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ABSTRACT 

The Blanding’s Turtle (Emydoidea blandingii) is considered a species of conservation need 

across much of its range. A key aspect to conserving a species is understanding the genetic 

diversity and population structure across the landscape. Several researchers have focused on E. 

blandingii genetic diversity in the northeastern United States, Canada, and the Midwest. However, 

little investigation has been done on localities within the Great Lakes region of Indiana, Michigan, 

and Ohio. Here 14 microsatellite loci are utilized to characterize the genetic diversity of E. 

blandingii in Indiana, Ohio, and Michigan. Understanding genetic trends within this region will 

allow for the defining of management units through genetic clustering, investigation of historic 

and recent migration between clusters, investigation of drivers of genetic differentiation, checks 

for bottlenecks, estimations of effective population size (Ne), and optimization of landscape 

resistance surfaces. Overall, little differentiation is observed between localities and within locality 

diversity tended to be high. A minimum of four clusters were identified and as many as seven 

clusters were detected in a hierarchical manner using three grouping methods (STRUCTURE, 

Tes3r, and DAPC). Historical migration between clusters was relatively low, and recent migration 

appears to be absent.  Significant correlations between geographic distance and genetic 

differentiation (IBD), as well as watershed and genetic differentiation were observed. Optimized 

landscape resistance layers provided poor models and distance was maintained as the best driver 

of differentiation. No bottlenecking was detected, and Ne estimates were generally high, but likely 

biased by sample size. The long lifespan and delayed genetic differentiation of E. blandingii is 

likely responsible for the observed diversity and lack of differentiation between localities. This 

does not mean they are secure in the Great Lakes Region. Bottlesim analysis looking at the effects 

of population reduction and subsequent loss of genetic diversity indicates that many localities 
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within the study area are likely vulnerable to genetic loss in the next 200 years, which can be rapid 

and drastic in long-lived species.   
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 CONSERVATION GENETIC ANALYSIS 

 Introduction 

Turtles (Testudines) in general are one of the most imperiled groups of vertebrates [1].  

Blanding’s Turtle (Emydoidea blandingii) is a species in decline that contributes to this trend, 

receiving protected status across much of its geographic range [2,3,9]. As a long-lived species with 

long generation times, large seasonal terrestrial movements, and low annual fecundity, the life 

history and spatial ecology of E. blandingii puts populations at a particular disadvantage in the 

face of habitat loss and degradation [2,4-6]. In addition, E. blandingii exhibit low haplotype and 

sequence diversity, which indicates potential for continued population decline due to lack of 

genetic adaptability [7]. 

E. blandingii populations in the Great Lakes region are reliant on shallow (~2.5 m deep) 

open marshes, ponds, and lakes with emergent herbaceous vegetation as well as a mix of forested 

ephemeral wetlands, prairies, and bare sands for upland movement/nesting [8]. A long-term (40+ 

years) study by Congdon and Gibbons (1996) demonstrates that E. blandingii populations can 

maintain stable population sizes with low recruitment in large (615 hectares), well protected 

preserves.  Urban modification and conversion of such shallow wetland habitat complexes and 

uplands can lead to local extirpation and changes to the spatial ecology E. blandingii [10]. E. 

blandingii is reliant on large, contiguous wetlands and the destruction of this habitat is seen as a 

key threat to their persistence [6,8,11-16]. Of particular concern is the drastic reduction of wetlands 

in the Midwestern United States that have occurred since the 1700’s [17]. Reduction of movement 

corridors and exposure to roadways has been shown to increase the incidence of road mortality of 

E. blandingii [15,18]. Increased urbanization can also cause wetland degradation due to 

introductions of pesticides, herbicide, and fertilizers which may affect E. blandingii, as has been 
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shown for the common snapping turtle (Chelydra serpentina) [15]. Bioaccumulation and 

morphological impacts have been recorded in C. serpentina in wetland systems with chemical 

contamination [19,20]. Beyond physical alteration of the landscape, urbanization can also increase 

human and predator interaction with E. blandingii exposing them to increased poaching and 

mortality [8,10]. Collection can be particularly detrimental to small or isolated populations which 

may already be at risk of extirpation [15]. Removal of individuals can be particularly detrimental 

to small or isolated populations, especially due to the long reproductive lives that are required for 

population viability [4,21]. 

An important aspect of conservation planning beyond habitat protection is to understand the 

genetic composition and diversity of a species within localized populations as well as across their 

range. Understanding the local and range-wide genetic diversity of a species can help 

conservationists determine if and when it is appropriate to reintroduce individuals to a landscape 

or supplement remnant populations using translocation and/or head-starting. By examining the 

genetic composition prior to conservation actions, researchers can reduce the likelihood of 

inbreeding and outbreeding depression which could otherwise further imperil an already 

vulnerable long lived species such as E. blandingii [3]. Assessing the effects of such conservation 

actions for E. blandingii, and turtles in general, can be difficult as the effects may take decades to 

manifest due to the low genetic variability and reduced micro-evolutionary rates present in the 

order Testudines [22,23].   

 Small, isolated populations are expected to have lost genetic variation due to bottlenecks 

caused by range reduction and expansion [7]. However, turtles appear to retain higher than 

expected levels of genetic variation despite population decline, possibly due to their long 

generation times [24-30]. Prior studies examining within population genetic diversity of E. 
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blandingii have reported relatively high levels of observed and expected heterozygosity (HO & HE) 

across the range from 0.30 to 0.79 [24-30]. Relatively high levels of allelic richness (AR) have been 

reported from Ontario and Illinois, ranging from 3.6 to 5.3 [27,30]. Finally, Anthonysamy et al., 

(2018) found no evidence of inbreeding in E. blandingii in northeast Illinois and even found 

potential evidence of outbreeding (FIS ranging from -0.088-0.042). 

Microsatellites or short tandem repeats (STR’s) of base pairs in non-coding DNA are 

present in high frequencies in the eukaryotic genome [3,31]. Microsatellites have relatively high 

mutation rates caused by proof reading or polymerase slippage errors during DNA replication. As 

a result, they are prone to accumulate polymorphisms faster than other regions of the genome [32]. 

Microsatellite markers that are conserved across species but polymorphic between individuals can 

be particularly useful because they can be used to characterize genetic dissimilarity for cluster 

analysis. Microsatellite analysis uses the comparison of the length of DNA regions enriched with 

microsatellites between individuals to determine differences in the number of loci present at the 

region. Difference in copy numbers allows researchers to determine the presence or absence of 

polymorphisms within and among populations [31]. Microsatellites have proven to be an effective 

tool for determining genetic diversity of E. blandingii at regional scales through a number of 

studies [27,28,30,33]. 

 E. blandingii originated between 5 and 19 million years ago (dating to the Hemiphillian or 

the Miocene), and have experienced slow but drastic changes in the landscape due to glacial 

expansion and reduction [34-36]. With these climactic changes the geographic range has also shifted 

likely causing bottlenecks and founder events, creating regional isolation and population structure 

[7,25,37]. Prior range-wide study using five microsatellite loci identified two evolutionary 

significant units being separated by the Appalachian Mountains, and found additional support for 
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recognizing Nova Scotia as its own evolutionary significant unit [25]. Recent range-wide genetic 

analysis using mitochondrial and nuclear loci supports the previously identified evolutionary units, 

and indicate that the glacial dynamics experienced by E. blandingii are responsible for the presence 

of at least two genetically distinct lineages: a Great Lakes/Midwest USA lineage to the west of the 

Appalachian Mountains and a Northeast USA/ Nova Scotia lineage to the east [7].  

Region-wide microsatellite analyses find that E. blandingii seem to have relatively low 

levels of differentiation from locality to locality, with higher degrees of differentiation detected 

east of the Appalachian Mountains compared to west [24-30]. Within the Midwest and Great Lakes 

regions, these findings all support the south and west glacial retreat followed by north and east 

recolonization of E. blandingii resulting in a high degree of genetic mixing and ultimately creating 

a low degree of differentiation [27,28,30,38]. Despite the lack of differentiation in the Great Lakes 

and Midwest (low FST) there is still evidence of population structure through cluster analysis 

[27,28,30].  Davy et al. (2014) discovered four genetic clusters utilizing 12 microsatellite loci in 

southern Ontario, and Anthonysamy et al. (2018) found evidence of a hierarchical assortment of 

three clusters nested into two large broad clusters across six sites in northeast Illinois using 14 loci. 

Sethuraman et al. (2014) found four to 6 hierarchical clusters across Illinois, Iowa, Minnesota and 

Nebraska. 

Although analyses of clustering are useful for identifying the distribution of populations, 

the connectivity of these populations is of conservation interest to identify habitat needs for 

connectivity and gene flow. The relatively slow rate of genetic differentiation and the long lifespan 

of turtles makes it difficult to differentiate the effects of contemporary and historical gene flow 

especially in the presence of a rapidly changing landscape [24,27,33]. Although the genetic 

differentiation may be limited in scope, it can still indicate historical trends in gene flow that likely 
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underlie modern population structure [7,25,27,28]. Comparing historical gene flow with modern 

landscape resistance can be useful in determining where gene flow likely no longer exists between 

localities. Understanding historic gene flow can be used to determine where corridors or 

translocation may be useful in promoting gene flow and maintaining genetic diversity by staving 

off founder’s effects or genetic bottlenecks associated with the fragmentation of populations.   

Little investigation into the population genetic structure and patterns of differentiation of 

E. blandingii have been conducted within Indiana, Ohio, and Michigan. Two prior studies from 

Osentoski (2001) and McGuire et al., (2013) within the E.S. George Reserve in Michigan found 

no evidence of genetic structure using eight microsatellite loci. My study looks to: (1) examine 

levels of genetic variation and population clustering in E. blandingii localities across Indiana, 

Michigan, and Ohio, and (2) assess the potential for landscape variables to correlate with genetic 

connectivity among populations. Results of this investigation can be used to provide more focus 

to ongoing species conservation in the Great Lakes region and further our understanding of historic 

colonization patterns of E. blandingii.   

 Methods 

1.2.1 Ohio and Michigan Field Sampling 

Field sampling was conducted in April to August of 2019 to 2021 in the Lake Erie 

Watershed in southeast Michigan and northern Ohio. For the first trapping season in Ohio and 

Michigan, sites were chosen based on current observed or historic presence, along with habitat 

suitability. For the 2020 and 2021 trapping seasons localities that fell within a circle with a 15 

kilometer radius were grouped into a genetic neighborhood. These genetic neighborhoods were 

intended to encapsulate the home range, breeding dispersal distance, and hatchling dispersal of E. 
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blandingii at each locality [40-42].  We then focused on obtaining a minimum of 10 samples for at 

least one locality within an area presumed to be within the maximum movement distance of an 

individual Blanding’s Turtle. Additional samples from northwest Michigan were obtained through 

a partnership with an ongoing study in the Kingsbury Lab (Purdue Fort Wayne). Trapping was 

conducted following the Northeast Blanding’s Turtle Working Group trapping protocol, using a 

combination of Hoop traps (~0.8 m diameter) and Promar traps (~0.3 m diameter) [43]. Blood was 

drawn from the nuchal sinus using IACUC approved methods, preserved in 95% ethanol, and 

placed in a standard freezer until extraction.  

