than 1 m. Therefore, the closed-loop controller also

needs to be stable when the Machine Sync system is the large nudge plant. To evaluate the

closed-loop system performance with a large nudge plant, the system response with both the

reference tracking and disturbance rejection test were simulated as well.

Figure  4.8a shows the reference tracking comparison between the closed-loop and open-

loop system with Machine Sync large nudge plant when there is a 3-meter step input. The

closed-loop controller still has a stable response when controlling the large nudge plant

and has a similar 5% settling time. However, compared with the open-loop result, the

closed-loop controller introduces a slight overshoot to the system for about 4%. For the

disturbance rejection test shown in Fig.  4.8b with a 0.2-meter disturbance, the closed-loop

controller continues to show better performance as the closed-loop system can reject the

input disturbance in about 25 seconds but the open-loop system ends up with a 0.2-meter

tracking error.
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4.2 Automatic offloading system model simulation

Figure 4.9. Simplified high-level system model architecture

The vehicle models, the grain fill model and the automatic offloading controller were

implemented in Simulink to simulate a complete unloading-on-the-go procedure. Figure  4.9 

shows the high-level architecture of the simulation. As discussed in sec.  4.1.1 , automatic

offloading is achieved by controlling the auger movement in the longitudinal direction. In

the lateral direction, the auger location was kept constant, with tracking control done via

Machine Sync. Nonetheless, the approach taken for longitudinal control is expected to work

in the lateral direction as well, if lateral controls are deemed beneficial.

The unloading-on-the-go process from a combine harvester (model: John Deere S660) to

a tractor (model: John Deere 8345R IVT) towing a grain cart (model: Parker 1348) was

simulated. The unloading is on a flat terrain and the vehicles are moving in straight lines.

In the lateral direction, the two vehicles maintain a fixed distance to keep the auger in the

middle of the grain cart. In the longitudinal direction, the automatic offloading controller

sends command messages to Machine Sync to control the relative position of two vehicles.

The simulation results in this section do not take into account the impact of combine hopper

capacity. Consequently, the unloading finished in one continuous event.
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Figure 4.10. Relative grain cart position from automatic offloading simula-
tion with open-loop controller.

(a) (b) (c)

Figure 4.11. Grain profile from automatic offloading simulation with open-
loop controller (associated with Visualization 8). (a) t = 50 s; (b) t = 100 s;
(c) t = 250 s.

The first automatic offloading simulation runs with a Front to Back strategy and an

open-loop movement controller (per Fig.  4.1 ). The controller divides the grain cart into 9

rows in the longitudinal direction and controls the auger to fill up the grain cart from empty

to full. Visualization 8 shows the longitudinal cross-section of the grain cart filling status

during the unloading. Figure.  4.11 shows three representative frames during the unloading

process in Visualization 8. Because the controller fills up the grain cart from front to back,

the grain cart has full rows at the front and is being filled at the back. Figure.  4.10 shows

the auger location relative to grain cart. As the desired location moves from front to back,

the commanded location to Machine Sync stays the same as the desired location due to the

open-loop movement control strategy.
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Figure 4.12. Relative grain cart position from automatic offloading simula-
tion with closed-loop controller.

(a) (b) (c)

Figure 4.13. Grain profile from automatic offloading simulation with closed-
loop controller (associated with Visualization 9). (a) t = 50 s; (b) t = 100 s;
(c) t = 250 s.

Visualization 9 shows the automatic offloading simulation with closed-loop movement

controls (per Fig.  4.2 ). Compared with open-loop control, as shown in Fig.  4.13 , the com-

manded location (control effort) was not the same as the desired location because the move-

ment controller automatically computes the command to Machine Sync based on the tracking

error. Because of the closed-loop controller, the actual location of the auger better tracks

the desired location, as shown in Fig.  4.12 . At the final stage of unloading, when the desired

location changes rapidly because of the high grain profile. The closed-loop system was still

able to track the desired location but the open-loop system sometimes did not settle down

before the next desired location update.
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In summary, the automatic offloading simulation validates the hypothesis that the au-

tomatic offloading system can be used to automate unloading-on-the-go operation with a

nominal fill target and reliable fill level response. Both open-loop and closed-loop strate-

gies can be used to achieve the fill target by controlling the Machine Sync system, and the

closed-loop movement controller can further improve the tracking performance.
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5. HARDWARE INTEGRATION AND IMPLEMENTATION

After being designed and validated in the virtual environment, the automatic unloading sys-

tem was implemented in a rapid prototyping system and validated with in-field testings. The

implementation of the automatic unloading was done in two stages. Automatic unloading

with human in the loop to validate system performance with an ideal perception system (i.e.,

human operator), and automatic unloading with a camera-based perception system in the

loop (minimal operator feedback).

5.1 Automatic unloading with human in the loop

Figure 5.1. Hardware diagram for automatic unloading implementation with
human in the loop

Figure  5.1 shows the hardware diagram for automatic unloading in-field implementation

with human in the loop. The vehicles in the automatic unloading system consists of a

combine harvester (model: John Deere S660) and a tractor (model: John Deere 8345R IVT)

towing a grain cart (Brandt 1020 XR).

The automatic unloading controller is implemented in a rapid prototyping system (model:

dSPACE MicroAutoBox II). The rapid prototyping system is located in the combine har-

vester. There are two CAN buses to transmit data among the system components. The
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first CAN bus, the CAN bus A is the combine bus, connects the AU controller with the

combine harvester. The controller sends control commands to the combine harvester includ-

ing nudges to the Machine Sync system and auger on/off messages. In the meantime, the

controller receives the combine running status from the combine CAN including the GPS

location and auger status. CAN bus B is built between the rapid prototyping system and

a wireless CAN bridge (model: Kvaser Air Bridge Light HS) that connects to the tractor

CAN. The AU controller receives the tractor states including its GPS locations from this

bus.

To allow the user to interact with the automatic unloading system, a switch box as the

user interface was built for the user to start/stop the AU controller, command emergency

stop, calibrate the system and indicate system status to the AU controller.

5.1.1 Controller adaption for hardware implementation

Figure 5.2. Controller block diagram for automatic unloading implementation.

The automatic unloading controller was implemented with open-loop movement controls

and made adaption to the automatic unloading controller in simulated virtual environment

in Fig.  4.1 due to the hardware constraints. Figure  5.2 shows the updated block diagram

with adaptions for hardware implementation highlighted in yellow. In summary, three key

updates were made from the system in simulation.
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1. The fill level feedback to the controller is achieved by a human in the loop instead of

a perception system in the loop.

2. The relative location between two vehicles cannot be directly accessed from the Ma-

chine Sync system with regular CAN communication, so the relative location was

calculated from vehicles’ GPS location in the AU controller and built wireless CAN

bridge to allow the controller to access the CAN messages from both vehicles.

3. Because the commanded location in Machine Sync is not accessible in hardware di-

rectly, for the nudge handler to work properly, a commanded location estimator was

built in the AU controller.

For update 1, to allow the operator to inform the controller of the cart filling status, a

button was added to the user interface for the user to indicate the current section of the cart

is full. After receiving the full message, the automatic unloading control updates the desired

location and auger on/off status based on the fill strategy specified by the user, same as the

AU controller validated in the virtual model.

Figure 5.3. Schematic for auger location calculation from GPS information.

