
GRAPH REPRESENTATION LEARNING FOR
UNSUPERVISED AND SEMI-SUPERVISED LEARNING

TASKS
by

Mengyue Hang

A Dissertation

Submitted to the Faculty of Purdue University

In Partial Fulfillment of the Requirements for the degree of

Doctor of Philosophy

Department of Computer Science

West Lafayette, Indiana

December 2021

THE PURDUE UNIVERSITY GRADUATE SCHOOL
STATEMENT OF COMMITTEE APPROVAL

Dr. Jennifer Neville, Chair

Department of Computer Science and Statistics

Dr. Bruno Ribeiro

Department of Computer Science

Dr. Yexiang Xue

Department of Computer Science

Dr. Ming Yin

Department of Computer Science

Approved by:

Dr. Kihong Park

2

ACKNOWLEDGMENTS

First I would like to express my deepest gratitude to my advisor, Jennifer Neville, for being

the ideal advisor and a great role model. Her enthusiasm, her inspiration, and her endless

support helped make this daunting task an enjoyable experience. During my time at Purdue,

Jan has imparted innumerable lessons, from practical instructions on research, writing, and

presentation, to insightful guidance on academia and industry – which transformed me from

a fresh graduate student to an independent researcher and an experienced ML practitioner. I

would not be where I am today without her.

I would also like to thank Bruno Ribeiro and Yexiang Xue for being on my PhD committee,

Alex Pothen and Ming Yin for being external members on my preliminary and final exams

respectively. Exposure to their supplementary views helped me broden and deepen my sense

of research. Moreover, I greatly appreciate the guidance and assistance that Bruno has

offered, particularly in the topics of representation learning and GNNs.

I thank Carolina Barcenas, Bill Campbell, Jack Kearney, Paul Bennett, Tobias Schnabel,

Longqi Yang, Haoming Chen, Chongxi Bao, for hosting my internships at Visa, Amazon,

Microsoft and Facebook. Throughout these internship experiences, I developed an appreciation

for applied machine learning research, with a focus on developing efficient, explainable

approaches to solving real-world problems with massive datasets.

I would like to thank all my lab mates: Jean Lin, Jason Meng, Jiasen Yang, Ellen Lai,

Hogun Park, Gui Gomes, Mahak Goindani, Giselle Zeno, and all the others – for always

providing their invaluable input and comments in practice talks, lab meetings, and extended

research discussions.

Next, I would like to express my appreciation to my friends, who have helped me maintain

my sanity throughout all the challenges in graduate school. To Tamalika Mukherjee, Linjie

Li and Yanjun Wang, who have offered me their continuous love and support along the way –

even at great distances. Thank you my friends Zitao Li, Yue Xing, Zixun Yu, Ruying Bao,

Ran Xin. This journey wouldn’t have been the same without you.

3

To my parents, I cannot thank them enough for providing me with unfailing support and

continuous encouragement throughout my years of study. And to my boyfriend, for being my

strength, my joy, and my happiness.

4

TABLE OF CONTENTS

LIST OF TABLES . 9

LIST OF FIGURES . 11

ABSTRACT . 13

1 INTRODUCTION . 14

1.1 Problem Statement . 16

1.2 Main Hypotheses and Proposed Research . 17

1.3 Thesis Organization . 18

2 BACKGROUND . 19

2.1 Graph representation learning approaches 19

2.1.1 Unsupervised Node embeddings . 19

Heterogeneous graph embedding . 20

2.1.2 Semi-supervised Graph Neural Networks 20

2.2 Equivalence concepts for social networks . 21

2.3 Collective learning and inference for relational data 22

3 NODE EMBEDDINGS ON HETEROGENEOUS GRAPHS FOR POI RECOM-

MENDATION . 25

3.1 Introduction . 25

3.2 Data Characteristics . 27

3.2.1 Data sample . 27

3.2.2 Temporal dynamics of user preferences 28

3.2.3 Co-visitation behavior . 30

3.2.4 Exploration behavior . 31

3.2.5 Proposed EDHG Method . 32

3.2.6 Heterogeneous Graph Construction 32

3.2.7 Graph Embedding . 34

5

3.2.8 Predicting POIs using Embeddings 37

3.2.9 Suggesting Friends using Embeddings 39

3.3 Experimental Evaluation . 39

3.3.1 Methodology . 39

3.3.2 Comparison Models . 40

3.3.3 Predictive Effectiveness . 41

3.3.4 Parameter Sensitivity . 42

3.3.5 Friend Suggestion Effectiveness . 45

3.3.6 Visualization of Embeddings . 47

3.4 Related Work . 47

3.5 Discussions . 49

4 REQE: TOWARDS REPRESENTATION-BASED EQUIVALENCE FOR NODE

EMBEDDINGS, IN SINGLE GRAPHS AND SETS OF GRAPHS 50

4.1 Introduction . 50

4.2 Representation-based Equivalence . 52

4.2.1 Background . 52

4.2.2 Representation equivalence . 54

Regular equivalence embedding with a single graph 54

Regular equivalence embedding with multiple graphs 55

4.3 Proposed framework: Reqe . 57

4.4 Related work . 63

4.5 Expressive power of Reqe . 66

4.6 Experiments . 67

4.6.1 Datasets . 67

4.6.2 Methodology . 69

4.6.3 Task (A): Equivalence encoding . 70

4.6.4 Task (B): Structural property prediction 72

4.6.5 Task (C): Node classification . 73

4.6.6 Parameter sensitivity . 77

6

4.6.7 Comparison with GraphSAGE . 77

4.7 Conclusion . 78

4.8 Appendix: Proof of Theorems . 80

4.8.1 Proof for Theorem 4.5.1 . 80

4.8.2 Proof for Theorem 4.5.2 . 82

4.8.3 Proof for Theorem 4.5.3 : Boosted expressiveness through recursive steps 83

5 A COLLECTIVE LEARNING FRAMEWORK TO BOOST GNN EXPRESSIVE-

NESS FOR NODE CLASSIFICATION . 84

5.1 Introduction . 84

5.2 Problem formulation . 85

5.3 Proposed Framework: Collective Learning 87

5.4 Collective Learning Analysis . 92

5.4.1 Expressive power of CL+GNN . 92

5.4.2 How CL+GNN further expands the power of few-layer WL-GNNs . . 94

5.4.3 Optimization of CL+GNN . 94

5.5 Experiments . 95

5.5.1 Experiment Setup . 95

5.5.2 Results . 99

5.5.3 Ablation study . 101

CL+GNN performance with varying training label rates and sample

size K . 104

5.6 Related Work . 105

5.7 Conclusion . 107

5.8 Appendix: Proofs of theorems . 108

5.8.1 Proof of Theorem 5.4.1 . 108

5.8.2 Proof of Theorem 5.4.2 . 109

5.8.3 Proof of Proposition 5.4.1 . 112

5.8.4 Proof of Proposition 5.4.2 . 114

6 SUMMARY AND FUTURE DIRECTIONS . 115

7

6.1 Summary . 115

6.2 Implications and Future Directions . 117

6.2.1 On node expressivity . 117

6.2.2 On ensemble learning involving multiple embeddings 117

6.2.3 GNNs for link prediction in heterogeneous graphs 118

6.2.4 On efficient collective learning GNNs 119

6.2.5 Node equivalence on dynamic graphs 119

REFERENCES . 120

8

LIST OF TABLES

3.1 Dataset description . 28

3.2 Prediction accuracy . 41

3.3 Prediction accuracy v.s. temporal granularity. 44

4.1 Characterization of existing methods . 67

4.2 Dataset statistics . 69

4.3 Mean and standard deviation for the distance between node pairs in the node
embedding, with % reduction from all pairs to isomorphic pairs. OOM means
“out of memory” error. Bold numbers represent the best performing model in
each column. Reqe-2 uses two properties: degree and stationary distribution;
Reqe-3 uses degree, stationary distribution and closeness centrality; Reqe-5 uses
degree, stationary distribution, betweenness centrality, closeness centrality and
kcore centrality. 70

4.4 MSE on predicting structural properties: clustering coefficient (cc) and second-
order degree centrality (sod) . 72

4.5 Accuracy of node classification task on various datasets. Bold numbers represent
the best performing model in each column. 73

4.6 Accuracy@k and balanced accuracy of detecting dropout students on student
interaction graphs. 75

4.7 Performance of GraphSAGE and Reqe-3 (the best performing Reqe variant) for
task (A): mean and standard deviation for the distance between node pairs in the
node embedding, with % reduction from all pairs to isomorphic pairs. The results
for Reqe are copied from Table 4.3 . 79

4.8 Performance of GraphSAGE and Reqe for task (C): accuracy of node classification
task on various datasets. The results for Reqe are copied from Table 4.5 79

5.1 Dataset statistics . 95

5.2 Node classification accuracy with unlabeled and partially-labeled test data. Num-
bers in bold represent significant improvement in a paired t-test at the p < 0.05
level, and numbers with ∗ represent the best performing method in each column.
Coraconnect and Pubmedconnect are our processed graphs with the connected split
illustrated in Figure 5.2 (left). 97

5.3 Model performance on Cora (unlabeled test data) where we vary the sampling
procedure and try ensemble. The alternative methods achieved sub-optimal
performance compared to CL+GNN. 101

9

5.4 Model performance on Cora (partially-labeled test data) where we vary the usage
of two components. Both components add to the improvements of CL+GNN, and
the ensemble method fails to improve GRAND. 102

5.5 Node classification accuracy varying number of training labels on Cora dataset.
Numbers in bold represent significant improvement in a paired t-test at the
p < 0.05 level. 104

10

LIST OF FIGURES

3.1 Optional caption for list of figures . 29

3.2 Histogram of co-visitation size for an academic building (CS), the Gym, and a
residence hall, over all times. 31

3.3 Average ratio of new POIs: (3.3a - 3.3b) Purdue data (weeks/days), and 3.3c

foursquare and Gowalla dataset (from [43]). 31

3.4 Heterogeneous graph constructed using eight example check-in records and venue
information . 33

3.5 Learning curve for visited POIs . 43

3.6 Learning curve for unvisited POIs . 43

3.7 Optional caption for list of figures . 45

3.8 Number of frequent users v.s. MRR scores . 47

3.9 User embeddings . 48

4.1 Average v.s. quantiles v.s. full data as model input 56

4.2 % reduction on three small graphs . 72

4.5 Node classification accuracy with multiple graphs (synthetic data) varying sample
size . 76

4.6 Node classification performance with multiple graphs (real-world data) 77

4.7 Parameter sensitivity w.r.t weighting factors . 78

5.1 CLGNN model framework. Each iteration consists of four steps: (Step 1) Sample
a random mask; (Step 2) Obtain predicted label distribution using the WL-GNN
structure; (Step 3) Sample predicted labels for whatever nodes are masked, use
again as input to the WL-GNN and average representations over the sampled
predicted labels; (Step 4) Perform one optimization step by minimizing a negative
log-likelihood upper bound. 87

5.2 Different data splits between our inductive connected split (left) and conventional
GNN random split (right) . 96

5.3 CL+GNN performance with and without predicted labels on Cora and Pubmed.
X-axis refers to iteration number t in Section 5.3 102

5.4 Impact of sample size K. 105

5.5 Training/testing graphs. Colors represent available node labels, and testing nodes
are marked with question marks. WL-GNN cannot differentiate between the red
and green nodes. 109

11

5.6 WL-GNN using 2nd-order neighborhood cannot differentiate node 1 and 2, but
CL+GNN built on this WLGNN can break the local isomorphism. 113

12

ABSTRACT

Graph representation learning and Graph Neural Network (GNNs) models provide flexible

tools for modeling and representing relational data (graphs) in various application domains.

Specifically, node embedding methods provide continuous representations for vertices that

has proved to be quite useful for prediction tasks, and Graph Neural Networks (GNNs) have

recently been used for semi-supervised node and graph classification tasks with great success.

However, most node embedding methods for unsupervised tasks consider a simple, sparse

graph, and are mostly optimized to encode aspects of the network structure (typically local

connectivity) with random walks. And GNNs model dependencies among the attributes

of nearby neighboring nodes rather than dependencies among observed node labels, which

makes it not expressive enough for semi-supervised node classification tasks.

This thesis will investigate methods to address these limitations, including:

(1) For heterogeneous graphs: Development of a method for dense(r), heterogeneous graphs

that incorporates global statistics into the negative sampling procedure with applications in

recommendation tasks; (2) For capturing long-range role equivalence: Formalized notions

of representation-based equivalence w.r.t regular/automorphic equivalence in a single graph

or multiple graph samples, which is employed in a embedding-based models to capture

long-range equivalence patterns that reflect topological roles; (3) For collective classification:

Since GNNs model dependencies among the attributes of nearby neighboring nodes rather

than dependencies among observed node labels, we develop an add-on collective learning

framework to GNNs that provably boosts their expressiveness for node classification tasks,

beyond that of an optimal WL-GNN, utilizing self-supervised learning and Monte Carlo

sampled embeddings to incorporate node labels during inductive learning for semi-supervised

node classification tasks.

13

1. INTRODUCTION

Machine learning on graphs is an important and ubiquitous task with a variety of applications

ranging from social networks, recommendation systems, knowledge graphs, and drug discovery.

The central problem in this domain is finding a way to represent, or encode high-dimensional

graph structure into low-dimensional feature vectors so that it can be easily exploited by

machine learning models for downstream tasks. Among the graph representation learning

models, graph embedding and Graph Neural Networks are two powerful types of models for

tackling mostly unsupervised and semi-supervised tasks respectively, and there has a surge

of approaches that seek to develop more powerful representation learning methods under

various settings.

In this thesis we consider a graph representation learning problem, where the objective

is to learn node representations for a given graph that encodes the structural information,

node attributes and partial labels if available. Specifically, if given a graph G with vertex

set V (N = |V |) and adjacency matrix A, the task is to learn a node representation Zv

for each node v ∈ V , which are then evaluated with graph tasks such as node classification,

i.e. predict P (Y |Z) where Y is node labels. For example, in a citation network, nodes can

be publications and edges are citations between them, then the task is to learn a vector

representation for each publication and use the representation to predict its research area.

Depending on the problem setting, the input graph G might have different specifications,

and in this thesis we consider (1) graphs with multiple node types, (2) graphs with labels

Y reflecting topological roles, (3) multiple graphs with varying connectivity structure, (4)

graphs with partial labels and attributes X.

We argue that previous graph representation learning methods fail to consider the

characteristics of these specific settings which are common in real-world applications. For

example, spatio-temporal social networks are weighted, heterogeneous graphs, and the node

activity level in a transportation network is independent of its position in the graph, but

closely related to its topological role; and Graph Neural Networks applied to partially labeled

graphs doesn’t consider joint label distribution (P (Y |G)) with independent inference for

node classification problem.

14

There are several deficiencies when applying these methods to certain graphs with more

complicated signals.

• Biased negative sampling due to heterogeneity of graph structure Instead of

computing an expensive |V ||E| objective, most node embedding models adopt a negative

sampling approach to make the optimization tractable, which might be biased when

there is large variations of graph structures. In such cases, negative sampling allows

a node to choose its true neighbor as a negative sample, especially when high-degree

nodes are present in graphs with increased density, e.g. user-building interaction graphs

with density of 20% in some spatio-temporal social networks.

• Failure to capture long-range structural similarity Much of the work in graph

embedding based on random walks has been designed to preserve node proximity (e.g.

[1], [2], [3]) explicitly or implicitly. This works for detecting communities especially

in networks with high degree of homophily. However, it fails to identify nodes with

topologically similar network neighborhoods that reside in potentially distant parts of

the network. For example, in a protein-protein interaction network, two proteins with

the same functionality might not interact with other or have common neighbors, but

may be embedded in similar subgraphs.

• Incapability of modeling multiple graphs with varying connectivity Previous

graph representation learning methods mostly consider a single graph, however, in

reality we are often given a set of graphs with varying connectivity. In this case, each

single graph might be a noisy indication of regular equivalence, but the set of graph

structures encodes the equivalence notion. For example, given a set of temporal graphs,

two nodes might not be exactly equivalent at each timestamp, but their behaviors across

all timestamps are regularly equivalent. Existing methods for sets of graphs mainly

consider the dynamics, thus fail to capture the behaviors across the graphs. Therefore,

the notion of regular equivalence, and regular equivalence in graph embedding, should

be extended to sets of graphs.

15

• Ignoring label dependence in partially-labeled graphs When tackling semi-

supervised node classification problems, existing GNNs perform independent infer-

ence, which means it considers a conditional independence assumption (i.e. factoring

P (Y |X, A) as ∏
v∈V P (Yv|X, A)), while collective classification methods used in Sta-

tistical Relational Learning (SRL) [4] are designed to model the joint distribution of

P (Y |X, A). Collective classification can be unnecessary with most expressive node

representation, thus the conditional independence assumption of GNNs wouldn’t matter.

But as shown in previous works ([5]–[8]), GNNs are not most expressive. Therefore, the

joint distribution of P (Y |X) contains more signals than what is captured by the GNN.

1.1 Problem Statement

This thesis aims to understand the unique challenges of applying node embedding and

graph neural networks to unlabeled and partially-labeled graphs with complex signals, and

use this understanding to (1) motivate the development of new models that are more suitable

or more powerful than existing methods to capture more signals in graphs, and (2) improve

the model performance for various down-stream prediction tasks under both unsupervised

and semi-supervised settings. Therefore, we consider the following three central research

questions and the extended sub-questions.

1. How to customize node embedding models to take into account characteristics of real-

world graphs for link prediction tasks, specifically weighted heterogeneous graphs? When

given a dense(r) weighted graph with heterogeneous node types, the negative sampling

objective of existing node embedding models (for homogeneous and heterogeneous

graphs) fails by allowing the model to choose neighboring nodes as negative samples,

which also causes over-shrinkage of embeddings of high degree nodes. How to adapt

node embedding models to capture these more complex signals in graphs and how

to evaluate the efficacy of these unsupervised models via downstream tasks are all

important questions to consider.

2. How to capture long-range structural equivalence patterns, in single graphs and sets of

graphs? The notions of structural and regular equivalence are often used to reason about

16

the roles and relationships among nodes. However, these formulations typically focus

on discrete roles which limits its usage for real-world applications. Node embeddings

provide a continuous representation that has recently proved to be quite useful for

prediction tasks, but most of the current node embedding models fail to consider high-

order graph structure. How to learn node embeddings that capture the information

of node roles remains an open question. In addition, it is natural to extend these

concepts to reflect the sets of graph structures and their relations, and to consider node

embedding methods that are able to encode these information.

3. How and to which extent can collective learning/inference improve the expressive power

of Graph Neural Networks? Given collective inference (CI) has been extensively used in

the past to boost weak relational models (e.g. relational Naive Bayes [9], [10], relational

logistic regression [11], it is natural to consider and verify whether collective learning

or collective inference could also boost the expressive power of GNNs. Much of the

efforts on GNNs have been focusing on designing new architectures to capture more

complicated graph structures, whereas few attention has been paid to incorporate label

dependence by CI, and the usage of label predictions in GNN structures needs careful

design.

1.2 Main Hypotheses and Proposed Research

Throughout this thesis, we examine these hypotheses: (1) Node embedding methods can

be enhanced to consider complex signals in dense, heterogeneous graphs (2) Collective learning

and inference can boost the expressivity of Graph Neural Networks for semi-supervised node

classification; and (3) Node representations can be learned from a single graph or a set of

graphs to detect topological roles by considering the extended notion of regular or automorphic

equivalence.

In the course we break the investigation into the following three parts based on the stream

of research questions highlighted in the previous section.

1. A node embedding model that work for heterogeneous spatio-temporal social networks

for link prediction tasks;

17

2. Formalized notions of representation-based equivalence w.r.t regular/automphic equiv-

alence on a single graph or multiple graph samples, and a flexible node embedding

framework to capture them.

3. A collective learning framework for Graph Neural Networks to boost expressive power

for semi-supervised classification tasks;

1.3 Thesis Organization

The rest of this document is organized as follows.

• In Chapter 2 , We introduce the background of important concepts about graph repre-

sentation learning methodologies.

• Chapters 3 , 4 and 5 build the main contributions of this dissertation. In Chapter 3 ,

we present a node embedding model which works for dealing with dense(r), heteroge-

neous graphs with application in POI recommendation; In Chapter 4 , we introduce

Reqe, a node embedding framework for capturing topological equivalence patterns in

single graphs and multiple graphs; In Chapter 5 , we introduce a collective learning

framework for Graph Neural Networks to boost expressive power for semi-supervised

node classification tasks.

• Finally, Chapter 6 concludes with a summary of our contributions and outlines the

future directions.

18

2. BACKGROUND

This thesis is built upon ideas from several research areas. In this chapter, we survey several

basic concepts and/or models in these areas, which will be applied, analyzed and/or extended

in the rest of this thesis.

2.1 Graph representation learning approaches

2.1.1 Unsupervised Node embeddings

Unsupervised graph embedding methods seek to learn representations that encode the

graph structure. These embeddings have demonstrated outstanding performance on a number

of tasks including node classification, knowledge-base completion, semi-supervised learning,

and link prediction. In general, these methods (incl. [3], [2], [12], [13], [14]) operate in two

discrete steps: First, they sample pair-wise relationships from the graph through random

walks and counting node co-occurances. Second, they train an embedding model e.g. using

Skipgram of word2vec [14], to learn representations that encode pairwise node similarities.

The Skip-gram architecture is a one hidden layer neural network originally introduced for the

word embedding problem, which has been successfully extended to the network embedding

problem by treating the sampled node sequence as word sequence. In the network context,

skip-gram learns for each node u two d-dimensional vectors, an embedding vector Zu and a

context vector Z ′
u, by maximizing the log probability of observed network neighborhoods of

the nodes:

max
Z,Z′

∑
u∈V

∑
v∈Nu

log P (v|u; Z, Z ′)

where Nu is the neighborhood of u and V is the set of all nodes; The connectivity probability

P (v|u; Z, Z ′) is modeled by a softmax:

P (v|u; Z, Z ′) = exp(Z ′T
v · Zu)∑

w∈V exp(Z ′T
w · Zu)

19

Since this objective is computationally infeasible for large-scale networks because each of

the softmax terms requires summation over all vertices, Negative sampling (NS) provides a

computationally feasible approximation to the objective by replacing each log P (v|u; Z, Z ′)

term with

log(σ(Z ′T
v · Zu)) +

k∑
i=1

Ew∼q(v) log(σ(−Z ′T
w · Zu))

where q(v) is the noise distribution, which by default is proportional to dβ
v where dv is degree

of node v, and degree power β is a hyper-parameter, conventionally set to 3/4 because of

good empirical performance [14].

Heterogeneous graph embedding

A large number of real-world graphs or networks are inherently heterogeneous, involving

a diversity of node types and relation types. Most existing heterogeneous graph embedding

methods are based on the idea of metapaths (see e.g. [15]). A metapath is an ordered

sequence of node types and edge types defined on the network schema, which describes a

composite relation between the nodes types involved. We can view a metapath as high-order

proximity between two nodes. Most of the current methods doesn’t consider edge weights

and treat all nodes equally.

2.1.2 Semi-supervised Graph Neural Networks

Recently, there is increasing interest in extending deep learning approaches for graph

data. Motivated by CNNs, RNNs, and autoencoders from deep learning, new generalizations

of important operations have been rapidly developed to handle the complexity of graph data.

Like other graph embedding methods, Graph Neural Networks (GNNs) also generate node

representation (h based on graph structure and node attributes. Modern GNNs follow a

neighborhood aggregation strategy, where we iteratively update the representation of a node

by aggregating representations of its neighbors. After k iterations, a node’s representation

h(k)
v captures the structural information within its k-hop network neighborhood, and self-

20

representation of the node is combined using a COMBINE function. Formally, the k-th layer

of a GNN is defined as

a(k)
v = AGGREGATE(k)({h(k−1)

u : u ∈ N (v)}), h(k)
v = COMBINE(k)(h(k−1)

v , a(k)
v)

where h(0)
v is set to node attribute of node v (Xv), and N (v) is the neighbors of node

v. The choice of AGGREGATE and COMBINE functions in GNNs is various in different

methods. For example, GCN[16] uses element-wise mean-pooling for aggregating nearby

information, and GraphSage [17] uses max-pooling and LSTM for updating the representation

in its different variants.

2.2 Equivalence concepts for social networks

Equivalence has become a fundamental concept in social network representations of social

structure.

Below we outline several definitions of node equivalence in a graph G = (V, E) with nodes

v ∈ V and edges eij ∈ E. Let N (i) be a function that returns the set of neighbors of node vi

(i.e., {vj}eij∈E).

The relationship between the below equivalences is: Strong structural equivalence =⇒

Weak structural equivalence =⇒ Automorphic equivalence =⇒ Regular equivalence.

Definition 2.2.1. Strong structural equivalence ([18] [19])

Two vertices u and v are strongly structural equivalent if, and only if, they have the same

neighborhoods, i.e.

s(u) = s(v) ⇐⇒ N (i) = N (j)

Definition 2.2.2. Weak structural equivalence [20]

Two vertices u and v are weakly structurally equivalent if, and only if, the permutation

π = (u, v) is an automorphism. i.e.

u ≡ v ⇐⇒ ∃π s.t. π(u)=v ∧ π(v)=u ∧ ∀w∈ [V −{u, v}] π(w)=w

where ≡ denotes weak structural equivalent

21

Definition 2.2.3. Automorphic equivalence [21]

Two vertices u and v are automorphically equivalent if and only if there exists an automorphism

π such that π(u) = v. Automorphic equivalence is a natural generalization of weak structural

equivalence.

Automorphic equivalence can be viewed as a relaxation of structural equivalence. More

intuitively, structural equivalence essentially asks if a single node can be exchanged for another

while preserving the connections/relationships of that node, whereas automorphic equivalence

is based on sets of nodes whom are exchangeable as subgraphs [22].

Definition 2.2.4. Regular equivalence [23]

Equivalent actors have the same types of relations with equivalent others, but not necessarily

the same others. Formally, it is defined recursively with respect to node roles r(v)

r(i)=r(j) ⇐⇒ multiset{r(i′)|i′∈N (i)}=multiset{r(j′)|j′∈N (j)}

In recent years, there has been work on theoretical investigations of social networks

and the accompanying equivalences, including axioms and logical characterizations [24] [25],

spectral methods [26], and block models [27].

2.3 Collective learning and inference for relational data

Conventional relational machine learning (RML) developed methods to learn joint models

from labeled graphs [10], [11]

P (YU |X, A)

To achieve this, many of the methods use pseudolikelihood estimation and consider a Markov

assumption —every node vi ∈ V is considered conditionally independent of the rest of the

network given its Markov Blanket (MB(vi)). For undirected graphs, this is often simply the

set of the immediate neighbors of vi.

Given the Markov blanket assumption, RML methods typically use a local conditional

model (e.g., relational Naive Bayes [28], relational logistic regression [29]) to learn and infer

22

labels within the network. The pseudolikelihood objective considers the nodes in a labeled

subgraph GL, where the labels of all neighbors are known:

O =
∑

v∈V
(tr)

L

log P (y(tr)
v |Y

(tr)
MB(v), X(tr), A(tr)) (2.1)

The key difference between eq. (2.1) and the GNNs objective in eq. (5.1) : the RML model

is conditioned on the labels Y even when there are no observed labels in the test data, i.e.,

even when Y
(te)

L = ∅. When the model is applied to make predictions in an unlabeled graph,

joint (i.e., collective) inference methods such as variational inference or Gibbs sampling

must be applied in order to use the conditionals from eq. (2.1) . This combines the local

conditional probabilities with global inference to estimate the joint distribution over the

unlabeled vertices, e.g.,:

P (YU |YL, X) ≈ Q(YU) = Πvi∈VU
Qi(y)

where each component Qi(y) is iteratively updated.

Alternatively, a Gibbs sampler iteratively draws a label from the corresponding conditional

distributions of the unlabeled vertices:

ŷv ∼ P (yv|ŶMB(v), YL, X, A), ∀v ∈ V.

Note that for conventional RMLs, we assume a fully labeled (sub)network for learning, thus

YMB(vi) only includes known labels, i.e., vj ∈ VL.

