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ABSTRACT 

Daylighting has a significant impact on occupants, including not only visual comfort and 

visual task performance but also on workplace satisfaction and psychophysiological responses 

such as alertness, mood, and circadian rhythm. Intelligent, dynamic control of daylight via a 

building automation system is therefore crucial to maximizing the positive impacts of daylight 

provision in perimeter offices. However, existing daylight-linked controls (DLCs) lacks the 

fundamental ability to govern indoor luminous condition in a human-centric manner. It is mainly 

because the sensing technologies – such as ceiling-mounted photosensor - adopted in current DLCs 

are incapable of monitoring sufficient physical variables to suit such purpose. Hence, this Thesis 

aims to utilize a High Dynamic Range Imaging (HDRI) sensor in DLCs to unlock abilities to 

enhance human-centric features that have not been possible with conventional photosensors. The 

sensor,  made of a low-cost programmable camera can capture a wide-area luminance distribution 

highly correlated with occupant visual perception, compared to conventional illuminance-based 

metrics.  

 This Thesis begins with a development of a window-mounted HDRI sensor for real-time 

detection of potential glare sources including the sun. The sensor can capture the full luminance 

distribution of the exterior scene visible through the window and identify and locate potential 

sources of glare. To overcome the pixel-overflow by the extreme luminance of the sun and to 

estimate the accurate 3D position of the glare sources, the HDRI sensor was upgraded into a new 

fisheye-stereovision sensor made of dual cameras with different exposures. Experiments in full-

scale offices showed that the calibrated window-mounted HDRI sensor can efficiently identify and 

locate potential glare sources in real time. The daylight control implementation included 

integration with shading controls to mitigate the risk of glare and comparison with conventional 

shading operation. 

Monitoring of indoor luminance distribution is equally important for human-centric DLCs. 

There are practical challenges in utilizing the HDRI sensor for monitoring luminance distribution 

perceived from the occupant perspective. Therefore, a new framework was developed for non-

intrusive monitoring of luminance distribution perceived from occupant field-of-view (FOV), 

using a fisheye HDRI sensor installed at a non-intrusive position. The framework leverages the 
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state-of-the-art photogrammetry (Structure-from-Motion – Multiview Stereo) pipeline to 

automatically reconstruct 3D surfaces of the room, which will be used for re-projection of 

luminance map captured by HDRI sensor into occupant FOV. 

To validate the performance of the framework, a systematic performance evaluation was 

conducted in a real-office experiment under variable lighting conditions to compare the re-

projected luminance maps and the actual luminance measurement captured from occupant 

positions. 
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 INTRODUCTION 

1.1 Background 

Daylighting is an essential part of commercial building design and operation. Daylight 

harvesting significantly reduces electricity consumption from artificial lighting, which accounts 

for at least 17% of energy use in U.S. commercial buildings [1–3]. Its apparent impact on building 

occupants’ visual comfort and satisfaction as well as visual task performance has been proven 

through various studies in past decades [4–6]. Also, non-image-forming (NIF) effects of daylight 

play an important role in human physiological and psychological functions, such as circadian 

rhythm, alertness, mood, gaze behavior and occupational stress [4,7,16,8–15]. A major challenge 

associated to maximizing the daylighting potential in perimeter building zones is visual discomfort 

(daylight glare), which can be induced by excessive daylight or luminance patterns in the field of 

view of the occupants. 

 

 

 Although the most efficient way to maintain visually comfortable conditions in the building 

interior is through performance-based design of façade and seating layouts [18–22], in cases of 

existing buildings, daylight-linked controls (DLC) can be cost-effective solutions. The most 

common form of automatic, closed-loop DLC is comprised of movable shading devices (or 
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dynamic glazing systems) integrated with dimmable lights, designed to block direct sunlight for 

glare mitigation and then adjust dimming levels of lighting fixtures to maintain target illuminance 

on the work plane [23].  

 Despite the potential benefits of the automated DLCs, they are not as widespread as one 

would expect, according to [24]. In a survey targeted U.S facility managers where 78% of 

respondents comprised of commercial or institutional buildings, it was reported that only 35% of 

their facilities are equipped with daylighting controls. To facilitate the wide adoption of automated 

DLC mentioned above, the performance and robustness of DLCs need improvement, particularly 

in terms of visual comfort. Even the most advanced forms of DLCs – including Model-Based 

Controls (MBC) or visual comfort-oriented controls – frequently fail to deliver comfort to 

occupants or provide over-protection from glare compromising the daylight provision.  

The fundamental basis for the poor visual comfort delivered by existing photosensor-based 

DLCs is associated with the lack of sensing capabilities for measuring critical indices, such as 

luminance distribution of interior and exterior of the room, or detection of the sun. If the exterior 

luminance distribution can be measured, it is possible to identify potential glare sources of extreme 

luminance that cannot be detected from photosensors. Also, it is possible to detect and track the 

sun regardless of location or surrounding environment of the buildings.  In case the indoor 

luminance distribution can be monitored, then the DLC will provide higher satisfaction to 

occupants by maintaining visually comfortable luminous condition.  

Low-cost camera sensors coupled with the High Dynamic Range Imaging (HDRI) 

technique have the potential to address the current limitations of photosensor-based DLCs. HDRI 

allows retrieval of luminance maps by merging low dynamic range (LDR) images [25,26]. The 

accuracy of luminance maps acquired from HDRI has been validated [27–29] and well-established 

through efforts from several research groups in lighting research domain [30–35]. Most commonly, 

researchers attempted to associate scene luminance characteristics, measured by HDR images, to 

subjective visual comfort [20,21,36–43]. Those studies mainly focused on the development and 

validation of daylight glare metrics based on occupant-perceived luminance distribution.   

Despite the obvious potential of employing HDRI techniques for acquiring luminance 

maps and initial efforts of application in DLCs [44–48], such studies are scarce and need further 

investigation.  

 



 

 

19 

1.2 Objectives 

The objectives of this thesis are: 

1. To develop a low-cost HDRI sensor for real-time, accurate luminance map acquisition for 

monitoring the interior and exterior of the room. 

2. To develop a new daylighting control framework based on a window-mounted HDRI 

sensor, that identifies potential glare sources and provides adequate real-time protection to 

the occupants. 

3. To develop a new fisheye-stereo HDRI sensor to solve the limitation of low-cost 

monovision HDRI sensors – luminous overflow and positioning ambiguity - for exterior 

luminance monitoring. 

4. To develop a semi-automated method for monitoring of occupant-perceived luminance 

distribution within the visual field, based on the state-of-the-art computer vision techniques. 

 

1.3 Thesis overview 

Chapter 2 presents a thorough review of existing DLCs and their limitations, HDRI 

experimental studies on assessment of human visual comfort and HDRI sensor-based controls, and 

photogrammetry and its application in building research domain. Remaining research gaps in the 

literature and overall aims of this thesis are also included. 

 

Chapter 3 presents a novel daylighting control framework based on a window-mounted, 

fisheye HDRI sensor. The scope of the study includes the development and calibration of the HDRI 

sensor, glare source identification, and positioning algorithms via HDRI, and shade control logics 

for glare mitigation based on the exterior luminance map. 

 

Chapter 4 presents the development of a fisheye-stereovision HDRI sensor, as an 

amendment to the fisheye-monovision HDRI sensor, to address issues identified in Chapter 3. The 

new sensor is capable of capturing a solar disk through the window, without causing luminous 

overflow – a common phenomenon in low-cost cameras with limited dynamic range- and also 

estimating the 3D position of potential glare sources through the window. 
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Chapter 5 presents a semi-automated framework for non-intrusive monitoring of luminance 

distribution perceived from occupant field-of-view (FOV), using a fisheye HDRI sensor installed 

at a non-intrusive position. The framework leverages the state-of-the-art photogrammetry 

(Structure-from-Motion – Multiview Stereo) pipeline to automatically reconstruct 3D surfaces of 

the room, which will be used for re-projection of luminance map captured by HDRI sensor into 

occupant FOV. 

In Chapter 6, the performance of the non-intrusive luminance monitoring developed in 

Chapter 5 is evaluated via experimental validation. The framework is implemented in real office-

like testbed in various conditions to compare the re-projected luminance maps and the actual 

luminance measurement captured from occupant positions.  

Conclusions, extensions and recommendations for future work are presented in Chapter 7. 
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 LITERATURE REVIEW 

2.1 Daylight glare 

2.1.1 Daylight glare in buildings 

According to Lighting Handbook of the Illuminating Engineering Society of North 

America, definition of glare is “ the sensation produced by luminance within the visual field that 

is sufficiently greater than the luminance to which the eyes are adapted to cause annoyance, 

discomfort or loos in visual performance and visibility” [49]. Glare can be categorized into two 

types: disability glare and discomfort glare. Disability glare refers to “the masking effect caused 

by light scattered in the ocular media which produces a veiling luminance over the field of view” 

[50]. When disability glare is present, occupants experience immediately reduced visual 

performance and inability to see for a period of time. The knowledge of disability glare is now 

well established and modelled in CIE Disability Glare formulae [51].  

Discomfort glare is a phenomenon arising from high luminance contrast or undesirable 

luminance distribution within the visual field, causing discomfort [52]. When discomfort glare 

occurs, occupants may not notice immediate degradation of visual performance, however, may 

experience progressive degradation of the visual performance and premature tiring of eyes or other 

symptoms such as headaches [53]. Despite the number of related studies over the past 80 years, 

complete understanding of discomfort glare is yet and still being an active research topic among 

researchers [12]. It is mainly because discomfort glare is rather subtle and subjective phenomenon 

that is closely linked to a person’s perception of overall indoor environment, not only regarding 

the luminous condition, but also many other factors  such as preference of outdoor view, personal 

difference, type of task, or psychological factors [16,54]. The variability of the above factors, also 

with time, does not allow the straightforward development of a robust universal metric for daylight 

discomfort glare, and existing studies are not designed according to grouping of these factors [55]. 

In day-lit perimeter offices, the main concern in terms of visual comfort is discomfort glare, 

since it occurs most frequently during daylight hours and identification of disability glare is rather 

obvious thus can be addressed immediately. [56] reviewed some post-occupancy evaluation (POE) 

studies on day-lit open plan observed high percentages of occupants who have glare issues. In [57], 
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a POE study of open plan offices in Brisbane 56% of occupants reported discomfort from daylight 

and electric lighting. In another study by the same author, 49% of 493 occupants of green buildings 

in Brisbane reported visual discomfort [52]. [20] found that 60-70% of 44 occupants in open-plan 

offices in San Francisco reported visual discomfort from windows, of which 20% referred to ‘very 

uncomfortable’.  

2.1.2 Discomfort glare metrics 

Despite the subjective nature of discomfort glare, there have been several efforts to develop 

metrics for generalized prediction of daylight glare. Generally, the development of glare indexes 

is based on laboratory-type human experiments to collect coupled data of human subjective glare 

ratings and objective measurements. Despite the difference in individual variables and exponents 

of those metrics, they can be expressed in a generalized equation as Eq 2.1[42]: 

𝐺𝐺 =  log��
𝐿𝐿𝑠𝑠,𝑖𝑖
𝑒𝑒𝑒𝑒𝑒𝑒𝜔𝜔𝑠𝑠,𝑖𝑖

𝐿𝐿𝑏𝑏
𝑒𝑒𝑒𝑒𝑒𝑒f(𝜓𝜓)

�                                                                                                                       
𝑛𝑛
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(2.1) 

The parameters in this general form as follows: 

• G is glare index which predicts the subjective glare sensation;  

• n is number of detected glare sources; 

• exp is a weighting exponent for each variable; 

• Lb is background luminance which determines the adaptation levels of the observer’s eye; 

• Ls is glare source luminance; 

• 𝜔𝜔s is the solid angle subtended by the source, indicating its perceived size; 

• f(𝜓𝜓) is the angular displacement of the source from the observer’s line of sight 

 

Daylight Glare Index (DGI) 

The earliest metric for daylight glare was Daylight Glare Index (DGI) or Cornell Equation, 

formulated by Hopkinson in 1972 (Eq 2.2): 
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where 𝜔𝜔𝑒𝑒𝑝𝑝𝑠𝑠 is the solid angle of the glare source with modification for its position in the field of 

view. DGI was developed from a modification of Glare Index,  his former work focused on small 
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glare sources [58]. Unlike Glare Index, DGI accounts for the large glare sources, particularly, 

diffuse sky patch visible through the window.  The equation was developed through experiments 

using the artificial light source (fluorescent lamps) behind an opal-diffusive screen. However, 

validation studies on DGI show that the correlation between the prediction and self-reported 

daylight glare sensation is not as strong as in the original study [58–60], despite the several 

attempts to modify the mathematical formulation through continued human experiments [61,62]. 

However, neither of the DGI variants gain wide acceptance in practical building design [63]. 

 

CIE Glare Index (CGI) 

In 1979, Einhorn developed CIE Glare Index, primarily built upon DGI and was adopted 

by CIE.  The equational form is as below: 

𝐶𝐶𝐺𝐺𝐷𝐷 =  𝐶𝐶1log10𝐶𝐶2
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where 𝐸𝐸𝑑𝑑 is direct vertical illuminance at eye , 𝐸𝐸𝑑𝑑 is diffuse vertical illuminance at eye, and pi  is 

Guth’s position index which grows larger as a glare source located further from center of human 

FOV [64]. In this metric, the adaptation level to the glare sources is encoded as a function of ratio 

between diffuse and direct vertical illuminance at eye. The major limitation of metric is that the 

derivation of equation did not involve human experiments. 

 

Daylight Glare Probability (DGP) 

 In 2006, Wienold and Christofferson developed Daylight Glare Probability, based on the 

equational form of CGI [42] formulated as below: 

𝐷𝐷𝐺𝐺𝑃𝑃 =  5.87 ∙ 10−5𝐸𝐸𝑣𝑣 + 9.18 ∙ 10−5 log10 2�1 + �
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�                                               (2.4) 

where 𝐸𝐸𝑣𝑣 is vertical illuminance at eye. A major difference of DGP from its predecessors is that 

DGP was designed to predict the percentage of people who experience visual discomfort, rather 

than the glare sensation of a so-called “standard observer”. It was intended to make the new metric 

more accountable for individual difference in glare perception observed in their data. Another 

major difference is the inclusion of 𝐸𝐸𝑣𝑣 as measure of both overall brightness and adaptation level, 

instead of using 𝐿𝐿𝑏𝑏. An glare analysis tool, evalglare [65] based on RADIANCE (an open-source 
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backward-tracking lighting simulation tool)[66] was used for derivation of the DGP. In their study 

DGP demonstrated a very strong correlation (R2=0.94) with the subjective glare perception of the 

subjects. A limitation of glare metrics based on luminance distribution within human FOV, 

including the DGP, is that an annual simulation of the metrics is computationally expensive. 

Simplified Daylight Glare Probability (DGPs) and enhanced Daylight Glare Probability (eDGP) 

are simplification of DGP for faster computation, that are primarily based on vertical illuminance 

at eye and simplified rendering image (only for eDGP) [67,68].  DGPs and eDGP both showed 

very strong correlation to the original DGP when direct radiation such as sunlight did not hit the 

observer’s eye. The equation for DGPs is as below (Eq. 2.4): 

DGPs = 6.22 ∙ 10−5𝐸𝐸𝑣𝑣 + 0.184                                                                                                             (2.4) 

DGP is currently accepted as a reliable glare index in the literature [18,37,69] and showed 

better prediction compared to DGI in studies [15,36,42,70]. Some studies identified inconsistent 

predictions in certain cases such as sun in the visual field or in dimmed area such as core zones 

[20,38,52]. Nevertheless, a recent study [71] evaluated performance and robustness of 22 

established and newly proposed glare prediction metrics, using datasets from six locations in the 

world, and found that DGP is the most robust, while optimizing its numerical coefficients or 

special condition should be studied in future studies.  

 

Glare metric thresholds 

Commonly used thresholds for above glare metrics are presented in Table 2.1 [18]: 

Table 2.1 Glare metric thresholds  

 DGI CGI DGP 

Imperceptible <18 <13 <0.35 

Perceptible 18-24 13-22 0.35-0.40 

Disturbing 24-31 22-28 0.40-0.45 

Intolerable >31 >28 >0.45 

 

 However, Pierson [72] revealed that the thresholds from field study were systematically 

lower than the laboratory ones, implicating that the discomfort glare is reported with lower 

stimulus in the real offices. The possible reasons for the phenomenon described by the authors are 
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anchor bias, difference in stimulus distribution between the laboratory and field data, experience 

effect, user expectation towards a familiar environment, type of participants, and broader context 

in which the subjective assessment is collected. 

2.2 High Dynamic Range Imaging (HDRI) for luminance measurement 

2.2.1 High Dynamic Range Imaging (HDRI) 

The traditional method of measuring accurate luminance was using an expensive, scientific-

grade luminance spot meter. However, such method is infeasible for acquisition of a scene visible 

from human eyes since the device can only measure a very small region at a time. A new method 

of luminance measurement using a camera device was then proposed, named High Dynamic Range 

Imaging (HDRI).  