For update 2, an algorithm was developed to calculate the auger boot location relative

to the grain cart from vehicles’ GPS information provided in CAN bus. Figure  5.3 shows a
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vehicle schematic with the 3 coordinates involved in auger location calculation. (xworld, yworld)

is the world coordinate with xworld pointing north and yworld pointing west. (xC , yC) is the

combine coordinate built on combine GPS globe OC with xC pointing to the combine moving

direction. (xT , yT ) is tractor coordinate built on tractor GPS globe OT with xC pointing to

the tractor moving direction. A is the auger boot location.

Because the tractor GPS location and combine GPS location are obtained asynchronously,

the AU controller needs to estimate their current GPS location based on their speed. A first-

order estimation is implemented for the GPS coordinate for both vehicles. For example, the

calculation for tractor latitude is

λ̂T = λT + dλT

dt
(t − tT ) (5.1)

where λ̂T is the tractor latitude estimate at current time, λT is the tractor latitude from

tractor CAN, t is the current time, and tT is the time for last tractor coordinate update.

After that the relative distance between tractor and combine globe in world coordinate

can be calculated by

(−−−→
OCOT

)
world

=


(
φ̂T − φ̂C

)
cos λT Rearth(

λ̂T − λ̂C

)
Rearth

 (5.2)

where (λ̂T , φ̂T ) is the estimated tractor coordinate, (λ̂C , φ̂C) is the estimated combine coor-

dinate, and Rearth is the earth radius.

If the impact from grain cart articulation is negligible, the auger location in grain cart can

be represented by the auger location in tractor coordinate
(−−→
OT A

)
T

and it can be computed

by (−−→
OT A

)
T

=
(−−−→
OT OC

)
T

+
(−−→
OCA

)
T

= Rworld,T

(−−−→
OT OC

)
world

+ RC,T

(−−→
OCA

)
C

(5.3)

where
(−−→
OCA

)
C

is the auger boot position relative to combine globe, a known geometry,

Rworld,T is the transformation from world coordinate to tractor coordinate, and RC,T is the

transformation from combine coordinate to tractor coordinate.
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The transformation between coordinates in Eq.  5.3 can be calculated from the compass

bearing of vehicles by

Rworld,T =

 cos θT − sin θT

sin θT cos θT


RC,T =

 cos (θT − θC) − sin (θT − θC)

sin (θT − θC) cos (θT − θC)


(5.4)

where θT is the compass bearing of tractor and θC is the compass bearing of combine.

For update 3, a counter in the AU controller was built to mimic the behavior of the

commanded location calculation inside Machine Sync. The counter counts the number of

nudge up and nudge down and estimate the change of commanded location from the initial

commanded location (home point)

x̂CMD = xHP + dnudge (N+ − N−) (5.5)

where x̂CMD is the estimated commanded location, xHP is the initial commanded location,

dnudge is the nudge size, and N+, N− are the nudge up and nudge down commands the

controller sends to Machine Sync.

As shown in Eq.  5.5 , the commanded location estimation requires the initial commanded

location (home point) to start the counting, which requires a calibration. To calibrate the

home point, before the first use of the automatic unloading system, the operator needs to

engage Machine Sync and click a button on the user interface when the tractor reaches the

home point. After that, the controller will record the current relative location as the initial

commanded location.

5.1.2 In-field testing results

The automatic unloading system was tested by unloading from a combine harvester with

a full hopper of corns to a half-full grain cart towed by a tractor to emulate the typical
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Figure 5.4. Automatic unloading testing condition

unloading on the go process. The vehicles are running on flat terrain. Figure  5.4 shows a

perspective view of the testing configurations.

At the beginning of the unloading, the combine operator kept a constant throttle to have

the combine harvester cruise at a constant speed and turned on the John Deere AutoTrac

control the steering to keep the vehicle in a straight line. After Auto Tractor engaged, both

the combine harvester and the tractor started the Machine Sync function to control the

relative position of the vehicles. After that, the combine operator will turn on automatic

unloading to automatically controls the vehicle movement and the auger on/off.

In the first unloading test, the AU controller used the Front to Back to Front fill strategy

Visualization 10 shows a video record of this automatic unloading test and Fig.  5.5 is a

representative frame in this video. The left of the video shows a camera view from the

combine cabin: the operator on the buddy seat clicks the ”section full” button on the interface

box to indicate the current unloading section is full. Based on the user input, the automatic

unloading controller moves the auger to fill up the cart in two runs. In the first run, the

auger fills up the cart from front to back. In the second run, the auger top off the cart from

back to the front and stops after the entire cart is full. On the right side of the view is the

view of the unloading process from a drone camera.
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Figure 5.5. A representative frame in automatic unloading operation with
Front to Back to Front fill strategy (associated with Visualization 10)

In the second unloading test, the AU controller used the Front to Back fill strategy.

Visualization 11 shows a video record of this automatic unloading test and Fig.  5.6 is a

representative frame in this video. In this test, the controller fills up the cart in one pass

from front to back. The top left of the video shows a grain cart view from the combine,

the bottom left of the video shows the grain profile visualization from a camera inside the

grain cart, and the video on the right is the combine cabin view showing how the operator

interacts with the automatic unloading system.

The implementation results demonstrated that the automatic unloading system help

operator to reduce workload by automatically deciding the target auger location and auger

status based on user-prescribed filling strategy. After that, to offload the operator from two-

way communication for relative location control, the AU system can automatically coordinate

the vehicle motion to achieve the desired fill profile.
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Figure 5.6. A representative frame in automatic unloading operation with
Front to Back to Front fill strategy (associated with Visualization 11)

5.2 Automatic unloading with perception system in the loop

Figure  5.7 shows the hardware configuration of the automatic offloading system with

perception system in the loop. The automatic offloading controller is implemented in a Rapid

Control Prototyping (RCP) system (model: dSPACE MicroAutoBox II). The controller is

placed on the combine harvester. The automatic offloading controller has 3 interfaces running

simultaneously:

1. Controller interfaces with the combine harvester via on-combine CAN bus. The CAN

communication between the controller and the combine harvester not only provides the

vehicle status to the controller for feedback control, but also allows the controller to

automatically send positional commands to Machine Sync and auger on/off commands

to the auger controller on the combine.

2. Controller communicates with the perception system (IPM2) via an Ethernet cable.

The perception system receives the vehicle status from the Ethernet for its detection
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Figure 5.7. automatic offloading hardware diagram

algorithms. While simultaneously, the perception system transmits the cart filling

status and perception algorithm status to the controller.

3. Controller also communicates with a user interface implemented on the host PC of

the dSPACE MicroAutoBox via an Ethernet cable. The controller sends the current

system status to the UI for visualization and receives the user-specified automatic

offloading configurations from the UI.

5.2.1 Perception system integration

The automatic offloading system uses a stereo-camera-based perception system IPM (Im-

age Processing Module) to monitor the fill status of the grain cart. A similar stereo-based

system was used in the automatic unloading system for the Self Propelled Forage Harvesters

(SPFH) [ 28 ], [ 74 ].

The IPM includes a stereo camera to capture images of the scene, and an industrial PC

to process camera data and interface with the controller. As shown in Fig.  5.8b , the stereo

camera is placed on the combine auger. The stereo camera has a field of view of 130 degree
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with a baseline distance of 20 cm. The industrial PC is placed in the combine cabin. The

perception data are transmitted via UDP/IP protocol to the controller at 5 Hz.

(a) (b)

Figure 5.8. Perception system (IPM) (a) An example data returned from
perception system. The heat map shows the grain height relative to the edge,
and the red cross shows the estimated grain impact location; (b) Placement
of perception system and benchmark perception system.