For transductive settings, where the goal is to learn and predict within a partially labeled

graph, RML methods have considered semi-supervised formulations [4], [9], [30] to model the

joint probability distribution:

P (YU |YL, X, A)

In this case RML methods use both collective learning and collective inference procedures

for semi-supervised learning. For example Expectation Maximization (EM) [9], [30], iterative

23

updates the parameter estimates by utilizing the expected values of the unlabeled examples

to relearn the parameters.

For instance, the PL-EM algorithm [30] optimizes the pseudolikelihood

E-Step: evaluate P (Y (tr)
U |Y (tr)

L , X(tr), A(tr), Θt−1)

M-Step: learn Θt :

Θt = arg max
Θ

∑
Y

(tr)
U ∈ΓU

P (Y (tr)
U |Y (tr)

L , X(tr), A(tr), Θt−1)

×
∑

v∈V (tr)

log P (y(tr)
v |Y

(tr)
MB(v), X(tr), A(tr), Θ)

24

3. NODE EMBEDDINGS ON HETEROGENEOUS GRAPHS

FOR POI RECOMMENDATION

In this chapter we present a node embedding model adapted to characteristics of a real-

world dense(r), heterogeneous graph with applications in POI recommendation and friend

suggestion.

3.1 Introduction

Millions of check-in records in location-based social networks (LBSNs) provide an opportu-

nity to study users’ mobility pattern and social behavior from a spatial-temporal perspective.

In recent years, the point-of-interest (POI) recommendation/prediction problem has attracted

significant attention [31], [32], [33], [34], [35], particularly for advertising and personalization.

In POI tasks, the goal is to use user behavioral data to model users’ activities at different

locations and times, and then make predictions (or recommendations) for relevant venues

based on their current context (including spatial, temporal, and other contextual information).

While POI predictions have broad applicability to myriad organizations, to date research

has focused on developing POI methods based solely on voluntary check-in datasets collected

from online social network apps such as Foursquare or Yelp [36], [37]. While these data contain

rich information about recreational activities (e.g., restaurants, nightlife, and entertainment),

the reliance on voluntary reporting results in sparse information about more prosaic aspects

of daily life (e.g., offices, errands, houses). Moreover, recreation-based check-in data may bias

conclusions drawn about mobility patterns or personal preferences. For example, Foursquare

users often visit a POI only once, so the users’ check-ins may not be sufficient to derive

preferences for venues themselves, but only for venue categories. Also since check-ins to

location-based social networks are often sporadic [36], it can be difficult to identify consistent

user patterns.

In this work, we present the first analysis of a spatio-temporal educational “check-in”

dataset, with the aim of using POI predictions to personalize student recommendations (e.g.,

clubs, friends, study locations) and to understand behavior patterns that increase student

25

retention and satisfaction. The results also provide a better idea of how campus facilities are

utilized and how students connect with each other. The Purdue University “check-in” data

records (anonymized) users’ access to WiFi access points on campus, with venue information

about locations (e.g., dining hall, library, dorm, gym). Specifically, we analyze WiFi access

history across on-campus buildings, for all freshmen over one semester.

Compared to well-known check-in datasets like Foursquare, these data contain (1) more

active users, (2) a richer set of daily activities (e.g., study, dine, exercise, rest), and (3)

well-annotated spatial range (i.e., on campus). These characteristics make it easier to analyze

the unique properties of user check-in data and extract interesting social and mobility patterns.

Notably the WiFi access logs provide better temporal resolution than previous LBSN datasets,

since a user “checks-in” whenever her device sends or receives a packet through a wireless

connection. Similar data are collected by GPS trackers, where location observations are

passively recorded [38]. But while GPS tracking provides more extensive information about

users’ movements, it does not provide the rich venue and activity information associated with

check-in data.

POI prediction and recommendation tasks are different from more traditional recom-

mendation tasks because they involve a more structured, context-rich environment [39]. In

addition to user-POI check-in frequencies, the users and POIs are usually associated with a

rich set of attributes, such as POI category, spatio-temporal information, personal activity. A

heterogeneous graph structure is thus a natural choice to for spatio-temporal POI prediction

tasks, since it is more amenable to representing and reasoning with rich context compared to

tensor factorization methods (e.g., [33]).

Recently, methods which learn graph representations by embedding nodes in a vector

space have gained traction from the research community, and graph embedding methods

have been widely adopted for a variety of tasks, including text mining [40], online event

detection [41] and author identification [42]. In this work, we extend these efforts and propose

a network-based embedding method called Embedding for Dense Heterogeneous Graphs

(EDHG). Our approach (i) incorporates personal preferences, temporal patterns, and activity

types into a sparse(r) view of the heterogeneous graph, (ii) uses global knowledge of the

graph to generate negative samples, (iii) jointly learns vector representations for the nodes in

26

the graph, i.e., users, POIs, time-slots, and then (iv) uses the learned representations for user

and time specific POI recommendation.

We empirically evaluate the effectiveness of EDHG using POI prediction and friend

suggestion tasks and show that it outperforms previous state-of-the-art POI recommendation

methods. Our investigation shows that reason for the improvement stems from the process of

(i) heterogeneous graph construction, and (ii) negative sampling. We show that the processes

used in previous methods are more suitable to OSN check-in data based on sparse voluntary

reporting, than dense(r) check-in data based on location tracking.

To summarize, our work makes the following contributions:

1. Presents the first educational “check-in” dataset and explores its unique mobility and

social characteristics;

2. Identifies the challenges for time-aware POI prediction in educational check-in data

based on increased density due to location-based tracking (compared to previous

voluntary-report LSBN data);

3. Proposes a novel heterogeneous information network-based model to encode the relations

between users, POIs, and time-slots, and evaluates its efficacy for POI and user

recommendation tasks.

3.2 Data Characteristics

In this section, we discuss the characteristics of the Purdue educational “check-in” dataset

and showcase its unique aspects compared to previous check-in data.

3.2.1 Data sample

In this work, we use two sample datasets from the Purdue Office of Instituional Research:

(i) WiFi log data and (ii) building location profiles

1
 . We consider a sample of the data

restricted to freshmen students in the 2016-17 academic year. The 376Gb WiFi log file

contains over 1 billion entries, each of which records a data communication between a campus
1

 ↑ Collected and analyzed anonymously, with IRB approval.

27

Table 3.1. Dataset description
Item Number Description
Users 6250 Freshmen
POIs 221 On-campus buildings

POI category 4 Academic, Residential, Administration,
Auxiliary

POI functionality 7 Residence, Recreation, Dining, Exercise,
Library/Lab, Classrooms, Others

Time span 1 sem. Fall: 08/22/16 to 12/17/16

WiFi access point and a personal device in the time period 7/31/2016 to 6/30/2017. Each

entry contains activity time (date, hour and minute), anonymized user id, MAC address,

and building id. The building profile provides building information, including building id,

name, category, and functionalities. Note that each building belongs to one category but

might have multiple functionalities. We remove users with fewer than 100 check-ins. We also

drop the check-in records generated by MAC addresses that only checkin at a single building,

as these devices are likely to be stationary PCs in dorms or offices. Moreover, using class

registration information, we attach a ‘in-class’ label for the record if the WiFi access point

is in the building associated with their course schedule at that time/day. While, we retain

these in-class checkins for the analysis in this section, we remove them for the modeling in

Section 3.2.5 , to focus the prediction task on less predictable user movements. The final

processed sample has 540 million logs in total. More dataset statistics are shown in Table 3.1 .

3.2.2 Temporal dynamics of user preferences

Figures 3.1a - 3.1d show the students aggregated temporal preference for each type of

activity in terms of the conditional probability Pr(time = τ |activity = a) for a given time

slot τ and activity a (e.g., Dining). We can see that different activities show unique temporal

patterns. For example, on weekdays (Fig. 3.1a) students usually visit the dining halls (i.e.,

dining activity) around 12pm and 6pm, and go to the gym around 8pm. Check-ins at the

residence halls are visible throughout the day, reflecting the variability in students daily

routines and the dorms’ versatility.

28

(a) Weekday (b) Weekend

(c) CS (d) Pharmacy

Figure 3.1. Hourly activity preference for a weekday, b weekend, c computer
science students, and d pharmacy students

Figures 3.1a and 3.1b show the differences in time preferences for weekday and weekend,

respectively. Students only have classes on Saturday morning, and they are more likely

to start studying (including staying in the lab or library) at later times on weekends. For

non-academic activities on weekends, visiting hours to the gym are more distributed owing

to their more flexible schedule, and more students choose to have lunch rather than dinner

on campus.

We also investigate if students’ temporal preferences vary by major. Figures 3.1c and

 3.1d , show the preferences for 302 computer science students and 267 Pharmacy students,

respectively. We can see that the overall preferences are similar for Dining, while there are

some differences in taking classes (shown in activity Class), staying in research labs/library

(shown in activity Study), and exercise (shown in activity Gym). Specifically, Pharmacy

students attend class more often from 11am to 12pm, while CS students attend class from

morning to afternoon. CS students spend more time in academic buildings (from 10am to

29

7pm) than Pharmacy students who prefer to study in the morning and around noon. For

non-academic activities, students from both majors show similar temporal preference, while

pharmacy students tend to go to the gym at later times.

3.2.3 Co-visitation behavior

While individual visitation histories can indicate temporal and spatial preference, in

isolation they do not indicate relationships among the students. However, co-visitation events

(i.e., when two students are in the same place at the same time), may be a noisy indicator of

relations among students. Any one co-visitation event may be due to random chance, but

a larger set of events, particularly when ‘in-class’ events are dropped, is likely to indicate

student friendship. To the best of our knowledge, a study of user pairwise co-visitation events

hasn’t been investigated in other spatio-temporal analyses.

Since our dataset contains discrete WiFi login records, we merge each user’s consecutive

logins in the same building, and assume that the user stays in the building throughout this

period. For example, if a user checked in at the library every four to eight minutes from 5pm

to 6pm with no checkins at other buildings in between, we will merge these check-ins and

record that the user stayed in library from 5pm to 6pm. In this way, we augment the visit

history with duration time for each user, and use that to compute the pairwise co-visitation

count matrix. As each co-visitation is per minute, the pairwise co-visitation count is the

total time (in minutes) two users spend together in the same building. For example, the

pair of users with the largest co-visitation count spent 38,129 minutes together, which is

roughly 27 days, more than 25% of the semester. Note that the in-class check-ins are removed

for computing co-visitation. In this way, we only consider the activity outside of class for

analyzing co-visitation, which we believe is more informative for determining friend realtions.

We will use the pairwise co-visitation count to examine the performance of our embeddings

on a friend suggestion task in section 3.3.5 .

Once the visit history is augmented with duration time for each user, we compute the

number of users visiting the same building at the same time. For each building, we calculate

the number of unique visitors for each minute over the semester and filter out the moments

30

when there are fewer than two visitors. We show the normalized histogram in fig. 3.2 . It

indicates that the number of users appearing at the same time in the building may reflect

building categories, as co-visitation happens more frequently in dorms and the gym compared

to academic building (e.g., CS).

Figure 3.2. Histogram of co-visitation size for an academic building (CS), the
Gym, and a residence hall, over all times.

3.2.4 Exploration behavior

(a) Student “check-in” dataset(b) Student “check-in” dataset (c) Foursquare and Gowalla

Figure 3.3. Average ratio of new POIs: (3.3a - 3.3b) Purdue data (weeks/days),
and 3.3c foursquare and Gowalla dataset (from [43]).

We compare the exploration behaviors in our educational “check-in” dataset to traditional

POI recommendation datasets like Foursquare and Gowalla. Figure 3.3 shows the average

ratio of new POIs over all users for every new week. For example, the ratio at week two is the

proportion of POIs visited during the second week that have not been visited in previously.

Compared with Foursquare users (fig. 3.3c) who keep exploring new POIs all year round,

freshmen (fig. 3.3a) appear to explore the campus very quickly (within 2-3 weeks), and then

31

stick to a fixed range of buildings over the remainder of the semester. But when we zoom

into the first two weeks (fig. 3.3b), new students show similar exploration behaviors as in

the Foursquare data, with 40 to 60 percent new POIs every day. This provides us with a

unique opportunity to model two types of behaviors with different slices of the data: (1) the

first few weeks of freshmen semester—exploring new places, and (2) the latter half of the

semester—routinely visiting familiar places in a relatively limited activity range.

3.2.5 Proposed EDHG Method

In this section, we outline our proposed heterogeneous graph embedding method for POI

prediction. Specifically, we consider a time-aware location prediction problem. Given a user

and time slot (e.g., Monday 8 am), the model should predict a place that is most likely to be

visited.

We refer to our method as Embedding for Dense Heterogeneous Graphs (EDHG). It is

designed specifically to reflect the characteristics of our educational check-in data, which is

more dense than traditional LBSN check-in data. To better leverage contextual information,

we propose a joint embedding model, which maps user, location, time and activity category

into a common latent space.

In this section, we introduce EDHG step by step. We first construct a heterogeneous

graph using the check-in records, then we learn continuous feature representations for

vertices by capturing features of connectivity and structural similarity for pairs of nodes. In

Sections 3.2.8 - 3.2.9 , we discuss how to use the learned representations for POI prediction

and friend suggestions, respectively.

3.2.6 Heterogeneous Graph Construction

Time indexing scheme. According to our data exploration results, the temporal charac-

teristics of students behavior contain two aspects: (1) periodicity, and (2) preference variance.

For example, students’ check-ins have clear weekly cyclic patterns. Moreover, students usually

visit academic buildings more on weekdays and stay at resident halls more on weekends.

32

In order to capture these temporal cyclic patterns, we designed a time indexing scheme to

encode a standard time stamp to a particular time id. We consider the preference variance in

two scales: hours of a day and different days of a week. First, a time stamp is divided into

two slices in terms of weekday and hour slot. Next, we split a week into 7 days and a day

into the following four sessions:

1. Morning – hours between 6 am and 11:59 am

2. Afternoon – hours between 12 pm and 4:59 pm

3. Evening – hours between 5 pm and 11:59 pm

4. Night – hours between 12 am and 5:59 am

This totals 28 distinct time slot ids, which can represent both weekly and daily preference

variance.

Figure 3.4. Heterogeneous graph constructed using eight example check-in
records and venue information

Weighted graph construction. We construct a weighted heterogeneous information

network by aggregating the check-in records and venue information. An example is shown

in fig. 3.4 with eight check-in records. In this example, u1, u2 denote two users, b1, b2, b3

denote three buildings/POIs, t1, t2, t3 denote three time slots, and a1, a2, a3 are three types of

activities corresponding to POI functionalities, which we obtained from the venue information.

Our model considers three types of edges, i.e., POI-user, POI-time and POI-activity. For

POI-time and POI-user edges, edge weights are co-occurrence counts for pair of nodes in

33

the check-in records. For POI-activity edges, edge weights are set to 1. Our constructed

graph contains 6250 user nodes, 221 POI nodes and 7 activities nodes. The POI-user graph

density is 22.45%, the POI-time graph density is 82.35%, and the POI-activity graph density

is 17.19%.

Note that past work [44] has included POI-POI edges in the graph by considering user

transitions from one POI to another. However, these edges increase the average density of

our graph substantially (POI-POI density: 60.13%). As we will show in the experiments,

these edges degrade the performance of the model, particularly on unvisited nodes, so we do

not include them in the graph.

3.2.7 Graph Embedding

We adapt the graph embedding approach from [44], which is an extension of [40] geared

for POI recommendation. These approaches are all based on the skip-gram model [14] applied

to graphs. Given an instance (word/node) and its context (neighbors), the objective of

skip-gram is to minimize the log loss of predicting the context using the instance embedding

as input features. We employ a similar objective (as described below), but adjust the negative

sampling approach to better fit the characteristics of the heterogeneous graph in our setting.

Specifically, we partition our heterogeneous graph into three bipartite graphs (POI-user

graph Gbu, POI-time graph Gbt and POI-activity graph Gba). Below, we first introduce the

graph embedding method for each bipartite graph, then we present our approach for negative

sampling, and finally we show how to jointly learn the embeddings over the whole graph.

Bipartite graph embedding. Given a bipartite graph GAB = (VA ∪ VB, E) where VA and

VB are two disjoint sets of vertices of different types, and E is the set of edges between

them, our task is to find the parameters θ of a model pθ(vi|vj) (vi ∈ VA: context vertex;

vj ∈ VB: target vertex) that closely approximates the empirical distribution p̃(vi|vj) in terms

of minimizing cross-entropy. Here the empirical distribution is given by the graph, i.e.,

p̃(vi|vj) = wij

deg(j)

where wij is the edge weight between vi and vj, or zero if vi and vj are not connected.

34

We define the conditional probability of vertex vi generated by vertex vj as the outcome

of a softmax function:

pθ(vi|vj) = e~zi
T ~zj

Σi′∈VA
e ~zi′

T ~zj
(3.1)

where ~zv denotes the embedding for a vertex vv. For each vertex vj in VB, Eq. 3.1 defines a

conditional distribution p(·|vj) over all the vertices in the set VA. For each pair of vertices vj,

vj′ , their second-order proximity can actually be determined by their conditional distributions

pθ(·|vj), pθ(·|vj′).

To learn embeddings that ensure the conditional distribution pθ(·|vj) closely approximates

the empirical distribution p̃(·|vj), we minimize the following objective function over the graph

GAB:

OAB =
∑

j∈VB

λjd(p̃(·|vj), pθ(·|vj)) (3.2)

where d(·, ·) is the KL-divergence between two distributions, and λj is the importance of

vertex vj in the graph. Replacing d(·, ·) with KL-divergence, setting λj = deg(j) = ∑
i∈VA

wij

and omitting some constants, the objective function can be written as:

OAB = −
∑

(i,j)∈E

wij log pθ(vi|vj) (3.3)

Negative sampling. Optimizing the objective in Eq. 3.3 is computationally expensive, as

it requires the summation over the entire set of vertices when calculating the conditional

probability pθ(·|vj). To address this problem, we adopt the approach of negative sampling

proposed in word2vec [14], which instead of considering all pairs of nodes, samples a smaller

set of observed edges, and then samples multiple “negative” edges for each observed edge.

Specifically, in each step, a binary edge e = (i, j) is sampled with the probability proportional

to its weight wij, and then multiple negative edges (i′, j) are sampled from a specified noise

distribution q(i′).

The default noise distribution used in word2vec (and subsequently used by most, if

not all, skip-gram based graph embedding models) is defined as a unigram distribution:

35

q(i) ∝ deg(i)3/4, where deg(i) denotes the degree of vertex vi. This means that more “popular”

vertices are more likely to be selected as negative samples. This makes sense in most NLP

and graph embedding problems, where the word co-occurrence matrix or graph adjacency

matrix is very sparse. The intuition behind this form of negative sampling is to distinguish

between the true context word/vertex and another popular word/vertex which is unlikely to

be a context.

However, the graph adjacency matrix is relatively dense in our WiFI check-in data, due

to longer user trajectories (i.e., more frequent check-ins). For example, our POI-POI graph

adjacency matrix density is 60.13%, whereas in the foursquare dataset the POI-POI graph is

extremely sparse with 0.03% density. If we use the above popularity-based negative sampling

method for our data, we find that 96% of POI vertices sampled as “negatives” are actually

connected to the target vertices—which obviously hinders estimation.

To address this issue, we define a new process for efficient negative sampling utilizing the

global statistics, i.e., the graph adjacency matrix. Moreover, we integrate the POI categorical

information into the noise distribution. When a POI is from a popular category, it’s less likely

to be a true negative sample, i.e., it’s more likely to be connected to the target vertex. By

incorporating the global statistics and POI categorical information into the negative sampling

procedure, our EDHG model incorporates global features into the local predictive method.

In practice, we replace the default noise distribution q(i) with alternative q(i|j). Here vj is

the given target vertex, and vi is the generated negative sample vertex:

q(i|j) ∝ 1− wij

deg(i) × Pr(cat(i)) (3.4)

where wij denotes the weight of edge eij, or equals zero if there is no edge between vertex

vi and vj, and deg(i) is vi’s degree. Pr(cat(i)) is the ratio of checkins in POIs with same

category as POI i, or equals 1 when vertex i is not a POI node. Note that cat(i) corresponds

one of the four POI categories in Table 3.1 .

Using edge sampling as in [1] and negative sampling as described above, our final objective

function for the bipartite graph GAB is:

OAB = −Σ(i,j)∈E

[
log σ(~zi

T ~zj) + Σm
n=1Evi′ ∼q(·|j)

(
log σ(−~zi′

T ~zj)
)]

(3.5)

36

Here σ refers to the sigmoid function and we sample m negative examples for each positive

example. In our implementation, we use the alias table method from [45] to draw a negative

sample with a pre-computed alias table based on the noise distribution q(·|j). This ensures

that it takes O(1) time to repeatedly draw samples from the same distribution. In this way

we can achieve the same time complexity as the original LINE model, which is demonstrated

to be scalable. Then we adopt the asynchronous stochastic gradient algorithm (ASGD) [46]

to optimize Eq. 3.5 . In each iteration, if the edge eij is sampled, the gradient w.r.t. the

embedding vector ~zi of vertex vi will be calculated as ∂OAB

∂~zi
.

Joint training. The overall objective is the sum of the objectives for three bipartite graphs

Gbu, Gbt and Gab:

O = Obu + Obt + Oab (3.6)

where each component objective Obu, Obt and Oab is specified by Eq. 3.5 . We learn a joint

node embedding by iterating through the three component bipartite graphs in a round-robin

fashion and updating the vector representations in each bipartite graph embedding procedure.

See Algorithm 1 for more details.

3.2.8 Predicting POIs using Embeddings

Once we have trained our model and learned representations for users, time slots, and

locations, we can perform location prediction on new check-in data using simple operations

on vectors. Given a query (user, time) i.e., q = (u, τ), we first project the timestamp τ into

time slot t using the time indexing scheme described in Section 3.2.6 , and then rank the POIs

based on their location in the embedding. More precisely, given a query q = (u, τ), for each

POI b, we compute its ranking score as:

S(b | u, τ = t) = ~zb
T ~zu + ~zb

T ~zt (3.7)

where ~zb, ~zb, ~zt are embeddings for user u, POI b, time slot t respectively. Then we select the

k POIs with the highest ranking scores as predictions. Note the POI embedding ~b reflects

37

Algorithm 1 EDHG training algorithm
Input: Bipartite graphs (POI-user graph Gbu, POI-time graph Gbt, POI-activity graph Gab),
number of iterations N , negative sample size m, vector dimension d.

Output: latent node embeddings for—users: Zu ∈ R|U |×d, POIs: Zb ∈ R|B|×d, time slots:
Zt ∈ R|T |×d, and activities: Za ∈ R|A|×d.

1: procedure Joint train(N, m, d, Gbu, Gbt, Gab)
2: Initialize Zu, Zb, Zt and Za

3: while iter ≤ N do
4: Bipartite graph embedding(Gbu, m)
5: . update Zb, Zu

6: Bipartite graph embedding(Gbt, m)
7: . update Zb, Zt

8: Bipartite graph embedding(Gab, m)
9: . update Za, Zb

10: return Zu, Zb, Zt and Za

1: procedure Bipartite graph embedding(GAB, m)
2: sample an edge eij (vi ∈ VA, vj ∈ VB)
3: sample m negative nodes from q(·|j) (denote as vi′)
4: update zi, zj, and zi′ to minimize Eq. 3.5 .

38

activity information via the POI-activity graph, since our model jointly learns the embedding

of multiple relational networks in the same latent space. Therefore, for both visited POIs and

unvisited POIs (also called cold-start POIs), we can perform user recommendations using the

same scoring function.

3.2.9 Suggesting Friends using Embeddings

As the embeddings learned from the model fuse the interactions between user-POI, POI-

time and POI-activity, we can make use of the embeddings to suggest potential friends for a

given user based on their pairwise similarity. Specifically, for a query user u, ∀v ∈ U \ u, we

compute zu
T zv and rank the results over U , the set of users. From this, we return the top

ranked users as people that are more likely to be friends of u.

3.3 Experimental Evaluation

3.3.1 Methodology

In the experiments, we concatenate each student’s first 80% check-in records in chronolog-

ical order to create the training set examples and then use the remaining 20% as the test set.

We set the number of iterations (N) to 100M with a batch size of 1, the dimension of the

embedding vector (d) is set to 100, and we sample 10 negative samples (m) for each vertex

pair.

We use accuracy@k as the measure of prediction effectiveness, which is a commonly used

metric for this task (see e.g., [43], [44]). However, in contrast with previous work, which

only compare the score of the true POI to the score of unvisited POIs during evaluation,

we evaluate by comparing the true POI’s score to the score of all other POIs (both visited

and unvisited). Specifically, for each check-in record (user, time, POI) in the testset, we

recommend the top k POIs for the query (user, time) as described in 3.2.8 , and determine

if the true POI appears in the top-k list (which is defined as a ’hit’). The accuracy@k is

defined as the ratio of hits to the testset size.

39

3.3.2 Comparison Models

We compare our proposed model EDHG to baselines, state-of-the-art alternative methods

and EDHG variants.

NBC: Naive Bayes classifier using (user, time-slot) as joint features. For each query (u, t),

the probability of predicting POI b is given by p(b|u, t) ∝ p(u, t|b) · p(b) where b denotes a

candidate POI, and (u, t) denote a (user, time-slot) pair. This is a strong baseline which

takes into account POI popularity and a combination of personal and temporal preference

based on counting.

GE [44]: The state-of-art graph embedding method for time-aware POI recommendation

(developed using Foursquare and Gowalla data). GE uses POI-POI edges, POI-time edges,

POI-region edges, and POI-activity edges, and jointly embeds POIs, times, regions and

activities into a latent space. User embeddings are computed as sum of recent visited POIs’

embeddings. See Section 3.4 for details.

GE++: An augmented version of GE that we create to assess the effect of learning user

embeddings directly during joint training. This version of GE incorporates POI-user edges in

the graph, in addition to its heterogeneous graph embedding.

EDHG: Our proposed model, where we include the POI-user graph, the POI-time graph,

and the POI-activity graph with our improved negative sampling method.

EDHG-NS: A simplified version of EDHG , in which we use the traditional method for

generating negative samples based on vertex degree.

EDHG-POI: An augmented version of EDHG, where we also include the POI-POI bipartite

graph in the heterogeneous graph for learning the embeddings. Note that we only record a

POI-POI edge is there is a transition between the two POIs within a four hour time window.

All the models are run on a single machine with 8G memory using 20 threads. Both

EDHG and its variants are very efficient—it takes about 18 minutes (excluding pre-

computation of negative sampling alias table) to process a network with 6486 nodes and

315,407 edges.

40

Table 3.2. Prediction accuracy

Type Model
Acc@k k = 1 k = 3 k = 5 k = 10

GE 0.1079 0.3781 0.5104 0.6543
GE++ 0.3019 0.5190 0.6063 0.6909

visited EDHG-NS 0.3321 0.5846 0.7024 0.8137
EDHG-POI 0.6832 0.7912 0.8368 0.8954
EDHG 0.6846 0.7915 0.8367 0.8961
NBC 0.6765 0.7895 0.8495 0.9016
GE 0.0027 0.0073 0.0241 0.0641
GE++ 0.0084 0.0227 0.0332 0.0671

un- EDHG-NS 0.0057 0.0128 0.0301 0.0598
visited EDHG-POI 0.0034 0.0145 0.0195 0.0334

EDHG 0.0072 0.0307 0.0360 0.0710
NBC 5.4e-05 6.3e-04 0.0025 0.0133
GE 0.1084 0.3720 0.5026 0.6443
GE++ 0.2981 0.5125 0.5988 0.6828

total EDHG-NS 0.3270 0.5772 0.6937 0.7996
EDHG-POI 0.6744 0.7811 0.8261 0.8842
EDHG 0.6760 0.7816 0.8263 0.8854
NBC 0.6677 0.7793 0.8385 0.8901

3.3.3 Predictive Effectiveness

Here we present the experimental results for all prediction methods using well-tuned

parameters. Prediction effectiveness in terms of accuracy@k is shown in Table 3.2 . We

report results for visited and unvisited POIs to highlight the difference between in-sample

and out-of-sample performance. We also use the 20% test data to show learning curves for

accuracy@1 and @3 in Figures 3.5 , 3.6 for visited and unvisited POIs respectively. From the

results we can make the following observations:

EDHG v.s. EDHG-NS: the full EDHG consistently outperforms EDHG-NS for both

visited and unvisited POIs, with a 100% performance gain in terms of accuracy@1, and 35.4%

in terms of accuracy@3. The significant performance gain is due to the improved negative

sampling procedures, which selects more informative negative samples for SGD updates. This

indicates that it is promising to customize the empirical noise distribution used in negative

sampling for various tasks or datasets.