 HDRI is a technique that allows of capturing of per-pixel luminance maps by merging 

camera photographs with bracketed exposures [25,26]. This technique allowed us to capture a 

detailed luminance distribution without using a numerous luminance spot meters, making 

luminance measurement more feasible. Combining a wide-angle fisheye lens with the camera 

allows to capture luminance maps within full human FOV spanning near 180 degrees. The 

accuracy of the HDRI luminance measurement was proven, exhibiting error margin around 10% 

across the several validation studies [27–29] and well-established as a solid methodology through 

efforts from several research groups [30,31,33]. 

 

 
Figure 2.1 False color luminance map displayed in Photosphere [73] 
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 For acquisition of fisheye luminance map for visual comfort assessment through HDRI, 

proper photometric and geometric calibration is required. Photometric calibration is essential for 

accurate per-pixel luminance measurement. It includes estimation of camera response function 

(CRF) which is non-linear relation between the measured intensity and radiometric intensity. 

Inverse of CRF is used to recover low dynamic range (LDR) images with linear CRF that in turn 

will be merged into a single HDR image via weighted averaging [26]. Vignetting effect refers to 

gradual degradation of luminance on the pixels closer to periphery of the image; it is a typical 

phenomenon in cameras with small apertures (such as fisheye camera lens). Vignetting can be 

corrected by estimating the light fall-off curve as a function of pixel from the principal point (image 

of the camera center) and then applying the inverse function to the luminance map taken. The 

detailed procedure is well detailed in [27,33]. Lastly, absolute luminance calibration, a retrieval of 

calibration factor -multiplier to match the vignetting-corrected HDR luminance map into the real 

luminance value – is done.  

 

 
Figure 2.2 Camera response curve estimation from LDR images via Photosphere software [27,74] 
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Figure 2.3 The vignetting function of Nikon FC9 fisheye lens.  

a) Measured data points and the vignetting function derived to fit the measured points;  

b) digital filter developed based on the vignetting function [27] 

 Geometric calibration is required depending on the cameras, as glare assessment tool such 

as evalglare, is only compatible with specific types of fisheye camera projection, such as 

equidistant  and hemispherical fisheye projections [75]. However, except for some fisheye lens 

models commercially available in the market, most of the camera lenses does not strictly follow 

one of the compatible projections, or no information is given by the manufacturers (Figure 2.4). 

In such cases, projection of fisheye camera can be estimated by calibration. If the retrieved camera 

projection does not refer to any of the evalglare compatibles, the fisheye luminance maps can be 

transformed to match one of them prior to the glare assessment using the method introduced by 

[76]. There are number of methods proposed in the fisheye geometric calibration. Scaramuzza 

proposed a calibration method for omnidirectional camera models, which is implemented in 

MATLAB Computer Vision Toolbox [77,78]. A limitation of this method is that the method is 

validated within 150 degrees of FOV, not covering 180 degrees of human FOV. Kannala and 

Brandt proposed a generic camera model for conventional, wide-angle, and fisheye cameras [79]. 

Calibration of generic camera model is implemented in OpenCV library – an open source computer 

vision library works on C++ and Python language [79,80]. 
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Figure 2.4 Sigma 4.5mm F2.8 fisheye projection and equidistant fisheye projection [76] 

2.2.2 Relevant tools for the HDRI 

 Several tools exist for merging, calibration, and glare analysis of the HDR luminance maps. 

HDRgen is a command line software for estimation of camera response function (CRF) and HDR 

image merging [74]. Photosphere and hdrscope are user-friendly, graphical interfaced software for 

post-processing of raw HDR images, such as calibration or per-pixel luminance analysis (Figure 

2.1 and Figure 2.5)[73,74]. Some of the RADIANCE commands, such as ‘pcomb’ can be used for 

vignetting correction and fisheye transformation using a specified radial function as an input [66]. 

 

 
Figure 2.5 Photosphere software [74] 
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 Evalglare developed by Wienold [65] is an open-source command-line tool for detailed 

per-pixel luminance analysis. In addition to the simpler form of glare metrics such as average 

luminance or luminance contrast between the specified task zone and the background, more 

complex glare metrics such as DGI or DGP can be calculated using Evalglare. Also, vertical 

illuminance can be calculated if the camera’s hemispheric FOV is near 180 degrees. There are 

options for glare source detection rule: i) using an absolute luminance threshold, identifying pixels 

above the threshold as glare sources; and ii) using a multiplier with specified task zone, identifying 

pixels above the average task zone luminance times the multiplier as glare sources. Some of the 

studies used absolute luminance threshold [38,81], but majority of studies used the latter option 

[37,42,52,57,82,83].  

 

 
Figure 2.6 Evalglare glare detection. a) original HDR image; b) Evalglare check HDR image with 

color-mapped glare sources  

2.2.3 HDRI application in daylighting research 

Visual comfort studies using HDRI 

HDRI was dominantly used as an assessment tool in visual comfort related studies. 

Researchers either attempted: i) to develop a new glare metric; or ii) to evaluate the existing glare 

metrics; or ii) to do both of the above. DGP is an example of glare metrics derived from an HDRI-
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applied study [42]. Several follow-up researches on visual comfort that used HDRI are 

summarized as below: 

 Konstantzos et al. [37] performed an experimental and simulation study to evaluate DGP in 

an office equipped with roller shades. The author suggested a correction to the DGP equation to 

handle the case of sun in the field of view. Also, the result showed the DGPs is not a reliable metric 

when the sun is visible through the shades, suggesting the need for correction in such instances. 

Later, the same authors performed a human experiment to evaluate the DGP in cases where 

the sun is visible through the roller shades [38]. 41 human subjects were test while performing 

office activities equipped with 14 shade products. From the statistical data analysis, discomfort 

glare thresholds are extracted for direction vertical illuminance (870 lx), total vertical illuminance 

(2,800lx) and DGP (0.4), while none of them were considered reliable as a sole discomfort 

predictor. Correlation of DGP with percentage discomfort of grouped people was lower than that 

of DGI ( RDGP
2 =0.65 and  RDGI

2 =0.79). As a correction to the original DGP, a new metric, DGPmod 

was developed through optimization of exponential and coefficients which showed R-squared of 

0.91 (Eq. 2.5). 

DGP𝑚𝑚𝑝𝑝𝑑𝑑 = 8.40 ∙ 10−5𝐸𝐸𝑣𝑣 + 11.97 ∙ 10−5 log�1 + �
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 Hirning [57] performed a POE study in open plan offices in five green buildings in 

Brisbane, Austrailia. From a grouped analysis (similar to the [42]) of 491 responses from the 

employees, following observations were made. DGI shows higher correlation to the subjective 

glare assessment than the DGP ( RDGP
2 =0.683 and  RDGI

2 =0.738), partially explained by a low 

correlation of 𝐸𝐸𝑣𝑣( R𝐸𝐸𝑣𝑣
2 =0.387). The author suggests that this is possibly because of the difference 

of data distribution between where the experiments were performed. The maximum 𝐸𝐸𝑣𝑣 recorded 

in Hirning’s study was 2,354 lx, significantly lower than around 10,000 lx from the DGP 

investigation [42]. A new glare metric Unified Glare Probability (UGP) was proposed, to account 

for cases where the contrast effect dominates the glare probability, formulated as below: 

UGP = 0.26 log10
0.25
𝐿𝐿𝑏𝑏
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                                                                                                       (2.6) 

 Suk et al. [39] performed a human subject study with 12 subjects who were tested different 

lighting conditions totaling more than 450 glare scenes in a day-lit office. DGP showed very high 
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accuracy rates for perceptible (90.6%) and disturbing (95.4) sensation of glare, while showing 54.5 

% prediction accuracy for the entire glare sensation levels, which seems low but still higher than 

other glare metrics (CGI and DGI) compared.  

 Suk et al. [84] claimed that the existing glare metrics do not clarify the source of glare 

sensation, only representing the degree of visual discomfort. As an alternative, they proposed a 

new glare prediction method based on absolute glare factor (AGF) and relative glare factor (RGF), 

two major factors that cause glare. Understanding the dominant factor causing glare helps to better 

address in glary situation, the authors say. 

Wymelenberg et al.[70] compared 150 visual comfort metrics to find the one with the highest 

classification rate between ‘preferred’ and ‘just disturbing’ condition. The most consistent and 

effective metrics were found to be the mean task zone luminance (adjr2=0.59), and DGP using 2,000 

cd/m2 as an absolute glare threshold (adjr2=0.59). Also, DGP consistently performed better DGI.  

Simulation studies using HDRI 

Several studies used HDRI in daylighting simulation. Majority of them utilized a technique 

name Image Based Lighting (IBL), which is “the process of illuminating scenes and objects with 

images of light from real world” (captured HDR images) [85]. All existing IBL studies are based 

on RADIANCE software [66]. The researchers simulated indoor scenes, using the HDR images 

taken from camera either installed indoor or exterior as lighting sources instead of using simplified 

sky models such as Perez All-Weather model [86].  As an HDR image captured in real-time 

includes much richer information - non-smooth sky luminance distribution or surroundings such 

as buildings or forestry [41] - as a luminous input compared to the generalized sky models with 

smooth luminance gradients, prediction accuracy can be significantly improved [87]. 
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Figure 2.7 Rendered objects with different HDR images as a light source through IBL [85] 

 

 Inanici [88] examined IBL using an exterior camera to capture full exterior luminance map 

by comparing the prediction accuracy to a generalized sky model - CIE general sky model [89]. 

Validation under different sky conditions -  cloudy, partly cloudy, mostly clear and clear – showed 

that the IBL-rendered luminance maps exhibits consistently lower errors compared to the 

generalized sky model-based ones. 

 
Figure 2.8 Comparison of the HDR image of the sky, IBL simulation, and generalized sky 

modelled simulation under clear sky conditions [88] 

 Jones and Reinhart [87] compared glare measurements from actual HDR images and IBL-

renderings under 240 clear and 38 cloudy sky conditions to evaluate accuracy of the glare 
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prediction. The author argued the generalized sky model, such as Perez all-weather model yields 

the correct total illuminance given the weather data, however, does not yield accurate sky 

luminance distribution, favoring of IBL-based simulation. As an input to the IBL, the authors 

tested two types of luminance map: i) environment map taken from camera mounted on window 

sill to capture view from window; and ii) sky map taken from roof to completely capture the sky 

dome. Although the Perez model showed the better prediction of interior measured values 

compared to the Sky-map, the environment map method showed faster simulation times and 

produced reasonably accurate results, while not requiring modelling efforts for outdoor 

surroundings. 

 

 
Figure 2.9 Experimental setup of cameras in [87] 

 Wu et al. [90] developed an embedded photometric device with a wide dynamic range (150 

dB) for accurate, high-sky monitoring. The authors compared simulated horizontal work plane 

illuminance distribution from the sky map captured through device installed at window exterior 

and Perez all-weather sky model [86] under predominantly overcast sky condition. The average 

relative error to the photosensor-measured values were 4.1%-7.0% for IBL-method and 22%-32% 

for the Perez model, validating the authors’ claim that IBL would perform better than the general 

sky models with over-simplification of the sky luminance distribution. 
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Figure 2.10 Relative error of the 5 computed work plane illuminances compared with lux-meter 

values for an overcast sky [90] 

2.2.4 Daylight-linked control systems 

Daylighting controls with shading systems considering visual comfort can be an effective 

solution to maximize the benefits from daylighting at its full potential. A number of observational 

field studies on occupant interaction with manual daylighting devices, found that the occupants 

are poor optimizers to those devices both in terms of energy saving and daylight provision. From 

those studies, it was repeatedly observed that the occupants tend to operate blinds only when 

disturbed by glare, and rarely modify the blind position (or slat angle) or operate artificial lights 

except for cases derived by seasonal changes [91–98]. This result favors the implementation of 

automatic DLCs since the occupants’ motivation for better visual comfort or daylight provision is 

not strong enough to drive frequent adjustments of manual daylighting systems. Therefore, 
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automatic daylight-linked controls considering visual comfort, have been extensively studied in 

the last couple of decades [23,37,99–106].  

 In this chapter, an overview of existing daylight-linked controls (DLC) including the state-of-the-

arts is presented. Also, the literature on the occupant interactions to various DLCs are summarized.  

2.2.5 Existing daylight-linked control algorithms 

Typical form of the latest DLCs in the buildings are rule-based, deterministic algorithms 

is comprised of movable shading devices (either motorized blinds or roller shades) integrated with 

dimmable lights. Those systems are designed to block direct sunlight penetrating through window 

for glare mitigation –called as ‘cut-off’ strategy – and then adjust dimming level of the artificial 

light fixtures to maintain a target illuminance level on the work plane.  

 
Figure 2.11 Integrated lighting and daylighting control [23] 
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Figure 2.12 Cut-off strategy [101] 

The shading operation is determined by varying logics but in common they adopt cut-off 

strategy based on geometric information such as shading system characteristics or room layout 

[99,101,107–110]. The simplest form of cut-off strategy is to block direct sunlight not to penetrate 

through the slats (Figure 2.12b)[101,111,112] for venetian blinds. More advanced ones allow 

intermediate slat angles to introduce more daylight within a specified distance from the window, 

called buffer zone [107]. Since slat angles made from those control algorithms may induce glare 

due to the specular, second-reflection  from the bottom slats [102], some algorithms adopt sunlight 

re-direction strategy, that avoids the second reflection while being able to illuminate deeper areas 

[102,113] . 

 
Figure 2.13 ‘Buffer zone’ concept: graph showing automated shading position to prevent direct 

sunlight falling on the work plane area at all times [114] 

Often, vertical photosensorss or pyranometer mounted either interior or exterior of the 

window are needed for activation of rule-based operation of such systems [100,115–117]. Most 

commonly used variable for activation is global irradiance measured by vertically mounted 

pyranometer on the façade (Figure 2.14). The activation thresholds are normally determined based 

on empirical observations, for example by associating interior luminous condition to the selected 

variable. Yun et al. [118] introduces a simulation-based method to determine the appropriate 

activation threshold and blind slat angle based on several variables: climate condition, building 
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orientation, window-to-wall ratio (WWR), and control purpose (a weighting factor). The study 

result validates the need for commissioning of activation thresholds according to those variables, 

as suitable range of activation threshold varied across the different conditions.   

 
Figure 2.14 Vertically mounted SPN1 pyranometer [110] 

Horizontal illuminance on the work plane has used as a visual comfort constraint, although 

DPG and window illuminance have also been proposed and successfully implemented [101, 111]. 

The most widely used value is the minimum of 500 lx [99,110,112,116,118–121], while the 

maximum range varies across the studies. Since installing the photosensor on the work plane is 

impractical and disturbing, a ceiling mounted photosensor is installed alternatively, of which signal 

is converted into work plane illuminance. To develop methodologies for robust conversion 

between the ceiling photosensor readings and the work plane illuminance, extensive efforts have 

been made by researchers [122–127]. 

2.2.6 Current limitations of daylight-linked controls 

Despite the potential benefits of the automated DLCs, its wide application is yet to have 

come, according to [24]. In a survey targeted U.S facility managers where 78% of respondents 

comprised of commercial or institutional buildings, it was reported that only 35% of their facilities 

are equipped with daylighting controls [128]. In a literature review by [24], the author describes 

major barriers limiting the widespread of DLC are as follows: i) difficulties in design, installation 

and calibration; ii) limited modeling methods to quantify potential energy savings and economic 

benefits; and iii) occupant-tendency to prefer manual operation of lighting/window systems. To 

paraphrase, to widely adopt DLC in commercial buildings, their designing and installing procedure 
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need to be streamlined and efficient, relevant performance assessment tools need to be developed, 

and manual override is recommended as an extra feature for the automated DLCs (or, even better, 

occupant preferences need to be integrated into automated control logics [129]).  

 In addition to the measures for the wide-adoption of automated DLC mentioned above, 

there exists need for work to enhance the performance and robustness of the DLC, particularly 

related to visual comfort in occupant-centered aspects. Even the most advanced forms of DLCs – 

including MBCs or occupant-preference based controls – frequently fail to deliver comfort to 

occupants or provide over-protection from glare compromising the daylight provision. The reasons 

for failing vary across the controls and studies, however, can be generalized as described below. 

Existing DLCs rely on vertical irradiance/illuminance either transmitted to identify or 

measure the exterior luminous condition.  Those values are used to detect the presence of the sun, 

or to estimate cloud coverage or overall brightness of the exterior scene, which is used for 

activation of rule-based control logics or detailed daylight simulation. Even those indices can serve 

as good indicators of the overall luminous condition of the exterior scene, yet cannot provide rich 

information such as luminance ratio or distribution, which also affects human glare perception. 

Thus, cases such as in presence of small but extreme glare sources outside (for example exterior 

reflections by adjacent building facades), existing DLCs fail to identify uncomfortable situation 

since small sources of extreme luminance do not always contribute to vertical illuminance beyond 

the suggested limits for discomfort glare [23].   