Together with the stereo images captured by IPM, the IPM provides perception feedback

for the automatic offloading system. Figure  5.8a shows an example data from the IPM,

discretizing the grain cart via a 32 × 18 matrix. Each grid in the matrix represents the

measured the grain height relative to the grain cart edge nearest the combine. The height

value was provided at 5 cm increments. Additionally, the perception system also estimated

the impact location of the grain. The grain impact location data was provided as a coordinate

in the matrix.

The IPM results were quantitatively evaluated with a LiDAR-based benchmark percep-

tion system. Figure  5.8b shows the placement of the LiDAR relative to the stereo camera.

The benchmark ran simultaneously with the IPM and generatds data with the same format

as the IPM. [  75 ] outlines the details of the benchmark system development and benchmark

implementation.

According to the benchmark results, there are two major challenges for using the IPM

as a perception system
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1. Incomplete profile: Because the stereo camera is placed on the combine auger, its view

can be occluded by the grain cart wall or grain flow. As a result, the grain profile is

not complete due to occlusion. Figure.  5.8a shows an example of an incomplete profile.

2. The imaging quality of the stereo camera depends on the lighting conditions. Under

certain circumstances (e.g., low-light, high dust), the IPM may loose track of the grain

cart and stop updating the grain profile.

5.2.2 Perception system data augmentation

Perception data augmentation algorithms were developed, per below, to alleviate the

above noted impacts.

Fill metrics adaptation

Since the complete profile is not available, using a simple average to estimate the fullness

in each row, as shown in Eq.  4.1 , may not provide consistent results and the results could

be biased towards the available grids. Moreover, underestimation of fill level can lead to

spillage.

Therefore, to prevent spillage and take advantage of the partial fill profile, an adapted fill

metrics was proposed, specifically, an estimated grain height just adjacent to the grain cart

edge. Ideally, the edge grain height directly comes from the perception system measurement.

However, the data near the edge is not always available as such an area is often occluded

by the grain cart wall. Furthermore, even if the data is available, using data from a single

measurement (one grid in a matrix) is more susceptible to error. Therefore, the adapted

fullness metric uses all of the grids in the same row for edge grain height calculation:

hedge,i =

m∑
j=1

hi,j − ĥi,j,shape

m
(5.6)

where hedge,i is the estimated grain height near the edge at row i, hi,j is the grain height at the

j-th column of the i-th row, and ĥi,j,shape is the theoretical relative height at the j-th column.
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Since the piling of granular material such as corn or beans follows the angle of repose [ 53 ],

the theoretical height at the j-th column relative to cart edge can be defined as

ĥi,j,shape = jimpactd tan θ − |j − jimpact|d tan θ (5.7)

where jimpact is the impact location of the grain flow, and d is the grid size in matrix.

With the estimated grain height near the edge, a fullness indicator, similar to the one

illustrated in Eq.  4.1 can be applied to determine the fullness from the edge height with

corresponding desired height value.

Sensor down time fill level estimation

Loss of perception data is another common challenge due to lighting conditions or dust in

agricultural application. To handle this circumstance, an message transmission of perception

system status was established between the IPM and the automatic offloading controller.

Once the status message shows the perception system loses signal, the automatic offloading

controller will estimates the grain height change:

hedge,i (t) = hedge,i (t0) + ̂̇
hedge,i (t − t0) (5.8)

Here the t0 is the last time step when the perception system is working, ̂̇
hedge,i is the estimated

rate of grain height change. The rate is estimated by a time average of the height change

rate at the current section when the perception system response is valid.

5.2.3 In-field testing results

The adapted automatic offloading system was tested in the field under nominal harvesting

conditions and various unloading configurations. Figure  5.9 shows the cabin setup during

unloading testing captured by a 360 camera. The automatic offloading system was validated

with a John Deere S790 combine, and a John Deere 8R340 tractor towing a Brandt 1020

XR grain cart.
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Figure 5.9. Hardware configuration during automatic offloading

Figure 5.10. User interface for automatic offloading

Figure.  5.10 shows the user interface (UI) of the automatic offloading system for the

operator to interact with. The user interface was used solely for testing, and is not the
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intended approach for any commercial application. It allowed the operator to monitor the

measured grain profile, the fill level in the current row, as well as the system status of different

automatic offloading components. The operator was able to turn on/off the automatic

offloading system, and configure the unloading parameters (e.g., unloading strategy, desired

fill level) from the interface.

During the automatic offloading testing, the combine operator began harvesting and ad-

justed the hydro-handle to set the combine harvester at a constant cruising speed. AutoTrac

system [  76 ] was used to keep the combine harvester on a straight line. When the combine

hopper was full and ready to unload, the tractor operator drove the tractor near the combine.

After Machine Sync was engaged, the combine operator started the automatic offloading

system from the user interface. The automatic offloading system then automatically moved

the grain cart to the first desired location based on the specified fill strategy. When the

grain cart arrived at the desired location, the automatic offloading system indicated on

the user interface that the automatic offloading system was ready. The combine operator

used the combine handle to manually enable the auger. The automatic offloading system

automatically filled the grain cart by controlling the relative position of the vehicles and

stopped the auger when the desired fill level was achieved.

The automatic offloading system was tested at a nominal combine harvester speed of four

mph, executed on a flat terrain with no end-of-row turning. The testing covered different fill

strategies, initial fill profiles, and desired fill level to validate the performance of the system

under different conditions.

Figures  5.11 - 5.13 show automatic offloading testing scenario A in which the unloading

started from a half-full grain cart, front to back strategy, and an open-loop movement con-

troller. The desired fill level was hedge,i = −0.3m as based on the metrics defined in Eq.  5.6 .

The grain cart was divided into 0.6-meter rows.

The left axis in Fig.  5.11 shows the relative movement in the longitudinal direction

(vehicle moving direction) between the two vehicles represented by the relative distance

between the combine GPS globe and the tractor GPS globe. The right axis in Fig.  5.11 shows

the fill metrics indicator at the current row that the auger was operating in. Visualization

13 shows the unloading process recorded by a camera in the combine cabin.
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Figure 5.11. Relative location between vehicles and fill level metrics during
automatic offloading testing scenario A. Fill strategy: Back to Front. Desired
fill level: hedge,i = −0.3m. Initial profile: half-full. Combine speed: four mph.
Open-loop movement control.

Figure 5.12. Unload scenario of automatic offloading testing scenario A.
Associated with in-cabin video recording in Visualization 12

At the start of the test in Visualization 13, the auger boot is at the back of the grain cart.

After it stabilized at the first unloading row, the automatic offloading controller informed the

operator to turn on the auger via the user interface. At around 55s of the experimental log,

the grain started to pile up on the grain cart, so the fullness metrics started to increase. Once

the fullness at the current section had reached the desired fill level set by the operator (at

around 60 s), the automatic offloading controller commanded a nudge and moved the auger
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(a) (b) (c)

Figure 5.13. Grain profile change during automatic offloading testing sce-
nario A, associated with Visualization 13 (a) t = 55.8s; (b) t = 84.0s; (c) t =
105.2s.

to the next section. The controller followed a similar pattern to fill up the grain cart from

the back to the front. At around 114 s, the last section was filled so the automatic offloading

controller did not continue to nudge the tractor, but turned off the auger automatically

instead. The final fill level in the last section (at t=115s in Fig.  5.11 ) was slightly higher

than the specified threshold because of the delay in turning on the auger.