1.2.2 Indiana Field Sampling 

Field sampling in Indiana took place from March through July of 2017-2019 and a single 

locality in 2021. Indiana sites were chosen based on historical records [44]. Trapping was 

conducted using a combination of Hoop traps (~0.8 m diameter) and Promar traps (~0.5 m 

diameter). 

1.2.3 Lab Protocol 

DNA was extracted from 95 microliters of alcohol-preserved blood using the Qiagen, 

DNeasy Blood and Tissue extraction kit. Before starting extractions, stored blood was centrifuged 

and air-dried for ~15 minutes to separate and remove excess ethanol. A Nanodrop 

spectrophotometer was used to determine the concentration of extracted DNA. If sufficient DNA 

was not extracted and blood sample remained the sample was re-extracted.  

Fifteen microsatellite markers and primers were chosen from prior studies to maximize 

genetic variation and facilitate cross-regional comparison for future study (Table 1.1). These loci 

were chosen for their number of alleles, ability to be multiplexed, and high degree of use across 
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regions. These microsatellite markers were developed for a variety of turtle species, and have been 

used on E. blandingii across the geographic range [26-30,33,45-49]. The 5’ ends of the forward 

primers were all tagged with universal florescent tails following the methods of Blacket et al., 

(2012) (6-Fam, NED, PET, or VIC) so that markers could be multiplexed in 5 reactions rather than 

15 (Table 1.1). The concentration of the forward primers and universal tails differed slightly to 

optimize allele calls (Table 1.1).  

PCR reactions were performed using a Qiagen Multiplex PCR Kit following manufacturer 

protocol. Thermocycling included a denaturation step at 95° C for 15 minutes, 35 cycles of 

denaturation at 94° C for 30 seconds, annealing at 56° C for 90 seconds, and elongation at 72° C 

for 60 seconds, and final elongation at 72° C for 30 minutes. After thermocycling, completed 

samples were removed and stored at -80° C. PCR was performed using 2 microliters of DNA (5-

50 nanograms per microliter) in a 10 microliter reaction. 

Gel electrophoresis was performed for at least six samples from each round of PCR on a 2% 

agarose gel to ensure amplification took place at expected product lengths. PCR products were 

then sent to the Yale DNA Analysis Facility or the Yale Keck DNA Sequencing Lab for fragment 

analysis. All samples were run on an Applied Biosystems 3730xl 96-Capillary Genetic Analyzer 

using the GelCo. Liz 500 size standard. Electrographs were analyzed using Geneious v. 11.1.5; all 

loci were scored and binned based on the expected number of repeats. Each locus was rerun at 

least once with a replicate sample to establish confidence in allele scoring.      
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 Statistical Analyses 

1.3.1 Hardy Weinberg Equilibrium and Disequilibrium 

Hardy Weinberg Equilibrium (HWE) is used as a null test for genetic forces contributing 

to a population. Populations exhibiting Hardy Weinberg Equilibrium are likely not experiencing 

the genetic effects of evolutionary forces outside of random mating in large populations [51].  

PopGenReport version 3.0.4 was used to test for Hardy Weinberg Equilibrium [52]. Linkage 

disequilibrium can bias the analysis of genetic differentiation by creating false associations 

between loci within or among populations. Genepop version 1.1.7 was used to examine linkage 

disequilibrium by locus pair within each of the sample localities [53]. Tests for linkage 

disequilibrium were run in Poppr version 2.9.3 [54] using the Markov chain method with 

dememorization set at 10000 with 5000 iterations and 100 batches.   

1.3.2 Descriptive Statistics 

GenAlEx 6.5 was used to check raw data for missing values, and to export data into 

different formats [55]. PopGenReport version 3.0.4 was used to determine the relationship between 

allele numbers and sample size per location, screen for null alleles, identify private alleles, and 

determine allelic richness with rarefaction [52]. Checking for null alleles helps increase confidence 

in genetic distance measures, since high frequencies of null alleles can cause inaccurate estimates 

of FST and other measures of genetic distance [56]. Private alleles can be an effective way of 

determining population structure since they are unique to a locality, however the detection of null 

alleles can be heavily biased by the sample size [57]. Allelic richness by rarefaction accounts for 

differences in samples size allowing a more accurate assumption of the presence of private alleles 

[57]. Overall, 492 samples were collected from 49 localities. Initially, PopGenReport was run with 
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all sites regardless of sample size, to determine the allelic richness with rarefaction, which was 

then used to determine the minimum sample size needed to properly determine allelic richness and 

private alleles. Some localities had large samples sizes (>70), they were randomly sub-sampled to 

a maximum of thirty individuals to avoid bias in comparison to localities with smaller samples 

[58].  Descriptive statistics were then run for all sites with at least ten samples and a maximum of 

thirty samples. DiveRsity Version 1.9.90 was used to calculate observed heterozygosity (HO), 

Nei’s expected heterozygosity (HE), FIS, FST, and D [59]. Measures of heterozygosity, along with 

allelic richness, contribute to the assessment of the amount of genetic variation within sample 

localities. Heterozygosity measures are used to calculate FIS, the inbreeding coefficient within 

sample localities, and FST, the traditional measure of differentiation among localities [60,61].  D 

(JostD) statistic is used for determining the relative differentiation of allele frequency among sub-

divisions within localities [62].  Finally, a mixed linear model was used to determine the differences 

in allelic richness among sites and Tukey post-hoc test was used to assess pairwise differences.  

1.3.3 Structure Analysis, Genetic Clustering 

Population structure based off genetic clustering was assessed using three programs with 

slightly different approaches: STRUCTURE version 2.3.4 [63], TESS3r version 1.1.0 [64], and 

Adegenet version 2.1.4 [65]. Population structure analysis is used for identifying populations and 

management units for a species without relying on sample location a priori. By using multiple 

methods, concordance in inferred clustering gives higher confidence in attributing results to a 

biological process. Additionally, genetic clustering is often hierarchical and using multiple 

methods can help to determine finer scale patterns among broader clustering schemes. Areas of 

disagreement in clustering between methods can also highlight areas were clear population 

structure is difficult to discern and may require additional sampling and analysis.  
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STRUCTURE Version 2.3.4 uses a Bayesian cluster analysis method utilizing Markov 

Chain Monte Carlo (MCMC) to group individuals into clusters using unlinked genetic markers 

[63]. STRUCTURE is a model-based approach that uses the frequencies of each allele at each locus 

to probabilistically assign individuals to a given population/cluster (K) based on shared allelic 

frequency while also avoiding departure from HWE and LDE within assumed populations [63,66]. 

Assuming an admixture model within STRUCTURE allows individuals to be assigned to one or 

more populations by utilizing a Q matrix that compares the proportion of an individual’s genome 

associated with a given assumed population [63,66]. Structure was run with a burn-in of 50,000 

proceeded by 100,000 steps and was run 10 times for K values from 1 to 10. STRUCTURE was 

run with LOCPRIOR. LOCPRIOR is a function that incorporates the given sample site locations 

as a priori populations to determine if they influence the number of population clusters. Without 

LOCPRIOR sample location information is not considered.  STRUCTURE results were viewed 

using STRUCTURE Selector [67]. STRUCTURE Selector allows the visualization of the 

STRUCTURE results in a bar graph format using the Puechmaille method (controls for uneven 

sampling size) and provides graphic representations of the Delta K and MedMeaK/MedMedK 

selection criteria [68]. The bar graph displays individual assignment to each given cluster 

represented by the different colors. Although Delta K methods are commonly presented, 

MedMeaK/MedMedK is more robust when sampling is uneven [68] and so only those values will 

be presented.  

TESS3r also implements admixture models and MCMC but incorporates spatial trends and 

special autocorrelation into the prior distribution of the Q-matrix by allowing admixture of each 

individual to change across geographic space (individual ancestry)[66]. Individual variation in 

admixture also decreases at a regional and local level to allow for clines in all directions [66]. In 
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addition to the Q-matrix Tess3r also uses a G-matrix that includes the ancestral genotypic 

frequencies to conduct a combination of matrix factorization and quadratic programing to 

determine the number of clusters present in the given data set [64]. Tess3r also allows results to be 

represented over geographical space as well as in a traditional bar graph format [64]. This allows 

the incorporation of raster files and presents a unique visualization of the genetic clustering 

presented over geographical space [64]. Tess3r was run for K = 1 through 10, and the number of 

clusters (ancestral populations) was determined using cross-validation criteria. 

Adegenet was used to perform a discriminant analysis of principal components (DAPC).  

Adegenet uses a multivariate analysis approach rather than a model-based approach like 

STRUCTURE [69]. This allows Adegenet to avoid reliance on assumptions about population 

structure implicit in model-based approaches. Additionally, Adegenet can handle large amounts 

of data very quickly. Like a traditional principal component analysis (PCA), a (DAPC) provides a 

useful tool for examining clustering without relying on a Bayesian framework. DAPC does not 

require assumptions about populations like PCA [69]. The DAPC takes the benefits of both the 

traditional PCA and combines them with the genetic application of a Discernment Analysis (DA) 

while also overcoming the limitation of the traditional DA [69]. While a traditional PCA can be 

appropriate for examining genetic variation of individuals as well as variation among clusters, it 

lacks the ability to examine difference between clusters while ignoring the variability of 

individuals within those clusters, which is where the DA is effective [69]. DA however cannot 

handle the effects of linkage disequilibrium, and is not compatible with multi-allelic data [69].  

DAPC uses a traditional PCA to transform the data to be compatible with DA to allow for between 

cluster analyses that ignore individual variability. Adegenet performs DAPC by using sequential 

K-means method and model selection to determine the appropriate number of clusters detected.   
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1.3.4 Migration 

An important aspect of understanding observed genetic composition is determining which 

populations have interacted with each other, and the extent and direction in which gene flow has 

occurred. Understanding migration patterns can help inform historic and current source-sink 

dynamics, which may make some populations less stable than others. Since we were primarily 

interested in movement between populations/management units due to their potential application 

in conservation, site localities were grouped into the four clusters identified by TESS3r (Table 

1.5). TESS3r was chosen, because it produced conservative population clusters, and has been 

indicated to be most robust for detecting effects of multidirectional clines into clustering compared 

to STRUCTURE or DAPC [66]. Migrate version 4.4.3 was used to examine rates of historic 

migration between clusters to determine the degree to which clusters have historically interacted 

and to examine historic source-sink dynamics between clusters [70]. Migrate uses a Brownian 

motion approximation stepwise mutation model as well as Bayesian inference to determine 

effective population size and past migration rates [70]. Migrate assumes a migration matrix model 

that uses asymmetric migration rates and assumes different sub-population sizes with population 

divergence and admixture present. Migrate was run using a Brownian motion model with priors 

for theta (Θ) set from 0-1000. Simulations used one long chain with sample increments of 200 and 

recorded 5000 steps per chain after burn in of 1000 steps. To extend the length of the run and allow 

for greater convergence a multiple Markov chain statistical heating scheme was used with four 

chains with temperatures of 1.00, 1.50, 3.00, and 1,000,000.00 respectively with the swapping 

interval set to 1.   

