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ABSTRACT

Design optimization of composite structures is of importance in the automotive, aerospace,

and energy industry. The majority of optimization methods applied to laminated composites

consider linear or simplified nonlinear models. Also, various techniques lack the ability to

consider the composite failure criteria. Using artificial neural networks approximates the

objective function to make it possible to use other techniques to solve the optimization prob-

lem. The present work describes an optimization process used to find the optimum design

to meet crashworthiness requirements which includes minimizing peak crushing force and

specific energy absorption for a square tube. The design variables include the number of

plies, ply angle and ply thickness of the square tube. To obtain an effective approximation

an artificial neural network (ANN) is used. Training data for the artificial neural network

is obtained by crash analysis of a square tube for various samples using LS DYNA. The

sampling plan is created using Latin Hypercube Sampling. The square tube is considered

to be impacted by the rigid wall with fixed velocity and rigid body acceleration, force ver-

sus displacement curves are plotted to obtain values for crushing force, deceleration, crush

length and specific energy absorbed. The optimized values for the square tube to fulfill

the crashworthiness requirements are obtained using artificial neural network combined with

Multi-Objective Genetic Algorithms (MOGA). MOGA finds optimum values in the feasible

design space. Optimal solutions obtained are presented by the Pareto frontier curve. The

optimization is performed with accuracy considering 5% error.

KEYWORDS: Multi-objective optimization, Crashworthiness, Artificial Neural Net-

work, Genetic Algorithm, Specific Energy Absorption, Peak Crushing Load.
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1. INTRODUCTION

Vehicle crashworthiness and occupant safety are fundamental design considerations in the

automotive industry. Ability of the structure to absorb kinetic energy during the impact and

ensure safety of the occupants is called as crashworthiness. Earlier vehicle bodies were man-

ufactured with a crashworthiness goal to avoid vehicle deformations and have high structural

integrity. Vehicle body structures used nowadays have been developed to incorporate pro-

gressive crush zones to absorb the kinetic energy by deforming plastically and maintaining

occupant survival space in crashes involving reasonable deceleration loads [  1 ]. In order to en-

sure requirements for passenger safety, additional safety components are added to the vehicle

body. These components lead to the addition of more weight to the vehicle thereby affecting

the overall vehicle performance and fuel economy. Thus, designing vehicle structures with

lightweight materials has become an interesting domain for research [  2 ]. Nowadays, polymer

composites are being used in place of metal components due to their lowered weights, dura-

bility, and crashworthiness. Compared to metal structures, composites are found to have

high energy absorption capacities.

Composite materials are an-isotropic and in-homogeneous materials composed of a min-

imum of two or more materials, which includes reinforcing phase and matrix. Composite

materials have better properties than the individual components used [  3 ]. Composites are

classified based on their processing methods(natural composites, bio-composites, carbon-

carbon composites); matrix material (metal matrix composites, MMC; ceramic-metal com-

posites, CMC; polymer matrix composites, PMC) and based on filler material structure:

particulate (random particle orientation; preferred particle orientation), fibrous (short-fiber

reinforced composite materials; long fiber-reinforced composite materials), and structural

composites[ 4 ].

Composite materials provide various benefits over traditional materials like steel, alu-

minum including high strength to weight ratio, better energy absorption abilities as well as

good corrosion resistance, and thermal characteristics. Composites have better resistance

when subjected to impact, fatigue, static and dynamic loads. These advantages have led to

an increase in the performance of the car, lower energy/ fuel consumption and resulting in
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safe ride. The usage of composite materials in the automotive industry has increased rapidly

in recent years. Various automotive parts such as chassis parts, bumpers, driveshafts, brake

discs, etc. are being manufactured using composite materials. The use of fiber-reinforced

polymer composites for almost all body parts can be seen in all Formula series and racing

cars. In motorsports and automotive industry, using a lightweight car body with uniformly

distributed weight has helped to ensure that vehicles have more mechanical control on the

track and thus resulting in overall enhanced performance of the car[ 3 ].

Irrespective of having various advantages, major issues faced in using composite materials

are high costs, complex and expensive manufacturing processes, expensive maintenance,

and complex failure modes. Thus, optimal design of vehicle components using composite

materials to obtain appropriate material utilization and desired structural performance is

crucial. Experimental testing on prototypes to obtain optimal design can be very expensive.

These expenses can be minimized by performing Finite element simulations using softwares

like LS-DYNA and utilizing optimization techniques using softwares like MATLAB.

Design optimization technique is considered to be a very powerful tool to help to design

optimum structure to utilize the complete performance of composites and seek the highest

possible crashworthiness. Key parameters considered for optimization of the composite struc-

tures for crashworthiness include the energy absorbed, specific energy absorbed, peak and

mean crushing force, crash efficiency and weight. Design optimization for crashworthiness

utilizes various design parameters and can have single or multiple objectives for optimiza-

tion. Generation of solution set for single objective optimization is easier considering just a

single objective to fulfill. However, multi-objective optimization requires an approach where

all objectives are fulfilled to achieve desired performance. Solution for multi-objective opti-

mization can be represented in form of Pareto solution set, which represents best solutions

for given objectives[ 5 ].

The present work describes an optimization process used to find optimum design for a

square composite tube undergoing impact against a rigid wall. Objectives include maximizing

the specific energy absorbed by the square tube and minimizing the peak crushing force.

Finite element simulations are performed in LS DYNA and optimization is performed using

15



MATLAB. Artificial neural networks combined with Genetic Algorithms is considered as an

optimization technique to find optimized values and fulfill crashworthiness requirements.

Chapter 1 gives a brief introduction regarding the project. Chapter 2 includes literature

review focusing on automotive structures used in composites, crashworthiness of thin-walled

tubes, factors affecting the crashworthiness parameters, material models used in LS DYNA,

and different optimization techniques used. Chapter 3 represents optimization technique

used for the square composite tube. This chapter includes mathematical representation of the

optimization problem, methodology used, details about the sampling plan, artificial neural

networks, and genetic algorithm. Chapter 4 covers the results obtained from finite element

simulations, artificial neural networks and genetic algorithm to generate optimal values for

design variables that fulfill crashworthiness requirements of the square tube. Chapter 5 and

6 concludes the present work and describes future scope.
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2. LITERATURE REVIEW

2.1 Composite Materials

Composites are materials made as a result of combination of two materials one of which

is the matrix and other is the filler or reinforcement.(Refer Figure 2.1). Composite materials

exhibit better properties than individual parent materials. Composites are classified based

on their processing methods(natural composites, bio-composites, carbon-carbon composites);

matrix material (metal matrix composites, MMC; ceramic-metal composites, CMC; polymer

matrix composites, PMC) and based on filler material structure: particulate (random particle

orientation; preferred particle orientation), fibrous (short-fiber reinforced composite materi-

als; long fiber-reinforced composite materials), and structural composites. Classification of

composites in shown in Figure 2.2, 2.3[ 4 ].