Also, solar-tracking often depends on sun position calculation algorithm without real 

measurement[101,105], or estimated with empirically determined vertical irradiance/illuminance 

thresholds in specific geographic location  [100,111,116–118,130], thus are not guaranteed to work 

properly in different buildings. As presented in [118], activation thresholds for shading systems 

are not consistent across the studies, implying a single activation threshold may not be adequate 

to be generalize.  

There are two major drawbacks of DLCs using work plane illuminance as a comfort 

criterion: i) calibration of photosensor signal, though can be generalized via aggressive calibration 

covering various factors – such as geographic locations, seasonal variation, and room 

characteristics – may not guarantee year-long robustness of the DLCs; and ii) the correlation 

between the horizontal work plane illuminance and the visual comfort is often insignificant. The 

reason for the popularity of illuminance-metrics for DLCs is mainly due to their predominance in 
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professional standards [49] for simplicity in measurement. However, Konstantzos [37] observed a 

poor correlation between the DGP and horizontal work plane illuminance, except for cases 

measured with roller shade with perfectly diffusive fabric. In a POE study of visual comfort in 

side-lit open offices in San Francisco performed by Konis [21], horizontal illuminance based 

metrics were found to be the least accurate predictors among 15 visual comfort metrics compared. 

Wymelenberg and Inanici [15] performed a 6-month-long human factors study with 48 participants 

in an office-like laboratory. They evaluated correlation of 14 visual comfort metrics with 

subjective assessment of luminous conditions from responses totaling 1488. The horizontal 

desktop illuminance only showed adjusted R2 of 0.09 for overall visual comfort, significantly 

lower than the vertical illuminance at eye (adjR2=0.298). Also, Xiong and Tzempelikos [110] found 

that a model-based control based on work plane illuminance often resulted in higher shade 

positions with potential risk of glare. 

2.2.7 Studies on visual comfort oriented DLCs  

Only a few studies on visual comfort oriented DLCs exist. Those control algorithms are 

advanced in that they are operated based on visual comfort metric with higher correlation to human 

perception than the existing simple illuminance metrics. Since those metrics are difficult to 

measure by simply placing the sensor at the position of interest, researchers utilized daylighting 

models (MBC), either in simple or sophisticated form, to calculate them. 

Chan and Tzempelikos [102] evaluated four types of control strategies – a cut-off angle 

control, a daylighting-redirecting control, and two glare protection control modes, using a hybrid 

ray-tracing and radiosity daylighting model [131] developed by the same authors. One of the glare 

protection control was a model-based control (MBC) that is aimed to maintain DGP below 0.35. 

The other, ‘simplified’ control uses pre-calculated correlations between DGP and transmitted 

illuminance to establish binary setpoints for model-predictive controls (MPC). Both glare 

protection strategies were proven to be efficient both in terms of daylight autonomy and glare risk 

mitigation. 

Xiong and Tzempelikos [110] implemented the MBC in real office-like laboratory. The 

MBC calculates real-time interior lighting conditions, lighting energy use and DGP for 

predetermined shade positions with 10% increments at each control step, based on readings of two 
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vertically mount sensors (for solar radiation and illuminance) on the building façade. The control 

selects the highest shade position that meets any of three visual comfort criteria – DGP, vertical 

illuminance, and work plane illuminance. The experimental implementation of the model-based 

control algorithms showed that DGP did not exceed 0.35 for most cases while maintaining work 

plane illuminance levels, and lighting energy use was significantly reduced with all MBC 

strategies. 

 
Figure 2.15 Flowchart of MBC developed by Xiong and Tzempelikos [110] 

Iwata et al. [113] conducted a simulation study for controlling an automated daylighting 

control algorithms with venetian blinds and dimmable lights. The proposed algorithm aimed to 

prevent glare and reduce lighting energy use, similar to comfort-oriented MBCs. A new metric, 
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the Predicted Glare Sensation Vote (PGSV), is introduced, that includes the average luminance of 

the fixed window area (Eq. 2.6): 

PGSV = log �𝐿𝐿𝑠𝑠3.2𝜔𝜔−0.64/𝐿𝐿𝑏𝑏
0.61−0.79 log𝜔𝜔� − 8.2                                                                                (2.6) 

where 𝐿𝐿𝑠𝑠 is glare source luminance, 𝐿𝐿𝑏𝑏 is background luminance, and 𝜔𝜔 is solid angle of the glare 

source. Dimming control was based on rooftop photosensors, targeting ambient illuminance of 300 

lx. The glare prevention control results in more conservative blind slat angles compared to the 

time- dependent cut-off angles, while reducing the lighting energy use by 30% in typical open plan 

offices in Tokyo, Japan.  

 
Figure 2.16 Outline of DLC proposed by Iwata et al. [132] 

Shen and Tzempelikos [100] proposed simplified MBC shading control algorithm, based on 

the ‘effective transmitted illuminance’ concept. This algorithm moves shade to intermediate 

positions to maximize daylight provision while avoiding excessive work plane illuminance – 2,000 

lx - to prevent glare. This approach is inherently associated with shade property and room 

characteristics, since control operation varies depending on the shade optical properties, façade 

orientation, and window geometry. The proposed algorithm performed well both in experimental 

settings and through the annual simulation results, despite the over-simplification of glare metric 

can be an issue in some cases. 

In addition to above studies, several comfort-based daylighting controls are based on low-

cost camera sensors. Those controls used cameras to capture luminous indices that cannot be done 

by existing sensors, such as photosensors – in most cases –, or pyranometers. Details of those 

studies are elaborated in Section 2.3.2. 
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2.3 Low-cost camera sensor-based daylighting controls 

Image-based sensing technologies, such as object detection or classification from the images 

or video have experienced a quantum leap over the past decades, thanks to improved computing 

power and machine learning algorithms, particularly deep neural networks (DNN). Such 

technologies are omnipresent in our everyday life and are being the most active research topics of 

this era.  

Despite the obvious potential of image-based sensing for daylighting controls - in a sense 

that both are closely related to the ‘human vision’ -, researches on those topics have not burgeoned 

yet.  To elaborate, HDRI luminance measurements, although mature, have been utilized for 

evaluation purposes, rather for sensing in real buildings. To justify the phenomenon, however, it 

is because the low-cost, programmable HDRI sensors only recently became available in the market.  

The following sections present an overview of low-cost camera sensors used in the relevant studies 

and present recent attempts to use them for smart daylighting controls. 

2.3.1 Low-cost camera sensor 

Low-cost, programmable camera sensors with a small form factor have become more 

available thanks to the recent improvement in integrated circuits (IC) and embedded systems. This 

change drives researchers not limit the HDRI usage for evaluation purpose, but to expand it for 

various purposes, such as smart sensing for high performance, robust daylighting controls.  

A few existing studies present custom-developed camera sensors for daylighting controls 

that can be categorized into two forms: i) a custom designed, embedded photometric device where 

the camera and the computation module (microcontroller) are integrated as a single device [48,90]; 

and ii) a general purpose single-board computer connected with compatible camera board 

[44,46,47,133–136]. 

In case of the former, a single device processes the entire pipeline for the luminance 

measurement including the HDR imaging or image calibration. The advantages of using this type 

of sensor is that the imaging module is highly customizable and allows standalone operation with 

a smaller form factor than the latter type. For example, an embedded photometric device developed 

by Wu et al. [90] have wide dynamic range of 150 dB, which can hardly achieved from cheap 

image sensors available in the market. Also, the configuration for imaging can be fine-tuned for 
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specific purposes with higher degrees of freedom compared to the complete camera module 

products. Figure 2.17 presents an example of custom-designed embedded device used in [48]. 

 
Figure 2.17 IcyCAM HDR vision sensor equipped with fisheye lens [48] 

 Despite the advantages of custom-designed sensors, development of such devices has 

logistical barriers to daylighting researchers. A combination of readily available products – a 

general purpose single board computer and a camera board – can suit its purpose. The most popular 

single board computers, such as the Raspberry Pi series [137] are designed for education purpose 

in developing countries, but have become a widely used research tool in various types of studies. 

This $35 computer feature a Broadcom system-on-chip (SOC) with an integrated ARM-

compatible central processing unit (CPU) and on-chip graphics processing unit (GPU). Processor 

speed ranges from 700 MHz to 1.5GHz and memory ranges from 234Mb to 8Gb. Raspberry Pi 

can be operated either Linux or Windows-like operating system, and allows seamless integration 

to compatible modules, including the proprietary Pi Camera board or other Universal Serial Board 

(USB) camera boards. Such module offers programming capability via various programming 

languages, such as C++ or Python. The latest version of Pi Camera (V2.1) based on Sony IMX219 

image sensor offers maximum resolution of 8 megapixels for still photographs with a 62.2 degrees 

(horizontal) × 41.41 degrees (vertical). Also, its image shooting parameters such as ISO, shutter 

speed, white balance, or resolution can be precisely controlled through a Python Picamera library 

[138]. Finally, its operation can be fully automated and scheduled - such as taking LDR images 

with predefined multi-exposures, for HDR image creation at designated time steps for sensing and 

control. 
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Figure 2.18 Pi Camera & Raspberry Pi 3B+ [137] 

2.3.2 Camera sensor-based daylighting control studies 

A handful of studies attempted to utilize the HDRI sensor for luminance-map-based 

lighting control in buildings. Sarkar & Mistrick [46] utilized an image sensor to estimate horizontal 

illuminance from the measured HDR luminance map to control luminaires to achieve target 

illuminance level on the work plane. Mardaljevic et al. [139] attempted to use HDRI sensor to 

quantify cumulative daylight exposure in a exposure/conservation setting in a museum buildings. 

The method was validated both under both controlled and in-situ conditions, but required 

meticulous pre-measurement of surface characteristics for its success.   Goovaerts et al. [44] tested 

a low-cost camera-based shading control that avoids visual discomfort in a mock-up office 

environment, using DGP as a control variable. The occupant feedback showed that the proposed 

approach can better perform when the override is allowed, which makes the specific system rather 

limited. Motamed et al. [48] tested a lighting controller using a similar method to estimate work 

plane illuminance by installing the HDRI sensor on the ceiling. In addition to the horizontal 

illuminance, they also used DGP - measured by another HDRI sensor adjacent to the occupants - 

as a control parameter to optimize the electric lighting and shading operation. The proposed 

controller required two HDRI sensors (on ceiling and adjacent to the occupant) per occupant and 

also required commissioning to find the correlation between measured luminance and horizontal 

illuminance on the work plane, compromising the feasibility of the system.  

Nonetheless, none of the referred studies yet achieved the full potential of the luminance-

based lighting control system, which is operated based on the occupant-perceived luminance 

distribution. Apart from the computation cost and compactness factor, it is ideal for such advanced 
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lighting control systems to capture as much detailed information the corresponds to the occupants’ 

FOV for sophisticated, human-centered control algorithms. Motamed et al. [140] performed a 

sensitivity analysis of several visual comfort metrics –average luminance, direct illuminance from 

glare sources, DGP and DGI – in respect to translation and rotation of the measuring HDRI sensor 

adjacent to the occupant position. It was observed that the DGP is less sensitive to the position 

variation compared to the other metrics, while showing smaller sensitivity to translation than the 

rotation. The maximum relative error of ±32% was recorded from camera translation and rotation 

of ±30cm and ±30 degrees. This result confirms the importance of aligning occupant and camera 

FOV for accurate visual comfort prediction. 

 
Figure 2.19 Sensitivity analysis of DGP with respect to translational and angular displacement 

[140] 

However, installing HDRI sensors to positions to closely match occupant-views is 

practically challenging – the HDRI sensor is needed per each occupant and the sensor installation 

near the occupants will be distracting. To avoid such distraction, the HDRI sensor was installed at 

less-intrusive positions in the related studies – that performed a long-term assessment of human 

visual perception or implemented luminance-map-based lighting control systems. The alternative 

positions include ceiling [47,48,136,141], screen or partition [21,140,142], or the others including 

the occupant-vicinity [44,48,143]. 

 Kruisselbrink [47] claimed that the ceiling-based camera sensor is the most suitable option 

for open-plan offices the most common configuration for office layouts since the position allows 

non-obtrusive, multi-region measurement. The author also examined the feasibility of using 
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ceiling-based camera measurement as a proxy for luminance distribution perceived by an occupant, 

by extracting per-pixel luminance value within mask areas corresponding to four different regions 

of interest seen from the occupant-view. A simple linear regression was tested for estimation of 

occupant-perceived average luminance within the ROIs, and the method demonstrated a 

reasonable accuracy when accounting for the uncertainty. However, two critical shortcomings are 

observed. First, the correlation between the masked regions had an inverse relationship with their 

sizes. This is mainly because the discrepancy between the camera and user-perceived scene under 

the mask becomes greater as the size of ROI grows. The fundamental reason for the discrepancy 

is the lacking 3D context in camera-to-occupant correspondence. Another limitation is that the 

proposed method requires manual commissioning – masking of corresponding ROIs and model-

fitting for average luminance estimation that requires installing of the camera at occupant-position 

and collecting luminance maps through it. Manual commissioning is necessary for such types of 

methods since the correlation between camera and occupant-views largely depends on the 

configuration of the room including the room layout, surface properties, and the camera position.  

In this regard, the scope of this dissertation includes development of a novel, non-intrusive 

luminance-monitoring sensing framework that resolves the aforementioned issues – lacking 3D-

context and necessity of high-degree commissioning - deploying advanced photogrammetry 

techniques. 

2.4 Photogrammetry for 3D building interior reconstruction 

2.4.1 Photogrammetry 

Photogrammetry is a broad term for technologies primarily concerned with making precise 

measurements of 3D objects from 2D images, using a camera as a measuring instrument [144]. Its 

wide-application includes precise 3D measurement of the real-world objects, generation of 

topographic maps, and the reconstruction of 3D point clouds for surface reconstruction, and others.  

2.4.2 Structure-from-Motion – Multiview Stereo pipeline 

In the last decade, the coupling of photogrammetric principles with modern computer 

vision concepts and algorithms revolutionized 3D point cloud reconstruction – specifically 
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Structure-from-Motion (SfM) - Multiview Stereo (MVS) photogrammetry [145].  SfM-MVS is a 

general workflow for the image-based 3D point cloud reconstruction of objects comprised of two 

separate, sequentially-connected algorithms - Structure-from-Motion and Multi-View-Stereo - 

complement to each other. Structure-from-Motion (SfM) is the process of reconstructing 3D 

structure from its projections into a set of unstructured images taken from different viewpoints 

[146]. Different from traditional, beforehand photogrammetric approaches, SfM automatically 

estimates and refines the intrinsic parameters and poses of the cameras, thus no prior knowledge 

of the camera is required. SfM algorithms only reconstruct 3D points with strong saliency across 

the images, such as Scale-Invariant Feature Transform (SIFT) key-points from the images [147], 

which are far less than the number of pixels per image. For the more detailed 3D representation of 

the real-world scene, the sparse point cloud reconstructed via SfM algorithm is subsequently 

densified through an MVS algorithm. MVS leverages the estimated camera parameters from the 

SfM to solve stereo-matching between smaller subsets of images based on the photometric and 

geometric constraints. One of the common advantages of open-and-commercially available SfM-

MVS pipelines is that the whole reconstruction can be highly automated except for capturing video 

or image sequences. More importantly, the method does not require any expensive measuring 

device or calibration procedure, such as for Structured-Light or LiDAR technologies: all 

consumer-grade digital camera, including the smartphone can be utilized [148]. 

 

 
Figure 2.20 3D reconstruction using SfM-MVS pipeline [149] 
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2.4.3 Application of 3D reconstruction in building research  

Diverse applications of 3D-reconstructed as-built building interior models are active topics 

in the building-research domain, particularly in the field of Building Information Modeling (BIM). 

Scan-to-BIM is one of those, which refers to systematic approaches to create a semantically rich, 

as-built BIM models from reconstructed 3D point clouds. The related research topics include 

building component detection and segmentation from the 3D point cloud, automatic CAD 

drawings creation, measurement-aided tracking of construction progress, etc. [150–152]. However, 

the use of automatic 3D reconstruction for smart sensing and lighting control has not been 

investigated so far, to the best of our knowledge. This thesis is thereby the first attempt to 

investigate the potential of using advanced photogrammetry coupled with computer vision 

techniques for remote, non-intrusive luminance monitoring in building indoor environments. 

2.5 Research gaps and aims of the thesis 

Despite the obvious benefits of human-centered daylighting control in buildings, current 

technologies have not achieved their fullest potential. Existing DLCs, even at its most advanced 

form such as MBC or MPC fail to optimize the balance between visual comfort and daylight 

provision. Such limitation is mainly due to fundamental inability of photosensors - predominantly 

used in daylighting system – to measure critical indices to human visual comfort, such as 

luminance distribution.  

Photosensors in DLCs are typically used to monitor i) exterior weather condition and ii) 

indoor luminous condition. A major issue of photosensor-based weather monitoring is that such 

systems highly depend on site-specific commissioning. Such systems cannot be universally 

applied to buildings in different locations unless we choose a conservative threshold as a safety 

factor. Consequently, shading systems will often false-detect risk of glare, compromising daylight 

provision. Also, since photosensors can only quantify the overall brightness of a hemispheric 

visual field, they fail to identify a certain type of glare sources: small but extremely bright sources 

– such as façade reflection from adjacent buildings, frequently observed in dense urban 

environments.  