BayesAss edition 3 (BA3; [71]) was used to examine more recent (past few generations) 

levels of migration between the same four TESS3r clusters used in Migrate. BayesAss takes a 

Bayesian approach to estimating recent migration using MCMC to estimate posterior probabilities 
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[71]. BayesAss allows for within population frequencies to deviate from HWE and uses the 

temporary states of disequilibrium to make inferences about recent population gene flow [71]. Input 

files for BayesAss were formatted using Formatomatic [72]. BayesAss was initially run with 

10,000,000 iteration of the MCMC chain utilizing a burn in of 1,000,000, and a sampling frequency 

of 1,000. These initial parameters did not allow for proper convergence of the Markov Chain so 

the number of iterations was increased to 1,000,000,000. Tracer v1.7.2 was used to calculate 95% 

confidence intervals and to view trace files from BayesAss [73].   

Population sources and sinks were identified following the methods of Ishiyama et al. 

(2015), where the net immigration (immigration-emigration) was calculated for each pair of 

clusters and then averaged. A cluster with a negative net immigration is considered a source 

population whereas a cluster with a positive net immigration is considered a sink. 

1.3.5 Isolation by Distance and Geographic Isolation 

Geographic distance and watershed have both been identified as potential drivers of 

population structuring in E. blandingii [26,28]. A Mantel test was run using Adegenet in R to test 

for isolation by distance between individuals using 9999 permutation and pairwise FST. To test for 

effects of watershed on clustering, sites were grouped based on shared watersheds at the HUC-8 

(cataloguing unit) and HUC-6 (accounting unit) levels (Figure 1.12). HUC-6 was the largest 

watershed level used because the groupings did not differ at the HUC-4 or HUC-2 levels. An 

AMOVA was then used to assess variation within and between sites at different watershed levels. 

Arlequin v. 3.5.2.2 was used to run the AMOVAs following the approach of Sethuraman et al. 

(2014), in which 16,000 permutations were used [75]. 
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1.3.6 Bottlenecking and Effective Population Size 

Population bottlenecks tend to occur when populations experience a large reduction in 

effective population size, and results in a reduction of the number of alleles present among 

polymorphic loci [76]. A loss of alleles leads to a direct loss in genetic diversity which can make a 

population more vulnerable to environmental change and stochasticity by constraining the 

available genetic plasticity [77]. When bottlenecks occur the number of alleles present in a given 

population tend to drop more quickly than the expected heterozygosity causing the expected 

heterozygosity to be greater than the observed heterozygosity (heterozygosity excess) [76]. 

BOTTLENECK version 2.2.02 uses each population and loci to examine the expected vs observed 

heterozygosity relative to the number of individuals and alleles used in each population [76,78,79]. 

Since Davy and Murphy ([80]) had similar sample sizes and numbers of locations and loci for a 

similar long lived species of turtle, the same BOTTLENECK parameters were used. 

BOTTLENECK was run using a two-phase model replicated 1000 times to check for evidence of 

population bottlenecking. Variance in the model was set at 12%, and single step mutation rate was 

set at 95% whereas multistep mutation rate was set to 5%.  

Since E. blandingii can be difficult to capture and have differing reproductive output based 

on age, it is important to understand the number of individuals in a population that are actually 

contributing to the next generation (effective population size, NE) [81,82]. NeEstimator Version 2.1 

was used to assess the effective population size of each site. NeEstimator uses linkage 

disequilibrium under a molecular co-ancestry method to determine the NE and also provides 

jackknifed confidence intervals [83,84]. NeEstimator was run with the Linkage Disequilibrium 

random mating model.  To evaluate the impact of sample size on NE estimation, NeEstimator was 

run using three different randomly generated sub-samples from the largest site (OH08): one with 
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the 10 individuals (our N cut off), one with 30 individuals (or N max), and one with the entire 77 

individuals sampled. 

Bottlesim v. 2.6 was used to explore the impacts of potential future bottlenecks in the 

absence of gene flow [24]. Bottlesim was run for our largest population OH08 with the following 

assumptions: initial population size of 200 for all scenarios, a 1:1 sex ratio, dioecy with random 

mating, and diploid multilocus individuals. Longevity was set to 65, and age of maturity was set 

to 14 following Anthonysamy et al. (2018). In the first scenario, the population declines 50% over 

200 years, and the second scenario saw a 90% population decline. Both scenarios were run with 

1000 replicates. 

 Results 

1.4.1 Hardy Weinberg Equilibrium and Disequilibrium 

Out of 224 tests of HWE only GmuD40 showed deviation from HWE at one locality (OH-

17). Since only one site exhibited deviation from HWE all loci were retained. GmuD28 and 

GmuD107 (p= <1.02e-19) showed significant linkage disequilibrium after Bonferroni correction. 

GmuD28 was removed from further analysis, and GmuD107 was retained. Descriptive and 

Frequency Based Statistics 

One hundred and sixty-nine alleles were detected across 14 loci representing 16 sample 

localities and a total of 313 individuals (Table 1.2). Of the 14 loci used for analysis, GmuD79 was 

monomorphic and uninformative leading it to be ignored for analysis.  The number of alleles per 

locality ranged from 68 to 97 and increased according to the number of individuals sampled (Table 

1.2). The number of alleles by sample size at a location appears to have reached or come close to 

an asymptote, with sites having around 20 individuals having nearly the same or more alleles than 
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the largest samples (n = 30) (Figure 1.3). MI-7 was an exception having around 15 more alleles 

than any other site. Of the 315 individuals and the 14 microsatellites used 1.51% of the genotype 

data was missing. The number of private alleles ranged from 0 to 7 for the sites with at least 10 

samples (Table 1.2). 

Mean allelic richness ranged from 4.01 to 4.84 but no statistical difference (P>0.05) was 

observed between localities (Table 1.2).  Observed heterozygosity across sites ranged from 0.58 

to 0.65 (Table 1.2). FIS values indicated no evidence of inbreeding among sites, however there is 

potential outbreeding in MI-6 and MI-10 (FIS values below negative for the bootstrapped 95% 

confidence interval). Overall FST was 0.05 (pairwise FST = -0.01-0.15) and overall D was 0.08 

(pairwise D = 0.00-0.17). The FST and D values showed a general pattern of increased 

differentiation by geographical distance from site to site Table (1.3).  

1.4.2 Structure Analysis and Genetic Clustering 

 Using LOCPRIOR, K values of 6 and 7 were identified for the MedMed/MedMeaK and 

MeaxMed/MaxMeaK methods respectively, at the 0.5 assignment threshold (Figure 1.5). The K=6 

cluster scheme maintained the IN01, IN06, and IN07 cluster, the MI05, MI06, MI07, MI10, MI15, 

OH01, and OH18 cluster, the OH06, OH08, and OH09 cluster, and the OH16 and OH17 clusters 

(Figure 1.6). However K=6 increased the amount of admixture in OH01 and OH16 but reduced 

the admixture in OH13 grouping primarily with the OH06, OH08, and OH09 cluster. The K=6 

scheme also introduced a new cluster (pink Figure 1.6) that gradually increases in degree of 

admixture west to east from Indiana and Michigan and reaching the largest degree of assignment 

in OH01, before gradually decreasing across the rest of Ohio (Figure 1.6). The K=7 cluster 

maintained the same overall clusters as K=6, with the exception of IN07 which clustered on its 

own (Figure 1.6). To visualize sub-clusters by localities, the STRUCUTRE results for K=6 were 
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displayed over geographic space since it produced more conservative estimates than K=7 (Figure 

1.7).  Only the results using a 0.5 threshold level are displayed since this is the standard, however 

Puechmaille (2016) recommends varying different threshold levels to make more stringent clusters 

with less extraneous groupings. We viewed the STRUCTURE results under a 0.8 threshold level 

which uncovered a K=4 for the MedMedK and MaxMedK and a K=3 for the MeMeaK and 

MaxMeaK. The K=4 clustering scheme produced by STRUCTURE was very similar to TESS3r 

but clustered OH17 on its own and OH16 with OH06-OH13. The K=3 maintained OH17 as its 

own cluster and grouped Indian, Michigan and the Ohio localities east of OH06 together.  

 TESS3r identified four clusters using cross validation scores (Figure 1.8). TESS3r 

maintained a similar clustering pattern as STRUCTURE, but created a more gradual west-east 

cluster pattern. TESS3r clustered IN01, IN06, IN07, MI05, MI06, MI07, MI10, MI15, OH01, and 

OH18 as a cluster, OH06, OH08, OH09, and OH13 as a cluster, and OH16 and OH17 as a cluster 

refining the east to west trend indicated by STRUCTURE (Figures 1.6, 1.7, 1.8, & 1.9). 

 The DAPC run through Adegenet identified five clusters (using BIC vs # of Clusters) 

(Figure 1.10). Cluster 1 contained 2.5-12.5 individuals from each locality in Ohio and Michigan, 

except OH17 which had fewer than 2.5 individuals assigned to cluster 1. Less than two individuals 

from IN07 were also assigned to cluster 1(Figure 1.10). Cluster 2 contained the majority of OH17 

(Figure 1.10). Cluster 3 contained the majority of the individuals from Indiana localities and 7.5 a 

few individuals from each Michigan localities (Figure 1.10). Cluster 4 and 5 were very similar 

except cluster 4 contained individuals from IN07, MI05, MI06, MI15 and no individuals from 

OH17 (Figure 1.10).  
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1.4.3 Migration 

Mean historic mutation scaled migration rates ranged from 6.90 to 20.20 (or 23.86 and 

102.56 individuals per 4 generations) with the highest rate of average migration being from cluster 

2 to cluster 4, and the lowest average migration rate being from cluster 1 to cluster 2 (Table 1.6 

and Figure 1.13). Migrate results indicate near equal amounts of migration between clusters 1 and 

3, and clusters 1 and 4, (Table 1.6 and Figure 1.13). Cluster 4 historically contributed about half 

of the amount of mean migration to cluster 2 as cluster 2 had to cluster 4 (Table 1.6 and Figure 

1.13). Cluster 2 had nearly three times the historic genetic contribution to cluster 1 as cluster 1 had 

to cluster 2 (Table 1.6 and Figure 1.13). Mean recent migration rates ranged from 0.08 to 0.09 

however all values crossed zero at the 95% confidence interval indicating little to no recent 

migration (Table 1.6 and Figure 1.13). The same general trend was seen in the mean recent 

migration rates as was observed in the historic analysis with the exception of migration between 

cluster 1 and 3 (Table 1.6 and Figure 1.13).  

Based on mean historic net immigration rates from Migrate, cluster two saw a net negative 

immigration rate implicating it as a source population at least in a historic sense to the other three 

clusters. Clusters 1, 3, and 4 all had positive net mean immigration rates (Figure 1.14). Looking at 

recent net immigration clusters 2 and 3 both had negative net immigration of about three and two 

individuals per generation, respectively (Figure 1.14). Whereas cluster 1 and 4 still saw a net 

increase in immigration of about three individuals per generation (Figure 1.14).  