Figure 2.1. Composite Material

Figure 2.2. Classification of Composites Based on Processing Routes, Matrix
Materials [ 4 ]
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Figure 2.3. Classification of Composite Based on Filler Materials [ 4 ]

Fiber reinforced composites are formed utilizing polymer resin as the matrix material with

various types of fibers reinforced in it as a filler material. In FRPC, fibers are primary load

carrying members that exhibit high section modulus and specific strength. Most commonly

used FRPC includes E-glass and carbon fiber reinforced polymers. Carbon fiber reinforced

polymer composites have various advantages such as low density, high tensile modulus, high

fatigue strength as compared to metals like steel, aluminum, and E-glass fiber reinforced

polymer composites. Figure 2.4 shows classification of fiber materials used in composites.

In the present work, carbon fiber reinforced composites are used.

Figure 2.4. Classification of Fibers [ 4 ]
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Fibers are further classified on basic of the sizes and forms. Continuous fibers are fibers

with length ranging between 2-25mm while discontinuous fibers have length ranging between

1-3mm and have aspect ratio up to 2000. Depending on the forms, continuous fibers can be

further classified as unidirectional or multi-axial laminates, woven fabrics, knitted fabrics,

etc. Figure 2.5 shows classification of fabrics. Woven fabrics can be further classified based

on the weave pattern such as plain weave, twill weave, five harness satin weave. Advantage

of using woven fabrics is their high resistance to shear. Material used in this work is twill

weave woven Carbon fiber reinforced polymer composite.

Figure 2.5. Classification of Fabrics [ 4 ]

2.2 Crashworthiness Test on Thin-Walled Composite Tube

Composite materials used in automotive applications fulfill requirements of safety as well

as ability to absorb more crash energy in addition to the advantage of their high strength

and light weights. Key parameters in crashworthiness of any structure includes study of

specific energy absorption capability, peak crushing force, deceleration, and crush efficiency.

In order to understand the behavior of composite material in crash analysis, various levels

of tests are performed. The composite crash tests include coupon level testing, element

testing and structure testing. Structure testing is crash testing for full sized assemblies.

Coupon testing includes testing of small inexpensive easily fabricated shapes while element

level testing includes testing large specimens such as tubes, angles, channels. In the present

work, element level testing is considered using a square tube. A square tube of length L,

with thickness t, and single bevel trigger is impacted against a rigid wall moving with certain
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velocity v. Figure 2.6 and Figure 2.7 shows image for before and after crush testing of the

square tube. If the tube exhibits a stable crush behavior, � is the displacement of the wall, d

is the crush zone. A load (P) versus displacement (δ) is plotted. Force versus displacement

curve for stable crushing is shown in Figure 2.8. Peak load Pmax is observed due to failure

of the trigger up to δ1. Beyond this point, the tube shows a stable crushing behavior with

mean load Pmean.

Figure 2.6. Square Tube before the Impact

Figure 2.7. Square Tube after the Impact
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The displacement after the tube is crushed is denoted by δ2. Area under the force versus

displacement curve represents the energy absorbed by the tube during the crash. This energy

absorbed by the tube can be given as

W = ∫
δ

0
Pdx (2.1)

Figure 2.8. Force vs Displacement Curve for Stable Crushing

The specific energy absorption Es expressed in kJ/kg is the total energy absorbed by

the tube per unit mass m. The mass can be expressed as product of density ρ, area A and

crushed length of the tube. For simplification purpose, displacement of the wall is assumed

to be the crush length. Thus, specific energy absorption can be expressed as follows

Es =
W

Aρδ
(2.2)

The crush force efficiency is the ratio of the peak force and mean force obtained during

stable crushing which ideally must be 1 however any value greater than 0.75 indicate well

defined specimen. The equation for crush force efficiency is given as follows

CFE =
Pmax

Pmean
(2.3)
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2.3 Failure Modes in Composites

Composite materials may fail internally even before the macroscopic failure. When in-

ternal damage frequency is sufficiently high, it affects the macroscopic material responses.

Internal failures consist of delamination, matrix failure and fiber failure. Delamination is one

of the most critical failure criteria in composites caused due to separation of two adjacent

plies inside composite laminates. High concentration of inter-laminar stresses near holes

and free edges of the laminate can cause delamination. Local and global buckling can be

caused due to presence of delamination[ 1 ]. Matrix failure includes matrix deformation and

cracking. Fiber failure includes failure of material due to fiber breakage, fiber debonding and

fiber pull-out. Whenever crack in the composite materials travels normal to the fibers, fiber

breakage occurs. When cracks travel parallel to the fibers and causing fibers to separate due

to weak matrix interface, fiber debonding takes place. High matrix deformation can cause

fibers being pulled out and cause fiber to break. Extensive debonding may lead the energy

absorption to increase[ 4 ].

2.4 Crushing Behavior of Composites

Crushing behavior of composites is broadly classified as stable and unstable failure. In

unstable crushing, material fails due to sudden catastrophic failure after initial peak load.

Thus, material becomes incapable of sustaining compression. Whereas in stable crushing,

specimen can withstand compressive loads after attaining initial peak. Stable crushing results

in better energy absorption.

2.4.1 Unstable Failure

Unstable failure under compressive or crushing loads includes buckling, interpenetration

and barreling. Column instability in slender tubes can cause buckling of the tubes. High

compressive stresses causing circumferential cracks near middle portion of the tube in such

a way that tube is divided in two halves and penetrated into one another. Barreling is

caused when inner and outer layers of the tube bow away from the internal layers under low
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compression loads. Figure 2.9 shows unstable crushing failure in composites[  2 ]. Unstable

crushing involves very high initial peak loads. In order to sustain such loads, structure

must be strong enough. Thus, to overcome unstable crushing designing heavy structures is

required. Hence, unstable failures must be avoided.

Figure 2.9. Unstable Crushing Failure (a) Buckling (b) Interpenetration (c) Barreling[ 4 ]

2.4.2 Stable Failure

Stable crushing failure modes are broadly classified as fiber splaying or lamina bending,

fragmentation or transverse shearing, folding or local buckling and brittle fracture. In fiber

splaying, fibers are separated into fronds due to long inter and intralaminar and axial cracks.

