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ABSTRACT

Dynamic treatment regimes (DTRs) are often considered for the medical care of chronic

diseases and complex conditions. They consist of multistage treatment decisions, each based

on the individual’s health information and their treatment and response history. In this

dissertation, we consider this setting with binary responses (i.e., either respond favorably or

unfavorably to a treatment) and highlight one type of heterogeneity, specifically the existence

of subgroups of patients who respond favorably to only a distinct subset of study treatments.

Currently, most works employ model-free approaches to find the optimal DTR. In con-

trast, we propose a model-based approach, which focuses more on describing heterogeneity

in treatment responses. We first consider the scenario when baseline covariates are not

included. A mixture of mixed logit models is proposed along with an EM alogorithm to esti-

mate these subgroup proportions and the probabilities of a favorable response. We describe

how an optimal dynamic treatment regime can be determined given the model information.

We also discuss the necessary identifiability conditions (i.e., what sets of parameters are

necessary for DTR determination).

Then, we extend the proposed model to incorporate baseline covariates. Specifically, we

include certain baseline covariates in the logistic model for the probabilities of a favorable

response and develop a multivariate Bernoulli model to incorporate the remaining covariates

in the determination of subgroup proportions. Furthermore, time effects are considered in

the model to allow for a potential overall decline in response effectiveness over time.

In each setting, simulation studies are performed to demonstrate the effectiveness of the

proposed method in both parameter and DTR estimation. We also compare our approach

with another competing method, Q-learning, and provide the scenarios when our mixture

model outperforms Q-learning in terms of finding the optimal DTR.
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1. INTRODUCTION

1.1 Overview of Dynamic Treatment Regime

It is widely recognized that a large portion of the variability in treatment response is the

result of different individual characteristics, such as demographic information and genomic

markers. For example, postmenopausal women with lymph node-negative breast cancer

benefit substantially from adjuvant chemotherapy if their cancer is estrogen receptor (ER)-

negative, while patients who are ER-positive receive no benefit [  1 ]. Similarly, researchers have

found racial and ethnic differences in drug response in a total of 167 new drugs approved

by FDA between 2008 and 2013 [  2 ]. Because all treatments are not equally efficacious

to all patients, there has been a great interest since the early 1950s in discovering these

heterogeneities in treatment response and identifying the subgroups who will benefit [  3 ]. This

has led to what today is called personalized medicine, which is a medical model that tailors

medical interventions to subgroups of patients based on their individual characteristics.

The purpose of personalized medicine is to develop decision rules that result in individ-

ualized therapies that best match (in terms of outcome) each patient in the population [ 3 ].

These therapies can either be single-stage or multistage. In the single-stage setting, the goal

is to assign the one treatment that maximizes the benefit to each patient. This decision

is based on the available baseline information (e.g., medical history, demographics, genetic

markers). The multistage setting, on the other hand, typically involves medical care for

chronic diseases and complex conditions, where long-term care, such as multistage clinical

and behavioral interventions and continuous follow-ups, are recommended. While one could

treat each stage separately, attempting to maximize the benefit, it is often more beneficial

to consider the sequence of decisions collectively. Determining the set of optimal decision

rules in this multistage setting is the focus of this dissertation.

These multistage adaptive treatment strategies are also called dynamic treatment regimes

(DTRs) [ 4 ], [  5 ]. Under a DTR, a set of decision rules dictate what treatment to provide a

patient at each assessment stage, with the consideration of achieving the optimal long-term

outcome instead of the seemingly best intermediate outcomes. These rules incorporate the

14



patient’s demographics, clinical information, and treatment history. Thus, a DTR both

operationalizes and personalizes the clinical decision process.

For medical settings involving periodic evaluations and the assignment of treatment from

a set of treatments at each stage, many DTRs can be considered. It is of practical importance

to evaluate and compare these DTRs and select the DTR that has optimal properties.

Consider a T -stage DTR D = (d1, ..., dT ), where dt is the decision rule at the tth stage.

The action At is the treatment assigned at the tth stage based on dt and Yt is the response

to At. The collection of possible sequences of treatments and responses are referred to as

the trajectories of D. Each is commonly expressed as:

X, A1, Y1, ..., AT , YT

where X is the set of baseline covariates.

There are numerous different trajectories because of patient heterogeneity and chance

variation in the response. Each of these trajectories can be scored according to a utility or

desirability function r(X, A1, Y1, ..., AT , YT ), where a higher score indicates a more favorable

overall outcome. The value of a DTR is then defined to be the expected utility score. For a

T -stage trajectory, the value is written as:

V (D) = E(r(X, A1, Y1, ..., AT , YT )).

The goal of DTR research is to discover the sequence of decision rules that maximizes this

expected utility score.

Even when numeric, patients’ responses to treatments are often classified as favorable

or unfavorable. For example, in an alcohol addiction management study [ 6 ], a favorable

response is that a participant has no more than two heavy-drinking days in the two months

post treatment. In another study concerning prostate cancer [ 7 ], the favorable response is

at least an 40% reduction in a prostate-specific antigen (PSA). It is these binary responses

to treatments that we focus on in this dissertation.
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1.2 Literature Review

An increasing number of research activities on DTRs have emerged in the past decade

[ 6 ], [ 8 ]. In this overview, we discuss the data sources used in DTR research, describe several

commonly-used methods aimed at finding the optimal DTR, and review closely connected

lines of research that focus on describing the heterogeneity in treatment effects across pa-

tients.

1.2.1 Data for DTR studies

In order to compare different DTRs, one has to first quantify the causal relationship

between DTRs and the associated values [  8 ]. Potential outcomes, also called counterfactuals,

provide a way to formalize this problem. The framework was introduced by Neyman (1923)

[ 9 ] and then extended by Rubin (1974, 1978) [ 10 ], [  11 ] and Robins (1985) [ 12 ]. In terms of

DTR research, the potential outcome of a DTR is the trajectory observed if the patient had

followed that DTR.

For example, suppose that an individual could receive one of two possible DTRs: D and

D′. We observe the trajectory associated with the DTR assigned to the patient, while other

unobserved trajectories are the counterfactuals. Though it is not possible to evaluate the

causal relationship between the DTR and its potential outcome at the individual level, one

can still estimate the values of potential trajectories at the population level. The utility

score measures the desirability of possible trajectories. Let the values V (D) and V (D′) be

the expected value of utility scores of the trajectories if this individual had followed DTR D

and D′ respectively. The optimal DTR can be determined by selecting the DTR that results

in the highest value, or by comparing the values of following one DTR instead of the other.

Both observational and experimental studies have been used to evaluate DTRs. In obser-

vational studies, subjects are assigned to treatments based on decisions made by physicians.

The observational study is suitable for the research of DTR when the axiom of consistency

is satisfied, i.e., the potential outcome and the observed outcome are consistent [  13 ]. This

requirement is valid under a variety of conditions, such as the stable unit treatment value

assumption (SUTVA) [  14 ], and the assumption of no unmeasured confounders (NUC) [  13 ].
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SUTVA assumes that a subject’s outcome is not influenced by others’ treatment assignments,

which is usually reasonable. On the other hand, it is hard to satisfy NUC since it requires

measuring all sources of confounders. Therefore, the validity of the axiom of consistency is

often questionable in observational studies.

On the other hand, randomization can balance both observed and unobserved con-

founders. Therefore, an experimental study, when appropriately designed, does not suf-

fer from confounding and other biases [  8 ], and should be preferred for evaluating DTRs.

Currently, a widely-used experimental study design for evaluating DTRs is the Sequential

Multiple Assignment Randomized Trial (SMART). It was first introduced by Lavori and

Dawson (2000) [  15 ] and called a biased coin adaptive within-subject (BCAWS) design. Un-

der such a design, each patient is randomly assigned to one of the available treatments at the

initial stage, and at subsequent stages, possible re-randomizations are preformed based on

the individual’s treatment and response history. Figure 1.1 shows an example of two-stage

SMART for children affected by ADHD [  16 ]. Randomization happens at the first stage and

when patients don’t respond to the first treatment in the second stage. Practical design

considerations, like dropout, were later discussed by Lavori and Dawson (2004) [  4 ] and a

primary framework for analysis of SMART was provided by Murphy (2005) [ 17 ].

1.2.2 Statistical Methods for Finding the Optimal DTR

Developing the optimal DTR involves making multistage decisions, each based on the

individual’s current stage information and history, in order to maximize a future numerical

outcome. It resembles the classic problem in reinforcement learning (RL), which is learning

what to do–how to map situations to actions, aiming to maximize a numerical cumulative

reward in the end [ 18 ].

Figure 1.2 illustrates the feedback loop of RL. At each stage, the agent reviews the

state of the environment and takes an action based on its policy. The environment then

reacts to the action and that results in a reward and the next state. In relation to DTR

research, the agent’s policy can be viewed as a DTR. The action is the treatment and the

environment is similar to the mechanism of how the individuals react to the treatments (i.e.,
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Figure 1.1. Example of a two-stage SMART for children affected by ADHD.
Taken from the paper ”Robust Hybrid Learning for Estimating Personalized
Dynamic Treatment Regimens” [ 16 ]

Figure 1.2. The feedback loop of reinforcement learning

the outcomes). Like states and rewards, covariates and previous responses to treatments

are taken into account when determining the next treatment. Although there are some

distinctions between traditional RL and the research of DTR [  8 ], the probabilistic framework

for a general finite-horizon RL is still suitable.

A vast number of different methods have been used to evaluate DTRs and find the optimal

one. The majority of these approaches employ model-free methods, which are explicitly trial-

and-error learning procedures. The word model-free in RL means that these methods make

no attempt to mimic the behavior of the environment, which is similar to not modeling the
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response to the treatment assigned in a DTR. Among them, some are inspired by classic

approaches from RL and develop the optimal DTR in a backward stage-by-stage manner,

such as Q-learning [  19 ]–[ 23 ] and A-learning [  24 ]–[ 26 ]. Others directly select the optimal DTR.

These works either compute the values of all considered DTRs, or estimate the counterfactual

expectation of the values and turn it into a classification problem. Only a few model-based

approaches have been proposed to describe the mechanism of how an individual reacts to

the treatments.

Q-learning and A-learning

Dynamic programming (DP) introduced by Bellman [ 27 ] is one of the classic approaches

in RL and can be implemented in DTR research without assuming the Markov property.

The key idea of DP is to parameterize the decision rule at each stage into a value function

that specifies what is good in the long run. Then the problem can be broken down into a

backward recursive optimization problem at each stage.

The primary approach that employs DP to construct the optimal DTR is Q-learning.

It was originally proposed by Watkins (1989) [  19 ], [  20 ] as an off-policy temporal-difference

control algorithm in RL. Murphy (2007) brought Q-learning to the research of DTRs and

applied it to a SMART for patients with major depression [ 28 ]. The Q-function is defined

to measure the quality associated with a treatment at a certain stage given the history up

to that decision and then following the optimal regime thereafter, while a value function

describes the expected utility score of a patient’s history trajectory assuming that optimal

decisions are made in the future. Note the value function here is not the same value of a

DTR, except in the very beginning when there is no history. Often the Q-function is modeled

via regression models [ 8 ]. The optimal DTR can be developed recursively by maximizing

the Q-functions assuming that the optimal regime will be followed afterwards through a

backward iterative fashion.

To formulate the problem, consider data collected from a T -stage SMART design. We

still denote each trajectory as X, A1, Y1, ..., AT , YT . Let lower case letters be the observed
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outcomes. The optimal DTR is developed from the last stage first. At the T th stage, the

Q-function and the value function can be written as:

QT (x, a1, y1, ..., yT −1, aT ) = E(r(x, a1, y1, ..., yT −1, aT , YT ) | x, a1, y1, ..., yT −1, aT )

VT (x, a1, y1, ..., aT −1, yT −1) = max
aT

QT (x, a1, y1, ..., yT −1, aT )

QT (x, a1, y1, ..., aT ) evaluates the quality, i.e., the expected utility score of assigning aT at

the T th stage. Then the optimal decision rule, given (x, a1, y1, ..., aT −1, yT −1), is:

dopt
T (x, a1, y1, ..., aT −1, yT −1) = arg max

aT

Q(x, a1, y1, ..., aT −1, yT −1, aT ).

For t = T − 1, ..., 1, the quality associated with treatment at at the tth stage can be derived

from the value function at the (t + 1)th stage as:

Qt(x, a1, y1, ..., at−1, yt−1, at) = E(Vt+1(x, a1, ..., at, yt) | x, a1, y1, ..., at−1, yt−1, at)

We have the optimal decision rule dopt
t (x, a1, y1, ..., at−1, yt−1) = arg maxaT

Q(x, a1, y1,

..., at−1, yt−1, at). Then the value function at the tth stage is

Vt(x, a1, y1, ..., at−1, yt−1) = max
at

Qt(x, a1, y1, ..., at−1, yt−1, at)

By selecting these optimal decision rules recursively, the optimal DTR is constructed.

Figures 1.3 and 1.4 show an example of Q-learning for a two-stage randomized trial.

Suppose two treatments are available at each decision point, a1 and a′
1 at the first stage and

a2 and a′
2 at the second stage. Let x be the baseline covariates and Y1 = 1 and Y1 = 0 be

the possible responses after receiving the first treatment. The first step is to determine the

optimal decision rules at Stage 2. For instance, given (x, a1, y1 = 1), Q2(x, a1, y1 = 1, a2) and

Q2(x, a1, y1 = 1, a′
2) are compared, and a′

2 is selected as the optimal treatment, highlighted

in red. Similarly, other optimal treatments are selected, highlighted in red. Then, assuming

that the optimal treatment will be assigned at the second stage, a1 is selected as the optimal
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Figure 1.3. An example of the first step in Q-learning for a two-stage problem

treatment given x (Figure 1.4). As a result, the optimal DTR is d1(x) = a1, and then

d2(x, a1, y1 = 1) = a′
2 or d2(x, a1, y1 = 0) = a2.

There are many different ways to describe the Q-function, ranging from standard linear

regression [ 28 ] to non-parametric techniques like kernel regression[ 21 ], support vector regres-

sion and extremely randomized trees [  22 ]. Nahum-Shani (2012) further discussed how to use

Q-learning to analyze different types of more tailored SMART data [  23 ]. In this dissertation,

we will primarily use linear regression to model the Q-function when comparing our approach

with Q-learning.

Another well-known backward recursive algorithm is advantage-learning or A-learning.

Compared with Q-learning, A-learning focuses on the difference between the expected val-

ues of outcomes, instead of modeling the expected value of outcomes. Under the potential

outcome framework, Robins has proposed several pioneering statistical methods in the do-

main of modeling the effects of sequential treatments over two decades ago, particularly,

G-estimation of structural nested mean models (SNMM) [ 12 ], [  13 ], [  29 ], [  30 ] to describe the
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Figure 1.4. An example of the second step in Q-learning for a two-stage problem

causal effect, that is, the contrast between the expected values of outcomes. Based on these

works, Murphy (2003) [ 24 ] considers a regret function to find the optimal DTR through a

semi-parametric method. The regret function represents the loss of the utility incurred if the

actual decision at a certain stage is not the optimal one, or in other words, the advantage

in response if the optimal decision is given instead of the actual assigned one [ 25 ]. Similar

to Q-learning, the optimal DTR can be developed by maximizing the potential advantage

through a backward iterative fashion. Eventually, the sequence of optimal decision rules

obtained makes up the optimal DTR. Later, Robins (2004) proposed using G-estimation to

find the parameters of the regret function [ 26 ].

Direct Methods

Another common approach is to directly learn the optimal DTR without constructing

optimal decision rules stage by stage. Given a set of DTRs, the expected values of these
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DTRs can be estimated or compared. The optimal DTR is the one that has the maximum

estimated value among the pre-specified set.

In direct methods, the values of DTRs or the contrast of values of DTRs are estimated.

Inverse probability of treatment weighting (IPTW) is a commonly-used technique for this

purpose. It was initially proposed by Robins (1994) to model the conditional mean of a

response when data are missing at random [ 31 ] and the missing probabilities are either

known or can be modeled [  32 ]. Later on, Robins and his colleagues (2000) developed a new

class of causal models, marginal structural model (MSM), and extended IPTW to estimate

the parameters of the causal effect of static sequential treatment regimes in observational

studies [  33 ]–[ 35 ]. Murphy (2001) soon applied it to model the marginal mean response of

a dynamic treatment regime [  36 ]. Further extension works of MSM can be found in the

literature [ 37 ]–[ 42 ].

It is desirable to find the estimated values of DTRs through IPTW estimation of MSM,

when the set of pre-specified DTRs is small and the number of baseline covariates is low.

Otherwise, this type of approach might not be suitable. With more baseline covariates under

consideration, Qian and Murphy (2011) proposed a two-step procedure, which estimates the

conditional mean for the response using l1 penalized least squares with a rich linear model

first, and then derives the estimated optimal individual treatment rules from the estimated

conditional mean [ 43 ]. More importantly, this work pointed out the potential connection

between the difference in mean responses and the margin in classification problems.

Consequently, research interest arose in estimating the optimal treatment via classifica-

tion methods. Zhao (2012) cleverly demonstrated that the optimal treatment rule can be

estimated within an outcome weighted classification framework, where weights are deter-

mined from the clinical outcomes [  44 ]. This work is recognized as outcome weighted learning

(OWL), or O-learning. After substituting the 0 − 1 loss with the hinge loss [  45 ], the support

vector machine (SVM) is employed to determine the estimated optimal treatment rule.

Figure 1.5 illustrates the loss function and the intuition behind it. Suppose two treat-

ments a and a′ are considered. R is the clinical outcomes observed. The higher R is, the

better the outcome is. Let f(x) be the deterministic function for choosing a treatment, where

x is baseline covariates. If f(x) > 0 then select a, otherwise select a′. The red line shows
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how the loss changes as f(x) changes. On the left where treatment a is assigned, if a is the

true optimal treatment indeed, a larger f(x) means selecting a as the optimal treatment,

resulting in no loss if f(x) ≥ 1. A smaller f(x) means that it is highly likely to select a′. The

more f(x) is less than 1, the more loss incurs. The same logic applies to the right where a′

is assigned. Therefore, minimizing the loss is equivalent to finding a deterministic function

f that leads to the optimal treatment.

Figure 1.5. Loss function in O-learning

Zhang (2012) proposed a general framework that recasts the problem of estimating an

optimal treatment regime into a classification problem wherein the optimal classifier corre-

sponds to the optimal treatment regime, and used the Bayes classifier to estimate the optimal

treatment regime by minimizing the expected weighted misclassification error [ 46 ].

Based on Zhao’s (2012) work for one-stage individualized treatment selection, Zhao

(2013) extended OWL to handle a multistage DTR and introduced two novel learning meth-

ods, backward outcome weighted learning (BOWL) and simultaneous outcome weighted

learning (SOWL), to estimate the optimal DTR [ 47 ]. BOWL implements a similar back-

ward fashion as Q-learning, where the optimal decision rule at the final stage is determined

by OWL first, and then the optimal decision rules at previous stages are determined recur-

sively with the assumption that the subjects would follow the estimated optimal decision

rules thereafter. SOWL, on the other hand, learns the optimal DTRs at all stages simul-

taneously by substituting the hinge loss function in OWL with a smooth surrogate reward

function.
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Model-based Methods

Due to the concern over model misspecification [  6 ], only a few model-based approaches

have been developed to describe the response to the treatment at each stage. Among these

approaches, almost all focus on trials with binary responses. Thall, Millikan, and Sung

(2000) [  48 ] suggested a multinomial model and logistic regression for an early example of a

SMART design for androgen-independent prostate cancer. Thall, Sung, and Estey (2002)

[ 49 ] presented a statistical framework, including a family of generalized logistic regression

models and an approximate Bayesian method, to select therapeutic strategies based on data

from a multi-course acute myelogenous leukemia (AML) trial.

In 2007, Thall [ 7 ] proposed a conditional logistic regression model to identify promising

treatment regimes for androgen-independent prostate cancer. They modeled pt,j, the proba-

bility of a success in the jth stage given treatment t, as a function of the treatment, previous

response history and disease volume level (high or low). Their logistic model is

logit(pt,j) = mt + atYt,j−i + btZt,j−1 + cI(low disease volume)

where Yt,j−i is the previous stage’s binary response and Zt,j−1 is a defined numerical value

that quantifies the unfavorable influence of the previous treatment failure before the jth

stage. The optimal regime is selected as a combination of the best first-line and second-line

therapies.

1.2.3 Subgroup Analysis

Subgroup analysis is of great importance in clinical trials. The goal of subgroup analy-

sis is to evaluate the treatment effect heterogeneity for a specific endpoint in subgroups of

patients defined by baseline covariates [  50 ]. Consequently, a subpopulation that is likely to

benefit from treatments can be identified according to certain characteristics. Although the

interest of subgroup analysis is not in finding the optimal treatment regimes, one can com-

pare treatment effects for patients based on their baseline covariates and identify beneficial

subgroups, and therefore find the optimal individualized treatments.
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There are two common types of approaches for subgroup analysis: pre-specified analysis

and post-hoc analysis. In pre-specified analysis, subgroups are pre-defined before the trial,

and the assessment of treatment effects for one or a few specific characteristics are listed

as the study objectives. In post-hoc analysis, the process of identifying subgroups happens

after the trial is done and the data have been collected. In recent clinical trials, including

DTR analysis, subgroups are ususally not defined before the trial. Therefore, it is of more

interest in finding the subgroup memberships (i.e., post-hoc approach). Note that at first,

subgroup analysis resembles the estimation of optimal one-stage individualized treatment

rules [  43 ], [ 44 ]. However, the ultimate purpose of subgroup analysis is not treatment selection,

but assessing heterogeneity in treatment response. Shahn and Madigan (2014) [ 51 ] discuss

two types of heterogeneity: continuous heterogeneity and discrete heterogeneity. We will

now introduce them and review some methods on how to address each of these types of

heterogeneity.