41

EDHG v.s. EDHG-POI: The EDHG-POI variant includes the POI-POI transition graph in

the original graph which prior work on GE claimed as an important component, but it doesn’t

improve performance on our recommendation task, and it even downgrades performance

for unvisited POIs. This indicates that transition behavior is not informative in our data,

as there are too many transitions betweens buildings that cannot be explained by a single

reason.

EDHG v.s. GE/GE++: EDHG significantly outperforms GE for both visited and

unvisited POIs. The reasons might be due to (1) GE using the POI-POI graph to model the

”locality” of individual check-ins for Foursquare data. However, as revealed by the comparison

between EDHG and EDHG-POI, including the POI-POI graph doesn’t help in our setting.

Or (2) GE doesn’t include users as entities in their graph representation, but computes the

user embeddings based on recent visit histories. Due to the limited number of POIs in our

data, computing the user embedding computed in this way may fail to capture personal

preferences. Considering the performance of GE++, which we adapt to our data by adding

the POI-user graph to the original GE model, modeling users in the graph helps improve its

predictions, but the performance of GE++ is still inferior to that of EDHG.

EDHG v.s. NBC: EDHG achieves comparable performance for visited places and signifi-

cantly outperforms NBC for unvisited places. In reality, when we look at the learning curves

for prediction accuracy, fig. 3.5 shows that our model converges very fast while NBC needs

more data to achieve a comparable result; and fig. 3.6 shows that our model actually “learns”

how to recommend unvisited places with increasing accuracy, while NBC fails to deal with

the cold-start recommendation problem, even when provided with a large amount of training

data.

3.3.4 Parameter Sensitivity

Granularity of temporal pattern. In Table 3.2 we evaluated the predictive performance

of our model with a combination of weekly of daily pattern using 28 time slots. Here,

we design two additional variants to explore the effect of temporal patterns with different

42

Figure 3.5. Learning curve for visited POIs

Figure 3.6. Learning curve for unvisited POIs

granularity. The EDHG-hour only considers time period of day (4 time slots) and EDHG-dow

only considers day of week (7 time slots). The results are shown in table 3.3 .

From table 3.3 we can see that both Day of Week and Hour of Day are important temporal

factors. Specifically, when we only consider weekly patterns (day of week), prediction accuracy

decreases by roughly 10%; when we only consider daily patterns (hour of day), prediction

accuracy slightly decreases by 1.5%. This indicates that time-of-day effects are more significant

than day-of-week effects in terms of POI prediction. It’s likely that students, particularly

freshman, have less flexibility in daily routines due to their course schedule, which makes

time-of-day a more important factor for nearly all types of activities.

Number of iterations & vector dimension. Figures 3.7a and 3.7b show the performance

of EDHG with different number of iterations N and embedding dimensions d. Note that, the

units for N is set to 1 million. We can see from fig. 3.7a that the accuracy increases and

converges quickly when the number of iterations is larger than 50M. We used N = 100(M)

43

Table 3.3. Prediction accuracy v.s. temporal granularity.

Type Model
Acc@k k = 1 k = 3 k = 5 k = 10

EDHG-dow 0.6025 0.7010 0.7544 0.8403
visited EDHG-hour 0.6727 0.7850 0.8284 0.8927

EDHG 0.6846 0.7915 0.8367 0.8961
un- EDHG-dow 0.0041 0.0083 0.0141 0.0402

visited EDHG-hour 0.0022 0.0080 0.0260 0.0490
EDHG 0.0072 0.0307 0.0360 0.0710
EDHG-dow 0.5947 0.6920 0.7448 0.8299

total EDHG-hour 0.6639 0.7727 0.8102 0.8821
EDHG 0.6760 0.7816 0.8263 0.8854

44

(a) (b) (c)

Figure 3.7. Impact of number of iterations, embedding vector dimension, and
negative sample size on prediction accuracy@k.

to ensure convergence. For embedding dimension, we chose d = 100 as the accuracy does not

increase substantially after that point.

Negative sample size. Figure 3.7c presents the performance of EDHG with different

numbers of negative samples per example. With more negative samples the accuracy increases,

and it plateaus when negative sample size is 10. Therefore, we chose m = 10 negative samples

for use during optimization.

3.3.5 Friend Suggestion Effectiveness

To examine the efficacy of using EDHG’s vector representation for suggesting friends,

we first need to identify a proxy signal for evaluation (since we do not have ground truth

information about friend relations among the students). Specifically, we consider the following

two ways data to determine “true” friends for evaluation:

Covisit As in shown in Section 3.2.3 , a co-visitation record is generated when two users

check in at the same building at the same time (time unit: minute). In this approach, we

identify “friends” of a query user as those with the largest co-visitation counts.

Location Based on the user-building check-in count matrix, we create a ranking list of

buildings for each user, with the most frequently visited building ranked highest. In this

approach, we identify “friends” of a query user as those that have the smallest distance

between the users’ ranked list of buildings (using Kendall τ distance). We apply the friend

suggestion to the most active users in our dataset, sorted by activity level. For each user,

45

given a set of “true” friends from one of the baselines above, we evaluate the top 10 friend

suggestions from EDHG using Mean Reciprocal Rank (MRR). MRR is computed as:

1
|U |

|U |∑
i=1

∑
j∈Fi

1
rank(j)

where U is the set of active users, Fi = 10 is the set of “true” friends of user i which are

obtained from the data and rank(j) is the rank of item j in the ranking list. We compare the

performance of EDHG and GE in terms of MRR scores.

Since the Covisit baseline encodes both temporal and geographical preference, and the

Location baseline only takes into account geographical preference, Covisit is likely a better

proxy for “true” friends, and thus the ideal search results should have a higher MRR score

w.r.t. Covisit.

The results are shown in fig. 3.8 . We can make the following observations based on the

results. Comparing Covisit and Location, EDHG suggests friends with more relevance

to co-visitation counts than merely geographical preference, while GE does the opposite.

Since neither method uses user co-visitation data directly in its model, this implies that

EDHG captures social behaviors from the spatial-temporal data more accurately. Comparing

the general MRR scores of the two models, EDHG suggests friends with higher accuracy

in general. We also calculated the MMR between the Covisit and Location friend lists

(the green line in the graph). The relatively low MRR score reveals that a large potion of

co-visitation behavior cannot be explained by location preference. In reality, students with

same major and same year usually stay in a same set of places, e.g. academic buildings

and libraries, but their temporal preferences may vary significantly. The plot shows how

performance changes as the increase of |U |. We can see that, on the co-visitation data,

EDHG’s MMR score decreases as less active users are included in U . This indicates that

EDHG discovers better suggestions for more active users, which suggest that with richer

check-in information we can capture more precise social relationships.

46

Figure 3.8. Number of frequent users v.s. MRR scores

3.3.6 Visualization of Embeddings

 Figure 3.9 shows a visualization of the learned user embeddings, where we project the

d = 100 dimensions into 2D using t-SNE [47]. From the visualization we can clearly find

two clusters of computer science students and pharmacy students (colored green and red

respectively). This can be understood through their differences in temporal preference (as

shown in Figures 3.1c - 3.1d) and also their geographical preferences (i.e., these two majors

share very few academic buildings).

3.4 Related Work

POI recommendation methods have received extensive research attention in the last five

years, and many approaches have been proposed. For example, Wang et al. ([35], [48]) applied

sparse additive generative models to incorporate multiple factors for POI recommendation.

[34] proposed a Spatial-Aware Hierarchical Collaborative Deep Learning model (SH-CDL),

which jointly performs deep representation learning for POIs and hierarchically additive rep-

resentation learning for spatial-aware personal preferences. [44] proposed a graph embedding

model GE for context-aware POI recommendation, which uses the POI-POI transition graph,

POI-region graph, and POI-category graph, and jointly learn the representations for POI,

region, and time with the same method as PTE [40]. User embeddings are then computed

47

Figure 3.9. User embeddings

as weighted sum of recent POI embeddings, and with user, POI, time embeddings they can

perform time-aware POI recommendation. GE achieved better performance than all previous

work on this task, which is why we use it as a baseline for evaluation in this paper.

In addition, our work is related to the extensive literature on network embedding, which

has attracted a great deal of attention in recent years. Many of these recent methods are

technically inspired by Skipgram [14]. For example, Deepwalk [3] uses the embedding of a

node to predict the context in the graph, where the context is generated by a random walk.

Metapath2vec [15] extends DeepWalk for heterogeneous graph embedding. LINE [1] extends

the skip-gram model to have multiple context spaces for modeling both first and second order

proximity. PTE [40] adapts the LINE model [1] for embedding bipartite networks. Note that

PTE model is directly adopted by GE [44] for POI recommendation, and we further adjust

PTE to our setting by improving the negative sampling method and targeting the graph

construction process.

48

Heterogeneous information network embedding has been broadly applied to multiple

tasks. For example, [40] predicted text embeddings based on heterogeneous text networks

which showed great potential in document classification. [41] proposed ReAct, a method

that processes continuous geo-tagged social media (GTSM) streams into a heterogeneous

graph and obtains recency-aware activity models on the fly, in order to reveal up-to-date

spatiotemporal activities. [42] proposed a task-guided and path-augmented heterogeneous

network embedding for author identification task.

3.5 Discussions

This paper presents our analysis of the first educational “check-in” dataset and proposes

EDHG, a heterogeneous graph embedding based method to model more dense spatio-temporal

checkin activity. To account for the unique characteristics of the data, we improve the negative

sampling method to incorporate global statistics of the graph/data into the noise distribution.

We also show that it’s better to drop the POI-POI transition edges when the check-in

data is more dense. We evaluated EDHG with two tasks: time-aware POI prediction and

friend suggestion. On both tasks, our proposed model outperforms the previous state-of-art

methods and baselines. These initial results indicate the promise of using student trajectory

information for personalized recommendations in education apps, as well as in predictive

models of student retention and satisfaction.

Several interesting research problems remain for further exploration. For example, we

did not make direct use of the co-visitation data in the model but rather withheld it for

evaluation of the friend suggestions. We plan to incorporate it in the training process and

see whether social interactions impact student checkin behavior. Also, inspired by [49], we

may be able to further improve the negative sampling by dynamically selecting informative

negative samples during each SGD update.

49

4. REQE: TOWARDS REPRESENTATION-BASED

EQUIVALENCE FOR NODE EMBEDDINGS, IN SINGLE

GRAPHS AND SETS OF GRAPHS

4.1 Introduction

The goal of structural role discovery is to identify nodes with topologically similar

network neighborhoods that reside in potentially distant parts of the network. For example,

in a protein-protein interaction network, two proteins with the same functionality might

not interact with each other or have common neighbors, but may be embedded in similar

subgraphs. In social network analysis, regular equivalence [20] has been used to capture

this idea through the role/identity of vertices in a network. The notion of social “roles” is a

centerpiece of most sociological theorizing [50]. The concept of regular equivalence, and the

methods used to identify and describe regular equivalence sets, correspond quite closely to

the sociological concept of roles.

However, since structural roles of nodes are typically defined over a discrete space, it

limits their usage for a variety of real-world tasks including visualization, link prediction,

anomaly detection, and recommendation. There is existing work relying on hand-crafted

distances or recursions to partition nodes into equivalent classes. For example, RolX [51] uses

matrix factorization to generate mixed membership across the roles based on a collection of

structural features.

On the other hand, a considerable amount of recent attention is devoted to the development

of graph/node embedding methods, which are designed to produce continuous vector-valued

node embeddings that capture patterns in network structure. These methods have been

extended to different types of graphs, e.g. attributed graphs, hierarchical graphs, and multi-

relational graphs (e.g. knowledge graphs), and have been widely adopted for a variety of

tasks, including text mining, on-line event detection, and knowledge completion. Much of

the work in graph embedding based on random walks has been designed to preserve node

proximity (e.g. LINE [1], Node2vec [2], DeepWalk [52]) explicitly or implicitly. Therefore,

they fail to capture the structural relatedness among vertices that reside in different parts of

50

the graphs. Recently, there have been some node embedding models considering structural

similarity or social role. These methods are mostly based on particular structural properties

including degree, centrality, or motifs. We review these methods in the next section.

In this work, we formally define representation-based equivalence for both automorphic

equivalence and regular equivalence. We then develop a flexible framework to learn node

embeddings in an unsupervised manner, which aims to preserve node equivalence with respect

to a specified set of structural properties by combining aspects of automorphic and regular

equivalence.

Capturing the notion of node equivalence enables us to move towards preserving node

isomorphism in the embedding. We note that the recursive definition of node roles in regular

equivalence (i.e. the role of the node depends on its neighbors’ roles) resembles the iterative

process of the Weisfeiler-lehman isomorphism test (WL test) [53]. Recently there has been

increasing attention on analyzing the expressiveness of node representations learned with

Graph Neural Networks (GNNs) in relation to the WL test [8]. However, the unsupervised

variants of GNNs are all trained with a proximity-based loss function similar to Node2vec [2],

which means their models aim to capture local proximity rather than topological roles, and

this limits their expressivity.

Specifically, our approach—Reqe—leverages recurrent neural networks to reflect the

recursive nature of node roles definition, combined with negative sampling based on structural

properties and degree-guided regularization. Our framework is general enough to also include

node attributes as additional properties, as real world structural roles might need to account

for node labels/types, or latent structures that are correlated with attributes. We show

theoretically that the expressive power of Reqe in terms of capturing node automorphic

equivalence comes from encoding long-range structural properties, as well as performing

recursive neighbor propagation. For evaluation, we design three different tasks to test the

model’s effectiveness at (i) preserving equivalences in the learned embeddings, (ii) predicting

other structural properties not included in the optimization, and (iii) predicting labels in

real-world node classification tasks. We compare our proposed method Reqe to several

state-of-the-art graph embedding methods and show that Reqe out-performs the competing

methods in all of the three tasks.

51

To summarize, in this work we make the following contributions:

1. Formalize the notion of Representation-based automorphic/regular equivalence for both

single graph and multiple samples of graphs, which bridges the gap between equivalences

and node embeddings;

2. Introduce a novel and flexible framework Reqe to learn structural node embeddings

w.r.t specified structural properties and node attributes, and theoretically analyze its

expressive power;

3. Extensively evaluate the proposed framework Reqe on multiple tasks and real-world

datasets from a variety of applications areas.

4.2 Representation-based Equivalence

4.2.1 Background

Below we outline several definitions of node equivalence in a graph G = (V, E) with nodes

v ∈ V and edges eij ∈ E. Let N (i) be a function that returns the set of neighbors of node vi

(i.e., {vj}eij∈E). The relationship between the equivalences is: Structural equivalence =⇒

Automorphic equivalence =⇒ Exact regular equivalence =⇒ Regular equivalence.

Definition 4.2.1. (Strong) structural equivalence [18] [19]

Two vertices u and v are strongly structural equivalent if, and only if, they have the same

neighborhoods, i.e.

s(u) = s(v) ⇐⇒ N (u) = N (v)

Definition 4.2.2. Automorphic equivalence [21], [54] Two nodes u and v are automorphically

equivalent if all the vertices can be re-labeled to form an isomorphic graph with the labels

of u and v interchanged. Two automorphically equivalent vertices share exactly the same

label-independent properties.

We use u ≡ v to denote automorphic equivalence.

52

Definition 4.2.3. Exact regular equivalence [55]. Two nodes u and v are exact regular

equivalent if they have the same node role, and role is defined recursively via neighbors’ roles:

r(u)=r(v) ⇐⇒ multiset{r(u′)|u′∈N (u)}=multiset{r(v′)|v′∈N (v)}

Exact regular colorations in the context of social networks were first discussed by Borgatti

and Everett [56] but were not formally defined until later in Everett and Borgatti ([57]) where

they were called exact colorations.

Regular equivalence is a similar concept but relaxes the multiset to set, which means two

nodes have same role if their neighbors have same set of roles. Note that this means two

regularly equivalent nodes do not necessarily have the same degree. In this paper we focus

on exact regular equivalence, with multiset comparisons.

Next we define structural properties of nodes in a graph.

Definition 4.2.4. Structural property [56]. Given a graph G = (V, E), the property

t : V →R is structural if for every automorphism φ of the graph G and every vertex v ∈ V ,

t(v) = t(φ(v)) holds. If two nodes are automorphically equivalent, then they must share the

same structural properties, i.e.

u ≡ v =⇒ t(u) = t(v)

Definition 4.2.5. Complete structural property [56]. A collection of structural properties

TC = {t1, t2, ..., tm} is complete (for automorphic equivalence) iff for each pair of vertices u

and v,

(∀i, 1 ≤ i ≤ m, ti(u) = ti(v)) ⇐⇒ u ≡ v

It was originally defined w.r.t structural equivalence in [56], but it also holds for automor-

phic equivalence since (∀i, 1 ≤ i ≤ m, ti(u) = ti(v)) =⇒ s(u) = s(v) =⇒ u ≡ v.

Examples of structural properties are degree, degree at distance k, centrality. To date

there isn’t a known collection of structural properties that is proved complete [58]. However,

since any structural property will obey Definition 4.2.4 , the more properties that are added

to T , the closer it will be to complete.

53

4.2.2 Representation equivalence

We propose to learn low-dimensional embedding that projects the graph to continuous

space which approximates equivalence in the original graph(s).

Regular equivalence embedding with a single graph

We assume an embedding that aims to encode a set of structural properties T , i.e.

∀u, v ∈ V, we have

∀t ∈ T , t(u) = t(v)) =⇒ D(zu, zv) < ε (4.1)

where zu and zv are embedding vectors of nodes u and v, D(·, ·) is a standard distance

measure, e.g. euclidean distance. Furthermore, for a node w s.t. ∃t ∈ TC , t(u) 6= t(w), the

embedding will aim to differentiate u and w by embedding them in different locations since

they will be viewed as a negative example.

Then we define representation-based automorphic equivalence and representation-based

regular equivalence w.r.t. embeddings that encode structural properties.

Definition 4.2.6. Representation-based automorphic equivalence. Given a graph G, suppose

embedding Z encodes a set of structural properties T as defined in Equation (4.1) . If T is the

complete structural properties TC (Definition 4.2.5), then we have u ≡ v ⇐⇒ D(zu, zv) = 0.

Similarly, we propose representation-based (exact) regular equivalence in similar vein as

 Definition 4.2.6 .

Definition 4.2.7. Representation-based regular equivalence. Given a graph G, suppose

embedding Z encodes a set of structural properties T as defined in Equation (4.1) . Two nodes

are representation-based regular equivalent w.r.t to T iff:

1. D(zu, zv) = 0

2. D(multiset(z′
u|u′ ∈ N (u)), multiset(z′

v|v′ ∈ N (u)) = 0

Note here we primarily consider network characteristics (i.e., topological roles) as structural

properties, but node attributes can also be included as properties in T .

54

Regular equivalence embedding with multiple graphs

We first extend the notion of exact regular equivalence to the multiple graph case w.r.t a

graph distribution defined by A∗.

Definition 4.2.8. Exact regular equivalence with multiple graphs. Assume a set of aligned

graphs

1
 are sampled from a probabilistic adjacency matrix A∗ where A∗

ij is the probability of

connecting node i and j. Two nodes are regular equivalent if and only if they have the same

node role r(v), where node role is defined recursively as:

r(i)=r(j) ⇐⇒

multiset{(r(i′), A∗
i,i′)|i′∈N (i)}=multiset{(r(j′), A∗

j,j′)|j′∈N (j)}

This is a very strict definition as it requires the neighboring roles should have exactly the

same probability distribution. In practice, we’re given a set of generated samples G instead

of true distribution A∗, so we can only estimate empirical distribution Â from samples.

Definition 4.2.9. Probabilistic structural property. Given a probabilistic adjacency ma-

trix A∗ over node set V, for any graph G containing the same node set, the probability of

generating graph G is P (G) = Π(i,j)∈EG
A∗

ijΠ(i,j)/∈EG
(1−A∗

ij). For any structural property

t : V → R|V |, we define the probabilistic structural property t∗ as a random variable, and

P (t∗ = τ) = ∑{P (G)|tG = τ} where tG ∈ RV is the structural property value in graph G.

Note that different structural properties are not independent with graphs samples, i.e. for two

structural properties t1 and t2, P (t∗
1, t∗

2) 6= P (t∗
1)P (t∗

2).

Based on Definition 4.2.5 , we define two nodes to be automorphically equivalent w.r.t

A∗ if and only if then share the same joint distribution of complete probabilistic structural
1

 ↑ aligned graphs are a set of graphs on the same set of nodes, where the node ids are shared across the graphs
so that we know the correspondence between the nodes across the graphs.

55

properties. Similar to the single graph case, assume the embedding encodes a set of structural

properties T , i.e.

P (t∗
1(u), t∗

2(u), · · · , t∗
m(u)) = P (t∗

1(v), t∗
2(v), · · · , t∗

m(v)) (4.2)

Definition 4.2.10. Representation-based automorphic equivalence with multiple graphs.

Given a set of graphs G = {G1, G2, · · · , GK}, suppose embeddings Z encodes a set of

structural properties T as defined in Equation (4.2) , then if the set is complete (i.e. T = TC),

we have u ≡ v ⇐⇒ D(zu, zv) = 0.

We list three necessary conditions for automorphic equivalence with multiple graphs below,

including the sufficient condition (A) as u ≡ v ⇐⇒ (A) =⇒ (B) =⇒ (C).

1. P (t∗
1(u), t∗

2(u), · · · , t∗
m(u)) = P (t∗

1(v), t∗
2(v), · · · , t∗

m(v))

2. ∀t ∈ TC , t∗(u) d= t∗(v)

3. E[(t∗
1(u), · · · , t∗

m(u))] = E[(t∗
1(v), · · · , t∗

m(v))]

We show in Figure 4.1 that having strictly more information (all the properties values v.s.

quantiles of properties v.s. average values of properties) when learning the embeddings makes

the embedding more accurate in terms of capturing automorphic equivalence. However the

tradeoff is that is also computationally more expensive.

Figure 4.1. Average v.s. quantiles v.s. full data as model input

We then propose Representation-based regular equivalence w.r.t. multiple graphs.

56

Definition 4.2.11. Representation-based regular equivalence with multiple graphs. Given

a set of graphs G = {G1, G2, · · · , GK} and a set of structural properties T = {t1, t2, · · · },

suppose embeddings Z encodes a set of structural properties T as defined in Equation (4.2) .

zu and zv are embedding vectors of nodes u and v, then u and v are representation-based

regular equivalent w.r.t G and T iff:

1. D(zu, zv) = 0

2. Eu′,v′[D(multiset(z′
u|u′ ∼ Âu), multiset(z′

v|v′ ∼ Âv)] = 0

Â is the (empirical) linkage probability matrix, i.e. Âuv is computed as the number of

links between u and v divided by total number of graphs, and then normalized for sum of 1.

The more samples we have, the closer empirical distribution Â is to true A∗.

4.3 Proposed framework: Reqe

We propose a general framework Reqe which aims to preserve automorphic equivalence

when learning a node embedding based on a set of given node properties. The key idea

of Reqe is to combine aspects of Definitions 4.2.6 and 4.2.7 : (1) using more complicated

structural properties to get closer to the complete structural properties TC , and (2) apply role-

based neighbor propagation to capture longer-range structural properties through recursive

steps, which offsets a fixed set of properties in T .

We first describe the single input graph case (Algorithm 3) and then introduce the

extension to multiple graphs case (Algorithm 4). Formally, given an input graph G = (V, E),

and a set of properties T = {t1, t2, ...}, we aim to learn a d-dimensional embedding E that

is representation-based regularly equivalent. Here we select degree centrality, stationary

distribution and closeness centrality as examples of structural properties.

Initialization. The node embedding is initialized according to a set of structural property.

Given a set of structural properties, we initialize the embedding as concatenation of vectors

that are sampled from a Normal distribution centered at the property values. For example, if

57

|T | = 2 and t1 is degree centrality d ∈ RV and t2 is closeness centrality c ∈ RV , then the

embedding of node i is initialized as

Zi,k ∼

 N (di, σ2) 0 ≤ k ≤ d/|T |

N (ci, σ2) d/|T | < k < d
(4.3)

where d is the dimension of node embedding, and we use σ2 of 0.01 in our implementation.

Stationary distribution as structural property. We compute the stationary distribution as

a structural identity feature, which is then used for negative sampling. First we compute

a V × V matrix S ∈ RV ×V via personalized PageRank [59], where each entry S[s, t] is the

probability that a random walk starting from vertex s will stop at vertex t. Therefore, each

column S[:, t] encodes the stationary distribution of vertex t. We use the K largest values

of S[:, t] as an approximation of stationary distribution of vertex t. Since the value of S

follows a power law distribution, the K largest values include most of the information. We

then construct a full structural feature matrix by concatenating the transposed stationary

distribution matrix ST with all the other given properties. It is a V × (|T |+ K) matrix with

each row encoding the set of structural properties for the associated node. The Algorithm 2

below computes stationary distribution features in a given graph, which is used in our

proposed Reqe for both single graph and multiple graphs cases.

Algorithm 2 Compute Stationary Distribution
1: procedure Stat_dist(G, K, α)

2: S ← 0

3: for v ∈ V do

4: Pv ← RootedRandomWalk(G, v, α)

5: ∀u ∈ Pv, S[v, u]← S[v, u] + 1

6: Sort S[:, u] in descending order

7: S[:, u]← S[:, u]/sum(S[:, u])

8: S ← S[:, : K]T

9: Return S

58

Negative sampling. To encode the structural properties in the node embedding (as

discussed in Section 4.2.2), we adopt negative sampling procedure. We first construct a

normalized dissimilarity matrix D from the structural feature matrix, where each entry Dij

is computed as the dissimilarity value between the structural features of node vi and vj,

and each row of D sums to 1. There are multiple choices of similarity measure, e.g. cosine

similarity, Euclidean distance, and we use cosine similarity for simplicity.

We then use the dissimilarity matrix for negative sampling and incorporate the following

loss.
Lns = −

∑
v∈V

m∑
i=1
‖zv − zu′

i
‖2

where node u′
i is a negative sample drawn from the v-th row of the normalized dissimilarity

matrix, i.e. u′ ∼D[v, :]

Neighborhood role embedding. Note the recurrent nature of the condition (3) in the

definition of representation-based regular equivalence, i.e. the role of the center node can be

determined from the role of the neighboring nodes. To encode this information, we consider

a sequence model to represent the aggregated neighbors’ role. The intuition is that if the

current embedding reflects the structural role information, then the aggregated neighborhood

embedding should reflect the multi-set of the neighbors’ roles, which is indicative of the center

node’s role.

In practice, we generate a list of neighbors of fixed length T by uniform sampling over all

neighbors and sort by node degree, then feed the list of neighbors to a recurrent neural network

(RNN) to produce neighborhood role embedding. The same neighbor sampling procedure is

also used in GraphSAGE [17], an inductive graph neural network, to propagate node attribute

information. Popular RNN architectures are LSTM unit and GRU. We examined both two

variants and achieved comparable performance, thus we use GRU as default for efficiency

reason, but we also provide a variant in our implementation code based on LSTM.

The following loss function is considered for neighborhood aggregation.

Lneighbor =
∑
v∈V

‖zv −GRU({zu|u ∈ N (v)})‖2

59

Degree-guided regularization. As node degree is shown to be very important for preserving

structural similarity and easy to compute, we add regularization guided by node degree. The

intuitive idea is that the learnt embedding should be able to predict the degree.

Lreg =
∑
v∈V

‖log (degv + 1)−MLP (zv)‖2

The final loss function is the weighted sum of the three components.

L = Lneighbor + αLns + λLreg (4.4)

Here α and λ are two hyper-parameters which controls the relative importance of different

factors, and they can be tuned by doing grid search over them. We assess the sensitivity of

these hyper-parameters in Section 4.6.6 . Algorithm 3 describes the overall training process

for the single graph case.