Load applied by the wall in crash, causes fronds to bend either inwards or outwards of the

tube. Fragmentation is considered to be formation of short inter-laminar and axial cracks.

Interlocking fiber patterns and higher allowable shear stress can result in fragmentation.

Brittle fracture is mixture of both splaying and fragmentation. Large debris wedge is caused

due to high compressive stresses near the center. Folding is a failure mode observed to be

similar to metals under compression. Folding is local buckling of the tube due to large stress.

It is caused due to inter-laminar, intralaminar and axial cracks occurring near hinges. Figure

2.10 represents classification of stable crushing modes[ 2 ].
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Figure 2.10. (a) Fiber Splaying (b) Fragmentation (c) Brittle Fracture (d) Folding [ 4 ]

2.5 Factors Affecting Crash Performance in Composite Tubes

Various factors affect that crash performance include matrix and fiber material, cross

section of the tube, laminate properties such as fiber orientation, ply layups, ply thickness,

trigger mechanisms used, crushing speed and strain rate used.

2.5.1 Matrix And Fiber Material

Energy absorption characteristics depend on the type of reinforcing fiber used. Jacob et.al

represented a few important findings stating effects of matrix and fiber materials. Decrease

in fiber density causes increase in specific energy absorption. Higher failure strain in fibers,

high inter-laminar fracture toughness, and high matrix failure strain increases specific energy

absorption. Changes in stiffness in both matrix and fiber has negligible effect on the energy

absorption[ 6 ].

2.5.2 Cross-Section

Various cross sections are used for studying effect of crash performance on composite

tubes. Commonly used sections include circle, square, rectangle, square tube with rounded

corners, tapered tubes, etc. In square and rectangular tubes, specific energy absorption was

found to be less because of the high concentration of stress around corners. Circular tubes

when crushed, generate large axial cracks, and thus have high energy absorption[  7 ]. Feraboli

et al., studied effect of rounded corners on channel and tube. The sections with rounded
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corners and small flanges resulted to have high specific energy absorption as compared to

flat cross sections. Chang Qi et al., performed tests for straight and tapered square tubes.

It was observed that tapered tubes had comparative less peak crushing force as compared

to straight tubes. Adding a taper found to have resulted in better crash performance as

compared to straight tubes[ 8 ].

2.5.3 Laminate Properties

Laminate properties such as fiber orientation, layups and per ply thickness. In study

performed by Wang et al., it was observed that the effect of ply orientation had great

influence on the crash performance. With increase in the ply orientation, specific energy

absorption, peak crushing loads were observed to decrease. Specific energy absorption and

peak loads were found to increase with increased ply thickness[ 9 ]. Ramakrishna et al., effect

of fiber orientations on crushing parameters was studied. With increase in fiber orientation,

axial stiffness and compressive strength decreases and material fails due to compressive shear

fracture[ 8 ]. Thornton et al., studied effect of fiber orientation on crash performance and it

was observed that if 90-degree plies are used at inner and outer of the tube, energy absorption

was improved[ 10 ].

2.5.4 Trigger

In order to achieve stable and progressive failure in composites, a trigger is provided on

the front of the tube. Trigger acts like a stress concentrator and initiates failure at specific

location of the structure. Adding a trigger helps to reduce the initial peak loads followed by

stable collapse of the tube. Various types of trigger mechanisms used include bevel triggers,

notch, tulip, ply drops. 45-degree chamfer or single bevel trigger was observed to have more

energy absorption as compared to the tulip pattern[ 7 ].
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Figure 2.11. Types of Trigger Mechanisms (a) Single Bevel (b) Double Bevel
(c) Notch (d) Tulip (e) Holes (f) Ply Drop offs [ 4 ]

2.5.5 Crushing Speed

David et al., conducted crush tests at different loading rates ranging from quasi static to

dynamic range (1mm/s to 10 m/s). Quasi static loading showed better crash performance

as compared to dynamic loading. Intermolecular interactions in dynamic loading were short

causing brittle failure as compared to extended interactions in quasi static loading[ 11 ]. How-

ever, dynamic loading must be preferred to have an effective reference with actual loading

conditions[ 12 ]. Specific energy absorption increases with increase in impact speed.

2.6 Material Models Used for Crashworthiness Analysis

LS DYNA is computer aided engineering program which is used in this work for crash

analysis of the composite square tube. Different composite material models are present in LS

DYNA based on element type, degradation law, etc. Two degradation laws in continuum me-

chanics includes progressive failure model (PFM) and continuum damage mechanics (CDM)

model. Table 2.1 represents various models used in LS DYNA for composite materials.
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Table 2.1. Composite Material Models Used in LS DYNA

MAT Title Element Type Degradation Law

Solid
Thin

Shell

Thick

Shell

22
*MAT_COMPOSITE_DAM-

AGE
• • • Progressive Failure

54/55
*MAT_ENHANCED_COM-

POSITE_DAMAGE
• Progressive Failure

58
*MAT_LAMINATED_COM-

POSITE_DAMAGE
• • Damage Mechanics

116 *MAT_COMPOSITE_LAYUP • No Failure

117
*MAT_COMPOSITE_MA-

TRIX
• No Failure

118 *MAT_COMPOSITE_DIRECT • No Failure

158
*8MAT_RATE_SENSI-

TIVE_COMPOSITE_FABRIC
• • No Failure

161 *MAT_COMPOSITE_MSC • Damage Mechanics

162 *MAT_COMPOSITE_DMG • • Damage Mechanics

In paper written by Cherniaev et al., axial crash response for carbon fiber reinforced

square tube was studied using three most commonly used LS DYNA Models viz., MAT

54, MAT 58 and MAT 262. MAT 54 assumes ply level linear elastic orthotropic response

until failure without consideration of pre and post peak softening. MAT 58 considers both

nonlinear pre and post peak softening. While MAT 262 was seen to assume bi-linear pre and

post peak softening. Two non-physical parameters SLIMC1 which is stress limit factor in

longitudinal compression and SOFT which is the crash front softening factor was calibrated

for MAT 54 and 58[ 13 ].
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MAT_LAMINATED_COMPOSITE_FABRIC (MAT 58)

MAT 58 is elastic damage model which can be only used for shell elements. This model is

used for composite materials with complete laminates, unidirectional plies and woven fabrics.

MAT 58 uses Hashin’s Failure criteria for matrix and fiber failure. Table 2.2 represents

material cards used in MAT 58.