Continuous Heterogeneity

Heterogeneity in treatment responses often refers to the variation of treatment effects

across the baseline covariates. Ideally, when the underlying knowledge of the treatment

mechanism is known and the baseline covariates are observed, the variation among treat-

ment effects can be well approximated by a smooth function of the baseline covariates and

treatment. Shahn and Madigan (2014) referred to this type of heterogeneity as continuous

heterogeneity [ 51 ].

There is a large amount of literature on statistical methods to model continuous hetero-

geneity. These approaches include early methods like parametric regression models [  52 ], and

generalized linear regression to model the response as a function of treatment, individual

baseline covariates, and interactions between treatment and baseline covariates [  53 ]–[ 55 ]. In

recent years, machine learning approaches have gained popularity in predicting the expected

difference between potential outcomes under treatments and control, such as regression tree

methods [ 56 ]–[ 58 ] and boosting methods [ 59 ].
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Discrete Heterogeneity

Sometimes, even with careful analysis over baseline covariates and treatments, hetero-

geneity in treatment responses cannot be fully addressed. For example, acute myeloid

leukemia (AML) shows considerable genetic heterogeneity but the source of this between-

subject variation is currently unknown[ 60 ]. This type of heterogeneity, which cannot be

approximated by a smoothed function of the observed covariates, is termed discrete hetero-

geneity. In this setting, the variation among treatment responses depends on some latent

subgroup identity, which may or may not be induced by an unmeasurable factor, like a

genomic marker. Mixture models are commonly used to model heterogeneity described by

latent subgroups.

When subgroup identity is completely independent of all observed covariates, one can

assume that the subgroup identity follows a discrete distribution with the sum of all subgroup

probabilities equal to 1. The treatment effect of an individual can then be viewed as a

weighted sum of the subgroup-specific treatment effects. A large number of works, like the

mixed Poisson regression model with covariate dependent rates by Wang (1996) [  61 ], have

been proposed to suit this scenario.

When there exist measurable baseline covariates associated with latent subgroup identity,

models can be used to adjust the subgroup probabilities. There are many works that adapt

logistic regression to model subgroup identity. Wang (1998) [ 62 ] proposes mixed logistic re-

gression models for count data, where both subgroup identity and response rate are modeled

by logistic regression. Wong and Li (2001) [  63 ] develops the logistic mixture autoregressive

model with exogenous variables (LMARX) to handle time series data. The model consists

of two Normal distribution models and allows the mixing proportions to change over time

through a logistic model. Sobel and Muthén (2012) [  64 ] use a logistic-normal mixture model

to describe the complier average treatment effect with the assumption that one subgroup

belongs to a zero-effect class (treatment does not affect the outcomes). Shen and He (2015)

[ 65 ] propose a logistic-normal mixture model where the outcome Y is modeled by a linear

function of treatment indicator Z, and the mixing proportions vary through a logistic model

on some of the baseline covariates X. Let δ ∈ {0, 1} be the subgroup indicator. A confirma-
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tory statistical test is also developed to test the existence of subgroups. The model can be

specified as:

Y = ZT (β1 + β2δ) + ε

P (δ = 1 | X) = exp(XT γ)
1 + exp(XT γ)

where Z contains the intercept and the treatment indicator. One can see that the outcome

Y depends on subgroup identity and the received treatment only. As a result, continuous

heterogeneity is not considered in the model. Later Shen and Qu [ 66 ] extend this model for

longitudinal data. Treatment effects are modeled as random effects in the model. Time is

also incorporated into the linear function for the response Y .

Shahn and Madigan (2014) [  51 ] provide a general Bayesian framework for modeling treat-

ment effect heterogeneity in experiments with non-categorical outcomes. Compared with

Shen and He’s (2015) work, this approach incorporates latent subgroup mixture components

to capture discrete heterogeneity, as well as interaction terms between baseline covariates

and treatment in the regression to capture continuous heterogeneity.

1.3 Our Research

Although heterogeneity has been well-studied in subgroup analysis, there is limited work

that evaluates heterogeneity in DTR research. To fill this gap, we investigate how hetero-

geneity, specifically discrete heterogeneity, impacts the determination of the optimal DTR.

Model-free methods have gained popularity due to their robustness to model misspeci-

fication. However, the major drawback is the lack of interpretation of the heterogeneity in

treatment responses and how the heterogeneity leads to the differences in the final outcomes.

Direct methods concentrate on the values of DTRs only. Even for methods like Q-learning

and A-learning, in which the optimal DTRs are constructed stage by stage, the focus is on

the expected future return, instead of the treatment effect at the current stage. In addi-

tion, some methods have rigid requirements on the trial design and limitation of allowing

assessment among a wider range of candidate DTRs. For example, extensions to multiclass

28



classification in O-learning are needed when more than two treatments are available at a

decision point [  47 ]. It calls for additional care and adjustment to handle more tailor-made

trials with different endpoints and complicated outcomes.

On the contrary, a model-based approach describes patients’ response to treatment at

each stage, which, in turn, provides the probabilities of treatment and response trajectories.

This information can be used to infer the optimal DTR as well as provides the knowl-

edge of heterogeneity in treatment responses, which can be helpful on future trial design

and treatment regime development. Furthermore, it is easy for model-based approaches

to accommodate more tailor-made trials with multiple DTRs in consideration. The major

criticism of model-based approaches is that they may suffer from model misspecification.

However, when the model is reasonable, these approaches can provide both interpretability

and generality [  18 ]. In addition, model-based approaches utilize the information from pa-

tients who do not receive estimated optimal treatments, especially when the same treatment

can be assigned more than once across stages. As a result, model-based approaches can be

more sample efficient. These advantages motivate us to adopt a model-based approach to

handle multistage DTRs and explore their performance with consideration of heterogeneity.

A full-fledged model-based approach should account for population heterogeneity when

modeling the trajectories. In ideal situations, this heterogeneity can be described using

all covariates, treatments and interaction terms in the response component of the model.

However, in practice, additional heterogeneity exists that is often attributed to a missing

class identifier covariate. We want to consider this sort of heterogeneity too.

Thus, we assess two scenarios of the discrete heterogeneity. The first one is when no

observable baseline covariates are associated with subgroup identity and the second is when

there are baseline covariates associated with the latent class. To do this, we define the

latent subgroup structure as follows: for a given treatment, we assume that the whole pop-

ulation can be partitioned into two subgroups–a subgroup of individuals who may respond

favorably to treatment and a subgroup of individuals who likely will not. Extending this

to K treatments of interest {ω1, ..., ωK}, we denote a patient’s subgroup through a vector

Z = (Zω1 , ..., ZωK
). Here Zωk

= 1 if the treatment ωk works for the subject and Zωk
= 0

otherwise. This means there are 2K subgroups, each representing a unique collection of in-
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dividuals who respond favorably to a different set of treatments. In practice, each subject’s

subgroup identity is unknown and our interest is to infer the population subgroup structure.

In Chapter 2, we consider the scenario when no baseline covariates are considered. Since

a binary treatment response is observed at each stage, we model the responses using the

Bernoulli distribution with a logit of a favorable response that depends on the individual’s

subgroup and the treatment received. To analyze data from a multistage trial, a random

effect [ 67 ] is included to account for the repeated observations from the same individual.

Since subgroup identities are unknown, we propose a mixture of mixed logit models. Thus,

the model contains a treatment effect for each of the K treatments, a subject-specific random

effect, and the subgroup proportions for the 2K latent subgroups.

In Chapter 3, we extend our model to incorporate two types of baseline covariates: one

type helps determine the subgroup memberships while the other describes heterogeneity in

treatment response within subgroups. For the former, the covariates are incorporated into

a multivariate Bernoulli model, while for the latter, the covariates and their interactions

with treatments are included in the logit model for the response to capture continuous

heterogeneity. In addition, two types of time effects are also considered in the logit model

for the response.

The rest of the dissertation is organized as follows: In Chapter 2, we introduce our model-

based framework to describe discrete heterogeneity in response when there are no baseline

covariates. A mixture of mixed logit models is developed and combined with data from a

SMART to estimate the subgroup proportions and the probabilities of a favorable response.

With this information, an optimal dynamic treatment regime can be determined. An EM

algorithm for parameter estimation, as well as consideration of the identifiability conditions,

are provided. Simulation studies are performed and compared with Q-learning approach to

demonstrate the effectiveness of the proposed method and to determine adequate sample

sizes.

In Chapter 3, we extend our model to incorporate two kinds of baseline covariates. We

employ a multivariate Bernoulli distribution model to incorporate covariates in the determi-

nation of subgroup identity and expand our mixed logistic regression model to incorporate

covariates in the determination of treatment response. We further extend our model to incor-
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porate time effects and provide discussions on the hypothesis testing of the existence of time

effects. As in Chapter 2, an EM algorithm for parameter estimation as well as simulation

studies are presented.

In both Chapters 2 and 3, we apply our approaches to data from the MD Anderson

advanced prostate cancer trial (2000) with the goal of comparing 12 different treatment

regimes [  48 ]. The trial is an early example of using a SMART in cancer research and has

been analyzed in several ways, including a likelihood-based method [  7 ], IPTW by Wang

(2012) [ 68 ], and Q-learning by Huang (2015) [  69 ]. We conclude the dissertation in Chapter

4 with a summary of our contributions along with directions for future research.
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2. A SEQUENTIAL MIXTURE OF MIXED LOGIT MODELS

FOR DETERMINING OPTIMAL DYNAMIC TREATMENT

REGIMES

In this chapter, we introduce our model-based framework and explain how to determine

the optimal DTR under the special setting of no baseline covariates. We describe an EM

algorithm for estimation and discuss the identifiability of this model and the optimal DTR

under a specific SMART design. Simulation studies are conducted to evaluate our model’s

performance in estimating the values of DTRs and selecting the optimal one. We conclude

the chapter with an application of our model to an MD Anderson advanced prostate cancer

trial.

2.1 The Model Approach for Determining the Optimal DTR

In this section, we first lay out the probabilistic framework for a multistage DTR, followed

by a description of our mixture of mixed logit models. We conclude the section with an

explanation of how to compare DTRs and determine the optimal one using our model.

2.1.1 The Mixture Model for Binary Outcomes

Consider a T -stage sequence of treatment assignments (A) and binary responses (Y ):

A1, Y1, ..., AT , YT . At each stage, we assume that there are the same K treatments available

for assignment. We denote this treatment space as A = {ω1, ..., ωK} and the response space

as Y = {0, 1}. At any stage, the sequence of past treatments and responses is called its

history. We use Ht−1 = {(A × Y) × ... × (A × Y) = (A × Y)t−1} to represent this space for

Stage t. This implies HT = {(A × Y)T } is the trajectory space.

We label a T -stage DTR as D = (d1, ..., dT ), where dt is the decision rule at the tth stage.

When no baseline covariates are available, the first decision rule d1 assigns a treatment

from A to all the patients. Each patient then responds to that treatment and decision

rule d2 determines whether the patient will stay on that treatment or switch to a different

one. In other words, d2 is a mapping from (A1, Y1) to A. We denote this assignment as
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A2 = d2(A1, Y1). In general, the decision rule dt is a mapping from the patient history

Ht−1 = (A1, Y1, ..., At−1, Yt−1) to A.

We use lower case letters to represent observable outcomes. Thus, at Stage t, we define

ΓDt−1 to be the collection of all possible observable histories under DTR D. More specifically,

ΓDt−1 = {(a1, y1, ..., at−1, yt−1) ∈ Ht−1|PD(a1, y1, ..., at−1, yt−1) > 0},

where PD is the probability of observing the given history under DTR D. These sets of

observable histories t = 2, ..., T are most easily constructed successively, until reaching ΓD =

{(a1, y1, ..., aT , yT ) ∈ HT |PD(a1, y1, ..., aT , yT ) > 0}, which is the collection of all possible

observable trajectories for DTR D.

In order to compute the expected value of a DTR, the probability of each trajectory is

needed. At the patient level, these probabilities depend on the latent subgroup z and the

patient’s random effect s. A trajectory probability conditional on z and s can be broken

down into the product of sequential conditional probabilities:

PD(a1, y1, ..., aT , yT |s, z) = P (y1|a1, s, z) ×
T∏

t=2
P (yt|a1, ..., at = dt(a1, y1, ..., yt−1), s, z)

We impose the following assumptions to simplify this equation:

1. The subgroup identity Z and the subject-specific effect S remain constant across the

stages of the trial.

2. A response Yt is independent of the history Ht−1 given At, Z, and S.

Under these assumptions, our model simplifies to:

PD(a1, y1, ..., aT , yT |s, z) = P (y1|a1, s, z)
T∏

t=2
P (yt|at = dt(a1, y1, ..., yt−1), s, z) (2.1)

The sequential nature of these trajectory probabilities arises from the fact that at is

determined based on the patient’s history and decision rule dt, i.e., at = dt(ht−1). We

introduce the indicator function 1{dt(a1, y1, ..., at−1, yt−1) = ωk} to represent whether or

not treatment ωk is assigned at the tth stage. There will be only one treatment such that
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1{dt(a1, y1, ..., at−1, yt−1) = ωk} = 1. Whether the assigned treatment can be effective

depends on the latent subgroup. Let pt = P (yt|at = dt(a1, y1, ..., yt−1), s, z). We use the

following logit function to describe this relationship:

log( pt

1 − pt

) = µ +
K∑

k=1
1{dt(a1, y1, ..., at−1, yt−1) = ωk}τωk

zωk
+ s. (2.2)

The indicator functions in Equation (2.2) imply that the Y1, ..., YT are correlated. For ex-

ample, Yt+1 is correlated with Yt since the assignment At+1 depends on Yt. Because of this

correlation, we refer to the collection of these probabilities as a sequential mixed logit model.

To this point, our sequential mixed model is conditional on s and z. However, in practice,

s and z are unknown. To get the marginal probability of each trajectory, we first integrate

out the subject-specific effect:

PD(a1, y1, ..., aT , yT |z) =
∫

s
PD(a1, y1, ..., aT , yT |s, z)φ(s)ds

=
∫

s

T∏
t=1

PD(yt|at = dt(a1, y1, ..., at−1, yt−1), s, z)φ(s)ds

where φ(s) is the N(0, σ2) density function. We call these the subgroup-specific trajectory

probabilities. We then average out the latent subgroup using the population proportions πz:

PD(a1, y1, ..., aT , yT ) =
∑

z

πzPD(a1, y1, ..., aT , yT |z),

It is these probabilities that represent the DTR D and serve as the probability mass function

for computing its value.

Example 2.1 Consider a two-stage DTR involving only two treatments, A and B. This

means there are four subgroups, which we proportionally assign as follows:

Z = (ZA, ZB) (1, 1) (1, 0) (0, 1) (0, 0)

πz 40% 40% 10% 10%

For the response probability component of our model, we assume that the subject effect

S ∼ N(0, 0.12) with µ = −2.9222. For s = 0, this corresponds to a natural response rate
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of 5% when assigned an ineffective treatment. The treatment effects and corresponding

response rates given different s are:

Parameter Effect
Response Rate

s = −0.3 s = 0 s = 0.3

τA 3.3499 53.1% 60.0% 67.4%

τB 4.3307 75.1% 80.0% 84.7%

Now consider the DTR D where d1 = B, d2(a1 = B, y1 = 1) = B and d2(a1 = B, y1 =

0) = A. This DTR has four possible trajectories that we label: (B, 1, B, 1), (B, 1, B, 0), (B,

0, A, 1), and (B, 0, A, 0). The conditional logit function for the first stage is

log( p1

1 − p1
) = µ + τBzB + s. (2.3)

and the conditional logit functions in the second stage are:

log( p2

1 − p2
) = µ + τBzB + s, if y1 = 1

log( p2

1 − p2
) = µ + τAzA + s, if y1 = 0 (2.4)

Table 2.1 displays the subgroup-specific trajectory probabilities as well as the trajectory

probabilities. The subject effect S is integrated out using the Gauss-Hermite quadrature.

Table 2.1. The probability of each subgroup-specific trajectory and overall
trajectory for Example 2.1

Trajectory Subgroup-specific trajectory probability Trajectory probability
Z = (1, 1) Z = (1, 0) Z = (0, 1) Z = (0, 0)

B, 1, B, 1 0.6395 0.0025 0.6395 0.0025 0.3210
B, 1, B, 0 0.1600 0.0477 0.1600 0.0477 0.1038
B, 0, A, 1 0.1199 0.5695 0.0100 0.0477 0.2815
B, 0, A, 0 0.0806 0.3803 0.1905 0.9021 0.2936
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2.1.2 Evaluating DTRs

To evaluate and compare DTRs, a utility function r(.) scores each trajectory. This

function could focus exclusively on the final response YT or involve the entire sequence of

responses. The value of the DTR D is defined as the average score of the possible trajectories:

V (D) = ED(r(A1, Y1, ..., AT , YT )) (2.5)

For our binary outcome setting, there are a finite number of trajectories, so this expectation

can be expressed numerically as:

V (D) =
∑

a1,y1,...,aT ,yT ∈Γd

r(a1, y1, ..., aT , yT ) × PD(a1, y1, ..., aT , yT )

=
∑

a1,y1,...,aT ,yT ∈Γd

{r(a1, y1, ..., aT , yT )

×
∑

z

{πz

∫
s

T∏
t=1

PD(yt|at = dt(a1, ..., yt−1), z, s)φ(s)ds}} (2.6)

If the number of possible DTRs and associated trajectories is small enough, we can

directly compute V (D) for each DTR and select the optimal one,

Dopt = arg max
D

V (D). (2.7)

For Example 2.1, there are eight possible DTRs. Table 2.2 lists the value for each of

them given the utility function: r(a1, 1, a2, 1) = 1, r(a1, 1, a2, 0) = r(a1, 0, a2, 1) = 0.5, and

r(a1, 0, a2, 0) = 0. In this case DTR 7 is optimal with a value of 0.5137.

The number of possible DTR trajectories grows very quickly. For a T -stage DTR with

binary responses, since the treatment assignment is deterministic through the DTR, there

are 2T trajectories in ΓD. Given 2K subgroups, this means we have to compute at most 2K+T

conditional probabilities PD(a1, y1, ..., aT , yT |z). When K and T are large, directly evaluat-

ing V (D) can be computationally expensive. In these cases, one option is to approximate

V (D) by Monte Carlo methods. This approach would involve sampling S and Z from their

estimated distributions and then generating trajectories based on the DTR. Each resulting
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Table 2.2. The values of the eight DTRs for Example 2.1

DTR d1
d2 Value

y1 = 1 y1 = 0
1 A A A 0.4899
2 A A B 0.4976
3 A B A 0.4496
4 A B B 0.4574
5 B A A 0.4574
6 B A B 0.3685
7 B B A 0.5137
8 B B B 0.4249

trajectory is scored and the average of the scores is the approximate DTR value. The number

of simulated trajectories needed will depend on the desired precision of the DTR value.

To find the optimal DTR, one needs to search over all possible DTRs and choose the one

with the maximum value. At the tth stage, there are 2t−1 possible histories. For each history,

we assume one of the treatments in A is assigned through dt. As a result, we can have

K2t−1 possible decision rules. This means we can have up to ∏T
t=1 K2t−1 = K2T −1 possible

DTRs. An exhaustive search using Monte Carlo methods to approximate each DTR’s value

can be very computationally expensive. The alternative in these cases is to use dynamic

programming.

2.1.3 Determining the Optimal DTR through Dynamic Programming

Dynamic programming (DP)[  8 ], [  27 ] does not require estimating all DTR values. Consid-

ering that a DTR is a sequence of decision rules, with each decision rule allocating treatments

based on treatment and response histories, DP searches for the optimal DTR in a backward

fashion.