As explained in Chapter 2.2.4, the dominant form of indoor brightness monitoring system 

adopts ceiling-mounted photosensor to maintain horizontal illuminance of (usually) 500 lux. The 



 

 

49 

drawbacks of such systems are i) commissioning issue similar to the weather monitoring 

(paragraph above); and ii) low prediction performance of horizontal illuminance as a visual 

comfort indicator. Due to the general agreement on luminance-metrics as a better visual comfort 

predictor than the illuminance, a few researchers pioneered visual comfort-oriented controls based 

on luminance-based metrics. Such studies adopted low-cost, programmable camera sensors to 

monitor the occupant-perceived luminance within the FOV through HDRI technique. However, 

instrumental settings in such studies are not feasible and robust enough to be widely adopted 

throughout the buildings in terms of sensor placement (elaborated in Chapter 5.1). 

Also, despite the obvious advantages of camera as building lighting sensors or visual comfort 

assessment tool, construction and calibration of such sensors remain as a barrier to the researchers 

relatively new in this domain, requiring them extra effort to put on. Even through existing studies 

well-established the whole calibration procedure and provide software packages for calibration, 

visualization and various processing of HDR luminance maps, there is no open packages focusing 

on the operation of the hardware-side. As described in section 2.3.1, some studies opted to build a 

customized standalone HDRI sensor to suit their purposes which yields logistical difficulty for 

typical building researchers. For this reason, the majority of researchers choose another option of 

assembling the market-available products to constitute their own sensors. Raspberry Pi and its 

camera module have gained their popularity over their competitors, thanks to the supporting 

community and Python compatibility, however, they still lack software support for their initial 

build-up and calibration procedure. 

Based on the above, the detailed aims of the thesis are: 

1. To establish a procedure of building and calibrating a sensor that captures accurate HDR 

luminance map, composed of cheap, market-available camera and single-board computer.  

2. To develop a new daylighting control framework based on a window-mounted HDRI sensor, 

that identifies potential glare sources in real time, enables solar tracking, and provides adequate 

protection to the occupants. The shade control logics included in the framework are based on 

the glare source and solar disk detection through the HDRI sensor and will perform as an 

additional layer of protection for glare mitigation. 

3. To develop a fisheye-stereovision HDRI sensor to solve the limitations of HDRI sensor 

comprise of monovision camera – luminous overflow and positioning ambiguity- for exterior 

luminance monitoring. This new sensor allows accurate 3D positioning of detected glare 
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sources and capturing accurate luminance map without overflown pixels, enabling the new 

sensor to full replace the existing photosensors with better capabilities. 

4. To develop a semi-automated method for monitoring occupant-perceived luminance 

distribution within the visual field, leveraging the HDRI and computer vision techniques. This 

method requires minimal commissioning effort and device requirement to establish indoor 

luminance monitoring system with reasonable accuracy without causing distraction to the 

occupants. 
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 REAL-TIME DAYLIGHT GLARE CONTROL USING A LOW-COST, 
WINDOW-MOUNTED HDRI SENSOR 

3.1 Scope and objectives of the study 

This paper proposes a different daylight glare control framework, in which a low-cost 

programmable HDRI sensor with a wide fisheye lens is attached on the inside surface of the glazing 

to capture the full luminance distribution of the exterior scene. With proper calibration, the sensor 

can accurately measure the luminance, size, and position of any potential glare sources using per 

pixel analysis. At the same time, the sensor can explicitly detect the presence of the sun or any 

bright source of small size but intense luminance (i.e., reflected glare), and track such sources 

without commissioning, therefore providing real-time additional glare protection to any type of 

daylighting controls. This could prevent control strategies from underestimating the risk of glare 

and also avoiding over-conservative shading operation.  

Section 3.2 presents the details of the low-cost image sensor. The photometric and geometric 

calibration of the camera for HDR luminance map acquisition and processing are described in 

Section 3.3, together with the real-time solar tracking, glare detection method and an efficient glare 

source positioning algorithm. Section 3.4 discusses the algorithm of practical glare control with 

the window-mounted camera. Finally, the controller was implemented in a private office to 

demonstrate the advantages of the developed camera-based glare control compared to simple 

existing controls (Section 3.5).  

3.2 Low-cost image sensor  

General-purpose single-board computers, such as Raspberry Pi 3 B+ (Raspi) used in this 

study, have gained popularity over the past few years due to their very low price, small form factor 

and suitability for different problems through both external hardware using GPIO pins or through 

software using custom scripts [137]. Raspi in the present study runs with a UNIX-based operating 

system that can run Python scripts created to handle every aspect of the methodology.  

To serve the purpose of a low-cost HDRI sensor, Raspberry Pi Camera Module V2, a 

proprietary camera-on-board compatible with the Raspi is used. The camera is based on the CMOS 

sensor (Sony IMX219) with a maximum dynamic range of 44.56 dB, offering a resolution of 8 
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megapixels (3280×2384 pixels) for still images. An open-source Python package named PiCamera 

provides an easy-interface to alter the image-shooting parameters (shutter speed, ISO, white 

balance, resolution, rotation) and operate the camera through Python scripts. 

In its standard configuration in the market, the camera is equipped with a fixed-focus 

3.4mm lens, allowing a rectangular FOV of 62.2 degrees (horizontal) × 48.8 degrees (vertical). 

However, as the objective of the study required wider FOV to capture the full exterior scene from 

the window, the original lens was replaced by an M12 fisheye lens, with an aperture of f/1.8 and a 

focal length of 1.05 mm [153]. The expanded FOV of the fisheye image sensor is 180 degrees 

(horizontal and vertical), covering the maximum possible area of the exterior scene. In order to 

perfectly fit the lens to the image sensor with minimum light leakage, a custom camera-lens mount 

was designed and 3D-printed (Figure 3.1). 3D printing was also used to mount the complete HDRI 

sensor on the window or tripods during calibration stages. 

 

 
Figure 3.1 Original image sensor and HDRI sensor with lens connected to Raspberry Pi (left); 

HDRI sensor attached to window using a 3D printed mount (right) 

3.3 Glare source detection and positioning for glare control 

3.3.1 Overall Process  

The overall process of glare detection using the new sensor consists of two stages –HDR 

luminance map acquisition and glare source identification (Figure 3.2). Photometric and geometric 
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sensor calibration precedes this process. Photometric calibration is a necessary step to acquire 

reliable luminance values from images taken by the sensor, and includes the estimation of the 

camera response function (CRF) followed by a vignetting correction. These concepts and 

corrections are discussed in detail in Section 3.3.2. HDRI Photometric and Geometric calibration. 

Geometric calibration is a process to obtain camera intrinsic parameters and distortion function 

that is used to back-project image pixels into 3D coordinates. Once all calibration steps are 

finished, a complete luminance map of the camera’s FOV can be created from multiple images 

with different exposures by a sequence of processing. The final luminance map in this study is 

processed by Evalglare [65] – an open-source software for glare analysis used also to identify 

potential glare sources. Finally, the lowest profile angle (the projection of the angle between the 

light rays originating from the source and the normal to the window) is computed using an efficient 

positioning algorithm. The following sections present details for each step. 

 

 
Figure 3.2 Overall process for HDRI and glare detection 

3.3.2 HDRI Photometric and Geometric calibration 

The HDRI methodology consists of the following steps: a series of photographs with 

different exposures is captured at any given timestamp; then, these are combined into an HDR 

image using a previously extracted calibration function; in the end, necessary corrections are 

performed towards producing a reliable luminance map. A Python script was created to schedule 

the camera to capture a full set of exposures at a given time interval, with shutter speed ranging 

from 28 to 7800 microseconds with approximately 9 stops. Table 3.1 lists the camera settings. 

Then, the low dynamic images were combined using the open-source command-line software 



 

 

54 

HDRgen [74], applying a camera response curve retrieved from photometric calibration. The 

camera response curve is the key component of HDR imaging, which refers to a non-linear curve 

function associating radiometric intensity to absolute values of luminance. It is obtained using a 

calibration procedure that corrects the luminance value from a non-calibrated HDR image, at a 

given point of near-neutral spectral characteristics, with the value obtained by a calibrated 

luminance spot meter, and applies the correction factor to all the pixels of the image. The retrieval 

of the response curve allows to convert the RGB pixel intensity to a linear function of luminance 

in the scene and photometrically combine images with different exposures. The final step of 

ensuring photometric accuracy of HDR luminance maps is correcting the vignetting effect, which 

refers to a radial decrease of luminance observed in fisheye lenses with fast apertures (low F-

values). The process presented by Inanici [27] was performed to obtain a 5th-degree polynomial 

correction function, which was then applied to all HDR images through the use of RADIANCE 

[66]. To estimate the luminance range of the HDRI sensor, a method introduced by Pierson et al. 

[33] was used. By capturing a solar-disk-centered HDR luminance map (to avoid vignetting) and 

finding the maximum luminance value from overflown pixels, the measuring capacity of 420,000 

cd/m2 was retrieved. Completing the photometric calibration procedure ensured accurate 

luminance maps from the resulting images. However, since detailed information of the position 

and size of glare sources is also important, given the specific objectives of this application, the 

images needed to be additionally geometrically corrected.  

Table 3.1 Camera settings for HDR image creation 

ISO 100 

Number of exposures 9 

Shutter speed 

(microseconds) 

28, 47, 85, 198, 482, 992, 1994, 3885, 

7798 

Resolution (pixels) 

Original LDR image: (1093, 821) 

Cropped image with fisheye circle: 

(602, 602) 

 

Geometric calibration is a process that estimates the intrinsic camera parameters and 

distortion of a camera and determines the mapping of real-world scenes into image pixels. After a 
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proper geometric calibration, it is possible to retrieve the real-world position (as a 3D ray vector 

with two degrees of freedom) of an image pixel relative to the camera through back-projection. 

Also, the obtained distortion function can be used in the transformation of fisheye projection. 

Transforming the fisheye projection to standard forms, such as equidistant or equisolid projection 

is very useful since it reduces computational cost. Moreover, the up-to-date version of Evalglare 

is only compatible with certain projections such as equidistant, making geometric calibration a 

necessary task.  

There are different distortion models for fisheye cameras that are mostly based on radial 

distortion, a function of pixel radius from the distortion center. Just recently, Wagdy et al. [34] 

developed a parametric method and a tool for remapping and calibrating fisheye images for glare 

analysis. In our study, a distortion model for omnidirectional cameras proposed by Scaramuzza et 

al. [77] was used. The model estimates the 3D directional vector emanating from the viewpoint as 

a function of pixel radius from the distortion center, as described in Eq. (3.1):  

�
𝑋𝑋𝑐𝑐
𝑌𝑌𝑐𝑐
𝑍𝑍𝑐𝑐
�  =  𝜆𝜆 �

𝑢𝑢
𝑣𝑣

 f(𝜌𝜌) = 𝑎𝑎0 + 𝑎𝑎2𝜌𝜌2 + 𝑎𝑎3𝜌𝜌3 + 𝑎𝑎4𝜌𝜌4 
�                                                                                (3.1)                                                         

where [Xc, Yc, Zc]T is the vector representing a ray that passes through the real-world scene in 

camera coordinates, u and v are pixel distances from the distortion center in X and Y axis 

respectively, λ is a scalar factor, ρ is the pixel radius from the distortion center (ρ = √u2 + v2), 

and [a0, a2, a3, a4] are coefficients for the Z-coordinate retrieval (Figure 3.3). In the present study, 

the fisheye camera calibration function in MATLAB computer vision system toolbox was used. A 

set of photographs of a checkerboard pattern captured in different views is the input to the toolbox. 

The major outputs of interest from the calibration are the coefficients of function f in Eq. (3.1) and 

pixel coordinates of the distortion center, which is typically different from the image center. The 

estimated distortion from the calibration enables us to back-project pixels into θ, the angle between 

the camera optical axis and the 3D ray to the real-world scene. This allows to retrieve the angle θ 

from any pixel of an image, as shown in Eq. (3.2). 

𝜌𝜌 = projection(𝜃𝜃)  ↔   𝜃𝜃 =  projection−1(𝜌𝜌)  = arctan �𝜌𝜌 f(𝜌𝜌)� �                                            (3.2) 

A limitation in using Scaramuzza’s camera model is that the calibration is only validated 

within 150 degree-FOV. However, from a practical point of view, this limitation does not cause 

serious issues in the method; first, glare sources that are out of the 150 degree-FOV are highly 
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likely to be occluded by building components (such as walls, floor, ceiling, etc.) since the 

occupants are not seated exactly at the window surface. Also, we performed a validation of solar-

tracking through the image projection (via estimated geometric parameters of the camera) against 

the computed sun-path during a sunny day and found it to have a very small error, as discussed in 

Section 3.3.5. 

 
Figure 3.3 Illustration of fisheye camera projection model  

The estimated projection can be used for the radial transformation of HDR images, a 

process essential for accurate geometry mapping. Since Evalglare is compatible only with HDR 

images of standard projections, such as equidistant (a projection that θ is proportional to ρ; see 

Figure 3.4b) or hemispheric fisheye projection, a 6th-order polynomial fitting (Figure 3.5) was used 

to create a radially mapping function that transforms non-standard fisheye projection into 

equidistant projection, using the RADIANCE pcomb command, according to the method described 

by Geisler – Moroder et al. [76] 
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Figure 3.4 (a) Original fisheye projection (b) Equidistant projection. Each circle corresponds to 

equal 𝜃𝜃 (from 10 degrees to 90 degrees, in 10-degree increments) 

 

 
Figure 3.5 Estimated fisheye camera projection and fitted equidistant projection with a polynomial 

function 

 

To  validate the HDR imaging methodology, including photometric and geometric aspects, 

verification in terms of vertical illuminance (near the eye of the observer) was also done. This is a 

valid approach since illuminance is determined by both photometric and geometric factors, and is 

computed as the integration of luminance (photometric) in FOV along the configuration factor 

(geometric). This approach has been used in the past Konstantzos and Tzempelikos [38], for 

example when extreme luminance values are beyond the measuring range of conventional 
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luminance spot meters. A calibrated LI-210R photometer, with a cosine correction for incidence 

angles up to 80°, a response time of 0.01 ms and an absolute error of 3%, was used for the 

illuminance validation. 

Figure 3.6 shows that vertical illuminance calculated from the HDR images showed good 

agreement with photometer readings, even in the higher range over 10,000 lx (RSE: 4.4%, RSME: 

362 lx). Note that, when the sun is in the FOV and observed from the interior of the room, there 

will be overflown pixels due to the limited measuring capacity of the HDRI sensor (in the order of 

105 cd/m2 and higher). This can underestimate vertical illuminance when the sun is present and 

neutral density (ND) filters can be used  to avoid this problem [38,154]. Nevertheless, this issue 

does not affect the operation of the proposed framework of this study, since the operating 

luminance threshold that will trigger shade movements is far below the measuring capacity. 

 
Figure 3.6 Vertical illuminance validation 

3.3.3 Glare source detection 

Evalglare is an open-source software used for glare evaluation from quantified physical 

entities in a fisheye HDR image Wienold [65]. Although the intended usage of Evalglare is to 
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analyze scenes observed by the human-FOV, its engine can also be utilized for identification of 

the luminance, size and position information of exterior bright sources that may contribute to glare.  

Figure 3.7 shows an example how Evalglare analysis is used towards identifying exterior sources 

of high brightness. Once the fisheye luminance map (Figure 3.7a) is read by Evalglare, pixels with 

luminance values above a certain threshold are identified as potential glare sources. Threshold 

luminance can be defined as either a fixed luminance value or as a multiplier to the average 

luminance of the entire FOV or the task area (the default is 5 times the average luminance of the 

entire scene). The neighboring source pixels are then combined into a single glare source shown 

as pixel groups with different colors (Figure 3.7b), depending on the maximum distance between 

two coupled pixels, as defined by the search radius command of Evalglare.  

The detailed output of Evalglare allows access to detailed glare source information 

(average luminance, solid angle, position index, number of pixels, centroid pixel in x and y-

coordinates) as well as overall information from the entire luminance map, such as calculated 

vertical illuminance, average and background luminance, and glare metrics including DGP and 

DGI. Peak extraction isolates pixels with extreme luminance, such as the sun or specular 

reflections from the identified source pixels. This is a useful method to separate the glare sources 

with extreme luminance such as the solar disk from other, less bright source pixels. 
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Figure 3.7 (a) Example of a processed HDR image for Evalglare analysis; (b) Example of color-

mapped glare sources from the Evalglare output. The HDRI sensor identifies the location, size and 

brightness of a potential glare source in real-time. 