Hashin Failure Criterion

Hashin’s criteria is represented as below:

• Tensile fiber mode (σ1 > 0):

(σ1
2

Xc
) + (τ12

2

S
) = 1, (2.4)

• Compression fibre mode (σ1 < 0):

σ1
Xc

= 1, (2.5)

• Tension matrix mode (σ2 > 0):

(σ2
2

Y t
) + (τ12

2

S
) = 1, (2.6)

• Compression matrix mode (σ2 < 0):

(σ2
2

Y t
) + [(Yz

2

2S
) − 1]σ2

Yc
+ (τ12

2

S
) = 1, (2.7)

Here, Xt, Xc, Yt, Yc and S are longitudinal tensile strength, longitudinal compressive

strength, transverse tensile strength, transverse compressive strength, and shear strength

respectively[ 4 ].
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Figure 2.12. Material Card Details for MAT 58

2.7 Crashworthiness Optimization of Tubes

Despite of having numerous advantages in crash performance, composite materials have

complex failure criteria and expensive manufacturing and maintenance costs. Thus, to uti-

lize the advantages of the composite materials and reduce the mass and cost and enhance

the performance of the tube, performing design optimization is crucial. As previously men-

tioned, important objectives of crash performance include reduced peak loads, maximized

energy absorption, minimized deceleration loads and enhanced crush efficiency. As observed

during the literature study, various parameters like greater ply thickness, number of plies, ply

orientations help to enhance the energy absorption however, the peak force is also increased.

Increasing ply thickness and number of plies of adds to additional weight, thus further in-

creasing the cost of manufacturing. Hence considering all these objectives, optimization

must be performed to get design parameters of the tube in such a way that specific energy

absorption is maximized, and peak loads are minimized. Thus, optimization will avoid over

designing of the tube and also reduce weight of the tube and cost of manufacturing.

29



2.8 Design Optimization

Design optimization is technique used by engineers to obtain values of the design parame-

ters such that best performance of the system is achieved. When improving one performance

criteria of the system, other criteria may worsen and lead to bad system performance. Opti-

mization process involves trade off analysis in case of such conflicts. A typical optimization

problem can be mathematically represented as following.

minimize f(x)

subject to hi(x) = 0, for i = 1,2...m1

gi(x) ≤ 0, j = 1, 2...m2

xlower ≤ x ≤ xupper

where,

x is the design vector such that x = [x1,...,xn],

n is the number of design variables. or dimension of the design space.

f(x) is the objective function such that f(x) = [f1(x), ..., fk(x)].
k is the number of objective functions to be optimized or dimension of the objective space.

hi (x) are the equality constraints, where m1 is number of constraints.

gj (x) are the inequality constraints, where m2 is number of constraints.

xlower, xupper denote the lower and upper bounds of the design variables.

Depending upon number of objectives to be optimized, optimization is classified as Single

Objective Optimization and Multi-objective Optimization. In single objective optimization,

only one objective function is required to be optimized . Obtaining set of solution to such

problems is easy as there will be no conflicts between the objectives. When two or more

objective functions are to be optimized, it is said to be multi-objective optimization. The

solution to the multi-objective optimization is obtained in the form of Pareto front. Pareto

front is set of optimal or best values of the design variables which satisfies both the objective

functions.
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2.8.1 Sampling Techniques

Design of experiments is performed to understand effect of variation in input variables

on output performance. Sampling techniques are used to select values for the input variables

from given range or bounds. Sampling techniques used include factorial sampling, random

sampling, stratified sampling, Latin Hypercube Sampling. This work uses Latin Hypercube

Sampling to generate initial sampling plan.

Factorial

Factorial sampling can be used only for less variables and consists of full or fractional

factorials. The number of sample points for k variables and l levels is given by l
k. In case

of fractional factorial, number of sample points is given by l
k−p where p is the fraction size.

The number of sample points varies exponentially with number of variables[ 14 ].

Random Sampling

In random sampling values for design variables is selected randomly. This is most com-

monly used method when no initial data is available.

Stratified Sampling

This type divides the entire population or design space into homogenous group or strata.

Sample points are selected by simple random sampling from these strata.

Latin Hypercube Sampling

Latin Hypercube Sampling uses a practical rule where number of sample points is equal

to 10d, where d is the number of input variables. LHS divides the dimension of design space

into number of segments that are equal to number of design points[ 15 ].
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2.8.2 Metamodeling Techniques

Metamodeling or surrogate modeling techniques are used generate of approximation func-

tion that relates input variables and target values. In design of experiments, sample points

generated by sampling plan are utilized to get target values by performing finite element

analysis. This data of input variables and target values is utilized to generate a metamodel

that relates the input variables with output variables. There are various types of meta-

model techniques such as Radial Basis Function[ 16 ], Response Surface Methodology[  14 ],

Polynomial Regression[  16 ], Polynomial Response Surface(PRS)[ 16 ], Multivariate Adaptive

Regression Splines[  16 ], Kriging[ 15 ], Artificial Neural Networks, etc. In present work, Artifi-

cial Neural Network is used as a metamodeling technique to generate approximation function

that relates the input and the target values. According to study performed by Fang et al.,

PRS works well if number of design variables is less than 10. Kriging can be used for design

variables up to 50. Advantage of using Artificial neural networks is that it can handle up to

10,000 design variables[ 13 ].

Artificial Neural Networks:

Artificial neural networks are computational models inspired by biological neural system.

Alike biological system, ANN gathers information, detects pattern and relations between

this information. ANN model consists of input layer, hidden layer, and output layers each

consisting of neurons that are connected by weights. Hidden and output layers consist of

input weights, biases transfer function and output. In the artificial neural network, input

signals are multiplied with weights, summed, and then passed through transfer function to

gain output. Figure 2.12 shows architecture of artificial neural networks[ 17 ].
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Figure 2.13. Architecture of Artificial Neural Network

Various transfer function used includes tangent sigmoid, logarithmic sigmoid, pure lin-

ear, etc. The transfer function used between last hidden layer and output function is always

pure linear function. The way in which neurons are connected to each is called as network.