To illustrate this process stage by stage, we introduce the subset Dt = (dt, ..., dT ) to be

the set of decision rules starting from Stage t. Given an observed history ht−1, we denote

V (Dt|ht−1) to be the expected outcome from Stage t under D.
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Let V (DT |hT −1) = ∑
yT ∈{0,1}

r(hT −1, aT , yT )P (yT |aT = dT (hT −1)). For t = 1, ..., T − 1, the

expected outcome can be developed recursively:

V (Dt|ht−1) =ED{r(ht−1, at, yt, ..., aT , yT )|ht−1}

=
∑

ht−1,at,yt,...,aT ,yT ∈ΓD

P (at, yt, ..., aT , yT |ht−1) × r(ht−1, at, yt, ..., aT , yT )

=
∑

ht,at+1,yt+1,...,aT ,yT ∈ΓD

∑
yt∈{0,1}

P (yt, ..., aT , yT |ht−1, at = dt(ht−1))

× r(ht−1; at, yt, ..., aT , yT )

=
∑

yt∈{0,1}

{
P (yt|ht−1, at = dt(ht−1))

×
{ ∑

ht,at+1,...,yT ∈ΓD

r(ht; at+1, ..., yT )P (at+1, ..., yT |ht)
}}

=
∑

yt∈{0,1}
P (yt|ht−1, at = dt(ht−1))V (Dt+1|ht−1, at = dt(ht−1), yt)

=ED{V (Dt+1|ht−1, at = dt(ht−1), Yt)}

The optimal expected outcome from Stage t given history ht−1 satisfies the Bellman

equation[ 27 ], and can be written as:

V opt(Dt|ht−1) = max
Dt

V (Dt|ht−1)

= max
at∈A

ED{V opt(Dt+1|ht, at, Yt)|ht−1, at = dt(ht−1)}

= max
at∈A

∑
yt∈{0,1}

P (yt|ht−1, at = dt(ht−1))V opt(Dt+1|ht−1, at = dt(ht−1), yt)

The optimal DTR Dopt = (d∗
1, ..., d∗

T ) can be constructed in a backward fashion by

maximizing V (Dt|ht−1) at each stage[ 24 ]. For all possible hT −1, the optimal decision rule

d∗
T (a1, ..., yT −1) can be determined in the beginning by maximizing V (DT |hT −1) over A. At

the tth stage (t > 1), the subsequent decision rules d∗
t+1, ..., d∗

T are already determined. For

any ht−1, we can find d∗
t that maximizes the expected utility V (Dt|ht−1). Eventually, d∗

1 can

be determined based on d∗
2, ..., d∗

T .
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The detailed algorithm is:

Result: The optimal DTR Dopt = (d∗
1, ..., d∗

T )
t = T ;
while t > 0 do

let Dt = (dt, d∗
t+1, ..., d∗

T );
For all possible ht−1 = (a1, y1, ..., at−1, yt−1);
find d∗

t (a1, y1, ..., at−1, yt−1) = argmaxat∈AV (Dt|ht−1);
t = t − 1;

end
Algorithm 1: DP solution to find optimal DTR

According to the algorithm, at Stage t, the subsequent decision rules (d∗
t+1, ..., d∗

T ) and

V opt(Dt+1|ht−1, at = dt(ht−1), yt) are known. There are 2(t−1) × Kt−1 possible histories in

Ht−1. In order to find d∗
t for each history, K possible treatment choices for dt and 2 possible

responses for yt are considered. Together, we need to evaluate 2t × Kt paths at the tth stage.

As a result, to find an optimal DTR, we need to evaluate ∑T
t=1 Kt2t treatment and response

trajectories. Compared to the exhaustive search, DP can reduce the computational burden

when T and K are large. However, DP cannot provide information for the values of DTRs

except the optimal one. The sub-optimal DTRs can also be of interest. Therefore, we prefer

an exhaustive search when feasible because of the additional information it provides.

We now use Example 2.1 to show how to apply DP to find the optimal DTR. Given

(a1, y1), shown in the first column in Table 2.3, and the decision rule d2, shown in the second

column, we first compute the conditional probability of all y2, and evaluate the value. Then,

we choose the a2 = d∗
2(a1, y1) that results in V opt(d2|a1, y1).

Given those d∗
2, we compute V (d1, d∗

2(a1, y1)) = ∑
y1∈{0,1} P (y1|d1 = a1)V opt(d2|a1, y1) and

select d∗
1 = B, shown in Table 2.4. The optimal DTR we find through DP is the same as

through exhaustive search in Table 2.2.

2.2 Parameter Estimation and DTR Evaluation

Now that we’ve demonstrated how to evaluate DTRs and determine the optimal one

given known model parameter values, we shift to parameter estimation. Intuitively, one

could consider collecting data from the DTR of interest, but this can result in identifiability

39



Table 2.3. Select d∗
2 for Example 2.1

(a1, y1) a2 = d2(a1, y1) y2 P (y2|a1, y1, a2) V (d2|a1, y1)

(A, 1)
A

1 0.5894 0.79470 0.4106

B
1 0.4253 0.71260 0.5747

(A, 0)
A

1 0.3942 0.19710 0.6058

B
1 0.4244 0.21220 0.5756

(B, 1)
A

1 0.4903 0.74520 0.5097

B
1 0.7556 0.87780 0.2444

(B, 0)
A

1 0.4895 0.24470 0.5105

B
1 0.1805 0.09030 0.8195

Table 2.4. Select d∗
1 for Example 2.1

d1 = a1 y1 a2 = d∗
2(a1, y1) V opt(d2|a1, y1) V (d1, d∗

2(a1, y1))

A
1 A 0.7947 0.49760 B 0.2122

B
1 B 0.8778 0.51370 A 0.2447

issues, which we will discuss later. It is also not an efficient approach to investigate multiple

DTRs.

We consider using data generated from a SMART design to search for optimal DTRs.

In a SMART design, treatments are assigned to patients according to a certain pre-specified

randomization scheme that may or may not be based on their treatment and response his-

tories. In order to fit our model to these data, we modify our mixture of mixed logit model

to incorporate this randomization. We then describe the use of the EM algorithm to obtain

estimates and then conclude with a discussion on the conditions for identifiability.
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2.2.1 Model Specification for Randomized Trials

Consider a T -stage randomized trial involving K treatments. For each subject, there is

a sequence of treatment assignments (A) and outcomes (O) labeled A1, O1, ..., AT , OT . The

conditional distribution of a subject’s sequence given the treatment subgroup and subject-

specific effect is:

P (a1, o1, ..., aT , oT |s, z) =P (a1)P (o1|a1, s, z)

×
T∏

t=2
P (at|a1, o1, ..., at−1, ot−1)P (ot|a1, o1, ..., at, s, z). (2.8)

In contrast to Equation (2.1), at is not determined through dt but rather through a pre-

specified randomization distribution P (at|a1, o1, ..., at−1, ot−1). Imposing the same model

assumptions of constant s and z and conditional independence of the outcomes, Equation

(2.8) simplifies to:

P (a1, o1, ..., aT , oT |s, z) = P (a1)P (o1|a1, s, z)
T∏

t=2
P (at|a1, o1, ..., at−1, ot−1)P (ot|at, s, z)

(2.9)

where P (ot|at, s, z) is Bernoulli with probability pt, whose logit is

log( pt

1 − pt

) = µ +
K∑

k=1
1{At = ωk}τωk

zωk
+ s. (2.10)

For some choices of the randomization distribution, the number of observed stages may

vary by subject. For example, a subject’s involvement in the trial may end after two consec-

utive failures or T stages, whichever comes first. For a dataset with N subjects, let Ti denote

the number of stages for the ith subject. Similarly, let Ai = (ai
1, ..., ai

Ti
) and Oi = (oi

1, ...,iTi
)

represent the subject’s assignment and outcome vectors, respectively.
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Our goal is to estimate the latent subgroup proportions π = (π1, ..., π2K ), treatment

parameters µ and τ = (τω1 , ..., τωK
), and the subject-effect variance (σ2). Let θ = (µ, τ , π, σ2)

represent this collection of parameters. The likelihood of this mixture model is given by:

L(θ) =
N∏

i=1

∫
φ(si, σ2)

∑
zi

{πzi

Ti∏
t=1

exp(oi
tη

i
t − log(1 + exp(ηi

t)))}dsi (2.11)

where ηi
t = µ +∑K

k=1 1{Ai
t = ωk}τωk

zi
ωk

+ si and φ(si, σ2) = 1√
2πσ2 exp{− s2

i
2σ2 }.

We use the following EM algorithm to obtain our parameter estimates. Given these

estimates, we can estimate P̂D(a1, y1, ..., aT , yT ) and thus the value V̂ (D) for any DTR D as

P̂D(a1, y1, ..., aT , yT ) =
∑

z

π̂z

∫
s

T∏
t=1

P̂ (yt|at = dt(a1, y1, .., at−1, yt−1), s, z)φ(s, σ̂2)ds. (2.12)

and

V̂ (D) =
∑

a1,y1,...,aT ,yT ∈ΓD

r(y1, ..., yT )P̂D(a1, y1, ..., aT , yT ) (2.13)

We can use the methods of Sections 2.1.2 and 2.1.3 to evaluate and find the estimated optimal

DTR.

2.2.2 EM Algorithm

There is no closed-form MLE formula for the likelihood in Equation (2.11) so we use

the EM algorithm[ 70 ]. Subgroup identity Z is treated as a latent variable and the subject

effect S is integrated out. Several methods could be used to approximate this integration

over S, such as Gaussian quadrature and Monte Carlo. In this paper, we adopt Gaussian

quadrature.

For convenience, we introduce the vector C = (C1, ..., C2K ) to represent each subject’s

latent subgroup identity. This involves ordering the proportions π so that each element πl

agrees with the element Cl. To get the vector C i for subject i, we convert the binary K-

dimensional vector Z i into a decimal number L = ∑K
k=1 2(k−1)Zωk and let C i

L = 1 with all

other elements 0.
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If C i were observed, we have the following joint probability for the ith subject’s trajectory:

P (Oi, Ai, C i) = P (C i) × P (Oi, Ai|C i) (2.14)

and complete-data log-likelihood:

log L(θ; O, A, C) =
N∑

i=1
log{P (C i) × P (Oi, Ai|C i)}

=
N∑

i=1
log{P (C i)} +

N∑
i=1

log{P (Oi, Ai|C i)}

=
N∑

i=1
log{C i

π)}

+
N∑

i=1
log{

∫
φ(si, σ2)

Ti∏
t=1

exp(oi
tη

i
t − log(1 + exp(ηi

t)))dsi} (2.15)

where ηi
t = µ +∑K

k=1 1{Ai
t = ωk}τωk

Z i
ωk

+ si.

Because the C is are unobserved, we use the EM algorithm to find the MLEs. Specifically,

we iterate between taking the expectation of the complete-data log-likelihood using the con-

ditional distribution of the missing C is (E-step), and maximizing the expected log-likelihood

(M-step).

Suppose θ(t) is the current set of parameters. In the E-step, the expected value of the

complete log-likelihood function is:

Q(θ|θ(t)) = EC|θ(t){log L(θ; O, A, C)}

=
N∑

i=1

2K∑
l=1

P (C i
l = 1|Oi, Ai) log(πl)

+
N∑

i=1

2K∑
l=1

P (C i
l = 1|Oi, Ai) log

{ ∫
φ(si, σ2){

Ti∏
t=1

exp(oi
tη

i
t − log(1 + ηi

t))}dsi

}
(2.16)

where

P (C i
l = 1|Oi, Ai) = π

(t)
l

∫
φ(si, (σ2)(t)))∏Ti

t=1 exp(oi
t(ηi

t)(t) − log(1 + (ηi
t)(t)))ds∑2K

l=1 π
(t)
l

∫
φ(si, (σ2)(t))∏Ti

t=1 exp(oi
t(ηi

t)(t) − log(1 + (ηi
t)(t)))ds

(2.17)

where (ηi
t)(t) = µ(t) +∑K

k=1 1{Ai
t = ωk}τ (t)

ωk
Z i

ωk
+ si.

43



This Q function consists of two parts. The first is:

Q1(θ|θ(t)) =
N∑

i=1

2K∑
l=1

P (C i
l = 1|Oi, Ai) log(πl) (2.18)

and the second is

Q2(θ|θ(t)) =
N∑

i=1

2K∑
l=1

{
P (C i

l = 1|Oi, Ai) log
{ ∫

φ(si, σ2){
Ti∏

t=1
exp(oi

tη
i
t − log(1 + ηi

t))}dsi
}}
(2.19)

Q1(θ|θ(t)) involves π only, while Q2(θ|θ(t)) contains µ, τ , and σ2. Therefore, in the M-step,

we maximize them respectively.

To update πl, l = 1, .., 2K we have:

π
(t+1)
l = arg max

πl
Q1(θ|θ(t))

= arg max
πl

N∑
i=1

log(
2K∑
l=1

πlP (C i
l = 1|Oi, Ai))

=
∑N

i=1 P (C i
l = 1|Oi, Ai)
N

(2.20)

As for Q2(θ|θ(t)), since it involves the Gaussian distribution, we can use Gauss-Hermite

quadrature[ 71 ] to approximate the integral. Q2(θ|θ(t)) can be approximated as

N∑
i=1

2K∑
l=1

P (C i
l = 1|Oi, Ai) log

{ ∫ 1√
2πσ2

exp{− s2
i

2σ2 }{
Ti∏

t=1
exp(oi

tη
i
t − log(1 + ηi

t))}dsi
}

≈
N∑

i=1

2K∑
l=1

P (C i
l = 1|Oi, Ai) log

{ 1√
π

J∑
j=1

(
Ti∏

t=1
exp(oi

tη̃
i
tj − log(1 + η̃i

tj)))gj
}
, (2.21)

where η̃i
tq = µ +∑K

k=1 1{Ai
t = ωk}τωk

Zωk
+

√
2σ2dj, and gj and dj be quadrature weights and

points respectively, and Q is the number of quadrature points.

Since there is a constraint on σ2 > 0, we adopt the numeric method L-BFGS-B[ 72 ] to

maximize Q2(θ|θ(t)) over µ, τ , and σ2. The gradient of Q2(θ|θ(t)) is calculated by Richard-

son’s extrapolation[ 73 ].
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Then the EM algorithm with Gaussian Quadrature is given as follows:

1. Choose starting values θ(0). Set t=0

2. E-step: Calculate conditional probability P (C i
l = 1|Oi, Ai) according to θ(t). Construct

Q(θ|θ(t)) as Equation (2.16) and approximate Q2(θ|θ(t)) by Equation (2.19).

3. M-step: update π by Equation (2.20). Update µ, τ , and σ2 by maximizing Equation

(2.21). Let t=t+1.

4. Repeat until convergence.

Here our stopping criteria is |L(θ(t+1)) − L(θ(t))| < 10−8 and |θ(t+1) − θ(t)| < 10−5. Note that

the EM algorithm doesn’t guarantee the global maximum likelihood. Several sets of random

starting values are chosen to find the global MLEs.

2.2.3 Model Identifiability

Our primary goal is to determine the optimal DTR based on the parameters esti-

mated from randomized trial data. However, mixture models sometimes suffer from non-

identifiability. For this discussion, we assume that there are M possible trajectories {v1, ...,

vM}, where vm = (a1, o1, ..., aTm , oTm). Under our model, the parameter set θ=(µ, τ , π, σ2)

is said to be identifiable, if for any two sets θ and θ∗, P (vm|θ) = P (vm|θ∗), m = 1, ..., M ,

implies θ = θ∗[ 74 ].

Lack of identifiability can arise for mixture models in several ways[ 75 ]. Because we assume

that there are no empty subgroups (all π > 0) or identical subgroups in the model. The

most likely way is due to generic problems[  75 ]. There are a number of works on identifiability

problems in mixture models[ 76 ], [ 77 ].

We will extend these works so they are suitable for our mixture of trajectories model, and

provide sufficient conditions for local identifiability. These conditions can be used to check

identifiability and serve as a guide for appropriate randomized trials. Because our primary

goal is to determine the optimal DTR based on the parameters estimated from randomized

trial data, we will also discuss the impact of non-identifiability on determining the optimal

DTR.
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Conditions for Identifiability

For any trajectory vm, let gm(θ) = P (vm|θ) be a mapping from parameter space Θ to

[0, 1]. Assume that there are M trajectories of a DTR listed as M mappings G = (g1, ..., gM).

The number of parameters in θ is 2K + K + 2 and there is only one constraint: ∑2K

l=1 πl = 1.

Thus, G is a mapping from R
2K+K+1 to [0, 1]M . Given θ, if there exists a neighborhood Bθ of

θ, such that for ∀θ′ ∈ Bθ, gm(θ) 6= gm(θ′), then we say θ is locally identifiable. According to

Goodman[ 77 ], by the inverse function theorem, the parameters in the model will be locally

identifiable if the rank of Jacobian matrix of G is no less than the number of parameters.

Therefore, in our case, θ is locally identifiable, if

rank(JG(θ)) ≥ 2K + K + 1

where JG(θ) is the Jacobian matrix of the function G at the point θ.

Non-identifiability and Partial Identifiability

Completely non-identifiability happens when none of the parameters is identifiable. For

example, consider a two-stage, two-treatment trial that contains all possible DTRs. Patients

are randomly assigned to either A or B in the beginning. At the second stage, they are again

randomly assigned to either A or B, regardless of their responses to the first treatment.

With consideration of the constrain ∑4
l=1 πl = 1, there are seven parameters in the model:

θ = (µ, τA, τB, π, σ2). We can observe 16 possible treatment and response trajectories from

this trial. However, it only has rank(JG(θ)) = 5 < 1 + 2 + 3 + 1 = 7. Thus, the generic

identifiable problem exists and no parameter is identifiable.

It sometimes happens that part of the parameters are identifiable while the others are

not. We call this scenario partially identifiable. For example, in Sections 2.3.2, the prostate

cancer trial involves four treatments but each patient receives at most two treatments. It

is impossible to have all 24 = 16 subgroup proportions identifiable. However, the subgroup

structure for any two treatments is identifiable (details are discussed in Section 2.3.2).
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The key to our goal of finding the optimal DTR, however, is the fact that for both

completely non-identifiable and partially identifiable cases, the trajectory probabilities for

the chosen randomized trial can still be estimated uniquely. In the two-stage, two-treatment

trial example, although the parameter estimates obtained through the EM algorithm can

vary, the estimated trajectory probabilities stay unchanged. In fact, since the trajectories are

observed, for any given trajectory, its estimated probability should always be its population

proportions, i.e., the ratio of the number of the trajectory observed and the total number

of subjects. This means that we can still use our mixture model results to determine the

optimal DTR.

In conclusion, for each clinical trial, the conditions of generic identifiability need to be

checked case by case. Lack of identifiability impacts the major advantage of our method

relative to model-free approaches, specifically, to provide interpretation of the treatment

and subgroup structure. Therefore, in order to obtain this underlying knowledge, it is ideal

to have a very large number of patients so one obtains a diverse set of trajectories. This

implies there is a trade-off between the complexity of the trial and the information contained

in the trial. With the goal of determining an optimal DTR, we can come up with a simpler

experiment that allows us to obtain adequate parameter estimates to construct DTRs.

2.3 Simulation Studies

In this section, we assess the performance of our model-based approach through some

simulation studies. Under several different scenarios, we summarize the accuracy of our

model estimates, if identifiable, as well as the expected value of each DTR. More importantly,

we assess how well our approach correctly identifies the optimal DTR and compare this

accuracy with that of Q-learning.

The simulation studies are conducted under two randomized trial scenarios. For each

scenario, we consider sample sizes of 200, 300, 600, 1200, and 2000, and replicate each

scenario/sample size combination 200 times. Both our approach and Q-learning are applied

to each replicate to identify the optimal DTR.
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2.3.1 Two-stage Two-treatment Scenario

Consider the simple two-stage two-treatment trial of Section 2.1.3, where patients are

randomly assigned to either A or B at both stages, regardless of their responses. Even

though the model parameters are not identifiable (justification in Section 2.2.3), the trajec-

tory probabilities and thus the value of a DTR are.

Table 2.5 summarizes the value of each DTR. Similar to the probabilities, there is very

little bias and the precision improves with sample size. Figure 2.1 shows boxplots of the

estimated probability of the trajectory (B, 0, A, 1) using our approach for the different

sample sizes. We can see that there is very little bias and as the sample size increases,

precision increases. Other trajectory probabilities show a similar behavior.

Figure 2.1. Boxplot of estimated probabilities of the trajectory (B, 0, A, 1).
The red line represents the true value when s=0.

Table 2.6 summarizes the probabilities of finding the optimal DTR from both our ap-

proach and Q-learning. Although nonidentifiability limits our interpretation of each model

parameter, it still has advantages in terms of finding the optimal DTR. This is because Q-

learning determines the optimal decision rule based only on the information at each stage,

while our approach combines information across stages and thus better estimates the prob-

ability of each trajectory. Thus, given that our model is correct, even though the model
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parameters are not identifiable, our approach has more power to infer the optimal DTR,

especially for the larger sample sizes.

Table 2.6. Probabilities of finding the optimal DTR
sample size Mixture Model Q-learning

200 57.0% 50.5%
300 67.5% 55.0%
600 77.5% 62.0%
1200 86.5% 69.5%
2000 91.5% 71.0%

2.3.2 MD Anderson Prostate Trial Design

In this subsection, we simulate data under two parameter settings using the design from

MD Anderson’s advanced prostate cancer trial[  7 ], [  48 ]. Under their design, we have partial

identifiability so we evaluate the identifiable parameter estimates as well as the expected

values of the DTRs.

The design is a special case of a SMART. For practical considerations, patients receive

multiple courses of chemotherapy until a certain criterion for termination is met. As a result,

the number of stages a patient undergoes can vary. In the protocol, patients were initially

randomized to one of four treatments. A second treatment was randomly assigned to patients

at a subsequent stage only if the subject did not respond to the previous treatment. Figure

2.2 summarizes the possible treatment and outcome trajectories of this protocol. The bolded

boxes represent the last outcome of each of the seven trajectories. The specific details of the

protocol are as follows:

1. Randomly assign a treatment to each participant at the beginning of Stage 1.

2. At the end of a stage, assess whether each subject did (S) or did not (F) respond to

treatment.