1.4.4 Isolation By Distance and Watershed Isolation 

The observed variance for the Mantel test was 0.69, and fell on the high end of the normal 

distribution of similarity indicating significant IBD in the dataset (Figure 1.11, r2 = 0.31, P 

<0.0001). AMOVA results showed statistically significant (p<0.05) differentiation by watershed 
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grouping at both the HUC6 and HUC8 levels (Table 1.4). As expected, the highest level of variance 

was explained at the within population level for both the HUC6 and HUC8 watershed clustering 

schemes (92.62% and 94.70%) (Table 1.4). Among groups had relatively low levels of variance 

explained (HUC6 = 4.10% and HUC8 = 3.4%), but both explained more variance than between 

populations within groups (3.28% and 1.87% respectively) (Table 1.4).  

1.4.5  Bottlenecking, Effective Population Size  

 No bottlenecks were detected in most localities, however a Wilcoxon test suggested 

heterozygosity excess in OH09. Conversely, sign tests indicated heterozygosity deficiency in 

IN01, MI06, OH01, and OH16 (Table 1.7). Effective population size estimates ranged from 7.9 to 

∞ (Pcrit=0.05) and 8.5 to ∞ (Pcrit=0.02) (Table 1.7). However, effective population size estimates 

appear to be highly variable based on the sample size used to determine the estimate (Table 1.8). 

Sub-sampling from 77 individuals to 30 individuals seemed to have a much more marginal impact 

on estimations of effective populations size with the estimates varying by 30 to 40 individuals (for 

the Pcrit= 0.05 and 0.02 respectively) (Table 1.8).  

Over a 200 year period Bottlesim models indicated a ~9% loss of alleles under a constant 

population size, a ~17% loss of alleles under a 50% population reduction, and a >50% reduction 

of alleles in a 90% population reduction (Figure 1.4).  The bottleneck models indicated a ~3% loss 

of alleles under a constant population size, a ~5% loss of HO under a 50% population reduction 

and a ~14% reduction of alleles in a 90% population reduction over 200 years (Figure 1.4).   
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Figure 1.2 Site Localities with greater than 10 turtles. 
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Table 1.1 Summary of fifteen microsatellite loci run for all samples. Universal tail sequences were bound to the 5’ tail of the forward 
primer following Blacket et al., (2014). Microsatellites were grouped run together in a multiplex PCR reaction. 

Locus Size range 
(bp) 

Forward primer tail/label Forward primer sequence (5’-3’) Reverse primer sequence (5’-3’) Multiplex   
group 

Number of 
alleles 

Label 
Volume 
(ul) 

Forward 
Primer 
Volume 
(ul) 

Reverse 
Primer 
Volume(
ul) 

GmuD55 175-220 Universal NED GTG ATA CTC TGC AAC CCA TCC TTG CAT TCA GAA TAT CCA TCA G 1 12 1.0 9.0 10.0 

GmuD90 122-134 Universal FAM ATA GCA GGA CAA TTA CCA CCA G   CCT AGT TGC TGC TGA CTC CAC 1 3 0.5 9.5 10.0 

GmuD87 190-255 Universal VIC AAA CCC TAA GAC ATC AGA CAG G CAA ATC CAG TAC CCA GAA AGT C 1 10 1.0 9.0 10.0 

GmuD88 115-171 Universal VIC AAC AAT GCC TGA AAA TGC A C AGG CTA CCT CTG AAA ATG CTG 2 12 0.5 9.5 10.0 

Cp2 187-229 Universal PET C TCT AAG GGT TGC ACT TCT CAA A GAG GTG GCA TCA AAA CAT CAT 2 9 1.0 9.0 10.0 

GmuD28 180-230 Universal NED AGC TGT TTG TCA TCA TAC ACT CTC TGG CCC TCA TGT TTT ATA AGT G 2 14 2.0 8.0 10.0 

BTCA9 147-188 Universal FAM TAC TCA AGA TTT GAA GCA GAT ACA GGC TTG ATT CTA CTG TCA CTT AC 2 11 1.0 9.0 10.0 

Eb19 97-110 Universal NED AGG GCT CTG AAG CAC TAA AGT AA GGC ACT GAA ATA AGA GAA AGT A 3 3 1.0 9.0 10.0 

GmuD93 185-389 Universal VIC AGA CTC TCT TGA CCA GAT TTT CTC     TCT GCC TTC TAT CAC TCT CCT G 3 2 1.0 9.0 10.0 

GmuD107 189-209 Universal FAM GAC AAA CAT GAA CAG GAG AAG AG ATT AGA GAG ACA GAT AGA TAG GAC TTG 3 10 1.0 9.0 10.0 

Eb17 94-117 Universal VIC CCC ACA AAA GTA GAC ACC TAT GGC ACT GAA ATA AGA GAA AGT A 4 6 1.0 9.0 10.0 

GmuD121 138-178 Universal FAM GGCAAA TAT CCA ATA GAA ATC C CAA CTT CCT CGT GGG TTC AG 4 7 1.0 9.0 10.0 

GmuD79 164-192 Universal PET GCC CTG TTC CAT TCT TAT TCT G ATC CCC TTA GTC GTC TCT TTT C 4 1 1.0 9.0 10.0 

GmuD16 149-210 Universal NED ATC CCT GAA ATT TTG TGT GTT C TTT ACT CTA GAA GGG GCA ATC C 5 15 0.5 9.5 10.0 

GmuD40 182-285 Universal PET T TTG TCA TAT CAT CCA CTC ACC  TTT GTC ACA GAT GGG AAT TAG C 5 25 2.0 8.0 10.0 
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Table 1.2 Summary of descriptive statistics by locality. Listed statistics include number of turtles 

sampled (N), total number of alleles (A), number of private alleles (PA), mean allelic richness 
(AR with SE), mean observed Heterozygosity (HO with SE) expected heterozygosity (HE with 

SE), and inbreeding coefficient (FIS includes 95% confidence interval). 

Site State County HUC6   HUC8 N A PA AR HO HE FIS 

IN-1 Indiana Lake 1  1 12 70 4 4.08 

 

0.59  

 

0.56  

 

-.06 

 
IN-6 Indiana Elkhart 2  2 15 75 3 4.27 

 

0.63 

 

0.60 

 

-0.05 

  
IN-7 Indiana LaGrange 2  2 22 92 7 4.77 

 

0.64 

 

0.64 

 

0.00 

   
MI-5 Michigan Washtenaw 4  6 20 84 1 4.42 

 

0.61 

 

0.61 

 

-0.01 

 
MI-6 Michigan Livingston 4  6 16 86 3 4.60 

 

0.65 

 

0.63 

 

-0.03 

 

 
MI-7 Michigan Livingston 4  6 30 97 1 4.84 

 

0.64 

 

0.66 

 

0.03 

 
MI-10 Michigan Oakland 4  6 11 74 0 4.40 

 

0.62 

 

0.61 

 

-0.01 

 

 
MI-15 Michigan Crawford 3  3 10 71 1 4.32 

 

0.59 

 

0.60 

 

0.03 

 
OH-1 Ohio Henry 4  5 11 81 6 4.75 

 

0.58 

 

0.62 

 

0.06 

 
OH-6 Ohio Lucas 4  7 30 87 1 4.44 

 

0.61 

 

0.62 

 

0.03 

 
OH-8 Ohio Ottawa 4  7 30 81 2 4.22 

 

0.61 

 

0.61 

 

-0.01 

 
OH-9 Ohio Ottawa 4  7 14 68 0 4.06 

 

0.64 

 

0.62 

 

-0.04 

 
OH-

 

Ohio Ottawa 4  8 21 88 0 4.58 

 

0.62 

 

0.63 

 

.01 

 
OH-

 

Ohio Erie 4  8 30 79 1 4.12 

 

0.63 

 

0.61 

 

-0.04 

 
OH-

 

Ohio Erie 4  8 29 76 2 4.01 

 

0.65 

 

0.62 

 

-0.04 

 
OH-

 

Ohio Williams 4  4 12 68 2 4.07 

 

0.58 

 

0.58 

 

-0.00 
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Figure 1.3 Number of alleles versus sample size by locality. 
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Figure 1.4 Observed alleles and observed heterozygosity over 200 years for three different 
bottleneck scenarios. N = 200-100 Bottleneck resulting in 50% population decline. N = 200-20 
Bottleneck resulting in a 90% population decline. N = 200-200 Bottleneck in population with 

stable population size.
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Table 1.3 Summary of pairwise FST and D (Jost D) differentiation scores. FST below and D above. Bold values do not include 0 in 

the 95% confidence intervals. 
 

IN01 

IN01 IN06 IN07 MI05 MI06 MI07 MI10 MI15 OH01 OH06 OH08 OH09 OH13 OH16 OH17 OH18 

0 0.0284 0.0441 0.08 0.0945 0.0681 0.0541 0.0695 0.0683 0.1465 0.1727 0.1739 0.1418 0.1349 0.2093 0.0758 

IN06 0.0448 0 0.0283 0.0556 0.0706 0.0548 0.0491 0.0507 0.0652 0.1395 0.1314 0.1446 0.0957 0.1112 0.1188 0.0543 

IN07 0.0618 0.0451 0 0.0422 0.0683 0.0332 0.036 0.0281 0.0528 0.0972 0.1133 0.1243 0.0928 0.1049 0.1494 0.0297 

MI05 0.0786 0.07 0.062 0 -1.00E-04 0.0052 2.00E-04 -4.00E-04 0.0117 0.052 0.0492 0.0549 0.042 0.041 0.0914 3.00E-04 

MI06 0.0848 0.0844 0.0646 0 0 1.00E-04 -0.0035 0 2.00E-04 0.0497 0.0338 0.0322 0.0195 0.0441 0.1013 5.00E-04 

MI07 0.0676 0.065 0.0418 0.0084 0.0021 0 -0.0051 0 0.0031 0.0422 0.0361 0.0258 0.0147 0.0284 0.093 0.0027 

MI10 0.0643 0.0708 0.0573 0.0035 -0.0123 -0.0056 0 -0.0079 0.0038 0.0499 0.0495 0.0132 0.0112 0.0267 0.0995 0 

MI15 0.0812 0.0708 0.0534 0.0023 0.0068 -0.001 -0.0126 0 0.0012 0.0308 0.0304 0.0187 0.0043 0.008 0.0595 0 

OH01 0.0868 0.0689 0.0498 0.0206 0.0013 0.0075 0.0052 0.0025 0 0.0048 0.015 0.0185 0.0089 0.0175 0.0597 0.0106 

OH06 0.1266 0.1103 0.0714 0.0467 0.0344 0.0304 0.0367 0.0324 0.0164 0 9.00E-04 0 2.00E-04 0.0089 0.086 0.038 

OH08 0.1257 0.1062 0.0804 0.0421 0.0251 0.0311 0.0368 0.0341 0.0177 0.0054 0 0.0021 0.0087 0.0114 0.0929 0.0259 

OH09 0.1236 0.1121 0.0862 0.0485 0.0305 0.0304 0.0355 0.0298 0.0274 -0.0011 0.0103 0 0 0.0109 0.0638 0.0243 

OH13 0.1048 0.0884 0.0643 0.0325 0.0275 0.0142 0.0226 0.0096 0.017 0.0069 0.0148 0.0076 0 0.0092 0.0583 0.0085 

OH16 0.1106 0.1034 0.0834 0.0435 0.0342 0.0246 0.0268 0.0178 0.0216 0.017 0.0256 0.0191 0.0114 0 0.068 0.0262 

OH17 0.1488 0.1071 0.1055 0.0907 0.0798 0.0678 0.0842 0.0626 0.0615 0.0656 0.0715 0.0582 0.0548 0.0473 0 0.0516 

OH18 0.0896 0.0661 0.0509 0.0015 0.0062 0.0111 -0.0014 0.0042 0.0253 0.0449 0.0367 0.0461 0.0293 0.0373 0.0721 0 
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Figure 1.5 MedMeaK and MedMedK values reducing inclusion of extra clusters, estimated using 
the methods of Puechmaille (2016). Models are based on STRUCTURE using LOCPRIOR.  