There are various types of neural networks based on the types of connections between the

neurons[ 18 ]. Learning rule is the rule used to modify weights and biases to train the neural

network to get required outputs[  19 ]. There are various types of neural networks used. Neu-

ral network consisting of single neuron is called perceptron. Perceptron uses simple linear

regression model. The activation function used is sigmoid function. Shallow neural networks

are networks which have 2 to 3 layers of connected neurons. When a greater number of

layers are used, the network is called as deep neural network. Commonly used neural net-

works include feed forward network, feed forward back propagation network, convolutional

neural network, Recurrent neural network, etc. Different types of training algorithms are

used to train the neural data that vary according to computational speed, accuracy, and per-

formance function. Different algorithms include Levenberg Marquardt Algorithm, Bayesian

Regularization, Quasi Newton, Scaled Conjugate Gradient, etc. The present work utilizes

feed forward network, uses Levenberg Marquardt training algorithm.
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2.8.3 Optimization Techniques

Optimization techniques are methods used to find optimal values of the objective func-

tion. The optimization may or may not be constrained depending on the application. For

optimizing nonlinear materials like composites, gradient based, population based, and surro-

gate based methods are used. Gradient-Based Optimization includes methods like Sequen-

tial Quadratic Programming (SQP) and Method of Feasible Directions (MFD). Population-

Based Optimization includes methods like Genetic Algorithm, Particle Swarm Optimization,

etc[ 20 ]. Other multi-objective optimization methods include Multi Objective Evolutionary

Algorithms, Sliding Mode Multi-objective algorithm, Levenberg Marquardt Multi Objective

Optimization.

Genetic Algorithm uses Darwin’s laws of selection, crossover, and mutation. GA is widely

used optimization technique considered for solving complex problems in engineering. Genetic

algorithms can be further classified as Multi-objective Genetic Algorithm, Non-dominated

Sorting Genetic Algorithms, etc. NSGA is variation of GA. A typical process followed by

genetic algorithms is as shown in Figure 2.14.

Figure 2.14. Flowchart for Optimization Using Genetic Algorithms
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2.9 Objectives

• Objective of the thesis is to develop an optimization process using Artificial Neural Ne-

tworks and Genetic Algorithms to optimize crash performance of composite square

tube.

• Objective of the optimization is to minimize peak crushing force and maximize specific

energy absorption.

• Generate Metamodel function using Artificial Neural Networks. Train, test and vali-

date sampling data using Artificial neural network and generate fitness function.

• Obtain pareto solutions by Multi-Objective Genetic Algorithms.
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3. OPTIMIZATION OF COMPOSITE SQUARE TUBE

3.1 Methodology

The methodology followed to perform multi-objective optimization is shown in Figure

3.1.

Figure 3.1. Methodology for The Optimization Process
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3.2 Model Details

The present work involves optimization of square tube for crash performance. The model

used for this study is a square tube made of composite material CFRP SC 110(T2) 2X2 Twill

prepreg. The square tube is 171 mm in length with side of the square tube equal to 27.4mm

with corner fillet radius of 0.3mm.

Figure 3.2. Cross Section of The Square Tube

3.3 Problem Definition

Design optimization goals or objective function for optimizing the square tube for crash-

worthiness requirements are minimizing peak crushing load and maximizing specific energy

absorption. The variables include design parameters of the composite tube such as thickness

per ply, angle of ply orientation and number of ply layups used. The constraints for thickness

range between 0.1 to 0.75mm per ply. Ply orientation can be varied between -90 degrees to

+90 degrees. The design optimization problem is defined as below.

maximize SEA(t,⊖i)

minimize Pmax(t,⊖i)
subject to 0.1mm ≤ t ≤ 0.75mm

−90◦
≤ ⊖ ≤ 90◦
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where,

t = thickness per ply in mm.

i = 1, 2,...n; where, n = number of plies used. ⊖ = Ply orientation angle in degrees.

SEA = Specific energy absorption in Nmm/g

Pmax = Peak crushing load.

3.4 Latin Hypercube Sampling

Latin Hypercube sampling is used a sampling technique in this work. According to this

rule, 10*d samples are required, where d is the number of variables. In this work, different

sampling plans are created according to number of layers. For composite tube, variables

would be thickness per ply and orientations per ply. Composite materials exhibit better

properties with symmetric layups. Thus, considering symmetric layups for the tube ply

orientations are represented as [⊖1/⊖2]s for four plies, [⊖1/ ⊖2 / ⊖3 /⊖4]s for eight plies

and so on. The total number of variables for 4 plies composite tube would 3 and number of

variables for 8 plies composite tube would be 5. Thus, minimum number of initial sample

points required for composite with 4 plies is 30 samples and similarly, sample points for

composite tube with 8 plies will be 50 samples. Sampling plan using LHS rule is generated

in MATLAB using the function as follows,

Xs = lhsdesign(N, n) where, N is no of sample points and n is number of variables used.

Figure 3.3. Example of Sampling Plan Generated for Composite Tube With 8 Plies
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As shown in Figure 3.2, 10 sample points were created for % variables. The first variable

here denotes the ply thickness found in the given range and variable 2 to 5 denotes ply

orientations. For simplicity in the MATLAB representation, angles only positive angles

were considered. According to the shown example, the required sampling plan is created to

obtain input values for the design variables. This data is then used to perform the Design

of Experiments using Finite Element Analysis in LS-DYNA.

3.5 Finite Element Analysis in LS DYNA

3.5.1 Model Details:

As mentioned previously, the present work uses a square tube with rounded corners. The

length of the tube is 171 mm, side of the tube is 27.4 mm and corner fillet radius is 0.3 mm.

The model was considered with rounded corners since, square tube with rounded corners has

better specific energy absorption capabilities as compared to regular square tube. As stable

crushing is desired in this analysis, a trigger mechanism is implemented. The trigger used

for the square tube is bevel trigger which makes 45◦ chamfer on the front of the tube. The

square tube is crushed against a rigid wall with weight of the wall equal to 5 kg or 5000g.

The velocity of the wall was considered to be 20 m/s or 20 mm/ms so that the maximum

energy to be absorbed by the tube will be 1000 J or 106 Nmm. Figure 3.4 shows model of

square tube[ 21 ].

Figure 3.4. Model of Square Tube in LS DYNA
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3.5.2 Finite Element Modeling Details

Pre-processing involves meshing of the square tube, adding boundary conditions, material

properties for wall and tube, defining shell sections, defining composite layups, defining

contacts, and setting controls for termination. After pre-processing the tube is simulated

for crash analysis. Square tube is meshed with shell elements. The front row elements are

considered as to have thickness half to that of the tube to incorporate the bevel trigger

mechanism.

Mesh Criteria

Mesh quality criteria used for meshing of the square tube is as follows:

• ELFORM= 2 (Belytschko-Tsay)

• Min Mesh Size ≥ 2mm (For tube and trigger)

• Warpage ≤ 20◦; Jacobian ≥ 0.6

• Min angle ≥ 45◦; Max angle Quad ≤ 135◦

• Min angle Tria ≥ 20◦; Max angle Tria ≤ 120◦; Total Number of Tria ≥ 5%

All values are as per the LS DYNA consistent unit system as described in Table 3.1.