(a) If a patient responded, assign the same treatment in the next stage.

50



(b) If the patient did not respond, randomly assign a different treatment in the next

stage

3. Stop a patient once there are two consecutive favorable or a total of two unfavorable

responses.

Figure 2.2. Protocol of MD Anderson’s advanced prostate cancer trial

In the simulation studies, four treatments are available as the first treatment. Once

a failure is observed, patients will be randomly assigned to one of the three remaining

treatments. The seven possible sequences of responses are: FF, FSF, FSS, SFF, SFSF,

SFSS, and SS. Given that there are 12 ordered pairs of treatments, this means there are

76 possible treatment and response trajectories. To evaluate and compare different DTRs,

binary utility functions were applied to score the desirability of each trajectory[  68 ]. The

score is 1 if there are two consecutive favorable responses and 0 otherwise. Therefore, among

the seven sequences of responses, SS, FSS, and SFSS are scored 1, the others are scored a 0.

Evaluation of Parameter Estimates and Expected Value of DTRs

For these simulations, patients are randomly assigned to one of the treatments (labeled

1, 2, 3, and 4) with equal probability. We also assume the natural response rate is zero.

Therefore, the probability of a successful response pt = P (Ot = 1|at, s, z) can be written as

log( pt

1 − pt

) = τat + s, if zat = 1

pt = 0, if zat = 0.
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Here τat is response rate of the treatment at. Let 1, 2, 3, and 4 denote the four treatments.

There are 24 = 16 subgroups proportions, and 20 model parameters when we include τ and

σ2. Since the patients receive at most two treatments, there is no trajectory that contains all

these parameters, resulting in partial identifiability. Specifically, we are not able to identify

all 16 subgroup proportions, but rather only the two treatment subgroups. This still allows

us to determine the optimal DTR among those that involve only two treatments. We could

reduce 24 = 16 subgroup proportion parameters into 10 parameters, which are π1, π2, π3, π4,

π12, π13, π14, π23, π24, and π34. Here π1 = ∑
i,j,k∈{0,1}, and πz=(1,i,j,k), π12 = ∑

i,j∈{0,1} πz=(1,1,i,j).

Two generating parameter settings are in shown Tables 2.7 and 2.8.

Table 2.7. Parameter settings of treatment effects

Setting 1 Setting 2
Treatment effect Response rate Treatment effect Response rate

τ1 1.10 75.0% 1.10 75.0%
τ2 0.92 71.4% 0.69 66.7%
τ3 0.69 66.7% -0.69 33.3%
τ4 0.41 60.0% 1.39 80.0%

Table 2.8. Parameter settings of subgroup proportions
π1 π2 π3 π4 π12 π13 π14 π23 π24 π34

Setting 1 0.55 0.47 0.51 0.57 0.25 0.28 0.33 0.18 0.29 0.28
Setting 2 0.31 0.56 0.44 0.58 0.09 0.13 0.09 0.18 0.41 0.27

In MD Anderson’s study, the second decision rule d2 is the same for the previous response

sequence F and SF, given the first treatment, i.e., d2(a1 = ωk, F ) = d2(a1 = ωk, S, a2 =

ωk, F ). Therefore, 12 DTRs were compared. If the values of the two DTRs are the same, we

prefer the DTR with a lower expected number of stages. Based on both DTR values and the

expected number of stages given DTR, in Setting 1, we assign Treatment 1 first and then

switch to Treatment 2 if there is a failure as the optimal DTR. In Setting 2, the optimal

DTR is to assign Treatment 4 first and then switch to Treatment 1 if there is a failure.
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Note that if we remove the restriction on d2, there are 36 possible DTRs of interest. In

this case, for Setting 2, the optimal DTR is to assign Treatment 4 first. If it fails at the first

stage, switch to Treatment 1. If it fails after an initial success, then switch to Treatment 2.

Parameter estimates are evaluated from each replicate. The boxplots of all parameter

estimates are included in Appendix A. As in earlier simulation studies, the precision increases

with sample size. However, in this case, there appears to be some bias with some parameters

(e.g., τ4 in Setting 1). We conducted additional simulations with larger sample sizes (5000,

10,000, and 20,000) and found these estimates getting closer to the true values albeit slower

than the other parameters.

Given the parameter estimates, we can compute the expected value of a DTR and select

the optimal one. Table 2.9 shows the estimated values of the optimal DTR. As the sample

size increases, the variabilities of the estimated value of the optimal DTR decrease. We also

observe that the modified DTR has higher values compared with the optimal DTR chosen

from the original protocol.

Table 2.9. Means and standard deviations of estimated values of optimal
DTR for binary scores.
Sample size Setting 1 Setting 2 Setting 2 without restriction

n = 200 0.4812(0.0544) 0.5100(0.0539) 0.5276(0.0551)
n = 300 0.4789(0.0418) 0.5110(0.0436) 0.5302(0.0445)
n = 600 0.4787(0.0282) 0.5096(0.0290) 0.5283(0.0311)
n = 1200 0.4779(0.0208) 0.5143(0.0237) 0.5348(0.0241)
n = 2000 0.4752(0.0162) 0.5140(0.0186) 0.5334(0.0189)

True value 0.4770 0.5128 0.5337

Comparison between our model and Q-learning

We compare our proposed approach with Q-learning. To implement Q-Learning, we

separate the data into two parts. One part includes patients who receive two treatments, the

other part is patients who receive one treatment. For patients who receive two treatments,

given their histories, the optimal decision rule d∗
2 is determined first using linear regression

to maximize the trajectory utility R. We then create pseudo-outcome R̂ by fitting the linear
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regression, assuming the patients followed d∗
2. For patients who receive one treatment, i.e.,

(S, S), pseudo-outcome R̂ is set to be 1. Eventually, we fit R̂ ∼ A1 and determine the optimal

d∗
1. The optimal DTR is d∗ = (d∗

1, d∗
2).

Table 2.10. Probabilities of finding true optimal DTRs of Setting 1

sample size mixture model Q-learning
n = 200 43.5% 29.5%
n = 300 52.5% 33.0%
n = 600 57.0% 36.0%
n = 1200 65.5% 42.5%
n = 2000 73.5% 59.0%

Table 2.11. Probabilities of finding true optimal DTRs of Setting 2

sample size mixture model Q-learning
n = 200 50.5% 42.0%
n = 300 53.0% 56.5%
n = 600 56.5% 52.5%
n = 1200 70.0% 63.5%
n = 2000 73.5% 67.0%

Table 2.12. Probabilities of finding true optimal DTRs of Setting 2 without restriction

sample size mixture model Q-learning
n = 200 58.5% 14.0%
n = 300 68.5% 13.5%
n = 600 81.0% 25.0%
n = 1200 92.5% 37.5%
n = 2000 93.5% 43.5%

The optimal DTRs are selected for each replicate. We compare our approach with Q-

Learning in terms of selecting the optimal DTR. Tables 2.10 - 2.12 shows the probabilities

of finding true optimal DTRs for both mixture model and Q-learning.

All accuracies increase as sample size increases and our approach has advantages to find

the true optimal DTR. Similar to the case in Section 2.3.1, it is because our approach utilizes
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information across stages to determine the stage-wise optimal decision rule backwards, while

Q-learning only use information from the current stage.

We also compare the value of optimal DTRs between our approach and Q-learning.

Since we cannot calculate the probabilities of trajectories from Q-learning, the value of the

optimal DTR are computed through Monte Carlo approach for both our approach and Q-

learning. We apply the estimated optimal DTR to a dataset of 10,000 and obtain the mean of

outcomes for 10,000 patients followed the estimated optimal DTR. Figures 2.3 and 2.4 show

the smoothed histograms of values for estimated DTR of Setting 1 and Setting 2 without

restriction.

Figure 2.3. Smoothed histograms of values for estimated optimal DTR of Setting 1

In the smoothed histograms, we can see there are several local peaks. For example,

in Figure 2.4, sample size = 200, we observe there are peaks around V (d) = 0.5131 and

V (d) = 0.5342. In fact, the value of optimal DTR is 0.5342 while 0.5131 is the value of the

second optimal DTR. The peak at 0.5131 is a result of picking the wrong optimal DTR. As

the sample size increases, for both approaches, the density around the value of true optimal
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Figure 2.4. Smoothed histograms of values for estimated optimal modified
DTR of setting 2 without restriction

DTR increases. Furthermore, our mixture model has a higher density around the value of

true optimal DTR.

Table 2.13. Percentage of the proposed mixture model selecting DTRs with
higher or equal values in Setting 1

N Higher than Q-Learning Equal to Q-Learning Total
200 32.5% 48.5% 81.0%
300 19.5% 60.0% 79.5%
600 22.0% 60.0% 82.0%
1200 19.0% 67.0% 86.0%
2000 15.0% 75.0% 90.0%

In each replication, we further compare the values of the estimated optimal DTRs selected

by the mixture model and Q-Learning. Tables 2.13 and 2.14 present the percentage of the

proposed mixture model selecting DTRs with higher or equal values. In both settings, when

the sample size increases from 200 to 2000, Q-Learning gradually has more chance to find

DTRs with the same values as the mixture model (an increase from 48.5% to 75% in Setting
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Table 2.14. Percentage of the proposed mixture model selecting DTRs with
higher or equal values in Setting 2 without restriction

N Higher than Q-Learning Equal to Q-Learning Total
200 57.5% 24.0% 81.5%
300 68.0% 21.0% 89.0%
600 60.0% 33.5% 93.5%
1200 57.0% 40.5% 97.5%
2000 51.0% 47.0% 98.0%

1 and from 24% to 47% in Setting 2 without restriction), while the proposed model still

outperforms Q-Learning in term of selecting DTRs with higher values.

2.4 Application

We apply our proposed model to analyze real data from MD Anderson advanced prostate

cancer trial with the goal of comparing 12 different treatment regimes. The four treat-

ments/regimens were (CVD, KA/VE, TEC, and TEE), and favorable response means a 40%

decrease in PSA (prostate-specific antigen) from the baseline. Since the self-cure case of

advanced prostate cancer is very rare, we assume the natural response rate is 0.

Although 150 patients participated and received treatments in this trial, only 107 of them

followed the protocol. We analyze just these 107 patients. Let 1, 2, 3, and 4 stand for CVD,

KA/VE, TEC, and TEE. Table 2.15 shows the estimated subgroup-specific treatment effect

and Table 2.16 shows the estimated subgroup proportions.

Table 2.15. Estimated subgroup-specific treatment effects
τ1 τ2 τ3 τ4

0.397 0.195 0.385 0.384

Table 2.16. Estimated subgroup proportions
π1 π2 π3 π4 π12 π13 π14 π23 π24 π34

0.43 1.00 1.00 0.65 0.43 0.43 0.43 1.00 0.65 0.65
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We can see that KA/VE has the lowest subgroup-specific treatment effect. CVD, TEC,

and TEE have similar subgroup-specific treatment effects, with CVD’s slightly higher than

the other two. However, in terms of subgroup proportions, CVD only makes up 43% of

the population, followed by TEE, which is 65%. Both TEC and KA/VE have the whole

population as their effective subgroup, i.e., there is no heterogeneity in treatment response

to TEC and KA/VE. As for the overlap subgroup proportions, patients who respond to CVD

also respond to the other three treatments. Since TEC and KA/VE’s effective subgroup are

the whole population, we have CV D ∈ TEE ∈ KA/V E = TEC.

Given the estimates, we calculate the response rates of the treatments on its effective

subgroup and the overall population at a single stage, presented in Table 2.17.

Table 2.17. Treatment effect and response rate on favorable subgroup and
overall population

Response rate on subgroup Overall response rate
τ1 59.8% 25.7%
τ2 54.9% 54.9%
τ3 59.5% 59.5%
τ4 59.5% 38.7%

The overall response rates are similar to the observed per-course success rate [ 48 ], with

25.7% vs 28% for CVD, 54.9% vs 52% for KA/VE, 59.5% vs 57% for TEC, and 38.7% vs

45% for TEE.

Figure 2.5. Response rates for each pair of treatments
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The ultimate goal of this trial is to discover the optimal DTR. We calculate the overall

response rate of each pair of treatments and the response rate after the first treatment.

Figure 2.5 shows the overall response rates. Both CVD and TEE have pretty high response

rates on their effective subgroups. However, due to the small subgroup proportions, the

overall response rate is much lower than TEC and KA/VE.

As we can see, the pair of TEC and KA/VE has the highest overall response rate. We

prefer assigning the treatment with a higher overall response rate first. Thus, the optimal

DTR should be TEC → KA/V E. This result is consistent with Thall (2007) [  7 ], where

TEC followed by KA/V E was found the most promising two-stage strategy by a conditional

logistic regression in each course. Wang (2012) [  68 ] also chose this as the optimal DTR under

the binary utility score setting.
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3. THE MIXTURE OF MIXED LOGIT MODELS WITH

BASELINE COVARIATES AND TIME EFFECTS

In Chapter 2, we developed a model-based approach for determining the optimal dynamic

treatment regime from binary response data generated under a SMART design. The pro-

posed model explains overdispersion in the response through the inclusion of treatment

subgroups and a subject-specific random effect. In this chapter, we expand our approach to

include baseline covariates and time effects as additional sources of overdispersion.

Unique to our approach is that we separate the baseline covariates into two distinct

groups. The first group contains the covariates that directly explain some of the variation in

treatment response. We include them along with the random subject effect in the response

component of our model. Examples of these covariates might be age, sex, and various health

comorbidities. The other group of covariates that don’t directly impact an individual’s

response, but rather provides information on the individual’s latent treatment subgroup.

Examples of these covariates are a marker for a genotype that renders certain treatments

ineffective or an immune response that is associated with a marker’s presence.

We also consider the inclusion of time effects to account for the potential of decreased

treatment effectiveness over time. This time-varying covariate directly impacts the treatment

response and thus can be considered to be a covariate in the first group. We consider the

effect of time both numerically and categorically.

Because the inclusion of these covariates does not alter the basic structure of our model,

we only highlight the changes necessary to incorporate them in this chapter. The remainder

of Chapter 3 is similar to Chapter 2. We describe our estimation algorithm and approach

to determine the optimal DTR given the estimated model. This is followed by simulation

studies, including studies comparing our approach to Q-learning.

3.1 The Model-based Approach for Determining the Optimal DTR

For each individual, we now consider a baseline covariate vector X that can be partitioned

into XZ , the covariates associated with the latent subgroup identity, and XR, the covariates
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directly associated with the response to treatment. We assume that there is no overlap

between the covariates in XZ and XR.

3.1.1 The Mixture Model for Binary Outcomes

Similar to Chapter 2, we consider a T -stage sequence of treatment assignments and

responses labeled: A1, Y1, ..., AT , YT . We again assume that there are the same K treatments

available for assignment at each stage and denote the treatment space and response space

as A = {ω1, ..., ωK} and Y = {0, 1}, respectively. Given the inclusion of covariates, we

now include the baseline covariate space X = (XZ , XR), resulting in the space of histories

Ht−1 = {X , (A × Y)t−1} for Stage t and the trajectory space HT = {X , (A × Y)T }.

When baseline covariates are considered in a T -stage DTR D = (d1, ..., dT ), the tth stage

decision rule dt becomes a mapping from a patient history Ht−1 = (X, A1, Y1, ..., At−1, Yt−1)

to A. We again define ΓDt−1 to be the collection of all possible histories under DTR D at

Stage t. This can be expressed

ΓDt−1 = {(x, a1, y1, ..., at−1, yt−1) ∈ Ht−1|PD(x, a1, y1, ..., at−1, yt−1) > 0},

with the collection of all possible trajectories for DTR D expressed as:

ΓD = {(x, a1, y1, ..., aT , yT ) ∈ HT |PD(x, a1, y1, ..., aT , yT ) > 0}

In Chapter 2, we computed the probability of each trajectory by first considering the

conditional probability of each trajectory based on a patient’s latent subgroup vector Z =

(Zω1 , ..., ZωK
) and the subject-specific effect S. Since we are including baseline covariates to

describe the continuous heterogeneity, this conditional probability now also depends on the

baseline covariate vector XR. Note that the covariates XZ are not needed here because we

are conditioning on Z.

61



Imposing the same assumptions considered in Section 2.1.1, the conditional probability of

a trajectory given xR, z and s can be broken down into the product of sequential conditional

probabilities:

PD(a1, y1, ..., aT , yT |xR, z, s) =P (y1|xR, z, a1 = d1(x), s)

×
T∏

t=2
P (yt|xR, a1, y1, ..., at = dt(x, a1, ..., yt−1), z, s)

which can be further simplified to:

PD(a1, y1, ..., aT , yT |xR, z, s) =P (y1|xR, z, a1 = d1(x), s)

×
T∏

t=2
P (yt|xR, at = dt(x, a1, ..., yt−1), z, s) (3.1)

Each of these Bernoulli probabilities in the product on the right is modeled using an

extension of the logit function of Chapter 2. We include baseline covariates x in the indicator

function 1{dt(x, a1, y1, ..., at−1, yt−1) = ωk} which represents whether treatment ωk is assigned

at the tth stage. We also allow for the interactions between xR and the treatments in the

model. Letting pt represent the probability that the assigned treatment is effective (i.e.,

P (yt = 1|xR, at = dt(x, a1, y1, ..., yt−1), z, s)), the logit function is:

log( pt

1 − pt

) =µ + xRα

+
K∑

k=1
1{dt(x, a1, y1, ..., at−1, yt−1) = ωk}zωk

{τωk
+ xRβωk

} + s (3.2)

where xR, α and βωk
∈ Rp1 . The vector α quantifies the effect that the covariates have

on the logit regardless of treatment while the vector βωk
quantifies any treatment-specific

effects of the covariates.

Because zωk
is binary, this logit function log( pt

1−pt
) can also be expressed as:

µ + xRα + s, if zωk
= 0

(µ + τωk
) + xR(α + βωk

) + s, if zωk
= 1 (3.3)
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To get the marginal probability of each trajectory with baseline covariates X, as we did

in Chapter 2, we first integrate out the subject-specific effect s:

PD(a1, y1, ..., aT , yT |x, z)

=
∫

s
PD(a1, y1, ..., aT , yT |xR, z, s)φ(s)ds

=
∫

s

T∏
t=1

PD(yt|xR, at = dt(x, a1, y1, ..., at−1, yt−1), z, s)φ(s)ds

where φ(s) is the N(0, σ2) density function. We then weigh these subgroup-specific trajectory

probabilities by the appropriate subgroup probabilities, which now depend on the covariates

xZ . Labelling these P (z|xz), the trajectory probability is:

PD(a1, y1, ..., aT , yT |X = (xZ , xR)) =
∑
z∈Z

P (z|xZ)PD(a1, y1, ..., aT , yT |x, z). (3.4)

We’ll now discuss our model component for the subgroup probabilities P (z|xZ).

3.1.2 Multivariate Bernoulli Subgroup Model

For a K-treatment trial, we define the subgroup vector as Z = (Zω1 , ..., ZωK
), where each

element Zωk
denotes whether the patient can respond favorably (1) or not (0) to treatment

ωk. In other words, each element follows a Bernoulli distribution. In Chapter 2, we did

not model these Bernoulli random variables because they were the same for each subject.

Instead, we considered the multinomial distribution of the 2K resulting subgroups. However,

given baseline covariates, we think that it is more natural and flexible to develop a model

for these random variables and therefore adopt a multivariate Bernoulli model [ 78 ], [ 79 ].

To introduce this model, we first ignore covariates and illustrate the bivariate Bernoulli

model for the simplest scenario involving only two treatments and then extend to the multi-

variate Bernoulli model for K treatments. In each case, we discuss the underlying subgroup

structure (i.e., the relationships among the Bernoulli random variables). Our focus will

be on the independence and the homogeneous association structures. We then include the

covariates into the model and present an example involving four treatments.
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Bivariate Bernoulli Model

Given two treatments, the subgroup vector is Z = (Z1, Z2). There are four possi-

ble subgroups and we label their probabilities πz1z2 = P (Z1 = z1, Z2 = z2) such that∑
i=0,1

∑
j=0,1 πij = 1 . In Chapter 2, we directly estimated these πz1z2 but here we’ll consider

the distribution of Z expressed as follows:

P (Z = (z1, z2)) = π
z1z2
11 π

z1(1−z2)
10 π

(1−z1)z2
01 π

(1−z1)(1−z2)
00

= π00(π10/π00)z1(π01/π00)z2((π11π00)/(π10π01))z1z2

= exp{log(π00) + z1 log π10

π00
+ z2 log π01

π00
+ z1z2 log π11π00

π10π01
} (3.5)

From Equation (3.5), we can see that Z = (Z1, Z2) belongs to the exponential family

with Z1, Z2, and Z1Z2 as the sufficient statistics and the natural parameters:

f1 = log π10

π00

f2 = log π01

π00

f12 = log π11π00

π10π01

The parameter f1 is the log odds of Z1 = 1 conditional on Z2 = 0, f2 is the log odds of

Z2 = 1 conditional on Z1 = 0, and f12 is the log odds ratio for Z = (Z1, Z2).