Note that if the complete structural property TC (Definition 4.2.5) is used as model input,

then the initialization step (Equation (4.3)) will capture the automorphic equivalence in the

original graph according to Definition 4.2.6

2
 . However, since we do not have the complete

structural property in practice, the initial embedding will not sufficiently differentiate non-

isomorphic nodes due to the use of a limited set of properties in T . The three components

in the loss function – LSTM neighborhood encoder, negative sampling and degree-guided

regularizer will update the initial embedding towards encoding automorphic equivalence by

capturing longer-range structural properties, which makes up for T being not complete. For

example, if two non-equivalent nodes have the same structural properties in T , then they

have the same initial embedding. However, their neighbors might have different properties

and thus different embeddings, then the LSTM neighbor propagation is able to capture the

difference in the neighborhood, which helps the model differentiate the two non-equivalent

nodes through recursive steps.

Extension to multiple graphs. When the input data include multiple aligned graph samples,

we estimate the necessary condition (C) of representation-based automorphic equivalence

(Def. 4.2.10). Note, we choose to estimate (C) rather than (A) for computational efficiency.
2

 ↑ note that this requires σ2 = 0 in Equation (4.3)

60

First, we compute the structural properties in each graph separately and use the average

across the graphs for embedding initialization and for computing dissimilarity matrix as

described above. Second, we use importance sampling when generating lists of samples, i.e.

giving more importance to the neighbors appearing in more graph samples. The overall loss

function and training procedures remain the same as the single graph case. Algorithm 4

describes the training process for the multiple graphs case. Specifically, the differences from

the single graph case appear in lines 2-5 and line 12.

Complexity analysis. The total time complexity of Reqe including pre-processing is

O(|V |2 + |V |k) where k depends on the complexity of computing the chosen structural

properties. In our experiments, the most expensive property to compute is betweenness

centrality (BC), which has a theoretical complexity of O(|V |3). In practice, the pre-processing

step wasn’t a barrier due to the availability of approximate algorithms [60] to compute BC

in O(|E|) time. For example, it took 4.69 minutes to compute all five structural properties

(including BC) on the Cora network. For the multiple graphs case, suppose we have M graph

samples, the pre-processing step involves computing the chosen structural properties on each

graph, which takes O(M · |V |k) = O(|V |k). Thus the asymptotic complexity remains the

same.

Specifically, Reqe takes two steps: the pre-processing step and model training. In the

pre-processing step, we first compute the specified structural properties T and concatenate

all structural properties into a f -dimensional feature vector for each node. Let O(|V |k)

refer to the complexity of the most time-consuming structural property, where k ≥ 0. We

then compute a pairwise dissimilarity table from the feature matrix of size |V | × f , which

takes O(f |V |2). The overall complexity of the offline pre-processing is O(f |V |2 + |V |k))

where k depends on the specified structural property. Note that any factorization/clustering

methods will also take O(|V |2) complexity due to the computation of pairwise distances.

During model training, in each iteration, the time complexity of calculating gradients and

updating parameters for each node v ∈ V is O(degvd2), where degv is the degree of node

v, and d is the embedding dimension. It also takes O(m) time for sampling m negative

samples for each node. Since we sample a fixed number of neighbors (T) for each node, the

time for each node is bounded by O(Td2 + m). Therefore, the overall training complexity

61

is O(|V |(Td2 + m)). The embedding dimension d and the neighborhood size T are set to

a constant number that is independent of graph size, thus the complexity of the model

training process is linear in the number of nodes |V |. The total time complexity including the

preprocessing is O(|V |2 + |V |k + |V |) = O(|V |2 + |V |k) where k depends on the complexity

of computing the chosen structural properties.

Compared to our main competitors struc2vec[61] and DRNE[52], Reqe training process

has the same time complexity as DRNE for each iteration (O(|V |)). [52] empirically validated

that Struc2vec is more expensive with a complexity of O(|V |1.5) per iteration.

Algorithm 3 Reqe training algorithm (single graph)
Input: Graph G with V nodes, structural properties t, no. of iterations I, stationary dist.

feature size K, embedding dimension d, jumping probability α, negative sample size m,

neighbor sample size n.

Output: latent node embeddings Z ∈ RV ×d

1: procedure Model training

2: S ← Stat_dist(G, K, α) compute stationary distribution features

3: S ← [S, t]

4: D ← 1− cos_sim(S)

5: Initialize Z ∼ N (S, σ2)

6: while iter ≤ I do

7: for v ∈ V do

8: Sample m negative nodes u′ ∼Dv

9: Sample n neighbors u uniformly over all neighbors

10: Update Z according to Eq. 4.4

11: Return Z

62

Algorithm 4 Reqe training algorithm (multiple aligned graphs)
Input: A set of aligned graphs G = {G1, G2, · · · , GM} on V nodes, structural properties in

each graph {t1, t2, · · · , tM}, aggregated adjacency matrix A, no. of iterations I, stationary

dist. feature size K, vector dimension d, jumping probability α, negative sample size m,

neighbor sample size n.

Output: latent node embeddings Z ∈ RV ×d

1: procedure Model training

2: for i ∈ [1, · · · , M] do

3: Si ← Stat_dist(Gi, K, α) compute stationary distribution features for graph Gi

4: Si ← [Si, ti]

5: S = AV G{S1, · · · , SM} compute average node structural properties

6: D ← 1− cos_sim(S)

7: Initialize Z ∼ N (S, σ2)

8: while iter ≤ I do

9: for v ∈ V do

10: Sample m negative nodes u′ ∼Dv

11: Sample n neighbors u ∼ Av

12: Update Z according to Eq. 4.4

13: Return Z

4.4 Related work

Most of the existing node embedding methods (e.g. LINE [1], DeepWalk[3], Node2vec[2])

consider (local) structural equivalence by preserving node proximity. However, these methods

fail to capture the structurally similar nodes that are far apart in the graph, thus the

embedding they produce doesn’t reflect the structural role of the nodes in general.

There has been a few node embedding methods designed for capturing the general

notion of structural equivalence (as opposed to positional proximity), or more precisely,

automorphic equivalence, of which we choose some representative methods and summarized

their contributions as follows.

63

Struc2vec [61] constructs a multi-layer graph to encode structural similarities at different

scales. The method is powerful in encoding local neighborhood features for each node yet very

expensive because of the construction of multi-layer graph. There has been other similar works

(e.g. subgraph2vec [62]), but struc2vec is arguably better at preserving structural equivalence,

so we choose Struc2vec as a representative work relying on node degree at distance 1 to k as

structural properties. Another model subgraph2vec [62] adopted similar idea of measuring

pairwise structural similarity, but the notion of structural equivalence is very rigid, as it is

defined as a binary property dictated by the Weisfeiler-Lehman isomorphism test [53]. As

struc2vec is arguably better than subgraph2vec for preserving structural equivalence, we

choose Struc2vec as a representative work which relies on node degree at distance 1 to k and

local neighborhood as structural properties.

GraphWave [63] learns structural node embedding based on the diffusion of a spectral graph

wavelet centered at the node. This way the structural information is contained in how the

diffusion spreads over the network. The wavelets are treated as probability distributions over

the graph, and are then embedded using the empirical characteristic function.

DRNE [52] proposes to capture regular equivalence by introducing a recurrent neural

network for neighborhood aggregation, and use node degree for regularization. DRNE

achieved state-of-the-art performance on multiple structural node classification tasks.

SPINE [64] assigns a structural feature vector to each node based on Rooted PageRank, and

structural identities are incorporated to jointly preserve local proximity and global proximity

of the network simultaneously in the learned embeddings.

Role2vec [65] uses small sub-graphs (i.e. motifs) as structural features, and adopted

attributed random walk to encode motifs to capture structural roles. HODE [66] also makes

use of motifs as structural features.

As we can see from the descriptions, all of the above methods are based on a particular

structural property (e.g. degree) or structural identity indicator (e.g. graph wavelet, sug-

graph patterns), thus they are all able to capture automorphic equivalence that’s encoded in

the property used in the model.

64

In addition, RolX [51] is designed to explicitly identify the role of nodes using network

structures. This unsupervised approach is based on enumerating various recursive structural

features extracted with ReFeX [67] and factorizes the binary node-feature matrix to create

low dimensional node embedding. In our experiments, we use RolX as an approximation of

adopting discrete equivalences for node classification tasks.

For the multiple graph case, since there are no existing node embedding works that

specifically aim to capture structural equivalence in multiple graphs, we choose two other

baselines: weighted stochastic blockmodel (SBM) [68], and a representative unsupervised

temporal graph embedding model DynamicTriad [69] which is optimized to learn node

evolution.

In recent years, there has been work on theoretical investigations of social networks

and the accompanying equivalences, including axioms and logical characterizations [24] [25],

spectral methods [26], and block models [27].

Another related area of research is on Graph neural networks (GNNs) ([8], [16], [17],

[70]), which focus on producing node representations for graph prediction tasks. Unlike

node embedding models, most GNNs are designed for semi-supervised learning tasks with

partially-labeled, attributed graphs. The unsupervised variant of GraphSAGE [17] uses a

random walk loss (similar to Node2vec [2] and DeepWalk [3]) that optimizes node proximity

rather than structural equivalence, and this limits their expressivity. We adopt a similar

idea of neighborhood sampling and feature aggreagtor to preserve role similarity. However,

in GraphSAGE the aggregated neighborhood features of node vi is used for vi’s embedding,

whereas in our work the aggregated neighborhood of vi is used in the loss, which indirectly

updates the embedding of vi based on the similarity of vi’s neighbors’ roles. Moreover, the loss

function in Reqe mimics the recursive role equivalence and adopt structural property-guided

negative sampling and regularization. The empirical study in Section 4.6.7 shows that

GraphSAGE does not perform well in preserving automorphic equivalence compared to our

proposed model Reqe, especially when no structural properties are used as input.

65

4.5 Expressive power of Reqe

In this section we analyze the expressive power of the proposed model Reqe , for both the

single graph and multiple graph cases. Please find all the proofs in the appendix.

Theorem 4.5.1 (Representing structural equivalence in embeddings). Given a graph G and

a set of structural properties T , the embedding Z generated by Reqe is an approximation of

automorphic equivalence in the original graph G. More specifically,

1. Any automorphically equivalent nodes should have same node embeddings, i.e. u ≡

v =⇒ zu = zv.

2. While there is no guarantee that zu = zv =⇒ u ≡ v, the more structural properties we

have, the closer the embedding is to automorphic equivalence in the original graph G.

The arguments of expressive power w.r.t structural properties in a single graph also hold

for the multiple graph case when there are enough graph samples.

Theorem 4.5.2 (Representing structural equivalence in multiple graphs). For the multiple

graph case, with enough graph samples and complete structural properties (Tc), the embedding

generated by Reqe is an approximation of automorphic equivalence in the original graphs.

Theorem 4.5.3 (Boosted expressiveness through recursive steps). Given a fixed set of

structural properties T , Reqe is able to capture more longer-range properties faster by

performing the recursive steps (i.e. updating node embedding by comparing neighbors’

embedding). Specifically, given a fixed set of structural properties capturing node isomorphism

within d-hop neighborhood, performing k recursive steps will enlarge the radius to k · d, which

essentially captures more structural properties and thus improve the accuracy of the embedding

(according to Theorem 4.5.1 (B)).

According to Theorem 4.5.1 and Theorem 4.5.3 , for any embedding method trying to

capture automorphic equivalence in the graph, the expressive power depends on (1) the set

of structural properties explicitly considered, which determines the value d (diameter of

structural properties), (2) if and how the recursion is performed, which determines value

66

k (recursive steps). Table 4.1 shows the characterization of Reqe and existing methods

in terms of range of properties and recursive steps. Our model can utilize any long-range

structural properties with large d (as large as graph diameter, e.g. eigenvalue centrality) and

the recursive embedding framework allows for large number of k (i.e. number of epochs) as

opposed to the few recursive steps in Struc2vec or RolX, where k is typically a small number

like three or five.

Table 4.1. Characterization of existing methods
Method Local properties

(small d)
Long-range properties

(large d)
Recursive features

(small k)
Recursive embedding

(large k)
Handle

aligned graphs

Struc2vec X X
Subgraph2vec X X
GraphWave X X

SPINE X X
role2vec X

RolX X X
DRNE X X
Reqe X X X X

4.6 Experiments

In this section, we assess the model performance on three tasks, specifically whether the

learned embedding can: (A) encode structural/regular equivalences, (B) be used to predict

other structural properties, and (C) improve node classification or role discovery. The first two

tasks aim to evaluate if our proposed method is effective in preserving structural properties,

and the third task is used to evaluate if the learned embeddings are useful for real-world

prediction tasks.

4.6.1 Datasets

We use graphs from various application areas, some with role related node labels. The

dataset statistics are listed in Table 4.2 and the detailed descriptions with references are as

follows.

• Facebook-large [71] is an extracted social network from Facebook where edges repre-

sent friendship.

67

• Cora and Pubmed [16] are citation networks with nodes representing publications

and edges representing citation relation.

• European and American airports networks [61]. The two air-traffic networks are

unweighted, undirected networks where nodes represent airports and edges indicate

commercial flights. For each airport, the label reflects the activity level measured by the

total number of landings plus takeoffs or the total number of people passing the airports.

In particular, the quartiles are obtained from the empirical activity distribution to split

the dataset into four groups, with label 0 given to the 25% least active airports, and so

on. Classes are related to the role played by the airport in the transportation system.

• Protein graph. The protein graph is obtained from a collection of proteins [72] with

ground-truth labels. Each node is labeled with a functional role of the protein.

• Student interaction graphs [73]. This dataset contains student interaction graphs

from on-campus co-visitation behaviour at different locations. The nodes are freshmen

at a public university, and edges represent the two students have co-visited at a certain

venue. Four graphs are for co-visitation at four different venues, i.e. academic buildings,

gym, dining halls, residence halls. We also aggregated all the edges from the four

graphs to generate another aggregated graph. Each node is attributed with major and

GPA. The predicted label is whether the student is going to dropout or not. Note that

dropout behavior has been shown to correlate students social behavior [74].

• DBLP and Facebook (temporal) [75]. DBLP has 18 snapshots of co-authorship

social networks, with label representing research area. Facebook has 55 snapshots with

label indicating political view.

We generate a mirrored copy for the graphs with no node labels in tasks (A) and (B),

and use the graphs with ground-truth role-correlated node labels in task (C).

Generating mirrored graphs. For each of the unlabeled graphs, e.g. Facebook, Cora and

Pubmed graphs, we create a mirrored version. The mirrored graph is created by taking

two copies of the original graph and adding random edges with probability 0.2 connecting

68

Table 4.2. Dataset statistics
Graph(s) # Nodes # Edges Density # Classes

Cora 5,416 11,140 3.79e-4 N/A
Facebook-large 15,248 56,388 2.42e-4 N/A
Pubmed 39,434 92,536 5.95e-5 N/A

Karate 68 162 3.50e-02 N/A
Jazz 396 5530 3.52e-02 N/A
Facebook-small 448 6421 3.20e-02 N/A

Proteins 504 1,788 7.05e-3 2
European airports 399 5,995 3.76e-2 4
American airports 1,190 13,599 9.60e-3 4
Student co-visitation 6,306 2,360,902 1.48e-2 2/5

Facebook (temporal) 2,716 22,712 3.18e-3 2
DBLP (temporal) 17,191 318,735 1.08e-3 2

mirrored nodes from different copies. In this way the two mirrored nodes are guaranteed to

be isomorphic, i.e. automorphic equivalent.

Class labels. The six labeled graphs (including temporal graphs) have role-related node

labels. Each node in the Protein graph is labeled with a functional role of the protein. For

the two airports graphs, the node label reflect the airport activity level measured by the

total number of landings plus takeoffs. For the student co-visitation graph, the predicted

label is whether the student is going to dropout or not, which has been shown to correlate

students social behavior [74]. We also have a temporal version of co-visitation graph including

four monthly slices to test Reqe with multiple graphs. For the two other temporal graphs,

DBLP contains 18 co-authorship graphs with class label of authors’ research field, and

Facebook contains 55 social network graphs with class label of political views.

4.6.2 Methodology

We compare our model Reqewith the five structural graph embedding models discussed in

 Section 4.4 , plus a representative general node embedding method Node2vec [2] for task (A)

and (B), and then selected the best performing models for task (C) on real-world datasets.

In addition, to compare to methods that aim to identify structural roles, we add RolX for

69

Table 4.3. Mean and standard deviation for the distance between node
pairs in the node embedding, with % reduction from all pairs to isomorphic
pairs. OOM means “out of memory” error. Bold numbers represent the best
performing model in each column. Reqe-2 uses two properties: degree and
stationary distribution; Reqe-3 uses degree, stationary distribution and closeness
centrality; Reqe-5 uses degree, stationary distribution, betweenness centrality,
closeness centrality and kcore centrality.

Cora Facebook Pubmed
Pairs mean (std) % reduc. Time mean (std) % reduc. Time mean (std) % reduc. Time

node2vec all 2.9897 (0.9173) 14.76% 3.6899 (1.0021) -4.94% 2.36 3.7923 (0.3040) -0.44%mirrored 2.5484 (0.9792) 0.66 3.8721 (0.5539) 3.8091 (0.3031) 5.46

SPINE all 0.0254 (0.0174) -0.68% 5.2606 (1.2000) -6.02% 264.44 OOMmirrored 0.0256 (0.0174) 50.12 5.5771 (0.9042)

GraphWave all 0.0277 (0.0223) -0.39% 2.70 0.0121 (0.0108) 0.35% 22.77mirrored 0.0278 (0.0224) 0.0120 (0.0108) OOM

role2vec all 3.1659 (0.5119) 20.57% 53.63 4.4366 (0.5789)) 26.81% 553.89 4.9195 (0.5434) 48.05% 657.96mirrored 2.5146 (0.2741) 3.2470 (0.8149) 2.5573 (0.7599)

DRNE all 0.3475 (0.3318) 22.81% 3.36 0.5589 (0.4260) 49.47% 15.46 0.3956 (0.2840) 41.05% 42.40mirrored 0.2682 (0.1035) 0.2824 (0.1306) 0.2332 (0.1456)

struc2vec all 4.5630 (1.3408) 58.37% 21.48 5.0953 (1.5871) 63.84% 129.18 4.8015 (1.9335) 64.90% 386.14mirrored 1.8996 (0.4243) 1.8606 (0.4713) 1.6855 (0.4534)

Reqe- 2 all 4.4020 (2.4936) 51.14% 9.3130 (6.2441) 20.52 6.5036 (4.1128) 64.84% 43.66mirrored 2.1508 (1.3513) 4.29 2.4367 (1.7901) 73.84% 2.4166 (1.6553)

Reqe- 3 all 3.7756 (2.4412) 6.47 10.2116 (6.5888) 47.69 6.8964 (3.9293) 226.88mirrored 1.1973 (0.4887) 68.29% 2.6117 (2.2652) 74.42% 2.3168 (1.5999) 68.41%

Reqe- 5 all 2.2862 (1.9818) 6.4557 (4.2209) 7.0423 (3.5943)
mirrored 0.5639 (0.1908) 75.34% 9.35 1.9360 (1.2280) 70.01% 83.26 2.3312 (1.4522) 66.90% 298.15

comparison in task (C). For all the tasks , the models output d-dimensional node embeddings

Z = z1 · · · zV for any input graph with V nodes, where zi ∈ Rd, d = 128.

For the node classification task (Task (C)), 60% of the nodes are used for training, 20%

for validation, and the remaining 20% for testing. We do 100 trials randomizing the split,

and report the mean and standard deviation of classification accuracy. As the node label is

highly unbalanced in the student co-visitation graph, we report balanced accuracy instead.

For the datasets containing multiple graphs, we either apply methods that are capable of

modeling multiple graphs or a weight graph (i.e. Reqe, SBM and DynamicTriad), or merge

the graphs into a single graph for other comparison methods (e.g. struc2vec).

4.6.3 Task (A): Equivalence encoding

In this task, we embed the whole mirrored graph, and compute the distance between

the isomorphic mirrored nodes and all pair of nodes. An ideal node embedding model will

70

embed the mirrored nodes close to each other while making other nodes distributed in the

embedding space.

The results are shown in Table 4.3 . For each method, we also computed the percentage

of reduction from all pairs to isomorphic pairs, which should be close to 100% for an ideal

model. We can see that both node2vec and SPINE are not able to preserve node isomorphism,

where the reduction generally goes the opposite way. This is because the two models tend

to embed the connected nodes together, while the isomorphic nodes in these graphs usually

reside in different parts. Graphwave achieves positive reduction rate on one graph but fails

on the other. Both SPINE and Graphwave run out of memory on the largest dataset. The

other models, role2vec, struc2vec, DRNE and Reqe all successfully embed the mirrored nodes

close(r) in the embedding space with a positive reduction rate. Among these models, our

model consistently excels in the task with high reduction rates across datasets and struc2vec

is the strongest baseline.

To further evaluate the impact of the number of structural properties encoded, we

examined three variants of our model using different numbers of structural properties. When

more than two properties are provided, they are used to initialize the embedding and also

used in computing the dissimilarity matrix. Comparing the three variants, we can see that

including more properties in general helps the model project the mirrored nodes closer to

each other while keeping a distributed graph embedding. For example, comparing Reqe-2

and Reqe-5 on Cora graph, the reduction rate increases from 51.14% to 75.34%.

We also conducted additional experiments on three small-scale graphs (Karate, Jazz

and Facebook-small, each with < 500 nodes), and the percentages of reduction is shown

in Figure 4.2 . Comparing the results on the small-scale graphs and the large-scale graphs

(in Table 4.3), Reqe out-performed all other methods by a larger margin on the large-scale

graphs. Note that the three larger graphs are much sparser than the small graphs (see the

densities in Table 4.2), therefore it is more difficult to capture the role information with

limited signals. The node degree, for example, is not very useful in differentiating node roles,

which causes DRNE [52] to perform much worse on these datasets.

Runtime As shown in Table 4.3 , Reqe (best-performing variant) runs in 10 minutes on the

Cora graph with 5416 nodes, and less than 4 hours on Pubmed graph with 39K nodes, while

71

Figure 4.2. % reduction on three small graphs

Table 4.4. MSE on predicting structural properties: clustering coefficient (cc)
and second-order degree centrality (sod)

Cora Facebook Pubmed
cc sod cc sod cc sod

node2vec 0.0555 0.0447 0.0844 0.0053 0.0362 0.0059
SPINE 1276 12527 0.0697 0.0027 OOM
GraphWave 0.0981 0.0045 0.0837 0.0122 OOM
role2vec 0.0895 0.0040 0.0759 0.0035 0.0242 0.0041
DRNE 0.0782 0.0037 0.0597 0.0008 0.0246 0.0038
struc2vec 0.0351 0.0029 0.0625 0.0006 0.0234 0.0035
Reqe-2 0.0630 0.0030 0.0618 0.0009 0.0292 0.0031
Reqe-3 0.0590 0.0018 0.0599 0.0005 0.0258 0.0023
Reqe-5 0.0452 0.0005 0.0606 0.0010 0.0278 0.0028
Reqe-3 (cc) 2e-08 0.0042 3e-08 0.0016 2.5e-08 0.0037

our main competitor stuc2vec[61] takes 21 minutes and 6.5 hours respectively. DRNE is

slightly more efficient than Reqe by only considering the node degrees but the performance is

significantly worse in all the tasks. Therefore, Reqe is more powerful than previous methods,

without compromising efficiency.

4.6.4 Task (B): Structural property prediction

In this task, we test if the node embedding generated by the above methods preserves

structural properties that weren’t explicitly used in the model. Here we use clustering

coefficient and second-order degree centrality as examples.

72

Table 4.5. Accuracy of node classification task on various datasets. Bold
numbers represent the best performing model in each column.

Europe airports Protein American airports
centrality 0.538 (0.054) 0.615 (0.046) 0.590 (0.032)
role2vec 0.294 (0.044) 0.682 (0.043) 0.448 (0.028)
DRNE 0.547 (0.056) 0.692 (0.051) 0.566 (0.032)

struc2vec 0.579 (0.050) 0.853 (0.036) 0.602 (0.027)
Reqe 0.604 (0.047) 0.906 (0.027) 0.645 (0.026)
RolX 0.425 (0.052) 0.568 (0.045) 0.335 (0.027)

RolX-disc 0.328 (0.044) 0.517 (0.044) 0.329 (0.026)
Reqe-disc 0.515 (0.048) 0.627 (0.048) 0.554 (0.028)

 Table 4.4 shows the performance (mean squared error) of predicting structural properties.

We can see that our method consistently achieves the best performance on both properties

across three datasets, with the only three exceptions on clustering coefficient where struc2vec

or DRNE perform better with a small margin. Again, including more properties in general

helps with prediction as they provide more information about structural role. We also tried

adding clustering coefficient in the model (denoted as Reqe-3(cc)) to show that it is able to

preserve this same property with a e-08 mean squared error for proof of correctness.

4.6.5 Task (C): Node classification

On single graph Table 4.5 shows the node classification accuracy on American/European

airports nd Protein graph. Centrality features are the initial embedding used in our method,

which is a combination of degree centrality, closeness centrality and betweeness centrality

and k-core. We can see that our model achieves the best results on all these datasets, and

the struc2vec model is the second best. Note that centrality feature is correlated with the

predicted labels with a better performance than role2vec, but our model is able to further

improve it by including negative sampling loss and neighborhood aggregation.

In addition, we implemented two discrete models, i.e. RolX-disc and Reqe-disc to represent

the discrete equivalences. RolX-disc is based on the original clustering results of RolX, and

replace the distribution of cluster with assigning the class with highest probability. Reqe-disc

uses K-means[76] to generate c (i.e. number of class) clusters on the node embedding produced

73

by Reqe. We use one-hot encoded feature for both two discrete models and perform the same

supervised node classification task. Note that both two methods perform worse than all the

node embedding models, which validates our claim that the discrete nature of equivalences

limits its application. Moreover, Reqe-disc still out-performs RolX/RolX-disc, indicating that

the embedding produced by Reqe contains more structural information than the features

extracted by RolX.

(a) Europe airports embedding (b) American airports embedding
Figure 4.3. t-SNE visulization of the node embeddings

 Figure 4.3 shows the visualization of the learned embeddings on airport graphs, where we

project the d = 128 dimensions into 2D using t-SNE [47]. The clear cluster/spectrum pattern

shows that the generated embeddings successfully capture the structural role information

reflected by the label (quartiles).

For the student interaction graph, the task is to predict whether a student is going to

dropout based on her interaction with other students. As the label is highly unbalanced

(dropout rate is around 6%), we do a three-fold stratified sampling to split the training/testing

data for cross validation, and report balanced accuracy and accuracy@k instead. Specifically,

we rank the predicted probability of dropping out for all the students and generate a top-k

list, then we determine how many true dropout students appear in the top-k list (which is

defined as a ’hit’). The accuracy@k is defined as the ratio of hits to k.

Since GPA is highly correlated with dropout behavior, we tried including GPA as an

additional node attribute in our model (denoted as Reqe-GPA). Specifically, in addition to

the three structural properties (degree, stationary distribution and betweenness centrality) in

74

Table 4.6. Accuracy@k and balanced accuracy of detecting dropout students
on student interaction graphs.

Model Acc@10 Acc@15 Acc@30 Acc@50 Acc
struc2vec 0.0667 0.0667 0.0556 0.0667 0.5197
role2vec 0.1667 0.1111 0.1111 0.0800 0.5189
DRNE 0.1333 0.1333 0.2000 0.2000 0.6343
Reqe 0.2667 0.2667 0.2667 0.2133 0.6387

Reqe-GPA 0.4333 0.4000 0.3556 0.3133 0.6596

T , now we use GPA, a node attribute with continuous value between 0 and 4, as t4 in the set

T . Note that other methods cannot directly take node features as input.

Results of accuracy@k is shown in Table 4.6 , from which we can see that our model

performs much better than all other models on both accuracy@k and balanced accuracy,

with DRNE performs the second best. Even without incorporating GPA, our model already

out-performs all the other competing methods significantly. Moreover, including GPA in

learning the embedding further improves our model performance, e.g. from 0.2667 to 0.4333

on accuracy@10, and from 0.6387 to 0.6596 on balanced accuracy.

In Figure 4.4 we show the 2D plots of student embedding produced by our model with and

without GPA included in the model input. The nodes are a subset of students from the top

four majors, i.e. engineering, explorers (major not decided), computer science and pharmacy.