Figure 5.14. Relative location between vehicles and fill level metrics during
automatic offloading testing scenario B. Fill strategy: Middle to Back to Front.
Desired fill level: hedge,i = −0.3m. Initial profile: half-full. Combine speed: 4
mph. Open-loop movement control.

Figures  5.14 - 5.15 illustrates automatic offloading test scenario B, which has the same

configuration as test scenario A except for the fill strategy. In test scenario B, Middle to
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(a) (b) (c)

Figure 5.15. Grain profile change during automatic offloading testing sce-
nario B, associated with Visualization 14 (a) t = 15.2s; (b) t = 51.6s; (c) t =
104.8s.

(a) (b) (c)

Figure 5.16. Rectified camera image from the left lens of stereo camera
during test scenario B, associated with Visualization 15 (a) t = 15s; (b) t =
50s; (c) t = 105s.

Back To Front strategy was employed. As shown in Fig.  5.14 , the unloading was finished

in two subsequent stages. In the first stage (middle to back), the fullness threshold was at

a lower value (hedge,i = −0.55m) than the desired fill level, so the system could create an

even profile that was close to full. In the second stage, the fullness threshold is based on the

value set by the user, so the automatic offloading system could top off the cart to the desired

fill level. Figure  5.15 (associated with Visualization 14) shows the profile change during the

test scenario B. In particular, Fig.  5.15b shows the profile when the first stage was finished.

After that, the automatic offloading controller automatically raised the fullness threshold to

the user-defined value (hedge,i = −0.3m) and started topping off the grain cart from back

to front. Figure  5.15c shows the profile when the unloading is finished, which is a overall

higher profile than the one shown in Fig.  5.15b . To visualize the same process, Visualization
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15 shows the rectified image from the left lens of the stereo camera, and Fig.  5.16 shows the

three typical frames from the footage.

Figure 5.17. Relative location between vehicles and fill level metrics during
automatic offloading testing scenario C. Fill strategy: Front to Back. Desired
fill level: hedge,i = −0.2m. Initial profile: almost full. Combine speed: 4 mph.
Open-loop movement control.

(a) (b) (c)

Figure 5.18. Grain profile change during automatic offloading testing sce-
nario C, associated with Visualization 16 (a) t = 20.0s; (b) t = 30.0s; (c) t =
49.0s.

Figures  5.17 - 5.18 demonstrates test scenario C with Front to Back fill strategy. Compared

with test A and test B, the desired fill level is higher (hedge,i = −0.2m), and the initial profile,

as shown in Fig.  5.18a is also higher. Consequently, at the start of the test, the auger did not

turn on when it was at the front part of the cart. Automatic offloading system automatically

moved the auger to the middle of the cart before indicating on the UI to turn on the auger.
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At t = 30s, when the commanded location was at the middle of the cart, the auger was turned

on by the operator. After about 15 seconds, automatic offloading system finished filling up

the middle rows of the cart, and the unloading stopped because the combine hopper became

empty. Visualization 16 shows the profile change in test scenario C.

The in-field testing demonstrates that the automatic offloading system works under nom-

inal harvesting condition to automatically top off a half-full grain cart.

Figure 5.19. Comparison between simulated vehicle location and experimen-
tal vehicle location in automatic offloading test A.

The experimental results were also used to validate the fidelity of the simulation model

used to design the system. Figure  5.19 shows a comparison between the simulated vehicle

location and experimental vehicle location. The experiment was conducted with the open-

loop movement control method as shown in Fig.  4.1 . Its location response was consistent with

the simulated open-loop system with the same commanded location, as shown in Fig.  5.19 .

It can also be observed from both the simulation and the experiment that the open-loop

system may not be able to track the reference as well when the commanded location changes

frequently (e.g., t=95s in test A). In comparison, the closed-loop position controller, per the

simulation results in Fig.  5.19 , demonstrates a better tracking performance thanks to its

shorter settling time and smaller overshoot. Therefore, the closed-loop movement control

can instead be used when warranted.
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5.3 Conclusion

The design and validation of an automatic grain unloading system for combine harvester

unloading-on-the-go was described in this paper. To simulate the automatic offloading pro-

cess, system models for grain fill dynamics and vehicle dynamics were developed and verified

with in-field testing. The automatic offloading controller provided three different fill strate-

gies and two movement control options, both of which were simulated to validate the unload-

ing performance. A stereo-camera-based perception system was integrated in the automatic

offloading system to provide feedback to the controller. Perception data augmentation al-

gorithms were proposed to accommodate the characteristics of the perception system. The

automatic offloading system was implemented on a combine harvester and a tractor driven

grain cart. The system was tested with different scenarios to demonstrate successful auto-

matic offloading under nominal harvesting conditions with different configurations.
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6. GRAIN PROFILE DATA FUSION OF CAMERA-BASED

PERCEPTION SYSTEM AND GRAIN FILL MODEL

6.1 Introduction

The in-field testing demonstrated that, given a properly working perception system, the

automatic unloading system can automate the unloading on the go process and offload the

combine operator from grain cart monitoring, auger location control, and vehicle coordina-

tion.

However, a camera-based perception system can frequently lose track of the grain cart

because of poor lighting conditions, different viewing perspectives, or dust occlusions. More-

over, even when perception algorithms are working properly, depending on stereo camera

placement and field of view, certain parts of the grain profile cannot be seen. The tracking

lost and incomplete fill profile can degrade automatic unloading system performance, or even

worse, force the automatic unloading to stop.

Figure 6.1. An example scenario with high dust impacting the performance
of perception system. Associated with Visualization 17

As shown in Fig.  6.1 , Visualization 17 demonstrates an example scenario where poor

lighting condition and heavy dust result in intermittent perception system feedback. This

testing was conducted at dusk, so the environmental lighting was relatively dark, resulting

121



Figure 6.2. Perception system and auger status in poor lighting and heavy dust

in degraded imaging quality. Additionally, the dry corns also cause higher dust level from

the grain flow.

Figure  6.2 shows the system status in this process due to the intermittent perception

system signal. For example, at t = 243s, t = 319s, and t = 340s, after auger turns on,

the excessive dust causes the perception system to lose track of the grain cart, and the

perception system state switches from “active” state to “not ready” state. As introduced in

Sec.  5.2.2 , the auger automatically turned off after the perception system (IPM) loses track

for 5 seconds. Therefore, the automatic unloading system turned off the auger multiple times

during this unloading process, making the system unusable in such a challenging scenario.

On the other hand, Sec.  3.1 shows a physical model to estimate the grain profile change

during unloading operation, which is also the most critical feedback from the perception

system. Experimental validations demonstrate that the grain fill model can achieve 0.2-

m accuracy given reliable model inputs. Unlike the perception system, the calculation of

the grain fill model is not impacted by environmental conditions and can always return a

complete grain profile. However, the grain fill model requires an initial profile inside the

grain cart to start the simulation and due to the time-evolving characteristics of the grain

fill model, the modeling error will accumulate if the model input has bias. Consequently,

the feedback from a perception system is a great calibration means for the grain fill model

to get the initial fill profile and reduce accumulation error.
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Various algorithms have been developed to fuse the data from sensors and models. The

Kalman filter (KF) [  77 ], [  78 ] is one of the most popular data fusion algorithms in the

field of data processing. It has been proven that the KF is the optimal estimator for a

one-dimensional linear system with Gaussian error [  79 ]. However, the Kalman filter is not

designed for the nonlinear system, such as the grain pile process in the unloading application.

To extend its capacity on nonlinear systems, its variants, extended Kalman filter (EKF) [ 80 ]

and unscented Kalman filter (UKF) [  81 ] were introduced and applied in different applica-

tions.