Table 3.1. LS DYNA Consistent Unit System

Physical Parameter Unit

Mass Grams(g)

Length Milimeters(mm)

Time Milliseconds (ms)

Force Newton(N)

Stress Mega Pascals(MPa)

Energy Newton-Millimeter(N-mm)
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Contacts Used in LS DYNA

• CONTACT TYPE - AUTOMATIC SINGLE SURFACE CONTACT (Contact be-

tween trigger elements and composite tube elements)

• CONTACT TYPE - AUTOMATIC SURFACE TO SURFACE CONTACT (Contact

between rigid wall and tube)

Boundary Conditions

The initial velocity of 20 m/s is assigned to the rigid wall to initiate the crash. The rear

end of the tube is fixed in all directions to ensure stable crushing of tube. Figure 3.6 shows

applied boundary conditions.

Figure 3.5. Boundary Conditions Applied

Material Properties for The Rigid Wall

A rigid wall of 5 kgs is impacted against the square tube is made of rigid steel material

and defined as MAT 20 in LS DYNA. The thickness of the wall is 5 mm. The Young’s

Modulus for the steel material is 2.1e5 MPa. The density of the material is 0.15625g/mm
3.

Poisson’s ratio use is 0.33.
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Material Properties for The Composite Tube

Material used for the composite tube is Carbon Fiber Reinforced Polymer SC 110 (T2)

2X2 twill prepreg. The curing cycle for this material from Gurit Holding includes curing the

prepreg infused in resin at temperature of 120◦C for 60 minutes[ 21 ]. Layups for tube and

trigger were entered as per Latin Hypercube Sampling plan. Figure 3.7 shows example of

ply layups for square tube with 8 plies. Similarly, ply layups for the trigger as also entered.

Only difference is the number of plies used in tube and trigger. In order to incorporate the

trigger mechanism, number of plies in the trigger are half the number of plies in the tube.

Figure 3.6. Defining Layups in PART COMPOSITE

MAT_LAMINATED_COMPOSITE_FABRIC (MAT 58) keyword in LS DYNA is

used to enter the material properties. As discussed in Chapter 2 Literature review, MAT 58

uses Hashin’s failure criteria for matrix and fiber failure. Figure 3.7 shows material properties

entered for the square tube.
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Figure 3.7. Material Properties for CFRP

3.5.3 Finite Element Analysis Results

FEA results for the crash analysis of the square tube are plotted for recording values for

maximum displacement, acceleration, peak crushing load and mean crushing load. Force vs

displacement curve is plotted to understand the stable crushing behavior and record energy

absorbed.
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Figure 3.8. Displacement Plot

Figure 3.9. Acceleration of The Rigid Wall
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Figure 3.10. Force Versus Displacement Curve

Figure 3.11. Energy Absorbed by The Tube

Area under the force versus displacement curve gives the energy absorbed by the tube.

As seen in Figure 3.10, a stable crushing failure was exhibited by the composite square tube.

Thus, this model can be used to perform design of experiments using the LHS plan for

changing the design parameters for the tube as shown in Figure 3.6.
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3.6 Artificial Neural Network

Artificial neural network is used as metamodeling technique in this work. ANN architec-

ture consists of input layer, hidden layers, and output layers. Neural network fitting tool or

neural network tool can be used to initiate training of the information. Information consists

of input data which represents the design variables and target data which represents target

values of objective functions obtained by Design of Experiments. ANN needs to be trained in

such a way that the fitness function is developed which will give output values for objective

functions for any given input values of the design variables. The process of training the

information is discussed below.

• Step 1: Import or call the input and target data

• Step 2: Create a network. This consists of selecting the network type, training

function or algorithm, learning function, performance function, number of layers,

number of neurons in hidden and output layers and transfer function used.

• Step 3: Enter the training parameters. This consists of defining number of epochs,

performance goal, minimum and maximum values of the gradient, learning rate.

• Step 4: Setup division of data for training, testing and validation of information.

• Step 5: Train the network and plot various functions like mean square error, regres-

sion, error histogram, training state.

• Step 6: Repeat the process until average percentage error is less than 5

• Step 7: Once all hyperparameters are optimized, and desired performance is

achieved, generate a fitness function which can be utilized to obtain values for

objective function for any given input variables.
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Hyperparameter Optimization (Parameters to Tune ANN)

Type of network, training algorithm, number of hidden layers, number of neurons in

hidden layer, training function, batch size, drop out, learning function and rate, performance

function, epochs are parameters that need to be optimized in order to have well trained neural

network.

3.6.1 Artificial Neural Network Used to Train Composite Square Tube With 4
Plies

According to the Latin Hypercube sampling plan, initial number of sample points used

were 10*d where d is the number of design variables. Thus, for composite tube with 4

plies with symmetry, 30 number of samples were selected. These samples were simulated in

LS DYNA to obtain values for specific energy absorption and peak crushing force. Thus,

for a given single sample point we have three inputs and two outputs. Artificial neural

network with two hidden layers was selected to train the information using feed forward

network. (MATLAB: feedforwardnet) The training algorithm or function used was Levenberg

Marquardt Algorithm (MATLAB: trainlm). The learning criteria was LearnGDM. The

performance criteria used was mean square error. The neural network architecture used for

this application includes three hidden neurons in first hidden layer and transfer function

used was tangent sigmoid (MATLAB: tansig). For second hidden layer five hidden neurons

with tangent sigmoid transfer function was used. The number of neurons in input and

output layers are equal to number of input variables and output objective functions. The

transfer function used between hidden layer 2 and output layer is pure linear (MATLAB:

purelin). Out of the thirty sample points, 70% were used for training the network, 15% were

used for testing the trained function and 15% was used to validate the trained function.

Hyperparameters were optimized and new sample points were added until desired results

were obtained. The number of epochs were 1000 for this network. Epochs represent the

number of times the data travels through each neuron to learn the information and train

the information. Learning rate used was 0.01 which denoted that the 1% error is considered
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while updating the weights and biases. Table 3.2 represents details for all layers and figure

3.12 shows neural network architecture used for training data for square tube with 4 plies.