The subgroup probabilities πz1z2 can be expressed in terms of the natural parameters as

follows:

π00 = 1
1 + exp{f1} + exp{f2} + exp{f1 + f2 + f12}

π10 = exp{f1}
1 + exp{f1} + exp{f2} + exp{f1 + f2 + f12}

π01 = exp{f2}
1 + exp{f1} + exp{f2} + exp{f1 + f2 + f12}

π11 = exp{f1 + f2 + f12}
1 + exp{f1} + exp{f2} + exp{f1 + f2 + f12}
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and the marginal probabilities are:

P (Z1 = 1) = exp{f1} + exp{f1 + f2 + f12}
1 + exp{f1} + exp{f2} + exp{f1 + f2 + f12}

P (Z2 = 1) = exp{f2} + exp{f1 + f2 + f12}
1 + exp{f1} + exp{f2} + exp{f1 + f2 + f12}

One major advantage of the multivariate Bernoulli distribution is its capability of mod-

eling the association between the Bernoulli RVs. For example, in the bivariate setting, the

covariance between Z1 and Z2 is

cov(Z1, Z2) = E(Z1 − E(Z1))(Z2 − E(Z2))

= E(Z1 − P (Z1 = 1))(Z2 − P (Z2 = 1))

= E(Z1Z2) − P (Z1 = 1)E(Z2) − P (Z2 = 1)E(Z1) + P (Z1 = 1)P (Z2 = 1)

= π11 − P (Z1 = 1)P (Z2 = 1)

= exp{f1 + f2 + f12} − exp{f1 + f2}
(1 + exp{f1} + exp{f2} + exp{f1 + f2 + f12})2

When f12 = 0, the numerator is 0 implying the RVs are uncorrelated. Dai (2013) [  79 ] delves

further into these relationships and in Lemma 2.1, confirms that Z1 and Z2 are independent

if and only if f12 = 0.

Multivariate Bernoulli Model

Extending this to the general K treatment setting, there are now 2K subgroups with

probabilities, denoted πz1z2,....zK
. We can express the density of Z as

P (Z1 = z1, ..., ZK = zK) =π
{
∏K

k=1(1−zk)}
0...0 × π

{z1
∏K

k=2(1−zk)}
10...0 × π

{(1−z1)z2
∏K

k=3(1−zk)}
010...0 × ...

× π
{
∏K

k=1 zk}
1...1

=
∏

z1,...,zK∈{0,1}K

π

∏
{zk|zk=1} zk{

∏
{zk|zk=0}(1−zk)}

z1...zK

= exp(
∑

z1,...,zK∈{0,1}K

∏
{zk|zk=1}

zk{
∏

{zk|zk=0}
(1 − zk)} log πz1...zK

) (3.6)
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Same as in the two-treatment example, this distribution belongs to the exponential family.

The sufficient statistics are the products of these Bernoulli RVs, i.e., Zj1 ...Zjr , for any 1 ≤ j1 <

... < jr ≤ K. There are (2K − 1) sufficient statistics in total. To get the natural parameters,

we first expand the entire part inside the exponential function in Equation (3.6) and then

simplify by zj1 ...zjr ’s. Specifically, to get the term zj1 ...zjr from ∏
{zk|zk=1} zk{∏{zk|zk=0}(1 −

zk)} log πz1...zK
, zk has to be 0 for any k /∈ {j1, ..., jr}. For any jl ∈ {j1, ..., jr}, if zjl = 1, we

can have zjl as a positive product in zj1 ...zjr . On the other hand, if zjl = 0, zjl will bring a

negative sign to zj1 ...zjr . Therefore, the natural parameter of the sufficient statistic zj1 ...zjr

can be expressed as:

fj1...jr

=
∑

1≤j1≤...≤jr≤K

(−1)
∏r

l=1 1zjl =0 log P (Zj1 = zj1 , ..., Zjr = zjr , and others are all zero))

= log
∏

P (even # zeros among zj1 , ..., zjr and others are all zero)∏
P (odd # zeros among zj1 , ..., zjr and others are all zero)

Then P (Z1 = z1, ..., ZK = zK) can be written as:

P (Z1 = z1, ..., ZK = zK) = exp{log(π0...0) +
K∑

r=1

∑
1≤j1≤...≤jr≤K

zj1 ...zjrfj1,...,jr} (3.7)

To simplify the notation, we follow Dai (2013) [ 79 ] and denote the quantity S as:

Sj1j2...jr =
∑

1≤js≤r

fjs +
∑

1≤js<jk≤r

fjsjk + ... + fj1j2...jr (3.8)

and

b(f) = log{1 +
K∑

r=1

∑
1≤j1<...<jr≤K

exp{Sj1j2...jr}}. (3.9)

After parameter transformation, we get:

πzj1 =zj2 =...=zjr =1 others are 0 = exp(Sj1j2...jr)
exp(b(f)) (3.10)
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and

πz0...0 = 1
exp(b(f)) . (3.11)

Same as for the bivariate Bernoulli model, it is of great interest to understand the sub-

group structure of Z. Equations (3.10) and (3.11) present the multivariate Bernoulli model

with all nonzero natural parameters, commonly referred to as the saturated model. The

number of natural parameters increases exponentially with K. This can complicate estima-

tion of the saturated model. Furthermore, the underlying structure may be simpler than

the saturated model structure or approximated well using a simpler structure. The two we

consider here are the independence and homogeneous association structures.

The independence structure was introduced in the bivariate case. It states that subjects

responding to one treatment is uncorrelated to how they respond to other treatments. In

other words, the subgroup indicators Z1,...,ZK are element-wise independent, and the prob-

ability of a subject responding favorably to a set of treatments is simply the product of the

probability of responding favorably to each treatment. According to Theorem 3.1 in Dai

(2013) [ 79 ], subgroup vector Z = (Z1, ..., ZK) are independent element-wise if and only if

fj1...,jr = 0, for 1 ≤ j1 < .. < jr ≤ K, r ≥ 2.

In other words, only f1, f2,...,fK are non-zero natural parameters.

The homogeneous association structure incorporates an underlying relationship between

pairs of subgroups. It is also known as the structure with no non-zero second or higher order

interactions. This results in the association between any two treatment subgroup indicators

Zi and Zj being the same, regardless of other treatment subgroup indicators. Based on

Theorem 3.2 in Dai (2013) [  79 ], each pair of Z = (Z1, ..., ZK) has homogeneous association

if and only if:

fj1...,jr = 0, for 1 ≤ j1 < .. < jr ≤ K, r ≥ 3.
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The Inclusion of Covariates

As discussed earlier, the multivariate Bernoulli distribution belongs to the exponential

family. Therefore, we can model each of the natural parameters (f ’s) as a linear function

of the p2 covariates, XZ = (1, xZ,1, xZ,1, ..., xZ,p2). Letting λ belong to the power set of

{1, 2, ..., K}, the natural parameter fλ can be written fλ = γλ,0 + γλ,1xZ,1 + ... + γλ,p2xZ,p2 =

xZγλ, where γλ = (γλ,0, ..., γλ,p2) is the coefficient vector of fλ. For the saturated model,

there are (2K − 1) natural parameters meaning that this model requires (2K − 1) × (p2 + 1)

parameters. The number of parameters can be reduced by considering a simpler association

structure. For example, the independence structure involves only K × (p2 + 1) parameters.

The set of binary regressions can be written:

logP (Zj1 = Zj2 = ... = Zjr = 1 others are 0|xz)
P (z1 = 0, ..., zK = 0|xz)

= Sj1j2...jr

=
∑

1≤js≤r

fjs +
∑

1≤js<jk≤r

fjsjk + ... + fj1j2...jr

= xz(
∑

1≤js≤r

γjs +
∑

1≤js<jk≤r

γjsjk + ... + γj1j2...jr), (3.12)

and the subgroup probabilities P (z|xz) are:

P (Zj1 = Zj2 = ... = Zjr = 1 others are 0|xz)

=
xz(∑1≤js≤r γjs +∑

1≤js<jk≤r γjsjk + ... + γj1j2...jr)
1 +∑K

r=1 xz(∑1≤js≤r γjs +∑
1≤js<jk≤r γjsjk + ... + γj1j2...jr)

(3.13)

and

P (Z1 = 0, ..., ZK = 0|xz)

= 1
1 +∑K

r=1
∑

1≤j1<...<jr≤K P (zj1 = zj2 = ... = zjr = 1 others are 0|xz)
(3.14)

We want to point out that this set of binary logistic regression models resembles multi-

nomial logistic regression. In fact, when the multivariate Bernoulli model is saturated, it is
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equivalent to multinomial logistic regression. Our model in Chapter 2 can be viewed as the

saturated multivariate Bernoulli model without baseline covariates.

Now we consider the example of MD Anderson’s advanced prostate cancer trial that is

explained in Section 2.3.2. There are four possible treatments of consideration. We denote

the subgroup vector as Z = (Z1, Z2, Z3, Z4). Because of the complexity of the saturated

model, even with one covariate, the number of parameters can be as large as 30. To avoid

overfitting and reduce the complexity, we focus on two simpler models, the independence

model and the homogeneous association model, and assume that these reduced relationship

models can adequately approximate the probabilities of belonging to the beneficial subgroups

of the one or two assigned treatments. For the independence model, we have 4 non-zero

natural parameters f1, f2, f3, f4, and 10 non-zero natural parameters f1, f2, f3, f4, f12, f13,

f14, f23, f24, and f34 for the homogeneous association model. Table 3.1 presents the set of

binary regressions for both models with baseline covariates included.

3.1.3 Evaluating and Determining the Optimal DTR

Unlike in Chapter 2 where the trajectory probabilities are the same for the entire pop-

ulation, here the trajectory probabilities are different given different baseline covariates X.

Now that we’ve described our model components for the subgroup probabilities P (z|XZ)

and for each of the responses, we can compute the collection of trajectory probabilities given

the baseline covariates X. Each of these is obtained by summing over all subgroups:

PD(a1, y1, ..., aT , yT |X = (xZ , xR)) =
∑

z

P (z|xZ)PD(a1, y1, ..., aT , yT |x, z)

These probabilities make up the probability mass function of T -stage trajectories given X

and the chosen DTR D.
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Similar to Section 2.1.2, a utility function r(a1, y1, ..., aT , yT ) is defined to evaluate each

trajectory. The value of the DTR D given x is:

V (D|x) =ED(r(A1, Y1, ..., AT , YT )|x)

=
∑

a1,y1,...,aT ,yT ∈Γd

r(a1, y1, ..., aT , yT )PD(a1, y1, ..., aT , yT |x)

=
∑

a1,y1,...,aT ,yT ∈Γd

r(a1, y1, ..., aT , yT ) × {
∑

z

P (z|xZ)PD(a1, ..., yT |x, z)}

=
∑

a1,y1,...,aT ,yT ∈Γd

r(a1, y1, ..., aT , yT )

×
∑

z

{P (z|xZ)
∫

s

T∏
t=1

PD(yt|xR, at = dt(x, a1, y1, ..., at−1, yt−1), z, s)φ(s)ds}

(3.15)

Within the scope of the data used to estimate the model, our model allows for the

determination of the individualized optimal DTR for any x, which is defined as:

Dopt
x = arg max

D
V (D|x) (3.16)

Example 3.1

Suppose we observe two baseline covariates under the 4-treatment MD Anderson prostate

trial design introduced in Section 2.3.2. We’ll assume one covariate is in XZ and one is in

XR, with both ranging from -3 to 3. For the treatment response, similar as in Section 2.3.2,

we assume that the natural response rate is zero. As a result, the probability of a successful

response pt = P (Yy = 1|XR, at, z, s) can be expressed

log( pt

1 − pt

) = τat + xRβat + s, if zat = 1

pt = 0, if zat = 0 (3.17)

For the subgroup probability component, we consider the independence structure. Tables

3.2 and 3.3 summarize the parameter settings.
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Table 3.2. Treatment response parameter settings for Example 3.1

τ1 β1 τ2 β2 τ3 β3 τ4 β4 σ2

0.8 -0.5 0.3 0.6 1.1 0.4 0.6 1 0.01

Table 3.3. Subgroup parameter settings for Example 3.1

γ1,0 γ1,1 γ2,0 γ2,1 γ3,0 γ3,1 γ4,0 γ4,1
0.3 1.5 1 -3 -1 1 0.5 -1

Table 3.4. Possible DTRs found optimal in Example 3.1

DTR Detailed DTR
1 Trt 1 first, switch to Trt 2 if observe a failure to the first treatment
2 Trt 1 first, switch to Trt 3 if observe a failure to the first treatment
3 Trt 1 first, switch to Trt 4 if observe a failure to the first treatment
4 Trt 2 first, switch to Trt 3 if observe a failure to the first treatment
5 Trt 2 first, switch to Trt 4 if observe a failure to the first treatment
6 Trt 3 first, switch to Trt 4 if observe a failure to the first treatment

We investigated all 12 DTRs described in Chapter 2. To assess the value of each DTR, we

use the same utility that we used in Example 2.1–a trajectory is scored 1 if two consecutive

successes are observed and 0 otherwise. Possible DTRs that were found to be optimal are

listed in Table 3.4.

Figure 3.1 displays the optimal DTRs over the ranges of XZ and XR. There are five

regions, each involving a different pair of treatments. Treatments 1, 2, or 3 are assigned

initially, followed by either Treatment 3 or 4.

3.2 Parameter Estimation and DTR Evaluation

In practice, we need to estimate the model parameters. We again consider data collected

from a SMART design, where treatments are assigned to patients according to a certain

pre-specified randomization scheme that does not depend on the baseline covariates. Similar

to what we did in Chapter 2, we detail the model modifications needed to accommodate this

randomization and then describe our EM algorithm to obtain the estimates.

72



Figure 3.1. Optimal DTR given X of Example 3.1

3.2.1 Model Specification for Randomized Trials

Consider an individual in a T -stage randomized trial involving K possible treatments.

For each subject, we have baseline covariates X = (XZ , XR), and a sequence of treatment

assignments (A) and responses (Y ) labeled A1, Y1, ..., AT , YT . Note that we do not distinguish

the responses in a randomized trial and DTR as we did in Chapter 2 when we used Y for a

DTR and O for the randomized trial.

The conditional distribution of a sequence given the treatment subgroup vector z and

subject-specific random effect s and covariates xR is:

P (a1, y1, ..., aT , yT |xR, z, s)

= P (a1)P (y1|xR, a1, z, s)
T∏

t=2
P (at|a1, y1, ..., at−1, yt−1)P (yt|xR, a1, y1, ..., at, z, s).
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In contrast to Equation (3.1), the treatment assignment at is determined by a pre-

specified randomization distribution P (at|a1, y1, ..., at−1, yt−1). Under our model assump-

tions, this conditional distribution simplifies to:

P (a1,y1, ..., aT , yT |xR, z, s) (3.18)

= P (a1)P (y1|xR, a1, z, s) ×
T∏

t=2
P (at|a1, y1, ..., at−1, yt−1)P (yt|xR, at, z, s),

with each response being Bernoulli with probability pt, whose logit function is:

log( pt

1 − pt

) = µ + xRα +
K∑

k=1
1{At = ωk}zωk

{τωk
+ xRβωk

} + s

where 1{At = ωk} indicates that treatment ωk is assigned at the tth stage.

Now consider a group of N individuals. Depending on the choice of trial design, the

number of stages could vary across individuals, so we use Ti denote the number of stages for

the ith subject. Similarly, Ai = (ai
1, ...., ai

Ti
) and Y i = (yi

1, ...., yi
Ti

) are the assignment and

outcome vectors, respectively. Lastly, we denote baseline covariates X i = (X i
R, X i

Z) and

the latent subgroup vector Z i = (Z i
1, ..., Z i

K).

Our goal is to estimate the latent subgroup parameters γ, treatment effects β and τ ,

and subject effect variance σ2. Let θ = (µ, γ, α, τ , β, σ2) represent this collection of model

parameters. The likelihood of this mixtures model is given by:

L(θ) =
N∏

i=1
{
∑
Zi

P (Z i|X i
Z)
∫ Ti∏

t=1
exp(yi

tη
i
t − log(1 + exp(ηi

t)))φ(s)ds} (3.19)

where ηi
t = µ + XRα +∑K

k=1 1{At = ωk}zωk
{τωk

+ XRβωk
} + s.

We use the EM algorithm, described in the next subsection, to obtain our parameter

estimates. Having obtained our estimates, we can estimate the probabilities of all possible

trajectories PD(a1, y1, ..., aT , yT |x) for any DTR D as

∑
z

P (Z i
k = z|xZ)

∫ T∏
t=1

P̂ (yt|at = dt(a1, y1, .., at−1, yt−1), xR, z)φ(s)ds,
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and subsequently estimate the value of individualized DTR D:

V̂ (D|x) =
∑

a1,y1,...,aT ,yT ∈ΓD

r(y1, ..., yT )P̂D(a1, y1, ..., aT , yT |x) (3.20)

We call

D̂opt
x = arg max

D
V̂ (D|x) (3.21)

as our estimated optimal DTR given baseline covariates X = x.

Similar to Chapter 2, the optimal DTR here can be found through an exhaustive search

or dynamic programming. Considering that there is a limited number of DTRs of interest,

given any x, we use the model estimates to compute the values of all DTRs and find the one

with the maximum value.

3.2.2 EM Algorithm

Because there are no closed-form MLE formulas for the likelihood in Equation (3.19), we

use the EM algorithm to obtain estimates. As part of this algorithm, we need to integrate

over the random subject effect S. We again adopt Gaussian quadrature to do this.

Similar to our approach in Chapter 2, we convert the subgroup vector Z into a vector

C of length 2K , each element representing one of the 2K treatment subgroups. For the ith

subject, the vector C i = (C i
1, ..., C i

2K ) will have one element equal to 1 and 0’s otherwise.

Unfortunately, which element is 1 is unknown to us and must be estimated. We use the

same conversion method and thus ordering of the 2K subgroups, as we did in Chapter 2 (see

Section 2.2.2). We complement each vector C i with a subgroup proportion vector π. This

vector is simply a function of the covariates X i
Z and the latent subgroup parameters γ.

If C i were observed, the joint probability for the trajectory of the ith subject is

P (Y i, Ai, C i, X i|θ) = P (C i|X i
Z , θ) × P (Y i, Ai|C i, X i

R, θ)
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The complete-data log-likelihood for N subjects is

log L(θ|Y , A, C, X)

=
N∑

i=1
log{{P (C i|X i

Z , θ) × P (Y i, Ai|C i, X i
R, θ)}}

=
N∑

i=1
{log{P (C i|X i

Z , θ)} + log{P (Y i, Ai|C i, X i
R, θ)}}

=
N∑

i=1
log{P (C i|X i

Z , θ) + log
∫ Ti∏

t=1
exp(yi

tη
i
t − log(1 + exp(ηi

t)))φ(s)ds}

where ηi
t = µ + X i

Rα +∑K
k=1 1{At = ωk}zωk

{τωk
+ X i

Rβωk
} + s.

Given that the C i’s are missing, we use the EM algorithm to find the MLEs by iteratively

taking the expectation of the complete-data log-likelihood using the conditional distribution

of the missing C i’s (E-step), and maximizing the expected log-likelihood (M-step). Suppose

θ(t) is the current set of parameters. In the E-step, the expected value of the complete

log-likelihood function is:

Q(θ|θ(t)) = EC|θ(t){log L(θ|Y , A, C, X)}

=
2K∑
l=1

P (C i
l = 1|Y i, Ai, X i, θ(t)){

N∑
i=1

log{P (Y i, Ai, C i, X i|θ)}}

=
2K∑
l=1

P (C i
l = 1|Y i, Ai, X i, θ(t)){

N∑
i=1

log P (C i
l = 1|X i

Z , θ)

+
N∑

i=1
log P (Y i, Ai|C i, X i

R, θ)}

=
2K∑
l=1

P (C i
l = 1|Y i, Ai, X i, θ(t)){

N∑
i=1

log P (C i
l = 1|X i

Z , θ)

+
N∑

i=1
log

∫ Ti∏
t=1

exp(yi
tη

i
t − log(1 + exp(ηi

t)))ds}

Here the conditional probability P (C i
l = 1|Y i, Ai, X i) given θ(t) can be calculated as:

P (C i
l = 1|Y i, Ai, X i, θ(t)) = π

(t)
l

∫ ∏Ti
t=1 exp(yi

t(ηi
t)(t) − log(1 + (ηi

t)(t)))ds∑2K

l=1 π
(t)
l

∫ ∏Ti
t=1 exp(yi

t(ηi
t)(t) − log(1 + (ηi

t)(t)))φ(s)ds
(3.22)
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where

(ηi
t)(t) = µ(t) + X i

Rα(t) +
K∑

k=1
1{At = ωk}zωk

{τ (t)
ωk

+ X i
Rβ(t)

ωk
} + s

and

π
(t)
l = P (C i

l = 1|X i
Z , θ(t)).