Nonetheless, the computational cost is very high for Kalman filter approaches because

the state vector in grain profile estimation has at least hundreds of states. For example,

the grain profile returned by the perception system has a dimension of 32 × 18 (i.e., 576

states for grain height). In the Kalman filter approach, an error covariance matrix for the

model state needs to be stored and propagated in time. With such a large number of

states, it is computationally infeasible to perform the computation in real time [  82 ]. For

large state vectors, ensemble Kalman filters (EnKF) were proposed to approach the state

estimation method as a sequential Monte Carlo simulation to handle large state spaces and

nonlinear error evolution [  83 ]. [  84 ] shows a list of ensemble Kalman filter applications

ranging from highly dynamical models to high-dimensional systems with O(106) number of

states. However, EnKF still requires the state error to be Gaussian distributed, making it not

suitable for the grain profile estimation, whose error distribution is not Gaussian especially

around the boundary of the flowing region.

To achieve data fusion with a relatively low computational cost, a novel fusion algorithm

was developed. Instead of computing the error covariance for the entire state space (i.e., the

height of each grid), which is computationally expensive, the fusion algorithm only uses the

perception system measurement to provide initial state estimation and correct for a limited

number of critical parameters during unloading.

By applying the fusion algorithm on experimental data, it is demonstrated that the fusion

algorithm can make the fill level feedback to the automatic unloading controller more robust

to environmental change, less susceptible to accumulation error, and provide more complete

coverage. It has also been shown that the fusion algorithm can run in real-time.
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6.2 Principles

Figure 6.3. The computational pipeline for grain fill profile estimation by
fusing the perception system and grain fill model

Figure  6.3 shows the computational pipeline for the fusion algorithm. The estimation

pipeline is based upon the grain fill model, and the fusion process consists of three major

components: initial profile estimation, fusion profile height correction, and flow rate estima-

tion.

(a) (b)

Figure 6.4. Perception system (IPM) error distribution with similar height.
(a) auger off; (b) auger on.

At the first stage, the algorithm will select an estimation strategy based on the auger sta-

tus. By comparing with a LiDAR-based benchmark perception system, it has been observed

from the in-field testing that the error of grain profile measurement surges dramatically after
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auger turns on [  75 ]. Figure  6.4 shows an example of the perception system error distribu-

tion at a similar grain height before and after the auger turns on. On one hand, after the

auger turns on, because of the increased level of dust and occlusion due to the grain flow,

with a similar grain profile, the percentage of the grid with height error greater than 15

cm increases dramatically, making it unreliable to estimate the grain profile from only the

perception system measurement. On the other hand, before the auger starts, the majority

of the visible grids have a measurement error of less than 5 cm, making it a reliable source

for grain profile estimation

Therefore, when the auger is off, the estimation uses the perception system feedback

directly for the available grids because of the high data reliability. In the meantime, to

obtain the grain profile for the unavailable grids, Sec.  6.2.1 introduces the algorithm to

estimate the grain height of the entire grain cart.

After the auger turns on, the grain fill model will be used as the major means for grain

profile estimation. As shown in Fig.  6.3 , when the perception system is not active, grain

profile estimation can only be obtained from the grain fill model, so the estimation will

directly come from the grain fill model estimation with initial conditions and parameters

estimated when the perception system is active.

On the contrary, when the perception system is active, the measurement data is used to

improve the grain fill model estimation accuracy in two approaches. Section  6.2.2 outlines

the algorithm to use grain profile measurement from the perception system to adjust the

overall height of the estimated grain profile and thus reduce the accumulated error of the

grain fill model. Section  6.2.3 introduces the methods to estimate the actual flow rate during

the unloading.

Grain pile characteristics related to grain volumes such as the overall height and the flow

rate were extracted from perception system measurement. That is because the perception

system can maintain satisfactory accuracy on the overall grain height (which shows the grain

volume) even when the auger is on. Figure  6.5 shows a typical example of the grain height

error bias during an unloading operation, in which the grain height error bias is less than 0.07

m even when the auger is on. The frequency of the grain height error bias based on multiple
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Figure 6.5. Grain height error bias of the perception system in an unloading operation

unloading operations as shown in Fig.  6.6 also confirms this characteristics observation. In

more than 97% of unloading time, the bias of grain height error is within ±0.7 meters.

Notice here the bias of grain height error is much smaller than the error of most individual

grids shown in Fig.  6.4b . This is because the bias of the overall grain height is calculated from

the average of multiple grids. According to the law of large numbers, the average result from

more trails is going to be closer to the expected value, and has a lower variance. Therefore,

the variance from the average of multiple grids is lower than the variance of individual grids,

making the average grain height reliable for volume-related estimation.

Table 6.1. The estimation source of the parameters in the grain fill model
Model parameters Estimation source

Auger flow rate Auger mode; perception system feedback

Angle of repose Prior knowledge about the crop (can also be estimated
from grain moisture and grain type)

Impact location Inferred from real-time GNSS vehicle location and prior
knowledge on grain flow velocity

Initial profile
Geometry: from perception system measurement before
auger turns on
Height: real-time perception system measurement
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Figure 6.6. The frequency of the grain height error bias of the perception
system in multiple unloading testing

However, the fusion pipeline does not estimate other geometry-related parameters from

the measured grain profile such as the angle of repose and the grain impact location. That

is because the grain profile measured from the perception system after the auger turns on

does not have an accurate geometry representation of the actual profile. Figure  6.7 shows an

example of the difference between the perception system feedback and the benchmark data.

By comparing the height at several cross-sections in Fig.  6.7c , it can be observed that the

perception system data not only has height deviation from the benchmark, it also reflects

wrong geometric characteristics of the piles (e.g., angle of repose, peak locations). Because

these geometric characteristics can be more accurately extracted from vehicle location from

GNSS and grain properties [ 85 ], the algorithm does not extract geometric parameters from

perception system feedback but uses prior knowledge and other sensors for calculation. Ta-

ble  6.1 summarizes the estimation source for the parameters required by the grain fill model.

6.2.1 Initial profile estimation

Because of the occlusion and field of view limitation of any vision-based sensor, even

when the auger is off, the measured grain profile from the perception system is going to be

incomplete. However, the grain fill model requires a complete grain profile to estimate the
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(a) (b)

(c)

Figure 6.7. Difference between the perception system feedback and bench-
mark profile when auger is on. (a) perception system feedback; (b) benchmark
profile; (c) three cross section views highlighted in color.

profile change. Therefore, an estimation algorithm is developed to estimate the grids that

are not visible to the perception system.

Figure  6.8 shows the algorithm for the initial profile estimation. The estimation is based

on the grain profile measured by the perception system when the auger is off because of the

higher measurement reliability. For the first step, the algorithm looks for the peaks of the

profile. Peaks are defined as the grids that satisfy the following conditions:

• The neighborhood grids are not higher than such grid

• Not a grid at the edge of the profile

• The majority of its 8 neighboring grids are visible

Besides identifying the peaks, the algorithm also estimates the piling angle of the current

profile. The piling angle is estimated by doing a linear fitting for the lateral cross-sections
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Figure 6.8. Computational pipeline for initial profile estimation.

of the profile near the peaks. The linear fit only includes the data between the highest and

lowest point for each cross-section to exclude the height data from the grain cart or from the

further half of the grain profile. After obtaining the slopes ki for all the cross-sections, the

piling angle can be calculated from the maximum angle

αp = arctan (max ki) (6.1)

Notice the piling angle αp here is not necessarily the same as the angle of repose α in

Eq.  3.1 because the jostling of cart between unloading can cause the piling angle to lower.