Table 3.2. Neural Network Architecture for Square Tube With 4 Plies
Layer Number Number of Neurons Transfer Function

Hidden Layer 1 3 tansig

Hidden Layer 2 5 tansig

Output Layer 1 purelin

Figure 3.12. Representation of Neural Network Architecture for Square Tube
With 4 Plies

The neural network was trained number of times until value of Regression was obtained

close to 1 and reduced or zero mean square error was obtained. Once the desired goal

was achieved, new sample points were tested using both Artificial neural network as well

as FEA simulation to validate the fitness function obtained by the neural network. This

process was repeated until percentage error between values obtained by FEA, and ANN was

reduced to less than 5%. After attaining the accuracy goal of 5%, the fitness function was

developed using training information such as weights, biases, transfer functions. Objective

function values for any inputs can be achieved using this fitness function. The next step in

optimization of the square tube would be using this fitness function to optimize the objective

functions.

3.6.2 Artificial Neural Network Used to Train Composite Square Tube With 8
Plies

Similar to tube with four plies, the neural network was trained for tube with 8 plies.

For composite tube with 8 plies with symmetry, 50 number of samples were selected. These
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samples were simulated in LS DYNA to obtain values for specific energy absorption and peak

crushing force. Thus, for a given single sample point we have five inputs and two outputs.

Artificial neural network with two hidden layers was selected to train the information using

feed forward network. The training algorithm or function used was Levenberg Marquardt

Algorithm. The learning criteria was LearnGDM. The performance criteria used was mean

square error. The neural network used for this application is given in Table 3.3 and Figure

3.13 shows architecture used. Out of the first fifty sample points, 70% were used for training

the network, 15% were used for testing the trained function and 15% was used to validate the

trained function. Hyperparameters were optimized and new sample points were added until

desired results were obtained. The number of epochs were 100 for this network. Learning

rate used was 0.01.

Table 3.3. Neural Network Architecture for Square Tube With 8 Plies
Layer Number Number of Neurons Transfer Function

Hidden Layer 1 10 tansig

Hidden Layer 2 12 tansig

Output Layer 1 purelin

Figure 3.13. Representation of Neural Network Architecture for Square Tube
With 8 Plies

3.7 Multi-Objective Optimization

Multi-objective optimization was performed using multi-objective genetic algorithms.

The fitness function was defined using artificial neural network for square tube with 4 plies

and 8 plies. gamultiobj function in MATLAB was used to perform the multi objective opti-

mization.
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The optimization process is as following.

• Step 1: Define the fitness function obtained from ANN

• Step 2: Define the number of variables used, constraints and bounds.

• Step 3: Select population type and size , initial range.

• Step 4: Define selection, mutation, crossover criteria.

• Step 5: Define distance measure function and pareto front population fraction and

specify the stopping criteria.

• Step 6: Select required functions to be plotted.

• Step 7: Perform optimization to obtain values in form of a pareto front.

• Step 8: Use the ANN fitness function to get values for objective function using

optimal input obtained from the pareto front.

In optimization of square tube with both 4 and 8 plies, constraints and bounds were same.

The only difference was the number of variables according to number of plies used. The fitness

function obtained for both 4 ply tube and 8 ply tube was used in step 1 as discussed in the

process above. Since the multi objective genetic algorithm optimizes minimization problems,

the objective function to maximize specific energy absorption was converted into minimiza-

tion problem. Conversion of the maximization problem into a minimization problem can

be simply done by taking negative values of the maximization function. The optimization

parameters used was same for both the types. Lower bounds were [0.1 -90 -90 -90 -90] and

upper bounds used were [0.75 90 90 90 90]. The initial population size was specified to be

200 with double vector population type. Tournament selection function was used with size

2. The tournament function chooses the parents randomly according to the tournament size

specified. Out of the randomly selected individuals , best are chosen as parents. Reproduc-

tion creates children as per selected crossover function. Crossover function varies between

0 to 1. Population and mutation creation function was Constraint dependent. Crossover

fraction was 0.8 and pareto front fraction used was 0.35 i.e., default values. Plot function
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was to obtain a pareto front. Optimization was performed to obtain pareto values. Pareto

plot is a plot of optimal values of the input variables obtained such that both the objective

functions are satisfied. The pareto efficiency can be improved by adding more sample points

and retrain and reoptimize until the values of pareto solutions no longer change.
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4. OBSERVATION AND RESULTS

4.1 Observations and Results from Finite Element Simulations

• The force versus displacement curve shows high values of force initially due to the

trigger mechanism used. As seen in Figure 4.1, the force was observed to be almost

constant. This shows a stable crushing was obtained for the square tube.

• Stable crushing corresponds to better crash performance. Thus, maximum energy

was absorbed by the tube.

• In order to have structural integrity, it is important that entire crash energy is

absorbed by the structure within 60% of its length. The maximum displacement

noted for all samples was around 95mm which is less than 60% of the length of the

tube. Thus, the tube was designed to have sufficient structural integrity.

• It was observed that when thickness per ply was increased beyond 0.5 mm , specific

energy absorption was almost constant with increasing value for peak crushing force.

Thus, upper bound for thickness values was changed from 0.75 mm to 0.5 mm.

Figure 4.1. Load vs Displacement Curve
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4.2 Observations and Results from Artificial Neural Networks

Regression plots, plot for mean square error, Error Histogram are important observations

of artificial neural network to understand its performance. Regression plot are representation

of network response corresponding to given target values. Value of Regression should be such

that R
2
≈ 1. Plot for the mean square error represent the best performance value obtained.

The ideal value for the mean square error must be equal to zero.

4.2.1 Observations for Composite Tube with 4 Piles

For square tube with 4 layers, two hidden layers with 3, 5 hidden neurons respectively

with tansig transfer function was used. Transfer function for output layer was purelin.

Regression plots, plot for mean square error, Error Histogram, Training state are shown in

Figures 4.2, 4.3, 4.4 and 4.5.

Figure 4.2. Regression Plot for 4 Plies
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Figure 4.3. Error Histogram Plot for 4 Plies

Figure 4.4. Mean Square Error Plot for 4 Plies
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Figure 4.5. Training State Plot for 4 Plies

4.2.2 Observations for Composite Tube with 8 Piles

For square tube with 8 layers, two hidden layers with 10, 12 hidden neurons respectively

with tansig transfer function was used. Transfer function for output layer was purelin.