We can see that the Q function consists of two additive parts. The first is:

Q1(θ|θ(t)) =
2K∑
l=1

{P (C i
l = 1|Y i, Ai, X i, θ(t))

N∑
i=1

log P (C i
l = 1|X i

Z , θ)} (3.23)

and the second is:

Q2(θ|θ(t))

=
2K∑
l=1

{P (C i
l = 1|Y i, Ai, X i, θ(t))

N∑
i=1

log
∫

{
Ti∏

t=1
exp(yi

tη
i
t − log(1 + ηi

t))}φ(s)ds} (3.24)

Q1(θ|θ(t)) contains the subgroup parameters γ only, while Q2(θ|θ(t)) contains the response

parameters β, τ , and σ2. Consequently, in the M-step, the maximization of Q(θ|θ(t)) over

θ can be separated into maximizing Q1(θ|θ(t)) over γ and maximizing Q2(θ|θ(t)) over (β,

τ , σ2). Since Q1(θ|θ(t)) has a closed form, we can derive the first gradient function and use

the Broyden-Fletcher-Goldfarb-Shanno (BFGS)[ 80 ]–[ 83 ] algorithm for maximization.

On the other hand, Q2(θ|θ(t)) contains the integration of a Gaussian distribution. Sim-

ilar to the approach in Section 2.2.2, we adopt Gauss-Hermite quadrature to approximate

the integral and use numerical methods to calculate the gradient. Then we maximize the

approximation of Q2(θ|θ(t)) by the L-BFGS-B algorithm, restricting σ2 > 0. The gradient

of Q2(θ|θ(t)) is calculated through numerical methods.

The EM algorithm is:

1. Choose starting values θ(0) = (γ(0), µ(0), α(0), τ (0), β(0), (σ2)(0)). Set t=0

2. E-step: calculate conditional probability P (C i
l = 1|Yi, Ai, X i

R, X i
Z) according to θ(t).

Construct Q1(θ|θ(t)) and Q2(θ|θ(t)).
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3. M-step: maximize Q1(θ|θ(t)) over γ and Q2(θ|θ(t)) over (µ, α, τ , β, σ2) respectively.

Update θ. Let t=t+1.

4. Repeat until convergence.

Our stopping criteria is |θ(t+1) − θ(t)| < 10−4 and |L(θ(t+1)) − L(θ(t))| < 10−8. We run the

algorithm multiple times, starting from different sets of initial values, to search for the global

maximum likelihood. Compared with Chapter 2, there are more parameters for estimation.

For better convergence, each set of starting values is chosen carefully. In the following

simulation studies, the starting values are randomly generated within a small range of the

true values.

3.3 Inclusion of Time Effects

So far in this chapter, we’ve assumed that for each individual, the response rates to the

same treatment are the same over the stages. However, in practice, the body and disease

may adjust to a treatment or treatments, thereby reducing the likelihood of a response to a

treatment in later stages. Therefore, it is important to consider incorporating time effects

to accommodate the potential changes in the response rate over stages. In this section, we

expand the response component of our model to incorporate time effects. The modification

in the EM algorithm is also provided. Without loss of generality, we also assume that the

time effect is reflected as a decline in the response rate.

There are many different approaches one can take to describe a decrease in the response

rates over time. The one we consider in this dissertation is that the body and disease adjust

to protect themselves from any treatment and so there is a natural decline in effect over

time. The body and disease adjustments may impact treatments differently, so we consider

this decline to be treatment-specific. In terms of modeling the time effects, we consider

this decline both numerically (i.e., linear decline on the logit scale) or treating time as a

categorical factor.

78



3.3.1 The Time Effect Models

When treating time numerically, time enters the logit model as a numerical covariate.

Because we allow it to be treatment-specific, there is a different rate parameter δωk
for each

treatment. As a result, the logit function can be written as:

log( pt

1 − pt

) =µ + XRα +
K∑

k=1
1{dt(XR, a1, y1, ..., at−1, yt−1) = ωk}zωk

{τωk
+ XRβωk

}

+ (t − 1)δωk
+ s (3.25)

where t = 1, 2, ..., T . We expect each of the δωk
to be negative, implying that the log odds

of responding favorably in the current stage would reduce by δωk
each stage of the study.

When treating time categorically, there is now a different decline for each treatment and

stage. For stages t > 1, the logit function now includes a decline parameter δωk,t and can be

expressed as:

µ + XRα +
K∑

k=1
1{dt(XR, a1, y1, ..., at−1, yt−1) = ωk}zωk

{τωk
+ XRβωk

} + δωk,t + s, (3.26)

where t = 2, ..., T and δωk,t is the time effect at time t for treatment ωk. In contrast to

treating time numerically, this approach allows for non-linear changes over time. It can

accommodate scenarios when the body dramatically shuts down to the treatments but at

the expense of including (t − 2)K more model parameters.

3.3.2 Estimation for Time Effects

Just as in Section 3.2, the EM algorithm is applied for parameter estimation. We consider

categorical time effects for illustrative purposes. Let δ = (δωk,2, ..., δωk,T ) be the time effect

parameters. In E-step, P (C i
l = 1|Y i, Ai, X i, θ(t)) is calculated via Equation (3.22), where

we use Equation (3.26) for (ηi
t)(t). In the M-step, Q(θ|θ(t)) is maximized by maximizing

Q1(θ|θ(t)) over γ and Q2(θ|θ(t)) over (β, τ , δ, σ2) separately. Thus, we can update subgroup

parameter γ in the same way. As for Q2(θ|θ(t)), parameters are updated together using the

L-BFGS-B algorithm as before.
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3.3.3 Hypothesis Testing for Time Effects

Letting δ be the vector of time effects. The null hypothesis and the alternative hypothesis

are:

H0 : δ = 0

Ha : not all δ are 0’s

We consider both Wald’s test and the likelihood ratio versions of the test. For Wald’s test, we

first find a Q×P matrix R such that Rθ′ = δ′. Then the null hypothesis can also be written

as Rθ′ = 0′. Let θ̂ be the MLE under the alternative hypothesis and V̂ be the asymptotic

covariance matrix, which can be approximated by the second partial derivatives of L(θ̂)

(i.e., Hessian matrix). There are several built-in functions in R we can use to calculate it

through numerical methods. One can also consider bootstrapped standard errors. However,

the bootstrap method requires that the EM algorithm is applied numerous times [  84 ], and

therefore, is very time-consuming. Once we get the covariance matrix V̂ , the test statistic

W = δ̂(R′V̂ R/N)−1δ̂
′

→ χ2. The degree of freedom depends on the number of time effect

parameters.

For the likelihood ratio test, we must estimate the MLE under both H0 (δ = 0) and

Ha (δ 6= 0). Similar to Wald’s test, we first obtain θ̂ under Ha through the EM algorithm.

Next, we assume that there is no time effects (δ = 0) and apply the EM algorithm again to

get θ̂∗ = (µ̂∗, γ̂∗, α̂∗, τ̂ ∗, β̂∗, ˆ(σ2)∗). The test statistic is λLR = −2(L(θ̂∗) − L(θ̂)) and also

asymptotically follows the χ2 distribution. Compared with Wald’s test, the likelihood ratio

test involves using the EM algorithm to fit the data twice, while Wald’s test only needs to

use the EM algorithm once.

3.4 Simulation Studies

Simulation studies are conducted to evaluate the performance of our model-based ap-

proach. Data are simulated under the same MD Anderson design that was used in Chapter

2 (see Section 2.3.2 for a description). We consider that there are two baseline covariates.
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One is a response covariate XR and the other is a subgroup covariate XZ . They each follow

standard Normal distributions N(0, 1). There are four possible treatments so the subgroup

vector as Z is of length four.

This section consists of three subsections. In the first two, we perform simulation studies

under the independence association structure (Section 3.4.1) and the homogeneous associa-

tion structure (Section 3.4.2) assuming no time effects. A summary of these two multivariate

Bernoulli subgroup models can be found in Table 3.1 in Section 3.2.3. Our response model

for both subsections is expressed by Equation (3.17) in Section 3.1.3.

In both subsections, we consider sample sizes of 200, 600, 1200, and 2000 subjects.

For each sample size, 200 datasets are generated from the true model and then fitted by

our mixture model. The accuracy of our model estimates is summarized using means and

standard deviations. We also investigate the probabilities of a favorable response and the

probabilities of being in the beneficial subgroups given the parameter estimates, since these

probabilities are later used to determine the optimal DTRs. Lastly, we compare the estimated

optimal DTRs selected by our model and Q-learning in these aspects:

1. The mean values of estimated optimal DTRs over the entire population.

2. The probabilities of selecting the true optimal DTR over the entire population.

3. Pairwise comparisons of the estimated optimal DTRs between two methods within the

same dataset.

In the last subsection, we conduct simulation studies considering both numerical and

categorical time effects. We restrict our attention to only a sample size of N = 1200. As

before, 200 datasets are generated for each model and we fit each of these datasets using

a model with and without time effects. We compare these two fits to quantify how much

bias will incur when time effects are ignored. Then, we compare our model with Q-learning

in terms of finding the optimal DTR. Hypothesis testing is also conducted to detect the

existence of time effects.
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3.4.1 Independence Association Structure

Given one response covariate and one subgroup covariate, there are 9 parameters in the

treatment response component of the model, and 8 parameters in the subgroup component

of our model. The values used to simulate the data are listed in the second column of Table

3.5.

Table 3.5. Means and standard deviations of parameter estimates for 4-
treatment independence model when N = 2000

Parameters True value Mean Std. Dev.
γ1,0 0.30 0.3247 0.1691
γ1,1 1.50 1.5469 0.2109
γ2,0 1.00 1.0848 0.2986
γ2,1 -3.00 -3.1207 0.4734
γ3,0 -1.00 -0.9920 0.1171
γ3,1 1.00 1.0081 0.1252
γ4,0 0.50 0.5308 0.1732
γ4,1 -1.00 -1.0424 0.1610
τ1 0.80 0.8035 0.1218
β1 -0.50 -0.5198 0.0979
τ2 0.30 0.2938 0.0893
β2 0.60 0.6299 0.0876
τ3 1.10 1.1070 0.1629
β3 0.40 0.4118 0.1377
τ4 0.60 0.6023 0.1155
β4 1.00 1.0178 0.1182
σ 0.1 0.2014 0.2484

Also included in Table 3.5 are the means and the standard deviations of the 200 estimates

when sample size N = 2000. For all subgroup and response parameters, the means are close

to true values with fairly small standard deviations. The means and the standard deviations

for the other sample sizes are summarized in the Appendix B (see Table B.1.). As the sample

size increases, the precision increases. We observe large variation when N = 200. When N

is 600 or greater, the estimations are relatively decent and variation becomes smaller.

In addition to parameter estimates, we also looked at the probabilities and examined how

the marginal subgroup probability changes given different XZ , as well as how the response
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Figure 3.2. Boxplots of differences between the true and the estimated sub-
group probabilities given XZ = −1, 0, 1 for independence model. The red line
is difference = 0.

probability on its favorable treatment subgroup changes given XR. These probabilities are

computed based on parameter estimates and used later for computing the value of the DTR.

They have a more direct impact on the estimated value of DTR.

For each set of parameter estimates, we calculate the subgroup probabilities P (Zk =

1|XZ) and the response probabilities P (Y = 1|XR, At = k, Zk = 1, s = 0) given XZ = −1, 0, 1

and XR = −1, 0, 1, for k = 1, ..., 4. Then we compare the estimated probabilities with

the true probabilities. Figures 3.2 and 3.3 show the boxplots of the difference between the

estimated and the true probabilities (estimated - true) of each subgroup probabilities and the

response probabilities on each treatment, respectively, under different sample sizes. When
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Figure 3.3. Boxplots of differences between the true and the estimated prob-
abilities of a favorable response the treatment on its favorable subgroup given
XR = −1, 0, 1 for independence model. The red line is difference = 0.

the sample size is small (N = 200 and N = 600), the range of these probabilities is relatively

large. We also notice that some medians of these probabilities are slightly shifted away from

the true value when N = 200. This could be due to the lack of observations on all possible

trajectories. As the sample size increase, bias decreases and precision increases.

Comparison with Q-learning

Given the baseline covariates x, our approach selects the estimated optimal DTR Dopt
x

through an exhaustive search, comparing the values of all possible DTRs. As for Q-learning,
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similar to Chapter 2 (see Section 2.3.2), linear regression models are adopted to fit the Q-

functions stagewise. We now include both baseline covariates XR and XZ as the predictors

into the model, as well as the interaction terms between covariates and treatments. For

patients who receive two treatments, we model the Q-function Q2(x, a1, y1, a2) first. Based

on the parameter estimates, we find the optimal decision rule d∗
2(x, a1, y1) by comparing the

estimated Q-functions over all possible treatments. We then use all patients’ data to fit

the linear model for Q1(x, a1) and determine the optimal rule d∗
1(x). The optimal DTR is

d∗ = (d∗
1, d∗

2).

The above estimated optimal DTRs selected by both methods are at the individual level,

i.e., based on a specific x. Our interest is in our model’s capability of selecting the DTR

with a higher value, if followed by the overall population. Therefore, rather than checking

the value of estimated optimal DTR for a given x, we focus on the true average value of the

DTR for the entire population. For the purpose of comparison, suppose that the distribution

of covariates and true parameter values are known. We can then average over the covariate

distribution. Letting f be the density function of the baseline covariates, we compute the

value of D as follows:

V (D) =
∫

V (D|x)f(x)dx.

For these simulations, this value is computed using the true parameter values.

It is intuitive to consider Monte Carlo methods to approximate the population value of

the estimated optimal DTRs. One can generate a large set of X from its density function f

and compute the average of V (D|x). Since we assume that XZ and XR follow independent

standard Normal distributions, we can use the Gauss-Hermite quadrature to estimate the

value for both approaches. For each replicate, we first generate a set of 400 two-dimensional

Gauss quadrature nodes as X = (XZ , XR) and obtain their corresponding weights. Then for

each x = (xZ , xR) and DTR D, we compute its value V (D|x) based on the true parameters.

Finally, by calculating the weighted sum of V (D|x) over x, we obtain the expected value.

We summarize the results for both our mixture model and Q-learning using means and

standard deviations of the estimated optimal DTR values (Table 3.6). The true optimal DTR

value is 0.5552. As the sample size increases, for both methods, the value of the estimated

85



optimal DTR increases and approaches the true optimal DTR value. After a sample size of

600, the values of estimated DTRs in both methods are close to the true optimal DTR value.

This implies that the true optimal DTR has been selected in most cases. For all sample sizes,

the mean and standard deviation support our approach over Q-learning, especially when the

sample size is very small. This is most likely due to the fact that Q-learning determines the

optimal decision rule based only on the information from each stage, while our model-based

approach combines information across stages. Thus, given that our model is approximately

correct, our approach has more power to infer the optimal DTR, especially for very small

sample sizes.

Table 3.6. Means and standard deviations of estimated optimal DTR values
for independence model

sample size Mixture Model Q-learning
Mean Std. Dev. Mean Std. Dev.

N = 200 0.5451 0.0074 0.4934 0.0348
N = 600 0.5521 0.0026 0.5277 0.0182
N = 1200 0.5533 0.0015 0.5397 0.0099
N = 2000 0.5540 0.0011 0.5442 0.0077

Figure 3.4 shows the smoothed histograms of values for the estimated optimal DTR.

As the sample size increases, for both approaches, the peak gets closer to the value of true

optimal DTR but there is a much larger range of estimated optimal DTR values for Q-

learning than our model-based approach.

Table 3.7. Means and standard deviations of probabilities of finding the
optimal DTRs for independence model

sample size Mixture Model Q-learning
Mean Std. Dev. Mean Std. Dev.

n = 200 74.74% 10.98% 40.87% 18.69%
n = 600 85.42% 8.38% 60.51% 16.28%
n = 1200 88.15% 7.29% 68.70% 12.78%
n = 2000 90.48% 7.13% 72.56% 11.77%

Another way to look at this is to consider the frequency of each approach finding the

optimal DTR. These values are also estimated by numerical integration. For each replicate,
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Figure 3.4. Smoothed histograms of values for estimated optimal DTR for
independence model

we generate a set of 400 two-dimensional Gauss quadrature nodes as X = (XZ , XR) and

corresponding weights. For a given x = (xZ , xR), we find the estimated optimal DTR

D and check whether it is the true optimal DTR or not. We then sum up the weighted

frequency of selecting the true optimal DTR to get the probability of selecting the true

optimal DTR over the population. Table 3.7 summarizes the means and standard deviations

of these proportions under the different sample sizes for both methods. The probability

increases as the sample size increases. We observe a significant increase for both methods

in the probability when N increases from 200 to 600. Our method has better chances to

find the optimal DTR on the overall population under all sample sizes. In fact, the mean

and standard deviation of the proportion in our model when N = 200 are close to those of

Q-learning when N = 2000. This is consistent with what we see in Figure 3.4.
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Table 3.8. Percentages of selecting DTRs with higher values for independence model
N Percentage

200 99.0%
600 98.0%
1200 98.5%
2000 99.5%

Figure 3.5. Heatmap of probabilities of selecting the true optimal DTR when
N = 200 and 2000 by both mixture model and Q-learning for independence
model

Finally, we compare the values of the estimated optimal DTRs for each replication and

determine the proportion of times that our model outperforms Q learning. Table 3.8 sum-

marizes the result. We see that the proposed model chooses a better DTR than Q-learning

almost all the time, regardless of sample size.
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This can also be seen visually in Figure 3.5. It shows a heatmap of these proportions of

finding the true optimal DTR over different value of x. The lighter the blue is, the higher

chance to find the true optimal DTR. Both methods show significant improvement when

the sample size increases from 200 to 2000 but it is also clear that our method provides

substantial improvements.

Comparing these figures with Figure 3.1, we see that the deep blue area areas represent

the areas near the boundaries where two different DTRs have the same value. This means

that the value of the second best DTR is likely very close to the value of the optimal

DTR. Consequently, selecting the second best DTR as the optimal DTR in these regions

won’t result in a significant drop in the estimated population value. Q-learning, even when

N = 2000, has much wider ranges around these boundaries, explaining in general why Q-

learning does more poorly.

3.4.2 Homogeneous Association Structure

We now expand the association structure to the more complicated homogeneous associ-

ation, which includes 10 non-zero second-order natural parameters instead of just the four

first-order ones. Consequently, there are now 29 parameters, 20 for the subgroup component

to go along with the 9 for the response component.

Table 3.9. Means and standard deviations of response parameter estimates
for 4-treatment homogeneous association model when N = 2000

Parameters True value Mean Std. Dev.
τ1 0.80 0.7844 0.1544
β1 -0.50 -0.5328 0.1347
τ2 0.30 0.2790 0.1857
β2 0.60 0.6225 0.1507
τ3 1.10 1.1106 0.1147
β3 0.40 0.4049 0.0906
τ4 0.60 0.6038 0.1179
β4 1.00 1.0175 0.1176
σ 0.1 0.2168 0.2782
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Tables 3.9 and 3.10 summarize the parameter settings used to generate the data and the

resulting means and standard deviations of the 200 estimates when sample size N = 2000.

The means of the parameter estimates are close to the true values with very small standard

deviations. Compared with the means and standard deviations of the independent structure

in Table 3.5, we observe larger standard deviations of subgroup parameters in homogeneous

association structure.

Table 3.10. Means and standard deviations of subgroup parameter estimates
for 4-treatment homogeneous association model when N = 2000

Parameters True value Mean Std. Dev.
γ1,0 -0.6000 -0.6282 1.6587
γ1,1 1.5000 1.5794 1.5838
γ2,0 -1.0000 -1.1420 1.7147
γ2,1 1.3000 1.6053 1.3630
γ3,0 0.9000 1.4504 1.2738
γ3,1 1.3000 1.6440 1.7896
γ4,0 0.6000 1.0589 1.2792
γ4,1 -1.5000 -1.6717 1.7642
γ12,0 0.5 0.7883 1.5340
γ12,1 -1 -1.2829 1.9526
γ13,0 0.2 0.1512 1.5343
γ13,1 -1.2 -1.3751 1.1891
γ14,0 0 -0.1352 1.4182
γ14,1 0 0.3751 1.8368
γ23,0 0 -0.2291 1.7623
γ23,1 0 0.1033 1.9614
γ24,0 -0.5 -0.6973 1.5568
γ24,1 -1 -1.2954 1.3044
γ34,0 -0.4 -0.8386 1.5516
γ34,1 1.4 1.4541 1.8672

As in our other simulation studies, we also compute the subgroup probability and the

response probability on its favorable treatment subgroup given different XZ and XR, respec-

tively. For each set of parameter estimates, we calculate the marginal subgroup probabilities

P (Zk = 1|XZ) and the response probabilities P (Y = 1|XR, At = k, Zk = 1, s = 0), for

k = 1, 2, 3, 4 given XZ = −1, 0, 1 and XR = −1, 0, 1. Figures 3.6 and 3.7 show the boxplots

of the differences between the true and the estimated subgroup probabilities, and the differ-
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Figure 3.6. Boxplots of differences between the true and the estimated sub-
group probabilities given XZ = −1, 0, 1 for homogeneous association model.
The red line is difference = 0.

ences between the true the estimated response probabilities on each treatment respectively.