After obtaining the piling angle alphap and the peaks location {xp,i, yp,i}, the estimated

combination of all the piles can be expressed as

hp (x, y) = max (hi (x, y) , hcart (x, y)) (6.2)

where hcart is the grain cart geometry to ensure the profile is higher than the cart, and hi is

the grain pile correspond to the i-th peak

hi (x, y) = hperception(xi, yi) −

√
(x − xi)2 + (y − yi)2

tan αp

(6.3)
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here hperception is the measured grain profile.

Finally, because the measured grain profile when auger off is reliable, the initial profile

will only uses the estimated pile profile hp when the measured data is not available.

hini (x, y) =

 hperception (x, y) , grid available

hp (x, y) , otherwise
(6.4)

With the complete initial profile, now the grain fill model can estimate the grain profile

change over time.

6.2.2 Fusion profile height correction

One of the major disadvantages of using the grain fill model alone to predict the grain

profile change is the accumulation error. Because the grain fill model is an time-evolving

model, a small bias in the model parameter can be accumulated over time and results in

a large estimation error. Meanwhile, the perception system measurement can maintain

satisfactory accuracy during unloading.

Figure 6.9. Closed-loop diagram for correcting the overall height of estimated profile

Therefore, to alleviate the accumulation error, the overall height of the estimation results

was adjusted based on the perception system measurement. Figure  6.9 shows the closed-loop

diagram on adjusting the overall height of the estimated grain profile. The profile height

correction is done by adding/subtracting grain from the grain fill model. Besides the feed-

forward flow rate estimation vest from Sec.  6.2.3 and its corresponding volume change ∆Vest,

the additional volume ∆Vp was also fed to the grain fill model to adjust the overall height.
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The compensation flow vp is calculated from the average height difference between grain

fill model estimation and perception system measurement ∆h.

∆Vp = KP ∆h + Kd
d∆h

dt
(6.5)

where KP is the proportional gain, Kd is the derivative gain, and ∆h is the average height

difference. ∆h is calculated from the visible grids from the perception system measurement.

∆h =

Nvisible∑
i=1

hp(xi, yi) − hm(xi, yi)

Nvisible
(6.6)

where hp(x, y) is the perception system measured grain profile, hm(x, y) is the grain fill model

estimated profile, and Nvisible is the number of visible grid inside the cart.

With the addition of the compensation flow, the average height of hm(x, y) is going to

track the average height of hp(x, y), making the overall height consistent with the measured

overall height.

6.2.3 Flow rate estimation

The fusion profile height correction is Sec.  6.2.2 can be used to adjust the overall height

when the measurement from the perception system is active. However, when the percep-

tion system became inactive because of challenging environment or failed algorithms, the

compensation flow cannot be calculated, and the estimated profile will be subject to the

accumulation error from the bias in the initial flow rate estimate vini

To minimize the accumulation error even when the perception system is inactive, an

algorithm is developed to give a more accurate estimation of the actual flow rate vest than

the initial estimate vini when the perception system is active. After that, when the perception

system turns off, the grain fill model can use the updated vest to continue the simulation.

The flow rate is estimated from the grain height change around the impact location.

When the relative position between the two vehicle is stabilized around a certain location,
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the height growth around the impact location neighborhood can be approximated as a linear

growth.

himpact (t) = kht − himpact,ini (6.7)

where himpact is the average grain height around the impact location, himpact,ini is the initial

grain height, and kh is the growth rate of the grain height.

By doing a first-order fit on himpact, the height growth rate can be estimated as

k̂h =
∑ (ti − t)

(
himpact (ti) − himpact

)
∑ (ti − t)2 (6.8)

With the growth rate of the average height around the impact location, the flow rate can

then be calculated as

vest = r
k̂h

(dH/dV ) + (1 − r) vini (6.9)

where dH/dV denotes the unit height growth per unit grain, and r is the confidence on

the estimated flow rate, which depends on the number of data points and the correlation

coefficient in the linear regression.

Notice that dH/dV is not a constant, but a variable depending on the impact location

and the initial profile. This value can be approximated as a constant in a short period with

a stabilized impact location. Therefore, in Eq.  6.9 , this value is computationally estimated

from the grain fill model by virtually unloading a small amount of grain ∆V and observing

the grain height change around the impact location.

(dH/dV )h(x,y)=hm(x,y),ximpact,yimpact
= himpact(V + ∆V ) − himpact(V )

∆V
(6.10)

Both Eqs.  6.7 and  6.10 are based on the assumption that the auger location is relative

constant (i.e., the auger unloads to one location of the grain cart). This scenario is fairly

common for all the control strategies developed in the automatic unloading system introduced

in Ch.  4 . Moreover, because the flow rate is relatively stable during unloading operation,

the estimated flow rate can be reused for the harvesting of the same machine and same field.
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Therefore, to ensure reliable estimation, the flow rate estimation algorithm is only engaged

if the auger unloads to one location for some time (in this application, 10 seconds).

6.3 Results

The fusion algorithm was applied to in-field testing data in both manual unloading and

automatically unload to validate the performance of the fusion algorithm.

6.3.1 Manual unloading with continuously working camera perception

In this test, the data were collected during manual unloading. In this test, the grain

cart (model: Brandt 1020XR) was topped off by a human operator with a front-to-back

strategy. Both the tractor (model: John Deere 8R340) and the combine (model: John Deere

S790) were manually controlled by operators. During the test, both the stereo camera-

based perception system (IPM) and the LiDAR-based benchmark perception system [ 75 ] are

measuring the grain profile.

(a) (b)

Figure 6.10. Initial profile estimation for manual unloading test: (a) camera-
based perception system feedback; (b) initial fill profile estimation.

As the first stage of the algorithm, the initial profile estimation algorithm estimates the

complete profile from the perception system feedback. Figure  6.10 shows the raw grain

profile measured by the perception system and the estimated initial profile.

The initial profile estimation algorithm first extracts the peaks from the IPM profile as

shown in Fig.  6.11a . Besides, the piling angle is also estimated from the IPM profile by

finding the maximum angle from the lateral cross-sections from the IPM profile as shown
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(a) (b)

(c)

Figure 6.11. Initial profile estimation process for manual unloading test:
(a) peaks extracted from the IPM feedback; (b) estimated piles with cart
geometry; (c) piling angle estimation.

in Fig.  6.11c . With the estimated peak locations and the current piling angle of the grain

inside the cart, the combined piles from the peaks and the cart geoemtry can be calculated

from Eq.  6.3 as shown in Fig.  6.11b . Finally, the algorithm fuses the estimated piles with

the IPM profile to a final complete map as shown in Fig.  6.10b .

At the beginning of the unloading process at t = 22s, the relative position of the auger

stabilizes and the flow rate estimation algorithms starts. The estimation result as shown

in Fig.  6.12 is calculated from the local height growth of the profile and its growth rate

estimation as shown in Fig.  6.13 . The estimation results do not go into the grain fill model
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Figure 6.12. Flow rate estimation in manual unloading test

until t = 31s when the auger position has stayed at a fixed location for more than 10

seconds. After t = 40.2s, the flow rate estimation algorithm stops updating the flow rate

value because the relative location between two vehicles begins to move. However, to alleviate

the accumulation error and track the overall height measured by the camera-based system,

the overall height adjustment algorithm continues calculating the grain volume adjustment

to the grain fill model input. Figure  6.14 shows the grain volume adjustment in this process.