Operating a shading control based on exterior reflections requires a threshold for 

identifying visual discomfort. However, there has been no validated border of visual discomfort in 

literature, and especially for instances of disability glare due to small but extremely bright sources, 

observed from interior workstations. Finding such a threshold is out of the scope of this paper, and 

it is a highly challenging goal that involves well-designed experiments with human subjects, which 

is ongoing research. Low thresholds, up to 5500 cd/m2 [84] have been proposed, although these 

include discomfort glare cases. Since human vision can capture between 2-3 orders of luminance 

difference and the luminance range on typical computer screens is 30-200 cd/m2,  Jakubiec & 

Reinhart [81] suggested a tentative upper limit luminance threshold around 30,000 cd/m2 for 

disability glare. As the scope of this study is a proof-of-concept for the new sensor-based glare 

detection and control framework, in particular due to small but extremely bright sources causing 

disability glare, the tentative absolute luminance threshold of 30,000 cd/m2 was tested.  

3.3.4 Glare source positioning 

Identifying the exact position of glare sources with respect to the sensor is necessary for 

glare-based shading control. For complete protection, the shade height needs to be set to a position 

that corresponds to the lowest profile angle among the entire set of glare source pixels. However, 

Evalglare only outputs the centroid pixel of each glare source, which may or may not be control-

wise adequate information, depending on the size of the glare source of interest. For that reason, 

the source code of Evalglare was modified to output also the 1-dimensional pixel boundaries of 

every source in x and y-coordinates (red-border-lined boxes in Figure 3.8, middle).   

Attaching the fisheye lens on the image sensor has the advantage of expanding the FOV. 

However, it also introduces complexity in finding the lowest profiles angle from the image. 

Because of the high distortion towards the edges of the fisheye image, horizontal lines in the image 

are not equivalent to lines of equal profile angles (Figure 3.8, left). Identifying the pixel of the 

lowest profile angle is not as simple as choosing the pixel with the lowest y-coordinate. There are 
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two options to find the exact pixel of interest: (i) exhaustively iterate over all the source pixels to 

find the one with the minimum profile angle; and (ii) rectify the fisheye image to remove the 

distortion and choose the source pixel that appears at the lowest vertical position. However, these 

solutions require high computational cost that would defeat the purpose of having a low-cost 

sensing system with restricted processing power. Consequently, an alternative method was used, 

which needs only four reference pixels – the pixel boundaries from the Evalglare output – per 

source. The modified code outputs the rectangular boundaries of glare sources similar to the 

illustration of Figure 3.8 (left). Instead finding the exact pixel of interest (with the lowest profile 

angle), the proposed logic simply chooses the lower of two profile angles that correspond to bottom 

vertices of the rectangle encircling the source. As seen in Figure 3.8 (left), the pixel location 

relative to the x-axis determines whether the profile angle increases or decreases with respect to 

the distance from the y-axis of the normalized image. For the upper half of the fisheye circle, the 

profile angle is lower in pixels closer to the mid-vertical line and the vice-versa for the bottom 

half. Since the chosen profile angle is the lowest within the rectangular boundary of the source, it 

is guaranteed that the sensing system always selects the profile angle closest to the actual lowest 

one. The profile angle Ω required for the shade control is then retrieved by a simple trigonometric 

function as in Eq. (3.3): 

Ω = arctan �𝑣𝑣 f(𝜌𝜌)� �                                                                                                                              (3.3) 

where 𝑣𝑣  is normalized y-coordinate of the pixel, and f(𝜌𝜌)  is the Z-component of the back-

projected ray, which is a function of normalized radius from the distortion center, retrieved by the 

geometric calibration described in the previous section.  
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Figure 3.8 Illustration of proposed logic for finding the lowest profile angle of glare sources 

3.3.5 Solar Tracking for daylight glare control using fisheye HDRI sensor 

Solar tracking is an essential feature in daylighting controls since (i) avoiding sunlight on 

the person is required and (ii) the presence of sunlight and its direction significantly changes 

interior luminous conditions. Existing daylighting controls based on solar tracking calculate the 

sun path or position based on the location and orientation of the building; these are then used to 

calculate the incident or profile angle of the solar rays incident on the facade and transmitted 

through the windows. However, the solar path method is not always self-sufficient for robust 

daylight glare control. If the building is located in a dense urban environment, the sun may be 

occluded for part of the day, or even at all times. Also, the visibility of the solar disk can 

significantly vary depending on the weather conditions. For these reasons, simple solar path-based 

shading controls tend to be over-conservative, and often need to be paired with extra feedback 

sensors on the window, which still cannot efficiently handle reflections from surroundings. 

Image-based solar tracking overcomes these problems and can eliminate the need for a 

solar path model or building geometry and location information. The solar tracking based on the 

luminance map is performed by the peak extraction method of Evalglare. The absolute luminance 

of 380,000 cd/m2 was chosen as the peak threshold (we could select a lower value since anything 

close to this value will definitely cause disability glare anyway). For capturing the exact position 

of the sun from the window view, a similar positioning method with the one described in Section 

3.3.2 was used. However, in this case the centroid of the solar pixels’ block is used instead of the 

pixel corresponding to the lowest profile angle. Once the centroid is retrieved from the Evalglare 

output, the incident and profile angle of the solar rays can be calculated. The profile angle can be 

obtained using the same method for other glare sources, while calculating the solar incident angle 

θ to the façade is trivial since the processed image already has equidistant projection. The angle 

between the camera’s optical axis and the sun’s rays is proportional to the pixel distance between 

the centroid and the distortion center (Figure 3.9). 
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Figure 3.9 Solar tracking example from a processed HDR fisheye image 

To evaluate the solar tracking methodology, we compared the profile angle of the sun 

calculated based on HDRI images and using the standard calculation (Eq. 3.5) with known 

parameters using a Python library, PyEphem-Sunpath [155]. The library allows retrieval of 

accurate solar azimuth and altitude at the Earth surface given the geographical information 

(latitude and longitude) and local time.  

Ω = arctan�
tan(𝛼𝛼)

cos(𝜑𝜑 − 𝛾𝛾)�                                                                                                                       (3.4) 

where α is the solar altitude angle, φ is the solar azimuth angle, and γ is the surface solar azimuth 

with respect to true south. Figure 3.10 shows the solar profile angle calculated with both ways in 

four-minute intervals during a sunny day in April. The RMSE is 1.33 degrees (2.1% RSE) which 

shows that the image-based solar tracking method works well. For a realistic illustration, the 

position of the solar-disk centroid, monitored from the fisheye image, was overlaid together with 

a projection of the sun calculated by the sun-path algorithm in Figure 3.10. The average Euclidean 

distance between corresponding pixels is 3.83 pixels (0.006 when normalized with the image 

resolution). Despite the small pixel error outside the 150-degree-FOV zone, the profile angle 

difference is noticeable in early morning and late afternoon. That is mainly due to excessive solar 

azimuth angle range (above 65 degrees) with respect to the building facade. However, as shown 

in Figure 3.10 (left), the solar profile angle estimated from the HDRI sensor is consistently lower 

in these cases. This means that the HDRI sensor will allow a more conservative control during 

these times and can be safely applied in building control systems. 
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Figure 3.10 Comparison of the profile angle calculated from HDR images and Sun-path method 

(left). Overlay of solar disk on fisheye HDR images (right) 

3.4 Glare-based shading operation using the window-mounted HDRI sensor 

Two layers of automated glare protection utilizing the HDRI sensor are proposed, aiming at 

deploying roller shades at a height that avoids glare induced either from exterior or interior bright 

sources (sunlight or reflections). The first layer protects the occupant from any exterior glare-

inducing sources detected by the HDRI sensor (over 30,000 cd/m2). To that end, it moves the shade 

to a height where the source-to-eye ray intersects the glazing (Figure 3.11, top), based on the eye-

height (ℎ𝑒𝑒𝑒𝑒𝑒𝑒) and target distance of the “minimum glare-free” zone from the window (𝑑𝑑𝑒𝑒𝑒𝑒𝑒𝑒). If no 

glare source is captured by the sensor, the shade position is set to fully-open.  
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Figure 3.11 Illustration of shade control operated by the new sensor-based control system.  

Eye-height protection from exterior glare source system (top);  

Work plane protection from direct sunlight (bottom) 

 

The second layer of protection protects the work plane (at height ℎ𝑤𝑤𝑒𝑒 = 0.8 𝑚𝑚) from 

directly transmitted sunlight at a target distance from the window (𝑑𝑑𝑤𝑤𝑒𝑒) as shown in Figure 3.11 

(bottom). That is because interior sunlight reflections near the work area can trigger discomfort. 

This is simply based on geometry and has been applied in earlier studies [99,100]. Here this logic 

is operated only when the camera detects the sun as a glare source (as described in the previous 

section). At each control iteration, the HDRI sensing system calculates shade positions from both 

control objectives and chooses the lowest between them (Figure 3.12).  
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Figure 3.12 Glare protection flowchart with HDRI sensor 

However, controlling based on the profile angle observed from the window HDRI sensor 

involves some limitations.  The occupant’s FOV can be substantially different from what is 

captured by the window HDRI sensor in two different levels, because: (i) a portion of the window 

sensor’s visual field is not visible from the inside due to occlusion from the building enclosure and 

(ii) even when a glare source is perceived by both the occupant and the sensor, the observed profile 

angles are not the same, when the source is not far away like the sun. While the former is a 

limitation that will always lead to a more conservative shade operation, the latter is more 

complicated and is analyzed below.  

As illustrated in Figure 3.13, different positions of the occupant and the window HDRI 

sensor create different profile angles (occupant: δ; window HDRI sensor: Ω) perceived for the 

same glare source. If the source is located below the occupant’s line of sight, the control algorithm 



 

 

67 

detects the source in the lower position (Ω𝑙𝑙) than the actual (δ𝑙𝑙), behaving more conservative and 

limiting daylight harvesting. On the contrary, for glare sources above the line of sight, the shade 

height will be determined by Ωℎ  which is higher than the actual profile angle δℎ , potentially 

exposing occupants to glare sources. Assuming that occupants are seated at least 1 m from the 

windows, the shade distance from the floor is simply calculated by adding the tangent of  Ω to the 

occupant eye eight (ℎ𝑒𝑒𝑒𝑒𝑒𝑒). Considering that, for typical urban environments and street widths, any 

reflected glare source should be at least 10 m away from the window, the relative error between 

the tangents of δ and Ω (shade position differences) is less than 10%, as shown in the graph of 

Figure 3.13 (bottom). The further away the source is, the smaller the difference in the controlled 

shade positions due to the occupant-sensor distance. Also note that the maximum difference 

between the shade positions, based on δ and Ω respectively, is limited because the maximum of 

tan(Ω) –total shade height minus occupant eye height is typically lower than 2.5m since ceiling 

heights are around 3 m in most offices.  
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Figure 3.13 Illustration of angular deviation caused by different distances from the glare source 

(top); Ratio of tangents of the angles 𝛿𝛿 and 𝛺𝛺 dependent to glare source distance from the window 

(bottom) 

3.5 Implementation of the HDRI-based glare control framework and case study 

3.5.1 Experimental setup and control integration with the Building Management System 

A 3.3 m × 3.7 m × 3.2 m high private office in West Lafayette, Indiana (40°25"N, 86°55'W) 

with a south-facing façade was used to implement the proposed control framework with the 

window-mounted HDRI sensor. The façade consists of aluminum curtain wall framing and a high-
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performance glazing unit (normal T𝑉𝑉=64%) with a window-to-wall ratio of 54%. The room is 

equipped with interior dark-colored motorized roller shades (normal Tv=2.53% and OF=2.18%) 

and two suspended electric lighting fixtures (each with two 32-W T5 fluorescent lamps). The 

window HDRI sensor was attached on the interior of the glazing at 1.2 m from the floor (close to 

typical eye height of seated occupants). To evaluate scenes as observed by an occupant during the 

shading operation, an additional HDRI sensor was installed at the same height at the occupant 

position (1.5 m distance from the window facing outside as in Figure 3.14). Both sensors were 

operated by a single Raspi, enabled by adding an IVMECH Dualplexer V2, which allows 

connecting more than one camera modules to a single CSI camera port on Raspi. Two LI-210R 

photometers were installed right next to the HDRI sensors to measure vertical illuminance. 

Measurements were scheduled and collected by an Agilent 34972A DAQ unit.  

As the external surroundings visible from the testbed office did not create very bright 

reflections, a reflector panel was used to create artificial glare sources and mimic exterior 

reflections for the purpose of the experiments (Figure 3.14). A reflective (mirror-like) finish 

material was placed on the panel, which had a total area of 1.5 m by 1.2 m. The panel was rotatable 

and could be placed in any direction, therefore it allowed us to evaluate sources of varying 

luminance, from a few hundred to over 300,000 cd/m2, and varying source size, depending on the 

relative position of the sun. Luminance values were also measured with a calibrated luminance 

spot meter, installed next to the installed sensors, aiming at the center of the reflector. 

 

 
Figure 3.14 Instrumentation schematic (left);  observed scene with the exterior glare source 

(reflector) visible from the interior of the test office, and additional sensors installed at the occupant 

location (right) 
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Shading and lighting can be precisely controlled through corresponding control points in 

the NiagaraAX Framework [156], which is the Building Management System (BMS) in the building. 

The new HDRI sensor was integrated in the existing BMS as illustrated in Figure 3.15. Different 

types of actuators are controlled with Tridium JACE controllers as part of the NiagaraAX 

Framework, which allows seamless integration of the building systems irrespective of 

manufacturers or communication protocols. The shading glare-based control using the window 

HDRI sensor was operated in Raspi through Python scripts. The Python control script determines 

the set point for the shade position (0-100%, fully-closed to fully-open) in the BMS. The 

communication between the Raspi and BMS was achieved using the Modbus TCP communication 

protocol with Python PyModbus package as an interface. A writable-Modbus holding register was 

created to receive and send the shade position set point to the corresponding control point in the 

BMS. The entire process takes about 2 seconds.  

 

 
Figure 3.15 Overview of HDRI sensor and shading control integration in the BMS 

3.5.2 Implementation and comparison with common shading controls for glare protection 

Measurements were collected during sunny days in March-April 2019. Data points with 

reflector luminance over the 30,000 cd/m2 threshold were used in the analysis. The average 

luminance of the reflector panel ranged between 36,800 - 332,000 cd/m2, while the solid angle of 

the reflector, as seen by the sensor, ranged from 0.0015 - 0.0077 sr. The selected distance between 

the occupant and the window ensured that the solar disk is not visible from the occupant-positioned 
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HDRI sensor during the experimental period, thus no overflow issues affected the interior HDR 

luminance map. 

As described in the previous section, the HDRI-based glare control moves the shades to a 

height just adequate to cover the lowest profile angle, relative to the person, of any detected glare 

source (sunlight or bright reflections). It has an advantage over any other direct glare protection 

method, since it can identify the location, size and brightness of any potential glare source in real-

time. To demonstrate these advantages experimentally, the HDRI-based control was compared 

with: 

• A typical “sun-tracking” control, which moves shades to cut-off height that blocks direct 

sunlight from the occupant’s eyes. This control cannot account for any glare source other than 

the sun and also can result in high vertical illuminance and discomfort glare when the sun is 

high in the sky.   

• A control that avoids “excessive illuminance”; it operates shades based on transmitted 

illuminance through the window and moves the shades to the eye height whenever it exceeds a 

threshold, to avoid excessive vertical illuminance or large glare sources. This threshold can be 

variable to account for room and window geometry as well as weather conditions, but for our 

experimental space and sky type it is set to set to 8,000 lx. This control might over-protect from 

glare, reducing the admission of useful daylight, and it cannot work for glare sources below the 

line of sight.  

In each experimental run, the reflector tilt was changed to create a specific luminance range 

at its center. The shades were then controlled with the HDRI-based control, the sun-tracking 

control and the excessive illuminance control. For each of these operations, all useful 

measurements were collected, including the average luminance of the source (reflector) measured 

by the window HDRI sensor, the shade position, vertical illuminance at the occupant position, as 

well as an interior luminance map using the occupant-positioned HDRI sensor. The latter was used 

to calculate DGP at the occupant location (the standard Evalglare source detection method was 

used for that purpose, with five times the task average luminance (marked as 0.53 rads around the 

center of the computer screen). A different reflector luminance was then selected randomly and 

the entire cycle was repeated. Each cycle lasted less than 30 seconds, thus it was safely assumed 

that there was no significant luminance variation in the exterior scene (stable, sunny days) during 

a cycle.  
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An example of the experimental comparison of the three controls is presented in Figure 

3.16. For a given exterior scene with the sun present and the reflector used as a second glare source, 

HDR images from the occupant sensor are shown after each control is applied. As expected, the 

sun-tracking control failed to block the reflector, while the excessive illuminance control provided 

only partial glare protection from the reflector because its line of sight of was partly below the eye 

height (zero profile angle). On the contrary, the HDRI-based control successfully moved the shade 

to just cover the reflector surface, fully protecting from the detected glare source as intended.  

 
Figure 3.16 HDR images from the implementation case study: Exterior Scene (a) and occupant 

views with the solar-tracking control (b); excessive illuminance control (c); and HDRI-based 

control (d), fully protecting from the detected glare source. 
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More quantitative comparative results are shown in Figure 3.17. For a meaningful 

representation, the 40 data points (x-axis) are sorted by average luminance of the reflector in 

ascending order (Figure 3.17, top), and then the resulting shade position, Ev and DGP at the 

occupant position are presented for each data point with each of the three controls. 