Regression plots, plot for mean square error, Error Histogram, Training state are shown in

Figures below.
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Figure 4.6. Regression Plot for 8 Plies
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Figure 4.7. Mean Square Error Plot for 8 Plies

Figure 4.8. Error Histogram Plot for 8 Plies
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Figure 4.9. Training State Plot for 8 Plies

4.2.3 Artificial Neural Network Results Validation

Performance of artificial neural network tool is validated by comparing results from neural

networks using fitness function with values obtained from finite element simulations. Follow-

ing Figures show comparison of values obtained by FEA and ANN for peak force and specific

energy absorption. Average percentage error between results for FEA ana ANN were calcu-

lated. For square tube with 8 layers, average percentage error between values obtained by

Finite element analysis and Artificial Neural Network for force was 4.46% and error observed

for specific energy absorption was 4.94%. For square tube with 4 plies, average percentage

error between values obtained by Finite element analysis and Artificial Neural Network for

force was 5.01% and error observed for specific energy absorption was 4.61%.
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Figure 4.10. Plot for Force Obtained by FEA Vs ANN For 4 Plies

Figure 4.11. Plot for SEA Obtained by FEA Vs ANN for 4 Plies
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Figure 4.12. Plot for Force Obtained By FEA Vs ANN For 8 Plies

Figure 4.13. Plot for SEA Obtained by FEA Vs ANN For 8 Plies
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Table 4.1. Result Table For ANN

No. of

Com-

posite

Piles

No. of

hidden

Layers

Hidden

Layer 1

Details

Hidden

Layer 2

Details

Output

Layer

Details

R-

Value

Average

% Error

in Force

By

Using

ANN

Average

% Error

in Sea

By

Using

ANN

4

PILES
2 3,tansig 5,tansig 1,purelin 0.99327 5.01% 4.61%

8

PILES
2 10,tansig 12,tansig 1,purelin 0.99765 4.46% 4.94%

4.2.4 Observations For Multi-Objective Genetic Algorithm

Figure 4.14. Pareto Front for Square Tube With 4 Plies
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Table 4.2. Optimal Values for Square Tube With 4 Plies

Thickness
Angle

1

Angle

2

Value for

Force in N by

ANN

Value for SEA

in Nmm/g by

ANN

0.12 37 -43 6823.683138 -14199.12153

0.3 14 -2 37136.8681 -20052.88634

0.28 14 -6 35305.50318 -19697.95742

0.21 15 -10 25376.70066 -17444.06074

0.12 37 -43 6823.683138 -14199.12153

0.24 15 -8 29139.67906 -18190.43981

0.25 14 -2 33137.62182 -19285.74554

0 0.23 -39 10068.21239 -14976.22171

0.24 16 -7 23790.32933 -17093.28352

0.22 16 -31 11574.8388 -15050.55619

0.24 16 -23 19849.30528 -16432.16168

0.26 22 -30 21235.39191 -16739.60955

0.23 15 -5 30048.95934 -18399.81872

0.21 22 -28 17428.96886 -16163.95755

0.21 20 -29 15094.88723 -15787.33891

0.25 15 -8 30259.61531 -18427.33879

0.21 23 -35 11967.53564 -15306.63735

0.24 13 -3 32375.56442 -19351.85672

In square tube with 4 plies, pareto solutions obtained are shown in Figure 4.14. Also,

optimum values obtained with additional constraints of thickness, were plot as below in

Figure 4.15. The Table 4.2 represents optimal pareto solutions.
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Figure 4.15. Plot for Force Vs SEA For Optimal Values Using ANN

Figure 4.16. Pareto Front for Square Tube With 8 Plies
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Table 4.3. Optimal Values for Square Tube With 8 Plies

Thickness
Angle

1

Angle

2

Angle

3

Angle

4

Value for

Force in N

by ANN

Value for

SEA in

Nmm/g by

ANN

0.11 56 132 11 99 26319.57 -18463.9

0.24 141 31 144 20 47916.22 -13710.1

0.22 147 26 149 18 46881.7 -13776.8

0.23 144 26 145 19 47378.35 -13749.7

0.26 144 26 146 18 49975.59 -13561.7

0.26 143 27 147 20 49902.83 -13567.3

0.12 73 155 12 99 21268.82 -19593.4

0.26 145 28 145 20 49953.81 -13563.9

0.27 146 26 149 18 51237.5 -13480.9

0.11 90 163 12 87 19714 -20094.6

0.3 148 24 149 18 55455.68 -13195.3

0.11 57 142 11 98 22966.99 -18646.2

0.24 146 26 146 18 48291.17 -13681.7

0.24 142 27 144 19 48037.46 -13704

0.25 144 28 146 19 48996.38 -13631.3

0.3 147 26 148 18 55225.43 -13206

0.27 145 26 148 18 51133.88 -13484

0.3 147 25 148 18 55273.88 -13200

0.26 142 27 147 19 49851.04 -13570

0.28 145 27 148 18 52262.41 -13406.3

64



In square tube with 8 plies, pareto solutions obtained are shown in Figure 4.16. Also,

optimum values obtained with additional constraints of thickness, were plot as below in

Figure 4.17. The Table 4.3 represents optimal pareto solutions.

Figure 4.17. Plot for Force Vs SEA For Optimal Values Using ANN
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5. CONCLUSIONS

• In this work, LS DYNA modelling and design optimization of composite square tube

using Artificial Neural Networks and Genetic Algorithms was performed.

• Factors affecting crash performance of composite square tube were studied to have

better understanding and consideration of design parameters for the square tube.

Stable crushing was obtained for the square tube for all simulations using pareto

optimal values for the variables. Thus, maximum energy was absorbed by the tube.

• Latin Hypercube sampling was used to generate a desired sampling plan.

• The maximum displacement noted for all samples was around 95 mm which is less

than 60% of the length of the tube. Thus, the tube was designed to have sufficient

structural integrity.

• Values of regression obtained for square tube with 4 plies was 0.99327 with relation

between target and output elements as Output ≅Target + 64. Average percent-

age error between values obtained by Finite element analysis and Artificial Neural

Network for force was 5.01% and for specific energy absorption was 4.61%.

• Values of regression obtained for square tube with 8 plies was 0.99765 with relation

between target and output elements as Output ≅Target ± 50. Average percent-

age error between values obtained by Finite element analysis and Artificial Neural

Network for force was 4.46% and for specific energy absorption was 4.94%.

• Artificial Neural Networks was used to generate an objective function and to predict

values for Peak Crushing Force and Specific Energy Absorbed with accuracy to have

average percentage errors less than 5%.

• Multi-objective Genetic Algorithm was utilized to minimize the peak crushing force

and maximize specific energy absorption under given constrains.
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6. FUTURE SCOPE

• Using a greater number of design variables to improve robustness of the method.

• Advanced Neural Networks and Genetic Algorithms can be investigated in future.

• Application of optimization process using Artificial Neural Networks and Genetic

Algorithms for complex design problems.

• Develop and utilize an interface between LS DYNA and MATLAB to reduce simu-

lation time and efforts.
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