The value keeps updating after the auger moves.

To illustrate the grain profile change during the unload, Fig.  6.15 (associated with Vi-

sualization 18) shows the comparison among the grain profile resulting from three different

methods: grain fill model only, camera perception only, and fusion from these two approaches.

Figure  6.16 shows the corresponding error compared with the benchmark data.

To quantify the error in the grain profile estimation method, the mean absolute error of

the profile was calculated as

MAE (e (x, y)) =

p∑
i=−p

q∑
j=−q

|e (xauger + wi, yauger + wj)|

Navailable
(6.11)
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Figure 6.13. The local height growth and its growth rate estimation in
manual unloading test

where w is the width of a grid, Navailable is the number of visible grids from the perception

system feedback, p, q indicates the size of neighborhood in longitudinal and lateral direction

separately, (xauger, yauger) is the auger location, and e (x, y) is the height error map defined

as

e (x, y) = h (x, y) − hbenchmark (x, y) (6.12)

here h (x, y) is the grain profile to be evaluated, hbenchmark (x, y) is the benchmark profile

obtained from the LiDAR-based benchmark system.

Figure  6.17 shows the mean absolute error comparison among the perception system

measurement, grain fill model only, and fusion results. The estimation results after fusion

are better than both the grain fill model and the camera-based perception system alone. As

shown in the yellow line in Fig.  6.17 , the estimation with the grain fill model only suffers

from the accumulation error due to a bias in the flow rate input. Meanwhile, the error of the

fusion estimation does not vary too much over time, showing the effectiveness of flow rate

estimation and grain height compensation. When compared with the perception system only

estimation, the fusion results not only have a more complete coverage than the perception
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Figure 6.14. Grain volume adjustment in manual unloading test

system measurement as shown in Fig.  6.15 , but also has a lower error thanks to the more

accurate geometry from the grain fill model.

6.3.2 Automatic unloading with intermittently working camera perception

The same algorithm was applied to the data collected from an automatic unloading in-

field testing. In this test, the relative position of the tractor and the combine harvester

is controlled by an automatic unloading controller with a front-to-back-to-front unloading

strategy. In this unloading operation, the camera-based perception system lost track of the

grain cart intermittently. Within the 32-second unloading time, the camera-based perception

did not provide fill profile feedback for more than 15 seconds, causing the system to halt

automatic offloading.

Before the auger turns on, IPM has stable feedback. For the first step, as shown in

Fig.  6.18 , the initial profile estimation algorithm estimates the entire grain profile based on

the IPM feedback.

After the auger turns on, the flow rate estimation algorithm begins to estimate the flow

rate. Figure  6.19 shows the flow rate estimation result during unloading. Ten seconds after
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 6.15. Grain profile in manual unloading test (associated with Visu-
alization 18): (a) fusion profile at t = 22 s; (b) fusion profile at t = 40 s; (c)
fusion profile at t = 58 s; (d) perception system measurement at t = 22 s; (e)
perception system measurement at t = 40 s; (f) perception system measure-
ment at t = 58 s; (g) grain fill model alone at t = 22 s; (h) grain fill model
alone at t = 40 s; (i) grain fill model alone at t = 58 s.

the auger starts at t = 46.2s, the estimated flow rate replaces the original initial flow rate

in the grain fill model simulation. After that, at t = 49s, IPM loses track of the grain cart,

and the active period of the IPM did not exceed ten seconds, the flow rate was not updated

after t = 49s in this unloading operation.

Figures  6.20 - 6.21 (associated with Visualization 19) show the estimated/measured change

of grain profile with three different approaches and their corresponding error. Because the
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 6.16. Grain profile error in manual unloading test (associated with
Visualization 18): (a) fusion profile at t = 22 s; (b) fusion profile at t = 40
s; (c) fusion profile at t = 58 s; (d) perception system measurement at t =
22 s; (e) perception system measurement at t = 40 s; (f) perception system
measurement at t = 58 s; (g) grain fill model alone at t = 22 s; (h) grain fill
model alone at t = 40 s; (i) grain fill model alone at t = 58 s.

camera-based perception system lost track during unloading, its data are not available in

certain periods. Additionally, after IPM regained the tracking of the grain cart, as shown in

Fig.  6.20f , the number of visible grids significantly reduces, making it challenging to monitor

the grain profile change across different parts of the grain cart. In comparison, both the

model-only method and the fusion method maintain full coverage throughout the entire

unloading operation.
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Figure 6.17. Mean absolute error analysis for the neighboring grids around
the auger location in manual unloading test

(a) (b)

Figure 6.18. Initial profile estimation in the automatic unloading test (a)
camera-based perception system feedback; (b) initial fill profile estimation.

Figure  6.22 summarizes the mean absolute error change in the operation. The fusion

method demonstrates a higher accuracy and consistency for the data from automatic un-

loading in-field testing as well. The fusion method not only significantly reduces the accumu-

lation error compared with the model-only method, but also shows better accuracy, larger

coverage, and higher robustness to dust compared with the camera-only approach.

In summary, the in-field testing data for both manual unloading and automatic unload-

ing demonstrate that the fusion result between camera measurement and grain fill model
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Figure 6.19. Flow rate estimation in automatic unloading test

has higher accuracy, greater coverage, and more robustness to the environment than either

camera measurement or grain fill model alone.

More specifically, the accumulated MAE for the grain fill model alone can double in only

20 seconds, making the algorithm not feasible for a typical unloading operation, which can

last more than 40 seconds.

On the other hand, the maximum mean absolute error of the IPM data can be about 0.1

meters higher than the fusion results. In other words, to prevent spillage, the target fullness

for using a camera-based perception system only needs to be lower than the perception based

on fusion results. For the grain cart model used in the testing, it would result in about 60

bushels (i.e., 6% of grain cart capacity) less grain for each cart-load.

6.3.3 Manual unloading with continuously loss camera perception

It has been demonstrated that the fusion algorithm can improve perception quality in

both manual unloading and automatic unload. However, in these two cases, the perception

system is either always available (manual unloading) or has inactive periods of less than

10 seconds (automatic unload) because a longer inactive period will stop the unloading.

Besides these two cases, another case of interest is an unloading session with inactive camera
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 6.20. Grain profile in automatic unloading test (associated with Vi-
sualization 19): (a) fusion profile at t = 40 s; (b) fusion profile at t = 53
s; (c) fusion profile at t = 66 s; (d) perception system measurement at t =
40 s; (e) perception system measurement at t = 53 s; (f) perception system
measurement at t = 66 s; (g) grain fill model alone at t = 40 s; (h) grain fill
model alone at t = 53 s; (i) grain fill model alone at t = 66 s.

perception for longer. Data with a longer inactive period can validate fusion algorithm

performance in more challenging conditions.

Because the length and frequency of the inactive period of IPM are fairly random, it

is challenging to directly obtain desirable data from in-field testing. Therefore, to obtain

equivalent data, the manual unloading data in Sec.  6.3.1 was adapted by removing the camera
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 6.21. Grain profile error in automatic unloading test (associated with
Visualization 19): (a) fusion profile at t = 40 s; (b) fusion profile at t = 53
s; (c) fusion profile at t = 66 s; (d) perception system measurement at t =
40 s; (e) perception system measurement at t = 53 s; (f) perception system
measurement at t = 66 s; (g) grain fill model alone at t = 40 s; (h) grain fill
model alone at t = 53 s; (i) grain fill model alone at t = 66 s.

feedback for certain period. A 20-second inactive period from t = 34s to t = 54s was added

to the manual unloading data to validate the algorithm.