The simple solar tracking control results in higher shade positions due to the high profile angle of 

the sun, and consequently, in high vertical illuminance on the eye and DGP values. Both remain 

higher than the recommended glare thresholds (2,760 lx for Ev according to [38,67] and 0.35-0.40 

for DGP based on [42]. However, to be fair, note that the difference in DGP between the solar 

tracking control and the rest is mainly due to the vertical illuminance term and not the contrast 

(reflector luminance) term. That is because small but bright sources, such as the reflector used in 

our experiment, usually have a small contribution to vertical illuminance due to their small solid 

angle (except if their luminance is extremely high). Nevertheless, the fact remains that simple solar 

tracking control cannot protect from glare.  

On the other hand, the excessive illuminance control can be directly compared to the 

HDRI-based control in terms of DGP effects (vertical illuminance differences between the two 

controls only account to 0.03 of the difference in DGP). Since the lower part of the reflector panel 

is located just slightly below the line of sight of the observer, the differences in shade positions 

with these two controls are not important (mean difference of 6.3% converted to 13 cm in actual 

height).  

The HDRI-based control always keeps DGP and Ev at comfortable levels. However, since 

part of the reflector is visible with the illuminance control logic, DGP increases with reflector 

luminance and reaches the threshold of 0.35 approximately at 150,000 cd/m2 (reflector average 

solid angle is 0.003) using that control, which is certainly possible with specular reflections on 

building facades.  It is worth noting that, for a certain range of reflector average-luminance 

(150,000~200,000 cd/m2) with the illuminance control, DGP can exceed 0.35 without noticeably 

increasing the vertical illuminance. This finding confirms that previous daylighting controls 

relying only on photometers could fail to protect from direct glare in such conditions, and HDRI-

based controls are more reliable.  
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Figure 3.17 40 data points (x-axis) sorted by average luminance of the reflector in ascending order 

(top) and comparison between respective shade positions, DGP and vertical illuminance at the 

occupant position, with each shading control. 
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3.6 Chapter conclusion 

This study presents the development and implementation of a new daylight glare control 

framework. Until now, conventional control systems could not detect the location, size and 

brightness of potential glare sources in real-time, resulting in either increased glare risk or over-

conservative shading operation. A low-cost programmable HDRI sensor with a wide fisheye lens 

was attached on the inside surface of the glazing to capture the full luminance distribution of the 

exterior scene. After proper photometric and geometric calibration, the HDRI sensor can be used 

for efficient luminance mapping and further processing of any of the image’s pixels of interest. 

We present a method to enable reliable solar-tracking without prior information or commissioning, 

and an efficient glare source positioning algorithm, which can also detect glare sources of small 

size but significant luminance (such as reflections from opposite facades), according to the 

programmed logic. A secondary layer of protection from reflections near the work plane is 

presented, and the effect of the occupant and source position relative to the sensor is discussed.   

To demonstrate the HDRI-based glare control, experiments were conducted in a private 

office with automated roller shades. Reflective panels were used to create bright sources of varying 

size and intensity, in addition to the sun. The new control was operated in Raspi through Python 

scripts and was integrated into the BMS using the Modbus TCP communication protocol. Two 

more shading controls, a simple sun-tracking control and a control to protect from excessive 

vertical illuminance, were also implemented for a direct comparison under the same sky conditions. 

The results showed that the HDRI-based glare control successfully moved the shades continuously 

to fully protect from the detected glare source, maintaining low DGP and vertical illuminance 

values measured at the occupant position inside. Simple sun-tracking cannot prevent from glare. 

The illuminance control cannot work well for sources below the horizontal line of sight, while it 

may result in high DGP without reaching increased vertical illuminance values, which might 

happen with specular reflections from opposite building facades. 

The proposed hardware and control framework have limitations. The maximum dynamic 

range of the image sensor used in this study cannot measure extremely high luminance levels 

(above 420,000 cd/m2), creating overflow issues when it tries to capture the sun. Although this is 

not a big problem, since we can set a lower peak value and use the solar tracking algorithm, it can 

be avoided by using a sensor with a wider dynamic range [90]. Also, the developed control assumes 

that glare sources are beyond a certain distance from the window, thus the relative position of glare 
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sources with respect to an occupant can be well approximated with the window-mounted HDRI 

sensor. The control could fail to protect from glare sources very close to the facade (5 m or less), 

although this is not likely to happen.  

Although the developed HDRI-based glare control should work better than any other 

existing method for direct glare protection, it cannot ensure elimination of general discomfort glare 

(because when the profile angle of the source is high, the shades will move to a high position and 

that might cause problems similar to “excessive illuminance” type of controls). Therefore, for total 

daylighting and visual comfort control, the HDRI-based glare control should be added as an extra 

layer of protection in efficient daylighting controls.  

Finally, although it is out of the scope of this study, there is no reliable predictor for daylight 

glare caused by relatively small sources of significant brightness, despite recent studies related to 

pupil responses, especially pupil size [157,158]. Determining a practical and reasonable operating 

luminance threshold for HDRI-based control is a challenging process that should involve 

experiments with human subjects in multiple indoor environment setups and locations, and it is 

suggested as future work.  

This study is an initial step towards developing a novel daylighting control framework based 

on HDRI sensors. Future applications are not necessarily limited to efficiently detecting relatively 

small and bright glare sources, as in this study, but also extend to: enabling model-based controls 

using the exterior luminance distribution as a quality input; learning visual preferences of 

occupants associated with the exterior scenes; and eventually fully replacing conventional 

photometer-based fenestration controls. 
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 A LOW-COST FISHEYE-STEREO CAMERA SENSOR FOR 
DAYLIGHTING AND GLARE CONTROL 

4.1 Scope and objectives of the study 

This study presents the development of a window-attached, low-cost fisheye-stereo camera 

sensor system for reliable daylighting controls in buildings. The stereovision sensor composed of 

two cameras can measure 3-D position and luminance of any exterior bright sources after 

photometric and geometric calibration. Also, by applying a neutral density sensor on one of the 

cameras and substituting the overflown pixels of the luminance map, a complete luminance map 

with a wide dynamic range can be retrieved. The new sensor exhibited promising results in 

validation of 3-D positioning and luminance acquisition, and can be used for real-time glare source 

detection, location and intensity measurements. The overall process is shown in Figure 4.1.   

 

 
Figure 4.1 Overview of fisheye-stereo vision sensing system 

4.2 Fisheye-Stereovision System 

Two low-cost camera boards (Raspberry Pi Camera Module V2) are the main components 

of the stereovision system setup (Figure 4.2). The camera board is based on the 8-megapixels 

CMOS sensor (Sony IMX219) and its operation is fully programmable with Raspberry Pi (Raspi) 
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through a Python interface. To capture the full exterior scene through the window, a wide-angle 

fisheye lens was attached to each camera board to expand the field of view (FOV) to nearly 180 

degrees. Two camera boards are horizontally integrated via a 3-D printed mount with the baseline 

distance of 15cm and connected to a single Raspi using IVMech multiplexer V2. In the left camera, 

an ND4 filter was applied between the image sensor and the fisheye lens as in [154] 

 
Figure 4.2 Raspberry Pi B+ with IVMECH V2 camera multiplexer (left). Fisheye camera 

integrated with 3D printed mount (right) 

 
Figure 4.3 Fisheye stereovision sensor mounted attached to window 
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4.3 Fisheye-Stereovision Sensor Calibration 

4.3.1 Photometric calibration 

Photometric calibration is an essential process to acquire reliable luminance readings from 

HDR images largely composed in three steps; 1) camera response function (CRF) retrieval, 2) 

calibration factor (CF) estimation and 3) vignetting correction [27]. The CRF is the key component 

of HDR imaging, which refers to a non-linear curved function associating radiometric intensity to 

absolute values of luminance. In the present study, a CRF estimation algorithm proposed by [26] 

was used, using its OpenCV (computer vision library for C++/Python) implementation. Input to 

the CRF estimation is a set of low-dynamic images with different exposures. After creating HDR 

images with the estimated CRF, the calibration factor (CF) that converts the HDR pixel intensities 

is calculated by fitting the HDR intensities to the absolute luminance measured by scientific-grade 

luminance spot-meter on the diffusive, neutral-colored surface. The luminance of a gray-colored 

square placed at the camera optical center (retrieved from the geometric calibration) was calculated 

from the un-calibrated HDR images and fitted to the luminance spot meter reading by a 

multiplication factor. To reduce measurement and temporal error, CF was averaged from ten 

different measurements. The luminance measured by the spot-meter ranged from 4,800 cd/m2 to 

7,540 cd/m2. The final part of the photometric calibration is the correction of the vignetting effect, 

a radial decrease of luminance observed in fisheye cameras of fast apertures that comprises the 

measurement accuracy of luminance. The process [27] was performed to obtain a 5th-degree 

polynomial correction function, which was then applied in HDR images via RADIANCE [66]. 

From the CF retrieved from the non-filter camera, the range of reliable luminance 

measurement was estimated from the fastest shutter speed used in HDR creation. The HDR 

merging algorithm weights calibrated intensities from the low-dynamic images based on the 

isosceles triangle-shaded function that peaks at mid-intensity (128 for 24-bit RGB image) of the 

image. Thus, the luminance value corresponding to the 50% of the mid-intensity (192 for 24-bit 

RGB image) calculated from the lowest and the highest exposures can be considered reliable, 

assuming proper photometric calibration. As shown in Figure 4.4, the measurable luminance 

ranges by two cameras are 165 ~ 117,000 cd/m2 (non-filtered) and 11,745 ~ 2.8×109 cd/m2 (ND4). 

Since the overlapping ranges from 11,745 cd/m2, bright sources above this range can be identified 

by both cameras. Although the luminance of the solar disk observed on earth can reach 1.6×109  
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cd/m2, the ND4 filtered camera is able to capture most of the instances considering the observed 

luminance under solar incidence angles on building facades and typical visible trasmittance of 

modern window systems. In any case, values in the order of 109 cd/m2 are much higher than any 

discomfort thresholds. The optical filter density above 4.5 will be sufficient for Raspi camera board 

to capture solar the disk in all circumstances. 

 

 
Figure 4.4 Measurable luminance range by fisheye-stereovision 

4.3.2 Geometric calibration 

Geometric calibration of fisheye-stereo estimates camera parameters that determine the 2D 

projection of real-world scenes into images. In the generic camera model [79] used in this paper 

(Figure 4.5), there are two types of parameters for each camera (intrinsic parameters K  and 

distortion coefficients d) and stereovision-specific extrinsic parameters �R|𝑡𝑡�. In the fisheye eye 

distortion model, the incoming ray of the scene, P, is refracted by a factor of 𝜃𝜃𝑑𝑑 (a polynomial 

function of 𝜃𝜃), where 𝜃𝜃 is the angle between the camera principal axis and the incoming ray from 

the scene P. The intrinsic parameters K determine the pixel-scaling of the scene, skewness between 

the horizontal and vertical pixel array, and principal points (equivalent to fisheye distortion center). 

Extrinsic parameters �R|𝑡𝑡� are the rotation and translation between two camera frames constituting 

the stereovision. The calibration requires photographs of flat checkerboard patterns with a known 

square size, taken from many different views. 30 different image pairs were taken from 25.85mm-

square checkerboards and put into an OpenCV implementation of fisheye-stereo calibration.  
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Figure 4.5 Generic fisheye camera model 

4.4 Positioning of glare sources 

When the sensor identifies a bright source in the exterior exceeding a certain luminance 

threshold, its relative position to the camera can be estimated in 3D cartesian coordinates via 

triangulation. For the 3D positioning, the stereo-correspondence problem needs to be solved, 

refering to the task of finding a set of points in one image which can be identified as the same 

points in another image. One of the simplest and fastest methods of solving stereo-matching is 

template matching based on normalized cross-correlation (NCC). This method works well if the 

variance between corresponding pixels is low. However, there are several factors in fisheye-

stereovision that can potentially create high variations within corresponding pixels; slightly 

different camera intrinsic parameters and fisheye distortion create different shapes and sizes of 

between the corresponding pixels. Also, mismatching can happen if multiple bright sources are 

present at the same time. A solution for the above issues is un-distortion and rectification of the 

fisheye-stereo images.  

Correcting the fisheye distortion transforms a fisheye image into a distortion-free 

perspective image, where the straight lines in the real world remain straight. This can be done by 

back-projecting the pixels into rays and re-projecting them with any distortion-free perspective 

projection matrix. In the present study, the same perspective projection is used for both cameras 



 

 

82 

to make the un-distorted image have equal scaling and principal points, and zero-skewness. Stereo-

rectification aligns the camera frames to have the parallel principal axis purely translated in a 

horizontal direction with the baseline distance. Rectification simplifies the stereo-matching 

because it makes corresponding epipolar lines to appear as horizontal lines at the same height in 

the stereo image pairs. Note that any non-occluded corresponding pixels between two images lie 

on corresponding epipolar lines, which is a stereovision characteristic as illustrated in Figure 4.6. 

In the rectified stereo image, the search space for template matching reduces into a single 

horizontal pixel array, at the same height of the template cropped from the image. In the present 

study, pixels above 30,000 cd/m2 are identified as a source of disability glare [81], although this 

threshold is not absolute. Both luminance maps were converted into binary mask assigning pixels 

above the threshold as 1 and 0 for the other pixels. Then pixels assigned with 1 were grouped by 

connected-components labeling with 2-connectivity (neighboring pixels in 8 directions are 

grouped together).  From the labeled binary mask, the bounding boxes for grouped glare source 

pixels are formed allowing paddings in four directions. Templates for the glare sources were then 

cropped from the ND4-filtered image (left) using the bounding boxes. Then the NCC was 

computed along the scanline (corresponding epiplolar line to the template) to find the matching 

point with highest NCC (Figure 4.7). 

 
Figure 4.6 Epipolar lines in rectified stereo image pair 
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Figure 4.7 Template-matching in rectified stereo image pair 

From the correspondence solved, estimation of the 3-D position of the scene is computed 

from disparity, the horizontal pixel difference between the corresponding pixels between two 

images (Figure 4.8). 3-D position of any corresponding pixel with disparity 𝑑𝑑 can be estimated by 

Equations (4.1-4.3), where [X, Y, Z] are the 3-D coordinates of the corresponding scene in left-

camera frame,  𝑥𝑥 and 𝑦𝑦 are pixel horizontal and vertical pixel displacement from the left-camera 

image’s principal point, 𝑓𝑓  is the focal length of the new camera projection,  𝑏𝑏 is the baseline 

distance between two cameras, and 𝑑𝑑 is the disparity between corresponding pixels. 

Z =  𝑓𝑓 𝑏𝑏
𝑑𝑑

                                                                                                                                                       (4.1)           

X = 𝑥𝑥 𝑍𝑍
𝑓𝑓

=  𝑥𝑥 𝑏𝑏
𝑑𝑑

                                                                                                                                            (4.2)           

Y = 𝑦𝑦 𝑍𝑍
𝑓𝑓

=  𝑦𝑦 𝑏𝑏
𝑑𝑑

                                                                                                                                            (4.3)           
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Figure 4.8 3D Positioning from the disparity 

4.5 Overflow correction for the solar disk 

A correction of the solar disk pixels is required because of “overflow” problems. The basic 

idea of overflow correction is replacing overflown pixels of the non-filtered luminance map with 

corresponding pixels of the ND-filtered luminance map containing higher luminance values. Like 

3D positioning, stereo-matching of the corresponding pixels is key to success. Finding 

correspondence for the solar disk can be simple for horizontal stereo images since image projection 

of the solar disk will be practically identical in the images due to its relatively infinite distance 

from the cameras. Assuming the intrinsic parameters of two cameras are identical and two camera 

frames are completely leveled, the solar disk will appear at exactly the same pixel coordinates 

away from the principal point of each image. The relative squared error (RSE) between pixel-

scaling factors (intrinsic parameters), the distortion function 𝜽𝜽𝒅𝒅  in [ 𝟎𝟎, 𝝅𝝅 𝟐𝟐⁄  ] , and rotational 

matrix R and 𝐈𝐈𝟑𝟑×𝟑𝟑 (identical camera angles) are extremely small (6.0E-0.5, 8.3E-5, and 1.35E-5 

each). Thus, it can be safely assumed that the solar disk will appear at the same image coordinates 

if the principal points of the images are aligned, simplifying the template matching needless of un-

distortion and rectification. The overall overflow correction logic is as follows: 1) from the ND-

filtered luminance map, detect the solar disk pixels using threshold of 107 cd/m2, determined by a 

cloud-covered reading from the luminance map; 2) extract the template from the pixels same as 

done in 3-D positioning; 3) compute NCC in a padded square pixel area centered at equal image 

coordinates of the template after aligning principal points of two images; and 4) find the pixel with 

the highest NCC and replace the overflown pixels with the template (Figure 4.9). 
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Figure 4.9 Overflow correction for solar disk pixels. 

4.6 Sensor validation  

The 3-D positioning and complete HDR mapping with overflow correction were validated. 