 
 

 

 

 

 

 

 

 

Figure 1.6 Bar graphs showing inferred clusters by individuals by site. K = 6 inferred from MedMeaK (top); K = 7 inferred from 
MedMedK (bottom). Both models derived from STRUCTURE using LOCPRIOR. Localities listed from west to east.  
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Figure 1.7 Map displaying STRUCTURE results for K = 6 clusters over geographic space. 
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Figure 1.8 Cross validation score for inferring number of clusters (top). TESS3r bar graphs showing inferred clusters by individuals by 
site for K=5 localities listed from west to east (bottom).  
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Figure 1.9 Inferred clusters displayed over geographic space for K=5 . Note that large portions of Michigan were not sampled and this 
geographic interpretation does not show admixture. 
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Figure 1.9 Values of BIC for inferring number of clusters (top). DAPC scatter chart of five 
inferred clusters (middle). Individual assignment from given populations to inferred clusters 

(bottom). 
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Figure 1.10 Mantel test for isolation by distance (IBD) (top) and regression line for individual 
genetic distance (Dgen) vs geographic distance (GeoDis), r2 = 0.31, P <0.0001 (bottom). 

 



 
 

 

 

 

 

 

      

Figure 1.11 HUC 8 (left) and HUC 6 (right) watershed levels. 
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Table 1.4 AMOVA results displaying variance for the HUC6 (bottom) and HUC8 (top) 
watershed levels. 

HUC Level Source  
of Variation d.f. Sum of  

Squares  Variance 
Components P-value %of Variation Fixation Indices 

HUC8 Among Groups 

 

7 127.71   0.16 Va  

 

0.00 3.42 0.03 (FCT) 

Among  

Pop within 

Group 

8 63.72  0.08 Vb 0.00 1.87 0.02 (FSC) 

Within  

Pop 

610 2620.34  4.30 Vc 0.00 94.70 0.05 (FST) 

HUC6 Among Groups 

 

3 64.54  0.19 Va 0.00 4.10 0.04 (FCT) 

 Among  

Pop within 

Group 

12 126.89  0.15 Vb 0.00 3.28 0.03 (FSC) 

 Within  

Pop 

610 2620.34  4.30 Vc 0.00 92.62 0.07 (FST) 
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Table 1.5 Locality grouping based on TESS3r cluster assignment. 

 

 

 

 

 

 

  

TESS3r 

Cluster 

N 
Sites 

Cluster 01 49 IN01, IN06, IN07 

Cluster 02 
108 MI05, MI06, MI07, MI10, 

MI15, OH01, OH18 

Cluster 03 97 OH06, OH08, OH09, OH13 

Cluster 04 59 OH16, OH17 
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Table 1.6 Mean historic migration calculated through Migrate, recent migration rate from 

BayesAss. Migrate indicates the mean mutation-scaled migration rate with 95% CI. BayesAss 
displays mean migration rate with 95% CI derived from migration rate by population size. 

 

 
TESS3r 

Cluster 

Mean Historic 

Migration Rate 

Mean Recent Migration Rate 

Cluster 01-

Cluster 02 

6.90 (±6.56) 0.08 (±0.12) 

Cluster 01-

Cluster 03 

16.09 (±8.25) 0.08 (±0.12) 

Cluster 01-

Cluster 04 

8.51(±6.81) 0.09 (±0.13) 

Cluster 02-

Cluster 01 

16.76 (±8.40) 0.08 (±0.12) 

Cluster 02-

Cluster 03 

16.81 (±8.75) 0.08 (±0.13) 

Cluster 02-

Cluster 04 

20.20 (±8.89) 0.09 (±0.13) 

Cluster 03-

Cluster 01 

15.73 (±8.12) 0.08 (±0.13) 

Cluster 03-

Cluster 02 

10.37 (±9.68) 0.08 (±0.12) 

Cluster 03-

Cluster 04 

17.45 (±8.54) 0.09 (±0.13) 

Cluster 04-

Cluster 01 

10.55 (±7.75) 0.08 (±0.12) 

Cluster 04-

Cluster 02 

10.06 (±7.41) 0.08 (±0.13) 

Cluster 04-

Cluster 03 

          12.37 (±7.31)            0.08 (±0.13) 
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Figure 1.12 Mean historic migration rate (top), mean recent migration rate (bottom). Scaled 
arrows indicate direction and magnitude of migration. 
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Figure 1.13 Mean historic and contemporary net immigration. Contemporary uses individuals 
per generation, while historic uses mutation-scaled migration rate. 
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Table 1.7 Summary of Bottleneck tests and effective population size estimates with 95% 

confidence intervals. 

Site BOTTLENECK Effective Population Size 

 Wilcoxon test Sign test Mode shift Ne 0.05 95% CI Ne 0.02 95% CI 

IN-1 P = 0.892 P = 0.049 none 53.3 15.3 - ∞ 97.5 23.8 - ∞ 

IN-6 P = 0.812 P = 0.271 none  450.0 33.1 - ∞ ∞ 69.0 - ∞ 

IN-7 P = 0.729 P = 0.473 none 323.9 55.5 - ∞ 632.7 83.4 - ∞ 

MI-5 P = 0.945 P = 0.069 none 71.6 31.4 - ∞ 730.4 77.3 - ∞ 

MI-6 P = 0.996 P = 0.002 none ∞ 53.5 - ∞ ∞ 68.4 - ∞ 

MI-7 P = 0.596 P = 0.157 none ∞ 448.0 - ∞ ∞ 242.3 - ∞ 

MI-10 P = 0.607 P = 0.452 none ∞ 44.3 - ∞ ∞ 70.9 - ∞ 

MI-15 P = 0.793 P = 0.224 none 1770.8 27.4 - ∞ 1770.8 27.4 - ∞ 

OH-1 P = 0.996 P = 0.034 none 7.9 4.4 – 13.8 8.5 5.6 – 13.3 

OH-6 P = 0.446 P = 0.498 none ∞ 132.9 - ∞ 350.4 84.6 - ∞ 

OH-8 P = 0.607 P = 0.477 none 195.5 68.1 – ∞ 262.4 80.3 – ∞ 

OH-9 P = 0.040 P = 0.339 none 106.2 25.0 - ∞ ∞ 41.6 - ∞ 

OH-13 P = 0.473 P = 0.521 none 54.2 27.9 – 270.7 202.8 59.0 – ∞ 

OH-16 P = 0.905 P = 0.042 none 14.6 11.1 – 19.8 22.1 16.8 – 30.5 

OH-17 P = 0.729 P = 0.259 none 10.9 8.4 – 14.1 14.0 10.9 – 18.4 

OH-18 P = 0.661 P = 0.156 none 42.1 14.5 – ∞ 50.1 18.2 - ∞ 
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Table 1.8 Comparison of effective population size estimates (Ne) for one site subsampled to 
different population sizes with 95% confidence intervals. 

 

Site  N Ne 0.05 95% CI Ne 0.02 95% CI 

OH-8 10 772.0 22.7 - ∞ 772.0 22.7 - ∞ 

OH-8 30 195.5 68.1 – ∞ 262.4 80.3 - ∞ 

OH-8 77 137.1 87.5 – 271.8 189.1 121.4 – 380.9 

      



 
 

 

 
 

 

 

Table 1.9 Comparison of descriptive statistics for E. blandingii. * HO reported rather than HE. 

Species Location Pairwise FST AR HE Sites Loci N Reference 

E. blandingii Nova Scotia 0.04 – 0.12 - 0.45 – 0.54 3 5 110 Mockford et al. (2005) 

 Rangewide 0.00 – 0.47 - 0.45 – 0.71 12 5 200 Mockford et al. (2007) 

 NE, IA, MN, IL 0.01 – 0.47 - 0.49 - 0.79 12 8 202 Sethuraman et al. (2014) 

 Ontario 0.04 – 0.10 4.8 – 5.3 0.59 – 0.66 12 4 97 Davy et al. (2014) 

 NY and southeast Ontario 0.01 – 0.38  0.31 – 0.63 5 7 115 McCluskey et al. (2016) 

 WI 0.00 – 0.18  0.59 – 0.70 18 14 389 Reid et al. (2017) 

 northeast IL 0.02 – 0.10 3.6 – 3.9 0.51 – 0.64* 6 14 186 Anthonysamy et al. (2018) 

 IN, OH, MI 0.00 – 0.15 4.01 – 4.84 0.56 – 0.66 16 14 313 This study 
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 Discussion 

In order to provide further insight into E. blandingii conservation, levels of genetic variation 

and population clustering in localities across Indiana, Michigan, and Ohio were examined. 

Additionally distance and watershed were correlated with genetic connectivity among populations. 

Microsatellite analysis of E. blandingii from 13 loci were examined across Indiana and the Lake 

Erie marshes of Ohio and Michigan. Overall genetic differentiation between localities was low 

across the study region whereas within locality diversity was relatively high (Tables 1.2 & 1.3). 

Despite low differentiation between localities, population structure was observed (Figures 1.6, 1.8, 

& 1.9). Pairwise FST scores as well as AR and HE observed were very similar to other studies 

looking at E. blandingii (Table 1.9). The relatively high genetic diversity observed across Ohio, 

Indiana, and Michigan is comparable to range-wide diversity (Tables 1.9). An AMOVA and a 

Mantel test were also used to assess the influence of geographic distance and watershed boundaries 

on genetic differentiation (Figures 1.10 & 1.11). Significant isolation by distance and isolation 

between watersheds at both the HUC6 and HUC8 levels were detected through a Mantel test and 

an AMOVA respectively (Figure 1.11 & 1.11). Despite the lack of observable bottlenecking, and 

the relatively high degree of observed genetic diversity, the predicted loss of alleles in the next 

200 years by Bottlesim would imply that most localities within this region are likely less secure 

than then may be assumed (Tables 1.2, 1.6, and 1.9 and Figure 1.4). The inability of 

BOTTLENECK to detect bottlenecks in a long lived species, and the lack of recent gene flow 

would also indicate more genetic vulnerability than would otherwise be expected  [24,80].  
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1.5.1 Population Structure 

Across localities, little differentiation among populations was found (FST= 0.05, D=0.08), 

though there was an observed trend of increasing differentiation by geographic distance (Table 

1.3), with the greatest pairwise differentiation occurring between IN01 (western most locality) and 

OH17 (second most eastern site) (FST = 0.15, D= 0.21, Table 1.3).  