We can easily identity two clusters of engineering students Figure 4.4a . Notably in Figure 4.4b

there is a small cluster of low-GPA students (around (-20, -80)) from various majors, which

means even without including GPA explicitly, the node embedding is able to capture GPA

information. When GPA is included in learning the embedding (Figure 4.4c - 4.4d), we can

see that GPA information has a large impact on the embedding in 4.4d , where we can see

two continuous clusters containing low-other-high parts. While at the same time, the clusters

of engineering students are still captured in 4.4c .

On multiple graphs Figure 4.5 shows the node classification accuracy on synthetic

graphs for Reqe and weighted SBM. The graphs are generated with a SBM under various

noise rate (i.e. ratio of random generated edges). The node labels are the block number used

in the SBM. We can see both Reqe and weighted SBM can achieve nearly 100% accuracy

75

(a) Embedding: graph; Label: major (b) Embedding: graph; Label: GPA

(c) Embedding: graph+GPA; Label: major(d) Embedding: graph+GPA; Label: GPA
Figure 4.4. t-SNE visulization of the generated node embedding on student
interaction graph

Figure 4.5. Node classification accuracy with multiple graphs (synthetic data)
varying sample size

given enough samples, but weighted SBM requires more than 100 samples to achieve good

performance, whereas Reqe perform relatively well (> 0.7 accuracy) even with 30 samples.

76

Figure 4.6. Node classification performance with multiple graphs (real-world data)

This shows the advantage of our model especially with small number of graphs – a more

common real-world scenario.

 Figure 4.6 shows the performance of various embedding methods and weighted SBM on

three real-world datasets. Previous work [75] showed that the model performance on DBLP

and Facebook data was stable when shuffling time steps, thus we can assume the graphs are

sampled from a latent graph distribution function (A∗) without temporal dependency. We

can see that Reqe consistently out-performed all other baselines on all five tasks, with the

largest margin of 9% on DBLP — the largest dataset.

4.6.6 Parameter sensitivity

The weighting factor α and λ are two hyper-parameters, which can be decided from a grid

search with validation set. Figure 4.7 shows the node classification accuracy on American

airport when varying the two parameters, from which we can see that the performance is

more sensitive to α than λ, which means the degree-guided regularizer is less important than

other structural properties used for negative sampling.

4.6.7 Comparison with GraphSAGE

We choose GraphSAGE[17] as a representative GNN method and empirically evaluate

its ability in capturing automorphic equivalence in graphs. The original version (denoted as

‘GS-nofeat’) for unattributed graphs explicitly learns node embeddings with proximity-based

77

Figure 4.7. Parameter sensitivity w.r.t weighting factors

loss. For a fair comparison, we also implement an augmented version (denoted as ‘GS-feat’)

to use the same node structural properties that Reqe uses as input features. We use the

same model architecture as described in the original paper, e.g. two GNN layers, LSTM

aggregator. In Table 4.7 - 4.8 we show the performance of the two GraphSAGE versions and

Reqe for tasks (A) and (C).

We can see that the GS-nofeat version didn’t perform well on the two tasks, which is

not surprising given the recent theoretical results ([6], [77], [78]) showing that GNNs are

not most expressive. This limitation is more obvious when no node features are used. The

augmented GS-feat version improves performance by a large margin via the added node

feature that record structural properties. This demonstrates the finding in Theorem 4.5.1 ,

that adding more node properties captures automorphic equivalence in the graph more

accurately. Moreover, our proposed model Reqe achieves better performance than both

GraphSage versions, which illustrates the advantage of using a role-based loss function as

discussed in Section 4.4 .

4.7 Conclusion

In this work, we consider the problem of identifying structural roles in single graphs and

multiple graphs using node embedding techniques. First, we formally define the notion of

Representation-based equivalence w.r.t a set of structural properties for both cases, which

78

Table 4.7. Performance of GraphSAGE and Reqe-3 (the best performing
Reqe variant) for task (A): mean and standard deviation for the distance
between node pairs in the node embedding, with % reduction from all pairs to
isomorphic pairs. The results for Reqe are copied from Table 4.3 .

Cora Facebook Pubmed
Pairs mean (std) % reduc. mean (std) % reduc. mean (std) % reduc.

GS-nofeat all 1.4098 (0.1100) 3.51% 1.4009 (0.1292) 6.24% 1.3931 (0.1445) 10.67%mirrored 1.3604 (0.1315) 1.3136 (0.1406) 1.2444 (0.1582)

GS-feat all 1.3955 (0.2220) 54.17% 1.3901 (0.2084) 45.91% 1.3789 (0.2184) 51.26%mirrored 0.6395 (0.3393) 0.7520 (0.3401) 0.6671 (0.2958)

Reqe-3 all 3.7756 (2.4412) 10.2116 (6.5888) 6.8964 (3.9293)
mirrored 1.1973 (0.4887) 68.29% 2.6117 (2.2652) 74.42% 2.3168 (1.5999) 68.41%

Table 4.8. Performance of GraphSAGE and Reqe for task (C): accuracy of
node classification task on various datasets. The results for Reqe are copied
from Table 4.5

Europe airports Protein American airports
GS-nofeat 0.311 (0.047) 0.577 (0.044) 0.410 (0.030)
GS-feat 0.439 (0.045) 0.751 (0.044) 0.470 (0.028)

Reqe 0.604 (0.047) 0.906 (0.027) 0.645 (0.026)

79

attempts to preserve automorphic equivalence in the original graph(s) with learned node

embedding. This leverages the advantage of distributed representation for real-world predic-

tion tasks by preserving more structural (similarity) information than discrete roles. Second,

we proposed a flexible framework Reqe which takes any number of structural properties,

and produce node embeddings that reflect the structural role of each node. We further

analyze the expressive power of our model Reqe, showing that our model is demonstrably

better at preserving automorphic equivalence compared to other node embedding methods

by incorporating any structural properties and recursive steps. Moreover, to the best of our

knowledge our approach is the first method to learning structural embeddings over multiple

graphs. Our empirical evaluation considers a variety of graphs and tasks. Results show that

our model is effective for preserving regular equivalence, and also useful for solving real-world

node classification/role discovery tasks.

4.8 Appendix: Proof of Theorems

4.8.1 Proof for Theorem 4.5.1

We restate the theorem for completeness.

Theorem 4.5.1 (Representing structural equivalence in embeddings). Given a graph G and

a set of structural properties T , the embedding Z generated by Reqe is an approximation of

automorphic equivalence in the original graph G. More specifically,

1. Any automorphically equivalent nodes should have same node embeddings, i.e. u ≡

v =⇒ zu = zv.

2. While there is no guarantee that zu = zv =⇒ u ≡ v, the more structural properties we

have, the closer the embedding is to automorphic equivalence in the original graph G.

Proof. We show that for node embedding generated by Reqe:

1. Any automorphically equivalent nodes should have same node embeddings, i.e. u ≡

v =⇒ zu = zv.

80

2. While there is no guarantee that zu = zv =⇒ u ≡ v, the more structural properties we

have, the closer the embedding is to automorphic equivalence in the original graph. More

precisely, suppose the set S includes all pairs of non-automorphic equivalent nodes, i.e.

S = {(u, v)|u 6≡ v, ∀u, v ∈ V}, and an embedding Z can differentiate a subset of pairs,

i.e. Sd(Z) = {(u, v)|u 6≡ v ∧ zu 6= zv,∀u, v ∈ V}(Sd ⊆ S). Then for two embedding

Za (encoding structural properties Ta) and Zb (encoding structural properties Tb), if

Ta ⊂ Tb ⊂ TC (complete structural properties), then Sd(Za) ⊂ Sd(Zb) ⊂ S, which

means there exists at least one pair of non-automorhpic equivalent nodes that Za can

differentiate while Zb cannot. Therefore, Za is more accurate in capturing automorphic

equivalence in the original graph.

Given a graph G, suppose we have learned a representation matrix Z ∈ Rn×d that encodes

a set of structural properties TZ = {t1, t2, · · · , tk}, which is a subset of complete structural

properties TC = {t1, t2, · · · , tk, tk+1, · · · , tm}.

(A): By definition of structural properties, for two nodes u and v that are automorphically

equivalent, we have ∀i, 1 ≤ i ≤ k, ti(u) = ti(v). Therefore, the initial embeddings (sampled

using structural properties) of u and v are equal with ε error due to randomness in sampling.

As their dissimilarity of structural properties is zero, they will never be selected as negative

samples during training, and the (multi)set of their neighbors embeddings should also be

the same (see Definition 4.2.3), the automorphically equivalent nodes u and v should get the

same final embedding.

(B): If there exists a structural property tj ∈ TC \ TZ that the current embedding Z fails

to encode and tj(u) 6= tj(v), which will lead to D(zu, zv) > ε, then we add the property tj into

the set TZ and retrain the model to update the embedding. As u and v now have different

structural features by including tj, they have a certain chance to be sampled as negative

samples, and also their neighbors embedding might be different so that they get different

embeddings via recursion. In this way, we successfully differentiate the non-automorphic pair

u and v. Repeating this procedure, we can make the embedding more accurate in capturing

automorphic equivalence.

81

4.8.2 Proof for Theorem 4.5.2

Theorem 4.5.2 (Representing structural equivalence in multiple graphs). For the multiple

graph case, with enough graph samples and complete structural properties (Tc), the embedding

generated by Reqe is an approximation of automorphic equivalence in the original graphs.

Proof. We show that for node embedding generated by Reqe, in the limit (1). automorphically

equivalent nodes are embedded close and (2). non-equivalent nodes get different embeddings

with high probability.

(1). For automorphically equivalent nodes u and v, we have ∀t ∈ Tc, t∗(u) d= t∗(v). As the

average structural properties t̄ computed from the graph samples is an unbiased estimator

of true average of t∗, then the two nodes have same initial embedding. According to the

definition of node equivalence, the neighbors of the two nodes are also regular equivalent,

therefore, during the model training, the multiset of neighbors’ embeddings are also the same.

(2). For non-equivalent nodes u and v, they get different embeddings with high probability.

• The more structural properties we have, the more non-equivalent pairs we can differen-

tiate. Two non-equivalent nodes may have same joint distribution of c probabilistic

structural properties (c < m), but there must exist another t∗
c+1 that can break the

equivalence since they’re not automphically equivalent.

• The more samples we have, the more pairs we can differentiate. Two non-isomorphic

nodes might have same estimated average of structural properties with k samples, but

adding more samples the estimated value of t̂i is closer to true E[t∗
i], and at least one

E[t∗
i] can differentiate them.

• Worst case: only one structural property has different expected values for one non-

equivalent node pairs. Then during the model training when we consider condition (2)

in def. 2.10, the multiset of neighbors’ embeddings reflect the distribution of neighbors’

structural properties. Since at least one non-equivalent pair of nodes have different

initial embeddings, the difference can propagate to their neighbors and higher-order

neighbors, which breaks the equivalence for all nodes with D steps where D is the graph

diameter.

82

4.8.3 Proof for Theorem 4.5.3 : Boosted expressiveness through recursive steps

Theorem 4.5.3 (Boosted expressiveness through recursive steps). Given a fixed set of

structural properties T , Reqe is able to capture more longer-range properties faster by

performing the recursive steps (i.e. updating node embedding by comparing neighbors’

embedding). Specifically, given a fixed set of structural properties capturing node isomorphism

within d-hop neighborhood, performing k recursive steps will enlarge the radius to k · d, which

essentially captures more structural properties and thus improve the accuracy of the embedding

(according to Theorem 4.5.1 (B)).

Proof. Suppose the largest diameter of the properties we computed is d, then we can at best

consider the local network structure within d-hop neighborhood for determining if two nodes

are automorphically equivalent, which means two nodes that are only isomorphic within

d-hop neighborhood will be deemed automorphically equivalent. After one recursive step

when we compare their neighbors’ embedding which essentially captures their neighbors’

d− hop local structure, we’re essentially increasing the neighborhood diameter from d to 2d.

Similarly, with k step we can consider neighborhood within radius k · d.

83

5. A COLLECTIVE LEARNING FRAMEWORK TO BOOST

GNN EXPRESSIVENESS FOR NODE CLASSIFICATION

5.1 Introduction

A large body of work in relational learning focuses on collective classification frameworks

for strengthening poorly-expressive (i.e., local) relational node classifiers (e.g., relational

logistic regression, naive Bayes, decision trees [79]), by incorporating dependencies among node

labels and propagating inferences during classification to improve performance, particularly

in semi-supervised settings [4], [9], [30]. However, a long-standing open question is when/if

collective inference is needed, particularly as more expressive relational graph models become

available, e.g., Graph Neural Networks (GNNs).

Despite the recent success of GNNs at node and graph classification tasks [8], [16], [17],

[80], these GNNs are no more powerful than the Weisfeiler-Lehman (WL) graph isomorphism

test, and thus, inherit its shortcomings. In other words, existing GNNs are not universal

(most-expressive) graph representations [5], [6], [8], [81]. This implies that these GNNs

(which we refer to as WL-GNNs and also includes GCNs [16]) are not expressive enough

for some node classification tasks, since their representation can provably fail to distinguish

non-isomorphic nodes with different labels.

While recently there has been increasing interest in developing more expressive WL-GNNs

for graph classification tasks that can differentiate non-isomorphic graphs by considering

higher-order GNNs (e.g. [82]–[86], these methods primarily consider graph-level represen-

tations and, even when they can be adapted for node-level classification tasks, they would

be computationally expensive to apply. Is there a easy-to-implement add-on procedure to

existing WL-GNNs that can boost their node classification expressiveness?

To address this question, in this work, we theoretically and empirically investigate the

potential for collective inference to improve the expressiveness of GNNs. We devise an add-on

training and inference procedure, which we denote collective learning, that incorporates

label dependencies among neighboring nodes via predicted label sampling—akin to how

collective classification improves not-so-expressive classifiers—and show that it can improve

the expressiveness of any WL-GNN.

84

Contributions:

• We propose CL+GNN, an add-on collective learning framework to GNNs that provably

boosts their expressiveness for node classification tasks, beyond that of an optimal WL-

GNN

1
 . CL+GNN uses self-supervised learning and Monte Carlo sampled embeddings

to incorporate node labels during inductive learning—and it can be implemented with

any component GNN.

• We provide theoretical analysis of CL+GNN.

– Theorem 5.4.1 shows that collective classification is provably unnecessary for

GNNs that are most-expressive.

– Since WL-GNNs are not most-expressive, Theorem 5.4.2 and Proposition 5.4.1

show that CL+GNN boosts the expressiveness of optimal WL-GNN and practical

WL-GNNs.

– Corollary 1 shows that previous attempts to incorporate collective inference into

WL-GNNs (which in contrast to CL+GNN do not Monte Carlo sample embeddings)

cannot increase expressivity beyond that of an optimal WL-GNN.

• We design and conduct extensive experiments to confirm the above theoretical claims.

CL+GNN achieves a consistent improvement of node classification accuracy, across

a variety of state-of-the-art WL-GNNs, for tasks involving unlabeled and partially-

labeled test graphs. Our ablation study demonstrates the effectiveness of our approach

incorporating collective learning in GNNs via self-supervised learning with Monte Carlo

sampling of embeddings.

5.2 Problem formulation

We consider the problem of inductive node classification across partially-labeled graphs,

which takes as input a graph G(tr) = (V (tr), E(tr), X(tr), Y
(tr)

L) for training, where V (tr) is a

set of n(tr) vertices, E(tr) ⊂ V (tr) × V (tr) is a set of edges with adjacency matrix A(tr), X(tr)

1
 ↑ We use the term optimal WL-GNN to refer to the most expressive version of a GNN–one that has the

same distinguishing power as a Weisfeiler-Lehman test. Note this is not a universal graph representation.

85

is a n(tr) × p matrix containing node attributes as p-dimensional vectors, and Y
(tr)

L is a set

of observed labels (with C classes) of a connected set of nodes V
(tr)

L ⊂ V (tr), where V
(tr)

L is

assumed to be a proper subset of V (tr), noting that V
(tr)

L 6= ∅. Let Y
(tr)

U be the unknown

labels of nodes V
(tr)

U = V (tr) \ V
(tr)

L . The goal is to learn a joint model of Y
(tr)

U ∼ P (YU |G(tr))

and apply this same model to predict hidden labels Y
(te)

U in another test graph G(te), i.e.,

Ŷ
(te)

U = arg maxYU
P (YU |G(te)). The test graph G(te) can be partially labeled or unlabeled so

V
(te)

L ⊇ ∅.

Graph Neural Networks (GNNs), which aggregate node attribute information to produce

node representations, have been successfully used for this task. At the same time, relational

machine learning (RML) methods, which use collective inference to boost the performance of

local node classifiers via (predicted) label dependencies, have also been successfully applied

to this task.

Since state-of-the-art GNNs are not most-expressive for node classification [5], [8], collective

classification ideas may help to improve the expressiveness of GNNs. In particular, collective

inference methods often sample predicted labels (conditioned on observed labels) to improve

the local representation around nodes and approximate the joint distribution P (YU |G(te)).

We also know from recent research that sampling randomized features can boost GNN

expressiveness [6]. This leads to the key conjecture of this work Section 5.2 , which we

prove theoretically in Section 5.4 and validate empirically by extensive experimentation in

 Section 5.5 .

Since current Graph Neural Networks (e.g. GCN, GraphSAGE, TK-GCN) cannot produce

most expressive graph representations, collective learning (which takes label dependencies

into account via Monte Carlo sampling) can improve the accuracy of node classification by

producing a more expressive graph representation.

Why? Because WL-GNNs can extract more information about local neighborhood

dependencies via sampling [6], and sampling predicted labels allows GNNs to pay attention

to the relationship between node attributes, the graph topology, and label dependencies

in local neighborhoods. With collective learning, GNNs will be able to incorporate more

information into the estimated joint label distribution. Next, we describe our collective

learning framework.

86

Step 2: Obtain label prediction

Mask Reverse mask

Step 1: Sample a |V|-dim binary mask

……

Z

average

……

……

X X X

compute losspredicted label
distribution

Step 4: Compute loss with mask
and perform gradient descent

shared parameters

predicted label

true label

no label (all-zero)
labels used in GNN input

Equation 6

X

predicted label
distribution

apply mask

Sample K labels

At iteration t:
Step 3: Average CLGNN representation

if t = 1, go to step 4

Equation 4

Figure 5.1. CLGNN model framework. Each iteration consists of four
steps: (Step 1) Sample a random mask; (Step 2) Obtain predicted label
distribution using the WL-GNN structure; (Step 3) Sample predicted labels
for whatever nodes are masked, use again as input to the WL-GNN and
average representations over the sampled predicted labels; (Step 4) Perform
one optimization step by minimizing a negative log-likelihood upper bound.

5.3 Proposed Framework: Collective Learning

In this section, we outline CL+GNN. It is a general framework to incorporate any GNN,

and combines self-supervised learning approach and Monte Carlo embedding sampling in an

iterative process to improve inductive learning on partially labeled graphs.

Specifically, given a partially labeled training graph G(tr) = (V (tr), E(tr), X(tr), Y
(tr)

L) with

adjacency matrix A(tr) and a partially-labeled test graph G(te) = (V (te), E(te), X(te), Y
(te)

L)

with adjacency matrix A(te). The goal of inductive node classification task is to train a joint

model on G(tr) to learn P (YU |G(tr)) and apply it to G(te) by replacing the input graph G(tr)

with G(te). Suppose the graphs G(tr) and G(te), we can define Y
(tr)

L as a binary (0-1) matrix

of dimension |V (tr)| ×C, and Y
(te)

L of dimension |V (te)| ×C, where the rows corresponding to

the one-hot encoding of the (available) labels.

87

(Background) GNN and representation learning. Given a partially labeled graphs

G(tr), WL-GNNs generate node representation by propagating feature information throughout

the graph. Specifically, ∀v ∈ V (tr),

P (Yv|X(tr), Y
(tr)

L , A(tr)) = σ(WZv + b), (5.1)

where Zv = GNN(X(tr), A(tr); Θ)v is the GNN representation of node v, σ(·) is the softmax

activation, and Θ, W and b are model parameters, which are learned by minimizing the

cross-entropy loss between true labels Y
(tr)

L and the predicted labels.

The collective learning framework. Following Section 5.2 , we propose Collective

Learning GNNs (CL+GNN), which includes label information as input to GNNs to produce

a more expressive representation. The overall framework follows four steps: (Step 1)

Sample a random binary mask to include true labels (if available) in the input; (Step 2)

Obtain predicted label distribution using the WL-GNN structure; (Step 3) Sample predicted

labels for whatever nodes are masked, combine with available true labels (if any), and use

again as input to the WL-GNN; finally average representations of the WL-GNN over the

sampled predicted labels; (Step 4) Perform one optimization step by minimizing a negative

log-likelihood upper bound. These steps are shown in Figure 5.1 . Collective learning for

WL-GNNs then consists of iterating over Steps 1-4 for t = 1, . . . , T iterations. Finally, once

optimized, we perform inference via Monte Carlo estimates.

CL+GNN loss and its representation averaging. The input to GNNs is typically

the full graph G(tr). If we included the observed labels Y
(tr)

L directly in the input, then it

would be trivial to learn a model that predicts part of the input. Instead, we either (scenario

test-unlabeled) mask all label inputs if the test graph G(te) is expected to be unlabeled; or

(scenario test-partial) if G(te) is expected to have partial labels, we apply a mask to the labels

we wish to predict in training so they do not appear in the input Y
(tr)

L .

Specifically, at the t-th step of our optimization —these steps can be coarser than

a gradient step — we either (scenario test-partial) sample a mask M (t) ∼ Uniform(M)

or (scenario test-unlabeled) set M (t) = 0. For now, we assume we can sample Ŷ(t−1) =

(Ŷ (t−1)
v)v∈V (tr) from an estimate of the distribution P (Y (tr)

v |X(tr), Y
(tr)

L �M (t), A(tr)) —we

88

will come back to this assumption soon. Let X
(tr)
Y

(tr)
L ,Ŷ (t−1),M (t) be the matrix concatenation

between Y
(tr)

L �M (t) + Ŷ (t−1) �M
(t) and X(tr), where again M := 1−M is the bitwise

negated matrix of M . Let

Z(t)
v (M (t);Θ)=EŶ (t−1)

[
GNN(X(tr)

Y
(tr)

L ,Ŷ (t−1),M (t) ,A
(tr);Θ)v

]
, (5.2)

where GNN represents an arbitrary graph neural network model and Zt
v is the CL+GNN’s

representation obtained for node v ∈ V (tr) at step t ≥ 1.

Our optimization is defined over the expectation of Z(t)
v (M (t)) w.r.t. to the sampled

predicted labels Ŷ (t−1) (Equation (5.2)) and over a loss averaged over all sampled masks

(noting that the case where M (t) = 0 is trivial):

Θt, Wt, bt = arg max
Θ,W,b

EM (t)

[∑
v∈V

(tr)
L

M
(t)
v

× log σ(WZ(t)
v (M (t); Θ) + b)

y
(tr)
v

]
,

(5.3)

where again, σ(·) is the softmax activation function, and V
(tr)

L are the labeled nodes in

training graph.

Stochastic optimization of Equation (5.3) . Equation (5.3) is based on a pseudo-

likelihood, where the joint distribution of the labels {Y (tr)
v : v ∈ V

(tr)
L s.t. M

(t)
v = 1} is

decomposed as marginal distributions resulting in the sum over V
(tr)

L .

(Step 1) Sample a binary mask In (scenario test-partial), where G(te) is expected to

have some observed labels, we randomly sample a binary mask M ∼ Uniform(M) from a

set of masks, where M is a |V (tr)| × C binary (0-1) matrix with the same |V (tr)|-dimensional

vector in each column. By applying the mask on the observed labels Y
(tr)

L , the set of true

labels is effectively partitioned into two parts, where part of the true labels Y
(tr)

L �M are

used as input to CL+GNN, and the other part Y
(tr)

L �M are used as optimization target.

Here M := 1−M is the bitwise negated matrix of M .

89

(Step 2) Obtaining Ŷ(t−1). Note that in Equation (5.2) , we first need to obtain the

predicted label distribution Ŷ(t−1) with mask M (t) to sample labels from. At iteration t, we

use the learned CL+GNN model parameter Θt−1 to obtain Z(t−1)
v according to Equation (5.2)

and use the CL+GNN model parameters Wt−1, bt−1 to obtain the label prediction recursively,

i.e. ∀v ∈ V (tr),

Ŷ (t−1)
v ∼ Categorical(σ(Wt−1Z

(t−1)
v (M (t); Θt−1) + bt−1)), (5.4)

where

Z(t−1)
v (M (t);Θt−1)=GNN(X(tr)

Y
(tr)

L ,0,M (t) ,A
(tr);Θt−1)v (5.5)

Note that Z(t−1)
v (M (t);Θ) does not use any predicted labels in the GNN input, i.e. it uses

the true labels for masked nodes or all-zero labels for unmasked nodes.

In order to optimize Equation (5.3) , we compute gradient estimates w.r.t. Θ and b using

the following sampling procedure.

(Step 3) We first need to compute an unbiased estimate of {Z(t−1)
v }

v∈V
(tr)

L

in Equa-

tion (5.2) using K i.i.d. samples Ŷ (t−1) from the model obtained at time step t − 1 (as

describe above), i.e.

Z̃(t)
v (M (t);Θt)= 1

K

K∑
k=1

GNN(X(tr)
Y

(tr)
L ,Ŷ

(t−1)
k

,M (t) ,A
(tr);Θt)v, (5.6)

where again X
(tr)
Y

(tr)
L ,Ŷ (t−1),M (t) is the matrix concatenation between X(tr) and Y

(tr)
L �M (t) +

Ŷ (t−1) �M
(t).

Note that the time/space complexity of the CL+GNN is K times the time/space complexity

of the corresponding GNN model as we have to compute K representations for each node at

each stochastic gradient step.

(Step 4) Next, we need an unbiased estimate of the expectation over mask M (t) in

 Equation (5.3) . In (scenario test-partial) the unbiased estimates are obtained by sampling

M (t) ∼ Uniform(M) at each gradient step, in the (scenario test-unlabeled) the value obtained

is exact since M (t) = 0. The mask M (t) is used, along with the estimate Z̃ from Equa-

90

tion (5.6) , to compute the loss function as in Equation (5.3) and perform a gradient descent

step. Proposition 5.4.2 shows that the above procedure is a proper surrogate upperbound of

the loss function.

Inference with learned model.

Once the CL+GNN parameters ΘT , WT , bT are learned according to Equation (5.3) on the

training graph G(tr), given an any-size attributed graph G(te), we sample J masks M of size

|V (te)|, either (scenario test-partial) sampling M ∼ Uniform(M) or (scenario test-unlabeled)

set M = 0. For each mask, we apply the same procedure as in (Step 2) and (Step 3) to

obtain predicted label distribution Ŷ(tmp), and then sample K labels {Ŷ(tmp)
1 , · · · , Ŷ(tmp)

K }

from it and pass to the learned model. The node representations for v ∈ V (te) are obtained

using M and Ŷ(tmp)
1,··· ,K :

Z̃v(M ; ΘT)= 1
K

K∑
k=1

GNN(X(te)
Y

(te)
L ,Ŷ

(tmp)
k

,M
, A(te); ΘT)v,

where

(Ŷ (tmp)
k)v ∼ Categorical(σ(WT Z(tmp)

v (M ; ΘT) + bT)),

and

Z(tmp)
v (M ;ΘT)=GNN(X

Y
(te)

L ,0,M (te) ,A
(te);ΘT)v.

The final node representation is computed as the average over all sampled masks:

Z̃v = 1
J

J∑
j=1

Z̃v(Mj; ΘT),

where J and K are hyperparameters, J is the number of masks for our Monte Carlo average

and K is the number of Monte Carlo samples of Ŷ(tmp). Then the label predictions are

obtained using the learned CL+GNN parameters WT , bT :

Ŷ (te)
v ∼ Categorical(σ(WT Z̃v + bT)v), ∀v ∈ V (te). (5.7)

91

5.4 Collective Learning Analysis

Is collective classification able to better represent target label distributions than node

representation learning? The answer to this question is both yes (for WL-GNNs) and no

(for most-expressive representations). Theorem 5.4.1 shows that a most-expressive graph

representation [6], [7], [87] would not benefit from a collective learning boost. All proofs can

be found in the Appendix.