In both figures, as sample size increases, bias decreases and precision increases. We see a

larger range and more outliers in Figure 3.6, which is the reflection of larger variation in

subgroup parameter estimates, especially when the sample size is small. Similarly, when

comparing with the boxplots subgroup probabilities under the independent model structure

(Figure 3.2), we see larger range in Figure 3.6. This is likely due to the more complex

subgroup structure under the homogeneous association structure.
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Figure 3.7. Boxplots of differences between the true and the estimated prob-
abilities of a favorable response the treatment on its favorable subgroup given
XR = −1, 0, 1 for homogeneous association model. The red line is difference
= 0.

Comparison with Q-learning

Like we did in the independence association structure, we compare our proposed approach

with Q-learning. Table 3.11 summarizes the means and standard deviations of the estimated

optimal DTR values. The true optimal DTR value is 0.5397. For both methods, the value

increases with the sample size. A substantial jump occurs when the sample size increases

from 200 to 600. For a large sample size, both are close to the true optimal DTR value.

Figure 3.8 shows the smoothed histograms of values of estimated optimal DTRs. Since
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our approach utilizes information across stages, our approach can select DTRs with higher

values and outperforms Q-learning under different sample sizes. Furthermore, we find that

the performance of our model when N = 600 is similar to Q-learning when N = 2000.

Table 3.11. Means and standard deviations of estimated optimal DTR value
for homogeneous association model

sample size Mixture Model Q-learning
Mean Std. Dev. Mean Std. Dev.

n = 200 0.5198 0.0142 0.4988 0.0293
n = 600 0.5343 0.0046 0.5216 0.0151
n = 1200 0.5375 0.0017 0.5306 0.0062
n = 2000 0.5386 0.0009 0.5320 0.0059

Figure 3.8. Smoothed histograms of values for estimated optimal DTR for
homogeneous association scenario
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Table 3.12. Means and standard deviations of probabilities of finding the
optimal DTRs for homogeneous association model

sample size Mixture Model Q-learning
Mean Std. Dev. Mean Std. Dev.

n = 200 66.00% 11.28% 49.14% 17.38%
n = 600 79.78% 7.75% 65.61% 13.44%
n = 1200 86.25% 6.46% 74.30% 8.05%
n = 2000 90.25% 5.47% 76.71% 7.65%

We estimated the proportion of times that we find the optimal DTR. The results are

summarized in Table 3.12. The chance of selecting the true optimal DTR by our model

when N = 600 is similar to Q-learning when N = 2000.

Table 3.13. Percentages of selecting DTRs with higher values for homoge-
neous association model

N Percentage
200 77.5%
600 88.5%
1200 95.0%
2000 96.5%

In each replication, we compare the values of these estimated optimal DTRs for both

approaches and find the percentage when the proposed model selects DTRs with a higher

value than Q-learning. Table 3.13 presents the results. In this case, there is a much large

difference between the two methods. It suggests that Q-learning may be struggling with the

correlated subgroup structure of the data.

We further investigate the heatmap of probabilities of finding the true optimal DTR given

specific baseline covariate x = (xZ , xR), shown in Figure 3.9. The boundaries where the true

optimal DTR changes from one to another are clearly present under both methods. For our

method, there is an obvious improvement when the sample size increases from 200 to 2000.

On the contrary, for Q-learning, significant improvement happens in the upper center, but

not in the upper left and upper right. It even gets worse in some areas around the boundaries.

It’s likely the result of the more complicated subgroup structure. Q-learning cannot capture

94



Figure 3.9. Heatmap of probabilities of selecting the true optimal DTR when
N = 200 and 2000 by both mixture model and Q-learning for homogeneous
association model

the underlying relationships among subgroups while our approach takes account of them.

This result is consistent with Table 3.13.

3.4.3 Time Effects

For both numerical and categorical time effects models, the independence association

structure parameters that were used for the subgroup model component as Section 3.4.1. As

for the response model, since the inclusion of time effects increases the number of parameters,

we assume no interactions between the treatments and XR. For both types of time effects,

simulation studies are conducted with sample size N = 1200 only.
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Numerical Time Effects

Under the assumptions of zero natural response rate, the probability of a successful

response pt = P (Yt = 1|XR, at, z, s) with numerical time effects in Equation (3.25) now can

be expressed as:

log( pt

1 − pt

) = τat + xRβ + δat(t − 1) + s, if zat = 1

pt = 0, if zat = 0

where t = 1, 2, 3, 4. There are 10 parameters in the logistic regression part: (τ1, τ2, τ3, τ4,

β, δ1, δ2, δ3, δ4, σ2). The true values are:

Parameters τ1 τ2 τ3 τ4 β δ1 δ2 δ3 δ4 σ2

True value 0.8 0.3 1.1 0.6 -0.5 -0.3 -0.1 -0.15 -0.2 0.01

According to this parameter setting, Treatment 1’s effect diminishes over time the most.

Treatment 4 ranks second, followed by Treatment 3. Treatment 2 is the most resilient over

time.

Figure 3.10. Histograms of estimated numerical time effects. The red line
represents the true value.
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Figure 3.10 shows the histogram of the four treatment-specific numerical time effects,

where the red lines indicate the true values. As we can see, the estimates are fairly close to

the true values. Thus, our model is capable of estimating the time effects adequately.

We then fit the data using the model without incorporating time effects as in Section 3.4.1

(δ = 0), and compare treatment parameter estimates between models with and without time

effects. Figure 3.11 presents the histograms of the estimates of each treatment effect, where

the red lines indicate true parameters. Obvious biases among estimates τ1, τ2, τ3, and τ4 are

observed from the model without time effects. Particularly, the differences in treatment effect

estimates between the two models increase when the time effects of the treatments intensify.

For example, the average difference of estimated treatment effect τ1 between models with

time effects and without time effects is 0.4032, but only 0.1205 in τ2, where time effects are

−0.3 and −0.1 respectively. This is because when the time effects are missed, the model

underestimates treatment effects to compensate for the lower success rates in later stages.

Figure 3.11. Histograms of estimated treatment effects w/o time effects for
data with numerical time effects. The red line represents the true value.
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We compare these results for the models, with and without time effects with Q-learning

in finding the optimal DTRs. Q-learning is implemented in the same way as described in

Section 3.4.1. Time effects are not included in the linear regressions for Q-functions. For

each replicate, we compute the value of estimated optimal DTR and the probabilities of

finding the true optimal in the overall population. Tables 3.14 and 3.15 present the mean

and standard deviations of these results. As we expect, our mixture model with correct

time effects has the highest probability to find the optimal DTR for the overall population

and achieves the highest values of estimated optimal DTRs. Not surprisingly Q-learning

outperforms our approach when our mixture model does not include time effects. This is

because Q-learning’s stage-wise approach to learning allows for treatment effects to vary

across stages.

Table 3.14. Means and standard deviations of estimated optimal DTR values
when data are generated with numerical time effect. True optima DTR value
= 0.4767

Model Mean Std. Dev.
Mixture model with time effects 0.4727 0.0059

Mixture model without time effects 0.4426 0.0042
Q-learning 0.4526 0.0163

Mixture model after hypothesis testing 0.4608 0.0141

Table 3.15. Means and standard deviations of probabilities of finding true
optimal DTRs when data are generated with numerical time effect

Model Mean Std. Dev.
Mixture model with time effects 64.39% 24.65%

Mixture model without time effects 23.88% 6.27%
Q-learning 43.82% 22.06%

Mixture model after hypothesis testing 52.97% 23.93%

We conduct hypothesis testing on the existence of time effects. Since we already fit the

model with and without time effects, we can apply the likelihood ratio test and directly

compute the test statistic λLR described in Section 3.3.3. Given α = 0.05, it turns out that

in 111 out of 200 (55.5%) datasets, the null hypothesis is rejected. For these datasets where
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there is significant evidence that time effects exist, we can use the mixture model with time

effects to fit the data. As for the rest, we use the model without time effects to fit the data.

The mean and standard deviation of the estimated optimal DTRs and the probabilities of

finding true optimal DTRs after conducting hypothesis testing are also included in Tables

3.14 and 3.15. We can see that the proposed model performs slightly better than Q-learning

after checking for time effects.

Figure 3.12. Smoothed histograms of estimated optimal DTR values in nu-
merical time effect scenario

Figure 3.12 shows the smoothed histograms of the values of estimated optimal DTRs

from different approaches when the data are generated with numerical time effects. When

the model is correctly specified, the values of estimated optimal DTRs are close to the value

of the true optimal DTR. When time effects are ignored, our model is likely to underperform

relative to Q-learning. As a result, the values of those estimated optimal DTRs are lower. As

for the mixture model after hypothesis testing, we can see that the distribution is bimodal.
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This is because we select DTRs with higher values when the existence of time effects is

detected, and vice versa when the time effects are ignored.

Table 3.16. Percentage of finding a better DTR than Q-learning when nu-
merical time effects exist

Method Percentage
Mixture model with time effects 89.0%

Mixture model without time effects 26.5%
Mixture model after hypothesis testing 67.0%

We further compare the values of the estimated optimal DTRs from each replication.

Table 3.16 presents the percentage of finding a better DTR than Q-learning does. After we

conduct the hypothesis testing, the percentage of finding a better DTR increases from 26.5%

to 67.0%.

Categorical Time Effects

The response model with categorical time effects was described Section 3.3.2 (Equation

3.26). In this simulation study, to avoid overfitting, we also assume that the categorical

time effects are not treatment-specific, i.e., all δωk,t = δt. Along with other assumptions,

pt = P (Yt = 1|XR, at, z, s) can be written as:

log( pt

1 − pt

) = τat + xRβ + δt1{t ≥ 1} + s, if zat = 1

pt = 0, if zat = 0

where t = 1, 2, 3, 4 and δ1=0. There are 9 parameters in the logistic regression part: (τ1, τ2,

τ3, τ4, β, δ2, δ3, δ4, σ2). The true values of them are:

Parameters τ1 τ2 τ3 τ4 β δ2 δ3 δ4 σ2

True value 0.8 0.3 1.1 0.6 -0.5 -0.1 -0.3 -0.6 0.01

With this setting, the time effect changes nonlinearily and patients’ situations will be

devastated in later stages.
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Same as in Section 3.4.1, our model is capable of estimating the time effects accurately as

shown in Figure 3.13. We also observe biased estimates of treatment effects from the model

without time effects in Figure 3.14. However, since time effects are not treatment-specific,

the differences are similar among the treatments.

Figure 3.13. Histograms of estimated categorical time effects. The red line
represents the true value.

Figure 3.14. Histograms of estimated treatment effects w/o time effects for
data with categorical time effects. The red line represents the true value.
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We also perform the likelihood ratio test on the existence of the time effects. In 90 out

of 200 (45%) datasets, the null hypothesis is rejected. As we did previously, we fit the model

with categorical time effects if there is significant evidence of the existence of time effects,

and the model without time effects, otherwise. The results are compared among the mixture

models with and without time effects, Q-learning, and the mixture model after checking for

time effects. Tables 3.17 and 3.18 present the mean and standard deviations of the values

of estimated optimal DTRs and the probabilities of finding the true optimal DTR. Our

conclusions are the same as in Section 3.4.1. When time effects are correctly specified in the

model, our approach outperforms Q-learning. Q-learning has advantages over our approach

when time effects are ignored in our response model component. However, after hypothesis

testing on time effects, our model performs slightly better.

Table 3.17. Means and standard deviations of estimated optimal DTR values
when data are generated with categorical time effect. True optima DTR value
= 0.4882.

Model Mean Std. Dev.
Mixture model with time effects 0.4864 0.0020

Mixture model without time effects 0.4593 0.0044
Q-learning 0.4679 0.01389

Mixture model after hypothesis testing 0.4712 0.01411

Table 3.18. Means and standard deviations of probabilities of finding true
optimal DTRs when data are generated with categorical time effects.

Model Mean Std. Dev.
Mixture model with time Effects 72.57% 15.01%

Mixture model without time Effects 45.35% 7.01%
Q-learning 37.30% 16.03%

Mixture model after hypothesis testing 58.05% 18.13%

Figure 3.15 shows the smoothed histograms of these values of estimated optimal DTRs.

Again, the model with time effects yields higher values of DTRs. There are improvements

for the mixture model after conducting hypothesis testing for time effects, compared with

the model without time effects.
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Figure 3.15. Smoothed histograms of estimated optimal DTR values

Table 3.19. Percentage of finding a better DTR than Q-learning when cate-
gorical time effects exist

Method Percentage
Mixture model with time effects 99.5%

Mixture model without time effects 21.5%
Mixture model after hypothesis testing 58.5%

We further compare the values of the estimated optimal DTRs from each replication.

Table 3.19 presents the percentage of finding a better DTR than Q-learning does. The

percentage of finding a better DTR increases from 21.5% to 58.5% if we conduct hypothesis

testing for the existence of time effects. Thus, it is important to identify the time effects and

incorporate them into the model.
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3.5 Application

The dataset from MD Anderson advanced prostate cancer trial includes baseline co-

variates, for example, age, prior definitive local therapy, strata, hemoglobin and alkaline

phosphatase levels. In Section 2.4, we assume no prior knowledge about baseline covariates

and apply our no-covariate model to fit the data. This time, we would incorporate some key

covariates and assess the data again.

In previous literature, it has been found that age is a significant covariate[ 69 ]. Strata (low

or high disease volume), defined in [  7 ], is also often considered when analyzing the data[  7 ],

[ 68 ]. Therefore, we include these two covariates and view age as the covariate that impacts

responses directly while strata as the covariate that might imply latent subgroups. Data are

normalized before fitting. A binary score is used as the utility.

Table 3.20. Subgroup parameter estimates of MD Anderson prostate cancer trial
Parameters γ1,0 γ1,1 γ2,0 γ2,1
Estimates 1.2799 4.1186 7.2291 8.6395

Parameters γ3,0 γ3,1 γ4,0 γ4,1
Estimates 3.5000 4.9387 -8.2952 1.4961

Parameters γ12,0 γ12,1 γ13,0 γ13,1
Estimates -3.9761 -0.5351 -4.5929 -6.9271

Parameters γ14,0 γ14,1 γ23,0 γ23,1
Estimates 8.2896 1.2236 0.5340 -6.1322

Parameters γ24,0 γ24,1 γ34,0 γ34,1
Estimates 2.1038 -4.6506 5.7771 3.0087

There are four treatments/regimens (CVD, KA/VE, TEC, and TEE). We use our model

with the homogeneous association assumption for subgroups to fit the dataset. Furthermore,

we assume that age has the same effect on the responses. As a result, our model has 20

subgroup parameters and 6 response parameters. Table 3.20 presents subgroup parameter

estimates.

We take a close look at how strata plays the role in subgroup probabilities. Figures 3.16

and 3.17 illustrate the underlying subgroup structure for low and high disease volume. For

low volume disease, all marginal subgroup probabilities are above 95%, and 2-way interaction

104



subgroup probabilities are also very high, with 94.81% being the lowest. This indicates that

there might be little heterogeneity among any of the four chemotherapy treatments. Patients

with low volume disease, in general, can respond to any chemotherapy. On the other hand,

for high volume disease, we observe huge differences among marginal subgroup probabilities.

Only 23.62% can respond to CVD and 75.49% respond to TEE, while 99.68% and 94.08%

can respond KA/VE and TEC respectively. This finding verifies our results in Section

2.4, where we apply our model without covariates and discover heterogeneity in CVD and

TEE treatment responses. Furthermore, 2-way interaction subgroup probabilities are also

consistent with our findings (Table 2.16) in Section 2.4. TEC and KA/VE have the highest

overlap probability, followed by TEE and KA/VE, and TEC and TEE, which are similar.

Others have similar low probabilities.

Figure 3.16. Bar plot of marginal subgroup probabilities of MD Anderson
prostate cancer trial

We present response parameter estimates in Table 3.21. As we can see, patient’s chances

of responding favorably decreases as age increases. This is consistent with the findings [ 69 ].

KA/VE has the lowest subgroup-specific treatment effect, followed by CVD. TEC and TEE

have similar treatment effects, while TEE is slightly higher.
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Figure 3.17. Bar plot of two-subgroup overlap probabilities of MD Anderson
prostate cancer trial

Table 3.21. Response parameter estimates of MD Anderson prostate caner trial
Parameters τ1 τ2 τ3 τ4 βage σ
Estimates 0.3624 0.2366 0.4154 0.4301 -0.2510 0.0088

Figure 3.18. Line plots of DTR values of MD Anderson prostate cancer trial

Our goal is to discover the optimal individualized DTR for a certain disease volume and

age. Based on the parameter estimates above, we calculate the values of DTRs given age for

both low and high volume diseases. Figure 3.18 shows the line plot of age and DTR values.
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As we can see, at both disease volumes, all DTR values go down when age increases.

When disease volume is high, DTR TEC / KA/VE yields the highest value and should

be assigned to patients as the optimal DTR. It is consistent with Thall’s work[ 48 ], where

TEC is the best first-line treatment while KA/VE is the best second-line treatment. The

interesting part among patients with low volume disease. Our analysis shows that though

these DTR values are relatively close to each other, TEC / TEE is the highest. Thus, the

baseline covariate strata indeed determines the optimal individual DTR.
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4. SUMMARY AND FUTURE WORK

4.1 Summary

Research in DTRs plays an important role in the management of long-term care for

chronic diseases and complex behaviors. In this dissertation, we focused on multistage

management programs with a binary response (i.e., the patient either responds or does not

respond to treatment). Using data collected from a randomized trial like a SMART design,

we described a model-based approach that can be used to compare the values of DTRs

and find the optimal one. This modeling approach is unique in that it addresses discrete

heterogeneity through the use of latent subgroups. We assume that for each treatment,

patients can be divided into two subgroups with one subgroup representing patients who

could benefit from the treatment and the other including those patients who would not.

This particular type of heterogeneity has received little attention so far in DTR research.

Due to concerns over model misspecification, a large number of methods that have been

proposed to estimate the optimal DTR are model-free, and therefore, cannot model the

discrete heterogeneity. In taking a model-based approach, if the model is reasonable, we can

not only find the optimal DTR but also provide prognostic information about the treatments.

Furthermore, when the same treatments are assigned repeatedly across stages, outcome

information can be combined across stages, thereby making our model-based approach more

sample-efficient. As a result, we can better estimate the value of DTRs when our proposed

model fits the data well. Currently, only very limited work has been attempted to characterize

how patients react to treatments stage-by-stage through model-based methods [  7 ], [  49 ]. We

also take this a step further by incorporating both the continuous heterogeneity that can

be described by a smooth function of baseline covariates, and the discrete heterogeneity due

to latent subgroups. Our primary contributions in this dissertation are to raise awareness

of the discrete heterogeneity when determining optimal DTR and propose a model-based

framework that accounts for it when the outcome is binary.

In Chapter 2, we introduced our model-based approach without considering baseline

covariates. We described the probabilistic framework of treatment/response trajectories

for a SMART design under this model and our approach to estimation. We focused on
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the situation where the same K treatments are under consideration at each stage. In this

setting, there are a total of 2K subgroup proportions, K treatment effects, and the variance of

a subject-specific random effect as unknown model parameters. The subject-specific random

effect is also included in the logit model.

Because each of the 2K subgroups has a unique response profile to the K treatments, we

describe our model as a mixture of mixed logit models. We use an EM algorithm with Gaus-

sian Hermite quadrature for the integration approximation, to estimate model parameters.

Because mixture models often suffer from nonidentifiability, we include a discussion about

this, distinguishing the identifiability of model parameters and the value of a DTR.

In Chapter 3, we extend our approach to include baseline covariates, thereby making the

optimal DTR more individualized. These covariates are separated into two classes — those

that are related to the probability of an effective response and those that are associated

with the probability of subgroup identity. We include the former covariates in the logistic

regression component of our model. As for the latter, we utilize the multivariate Bernoulli

distribution to incorporate them into the determination of the latent subgroup. Both inde-

pendent and homogeneous association structures are considered. In addition, we extend our

model to incorporate two kinds of time effects into the logistic regression model for responses

and illustrate how to test the existence of time effects. We adapted our EM algorithm to

include covariates and time effects.

We conclude each of these chapters with simulation studies. These simulations demon-

strate the accuracy of our approach, although larger than typical sample sizes are needed

for high precision. We also compare the performance of our model-based approach to Q-

Learning. When the model assumptions are correct, our approach outperforms Q-Learning.

Our model’s chance of finding the true optimal DTR is higher than Q-Learning. Even if the

true optimal DTR is missed, we select DTRs with higher values as the estimated optimal

DTR. This is because Q-Learning determines the optimal decision rule based solely on the

information from a given stage, while our approach is capable of fully utilizing information

across stages when treatments are repeatedly assigned across stages. Also, Q-Learning ap-

pears to struggle with a correlated subgroup structure and produces biased estimations of

Q-functions. These advantages rely on valid model assumptions. In Section 3.4.3, we further
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fit the data by a model which ignores the existing time effects. Compared with the model

without time effects, Q-Learning can naturally adjust for time, and as a result, select the

DTRs with higher values. However, hypothesis testing can be used to detect the time effects

and find the adequate model most of the time.

4.2 Future Work

As with any novel statistics approach, several challenges arose that were not fully ad-

dressed in this dissertation. This section highlights some of the important ones.

4.2.1 The Existence of Subgroups

In all the simulations presented in the dissertation, we assumed that there were underlying

latent subgroups. An obvious follow-up question is ”how does the approach work if there are

no subgroups?” In other words, it is worth exploring the performance when all the subjects

do respond to each of the K treatments. Our expectations are that our model approach will

be robust but further work is needed to validate this claim. We did conduct a preliminary

study to assess this.