The number of genetic clusters identified through each method ranged from K=4 to K=6 

(STRUCTURE, TESS3r, and DAPC). Most comparable studies examining E. blandingii structure 

that utilized STRUCTURE employed the delta k method for determining the number of clusters 

[27-29]. Only Reid et al., (2017) reported both the MedMeaK and delta K clusters. Puechmaille 

(2016) argues that the MedMeaK and MedMedK interpretation of determining clusters is likely 

more accurate for detecting genetic clusters when sampling effort is not equal across localities. 

Since differentiation across sites was generally low, fewer inferred clusters likely captures the 

overall trend of population deviation. Higher K values from STRUCTURE and DAPC are 

representative of hierarchical clustering or sub-structure that fall within the broader clusters 

identified by TESS3r. OH17 was consistently identified as its own cluster by STRUCTURE (even 

using K=4 with increased assignment threshold) and DAPC, suggesting that this grouping 

represents some ecological significance. 

Some populations in New York and Illinois showed greater differentiation and additional 

population structure than would be expected based on the geographic distance (or lack thereof) 

between them, which is thought to be attributed to glacial retreat and expansion as well as impacts 

of the watershed on the dispersal of the turtles [7,25,28]. Due to the similar geographic and glacial 

history, I expected to find similar degrees of differentiation and structure across Indiana, Michigan 

and Ohio. Although the differentiation based on FST and D values did not necessarily support this 
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hypothesis, the K values of the STRUCTURE run, TESS3r and DAPC show evidence of this 

degree of population differentiation. Francois and Durand (2010) have demonstrated that Bayesian 

approaches that incorporate geographic priors (TESS3r and STRUCTURE LOCPRIOR) are more 

advantageous at detecting accurate population structure. Additionally, Francois and Durand (2010) 

demonstrated that TESS3r does a better job at capturing the geographic driven clustering than 

STRUCTURE. TESS3r and STRUCTURE with LOCPRIOR have been shown to effectively 

predict population structure in organisms that have experience high degrees of glacial driven 

expansion and contraction [65]. Since Tess3r produced the most conservative estimates (with the 

exception of increasing assignment threshold) and seems to be the most robust method for 

estimates of population clustering I suggest that the four identified clusters from TESS3r be 

considered management units for the purpose of conservation though it is worth noting that 

differentiation was generally low. It should also be noted that northwest Michigan was heavily 

under sampled with only one locality being included and Indiana may share population structure 

with un-sampled localities from Illinois. That being said, the identified management units should 

apply to the Lake Erie Marshes of Ohio and southeast Michigan.  

All observed K values, regardless of the method employed, provide support to prior findings 

that E. blandingii has higher levels of between locality differentiation east of the Appalachians 

compared to west of the Appalachians, (FST, D) but are not in panmixia across the Midwest and 

Great Lake Regions (Table 1.9) [25-30]. 

Similar to other studies, isolation by distance and watershed were observed [26,28]. Large 

historical migration driven by glacial dynamics are thought to have increased genetic admixture 

across the Midwest and Great Lakes region which may also dampen detectable distance-driven 

isolation [28,38]. Similar to Sethuraman et al. (2014) the majority of variance was observed within 
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localities, but a significant signature of watershed was detected by AMOVA analysis. The 

watershed signature may be partially explained by effect of distance especially within large 

watershed basins.  

Utilizing the clusters identified by TESS3r, Migrate helped to further explain likely historic 

migration patterns. Average historic migration rates tended to show a general trend of movement 

out of cluster 2 and into the other three clusters (Table 1.6 and Figure 1.13). The movement out of 

cluster 2 could in part be explained by the settlement pattern and subsequent draining of wetland 

in northwest Ohio and southeast Michigan [85]. As the Great Black Swamp (which stretched across 

northwest Ohio into northeastern Indiana) was divided by roads and railroads, and eventually 

drained in the mid to late 1800’s it opened up northeast Ohio, southeast Michigan, and northeast 

Indiana to increased settlement and land modification [85]. It is possible that as this region opened 

up and was converted to productive agricultural land that the E. blandingii in that region (Cluster 

2) would be driven to remnant wetlands to the east and west which would explain the observed 

pattern of movement out of cluster 2 [85].  Further investigation into migration patterns and 

population cluster at a range-wide scale would help to further explore the validity of this trend.  

  

Mean recent migration estimates from BayesAss showed the same general trend in migration 

rates between clusters as was seen in historic migration patterns, although recent migration crossed 

zero at the 95% confidence interval indicating little to no actual immigration. Although the 

observed genetic differentiation between localities does not support a finding of recent loss of gene 

flow, the long generation time of E. blandingii will likely make it difficult to observe the reduction 

of gene flow for some time (1 to 2 generations or longer Figure 1.4). The reduction to little or no 

migration in the past few generations (150 to 250 years) compared to historic rates may implicate 
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the well documented effects of urbanization and habitat fragmentation as the culprit [10,15,18]. 

However differences in migration estimation methods between the coalescent-based Migrate and 

the disequilibrium-based BayesAss makes it difficult to interpret the validity of such a comparison 

[86]. 

The largest cluster, cluster 2, was identified as a source by both the historic and recent 

migration rates, and the second largest cluster, cluster 3 was identified as a source population by 

the recent migration rates (Figure 1.14). Large reductions of average migration rates from clusters 

2 and 3 to cluster 1 and 4 could potentially set up conditions for bottlenecking within those clusters. 

Since large portions of Michigan were not sampled and the clustering scheme covered large 

geographical areas, the mean migration estimate should be interpreted with caution. 

1.5.2 Genetic Status Within Populations 

The lack of observed bottlenecking does not necessarily mean bottlenecking has not 

occurred (or is not occurring) since BOTTLENECK poorly detects population bottlenecks in long 

lived species [24,80]. Studies on the similarly long-lived ornate box turtle (Terrapene ornata) [24] 

and spotted turtle (Clemmys guttata) [80] had similar difficulty detecting population bottlenecks 

using traditional methods. Kuo and Janzen (2004) also found that once bottlenecks occur they may 

result in rapid genetic decline.  

Effective population sizes for E. blandingii were as high as ∞ for four populations, but these 

estimates are likely biased by the sample sizes of the localities (Tables 1.7 and 1.8). Most 

populations of E. blandingii are thought to be small and disjunct which contradicts our estimates 

[2]. Citizen science based population estimates for this same locality found an estimated female 

population size of 87 individual E. blandingii or a population size of 174 adult individuals 
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assuming a 1:1 sex ratio [87].  Comparison of different samples size effects on Ne estimates 

indicates that localities with less than 30 individuals likely do not allow for accurate estimations 

(Table 1.8). As our sample size increase our estimates and confidence interval became closer and 

closer to the population estimates of Cross et al., (2021). Additional replicates with other large 

populations would help determine the sample size necessary for more accurate estimates of 

effective population size.  

The projection of genetic variation into the future using Bottlesim suggests that large 

reductions in population size can result in drastic loss of genetic diversity in isolated populations 

of E. blandingii (Figure 1.4). It should be noted that this model does not account for differential 

reproductive success or survival based on the age of the individuals, environmental stochasticity, 

or low recruitment, features seen in E. blandingii [2,4,81,88]. Excluding life stage dynamics in 

Bottlesim models likely leads to under-estimation of the genetic impacts resulting from population 

reductions in the absence of gene flow. Population Viability Analysis (PVA) in Illinois by King et 

al. (2021) included environmental stochasticity and showed that inclusion of environmental 

catastrophes increased the population size threshold to maintain genetic diversity (50 to 110 

without, and 110 to 200 with) and reduce extinction risk (20 to 50 without, and 50 to 200 with). 

Furthermore, the Bottlesim results indicate that populations around 200 individuals will show a 

steady loss of genetic diversity over 200 years even with a constant population size. Since most 

localities in our study appear to be small and isolated, and likely have E. blandingii estimates far 

below 200 individuals, it is possible they have begun to lose a great degree of genetic diversity 

which is not yet observable due to long lifespan [24].  

The PVA models used by King et al. (2021) corroborate the loss of genetic diversity and a 

high risk of extinction in scenarios where starting population size was small (less than 50 adults). 
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In that study, fifty individuals was used as a cut off for the minimum number of adult breeding E. 

blandingii necessary (assuming a 1:1 sex ratio) to reduce extinction risk and maintain a high degree 

of genetic diversity in the presence of environmental stochasticity. Ne tends to be much lower than 

the population census size for wild populations (~10% across taxonomic groups) since Ne accounts 

for sex ratio, number of adults, genetic makeup and population size [90]. However our best estimate 

of Ne (137.1 for OH08) was very close to the adult census size (174 assuming a 1:1 sex ratio) from 

that same locality as estimated by Cross et al. (2021). Assuming a similar relationship between 

adult census size and Ne  as was observed for OH08 only four localities of the 16 included in this 

study fall below this threshold for the number of adults to prevent extinction set by King et al. 

(2021)  for estimated Ne and two were at this or near this threshold  (Table 1.7). Using the most 

conservative estimates of Ne (the lower 95% confidence interval) 11 of the 16 sites included fall 

below the 50 individual cut off (Table 1.7). Additionally, the best Ne estimates for our largest 

locality within the study area had an effective population size below 200 individuals indicating 

most actual effective population sizes are likely far below this. It is also worth noting that based 

on our estimates from OH08, small sample size seems to inflate estimates of Ne and only five of 

the sample localities included had enough individuals to provide reasonable estimates (Tables 1.2, 

1.7, and 1.8 ).  

1.5.3 Management Implications 

Although within population diversity appears to be high, this does not mean populations are 

ecologically secure. Based on the Bottlesim result, many localities within this region have likely 

seen substantial population declines and are vulnerable to lose up to 50% of the observed genetic 

diversity in the next 200 years (Figure 1.4). Effective population size estimates are heavily 
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influenced by sample size tending to overestimate when less than thirty samples are included, for 

this reason Ne estimates should be viewed conservatively focusing on the lower end of the 95% 

confidence interval (pcrit <0.05) for populations that had less than thirty samples (Tables 1.7 & 

1.8).   

King et al., (2021) estimated adult population sizes necessary to minimize extinction 

probability and maintain 95% of the genetic diversity in E. blandingii using genetically informed 

population viability analysis. Based on the estimates of King et al., (2021) an adult population size 

of at least 20 individuals is required to minimize (<5%) extinction risk and at least 50 individuals 

are needed to maintain 95% of the genetic diversity of the next 100 years in the absence of 

stochastic events. In the presence of stochastic events at least 50 individuals are required to 

minimize extinction risk and 110 are needed to maintain 95% of the genetic diversity [89]. 