Theorem 5.4.1 (Collective classification can be unnecessary). Consider the task of predicting

node labels when no labels are available in test data. Let Γ?(v, G(te)) be a most-expressive

representation of node v ∈ V (te) in graph G(te) . Then, for any collective learning procedure

predicting the class label of v ∈ V (te), there exists a classifier that takes Γ?(v, G(te)) as input

and predicts the label of v with equal or higher accuracy.

While Theorem 5.4.1 shows that the most-expressive graph representation does not need

collective classification, WL-GNNs are not most-expressive [5], [6], [8]. Indeed, Theorem 5.4.2

and Proposition 5.4.1 show that CL+GNN boosts the expressiveness of optimal WL-GNN

and practical WL-GNNs, respectivelly. Then, we show that the stochastic optimization in

Step 3 optimizes a loss surrogate upper bound.

5.4.1 Expressive power of CL+GNN

[5] and [8] show that WL-GNNs are no more powerful in distinguishing non-isomorphic

graphs and nodes as the standard Weisfeiler-Lehman graph isomorphism test (1-WL or just

WL test). Two nodes are assumed isomorphic by the WL test if they have the same color

assignment in the stable coloring.

The node-expressivity of a parameterized graph representation Γ (with parameter Γ(·; W))

can then be determined by the set of graphs for which Γ can identify non-isomorphic nodes:

G(Γ) = {G : ∃W ?
G, s.t. ∀u, v ∈ VG, Γ(G; W ?

G)v

= Γ(G; W ?
G)u iff u, v are isomorphic, G ∈ G},

92

where G is the set of all any-size attributed graphs, VG is the set of nodes in graph G. We

call G(Γ) the identifiable set of graph representation Γ.

The most expressive graph representation Γ? has an identifiable set of all any-size attributed

graphs, i.e. G(Γ?) = G. We refer to the WL-GNN that is equally expressive as WL test as

the optimal WL-GNN (or WLGNN?), which is at least as expressive as all other WL-GNNs.

In this section we show that collective learning can boost the optimal WLGNN?, i.e., the

identifiable set of WLGNN? is a proper subset of collective learning over WLGNN? (denoted

CL+GNN?)

G(WLGNN?) (G(CL+GNN?).

Theorem 5.4.2 (CL+GNN? expressive power). Let WLGNN? be an optimal WL-GNN.

Then, the collective learning representation of Equation (5.2) , using WLGNN? as the GNN

component, (denoted CL+GNN?) is strictly more expressive than this WLGNN? representation

model applied to the same tasks.

 Theorem 5.4.2 answers Section 5.2 , by showing that by incorporating collective learning

and sampling procedures, CL+GNN can boost the expressiveness of WL-GNNs, including

the optimal WLGNN?.

Corollary 1. Consider a graph representation learning method that, at iteration t, replaces

Ŷ (t−1), in Equations (5.2) and (5.4) with a deterministic function over Z(t−1), e.g., a softmax

function that outputs (P (Ŷ (t−1)
v |Z(t−1)))v∈V (tr). Then, such method will be no more expressive

than the optimal WLGNN? and, hence, less expressive than CL+GNN?.

 Corollary 1 proves that existing collective approaches are no different than current GNN

methods (hence, no boosting). More specifically, it shows that existing graph representation

methods that —on the surface— may even look like CL+GNN, but do not perform the

crucial step of sampling (Ŷ (t−1)
v)v∈V (tr) , unfortunately, are no more expressive than WL-GNNs.

Examples of such methods include [88]–[91].

Next, we show the practical benefits of collective learning are even greater when the

WL-GNN has limited expressive power due to limited message-passing layers.

93

5.4.2 How CL+GNN further expands the power of few-layer WL-GNNs

A d-layer (d > 1) WL-GNN will only aggregate neighborhood information within d hops

of any given node (i.e., over a d-hop egonet, defined as the graph representing the connections

among all nodes that are at most d hops away from the center node). In practice —mostly

for computational reasons— WL-GNNs have many fewer layers than the graph’s diameter D,

i.e., d < D.

For instance, GCN [16] and GraphSAGE [17] both used d = 2 in their experiments. Hence,

they cannot differentiate two non-isomorphic nodes that are isomorphic within their d-hop

neighborhood. We now show that CL+GNN can gather 2d-hop neighborhood information

with a d-layer WL-GNN.

Proposition 5.4.1. Let Gd
v be the d-hop egonet of a node v in graph G with diameter D > d.

Let v1 and v2 be two non-isomorphic nodes whose d-hop egonets are isomorphic (i.e., Gd
v1 is

isomorphic to Gd
v2) but 2d-hop egonets are not isomorphic. Then, a WL-GNN representation

with d layers will generate identical representations for v1 and v2 while CL+GNN is capable

of giving distinct node representations.

 Proposition 5.4.1 shows that collective learning has yet another benefit: CL+GNN further

boosts the power of WL-GNNs with limited message-passing layers by gathering neighborhood

information within a larger radius. Specifically, CL+GNN built on a WL-GNN with d layers

can enlarge the effective neighborhood radius from d to 2d in Equation (5.2) , while WL-GNN

would have to stack 2d layers to achieve the same neighborhood radius, which in practice

may cause optimization challenges (i.e., d = 2 is a common hyperparameter value in the

literature).

5.4.3 Optimization of CL+GNN

Proposition 5.4.2. If ∀v ∈ V
(tr)

L , ∇Θ(WZ(t)
v (M (t); Θ))

y
(tr)
v

is bounded (e.g., via gradient

clipping), then the optimization in Equation (5.3) , with the unbiased sampling of {Z(t−1)
v }v∈V (tr)

and M (t) described above, results in a Robbins-Monro [92] stochastic optimization algorithm

that optimizes a surrogate upper bound of the loss in Equation (5.3) .

94

Since the optimization objective in Equation (5.3) is computationally impractical, as it

requires computing all possible binary masks and label predictions, Proposition 5.4.2 shows

that the sampling procedures used in CL+GNN that considers K samples of label predictions

and a random mask at each gradient step is a feasible approach of estimating an unbiased

upper bound of the objective.

5.5 Experiments

5.5.1 Experiment Setup

Datasets. We use datasets of Cora, Pubmed, Friendster, Facebook, and Protein. The

largest dataset (Friendster [93]) has 43,880 nodes, which is a social network of users where

the node attributes include numerical features (e.g number of photos posted) and categorical

features (e.g. gender, college, etc.) encoded as binary one-hot features. The node labels

represent one of the five age groups. The full dataset statistics is shown in Table 5.1 .

Table 5.1. Dataset statistics
Dataset # Nodes # Attributes # Classes # Test

Cora 2708 1433 7 1000
Pubmed 19717 500 3 1000

Friendster 43880 644 5 6251
Facebook 4556 3 2 1000
Protein 12679 29 2 2376

• Cora and Pubmed are benchmark datasets for node classification tasks from [94]. They

are citation networks with nodes representing publications and edges representing citation

relation. Node attributes are bag-of-word features of each document, and the predicted

label is the corresponding research field.

• Facebook [95] is social network of Facebook users from Purdue university, where nodes

represent users and edges represent friendship. The features of the nodes are: religious

views, gender and whether the user’s hometown is in Indiana. The predicted labels is

political view.

95

train test

Random split

validation

Connected split

Test

Validation

Train

Figure 5.2. Different data splits between our inductive connected split (left)
and conventional GNN random split (right)

• Friendster [93] is social network. Nodes represent users and edges represent friendship.

The node attributes include numerical features (e.g number of photos posted, etc) and

categorical features (e.g. gender, college, music interests, etc), encoded as binary one-hot

features. The node labels represent one of the five age groups: 0-24, 25-30, 36-40, 46-50

and over 50. This version of the graph contain 40K nodes, 25K of which are labeled.

• Protein is a collection of protein graphs from [72]. Each node is labeled with a functional

role of the protein, and has a 29 dimensional feature vector. We use 85 graphs with an

average size of 150 nodes.

Train/Test split. Since most datasets used to test GNNs consist of a single graph,

we apply Louvain community detection algorithm [97] to split each single graph into three

clusters for training, validation, and testing respectively, and remove the edges across clusters

—shown in Figure 5.2 (left). This mimics the inductive within-graph scenario that often occurs

in real world settings, where a connected subgraph is used to learn a model to generalize the

remainder of the graph —e.g., Facebook would train a model on Iceland or New Zealand and

then apply it to the rest of the world, see methodology in [98].

Our train/test data split is different than previous GNN works, which have adopted

random node split between train and test —shown in Figure 5.2 (right)— and can put test

nodes close to the training nodes, making it much easier to leverage test node attributes

96

Table 5.2. Node classification accuracy with unlabeled and partially-labeled
test data. Numbers in bold represent significant improvement in a paired t-test
at the p < 0.05 level, and numbers with ∗ represent the best performing method
in each column. Coraconnect and Pubmedconnect are our processed graphs with
the connected split illustrated in Figure 5.2 (left).

Coraconnect Pubmedconnect Friendster Facebook Protein
train labels: 85 (3.21%) 300 (1.52%) 641 (1.47%) 80 (1.76%) 7607 (30%)

% labels in G(te): 0% 50% 0% 50% 0% 50% 0% 50% 0% 50%
Random 14.28 (0.00) 14.28 (0.00) 33.33 (0.00) 33.33 (0.00) 20.00 (0.00) 20.00 (0.00) 50.00 (0.00) 50.00 (0.00) 50.00 (0.00) 50.00 (0.00)

GCN [16] - 64.74 (1.51) 66.34 (1.84) 54.56 (2.49) 58.41 (1.27) 25.97 (0.69) 24.26 (0.52) 50.58 (1.38) 51.04 (1.20) 75.86 (1.11) 77.54 (1.09)
+ CL +3.72 (0.40) +12.41 (1.96) +1.95 (0.69) +15.37 (2.01) +0.70 (0.14) +1.99 (0.74) +2.24 (0.81) +8.51 (1.09) +1.22 (0.51) +0.75 (0.33)

GS [17] - 65.35 (1.19) 67.71 (1.53) 55.56 (2.44) 59.12 (2.02) 26.45 (0.62) 24.75 (0.39) 51.14 (1.24) 52.06 (1.29) 73.85 (1.12) 73.01 (2.28)
+ CL +2.81 (1.02) +9.94(1.04) +1.05 (0.83) +14.71 (2.89) +0.13 (0.41) +1.40 (0.62) +1.77 (0.55) +7.80 (0.84) +0.84 (0.12) +1.47 (0.63)

TK [80] - 68.47 (1.31) 69.50 (0.55) 59.05 (2.13) 60.77 (1.53) 25.93 (0.91) 24.42 (1.44) 52.74 (1.62) 53.48 (1.48) 73.65 (1.69) 78.94 (1.50)
+ CL +1.50 (0.61) +7.92 (0.75) +0.23 (0.61) +13.62 (1.84) +1.20 (0.14) +2.34 (0.42) +3.26 (0.98) +4.60 (1.16) +1.31 (0.27) +1.36 (0.94)

GRAND [96] - 71.55 (1.07) 73.19 (0.41) 61.82 (6.40) 63.23 (7.22) 28.03 (1.02) 27.02 (0.84) 47.10 (0.27) 48.14 (0.52) 75.43 (1.12) 79.69 (0.29)
+ CL +0.80 (0.31) +2.30 (0.56) +3.79 (1.50) +5.17 (1.44) +0.37 (0.39) +4.21 (0.72) +6.38 (2.29) +5.72 (2.34) +0.51 (0.36) +0.75 (0.20)

Best of CL 72.36 (1.20)∗ 78.31 (0.58)∗ 65.61 (6.60)∗ 74.39 (1.72)∗ 28.40 (0.85)∗ 31.23 (1.05)∗ 56.01 (1.48) 59.86 (0.83) 77.08 (1.03) 80.52 (0.37)
PL-EM [30] - 20.66 (0.04) 54.22 (0.94) 38.85 (0.03) 65.65 (4.33) 18.13 (0.23) 22.25 (0.87) 50.58 (0.03) 61.17 (1.14) 78.46 (1.45) 77.95 (1.56)
ICA [11] - 62.29 (2.18) 65.51 (1.30) 43.93 (6.84) 44.61 (6.24) 26.48 (1.37) 27.80 (1.56) 61.56 (1.10)∗ 62.04 (1.92)∗ 84.88 (3.35)∗ 84.39 (4.08)∗

GMNN [90] - 66.35 (3.12) 72.04 (2.45) 57.13 (3.01) 67.94 (4.40) 24.92 (1.20) 26.88 (1.53) 49.56 (0.88) 57.09 (0.78) 76.75 (0.74) 75.96 (0.76)

during training. Our use of a hard split between train and test (connected split) is the

reason why the model performance reported in our paper is not directly comparable with the

reported results in previous GNN papers, even though we used the same implementations and

hyper-parameter search procedures. In our experiments, we tested two different label rates

in test graph: 0 (unlabeled) and 50% (reveal 50% testing labels and evaluate on the rest).

We run five trials for all the experiments, and in each trial we randomly pick a connected

subgraph within the training cluster and reveal their labels for training.

As our method can be applied to any GNN models, we use four representative GNNs as

examples:

• GCN [16] which includes two graph convolutional layers. Here we implemented an inductive

variant of the original GCN model for our tasks.

• Supervised GraphSage [17] (denoted by GS) with Mean pooling aggregator. We use sample

size of 5 for neighbor sampling.

• Truncated Krylov GCN [80] (denoted by TK), a recent GNN model that leverages multi-

scale information in different ways and are scalable in depth. The TK has stronger

expressive power and achieved state-of-the-art performance on node classification tasks.

97

We implemented Snowball architecture which achieved comparable performance with the

other truncated Krylov architecture according to the original paper.

• GRAND [96], a recent GNN model using random propagation strategy to perform graph

data augmentation, in order to mitigate the issues of over-smoothing and non-robustness.

GRAND achieved state-of-the-art performance on several semi-supervised node classifica-

tion tasks.

For each of the GNNs, we compare its baseline performance (on its own) to the performance

achieved using collective learning in CL+GNN (using that GNN).

Hyperparameter setting. For a fair comparison, we adopt the same hyper-parameter

tuning strategy for the baseline GNNs and CL+GNN, e.g. hidden dimensions, learning rate,

early-stopping procedures. Specifically, we searched the initial learning rate within {0.005,

0.01, 0.05} with weight decay of 0.0005. Dropout is applied to all the layers with p = 0.5.

Hidden units are searched within {16, 32} if the dataset wasn’t used by the original paper,

or set as the same number as originally chosen in the paper. The number of layers is set

to 2 for GCN [16] and GraphSage [17] as used in their paper, and set to 10 for TK [8].

For GraphSage [17], the neighborhood sample size is set to 5. For GRAND [96], the two

additional hyper-parameters are propagation step (K) and data augmentation times (S). We

search K in {2, 5, 8} and S in {2, 4} by grid search.

For CL+GNN, the additional hyperparameters are (1) the sample size of predicted labels

Ŷ (K), and (2) the number of model iterations (T). We set sample size K = 5 for Friendster

dataset (due to memory issue) and K = 10 for all other datasets. For label rate of 50%, the

model is trained for T = 10 iterations, and each iteration contains 100 epochs. Note that

we sample a new binary mask for each epoch as described in Section 5.3 . For label rate of

0%, the model is trained for T = 3 iterations, and each iteration contains up to 500 epochs

which can be early stopped if the validation accuracy decreases for a specified consecutive

epochs. The numbers of iterations are empirically determined as only marginal improvements

are observed after 3 iterations for unlabeled test data and 10 iterations for partially-labeled

test data. The validation accuracy is used to choose the best epoch. For each search of

98

hyperparameter configuration, we run the experiments with 10 random seeds and select the

best configuration of hyperparameters based on average accuracy on validation set.

Note that the hyper-parameter tuning could be done more aggressively to further boost

the performance of CL+GNN, e.g. using more layers for TK [8] and searching K and S in

a larger space for GRAND, but our main goal is to evaluate the relative improvements of

CL+GNN on the corresponding non-collective GNNs.

In addition, we also compare to three relational classifiers, ICA [11], PL-EM [30] and

GMNN [90]. The first two models apply collective learning and inference with simple local

classifiers —— Naive Bayes for PL-EM and Logistic regression for ICA. GMNN is the

state-of-the-art collective model with GNNs, which uses two GCN models to model label

dependency and node attribute dependency respectively. All the three models take true

labels in their input, thus we use Y
(tr)

L for training and Y
(te)

L for testing.

We report the average accuracy score and standard error of five trials for the baseline mod-

els, and compute the absolute improvement of accuracy of our method over the corresponding

base GNN. The best performance among all CL+GNN is also reported. We compute the

balanced accuracy scores on Friendster dataset as the label is highly imbalanced. To evaluate

the significance of CL+GNN improvements, we performed a paired t-test with five trials.

5.5.2 Results

The node classification accuracy of all the models is shown in Table 5.2 . Our proposed

collective learning boost is denoted as +CL (for Collective Learning) and our model perfor-

mance (absolute % of improvement over the corresponding baseline GNN) is shown in shaded

area. Numbers in bold represent significant improvement over the baseline GNN based on a

paired t-test (p < 0.05), and numbers with ∗ is the best performing method in each column.

Comparison with baseline GNN models. Table 5.2 shows that our method improves

the corresponding non-collective GNN models for all the four model architectures (i.e. GCN,

GraphSage, TK and GRAND). Although all the models have large variances over multiple

trials —because different parts of the graphs are being trained in different trials— adding

CL consistently improves the baseline GNN. The results from a paired t-test comparing

99

the performance of our method and the corresponding non-collective GNN shows that the

improvement is almost always significant at p = 0.05 (marked as bold), with only five

exceptions.

Comparing the gains on different datasets in Table 5.2 , adding CL to GNNs achieved

smaller gains on Friendster especially when no test labels were available. This is because

Friendster is more sparse than the other graphs (e.g. edge density of Friendster is 1.5e-4

while Cora is 1.44e-3 [93]), which makes it hard for any model to propagate label information

and capture label dependencies.

As expected, comparing the improvement over various GNNs with different expressive

power, we observe that in general adding CL boosts the gains of simpler GNN models (i.e.

GCN and GS). For example, Table 5.2 shows that adding CL to a GCN can boost its accuracy

by +12.41% (Cora) while the boost over TK is smaller at +7.92% in the same task. This is

in line with our assumption in Section 5.2 that collective learning can help weaker GNNs

produce a more expressive representation. As GCN is less expressive than TK, there is a

larger room to increase its expressiveness.

Note that the gains in Table 5.2 are generally much larger when we go from 0% to 50%

of the labels available in test. For example, when combining with GCN, the improvements

of our method are 3.72% and 2.24% for unlabeled Cora and Facebook test sets, but with

partially-labeled test data, the improvements are 12.41% and 8.51% respectively. This shows

the importance of modeling label dependency especially when the some test data labels are

observed.

Comparison with other relational classifiers The two baseline non-GNN relational

models —i.e. PL-EM and ICA— generally perform worse than the three GNNs, with

exceptions on Protein and Facebook datasets. This could be because the two dataset has

only a few node attributes (3 for Facebook and 29 for Protein), while the other graphs

have hundreds or thousands of node attributes, which makes it easier for the more powerful

classifier (i.e. GNNs) to overfit on Facebook and Protein. Moreover, this could also be

because the two non-GNN models generally need a larger portion of labeled set to train the

weak local classifier, whereas GNNs utilize a neural network architecture as “local classifier”,

which is better at representation learning by transforming and aggregating node attribute

100

information. However, when the model is trained with a large training set (e.g. with 30%

nodes on Protein dataset), modeling the label dependency becomes crucial. At the same

time, our method is still able to boost performance on the two datasets.

For GMNN [90], a collective GNN model, it achieves better performance than its non-

collective base model, i.e. GCN on most of the datasets, and we can see that adding CL

to GCN achieved comparable or better performance than GMNN. However, combing CL

with other more powerful GNNs can easily out-perform GMNN (e.g., on Cora and Friendster,

GRAND+CL significantly outperforms GMNN). When the test labels are available, GMNN

is able to out-perform several GNNs by leveraging test label information, but the best of

CL+GNN still out-performs GMNN consistently.

5.5.3 Ablation study

Table 5.3. Model performance on Cora (unlabeled test data) where we vary
the sampling procedure and try ensemble. The alternative methods achieved
sub-optimal performance compared to CL+GNN.

Base GNN description sampling from
predicted label dist.

sampling from
uniform label dist. ensemble % improvement

GCN
+ CL (ours) X +3.72 (0.40)

+ CL w/o predicted label X +0.36 (1.27)
+ Ensemble X +0.32 (2.28)

TK
+ CL (ours) X +1.54 (0.60)

+ CL w/o predicted label X -1.02 (0.55)
+ Ensemble X +0.63 (0.90)

GRAND
+ CL (ours) X +0.80 (0.31)
+ CL w/o predicted label X +0.35 (0.66)
+ Ensemble X +0.71 (0.13)

With or without random masking For the partially-labeled test data, we want to

validate the necessity of applying the random node masking procedure, i.e. sampling a

random mask for each epoch. To investigate this, we tested the performance of a model

variant which only used a single fixed mask during training. We tried five binary masks

and computed the average performance. Table 5.4 shows that when no random masking is

applied, it achieved marginal gains or even hurt the performance. For example, CL+GNN

with random masking achieved 2.30% improvement over GRAND, but the single mask variant

101

Table 5.4. Model performance on Cora (partially-labeled test data) where we
vary the usage of two components. Both components add to the improvements
of CL+GNN, and the ensemble method fails to improve GRAND.

Base GNN description random mask
prediction procedure

% improvementsampling from
predicted label dist.

sampling from
uniform label dist. ensemble

GCN

+ CL (ours) X X +12.41 (1.96)
+ CL w/o random mask X +0.99 (1.03)
+ CL w/o collective X +8.44 (1.84)
+ CL w/o predicted label X X +10.82 (1.49)
+ Ensemble X X +11.18 (1.80)

TK

+ CL (ours) X X +7.92 (0.75)
+ CL w/o random mask X +1.51 (1.63)
+ CL w/o collective X +5.06 (0.50)
+ CL w/o predicted label X X +6.05 (1.93)
+ Ensemble X X +6.13 (0.59)

GRAND

+ CL (ours) X X +2.30 (0.56)
+ CL w/o random mask X -0.79 (1.32)
+ CL w/o collective X +1.21 (0.81)
+ CL w/o predicted label X X +0.40 (0.78)
+ Ensemble X X -0.60 (0.84)

decreased the performance by 0.79%. This could be because the model is biased to the single

mask.

With or without predicted labels as input

(a) Cora, GCN (b) Pubmed, TK

Figure 5.3. CL+GNN performance with and without predicted labels on
Cora and Pubmed. X-axis refers to iteration number t in Section 5.3 .

To investigate if adding predicted labels in model input adds extra information with

partially-labeled test data, we tested the performance of a model variant which only use

true labels as input with the same node masking procedure. table 5.4 shows that the

non-collective variant achieves some gains over the baseline GNN as the random masking

procedure enables it to leverage test label information, but the improvement is much smaller

102

than the collective version. For example, when combined with GCN, CL+GNN with collective

labels achieved 12.41% improvement while the non-collective version only achieved 8.44%.

Moreover, Figure 5.3 shows two examples on Cora with GCN (Figure 5.3a) and Pubmed

with TK (Figure 5.3b), where including predicted labels achieves better performance. We

run the model 10 times and calculate the average and standard deviation (shown as shaded

area) of classification accuracy at each iteration t as described in Section 5.3 . We can see

that adding predicted labels starts to improve the performance after the first iteration and

achieves consistent gains.

Sampling from predicted labels or random ids

Creating more expressive GNN representations by averaging out random features was

first proposed by [6]. [6] shows a whole-graph classification application, Circulant Skip

Links (CSL) graphs, where such randomized feature averaging is provably (and empirically)

more expressive than GNNs. Our Monte Carlo collective learning method can be seen as

a type of feature averaging GNN representation though, unlike [6], the feature sampling is

not at random, but rather driven by our own model recursively. Hence, it is fair to ask if

our performance gains are simply because random feature averaging is beneficial to GNN

representations? Or does collective learning sampling actually improve performance? We

need an ablation study.

Therefore, we investigate whether the gains of our method for both unlabeled test data

and partially-labeled test data are from incorporating feature randomness, or from sampling

w.r.t predicted labels (collective learning). To do so, we replace the samples drawn from

previous prediction Ŷ as uniformly drawn from the set of class labels at each gradient step

in CL+GNN. Clearly, Table 5.3 and Table 5.4 show that the random features are not able

to consistently improve the model performance as our method does. For example, when

combined with TK, our method achieved a 1.54% improvement, while adding the random ids

decreased the TK performance by 1.02%. In summary, collective learning goes beyond the

purely randomized approach of [6], providing much larger, statistically significant, gains.

Comparison with ensemble approach

We tested an ensemble of 10 GNNs with random initialization, and tried GCN, TK and

GRAND structures. Table 5.3 show that the ensemble approach was able to slightly improve

103

Table 5.5. Node classification accuracy varying number of training labels on
Cora dataset. Numbers in bold represent significant improvement in a paired
t-test at the p < 0.05 level.

train labels 85 (3.21%) 140 (5.17%) 85 (3.21%) 140 (5.17%)
% test labels 0% 0% 50% 50%

GCN - 64.74 (1.51) 66.19 (4.59) 66.34 (1.84) 69.10 (2.85)
+ CL +3.72 (0.40) +2.30 (1.10) +12.41 (1.96) +9.52 (2.36)

TK - 68.47 (1.31) 70.80 (1.51) 69.50 (0.55) 73.33 (1.01)
+ CL +1.50 (0.61) +0.89 (0.17) +7.92 (0.75) +5.17 (0.76)

GRAND - 71.55 (1.07) 74.75 (1.03) 73.19 (0.41) 75.81(1.09)
+ CL +0.80 (0.31) +1.03 (0.50) +2.30 (0.56) +1.10 (0.31)

the GNN performance but the gains were consistently smaller than our proposed approach

CL+GNN. For example, our approach achieved +3.72% gain on GCN while the ensemble

approach only achieved +0.32%. Table 5.4 show that the ensemble approach has some gains

with random masking when combined with GCN or TK. However, When combined with

GRAND, ensemble method even slightly hurt the performance.

CL+GNN performance with varying training label rates and sample size K

To investigate the impact of the training label rates on the node classification accuracy,

we repeated the experiments on Cora dataset with various numbers of training labels, on

unlabeled test data and partially-labeled test data. Table 5.5 show the results for both test

labels rates of 0% and 50%. We can see that in general CL+GNN framework achieved a

larger improvement when fewer labels are available in the training graph. For example, with

label rates of 1.52% and 3.04%, the improvements of our framework combining with GCN on

unlabeled test data are 3.72%, 2.30% respectively. This shows that the CL+GNN framework

is especially useful when only a small number of labels are available in training, which is the

common use case of GNNs.

We also run some experiments varying K in {1, 5, 10, 20} on Cora dataset with GCN and

TK, and we found that with K > 1 there was consistent gain (see Fig. 5.4). We run each

experiment in five trials (varying training nodes) as described in Section 5.5.1 , and calculate

the average and standard error (shown as shaded area).

104

1 5 10 20
number of samples

2

1

0

1

2

3

4

%
 im

pr
ov

em
en

t

% improvement varying random sample size K

CL-GCN
CL-TK

Figure 5.4. Impact of sample size K.

Complexity analysis. CL+GNN computes K embeddings at each stochastic gradient

step, therefore, per-gradient step, CL+GNN is K slower than its component WL-GNN.

Overall, after T iterations of Steps 1-3, CL+GNN total runtime increases by T ×K over the

original runtime of its component WL-GNN. The time and space complexity of CL+GNN is

the same as WL-GNNs, i.e. O(m) where m = |E|.

Note that existing methods trying to boost the GNN expressiveness —e.g. PPGN [82],

SMP [84])— are much more computationally expensive in time (at least Θ(mn)) and space

(Θ(n2)), where n and m are number of nodes and edges in the graph.

We note that we spent nearly no time engineering CL+GNN for speed or for improving

our results. Our interest in this paper lies entirely on the gains of a direct application of

collective learning to GNNs (CL+GNN). We fully expect that further engineering advances

can reduce the computational burden due to Monte Carlo sampling and increase accuracy

gains. For instance, parallelism can significantly reduce the time to collect K samples in

CL+GNN.