A total of 200 datasets with sample size N = 1200 were generated with XR and XZ

following independent standard Normal distributions. Instead of using the multivariate

Bernoulli model to generate the patient’s subgroup, we assumed Z = (1, 1, 1, 1) for all

patients in the data generation process. Treatment responses are generated as in Equation

(3.17), which parameters are set as below:

τ1 β1 τ2 β2 τ3 β3 τ4 β4 σ2

0.1 -0.5 0.5 0.6 -0.2 0.4 0.3 1 0.01

Each dataset is fitted by the proposed model with the independent subgroup structure

that is described in Section 3.1.2. Figure 4.1 shows the boxplots of estimated subgroup

probabilities given XZ = 1 and −1. As we can see, the distributions of subgroup probabilities

for each subgroup are similar. Also, the majority of the estimated probabilities are close to

1, regardless of the value of XZ . These indicate that our model can, to some degree, detect

that there are no latent subgroups.
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Figure 4.1. Boxplots of estimated subgroup probabilities given XZ = 1 and
−1. The true probability is 1.

Table 4.1. Means and standard deviations of estimated optimal DTR values
when discrete heterogeneity doesn’t exist. True optima DTR value = 0.6655

Model Mean Std Dev
Mixture Model 0.6649 0.0001

Q-Learning 0.6443 0.0179

Table 4.2. Means and standard deviations of probabilities of finding the true
optimal DTR when discrete heterogeneity doesn’t exist.

Model Mean Std Dev
Mixture Model 98.45% 2.36%

Q-Learning 73.48% 21.16%

We further fit the data by Q-Learning. Tables 4.1 and 4.2 present the results of the value

of the estimated optimal DTR and the probabilities of finding the true optimal DTR for

both methods. As we can see, our model has advantages over Q-Learning. This is because

our model can adequately estimate the subgroup probabilities (close to 1) and also utilize

information of treatment effects across stages, and therefore, is more efficient.
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4.2.2 Model Diagnostics and Goodness of Fit of Linearity Assumptions

As we saw in Section 3.4.3, when time effects are ignored, our model has difficulty in

providing accurate parameter estimates and finding the optimal DTR. Therefore, to achieve

better performance, it is important to conduct model diagnosis and check the goodness of

fit.

In both the multivariate Bernoulli model component describing subgroup probabilities

and the mixed effect logistic model component for the response, we assume that the baseline

covariates enter the model linearly. In this section, we consider some simple examples and

show how to use randomized quantile residual plots for model diagnostics and the Hosmer-

Lemeshow test for the goodness of fit. Further investigation and more comprehensive hy-

pothesis testing approaches are needed to verify that these methods are helpful tools in

general.

Randomized Quantile Residual Plots

Residual plots can play a crucial role in checking the linearity assumption of the covari-

ates. They are commonly used in the diagnostics of the linear model. However, we cannot

easily use traditional residual plots for logistic regression. Dunn (1996) proposed randomized

quantile residuals [ 85 ], which was designed for generalized linear models. For each response,

a uniform random variable is generated by inverting the cumulative distribution function.

Then, the randomized quantile residual is defined as the value that finds the equivalent

standard normal quantile.

Our model is much more complex than a logistic regression model. At each stage, there

is a mixture of mixed logistic regression models, and together, we can have multiple stages in

our full-fledged model. As a result, we cannot apply the randomized quantile residual plots

to our model directly, but the core idea can be borrowed. In this section, we illustrate how

to use randomized quantile residual plots to assess the linearity assumption in the response

model component and the subgroup model component respectively. Our analysis is carried

out based on generated datasets and assume there is one baseline covariate XR for the

response model and one XZ for the subgroup model.
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We first consider the response model component. Recall the protocol of MD Anderson’

trial, subjects receive the same treatment in the next stage if they respond in the current

stage. Since we assume the natural response rate is zero, the individual must be in the

favorable treatment subgroup if the patient responds favorably. Therefore, if subjects receive

the treatment for the first time and respond favorably at Stage t, they will be in the favorable

subgroup of the treatment at Stage t + 1. For example, in Stage 1 subjects are randomly

assigned a treatment. If they respond favorably, then we know at Stage 2 they receive the

treatment again and are in the favorable subgroup. As a result, given that subjects respond

favorably to treatment ωk for the first time at the previous stage, the logit function can be

written as:

log( pt

1 − pt

) = τωk
+ xRβωk

+ s, (4.1)

which doesn’t depend on the latent subgroup indicator anymore.

We create a subset of data by keeping the current stage information only if subjects

respond favorably to the treatments at the previous stage. We then fit the subset by mixed-

effects logistic model directly and evaluate the linearity assumption in the response model

component.

In Example 4.1, we generate a dataset of independence model with N = 1200. A

quadratic term of XR is included in the logistic regression:

log( pt

1 − pt

) = τωk
+ xRβωk

+ x2
Rζωk

+ s,

Below is the parameter setting for the quadratic terms:

ζ1 ζ1 ζ1 ζ1

0.25 0.5 0 -0.8

The absolute values of coefficients of X2
R rank as treatment 4 > 2 > 1 while no X2

R term for

treatment 3, i.e., ζ4 > ζ2 > ζ1 > ζ3 = 0. The rest of parameters are the same as in Section

3.4.1.

After the subset of data is extracted, we fit the data with mixed effects logistic model

as in Equation (4.1), pretending we don’t know the existence of the quadratic term. We
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Figure 4.2. Residual plot of XR in Example 4.1

integrate the subject effect and calculate the probability of P (Y |XR). Randomized quantile

residuals are then computed and plotted versus XR as in Figure 4.2. Clearly, we can see

a bending curve in Treatment 4. Treatments 1 and 2 also show the sign of non-linearity.

These indicate potential model misspecification and suggest that a nonlinear form should be

considered in the response model component.

Since the subgroup identity is unobserved, it is not feasible to solely check the linearity

assumption in the subgroup model component. Instead, we can calculate the randomized

quantile residuals of the mixture model for the probability of responding favorably at each

stage. Recall that in the later stages of the trial, this probability also depends on previous
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treatment and response trajectory. For example, the probabilities of responding favorably

to the same treatment at Stage 2 are different between the subjects who receive this treat-

ment and respond favorably at Stage 1 and the subjects who receive another treatment and

respond unfavorably at Stage 1. Therefore, additional calculations conditioning on previous

treatment and response trajectories are required to compute the probability of responding

favorably at later stages of the trial. For simplicity, we only focus on the analysis of the data

collected at Stage 1.

The probability of Y1 is P (Y1|XZ , XR) = ∑
Z P (Z|XZ)×P (Y1|XR, Z). Previously, we’ve

shown how to perform model diagnostics for the response model component. If the response

model P (Y1|XR, Z) is appropriate, then by checking the randomized quantile residual plots

of P (Y1|XZ , XR), we indirectly evaluate the model fit of the subgroup model P (Z|XZ).

A dataset of independence model with N = 1200 is generated for Example 4.2. We

include X2
Z in multivariate Bernoullli model, which now is:

log P (Zi = 1, and others are 0|xZ)
P (Z = (0, 0, 0, 0)|xZ)) = γi,0 + xZγi,1 + x2

Zγi,2 (4.2)

where i = 1, 2, 3, 4. Below is the parameter setting in the multivariate Bernoullli model.

γ1,0 γ1,1 γ1,2 γ2,0 γ2,1 γ2,2 γ3,0 γ3,1 γ3,2 γ4,0 γ4,1 γ4,2

0.3 1.5 0 1 -2 -1 -1 1 2 0.5 -1 1.5

The absolute values of coefficients of X2
Z in the subgroup model rank as treatment 3 >

4 > 2, while no X2
Z term in the subgroup model for treatment 1. The parameter setting of

the response model is the same as in Section 3.4.1.

We apply our mixture model with the independence subgroup structure to fit the data.

Based on the parameter estimates, we integrate out the subject effect and calculate the

probability of P (Y1|XZ , XR) at Stage 1. We further get the randomized quantile residuals.

Figure 4.3 presents the randomized quantile residual plots of XZ . The plots of Subgroups 3

and 4 suggest non-linearity while subgroup 2 shows a marginal sign. No significant trend is

detected for subgroup 1. This is consistent with our parameter setting for X2
Z .

Based on Example 4.1 and Example 4.2, non-linear relationships in the model can be

detected by checking the randomized quantile residual plots of XR and XZ separately. In
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Figure 4.3. Residual plot of XZ in Example 4.2

practice, given any dataset, we can first evaluate the linearity assumption in the response

model component through randomized quantile residual plots of XR. According to the pat-

tern of the residual plots, additional terms may be considered. If the model looks appropriate,

then we start to evaluate the linearity assumption in the subgroup model component.

Hosmer-Lemeshow test

Besides randomized quantile residual plots, we can check the linearity assumption by

the goodness of fit test. Hosmer-Lemeshow test[ 86 ] is a statistical test for goodness of fit

for the logistic regression model. This test divides the data into groups according to the
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predicted probabilities first, and then evaluates whether or not the observation matches the

expectation, which is similar to Pearson’s chi-square test. In this section, we illustrate how

to conduct the Hosmer-Lemeshow test to check the goodness of fit of our proposed model.

Due to the reason mentioned before that the probability of responding favorably depends

on the previous treatment and response trajectory, we conduct our analysis for Stage 1 data

only. To get the Hosmer-Lemeshow test statistic, we first fit the data by our proposed model

and obtain the predicted probability of P (Y1|XZ , XR) based on the parameter estimates.

Next, we sort P (Y1|XZ , XR) from the smallest to the largest and equally divide them into M

groups in order. Then, in group m (m = 1, ..., M), we count the number of observed Y = 0

and Y = 1, which are denoted as O0,m and O1,m respectively. Let E1,m be the expected

number of Y = 1. It is computed as the sum of the probabilities of responding favorably

for all subjects in the group m. Similarly, we get E0,m, the expected number of Y = 0,

as the sum of the probabilities of an unfavorable response for all subjects in the group m.

Eventually, the Hosmer-Lemeshow test statistic can be calculated as below:

H =
M∑

m=1

(
(O1,m − E1,m)2

E1,m

+ (O0,m − E0,m)2

E0,m

)

In Example 4.1, following the steps above and dividing the data into 10 groups, we can

get the Hosmer–Lemeshow test statistics and p-values shown in Table 4.3. With α = 0.05,

we can reject the null hypothesis of the linearity model for treatments 4 and 2, which have

the top 2 large coefficients of X2
R.

Table 4.3. Hosmer-Lemeshow test statistic for quadratic form in response
model in Example 4.1

Treatment 1 2 3 4
Hosmer-Lemeshow statistic 9.010408 16.56187 6.407669 14.89042

p-value 0.3414187 0.03500873 0.6016663 0.06131151

We do the same for the subgroup model in Example 4.2. Table 4.4 shows the Hosmer-

Lemeshow test statistic. It shows linearity assumption fails for subgroups 2 and 3 while 4 is

on the edge.
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Table 4.4. Hosmer-Lemeshow test statistic for quadratic form in subgroup
model in Example 4.2

Treatment 1 2 3 4
Hosmer-Lemeshow statistic 6.048619 17.444 25.76688 14.97124

p-value 0.6417857 0.02580385 0.001151223 0.059707

As we can see from both tables, the Hosmer-Lemeshow test can detect the non-linearity

in the model when the magnitude of the quadratic term is large enough.

4.2.3 Computational Challenge

Our current estimation approach involves the EM algorithm, which can be slow to con-

verge. In our setting, this is further complicated by the heavy computation needed at the

M step when baseline covariates are taken into consideration. For example, in Chapter 3

where we add a covariate in both the response and subgroup components of the model, we

presented that the conditional expectation of complete data log-likelihood can be maximized

by maximizing two parts separately. One is for parameters for the subgroup identity, and

the other is for parameters in the logistic regression for the response. The latter

Q2(θ|θ(t))

=
2K∑
l=1

P (C i
l = 1|Y i, Ai, X i, θ(t)){

N∑
i=1

log
∫

{
Ti∏

t=1
exp(yi

tη
i
t − log(1 + ηi

t))}φ(s)ds},

includes the random subject effect that we have to integrate out. Since there is no closed-

form solution, Gauss-Hermite quadrature with 25 points is implemented to approximate the

integration numerically. Then Q2(θ|θ(t)) is approximated by

2K∑
l=1

P (C i
l = 1|Y i, Ai, X i, θ(t))

{ N∑
i=1

log
{ 1√

π

J∑
j=1

(
Ti∏

t=1
exp(yi

tη̃
i
tj − log(1 + η̃i

tj)))gj
}}

.

Due to the complex form of this approximation, i.e., taking the logarithm of summations,

we use the numerical gradient instead of the analytic one. As a result, this part takes a

significantly longer time for maximization. For example, with sample size N = 2000, at
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each iteration in the EM algorithm, maximization over subgroup parameters takes from a

few seconds to one and half minutes. In contrast, maximizing Q2(θ|θ(t)) can take from 100

seconds to more than 25 minutes. In general, we might wait for 4 to 6 hours when N = 600,

and 15 to 30 hours when N increases to 2000.

One immediate opportunity is to reduce the computational time in the approximation of

Q2(θ|θ(t)). The expected value of Q2(θ|θ(t)) can be viewed as the sum of log-likelihood of

the trajectory weighted by conditional subgroup probabilities given observed data. As men-

tioned in Lee (2016) [ 87 ], according to this inherent structure of the EM algorithm, most of

the expressions that need to be evaluated on the M-steps can be performed independently

for each subgroup. Therefore, we could consider parallelizing the calculation of Q2(θ|θ(t))

by subgroups. The conditional expectation of log-likelihood of trajectory given subgroup

identity is computed on an individual core. Then, the results from each core are combined

to obtain the global result as if it requires the whole data to be analyzed at once. Given

that K treatments of interest mean 2K subgroups, by paralleling the data across subgroups,

the evaluation time can be reduced to about 1/2K of the original time. As the number of

treatments increases, the computational time decreases dramatically compared with com-

puting everything on a single core. Note that the partition takes place on subgroups rather

than the dataset. This is because the sample size is often relatively small in the research of

DTR. Dividing the dataset into many very small chunks may result in unfulfilled utilization

of each core’s computation power and more time spent on bringing results back.

So far, only two baseline covariates are considered in our simulation in Chapter 3. When

more baseline covariates are available, we anticipate the computation time of the current EM

algorithm to dramatically increase. One may have to find better methods for maximization.

For example, Laplace approximation, Adaptive Gaussian Quadrature approximation and

Penalized quasi-likelihood can be considered for the approximation of the integration. These

methods are widely used for generalized linear mixed models, and SAS and R packages have

been developed. However, not much work has been done to extend them for latent subgroups.

In addition, Monte Carlo EM can also be implemented to avoid numerical approximation.

It is worth comparing the performance of these methods and figuring out the best one for

our model.
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4.2.4 Model Extensions

In order to accurately find the optimal DTR, it is of great importance to avoid model

misspecification and to identify all possible factors that affect individuals’ responses. Our

model consists of two parts. One is to model subgroup memberships, and the other is to

model treatment response given subgroup memberships. Given that subgroup membership

does not change over time, it is enough to utilize baseline covariates to predict subgroup

memberships. On the other hand, there are still many other covariates that can be taken

into account for modeling treatment responses. In Section 3.3.4, we explore the model

performance under time effects. We foresee potential opportunities of incorporating more

factors into the logistic regression model for treatment response.

Residual effects of previous treatments, for example, are worth checking. Sometimes

when there is no washout period between stages, the treatment can have a direct effect on

the individual when assigned at the stage of its application, as well as an ith-order residual

effect at the ith stage after the treatment’s application is discontinued [ 88 ]. In general, the

second and higher-order residual effects are negligible, but the first-order residual effect can

be incorporated into the logistic regression for the response model. For example, when t > 2,

the logit function in our mixture of mixed Logit models (see Equation (2.2)) can be written

as:

log( pt

1 − pt

) = µ +
K∑

k=1
1{dt(a1, ..., yt−1) = ωk}τωk

zωk
+

K∑
k=1

1{at−1 = ωk}δωk
+ s

where ∑K
k=1 1{at−1 = ωk}δωk

is the first order residual effect of previous treatment.

Besides, like Thall (2007) [  7 ], one can consider including previous stage response Yt−1 as

well as entire response history {Y1, ..., Yt−1} into the model at tth stage. It measures how

previous responses, especially unfavorable responses, affect the individual’s response at later

stages.
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Currently, in our work, we assume the individual random effect stays the same across

stages. This assumption can be relaxed. Let st be the subject effect at tth stage and

s = (s1, ..., sT ) is the vector of st. We can rewrite Equation (2.2) as:

log( pt

1 − pt

) = µ +
K∑

k=1
1{dt(a1..., yt−1) = ωk}τωk

zωk
+ st.

where s follows multivariate Normal distribution N (0, ΣT ). ΣT is the covariance matrix of

within-subject errors. The same changes can be made for Equation (3.2). One can make

assumptions on the covariance matrix, like variance components, first-order autoregressive

AR(1), or even unstructured covariance, to allow for a more complex correlation structure

of subject effects. As for model estimation, multivariate Gauss-Hermite quadrature [ 89 ] can

be implemented to evaluate the integration numerically.

4.2.5 Continuous Response

In this research, we focus on multi-stage trials with binary responses, like respond or not

respond. Sometimes, continuous responses are observed at each stage. We may observe a

certain subgroup of patients have a higher treatment effect than the rest of the patients do.

In these cases, with consideration of latent subgroups, we can assume that the response is

a mixture of Normal distributions. As for model estimation, we could either use the EM

algorithm or adopt the Newton-Raphson family method. If the EM algorithm is adopted,

random effects are viewed as missing values. Compared with a binary response, the complete-

data likelihood is a joint Normal distribution, and therefore a much nicer form can be

obtained after taking the logarithm on the likelihood. Furthermore, if the responses follow a

Normal distribution, the optimization of the log-likelihood can be transferred to a non-linear

least-square problem. Cécile Proust [  90 ], [ 91 ] has pointed out that the Marquardt algorithm

[ 92 ] has advantages over the EM algorithm due to better convergence rate and computational

speed.
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4.2.6 Identifiability

When baseline covariates are not considered in Chapter 2, we list the sufficient condition

of local identifiability. We also demonstrate our model-based approach is still able to estimate

trajectory probability and the value of DTRs, even though in the situation when parameters

are not identifiable in section 2.3. However, identifiability remains an unsolved issue if

we plan to extend our model to incorporate more baseline covariates and other factors

like residual effects and history responses, or to relax subject effect covariance constraints.

Future research needs to be done to figure out these identifiability conditions, in order

to guarantee the unique parameter estimates and better understand the heterogeneity in

treatment response.
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A. FIGURES

Figure A.1. Boxplots of estimated treatment effects of setting 1. The red
line represents the true value.
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Figure A.2. Boxplots of estimated subgroup proportions of setting 1. The
red line represents the true value.

Figure A.3. Boxplots of estimated treatment effects of setting 2. The red
line represents the true value.
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Figure A.4. Boxplots of estimated subgroup proportions of setting 2. The
red line represents the true value.
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B. TABLES

Table B.1. Means and standard deviations of parameter estimates for 4-
treatment independence model when N = 200, 600, and 1200

True N = 200 N = 600 N = 1200
value Mean Std.Dev. Mean Std.Dev. Mean Std.Dev.

γ1,0= 0.3000 0.7721 1.4998 0.4312 0.3790 0.3535 0.2170
γ1,1= 1.5000 2.1696 1.6928 1.6167 0.3883 1.5772 0.2673
γ2,0= 1.0000 2.0438 2.0994 1.3162 0.7815 1.0658 0.4582
γ2,1= -3.0000 -4.9298 3.4035 -3.4768 1.1635 -3.1306 0.6473
γ3,0= -1.0000 -1.0178 0.4423 -0.9539 0.2350 -0.9805 0.1637
γ3,1= 1.0000 1.1812 0.5451 1.0088 0.2359 0.9982 0.1758
γ4,0= 0.5000 0.8590 1.2793 0.5792 0.3746 0.5619 0.2121
γ4,1= -1.0000 -1.4278 1.3171 -1.0777 0.3602 -1.0469 0.1975
τ1 = 0.8000 0.8045 0.4349 0.8019 0.2269 0.7805 0.1481
β1= -0.5000 -0.5694 0.3781 -0.5255 0.1765 -0.5254 0.1334
τ2 = 0.3000 0.2697 0.3372 0.2849 0.1935 0.2979 0.1223
β2= 0.6000 0.6495 0.2931 0.6440 0.1695 0.6160 0.1162
τ3= 1.1000 1.8046 6.8807 1.1395 0.3540 1.1077 0.2426
β3= 0.4000 0.4560 2.7781 0.4493 0.3036 0.4381 0.2023
τ4 = 0.6000 0.6462 0.4639 0.6000 0.2277 0.5724 0.1523
β4= 1.0000 1.1634 0.5538 1.0806 0.2317 1.0095 0.1533
σ= -2.3026 0.1949 0.3156 0.2569 0.3192 0.2020 0.2731
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