Assuming that most localities within our study have little to no gene flow due to fragmentation 

and urbanization and maintain a similar relationship between Ne and adult census size as was 

observed in OH08 (Table 1,8 and [87]) only 9 of the 16 localities included produced conservative 

Ne estimates > 20 threshold and only 5 meet the > 50 individual threshold (Table 1.7). Only two 

localities have conservative Ne estimates above the 110 threshold indicating that in the presence of 

stochastic events that could increase mortality, only 2 of the 16 localities produced conservative 

estimates minimizing loss of genetic diversity and only 5 are large enough to minimize extinction 

risk (Table 1.7). Population and habitat suitability modeling for E. blandingii under different 

climate change scenarios indicates that the amount of available suitable habitat is likely to shift 

north with a decline in habitat connectivity, which argues for targeting a threshold of adult 

individuals  > 110 for each locality to prevent genetic loss and extirpation [91,92]. Since 110 
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individuals per locality may not be a realistic goal, a minimum of 50 individuals per locality could 

help to reduce extinction risk, particularly if gene flow is maximized through translocation [89].  

Additional population viability analysis conducted by Ross et al., (2020) indicated that head-

starting individuals could help to stave off extinction and prevent local extirpations. Head-starting 

a minimum of 50 eggs per year (under an assumed 0 to 1 age mortality rate of 92.8% [94]) can help 

to prevent extinction, whereas 100 eggs per year can increase population growth [93]. Head-starting 

can also help to increase juvenile survival and lead to increased recruitment [95,96]. Carstairs et al., 

(2019) found that although head started individuals had an acclimatization period of 1 to 2 years 

that resulted in reduced growth, movement, and survival they had nearly three times the probability 

of surviving to age 10 compared to wild hatched turtles. Thompson et al. (2020), found that in the 

long term head-starting can increase the body size distribution of individuals within a population, 

increasing the number of juveniles and ultimately leading to recruitment of reproductive adults. 

Although head-starting would need to be maintained until populations could naturally reach 

sustainable recruitment rates of at least 50 individuals a year, it provides a viable strategy for 

minimizing extinction risk, especially in small, isolated localities [93].   

The observed genetic clusters provide a basis for population management units. These 

management units should be used as a guideline for determining which localities should be used 

for translocations or head-starting at other localities. When possible, limiting translocations to 

localities that share a cluster under the K=7 scheme should be maintained, however since 

differentiation is generally low using the K=4 cluster scheme allows for greater leeway and should 

be maintained when there are not an ample number of individuals from localities sharing a K=7 

cluster. Additionally, the presence of IBD and the isolation between watersheds implies that when 

possible individuals should be translocated from nearby localities within the same HUC6 or HUC8 
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(when staying within HUC8 is not feasible) watershed. Aiming to maintaining connectivity 

between localities within the life time home range size and maximum movement range of E. 

blandingii could also act to maintain genetic diversity and increase effective population size by 

increasing the number of breeding individuals able to freely breed [41]. Since roads have been 

found to be a significant source of mortality in E. blandingii, causing as many as 61 mortalities 

over 4 years at a single locality in Ontario, it would make sense to target high traffic roads within 

a 2 kilometer distance (based on length of breeding and nesting movements) from known E. 

blandingii localities for reducing mortality and allowing gene flow [18,41,97].  Reducing the effect 

of roads and urbanization to promote gene flow could be accomplished in a number of ways, from 

creating buffers of natural landscapes around localities, utilizing artificial crossing structures such 

as well-maintained exclusion fences and culverts interspersed based on home range size, or 

providing supplemental artificial nesting habitat to provide an alternative to crossing roads [41,98]. 

 Conclusions 

Observed levels of within locality genetic diversity and the lack of bottlenecking imply a 

level of genetic security within the Great Lakes Region. However, the observed diversity may be 

representative of remnant population structure and historic gene flow masking ongoing or 

developing bottlenecks and a potential forthcoming decline in genetic diversity [24]. 

Despite the lack of differentiation between localities within each state, as well as between 

localities across the study area, a minimum of four genetic clusters were identified. Although these 

clusters do not necessarily represent localities connected by current gene flow, they provide 

guidance for genetically significant management units. As many as seven genetic clusters were 

observed depending on method, but a hierarchical clustering scheme was observed across methods 
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(except for OH17). Increasing the number of clusters followed the same general assignment 

scheme when using fewer cluster and provides insight on differentiation within those larger 

groupings. These higher levels of clustering help to inform within unit diversification, but in light 

of the low levels of differentiation observed across the study (Pairwise FST between 0 and 0.15) 

are likely less genetically relevant. A Mantel test and AMOVA’s indicate that part of the detected 

genetic clustering is explained by a combination of watershed boundaries and distance between 

localities.  

Although average migration rates lack resolution without increased sampling across the 

region (particularly northwest Michigan) the detected reduction in mean historic vs mean recent 

migration rate between genetic clusters would imply urbanization has had an effect on gene flow 

between identified clusters.  

My findings support the currently reported genetic trends observed in E. blandingii across 

their range; although genetic differentiation is low between localities, there is genetic structure [25-

30]. Further sampling and analysis and a range wide scale using microsatellite markers would help 

to further understand the genetic trends and historic drivers of population structure within E. 

blandingii. 
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 LANDCSAPE RESISTANCE MODELING  

 Introduction 

In order to further understand the complex patterns that have driven the observed genetic 

composition and population structure, it is important to understand how a species moves across 

the landscape in reference to different geographic and geomorphic features. The practice of 

correlating genetic differentiation with traditional landscape ecology to look for genetic 

discontinuities caused by environmental features has come to be known as landscape genetics [99]. 

Landscape genetics takes advantage of advances in molecular genetics, statistical modeling, and 

computing to help further the exploration of the effects of landscape features and geographic 

barriers on functional gene flow and population dynamics that drive genetic clustering [99,100]. In 

particular, landscape genetics has provided a new approach to understand the effects of ecological 

succession and urban modification on both flora and fauna gene flow and clustering [101,102]. 

Landscape genetic approaches also prove effective in identifying specific landscape features that 

can act as barriers for gene flow [103]. More complex modeling utilizing high quality landscape 

data and fine scale spatial autocorrelation allows for the identification of movement corridors, as 

well as optimization of features that drive landscape resistance that can be utilized for targeted 

habitat conservation [104-108].    

There is a large body of work focusing on the spatial ecology and landscape use of E. 

blandingii [6,8,11,14,16,109,110]. E. blandingii are known to use a variety of wetland habitats from 

season to season including open marshes, ponds, lakes, ephemeral wetlands, creeks, streams, and 

ditches [6,8,11,14,16,111]. Habitat use also tends to vary slightly among regions, complicating 

precise delineation of suitable habitat [2]. In general, E. blandingii tend to utilize shallow vegetated 
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wetlands, and at a macrohabitat level show selection of wetlands over other water bodies or 

uplands [2,8,16]. Despite selection of wetland habitat, Joyal et al. (2001) noted that E. blandingii 

will use upland habitat extensively for nesting, dormancy, and dispersal movements. Focusing on 

habitat selection in a mostly pristine location in Ontario, Canada, Edge et al. (2010) found no 

selection in microhabitat use indicating that E. blandingii was likely not overly selective of habitat 

when there is an abundance of open resources and low levels of landscape modification. 

Conversely, urbanization and habitat modification has well documented impacts on E. blandingii 

persistence and habitat availability [10,15,18]. For example, in two wetlands located within 

agriculture-dominated watersheds that are heavily invaded by European common reed 

(Phragmites australis), Markle and Chow Fraser (2018) found selection for aquatic and mixed 

organic marshes and locally avoidance of patches of European common reed.  

Beyond movement-based landscape analysis, prior studies utilizing microsatellite markers 

in E. blandingii have inferred a mixture of historic landscapes and life history affecting gene flow 

and genetic clustering. Since E. blandingii has long lifespans (up to 83 years in the wild) 

accompanied with long generation times and increasing reproductive output with age, it is possible 

that genetic variation will not have had time to respond to contemporary landscape change which 

isolates populations [22,81,113]. Davy et al. (2014) indicated low levels of historic migration 

between clusters in Ontario indicating a pre-settlement driver of genetic units across the landscape 

other than the modern urban disconnect. Anthonysamy et al. (2018) found no significant 

relationship between E. blandingii population structure and geographic distance indicating that 

landscape and or habitat features likely drive gene flow. Conversely Reid et al. (2017) saw a 

significant relationship between roads and population differentiation in E. blandingii in Wisconsin 

using a transect-based landscape metric.  
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In order to account for the lag in genetic changes associated with the life history of E. 

blandingii, and to determine drivers of gene flow and differentiation within the Great Lakes region, 

it is useful to characterize landscapes using both historic and contemporary features. The 

comparison of historic and contemporary population dynamics has the potential to help determine 

where gene flow has been restricted and where populations may experience decreases in genetic 

diversity or bottlenecks in the coming years. Furthermore, such analyses provide opportunities for 

identifying corridors of habitat that connected populations in the past to identify areas that would 

benefit most from habitat restoration.   

 Publicly available GIS data can be used to examine elevation and pre-settlement land class 

features which can be used to infer the conditions that would have been encountered by E. 

blandingii as they moved across the landscape prior to contemporary landscape modification [114].  

Although a transect-based landscape metric is simple to do and can quickly make inferences about 

movement across a landscape, it lacks the complexity of the actual landscape the turtles experience 

traversing the habitat. Peterman (2018) instead implemented least cost paths of random walk 

method using CIRCUITSCAPE to rank landscape resistance faced by individuals scored by using 

a genetic algorithm to optimize the resistance surface [108,115]. This approach removes the need 

for a priori inference or expert opinion which could potentially bias landscape models of gene 

flow [108].  

 Here, contemporary and historic landscape features within three Lake Erie watershed 

marshes in Michigan are analyzed to: (1) optimize landscape resistance surfaces to better 

understand the influence of landscape feature on movement, (2) determine the potential driving 

effects of landscape resistance on gene flow, and (3) compare the influence of contemporary 
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landscapes versus historic landscapes that are likely to have shaped standing genetic variation 

among populations of E. blandingii. 

 Methods 

2.2.1 Site Description 

Three localities within Livingston County in Michigan (MI6, MI7, and MI17) were 

chosen due to their close relative distance from each other as well as available sample size, and  

landscape heterogeneity (each about 10 kilometers from each other). All three of these localities 

are dedicate state recreation areas making their use primarily for outdoor recreation. MI06 

encompasses an area of 11,000 acres, MI07 an area of 4,947 acres, and MI17 an area of 20,500 

acres. Currently all three localities are dominated by deciduous forest, and woody wetlands with 

several kettle lakes and other bodies of open water interspersed. MI06 and MI17 as well as MI07 

and MI17 are separated by mix of agricultural land and low intensity developed urban spaces. 

MI06 and MI07 are separated by higher density and more intensely developed urban area in 

addition to sparse agricultural land. The pre-settlement landscape of this area was primarily 

deciduous forest, scrub shrubs, and wood wetlands with interspersed grasslands and open water 

kettle lakes.  

2.2.2 Creating Resistance Surfaces 

Initial runs utilized the full dataset presented in Chapter 1, however this proved to be 

computationally prohibitive and likely minimally informative since isolation by distance was 

found across populations. To focus in on landscape influence and reduce the impacts of distance, 
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the three closely clustered localities in Michigan described above had a reasonable sample size (n 

= 59) and provided relatively high landscape heterozygosity compared to the rest of the study. 