5.6 Related Work

On collective learning and neural networks. There has been work on applying deep

learning to collective classification. For example, [89] proposed to use LSTM-based RNNs for

classification tasks on graphs. They transform each node and its set of neighbors into an

unordered sequence and use an RNN to predict the class label as the output of that sequence.

105

[99] designed a deep learning model for collective classification in multi-relational domains,

which learns local and relational features simultaneously to encode multi-relations.

The closest work to ours is [88], which proposed a recurrent collective classification

(RCC) framework, a variant of ICA [11] including dynamic relational features encoding

label information. Unlike our framework, this method does not sample labels Ŷ , opting

for an end-to-end training procedure. [91] opts for a similar no-sample RCC end-to-end

training method as [88], now combining a differentiable graph kernel with an iterative stage.

Graph Markov Neural Network (GMNN) [90] is another promising approach that applies

statistical relational learning to GNNs. GMNNs model the joint label distribution with a

conditional random field trained with the variational EM algorithm. GMNNs are trained by

alternating between an E-step and an M-step, and two WL-GCNs are trained for the two

steps respectively. These studies represent different ideas for bringing the power of collective

classification to neural networks. Unfortunately, Corollary 1 shows that, without sampling

Ŷ , the above methods are still WL-GNNs, and hence, their use of collective classification

fails to deliver any increase in expressiveness beyond an optimal WL-GNN (e.g., [8]). In our

experiments, we compared to GMNN as a representative relational GNN method, and showed

that while GMNN outperformed its component GCN, the best of CL+GNN still consistently

out-performs GMNN.

In parallel to our work, [100] considers regression tasks by modeling the joint GNN residual

of a target set (y − ŷ) as a multivariate Gaussian, defining the loss function as the marginal

likelihood only over labeled nodes ŷL. In contrast, by using the more general foundation of

collective classification, our framework can seamlessly model both classification and regression

tasks, and include model predictions over the entire graph Ŷ as CL+GNN’s input, thus

affecting both the model prediction and the GNN training in inductive node classification

tasks.

Higher-order GNNs for more expressive graph representation Recently, there

has been a few works proposed to boost the representation power of WLGNN [5], [81], [82],

[84], [87], [101]. Most of these works consider representation for the entire graph or node

sets by mimicking higher-order WL tests. However, most of them provide more theoretical

implications for GNNs than practical usage due to their dependency on order-k tensors Rnk

106

(n : number of nodes, k > 2) and inability to leverage the sparsity of the graph structures.

Among them PPGN [82] is relatively scalable with Θ(n3) time complexity and Θ(n2) space

complexity to achieve the expressive power of the 2-WL test. A more recent method SMP

[84] proposed a powerful and more scalable message-passing framework with time complexity

of Θ(mn) (m : number of edges) and space complexity of Θ(n2). Our work, on the other

hand, focus on node-level representations rather than (sub)graph-level representations, and

our overall time/space complexity is Θ(m). As these methods cannot be directly evaluated on

node classification tasks and due to their computational inefficiency, we leave the assessment

of CL+GNN gains if used with these more powerful GNN variants as future work.

On self-supervised learning and semi-supervised learning. Self-supervised learn-

ing is closely related to semi-supervised learning. In fact, self-supervised learning can be

seen as a self-imposed semi-supervised learning task, where part of the input is masked

(or transformed) and must be predicted back by the model [102]–[105]. Recently, self-

supervised learning has been broadly applied to achieve state-of-the-art accuracy in computer

vision [106], [107] and natural language processing [108] supervised learning tasks. The use

of self-supervised learning in graph representation learning is intimately related to the use of

pseudolikelihood to approximate true likelihood functions.

For further related work on collective classification, see ??.

5.7 Conclusion

A long-standing question is when/if collective inference (CI) is needed when very expressive

graph models are available (e.g., GNNs) for inductive node classification tasks. This work

solves a few theoretical and empirical questions towards an answer. We show that, with the

most expressive equivariant (node-embedding) GNNs, it is true that there is no need for

collective learning.

While the development of more expressive GNNs generally focuses on changing the

architecture, in this work we ask the question of whether CI could be a practical way to

boost the real-world performance of a GNN, without changing its underlying architecture.

107

In this work we propose collective learning (CL), a modified CI approach for GNN-type

classifiers that boosts their expressiveness, relying on both Monte Carlo sampling of node

embeddings and (self-supervised) random masking in training. We show that collective

learning can be combined with existing GNNs to improve their expressiveness (and we prove

increased expressiveness with WL-GNNs).

We experimentally confirm our theoretical analysis across five real-world graphs and

four component GNNs, and show by extensive empirical study that CL+GNN consistently,

and significantly, boosts GNNs performance (up to 26%). One limitation of our proposed

collective learning framework is the computational cost of using sampled embeddings during

each stochastic gradient step. We leave exploration of mechanisms to reduce the additional

computational burden (eg. via parallelization and/or more targeted sampling) to future work.

5.8 Appendix: Proofs of theorems

5.8.1 Proof of Theorem 5.4.1

We restate the theorem for completeness.

Theorem 5.4.1 (Collective classification can be unnecessary). Consider the task of predicting

node labels when no labels are available in test data. Let Γ?(v, G(te)) be a most-expressive

representation of node v ∈ V (te) in graph G(te) . Then, for any collective learning procedure

predicting the class label of v ∈ V (te), there exists a classifier that takes Γ?(v, G(te)) as input

and predicts the label of v with equal or higher accuracy.

Proof. Let Ŷ (v) = ϕ(Γ?(v, G)) be a classifier function that takes the most expressive repre-

sentation Γ?(v, G) of node v as input and outputs a predicted class label for v.

Let Ŷ (t) be the set of predicted labels at iteration t of collective classification and let Yv

be the true label of node v ∈ V . Then either (1) Yv ⊥⊥Γ?(v,G),ϕ Ŷ (t), or (2) Yv 6⊥⊥Γ?(v,G),ϕ Ŷ (t).

Case (1): Given the classifier ϕ and the most expressive representation Γ?(v, G), the true

label of v is independent of the labels predicted with collective classification. In this case,

the predicted labels of v’s neighbors offer no additional information and, thus, collective

classification is unnecessary.

108

Case (2): In this case, the true label of v is not independent of the predicted labels. By

Theorem 1 of [7], we know that for any random variable Hv attached to node v ∈ V , it must

be that ∃ϕ′ a measurable function independent of G s.t.

Hv
a.s.= ϕ′(Γ?(v, G), εv),

where εv is an noise source exogenous to G (pure noise), and a.s. implies almost sure equality.

Defining Hv := Yv,

ϕ′(Γ?(v, G), εv) 6⊥⊥Γ?(v,G),ϕ Ŷ (t),

which means Ŷ (t) must either be dependent on εv or contain domain knowledge information

about the function ϕ′ that is not in ϕ. Since Ŷ (t) is a vector of random variables fully

determined by G and ϕ, it cannot depend on an exogenous variable εv, Thus, the predictions

must contain domain knowledge of ϕ′. Hence, we can directly incorporate this domain

knowledge into another classifier ϕ† s.t. Yv ⊥⊥Γ?(v,G),ϕ† Ŷ (t), for instance ϕ† is a function of

ϕ′. In this case, ϕ† will predict the label of v with equal or higher accuracy than collective

classification based on predicted labels Ŷ , which finishes our proof.

5.8.2 Proof of Theorem 5.4.2

1

2

4

3

9

(a)	Training	graph (b)	unlabeled	test	graph (c)	partially-labeled	test	graph

10

5

6

8

7

1

2

4

3

9

10

5

6

8

7

1

2

4

3

9

10

5

6

8

7

?

?

?

?

?

?

Figure 5.5. Training/testing graphs. Colors represent available node la-
bels, and testing nodes are marked with question marks. WL-GNN cannot
differentiate between the red and green nodes.

109

Theorem 5.4.2 (CL+GNN? expressive power). Let WLGNN? be an optimal WL-GNN.

Then, the collective learning representation of Equation (5.2) , using WLGNN? as the GNN

component, (denoted CL+GNN?) is strictly more expressive than this WLGNN? representation

model applied to the same tasks.

Proof. As defined, WLGNN is a most-expressive WL-GNN. We need to prove G(WL-GNN) (

G(CL+GNN). We will do that by first showing G(CL+GNN) = G(WL-GNN) ∪ S ′ and then

showing that ∃G ∈ G(CL+GNN) s.t. G 6∈ G(WLGNN).

G(CL+GNN) = G(WL-GNN) ∪ S ′: First, we need to show that for any mask M ∈ M,

∃S ⊆ G(CL+GNN) such that S = G(WL-GNN). This is clearly true since, for labeled tests,

in Equation (5.2) we can always construct a WLGNN0 for a CL+GNN

Z(t)
v (WLGNN0) = EŶ (t−1)

[
WLGNN0(X(tr), Y

(tr)
L �M, Ŷ (t−1) �M, A(tr); Θ)v

]
, (5.8)

that ignores the Ŷ inputs. Similarly, for unlabeled tests, in Equation (5.2) we can always

construct a WLGNN1 for a CL+GNN

Z(t)
v (WLGNN1) = EŶ (t−1)

[
WLGNN1(X(tr), Ŷ (t−1), A(tr); Θ)v

]
,

that ignores the Ŷ (t−1) inputs.

∃G ∈ G(CL+GNN) s.t. G 6∈ G(WL-GNN): Let G be the graph in Figure 5.5 . We will

first consider the case where the test data has partial labels. The case without labels follows

directly from it. Using the graph G in Figure 5.5 (a) (training) and Figure 5.5 (c) (partially-

labeled testing) we show that a WL-GNN is unable, in test, to correctly give representations

to the left-most nodes {1, 2, 3, 4} that are distinct from the right-most nodes {5, 6, 7, 8}

(the same happens for the unlabeled test graph in Figure 5.5 (b)). We then show that the

representation Z(t)
v of Equation (5.8) is able to distinguish these two sets of nodes.

WL-CNN is not powerful enough to give distinct representations to nodes {1, . . . , 8} in

 Figure 5.5 (c): Consider giving an arbitrary feature value (say, the “color white”) to all

uncolored nodes {1, . . . , 8} in Figure 5.5 (c). We will start showing that the 1-WL test is

unable to give different colors to the nodes {1, . . . , 8} in this graph. Since WL-GNNs are no

110

more expressive than the 1-WL test [5], [8], showing that the above is a stable coloring for

nodes {1, . . . , 8} in the 1-WL test, proves the first part of our result. A stable 1-WL coloring

is defined as a coloring scheme on the graph that has a 1-to-1 correspondence with the colors

in the previous step of the 1-WL algorithm. Since the input to the hash function of the 1-WL

test is the same for all of nodes v ∈ {1, . . . , 8}: The node itself has color white while the

color set of the neighbors is the set {white, yellow}. In the next 1-WL round, all the white

nodes will be mapped to the same color by the hash function. The colors of node {9, 10}

will be not the same as {1, . . . , 8}. Hence, the initial coloring of all nodes {1, . . . , 8} white

and {9, 10} yellow is a stable coloring for 1-WL. Consequently, WL-GNN will give the same

representation to all nodes in {1, . . . , 8}.

CL+GNN gives the same representations within the sets {1, . . . , 4} and {5, . . . , 8}: At

iteration t ≥ 0 of CL+GNN, we start with the base of the recursion Y (t−2) = 0.

Now consider a given mask M (t) ∈ M. Note that to sample Ŷ (t−1)
v for v ∈ {1, . . . , 8}

we apply Ŷ (t−2) = 0 into Equation (5.2) to obtain Z(t−1)
v , and then apply Z(t−1)

v into

 Equation (5.4) , defining X
(tr)
Y

(tr)
L ,Ŷ (t−1),M (t) = [X(tr), Y

(tr)
L � M (t), 0], which will give us

Ŷ (t−1)
v ∼ P (Y (t−1)

v |WLGNN([X(tr), Y
(tr)

L �M (t), 0], A(tr); Θ)v), and any classes has a non-

zero probability of being sampled since our output is a softmax.

Since nodes {1, . . . , 8} all get the same representation in the above WLGNN, their

respective sampled Ŷ (t−1)
v , v ∈ {1, . . . , 8}, will have the same distribution but possibly not

the same values (due to sampling). Note that the nodes {1, . . . , 4} will get the same average

in Equation (5.8) since Ŷ (t−1)
v , v ∈ {1, . . . , 4}, has the same distribution and the nodes are

isomorphic (even given the colors on nodes 9 and 10). Similarly, the nodes {5, . . . , 8} will

also get the same average in Equation (5.8) .

CL+GNN gives distinct representations accross the sets {1, . . . , 4} and {5, . . . , 8}: Fi-

nally, we now prove that exists a WL-GNN, which we will denote WLGNN2, such that

Z(t)
v (WLGNN2) 6= Z(t)

u (WLGNN2) for v ∈ {1, . . . , 4} and u ∈ {5, . . . , 8}. We will show

that there is a joint sample of Ŷ
(t−1)

1 , . . . , Ŷ
(t−1)

8 where there is no symmetry between the

representations of nodes in {1, . . . , 4} and {5, . . . , 8}. Since each layer of WLGNN2 can have

different parameters, we can easily encode differences in the number of hops it takes to reach

a certain color. Moreover, at any WLGNN2 layer, the representation of a node can perfectly

111

encode its own last-layer representation and the last-layer representation of its neighbors

through a most-expressive multiset representation function [8].

It is enough for us to show that for a sampled Ŷ (t−1) the sets of nodes {1, . . . , 4} and

{5, . . . , 8} can get distinct unique representations under WLGNN2. By unique, we mean,

{1, . . . , 4} can get representations in WLGNN2 that cannot be obtained by the nodes in

{5, . . . , 8}. This representation uniqueness makes sure the averages in Equation (5.2) are

different. Without loss of generality we will consider giving a special sampled label to only

one node i ∈ {1, 5} in one of the sets. The sampled labels Ŷ
(t−1)

i = green, while all other

nodes {1, . . . , 8}\{i} get red, will happen with non-zero probability, hence, they must be part

of the expectation in Equation (5.2) . Note that node 2 (for i = 1) and 6 (for i = 5) will

feel the effects of the green color in their neighbors differently. That is, for i = 5 there is a

parameter choice for the layers of WLGNN2 where the representation of node 6 uniquely

encodes that the color green is within hops 1 (node 5) and 3 (from node 5 through nodes

9 and 10) of node 6 (if 6 treats its own representation differently from its neighbors). For

i = 1, node 2’s representation will encode that green is observed hops 1 (node 1) and 2

(from node 1 through node 9) (similarly, 2 treats its own representation differently from its

neighbors). Hence, these representations can be made unique by WLGNN2, i.e., no other

Ŷ (t−1) assignments will create the same patterns for nodes 2 and 6, and thus, since WLGNN2

has most-expressive multiset representations, it can give a unique representation to nodes 2

and 6 for these two unique Ŷ (t−1) configurations. These unique representations are enough

to ensure Z
(t)
2 (WLGNN2) 6= Z

(t)
6 (WLGNN2) for any t ≥ 1, which concludes our proof.

5.8.3 Proof of Proposition 5.4.1

Proposition 5.4.1. Let Gd
v be the d-hop egonet of a node v in graph G with diameter D > d.

Let v1 and v2 be two non-isomorphic nodes whose d-hop egonets are isomorphic (i.e., Gd
v1 is

isomorphic to Gd
v2) but 2d-hop egonets are not isomorphic. Then, a WL-GNN representation

with d layers will generate identical representations for v1 and v2 while CL+GNN is capable

of giving distinct node representations.

112

5 3 1 2 4 6

7 8 9

(a) Training graph

1

2 3

54 8

5

3

1

6

4 9

2

2

1 4

63 7

(b) 2nc-order neighborhood for label prdic-
tion

Figure 5.6. WL-GNN using 2nd-order neighborhood cannot differentiate node
1 and 2, but CL+GNN built on this WLGNN can break the local isomorphism.

Proof. Let G be the graph in Figure 5.6 (a) with no node features, and let WLGNN be of

order 2, meaning it will generate node embeddings based on 2nd-order neighborhoods (shown

in (b)). Since node 1 and 2 have the same 2nd-order neighborhood structure, WLGNN

will generate identical node representation for them, which gives random label predictions.

Meanwhile, as nodes 5 and 6 have distinct 2nd-order neighborhood structures, WLGNN

generates different node representations for them, which enables the model to learn from

the labels y5 and y6. We can assume the predicted label probability P (Ŷ (0)
5 = green) = 0.99

and P (Ŷ (0)
6 = red) = 0.98. For CL+GNN, at iteration t = 1, we sample Ŷ (0) from the

WLGNN output P (Ŷ (0)) and use the samples as input. In the worst case, nodes 3, 4 and

7, 8 get the same distribution and sampled labels (i.e. Ŷ
(0)

3 = Ŷ
(0)

4 , Ŷ
(0)

7 = Ŷ
(0)

8). Since the

distribution of Ŷ
(0)

5 and Ŷ
(0)

6 are different, the samples of Ŷ
(0)

5 and Ŷ
(0)

6 are different, which

breaks the tie between the 2nd-order neighborhood of nodes 1 and 2. Therefore, CL+GNN

will produce different node representation starting from iteration t = 1 for nodes 1 and 2,

which enables the model to learn from the training label y1 and y2, and thus gives more

accurate predictions.

The advantage of collective inference is more clear when it is used to strengthen less-

expressive local classifiers, e.g. logistic regression Although GNN are much powerful than

these local classifiers by aggregating high(er)-order graph information, collective learning can

still help if GNN fail to make use of “global” information in graphs (or equivalently, if the

order of GNN is small than graph diameter). Previous work [109] investigating the power of

collective inference also showed that methods for collective inference benefit from a clever

113

factoring of the space of dependencies, by arguing that these (collective inference) methods

benefit from information propagated from outside of their local neighborhood. Predictions

about the class label on other objects essentially “bundle information” about the graph beyond

the immediate neighborhood.

5.8.4 Proof of Proposition 5.4.2

Proposition 5.4.2. If ∀v ∈ V
(tr)

L , ∇Θ(WZ(t)
v (M (t); Θ))

y
(tr)
v

is bounded (e.g., via gradient

clipping), then the optimization in Equation (5.3) , with the unbiased sampling of {Z(t−1)
v }v∈V (tr)

and M (t) described above, results in a Robbins-Monro [92] stochastic optimization algorithm

that optimizes a surrogate upper bound of the loss in Equation (5.3) .

Proof. In our optimization, we only need to sample two variables Ŷ (t−1) and M (t). We

obtain unbiased bounded-variance estimates of the derivative of the loss function if we sample

M (t) ∼ Uniform(M) (and exact values when M (t) = 0). We can now compound that with

unbiased bounded-variance estimates of the derivative if we estimate the expectation in

 Equation (5.2) {Z(t−1)
v }v∈V by i.i.d. sampling Ŷ (t−1). The loss in Equation (5.3) is convex

on Z(t)
v since the negative log-likelihood of the multi-class logistic regression is convex on

W, which means it is also convex on Z(t)
v as the loss is defined on the affine transformation

WZ(t)
v . The expectation of the loss always exist, since we assume ∇Θ(WZ(t)

v (M (t); Θ))
y

(tr)
v

is

bounded for all ∀v ∈ V
(tr)

L . Hence, as the loss is convex w.r.t. Z(t)
v , the expection w.r.t. Z(t)

v

exists, and we obtain an unbiased estimate of Z(t)
v , we can apply Jensen’s inequality to show

that the resulting Robbins-Monro stochastic optimization optimizes an upper bound of the

loss in Equation (5.3) .

114

6. SUMMARY AND FUTURE DIRECTIONS

6.1 Summary

In this dissertation, we developed graph embedding and graph neural network frameworks

to capture various aspects of graph structures for unsupervised and semi-supervised tasks. In

this chapter, we summarize the contributions of this dissertation.

The contributions of this dissertation fall into the following aspects:

Theoretical

• In Chapter 5 , we

– formalized the notion of representation-based automorphic/regular equivalence,

for single graphs and multiple aligned graphs;

– formalized the extended notion of (exact) regular equivalence and probabilistic

structural property for multiple aligned graphs;

– analyzed the expressive power of the proposed method Reqe w.r.t structural

properties and number of samples (for multiple graphs cases) −→ Theorem 4.5.1 ,

 Theorem 4.5.2

• In Chapter 4 , we showed:

– Collective classification is provably unnecessary for GNNs that are most-expressive

(Theorem 5.4.1);

– Collective learning boost the expressiveness of the optimal WL-GNN (Theo-

rem 5.4.2) and practical WL-GNNs (Proposition 5.4.1).

– Previous attempts to incorporate collective inference into WL-GNNs (which in

contrast to CL+GNN do not Monte Carlo sample embeddings) cannot increase

expressivity beyond that of an optimal WL-GNN (Corollary 1).

Algorithmic/Methodological

• In Chapter 3 , we developed a node embedding method (detailed in Algorithm 1) for

heterogeneous information network-based with modified negative sampling approach.

115

• In Chapter 4 , we developed a flexible framework Reqe to learn structural node

embeddings w.r.t specified structural properties and node attributes, which handles

both single graphs (see Algorithm 3) and multiple aligned graphs (see Algorithm 4).

• In Chapter 5 , we developed an add-on collective learning framework which uses self-

supervised learning and Monte Carlo sampled embeddings to incorporate node labels

during inductive learning—and it can be implemented with any component GNN (see

 Section 5.3).

Empirical

• In Chapter 3 , we

– Presented the first educational “check-in” dataset and explores its unique mobility

and social characteristics;

– Identified the challenges for time-aware POI prediction in educational check-in

data based on increased density due to location-based tracking (compared to

previous voluntary-report LSBN data);

– Applied the proposed node embedding model on the educational “check-in” dataset

showed its effectiveness on two real-world tasks: time-aware POI prediction and

friend suggestion.

• In Chapter 4 , we empirically evaluated our proposed model Reqe on three tasks

(equivalence encoding, structural property prediction, and node classification) on seven

graph datasets from a variety of application areas.

• In Chapter 5 , we

– designed a graph sampling approach to split each single graph into three clusters

for training, validation, and testing respectively — shown in Figure 5.2 (left),

which mimiced the inductive within-graph scenario that often occurs in real world

settings;

116

– evaluated the proposed collective learning framework CL+GNN across a variety of

state-of-the-art WL-GNNs, for inductive tasks involving unlabeled and partially-

labeled test graphs.

6.2 Implications and Future Directions

6.2.1 On node expressivity

One central problem in learning node embeddings is to capture node isomorphism in

graphs with embeddings. In this dissertation we introduced two effective methods towards

more expressive node embedding for semi-supervised and unsupervised tasks respectively.

In Chapter 4 , we described Reqe, a node embedding framework to capture automorphic

equivalence by including structural properties. In Chapter 5 , we introduced a collective

learning framework to boost GNN expressiveness for semi-supervised node classification

problem.

As shown in our experiments, the GNN-type models (e.g. GraphSAGE) may not perform

well in predicting role-related labels when no node attributes are provided, this indicates that

there is extra information in structural properties that the neighbor propagation process in

GNNs is unable to capture, especially with limited number of layers in practice.

Recently, there has been increasing attention to boosting the representation power of

WLGNN [5], [81], [82], [84], [87], [101]. Most of these works consider representation for

the entire graph or node sets by mimicking higher-order WL tests. However, most of them

provide more theoretical implications for GNNs than practical usage due to their dependency

on order-k tensors Rnk (n : number of nodes, k > 2). Before we can get to the most expressive

GNNs, there is still large room for improvement, and we believe there could be multiple ways

to boost the expressivity, e.g. ensemble learning.

6.2.2 On ensemble learning involving multiple embeddings

In Chapter 4 , we proposed a method to learn a single embedding for each node in

multiple graph samples, aiming to capture the underlying graph distribution. In Chapter 5 ,

the collective learning procedures involve generating multiple samples of embeddings on

117

graphs with random masking. Both approaches reflected the concept of ensemble learning

(specifically, bagging) – multiple models are fitted on slightly different data samples. In

CL+GNN work, we compared with an ensemble of 10 GNN models with random initialization

and random masking, and we found that the ensemble approach was able to improve over

the baseline GNN performance, especially when the GNN is not very expressive, e.g. GCN.

This implies that using ensemble of GNNs, or combine multiple embeddings on perturbed

graphs are effective ways towards a more robust model, especially with limited computation

resource and performing collective procedures is too expensive.

There has been some ongoing work on ensemble learning methods for neural networks

including GNNs [110]–[112]. For example, [111] proposed to using a diversified ensemble

layer as a building block for combining multiple neural networks, and jointly train them by

maximizing their diversity and minimizing their own prediction loss. There are very few

methods for end-to-end ensemble learning especially in the relational data domain, which

is worth further attention towards more robust graph embeddings or GNN models. One

promising direction would be learning an ensemble of GNNs that differ in model structure,

e.g. different neighbor aggregators, and the random masking procedure can be applied to

generate graph samples.

6.2.3 GNNs for link prediction in heterogeneous graphs

The heterogeneous graph embedding work for POI recommendation (Chapter 3) was done

before GNNs became popular. There has been increasing interest in applying GNN-type

models on unattributed and unlabeled graphs for link prediction tasks. e.g. VGAE [113] uses

a GCN as encoder to learn node embeddings that best reconstruct the network. R-GCN [114]

extends VGAE to the multi-relational graph cases, with application in knowledge graphs. On

the other hand, graph-level GNNs are also developed for the same link prediction tasks, where

local enclosing subgraphs are used as input for classification (e.g. SEAL [115]). Much of these

works either considered homogeneous graphs or evaluated with knowledge graphs (e.g. AIFB

[116]) and event-based database (e.g. ICEWS [117]). Special care needs to be taken when

118

such methods are applied to temporal interaction graphs (e.g. email/chat communication,

researcher collaboration) with different dynamic patterns.

Recently, there has been some work along this line of research (e.g. [118]), capturing the

node and edge heterogeneity and interaction patterns in dynamic graphs with GNNs remains

an under-exploited area.

6.2.4 On efficient collective learning GNNs

One limitation of our proposed collective learning framework is the computational cost

of using sampled embeddings during each stochastic gradient step, as our primary goal was

to give a theoretical and empirical answer to a long-standing question about CI and GNNs

without any effort to reduce the computational cost.

The time/space complexity of the CL+GNN is K (K: sample size) times the time/space

complexity of the corresponding GNN model as we have to compute K representations for

each node at each stochastic gradient step. Future work could leverage the exploration of

mechanisms to reduce the additional computational burden (eg. via parallelization and/or

more targeted sampling).

6.2.5 Node equivalence on dynamic graphs

In our work on capturing node equivalence patterns for multiple graphs, we considered

K i.i.d. samples of graphs, which ignored the order of graphs/edges. In many real-world

scenarios, dynamic or temporal graphs contains rich(er) and complicated node interaction

patterns. While clustering [119] and community detection tasks [120], [121] on dynamic

graphs has been investigated in the literature, much of these methods did not leverage graph

embedding methods or GNNs. How to formally define role-based equivalence on temporal

graphs or ordered graph samples, and how to capture it with an embedding model remains

an open question.

119

REFERENCES

[1] J. Tang, M. Qu, M. Wang, M. Zhang, J. Yan, and Q. Mei, “Line: Large-scale information
network embedding,” in Proceedings of the 24th international conference on world wide web,
2015, pp. 1067–1077.

[2] A. Grover and J. Leskovec, “Node2vec: Scalable feature learning for networks,” in
Proceedings of the 22nd ACM SIGKDD international conference on Knowledge discovery and
data mining, 2016, pp. 855–864.

[3] B. Perozzi, R. Al-Rfou, and S. Skiena, “Deepwalk: Online learning of social represen-
tations,” in Proceedings of the 20th ACM SIGKDD international conference on Knowledge
discovery and data mining, 2014, pp. 701–710.

[4] D. Koller, N. Friedman, S. Džeroski, C. Sutton, A. McCallum, A. Pfeffer, P. Abbeel,
M.-F. Wong, D. Heckerman, C. Meek, et al., Introduction to statistical relational learning.
MIT press, 2007.

[5] C. Morris, M. Ritzert, M. Fey, W. L. Hamilton, J. E. Lenssen, G. Rattan, and M. Grohe,
“Weisfeiler and leman go neural: Higher-order graph neural networks,” in Proceedings of the
AAAI Conference on Artificial Intelligence, vol. 33, 2019, pp. 4602–4609.