The 3-D positioning was validated by comparing estimated stereo-depth to the known distance of 

an artificial glare source (reflector) from the window measured with a calibrated laser distance 

meter. The RRSE of estimated depth was 4.20% in 13 measurements ranging from 2~10 m (Figure 

4.10).  

 
Figure 4.10 Stereo-depth validation 

Since we are not able to directly measure the luminance of the sun, overflow correction was 

validated through vertical illuminance (Ev) by integrating the pixel luminance with the 

configuration factor. The Ev calculated from the overflow-corrected luminance map was compared 
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to scientific-grade photometer readings, attached right next to the fisheye-stereovision sensor 

(Figure 4.3). Figure 4.11 presents comparison of Ev computed from pair of luminance maps before 

and after the overflow correction. The red markers in the scatter plot indicates the points from the 

original luminance map captured by non-filtered camera and the black markers connected to the 

red markers are corresponding values from the corrected luminance maps. In 44 points measured 

with sun in FOV, the overflow correction improved the accuracy significantly, reducing the RRSE 

from 43% to 5.2%. 

 

 
Figure 4.11 Vertical illuminance validation. Horizontal error bar shows measurement error (±5%) 

for LI-COR photometer 

4.7 Chapter discussion and conclusion 

The proposed low-cost fisheye stereovision sensor can detect potential glare sources, 

locating them with reasonable accuracy in real time. Also, overflow correction of the solar disk 

pixels allows lowering the cost by using non-wide dynamic range image sensors and can replace 

conventional window photosensors while adding more capabilities. Future work includes 

examining and improving the robustness of the sensor in more challenging conditions, including 

positioning of highly slanted glare sources or handling cases where the number of detected glare 

sources is very high. The window-attached fisheye-stereovision sensor allows the implementation 
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of more advanced control algorithms with real-time glare source detection, location and intensity 

measurements, important for reliable daylight control operation and measurement-aided 

simulation. In addition, accurate luminance mapping can be used for visual preference-based 

modeling and control.  
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 NON-INTRUSIVE LUMINANCE MONITORING FRAMEWORK VIA 
HIGH DYNAMIC RANGE IMAGING AND PHOTOGRAMMETRY 

5.1 Scope and objectives of the study 

This study proposes a novel, semi-automated framework for monitoring of luminance 

distribution within occupant-FOV, using a fisheye HDRI sensor installed at the non-intrusive 

position. The HDRI sensor can capture an accurate luminance map with proper calibration, 

including the photometric and geometric calibration. The 3D model of the room is automatically 

reconstructed through SfM-MVS photogrammetry pipeline combined by two open-libraries, 

COLMAP [146,159] and OpenMVS [160]. The occupants’ head-poses are also estimated in the 

pipeline. The 3D context retrieved from the photogrammetry pipeline enables the back-projection 

of the luminance map captured by the HDRI sensor into 3D room surfaces which in turn re-

projected into occupant-FOVs with their head poses estimated. The only commissioning effort is 

to capture a short video of the room and take photos from the occupant-views using readily-

available camera devices, such as smartphones. The secondary contribution of this paper is the 

examination of an HDR imaging pipeline that adopts OpenCV-Python and custom Python scripts 

instead of using widely used HDRgen [74] and RADIANCE [66] commands.  

5.2 Framework overview 

The overview of the proposed framework is as presented in Figure 5.1.  Given a 

photometrically and geometrically calibrated camera sensor installed in a non-intrusive position in 

the room, the user is only required to capture two short videos and a single image per occupant 

(only the gray-shaded blocks in the diagram). The videos and the images can be captured with any 

video/image recordable devices such as smartphones. The rest of the framework process is fully 

automated, minimizing the commissioning effort.  

One of the videos that capture a geometric calibration pattern will be used for automatic 

estimation of smartphone camera intrinsic parameters while the other one will be used to extract 

video frames for photogrammetry. Also, pictures taken from the occupant-head positions will be 

put into photogrammetry to estimate the virtual camera-poses corresponding to the occupant-FOVs. 
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Similarly, a picture taken from non-intrusive is also included in the photogrammetry to estimate 

the sensor-pose.  

After pre-processing, the collected data and images are put into the photogrammetry 

pipeline combined by COLMAP and OpenMVS, which are publicly available 3D reconstruction 

libraries. The pipeline retrieves a 3D mesh model of the room as well as the estimated occupant 

and camera-sensor poses. By projecting the 3D model using the estimated camera-sensor pose and 

its intrinsic parameter, the room-depth perceived from the camera-sensor can be retrieved. 

Knowing the depth perceived from the camera-sensor allows to back-project the per-pixel 

luminance measured from HDR images into 3D space which can be re-projected into occupant 

FOV using the occupant-head pose previously estimated.  

 

 

Figure 5.1 Overview of the proposed framework 

5.3 Devices & calibration 

As a high dynamic range imaging (HDRI) sensor, a low-cost camera board (Pi Camera) 

integrated into Raspberry Pi 3+ single board computer (Raspi) was used in the study [137]. The 

camera consists of an 8-megapixel CMOS sensor (Sony IMX2019) with maximum dynamic range 

of 44.56 dB. The operation of camera image-shooting is extensively configurable through its 

compatibility with Python language via Picamera library, enabling essential controls for HDR 

luminance map acquisition. The original lens of Picamera was replaced with a custom M12 fisheye 

lens available in the market that has f/1.8-aperture and 1.02mm-focal length. The expanded FOV 

through the lens is near 180-degrees that significantly widens the region captured from the sensor. 

As a video and image recording device, a smartphone (Samsung Galaxy A51) was used. It is worth 

noting that any video/image-recordable device can be used, as long as the captured videos and the 
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images share the same camera intrinsic parameters. The proposed framework assumes the 

installation of factory-calibrated HDRI sensor with well-estimated geometric/photometric 

parameters, while not requiring prior knowledge about the user-owned camera device for the 

enhanced scalability for real-building applications. However, for the better performance of 

photogrammetry, the intrinsic parameters of the device are recommended to be estimated. In this 

regard, a very simple geometric calibration procedure for the user-owned device was implemented 

in the framework. 

5.3.1 Photometric calibration  

Photometric calibration for HDRI sensor is a pre-requisite for reliable luminance 

measurement. Even though the overall photometric calibration process used in this study is very 

similar to the methods used in other visual comfort studies, this study adopts an alternative pipeline 

that is fully created in Python language (Figure 5.2). The main reason for the alteration is the speed 

improvement in HDR merging and vignetting correction. 

 

 

Figure 5.2 Photometric calibration for HDRI sensor 

From the n low-dynamic images with different exposures (camera-shooting parameters for 

HDR creation is as in Table 2.1, camera response curve that associates the irradiance to the sensor-

measured intensity (for each red/green/blue channel) is estimated via OpenCV-Python 

implementation of Debevec’s algorithm [26]. The estimated camera response function of the HDRI 
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sensor is shown in Figure 5.3. An HDR image merged with the estimated CRF can be converted 

to a luminance map using the Eq. (5.1) as in (M. N. Inanici, 2006). 

𝐿𝐿 = 179 ∗ (0.2126 ∗ 𝑅𝑅 + 0.7152 ∗ 𝐺𝐺 + 0.0722 ∗ 𝐵𝐵)                                                                      (5.1)  

where L, R, G and B are the luminance (cd/m2) and RGB pixel values of the HDR image pixels.   

Table 5.1 Camera settings for HDR image creation 

ISO 100 

Number of 

exposures 
10 

Shutter speed 

(microseconds) 

9, 66, 236,974,3185,12429, 

33243 99823,199749,799906 

 

 

Figure 5.3 Estimated camera response function 

By taking raw HDR images centered at neutral-colored surface and matching the surface’s 

luminance measurement to the calibrated luminance spot-meter readings, the absolute calibration 

factor (multiplier that scales HDR intensities to match absolute luminance values) can be retrieved. 

A light gray-colored surface, ‘Neutral 8’ of X-Rite ColorChecker Classic calibration board [161] 

was measured for the calibration, as suggested by Safranek & Davis (2020). The reason for aiming 

the neutral surface at camera-optical-center is to avoid the error that can be induced by vignetting 
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effect on the pixels that are distant from the principal point, which is particularly pronounced in 

fisheye cameras with small apertures.  

Vignetting effect also needs correction. The vignetting curve of the sensor was estimated 

following the procedure similar to [27]. It was estimated via polynomial fitting of nine luminance 

measurements of small, neutral-colored diffusive surface with 0° to 84.375° rotation with 11.25° 

increment (5.625° for the last one), while the 0° degree rotated image was centered at the target 

surface. The curve was averaged by five different trials to reduce temporal and measurement errors. 

In lieu of RADIANCE pcomb command widely used for the vignetting correction in the literature, 

we created a per-pixel multiplier mask for the fisheye luminance map. The vignetting correction 

curve is computed by inversing the vignetting curve, and in turn vignetting-correcting multiplier 

for each pixel was stored in a single-channel array with the same size of the HDR image. Since 

this array-by-array multiplication does not require any further computation as pcomb that repeats 

normalization and calculation of multiplier for each pixel, the computation is much faster. The 

estimated vignetting curve and corresponding correction mask is presented in Figure 5.4. 

 

       

Figure 5.4 Vignetting curve (left). Vignetting correcting function (middle). Vignetting correcting 

mask (right) 

5.3.2 Geometric calibration  

Geometric calibration of camera estimates camera intrinsic parameters that includes focal 

length, principal points and radial distortion coefficients that determines real-world projection to 

the camera image. There are two major reasons for performing the geometric calibration: i) a 

fisheye image taken from the HDRI sensor needs rectification to be compatible with 
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photogrammetry pipeline (COLMAP) used in this study; ii) for both HDRI camera and user-owned 

camera images, knowing the accurate intrinsic parameter accelerates the speed of 3-D 

reconstruction by bypassing the self-refinement of camera intrinsic parameters during the SfM 

sparse reconstruction; and iii) if the user prefers to scale the 3-D model to the actual size (in metric 

system), geometric calibration is necessary. 

The high-degree-distortion of fisheye HDRI sensor requires geometric calibration with 

specific model assumption other than typical camera devices with low-to-moderate distortion. 

Also, fisheye cameras require careful attention when capturing calibration pattern for the 

calibration for the same reason. Thus, the calibration of fisheye HDRI and user-owned camera 

followed different procedure. 

Geometric calibration either for fisheye camera or more generic camera model 

implemented in OpenCV-Python performs the following process: i) take photoshoots of a 

calibration pattern (a checker board with known square-size) from various views; ii) detect 

checkboard corners from the images taken; iii) iteratively refine camera intrinsic parameters and 

extrinsic parameters relative to the checkboard until convergence. This is done by non-linear 

minimization of re-projection error, based on the estimated intrinsic and extrinsic parameters and 

the camera model assumed. The outputs of the calibration are intrinsic parameter K, and model-

specific distortion coefficients d.  

For the fisheye HDRI sensor calibration, calibration pattern needs to be shot with caution 

to ensure the images cover the various regions of the image thus radial distortion can be accurately 

estimated. Also since typical camera models do not suit fisheye camera calibration due to the high 

distortion, OpenCV-Python implementation of Kannala and Brandts’ generic camera model 

designed for wide-angle and fisheye camera was used [79].  In contrast, typical camera devices 

such as smartphone cameras do not have serious distortion even with the state-of-the-art wide-

angle-capture modes these days. Thus, it is sufficient to simply take a short video of calibration 

pattern (less than 10 seconds) and use the video frames extracted for the calibration. Also, 

OpenCV-Python camera calibration based on Zhang’s algorithm [163] which suffices typical low-

distortion cameras, was used (Figure 5.5). 
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Figure 5.5 Geometric calibration for HDRI sensor and user-owned camera device 

Geometric parameters estimated can be used for rectifying the camera images into 

distortion-free, rectilinear images where the straight elements appear straight. OpenCV-Python 

functions named initUndistortRectifyMap and remap allows remapping the images with radial 

distortion into rectilinear images with arbitrary intrinsic parameters and image-resolution, which 

are also input parameters along with the estimated camera parameters. This enables the use of any 

type of camera device for the photogrammetry because the input images can be projected in any 

desired projection regardless of its original intrinsic characteristics. Figure 5.6 shows an example 

of fisheye image rectification that preserves the original focal length and the image resolution. 

 

 

Figure 5.6 Intrinsic-preserving fisheye rectification example 
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5.4 Data collection and preprocessing 

5.4.1 Video and image collection 

As described in Section 5.2, the user who manages the framework only need to take two 

short videos and photos from the occupant-eye positions. One of the video is for the geometric 

calibration (Video A) of the user-owned camera, capturing a calibration pattern described in 

Section 5.3.2 from with various poses. The calibration pattern used in this study is a checkerboard 

pattern on a flat, planar surface and with a known square-size. A simple method to do this is taking 

a video of a calibration pattern image displayed on a computer while moving the camera around it 

screen. The user can easily measure the square size of the checkerboard using a ruler (Figure 5.7). 

Regardless of several factors, video-length shorter than 20 seconds may be suitable for its purpose. 

 

 

Figure 5.7 Example video frames extracted from Video A 

The other video (Video B) needs to capture the entire room, including the same calibration 

pattern captured in the geometric calibration video. The quality of reconstructed model through 

photogrammetry largely relies on the manner that the video is taken. In brief, it is recommended 

to capture the images of the same object in as many view-angles as possible and to capture the 

same region-of-interest in smaller resolution for the robust model reconstruction (wide-angle mode 

is preferred for smartphones). While taking the video, the calibration pattern needs to be conducted 

with caution since it is desired to capture at least three but preferably greater number of frames. 

The reason for doing this is to rescale to reconstructed 3D model to the actual size, using the 

camera translation relative to the calibration pattern. The detail is elaborated in the next paragraph. 

There is no golden rule to decide the video length since it depends on multiple factors such as the 

room-characteristics, speed of the camera-movement and the frame extraction interval. 
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Also, an image is taken with the fisheye HDRI sensor installed in a fixed position 

determined by the user. The factors to be considered for the sensor placement are i) non-

intrusiveness: the sensor needs certain level of distance from the office workers to avoid distraction; 

ii) occlusion-avoidance: potential obstructions such as from the room furniture, building 

components, or even occupant-bodies should be avoided; iii) view-correspondence: to capture the 

3D scene surrounding the occupant as much as possible, sensor-pose needs a certain degree of 

alignment. The lateral translation of the sensor respect to the occupant’s head needs to be limited. 

Also, the rotation between the sensor and the occupant-view should be constrained to reduce the 

re-projection error of luminance between different views, and to enable capturing of wider region-

of-interest that corresponds to the user’s FOV. Regarding this factors, it is advisable to install the 

camera at certain height above the occupants high enough to avoid distraction and occlusion, 

oriented similar to the occupant-eyes consistent with findings in [47] - where the ceiling-mounted 

camera exhibited higher correlation to the occupant-perceived luminance distribution with smaller 

angle difference. 

5.4.2 Data pre-processing  

After the video-recordings, their frames are extracted with pre-defined frame-interval. The 

frames extracted from the calibration-purpose video are fed into OpenCV-calibration as described 

in Section 5.3.2. Output of calibration are intrinsic parameters and distortion coefficients of the 

user-owned device (𝐾𝐾𝑢𝑢 and  𝑑𝑑𝑢𝑢). These parameters are then used to rectify the frames from the 

video capturing the room. As described in Section 5.3.2, the user can define the desired intrinsic 

parameters and the resolution of the rectified images. In this study, we rectified images using 

pinhole projection choosing the radial focal length as the estimated horizontal focal length of the 

camera preserving the image resolution and principal points (generally the image center) as the 

original. Reducing the focal length or image resolution can be viable options for speed acceleration 

or quality enhancement of the 3D reconstruction, while the choice will depend on the room 

characteristics, computation power, and user-needs. Rectified video frame examples are shown in 

Figure 5.8. 
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Figure 5.8 Rectified video frames example extracted from Video B 

After rectifying the images, the rectified images that captures the calibration pattern from 

Video B are in turn put into re-calibration of camera intrinsic parameters defined previously. The 

reason for the recalibration is to not only to refine the camera intrinsic parameters but mainly to 

estimate the translational vectors (in 3D-cartesian-coordinates relative to the calibration pattern) 

from those images which are extra outputs of the calibrateCaemera function described in Section 

5.3.2. The list of the estimated translations is stored in a text file along with the corresponding 

image file path in ‘file-path, X, Y, Z’ format (Figure 5.9) for the geo-registration using COLMAP 

model_aligner command described in Section 5.5.1. 