All resistance surfaces were generated at or resampled to a 30 meter by 30 meter cells to 

allow for timely computation. Resistance surfaces were created in ArcMap version 10.7.1 using 

publicly available data [116]. The 2016 national land cover database map (NLCD) was used for 

contemporary landscape [117]. A historic land class map was developed from pre-settlement 

vegetation maps from Michigan Natural Features Inventory (MNFI) [118,119]. The pre-settlement 

vegetation map was re-categorized to follow the same land class features as the NLCD map. The 

re-classified historic land class shapefile was then converted into a 30 meter by 30 meter raster 

file. A 1 meter by 1 meter digital elevation model (DEM) was accessed through the U.S. 

Geological Survey (USGS) [120] an used to develop a Topographic Position Index (TPI) which is 

a measure of relative elevation and better represents fine scale elevational changes that an organism 

would experience moving across the landscape. Landscape surfaces were selected based on prior 

literature reporting on E. blandingii habitat use, movement, and fragmentation [2,11,14]. Pre-

settlement maps were reclassified to group similar habitats into the same land class categories used 

by the national land cover database map to make the historic land class layer comparable to the 

modern land class map.  

Since E. blandingii is believed to utilize ephemeral wetlands, as well as ditches to aid in 

seasonal movement, a TPI was generated as a proxy layer for examining wetland and elevation 

resistance due to the species’ ability to detect small ephemeral wetlands [121]. TPI calculates the 

average elevation value of each cell within a raster based on the surrounding cells within a given 

radius providing a finer scale picture of valleys (negative values), and ridges [122]. A TPI was 

generated from digital elevation models (DEM) using the model builder in ArcGIS. Each surface 
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layer was then exported from ArcGIS using the export to CIRCUITSCAPE plug-in to ensure that 

each layer was the proper dimensions and in the correct raster format to be processed in R [123] 

(Figure 2.1).  

2.2.3 Genetic Distance  

Individual based genetic distances can be calculated a number of different ways, however 

Principal Component Analysis (PCA) based distance matrices appear to be highly robust for 

inferring landscape resistance relationships [124,125]. PCA based distance metrics allow the model 

to focus on the loci that are driving the majority of the variance between individuals [125]. A PCA 

genetic distance matrix was developed following [124]. A matrix was developed comparing allele 

usage at each locus for every individual and then used to develop a PCA using the R package 

Adegenet Version 2.1.4 [65]. The Euclidean distances between the 90 principal components were 

then used to develop pairwise genetic distance between individuals occurring within the three 

different sites [124-126]. 

2.2.4 Landscape Resistance Optimization 

Genetic resistance modeling was run in Resistance GA (an R package utilizing Julia and 

CIRCUITSCAPE; [108]) using the previously described landscape surfaces. Resistance GA utilizes 

a genetic algorithm developed by Scrucca (2013) to optimize landscape surface using iterative data 

transformation to test all possible resistance values of the landscapes [108]. Resistance GA uses 

pairwise genetic data and landscape distances determined by CIRCUITSCAPE to test the fit of 

each iterative data transformation using a mixed effect linear model [108]. In each iteration, the 

best model is retained and included in the proceeding iteration until the model no longer improves 
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[108]. Resistance GA tests eight data transformations for each continuous landscape layer and 

explores each possible resistance value for each categorical layer [108]. Once optimized, each 

resistance layer is assigned an AICc score and compared to null and geographic distance models 

to determine which model is the best fit for the true landscape resistance. Resistance GA also 

generates resistance layers for each landscape surface allowing one to visualize the optimized 

landscape resistance layer. Each surface was run independently utilizing individual based PCA 

axis for genetic distance.  

Since individuals were sampled using traps during the mating season when individual E. 

blandingii are known to make large terrestrial movements we wanted to include all individuals 

regardless of proximity [6,41]. To control for the potential effects of shared locality due to trapping, 

and to maximize the exploration of the landscape, comparisons between individuals within the 

same locality were excluded. A total of 59 individuals from three localities were included 

(MI06=16, MI07=36, MI17= 7). 

 Results 

2.3.1 Genetic Distance 

A total of 90 PCA axis were generated for allele usage by individual.  Euclidean distance 

between all 90 PC axes for each individual ranged from 3.63 to 8.23 with a mean of 6.04. The 

overall variance for the Euclidean distance between the 90 PC axes was 0.31.  

2.3.2 Landscape Resistance Optimization 

Optimized resistance surfaces were generated for each provided surface layer assigning 

values of the relative resistance an E. blandingii would face moving through each feature (Figure 
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2.3). The resistance values increase exponentially as the relative elevation increased, and neared 

an asymptote at the highest relative elevation observed on the landscape (Figure 2.2). For the TPI 

layer lower elevation was associated with low relative resistance, and higher elevation was 

associated with higher relative resistance (Figure 2.3). For the contemporary landscape map (LAN) 

woody wetlands, open water, and deciduous forests had the lowest relative resistance values were 

as, developed urban lands had the highest followed by agricultural lands (Figure 2.3). For the pre-

settlement land class map (PRE) emergent and woody wetlands had the lowest relative resistance 

values followed by deciduous forests while open water had the highest relative resistance followed 

by scrub/shrub (Figure 2.3).  

2.3.3 Model Fit 

The distance model was by far the best explanation for the genetic differentiation observed 

across the landscape at these localities (Table 2.1).  The TPI model was the second best model but 

was only as good as the null (AICc values of 1278.139 and 1280.037, respectively) (Table 2.1). 

Both the TPI model and the distance model had relatively weak fits to the data (Rm2= 0.014 and 

0.015 respectively) (Table 2.1). The contemporary landscape had the highest regression value, 

(though still rather weak) but was also the worst model based on AICc (Rm2= 0.027) (Table 2.1). 

The optimized resistance surface for TPI utilized a monomolecular transformation in which the 

lowest relative elevation values produced the least landscape resistance (Figures 2.3 & 2.4).  
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Figure 2.1 Resistance surfaces TPI (Topographic Position Index), LAN (National Land Class 
Map), PRE (Pre-Settlement Land Classes). TPI layer to show position of individuals. Locality 

information removed.
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Figure 2.2 Monomolecular Transformation applied to TPI. 
 

Table 2.1 Summary of resistance model optimization.  

 

 

 

Surface obj.func_LL k AIC AICc R2m R2c LL 
Distance -635.734 2 1275.468 1275.678 0.014486 0.257794 -635.734 
Null -638.035 1 1278.07 1278.139 0 0.247083 -638.035 
TPI  -635.655 4 1279.31 1280.037 0.015069 0.25782 -635.655 
PRE -635.540 7 1285.081 1287.234 0.019872 0.252395 -635.54 
LAN -633.175 16 1298.351 1311.002 0.027415 0.250808 -633.175 
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Figure 2.3 Optimized resistance surfaces, TPI (Topographic Position Index), LAN (National 
Land Class Map), PRE (Pre-Settlement Land Classes). TPI layer to show position of individuals. 

Locality information removed. 

 Discussion 

The distance model as the best model (by AICc) with weak regression reinforced the 

observed weak IBD detected in chapter one (Figure 1.10). The optimized TPI model indicated that 

low elevation exerts the least landscape resistance on E. blandingii (Figures 2.2 &2.3). However, 

the weak relationship (R2m 0.022) between relative elevation and genetic distance implies that the 

null model was just as good, indicating that TPI is not a strong driver of differentiation for E. 

blandingii and explains little to no differentiation.  
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The weak overall relationship between TPI resistance and genetic distance between localities 

is not surprising based on the previous research. Joyal et al., (2001) found extensive use of uplands 

for movement, nesting, and dormancy.  E. blandingii are known to move extensively, use a wide 

variety of habitats, and have large variable home ranges [6,8,11,14,16].  Grgurovic and Sievert 

(2005) found an estimated home range size of 22 hectares in E. blandingii and saw little overlap 

in home range use from year to year indicating that E. blandingii likely roams across the landscape 

from year to year. It has been noted that E. blandingii will use uplands extensively for nesting and 

terrestrial dispersal and will move long distances to breed and nest (up to 2 km) which could aid 

in gene flow between localities even if individuals spend most of their time in a single wetland 

[6,41]. 

Edge et al. (2010) found selection at a macro scale for wetlands over other water bodies and 

uplands for habitat use (although that does not necessarily implicate them as barriers for gene 

flow). In the historic landscape layer it is possible that when landscapes have an abundance of 

available habitat, E. blandingii will show little to no microhabitat selection making it difficult to 

detect a correlation between differentiation and resistance distance [16]. The rather pristine 

landscape observed by Edge et al., (2010) is more likely be representative of pre-settlement 

conditions faced by E. blandingii. 

Lack of correlation between genetic resistance and contemporary land cover parameters 

could be due to the long generation time of E. blandingii [22,81,113]. Despite substantial evidence 

for the effect of urbanization on E. blandingii, from direct mortality to habitat loss and extirpation, 

prior genetic assessments have observed a lack of differentiation between localities separated by 

urban development [6,8,10-17,27].  
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Although attempts were made to account for the effects of the traps on the model, it is still 

possible that luring individuals to one location may influence the observed relationship between 

genetic distance and landscape resistance distance. Increasing the extent of the model to include 

more sites and explore a greater diversity of landscapes could potentially allow for a more 

informative model, however doing so would also increase the effect of geographic distance on 

differentiation and require a reduction in resolution of the landscape characteristics because the 

raster data is large and memory intensive. Additionally, a larger extent is computationally and 

memory intensive, especially if attempting to utilize individual based genetic distance. Using site 

based genetic distance could reduce the number of parameters and reduce the time of computations 

but would also reduce sample size and constrain representative landscapes characteristics resulting 

in model bias.  

  Conclusion 

Overall optimization of resistance surfaces at a localized region in Michigan found little to 

no influence of landscape features on the observed pattern of genetic differentiation in E. 

blandingii (Table 2.1). Consistent with chapter one, IBD was found to be the best explanation for 

the observed genetic differentiation between localities in Michigan. The degree of genetic 

differentiation and the observed pattern across the landscape does not appear to show any 

meaningful relationship with the historic or contemporary landscape, at least at this geographic 

extent (Table 2.1).  The lack of correlation between resistance distances for land class features and 

genetic differentiation could be due to low levels of observed genetic differentiation across the 

region which is likely due to long generation time, high historic migration, and habitat flexibility 

in E. blandingii [22,81,113]. This would also explain why no significant pattern was observed in the 
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contemporary landscape despite the substantial evidence of the effect of urbanization on E. 

blandingii [6,8,10-17]. Lack of correlation in the pre-settlement model could be due to low levels of 

landscape resistance to gene flow in E. blandingii in unmodified landscapes [6,14,33].  

Finally, although a strong relationship between genetic differentiation and landscape 

resistance was not seen in this region using these resistance surfaces, it does not mean there are no 

drivers of differentiation on the landscape but rather the resistance surface optimization that was 

implemented here may not be appropriate for examining the relationship between long-lived 

slowly differentiating organisms. Further investigation into other landscape features, or utilizing 

different extents or regions, may determine different relationships and shed light on the ability of 

this framework for assessing resistance surfaces for E. blandingii. Landscape resistance may be 

variable between regions and localities and should be considered when examining for drivers of 

differentiation.  
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