[6] R. Murphy, B. Srinivasan, V. Rao, and B. Ribeiro, “Relational pooling for graph
representations,” in International Conference on Machine Learning, PMLR, 2019, pp. 4663–
4673.

[7] B. Srinivasan and B. Ribeiro, “On the equivalence between node embeddings and
structural graph representations,” arXiv preprint arXiv:1910.00452, 2019.

[8] K. Xu, W. Hu, J. Leskovec, and S. Jegelka, “How powerful are graph neural networks?”
arXiv preprint arXiv:1810.00826, 2018.

[9] R. Xiang and J. Neville, “Pseudolikelihood em for within-network relational learning,”
in 2008 Eighth IEEE International Conference on Data Mining, IEEE, 2008, pp. 1103–1108.

[10] J. Neville and D. Jensen, “Iterative classification in relational data,” in Proc. AAAI-2000
workshop on learning statistical models from relational data, 2000, pp. 13–20.

[11] Q. Lu and L. Getoor, “Link-based classification,” in Proceedings of the 20th International
Conference on Machine Learning (ICML-03), 2003, pp. 496–503.

[12] B. Perozzi, V. Kulkarni, H. Chen, S. Skiena, and S. Don’t Walk, “Online learning
of multi-scale network embeddings,” in Proceedings of the 2017 IEEE/ACM International
Conference on Advances in Social Networks Analysis and Mining, 2017, pp. 258–265.

120

[13] S. Ganguly, M. Gupta, V. Varma, V. Pudi, et al., “Author2vec: Learning author represen-
tations by combining content and link information,” in Proceedings of the 25th International
Conference Companion on World Wide Web, International World Wide Web Conferences
Steering Committee, 2016, pp. 49–50.

[14] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean, “Distributed representa-
tions of words and phrases and their compositionality,” in Advances in neural information
processing systems, 2013, pp. 3111–3119.

[15] Y. Dong, N. V. Chawla, and A. Swami, “Metapath2vec: Scalable representation learn-
ing for heterogeneous networks,” in Proceedings of the 23rd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, ACM, 2017, pp. 135–144.

[16] T. N. Kipf and M. Welling, “Semi-supervised classification with graph convolutional
networks,” arXiv preprint arXiv:1609.02907, 2016.

[17] W. Hamilton, Z. Ying, and J. Leskovec, “Inductive representation learning on large
graphs,” in Advances in neural information processing systems, 2017, pp. 1024–1034.

[18] F. Lorrain and H. C. White, “Structural equivalence of individuals in social networks,”
The Journal of mathematical sociology, vol. 1, no. 1, pp. 49–80, 1971.

[19] J. Scott, Social Networks: Critical Concepts in Sociology, ser. Critical concepts in sociology
v. 2. Routledge, 2002, isbn: 9780415251099. [Online]. Available: https://books.google.com/
books?id=cYnSbKsmsrcC .

[20] M. G. Everett and S. P. Borgatti, “Regular equivalence: General theory,” Journal of
mathematical sociology, vol. 19, no. 1, pp. 29–52, 1994.

[21] M. G. Everett and S. Borgatti, “Calculating role similarities: An algorithm that helps
determine the orbits of a graph,” Social networks, vol. 10, no. 1, pp. 77–91, 1988.

[22] R. A. Rossi and N. K. Ahmed, “Role discovery in networks,” IEEE Transactions on
Knowledge and Data Engineering, vol. 27, no. 4, pp. 1112–1131, 2014.

[23] M. G. Everett, “Role similarity and complexity in social networks,” Social Networks,
vol. 7, no. 4, pp. 353–359, 1985.

[24] R. Jin, V. E. Lee, and L. Li, “Scalable and axiomatic ranking of network role similarity,”
ACM Transactions on Knowledge Discovery from Data (TKDD), vol. 8, no. 1, pp. 1–37, 2014.

[25] T.-F. Fan and C.-J. Liau, “Logical characterizations of regular equivalence in weighted
social networks,” Artificial Intelligence, vol. 214, pp. 66–88, 2014.

121

https://books.google.com/books?id=cYnSbKsmsrcC
https://books.google.com/books?id=cYnSbKsmsrcC

[26] U. Brandes and J. Lerner, “Structural similarity: Spectral methods for relaxed block-
modeling,” Journal of classification, vol. 27, no. 3, pp. 279–306, 2010.

[27] J. I. Casse, C. R. Shelton, and R. A. Hanneman, “A new criterion function for exploratory
blockmodeling for structural and regular equivalence,” Social networks, vol. 35, no. 1, pp. 31–
50, 2013.

[28] J. Neville, D. Jensen, and B. Gallagher, “Simple estimators for relational bayesian
classifiers,” in Third IEEE International Conference on Data Mining, IEEE, 2003, pp. 609–
612.

[29] A. Popescul, L. H. Ungar, S. Lawrence, and D. M. Pennock, “Towards structural logistic
regression: Combining relational and statistical learning,” Departmental Papers (CIS), p. 134,
2002.

[30] J. J. Pfeiffer III, J. Neville, and P. N. Bennett, “Overcoming relational learning biases to
accurately predict preferences in large scale networks,” in Proceedings of the 24th International
Conference on World Wide Web, 2015, pp. 853–863.

[31] C. Yang, L. Bai, C. Zhang, Q. Yuan, and J. Han, “Bridging collaborative filtering and
semi-supervised learning: A neural approach for poi recommendation,” in Proceedings of the
23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
ACM, 2017, pp. 1245–1254.

[32] Z. Yao, “Exploiting human mobility patterns for point-of-interest recommendation,” in
Proceedings of the Eleventh ACM International Conference on Web Search and Data Mining,
ACM, 2018, pp. 757–758.

[33] J. He, X. Li, L. Liao, D. Song, and W. K. Cheung, “Inferring a personalized next
point-of-interest recommendation model with latent behavior patterns.,” in AAAI, 2016,
pp. 137–143.

[34] H. Yin, W. Wang, H. Wang, L. Chen, and X. Zhou, “Spatial-aware hierarchical collabo-
rative deep learning for poi recommendation,” IEEE Transactions on Knowledge and Data
Engineering, vol. 29, no. 11, 2017.

[35] W. Wang, H. Yin, S. Sadiq, L. Chen, M. Xie, and X. Zhou, “Spore: A sequential
personalized spatial item recommender system,” in Data Engineering (ICDE), 2016 IEEE
32nd International Conference on, IEEE, 2016, pp. 954–965.

[36] A. Noulas, S. Scellato, C. Mascolo, and M. Pontil, “An empirical study of geographic
user activity patterns in foursquare.,” ICwSM, vol. 11, no. 70-573, p. 2, 2011.

122

[37] S. Kylasa, G. Kollias, and A. Grama, “Social ties and checkin sites: Connections and
latent structures in location-based social networks,” Social Network Analysis and Mining,
vol. 6, no. 1, 2016.

[38] Y. Zheng, L. Zhang, X. Xie, and W.-Y. Ma, “Mining interesting locations and travel
sequences from gps trajectories,” in Proceedings of the 18th international conference on World
wide web, ACM, 2009, pp. 791–800.

[39] Y. Sun, H. Yin, and X. Ren, “Recommendation in context-rich environment: An informa-
tion network analysis approach,” in Proceedings of the 26th International Conference on World
Wide Web Companion, International World Wide Web Conferences Steering Committee, 2017,
pp. 941–945.

[40] J. Tang, M. Qu, and Q. Mei, “Pte: Predictive text embedding through large-scale
heterogeneous text networks,” in Proceedings of the 21th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, ACM, 2015, pp. 1165–1174.

[41] C. Zhang, K. Zhang, Q. Yuan, F. Tao, L. Zhang, T. Hanratty, and J. Han, “React: Online
multimodal embedding for recency-aware spatiotemporal activity modeling,” in Proceedings of
the 40th International ACM SIGIR Conference on Research and Development in Information
Retrieval, ACM, 2017, pp. 245–254.

[42] T. Chen and Y. Sun, “Task-guided and path-augmented heterogeneous network embed-
ding for author identification,” in Proceedings of the Tenth ACM International Conference on
Web Search and Data Mining, ACM, 2017, pp. 295–304.

[43] S. Feng, X. Li, Y. Zeng, G. Cong, Y. M. Chee, and Q. Yuan, “Personalized ranking
metric embedding for next new poi recommendation.,” in IJCAI, 2015, pp. 2069–2075.

[44] M. Xie, H. Yin, H. Wang, F. Xu, W. Chen, and S. Wang, “Learning graph-based poi
embedding for location-based recommendation,” in Proceedings of the 25th ACM International
on Conference on Information and Knowledge Management, ACM, 2016, pp. 15–24.

[45] A. Q. Li, A. Ahmed, S. Ravi, and A. J. Smola, “Reducing the sampling complexity
of topic models,” in Proceedings of the 20th ACM SIGKDD international conference on
Knowledge discovery and data mining, ACM, 2014, pp. 891–900.

[46] B. Recht, C. Re, S. Wright, and F. Niu, “Hogwild: A lock-free approach to parallelizing
stochastic gradient descent,” in Advances in neural information processing systems, 2011,
pp. 693–701.

[47] L. Maaten and G. Hinton, “Visualizing data using t-sne,” Journal of machine learning
research, vol. 9, no. Nov, 2008.

123

[48] W. Wang, H. Yin, L. Chen, Y. Sun, S. Sadiq, and X. Zhou, “Geo-sage: A geographical
sparse additive generative model for spatial item recommendation,” in Proceedings of the
21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
ACM, 2015, pp. 1255–1264.

[49] L. Chen, F. Yuan, J. M. Jose, and W. Zhang, “Improving negative sampling for word rep-
resentation using self-embedded features,” in Proceedings of the Eleventh ACM International
Conference on Web Search and Data Mining, ACM, 2018, pp. 99–107.

[50] R. A. Hanneman and M. Riddle, Introduction to social network methods, 2005.

[51] K. Henderson, B. Gallagher, T. Eliassi-Rad, H. Tong, S. Basu, L. Akoglu, D. Koutra,
C. Faloutsos, and L. Li, “Rolx: Structural role extraction & mining in large graphs,” in
Proceedings of the 18th ACM SIGKDD international conference on Knowledge discovery and
data mining, 2012, pp. 1231–1239.

[52] K. Tu, P. Cui, X. Wang, P. S. Yu, and W. Zhu, “Deep recursive network embedding with
regular equivalence,” in Proceedings of the 24th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining, ACM, 2018, pp. 2357–2366.

[53] N. Shervashidze, P. Schweitzer, E. J. v. Leeuwen, K. Mehlhorn, and K. M. Borgwardt,
“Weisfeiler-lehman graph kernels,” Journal of Machine Learning Research, vol. 12, no. Sep,
pp. 2539–2561, 2011.

[54] S. Borgatti, M. G. Everett, and L. C. Freeman, “Ucinet iv version 1.64,” Natick, MA:
Analytic Technologies, 1996.

[55] M. G. Everett and S. P. Borgatti, “Exact colorations of graphs and digraphs,” Social
networks, vol. 18, no. 4, pp. 319–331, 1996.

[56] V. Batagelj, A. Ferligoj, and P. Doreian, “Direct and indirect methods for structural
equivalence,” Social networks, vol. 14, no. 1-2, pp. 63–90, 1992.

[57] M. Everett and S. Borgatti, “The regular coloration of graphs,” in INSTITUTE OF
MATHEMATICS AND ITS APPLICATIONS CONFERENCE SERIES, vol. 60, 1997, p. 49.

[58] S. Huang, T. Lv, X. Zhang, Y. Yang, W. Zheng, and C. Wen, “Identifying node role in
social network based on multiple indicators,” PLOS ONE, vol. 9, no. 8, pp. 1–16, Aug. 2014.
doi: 10.1371/journal.pone.0103733 . [Online]. Available: https://doi.org/10.1371/journal.pone.
0103733 .

[59] T. Haveliwala, “Efficient computation of pagerank,” Stanford, Tech. Rep., 1999.

124

https://doi.org/10.1371/journal.pone.0103733
https://doi.org/10.1371/journal.pone.0103733
https://doi.org/10.1371/journal.pone.0103733

[60] U. Brandes, “A faster algorithm for betweenness centrality,” Journal of mathematical
sociology, vol. 25, no. 2, pp. 163–177, 2001.

[61] L. F. Ribeiro, P. H. Saverese, and D. R. Figueiredo, “Struc2vec: Learning node represen-
tations from structural identity,” in Proceedings of the 23rd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, ACM, 2017, pp. 385–394.

[62] A. Narayanan, M. Chandramohan, L. Chen, Y. Liu, and S. Saminathan, “Subgraph2vec:
Learning distributed representations of rooted sub-graphs from large graphs,” arXiv preprint
arXiv:1606.08928, 2016.

[63] C. Donnat, M. Zitnik, D. Hallac, and J. Leskovec, “Learning structural node embeddings
via diffusion wavelets,” in Proceedings of the 24th ACM SIGKDD International Conference
on Knowledge Discovery & Data Mining, ACM, 2018, pp. 1320–1329.

[64] J. Guo, L. Xu, and J. Liu, “Spine: Structural identity preserved inductive network
embedding,” in Twenty-Eighth International Joint Conference on Artificial Intelligence, 2019.

[65] N. K. Ahmed, R. Rossi, J. B. Lee, T. L. Willke, R. Zhou, X. Kong, and H. Eldardiry,
“Learning role-based graph embeddings,” StarAI workshop - IJCAI, 2018.

[66] R. A. Rossi, N. K. Ahmed, E. Koh, S. Kim, A. Rao, and Y. Abbasi-Yadkori, “A structural
graph representation learning framework,” in Proceedings of the ACM International Conference
on Web Search and Data Mining (WSDM), 2020, pp. 1–9.

[67] K. Henderson, B. Gallagher, L. Li, L. Akoglu, T. Eliassi-Rad, H. Tong, and C. Faloutsos,
“It’s who you know: Graph mining using recursive structural features,” in Proceedings of the
17th ACM SIGKDD international conference on Knowledge discovery and data mining, 2011,
pp. 663–671.

[68] C. Aicher and A. Z. e. a. Jacobs, “Adapting the stochastic block model to edge-weighted
networks,” arXiv preprint arXiv:1305.5782, 2013.

[69] L. Zhou, Y. Yang, X. Ren, F. Wu, and Y. Zhuang, “Dynamic Network Embedding by
Modelling Triadic Closure Process,” in AAAI, 2018.

[70] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Lio, and Y. Bengio, “Graph
attention networks,” arXiv preprint arXiv:1710.10903, 2017.

[71] J. Leskovec and J. J. Mcauley, “Learning to discover social circles in ego networks,” in
Advances in neural information processing systems, 2012, pp. 539–547.

125

[72] K. M. Borgwardt, C. S. Ong, S. Schönauer, S. Vishwanathan, A. J. Smola, and H.-P.
Kriegel, “Protein function prediction via graph kernels,” Bioinformatics, vol. 21, no. suppl_1,
pp. i47–i56, 2005.

[73] M. Hang, I. Pytlarz, and J. Neville, “Exploring student check-in behavior for improved
point-of-interest prediction,” in Proceedings of the 24th ACM SIGKDD International Confer-
ence on Knowledge Discovery & Data Mining, 2018, pp. 321–330.

[74] J. Bayer, H. Bydzovská, J. Géryk, T. Obsivac, and L. Popelinsky, “Predicting drop-out
from social behaviour of students.,” International Educational Data Mining Society, 2012.

[75] H. Park and J. Neville, “Exploiting interaction links for node classification with deep
graph neural networks.,” in IJCAI, 2019, pp. 3223–3230.

[76] K. Krishna and M. N. Murty, “Genetic k-means algorithm,” IEEE Transactions on
Systems, Man, and Cybernetics, Part B (Cybernetics), vol. 29, no. 3, pp. 433–439, 1999.

[77] H. Chen, H. Yin, T. Chen, Q. V. H. Nguyen, W.-C. Peng, and X. Li, “Exploiting
centrality information with graph convolutions for network representation learning,” in 2019
IEEE 35th International Conference on Data Engineering (ICDE), IEEE, 2019, pp. 590–601.

[78] M. Hang, J. Neville, and B. Ribeiro, “A collective learning framework to boost gnn
expressiveness for node classification,” in International Conference on Machine Learning,
PMLR, 2021, pp. 4040–4050.

[79] J. Neville, D. Jensen, L. Friedland, and M. Hay, “Learning relational probability trees,”
in Proceedings of the ninth ACM SIGKDD international conference on Knowledge discovery
and data mining, 2003, pp. 625–630.

[80] S. Luan, M. Zhao, X.-W. Chang, and D. Precup, “Break the ceiling: Stronger multi-scale
deep graph convolutional networks,” arXiv preprint arXiv:1906.02174, 2019.

[81] Z. Chen, S. Villar, L. Chen, and J. Bruna, “On the equivalence between graph isomor-
phism testing and function approximation with gnns,” in Advances in Neural Information
Processing Systems, 2019, pp. 15 868–15 876.

[82] H. Maron, H. Ben-Hamu, H. Serviansky, and Y. Lipman, “Provably powerful graph
networks,” in Advances in neural information processing systems, 2019, pp. 2156–2167.

[83] G. Bouritsas, F. Frasca, S. Zafeiriou, and M. M. Bronstein, “Improving graph neural
network expressivity via subgraph isomorphism counting,” arXiv preprint arXiv:2006.09252,
2020.

126

[84] C. Vignac, A. Loukas, and P. Frossard, “Building powerful and equivariant graph neural
networks with structural message-passing,” arXiv e-prints, arXiv–2006, 2020.

[85] W. Azizian and M. Lelarge, “Characterizing the expressive power of invariant and
equivariant graph neural networks,” 2021.

[86] D. Beaini, S. Passaro, V. L’etourneau, W. L. Hamilton, G. Corso, and P. Li’o, “Directional
graph networks,” arXiv preprint arXiv:2010.02863, 2020.

[87] H. Maron, E. Fetaya, N. Segol, and Y. Lipman, “On the universality of invariant networks,”
in International conference on machine learning, PMLR, 2019, pp. 4363–4371.

[88] S. Fan and B. Huang, “Recurrent collective classification,” Knowledge and Information
Systems, vol. 60, no. 2, pp. 741–755, 2019.

[89] J. Moore and J. Neville, “Deep collective inference,” in Thirty-First AAAI Conference
on Artificial Intelligence, 2017.

[90] M. Qu, Y. Bengio, and J. Tang, “Gmnn: Graph markov neural networks,” arXiv preprint
arXiv:1905.06214, 2019.

[91] P. Vijayan, Y. Chandak, M. M. Khapra, S. Parthasarathy, and B. Ravindran, “Hopf:
Higher order propagation framework for deep collective classification,” arXiv preprint
arXiv:1805.12421, 2018.

[92] H. Robbins and S. Monro, “A stochastic approximation method,” Ann. Math. Statist.,
vol. 22, no. 3, pp. 400–407, Sep. 1951. doi: 10.1214/aoms/1177729586 . [Online]. Available:

 https://doi.org/10.1214/aoms/1177729586 .

[93] L. Teixeira, B. Jalaian, and B. Ribeiro, “Are graph neural networks miscalibrated?”
arXiv preprint arXiv:1905.02296, 2019.

[94] P. Sen, G. Namata, M. Bilgic, L. Getoor, B. Galligher, and T. Eliassi-Rad, “Collective
classification in network data,” AI magazine, vol. 29, no. 3, pp. 93–93, 2008.

[95] J. Yang, B. Ribeiro, and J. Neville, “Stochastic gradient descent for relational logistic
regression via partial network crawls,” arXiv preprint arXiv:1707.07716, 2017.

[96] W. Feng, J. Zhang, Y. Dong, Y. Han, H. Luan, Q. Xu, Q. Yang, E. Kharlamov, and
J. Tang, “Graph random neural networks for semi-supervised learning on graphs,” Advances
in Neural Information Processing Systems, vol. 33, 2020.

127

https://doi.org/10.1214/aoms/1177729586
https://doi.org/10.1214/aoms/1177729586

[97] V. D. Blondel, J.-L. Guillaume, R. Lambiotte, and E. Lefebvre, “Fast unfolding of
communities in large networks,” Journal of statistical mechanics: theory and experiment,
vol. 2008, no. 10, P10008, 2008.

[98] E. Bakshy, D. Eckles, and M. S. Bernstein, “Designing and deploying online field
experiments,” in Proceedings of the 23rd international conference on World wide web, 2014,
pp. 283–292.

[99] T. Pham, T. Tran, D. Phung, and S. Venkatesh, “Column networks for collective
classification,” in Thirty-First AAAI Conference on Artificial Intelligence, 2017.

[100] J. Jia and A. Benson, Outcome correlation in graph neural network regression, 2020.
arXiv: 2002.08274 [cs.LG] .

[101] H. Maron, H. Ben-Hamu, N. Shamir, and Y. Lipman, “Invariant and equivariant graph
networks,” arXiv preprint arXiv:1812.09902, 2018.

[102] C. Doersch, A. Gupta, and A. A. Efros, “Unsupervised visual representation learning
by context prediction,” in Proceedings of the IEEE International Conference on Computer
Vision, 2015, pp. 1422–1430.

[103] M. Noroozi and P. Favaro, “Unsupervised learning of visual representations by solving
jigsaw puzzles,” in European Conference on Computer Vision, Springer, 2016, pp. 69–84.

[104] H.-Y. Lee, J.-B. Huang, M. Singh, and M.-H. Yang, “Unsupervised representation
learning by sorting sequences,” in Proceedings of the IEEE International Conference on
Computer Vision, 2017, pp. 667–676.

[105] I. Misra, C. L. Zitnick, and M. Hebert, “Shuffle and learn: Unsupervised learning using
temporal order verification,” in European Conference on Computer Vision, Springer, 2016,
pp. 527–544.

[106] O. J. Hénaff, A. Razavi, C. Doersch, S. Eslami, and A. v. d. Oord, “Data-efficient image
recognition with contrastive predictive coding,” arXiv preprint arXiv:1905.09272, 2019.

[107] S. Gidaris, A. Bursuc, N. Komodakis, P. Pérez, and M. Cord, “Boosting few-shot visual
learning with self-supervision,” in Proceedings of the IEEE International Conference on
Computer Vision, 2019, pp. 8059–8068.

[108] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training of deep bidirec-
tional transformers for language understanding,” arXiv preprint arXiv:1810.04805, 2018.

128

https://arxiv.org/abs/2002.08274

[109] D. Jensen, J. Neville, and B. Gallagher, “Why collective inference improves relational clas-
sification,” in Proceedings of the tenth ACM SIGKDD international conference on Knowledge
discovery and data mining, 2004, pp. 593–598.

[110] E. E. Kosasih, J. Cabezas, X. Sumba, P. Bielak, K. Tagowski, K. Idanwekhai, B. A.
Tjandra, and A. R. Jamasb, “On graph neural network ensembles for large-scale molecular
property prediction,” arXiv preprint arXiv:2106.15529, 2021.

[111] S. Zhang, M. Liu, and J. Yan, “The diversified ensemble neural network,” Advances in
Neural Information Processing Systems, vol. 33, 2020.

[112] Z. Zhang, V. R. Gao, and M. R. Sabuncu, “Ex uno plures: Splitting one model into an
ensemble of subnetworks,” arXiv preprint arXiv:2106.04767, 2021.

[113] T. N. Kipf and M. Welling, “Variational graph auto-encoders,” arXiv preprint arXiv:1611.07308,
2016.

[114] M. Schlichtkrull, T. N. Kipf, P. Bloem, R. Van Den Berg, I. Titov, and M. Welling,
“Modeling relational data with graph convolutional networks,” in European semantic web
conference, Springer, 2018, pp. 593–607.

[115] M. Zhang and Y. Chen, “Link prediction based on graph neural networks,” Advances in
Neural Information Processing Systems, vol. 31, pp. 5165–5175, 2018.

[116] S. Bloehdorn and Y. Sure, “Kernel methods for mining instance data in ontologies,” in
The Semantic Web, Springer, 2007, pp. 58–71.

[117] E. Boschee, J. Lautenschlager, S. O’Brien, S. Shellman, J. Starz, and M. Ward, ICEWS
Coded Event Data, version V30, 2015. doi: 10.7910/DVN/28075 . [Online]. Available: https:
//doi.org/10.7910/DVN/28075 .

[118] Y. Chang, C. Chen, W. Hu, Z. Zheng, X. Zhou, and L. Sun, “Megnn: Meta-path extracted
graph neural network for heterogeneous graph representation learning,” Knowledge-Based
Systems, p. 107 611, 2021.

[119] R. Zreik, P. Latouche, and C. Bouveyron, “The dynamic random subgraph model for the
clustering of evolving networks,” Computational Statistics, vol. 32, no. 2, pp. 501–533, 2017.

[120] D. Zhuang, M. J. Chang, and M. Li, “Dynamo: Dynamic community detection by incre-
mentally maximizing modularity,” IEEE Transactions on Knowledge and Data Engineering,
2019.

129

https://doi.org/10.7910/DVN/28075
https://doi.org/10.7910/DVN/28075
https://doi.org/10.7910/DVN/28075

[121] N. Dakiche, F. B.-S. Tayeb, Y. Slimani, and K. Benatchba, “Tracking community
evolution in social networks: A survey,” Information Processing & Management, vol. 56, no. 3,
pp. 1084–1102, 2019.

130

	TITLE PAGE
	COMMITTEE APPROVAL
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	ABSTRACT
	INTRODUCTION
	Problem Statement
	Main Hypotheses and Proposed Research
	Thesis Organization

	BACKGROUND
	Graph representation learning approaches
	Unsupervised Node embeddings
	Heterogeneous graph embedding

	Semi-supervised Graph Neural Networks

	Equivalence concepts for social networks
	Collective learning and inference for relational data

	NODE EMBEDDINGS ON HETEROGENEOUS GRAPHS FOR POI RECOMMENDATION
	Introduction
	Data Characteristics
	Data sample
	Temporal dynamics of user preferences
	Co-visitation behavior
	Exploration behavior
	Proposed meEDHG Method
	Heterogeneous Graph Construction
	Graph Embedding
	Predicting POIs using Embeddings
	Suggesting Friends using Embeddings

	Experimental Evaluation
	Methodology
	Comparison Models
	Predictive Effectiveness
	Parameter Sensitivity
	Friend Suggestion Effectiveness
	Visualization of Embeddings

	Related Work
	Discussions

	REQE: TOWARDS REPRESENTATION-BASED EQUIVALENCE FOR NODE EMBEDDINGS, IN SINGLE GRAPHS AND SETS OF GRAPHS
	Introduction
	Representation-based Equivalence
	Background
	Representation equivalence
	Regular equivalence embedding with a single graph
	Regular equivalence embedding with multiple graphs

	Proposed framework: meReqe
	Related work
	Expressive power of meReqe
	Experiments
	Datasets
	Methodology
	Task (A): Equivalence encoding
	Task (B): Structural property prediction
	Task (C): Node classification
	Parameter sensitivity
	Comparison with GraphSAGE

	Conclusion
	Appendix: Proof of Theorems
	Proof for thm: reprsingle
	Proof for thm: multigraph
	Proof for thm: recursive: Boosted expressiveness through recursive steps

	A COLLECTIVE LEARNING FRAMEWORK TO BOOST GNN EXPRESSIVENESS FOR NODE CLASSIFICATION
	Introduction
	Problem formulation
	Proposed Framework: meCollective Learning
	meCollective Learning Analysis
	Expressive power of meCL+GNN
	How meCL+GNN further expands the power of few-layer WL-GNNs
	Optimization of meCL+GNN

	Experiments
	Experiment Setup
	Results
	Ablation study
	meCL+GNN performance with varying training label rates and sample size K

	Related Work
	Conclusion
	Appendix: Proofs of theorems
	Proof of thm:col
	Proof of thm:cl-power
	Proof of prop:expand-power
	Proof of prop:opt

	SUMMARY AND FUTURE DIRECTIONS
	Summary
	Implications and Future Directions
	On node expressivity
	On ensemble learning involving multiple embeddings
	GNNs for link prediction in heterogeneous graphs
	On efficient collective learning GNNs
	Node equivalence on dynamic graphs

	REFERENCES