Figure  6.23 shows the flow rate estimation. Because the raw data is the same as Sec.  6.3.1 ,

the estimated flow rate is the same as the estimation in Fig.  6.12 from t = 21s to t − 34s.

However, at t = 34s, no camera feedback goes into the fusion algorithm, the flow rate

estimation does not update anymore. Additional, the estimation of the flow rate stays
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Figure 6.22. Mean absolute error analysis for the neighboring grids around
the auger location in automatic unloading test

constant after t = 54s when the IPM becomes active again because the auger does not stay

in one grain cart location for more than 10 seconds.

Even though the flow rate does not update after t = 54s because of the changing relative

position, the fusion algorithm still uses the camera perception feedback to adjust the overall

height of the estimated profile by adding or subtracting grain volume from the estimation.

Figure  6.24 shows the grain volume adjustment amount based on the difference between the

estimated grain height and the IPM measured grain height. Unlike the flow rate estimation

that requires the relative location to be static, the adjustment keeps working whenever the

IPM is active.

Figures  6.25 -  6.26 show the grain profile change and its corresponding error with three

different approaches. Visualization 20 shows the change in the entire process. It can be seen

that the both the fusion approach and the model-only approach provide complete coverage

the entire time, while as shown in Figs.  6.26g -  6.26i , the bias accumulate in model-only

approach over time.

Figure  6.27 shows the mean absolute error for the manual unloading data with extended

period of inactive camera perception. Even with an inactive period of the camera perception

for as long as 20 seconds, the result from the fusion algorithm still demonstrates better
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Figure 6.23. Flow rate estimation in manual unloading test with long inactive period

accuracy than the camera-only approach and the model-only approach. Because of the flow

rate estimation before the inactive period, the fusion approach has much slower accumulation

error growth during the inactive time compared with the model-only approach. Additionally,

after IPM becomes active again at t = 54s, the additional volume calculated from the height

correction as shown in Fig.  6.24 further brings down the error.

The estimation accuracy shown in this test shows that the fusion model can be an effective

way to provide grain fill profile feedback even if the camera perception is down for a long

period of time as long as there has already been a good estimate on the grain flow rate. The

flow rate estimation can either comes from the current load if the relative location of the

two vehicles stays relatively static for more than 10 seconds, or from a previous estimation

with similar crop unloading at the same day.

6.3.4 Computation efficiency

To demonstrate the computation efficiency of the fusion algorithm, the computation time

was counted for the data processing. The algorithm was implemented in MATLAB 2019b

and run on a Windows laptop (CPU: Intel Core i7-9750H). Table  6.2 shows the run time of

each algorithm component of the fusion algorithm.
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Figure 6.24. Grain volume adjustment in manual unloading test with long
inactive period

Table 6.2. Algorithm run time for the fusion algorithm with 5Hz updating rate
Algorithm Computation time - s In-field testing time - s

Initial profile estimation 0.35 N/A
Grain profile fusion -
manual unload test 2.74 43

Grain profile fusion -
automatic unloading test 3.54 33

The computation time was evaluated in two different parts, the initial profile estimation

and the fusion algorithm (including fusion profile height correction, flow rate estimation,

and grain fill model). The initial profile only needs to run once for each unloading, so its

computation time was not compared with the actual time. The fusion part, however, needs

to be computed contiguously during the unloading operation. Therefore, Tab. 6.2 compares it

with the actual testing time. Running at 5Hz, the fusion algorithm runs much faster than the

actual unloading operation for both the manual unloading test and the automatic unloading

test (with intermittent camera feedback). The computation time is one magnitude smaller

than the actual time in the in-field testing, showing that the fusion algorithm can run in
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 6.25. Grain profile in manual unloading test with extended period
of inactive camera perception (associated with Visualization 20): (a) fusion
profile at t = 22 s; (b) fusion profile at t = 40 s; (c) fusion profile at t =
58 s; (d) perception system measurement at t = 22 s; (e) perception system
measurement at t = 40 s; (f) perception system measurement at t = 58 s; (g)
grain fill model alone at t = 22 s; (h) grain fill model alone at t = 40 s; (i)
grain fill model alone at t = 58 s.

real-time for the unloading operation and potentially be added to the automatic unloading

system without too much computational cost.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 6.26. Grain profile error in manual unloading test with extended
period of inactive camera perception (associated with Visualization 20): (a)
fusion profile at t = 22 s; (b) fusion profile at t = 40 s; (c) fusion profile at t
= 58 s; (d) perception system measurement at t = 22 s; (e) perception system
measurement at t = 40 s; (f) perception system measurement at t = 58 s; (g)
grain fill model alone at t = 22 s; (h) grain fill model alone at t = 40 s; (i)
grain fill model alone at t = 58 s.

6.4 Discussion

The results from the in-field testing data for both manual unloading and automatic

unloading demonstrate the effectiveness and computational efficiency of the fusion algorithm.

For the fusion algorithm to work properly, there are several assumptions for the unloading

operation:
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Figure 6.27. Mean absolute error analysis for the neighboring grids around
the auger location in manual unloading test with extended period of inactive
camera perception

• A good flow rate estimation from either prior estimation with similar operating condi-

tions or from the current unloading with the auger stabilizes at one location for more

than 10 seconds. For the strategy adopted in the automatic unloading system devel-

oped in this thesis, one row of the grain cart needs to be filled up before the auger

moves to the next row, As a result, it happens frequently that the auger stays at one

location for a longer time.

• Prior knowledge of the vehicle geometry for the auger location estimation and initial

profile estimation. Such information can usually be extracted from the specifications

of the vehicles.

• The camera-based perception system has an accurate measurement when the auger is

off so the initial profile can estimated more accurately.

• The overall height of the camera-based perception system is still reliable after auger

turns on, so the volume of the profile can be corrected.
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In summary, by applying the fusion algorithm to the automatic unloading system when

the assumptions hold true, it can

• Increase grain transfer efficiency potentially. During unloading, the fusion algorithm

results can have an mean absolute error (MAE) 0.1 m lower than the camera perception

alone. To prevent spillage, unloading with camera perception alone may require a

more conservative fill target. For the grain cart used in this project, 0.1-meter height

difference results in 60 bushel (6%) capacity difference.

• Make the automatic unloading system more robust to different environment. The fu-

sion result can still provide reliable grain profile feedback with negligible accumulation

error when the perception system is inactive for as long as 20 seconds. This allows the

automatic unloading system to continue working for longer after camera perception is

down.

• Prevent spillage. The fusion algorithm estimates the grain profile of the entire grain

cart, and thus enables the spillage detection at the farther edge of the grain cart, which

is not visible to the camera-based perception system due to the occlusion of the grain

piles.

6.5 Conclusion

A fusion algorithm for the grain pile perception was developed to fuse the data from

the camera-based perception system and a grain fill model based on the characteristics of

the system. The fusion algorithm consists of three components: initial profile estimation,

overall height correction, and flow rate estimation. Data from in-field testing of combine

harvester unloading-on-the-go demonstrates the effectiveness and computation efficiency of

the algorithm. For both the manual unloading and automatic unloading, the results from

the fusion algorithm has higher accuracy, more complete coverage of the grain cart, and

more robust perception than either the camera-based system or the grain fill model alone.

If applied in an automatic unloading system, such advantageous perception results from
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fusion could increase grain transfer efficiency, make the automated system more robust to

environmental changes, and prevent spillage.
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