 
Figure 5.9 Text file creation for camera translation vectors 

5.5 Photogrammetry task pipeline 

The overview of photogrammetry pipeline is as illustrated in Figure 5.10. The inputs to the 

pipeline are: i) rectified images taken from all camera devices used; and ii) their geometric 

parameters calibrated. The major building blocks of the photogrammetry pipeline are COLMAP 

and OpenMVS that sequentially performs sparse reconstruction and dense reconstruction/mesh-

creation, respectively. The major reason for using the hybrid pipeline is because COLMAP- 

OpenMVS combination has exhibited accuracy and robustness with reasonable computation speed 
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in their comparative studies [149,164]. The sparse reconstruction through COLMAP SfM 

reconstructs only the interest points (SIFT features) that can be mutually found in different pairs 

of images. Since only the small number of view-invariant pixels are identified for the 

reconstruction, robust estimation of image-corresponding camera poses is possible through a 

RANSAC-based (Random Sample Consensus) algorithm and non-linear optimization. Thus, it is 

possible to estimate camera poses of specific images to retrieve camera poses from occupant-view 

or the HDRI-sensor-view. However, the 3D model reconstructed from SfM lacks completeness 

required for the re-projection of occupant-views. 

Thus, the resulting sparse model from COLMAP SfM is densified via OpenMVS to 

reconstruct a dense point cloud which is in turn transformed to a triangle-mesh model. COLMAP 

allows seamless integration with OpenMVS by conversion of its output into a compatible format. 

Thus, the outputs from photogrammetry pipeline are camera poses correspond to HDRI sensor and 

the occupant-views and the refined mesh model of the room.  

 

 

Figure 5.10 Overview of photogrammetry task pipeline 

5.5.1 COLMAP sparse model reconstruction 

COLMAP is a general-purpose SfM-MVS pipeline available with GUI and command-line 

feature that enables seamless integration to Python scripts for an automated pipeline. Its robustness, 

scalability and accuracy essential for such general-purpose method were validated in literature 

[146,149,164]. In the proposed framework, COLMAP commands were used to reconstruct and 
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post-process the sparse model of the room, and to retrieve camera poses of interest (occupant-head 

and fisheye HDRI sensor).  
 

The initial inputs of the COLMAP pipeline are the image file paths of the rectified images 

and the estimated camera parameters. COLMAP commands feature extractor and exhaustive 

matcher extract SIFT (scale-invariant feature transform) features and find matches them between 

the entire image-pairs. The COLMAP mapper command performs the SfM sparse model 

reconstruction, that sequentially grows 3D model from SIFT key-point pixels with iterative 

refinement of camera poses and points reconstructed in 3D. Figure 5.11 is an example of 

reconstructed sparse model rendered in COLMAP-GUI. The red-pyramid markers refer to the 

camera poses for the images, while the pop-up window is displaying the information of a specific 

view circled. As shown in the window, the rotation and the translation of the camera are stored in 

quaternion (𝑞𝑞𝑤𝑤, 𝑞𝑞𝑒𝑒, 𝑞𝑞𝑒𝑒, 𝑞𝑞𝑧𝑧 ) and 3D Cartesian (𝑡𝑡𝑒𝑒, 𝑡𝑡𝑒𝑒, 𝑡𝑡𝑧𝑧) formats, which will be further utilized in 

luminance re-projection.  

 

 
Figure 5.11 Example sparse reconstruction rendered in COLMAP-GUI 

The main outputs of COLMAP sparse reconstruction are three binary files (‘cameras.bin’, 

‘images.bin’, ‘points3D.bin’) that store lists of geometric parameters of the cameras used, camera 

pose and projected 2D pixels per-image, and reconstructed 3D points. The reconstructed sparse 

model is then geo-registered via COLMAP model_aligner command. Geo-registration refers to 

scaling and alignment the of the model to using known camera positions that can be estimated 
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through re-calibration process described in Section 5.4.2. The text file which contains image file-

paths and their estimated camera translations through the camera re-calibration is the input to the 

geo-registration, while the output is new binary files with the aligned model. 

To convert the binary-encoded output files into more accessible text format and to 

OpenMVS-compatible nvm file format, COLMAP model_converter was used. By converting 

‘images.bin’ file to a text file, camera rotation and translational vectors can be easily accessed. 

Also, the sparse model reconstructed converted into nvm can be converted to mvs extension for 

OpenMVS pipeline as described in following Section 5.5.2. The underlying theories and 

background for the COLMAP SfM pipeline are detailed in [146]. 
 

5.5.2 OpenMVS dense point cloud & mesh reconstruction 

OpenMVS is a computer-vision library particularly targeted for MVS reconstruction 

complementary to other SfM pipelines such as OpenMVG [165] or COLMAP. OpenMVS 

provides a set of algorithms to recover the full surface of the scene from the sparse model and 

camera poses recovered from the SfM pipeline. Four OpenMVS commands, InterfaceVisualSFM, 

DensifyPointCLoud, ReconstructMesh, and RefineMesh are implemented in the photogrammetry 

pipeline. 

InterfaceVisualSFM converts nvm sparse model input to mvs format that is compatible to 

OpenMVS 3D reconstruction modules. DensifyPointCLoud reconstructs a dense point cloud 

through a Patch-Match Stereo (PMS) algorithm based on [166].  The PMS algorithm retrieves 

depth maps from the entire set of images and fuses the them by back-projecting the filtered points 

meeting certain criteria (such as number of views agreed on a pixel or re-projected error of a 3D 

point). From the dense point cloud, a triangle mesh model is created and then refined via 

ReconstructMesh and RefineMesh modules. Mesh modeling is useful since the mesh has a form 

of connected surfaces rather than a group of points thus has higher completeness. It offers hole-

filling and smoothing features for weakly or sparsely reconstructed regions of the dense point 

cloud. Also, depth map projected into a certain view will be completely filled with per-pixel depth 

since the points lying on the triangular surfaces can fill the entire depth map pixels regardless of 

the number of vertices in the mesh, which is not be the case for the point cloud depth projection 



 

 

101 

(RGB projections and depth maps from reconstructed 3D models). The rendered example of 3D 

textured mesh of a room is presented in Figure 5.12. 

Table 5.2 RGB projections and depth maps from reconstructed 3D models 

 Point cloud model Mesh model 

RGB 

projection 

  

Depth map 

  
 

 

Figure 5.12 Rendered views of textured mesh model 

5.6 Luminance re-projection 

In brief, the re-projection of luminance distribution is done by reconstructing a luminance-

mapped mesh model from the HDRI sensor measurement and re-projecting it into an occupants’ 

FOV. The overall sequence of the re-projection process is shown in Figure 5.13. Using the mesh 

model of the room and extrinsic and user-defined intrinsic parameters of the HDRI sensor, a depth 

map of the room can be captured from the HDRI sensor position. Since the depth map is aligned 

with rectified luminance maps captured by the sensor, they can be merged together to compose 

RGBD images (which contain per-pixel color and depth information). The RGBD images can be 
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re-projected into the 3D point cloud, then transformed to mesh model. The newly reconstructed 

mesh model can be re-projected to a view corresponding to the occupants’ FOV using the 

previously retrieved occupant head poses and camera intrinsic parameters 𝐾𝐾𝑝𝑝. The entire process 

is elaborated in the rest of this section. 

 

Figure 5.13 Luminance re-projection pipeline 

The major building blocks in the luminance re-projection process make extensive use of 

Open3D-Python [167], an open-source library for processing and visualizing 3D geometries based 

on C++ with Python-bindings. The first block of the re-projection pipeline is creating a depth map 

using an Open3D function (visualization.capture_depth_float_buffer). As shown in Figure 5.14, 

Open3D allows capturing the 2D texture and depth map observed from a specific camera defined 

by the user. Thus, the intrinsic and extrinsic parameters of the HDRI sensor, estimated in the earlier 

stages, can be used to capture the depth map as perceived by the sensor. 

 

 
Figure 5.14 Left: Rectified LDR image captured by HDRI sensor; Middle: Mesh projection into 

3-channel texture map; Right:  Mesh projection into single channel depth map 
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The current distribution of Open3D (0.9.0) limits the range 2D and 3D-projectable FOV in 

horizontal and vertical direction to only 90 degrees. This means that the depth maps recovered 

from the mesh model can only capture 90-degree-FOV; for the re-projected occupant view, this 

may not be sufficient. Thus, the original C++ source of the Open3D 0.9.0 was modified to remove 

the FOV constraint that enables smaller focal length within the same image resolution, allowing 

projection far greater than 90 degrees. Table 5.3 shows an example of 2D projections using the 

original and modified Open3D visualization modules. 

Table 5.3 2D projections before and after Open3D modification. 

 Original Open3D Modified Open3D 

2D 

projection 

  

FOV 90 degrees (Maximum) 136 degrees 

 

The estimated depth map is then merged with a rectified luminance map from the HDRI 

sensor to create a 4-channel RGBD image. The pixel values for RGB channels are filled with log-

normalized luminance values into [0,1] range which can be inverted back into the original 

luminance range. An example of false-color-mapped luminance map with log-normalization is 

presented in Figure 5.15 - left.  A color map named ‘Turbo’ was used in this paper for intuitive 

false-color representation of the luminance distributions in 2D luminance maps and 3D luminance 

projections [168]. The RGBD map is projected into a 3D point cloud using the sensor’s intrinsic 

parameters. This is in turn converted into a mesh model (Figure 5.15 - middle/right) to avoid sparse 

regions when projected into 2D occupant views, as described in Section 5.5.2. The luminance 

values of the surface points are interpolated by the vertices of the triangles they are lying on. These 
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will reasonably approximate the real values unless the weakly constructed region contains abrupt 

luminance variation patterns, such as specular reflections or bright light sources. 

 

 
Figure 5.15 Luminance map re-projection 

The luminance-mapped mesh can be pinhole-projected into occupant FOV given the 

camera extrinsic and intrinsic parameters that correspond to occupants’ eyes (requires inverse 

rotation and translation relative to the HDRI sensor pose). The extrinsic parameters already 

retrieved in the SfM sparse reconstruction (Section 5.5.1) need to be re-aligned to the HDRI 

sensor-pose, since the back-projected mesh model is centered to the HDRI sensor, different from 

the original mesh model reconstructed in Section 5.5.2. On the other hand, the intrinsic parameters 

including the focal length, principal points and image resolution depend on the user’s choice. 

Choosing a small focal length relative to the image resolution is advisable to capture a wider FOV 

similar to the fisheye cameras. Reducing the focal length lowers the quality of pixels, particularly 

around the principal point. On the other hand, increasing the image resolution multiples the 

computational cost. Therefore, the trade-off between the maximum FOV, image quality and the 

computation speed needs to be considered (Table 5.4) in this process if optimal results are desired. 

The maximum horizontal and vertical FOV of the square pinhole-camera image can be calculated 

using Equation 5.1. 

 FOV = 2 ∗ arctan
𝑊𝑊
2𝑓𝑓

                                                                                                                              (5.1) 

where  𝑤𝑤 is the horizontal and vertical resolution of the image, and 𝑓𝑓 is the focal length of the 

pinhole camera. 
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Table 5.4 Pinhole-projected images with varying focal lengths 

   
𝑓𝑓: 100 /  𝐹𝐹𝐹𝐹𝐹𝐹: 143° 𝑓𝑓: 50  /𝐹𝐹𝐹𝐹𝐹𝐹: 161° 𝑓𝑓: 25 /𝐹𝐹𝐹𝐹𝐹𝐹: 170° 

 

Even though the pinhole re-projection of luminance distribution can cover the occupant 

FOV, it is transformed into a fisheye image for a practical reason. Since most human visual comfort 

studies leveraging HDRI techniques have been using wide-angle fisheye cameras to fully capture 

human-FOV, visual comfort analysis tools such as Evalglare [65] were developed with fisheye-

image compatibility. To utilize Evalglare for future implementation and experimental validation 

in this study, the pinhole luminance map was transformed to an equidistant fisheye luminance map. 

The mathematical representation of pinhole and equidistant fisheye map is listed in Table 5.5. 

Table 5.5 Mathematical representations of camera projections used 

Projection Mathematical representation 

Pinhole (Rectilinear) 𝑅𝑅 = 𝑓𝑓 ∙ tan θ 

Equidistant-fisheye 𝑅𝑅 = 𝑓𝑓 ∙  θ 

 

where R is pixel distance from the image principal point and  θ is the angle between the principal 

axis and the ray emanated from the camera center to the real-world scene corresponding to the 

pixel. The logic for fisheye transformation is shown in Table 5.6.  
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Table 5.6 Equidistant fisheye projection pseudo-algorithm 

1. Initialize a zero-filled N×N single-channel array L 

2. FOR    each 𝑖𝑖-th pixel in vertical direction 

3.      FOR    each j-th pixel in horizontal direction 

4.           IF    𝑅𝑅𝑖𝑖,𝑗𝑗
𝑁𝑁

  <  0.5  THEN 

5.                Compute θ𝑖𝑖,𝑗𝑗 (using the equation in Table 6.3) 

6.                Replace 𝐿𝐿𝑖𝑖,𝑗𝑗 with luminance in the pinhole-image pixel  
               corresponding to  θ𝑖𝑖,𝑗𝑗 (nearest-neighbor sampling) 

7.           END IF 

8.       END 

9. END 
 

Figure 5.16 shows a comparison of camera-captured and re-projected fisheye luminance 

mapping from the occupants’ FOV using a false-color representation, at two different times with 

slightly different luminance conditions. The FOV is re-projected nicely using the developed 

method, and the re-projected luminance values show reasonable agreement with the measured ones. 

A more detailed experimental evaluation of the method and validation of its accuracy is presented 

next.  

 
Figure 5.16 Equidistant-fisheye luminance maps (occupant camera-captured vs. re-projected) 
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5.7 Implementation of non-intrusive luminance monitoring framework and experimental 
performance evaluation 

 The proposed non-intrusive luminance monitoring framework was implemented in a side-

lit, private office. The re-projected luminance maps into the occupant FOV were compared with 

the respective real measurements taken from the occupant position, under various interior 

luminance distributions, to validate the method and evaluate its performance. Three distinct 

quantitative measures were selected for comparative evaluation and validation of the developed 

framework: Daylight Glare Probability (DGP), average luminance of the scene (Lavg), and vertical 

illuminance on the eye (Ev). These have showed robustness in performance as visual discomfort 

predictors in a recent cross-validation study [169], compared to several other metrics. The basic 

experiment included a fixed shading position and more “standard” conditions, while additional 

experiments were conducted under excessive brightness scenarios to examine potential errors 

associated with those cases. 

5.7.1 Experimental setup 

The proposed framework was implemented in a 3.2 m × 4.0 m ×3.2 m high private office 

in West Lafayette, Indiana (40°25’N, 86°55'W) with a south-facing façade. The façade consists of 

aluminum curtain wall framing and a high-performance glazing unit (normal T𝑉𝑉 = 64%) with a 

window-to-wall ratio of 0.54. The room is equipped with interior dark-colored motorized roller 

shades (normal T𝑉𝑉 = 2.53% and OF = 2.18%). These represent common options in modern office 

buildings. 

The experimental setup and layout is shown in Figure 5.17 and Figure 5.18. The room has 

a typical side-lit layout where the occupant is seated parallel to the window and 2.5 m away from 

it (facing west with limited direct window view). This was done on purpose to minimize the effects 

of high brightness and glare, which were examined separately later on. It is also a common scenario 

in single-occupancy offices. The occupant was assumed to be looking towards a computer screen 

0.6 m away (typical office work). Note that the surface of the desk had a specular reflectivity thus 

it can create reflections that will cause glare when exposed to direct sunlight. 

Two calibrated HDRI sensors were installed at different positions: Sensor I served as the 

non-intrusive luminance measurement sensor, vertically attached to the wall behind the occupant 

position at 2 m from the floor, facing 20 degrees downward; and Sensor II was installed at the 
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occupant eye-position (1.2 m above the floor looking towards the computer screen) for 

simultaneous comparison with Sensor I and overall evaluation of the method. Each of the sensors 

was connected to a single Raspberry Pi, where the collected luminance maps are stored during the 

experiment. The post-processing including the re-projection pipeline of the luminance maps and 

analysis of the collected luminance maps were performed on a separate desktop computer. The 

purpose of the experimental evaluation was to assess the performance of the method and compare 

the consistency of re-projected vs. actual luminance maps under various luminance distributions.  

 
Figure 5.17 Instrumentation and space layout for Experiment I (left: side view; right: top view) 

 
Figure 5.18 Interior view of test office with two camera sensors installed 
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5.7.2 Experimental procedure, data analysis and performance evaluation 

 The re-projected luminance maps of the occupant FOV, measured from Sensor I, were 

collected and compared with the luminance maps from the actual occupant position (Sensor II). 

The two HDRI sensors were synchronized and captured luminance maps every 10 minutes. For 

the basic experiment, the roller shades were kept at 35% open (a bit above eye height) under sunny 

days to mimic realistic conditions in office spaces with daylight provision –occupants or the 

control system will control shades to reduce glare but allow some outside view; this usually 

happens around the eye height. More shade positions were examined to study high brightness 

scenarios as discussed later. The experiment was performed in sunny days of winter (November - 

December 2020), where the average horizontal irradiance at midday was around 485 W/m2. A total 

number of 287 points were collected.  

Daylight Glare Probability (DGP), average luminance of the scene (Lavg), and vertical 

illuminance on the eye (Ev) were systematically compared. All the indicators were computed via 

Evalglare, where, for glare source detection, a multiplier of 4 of task zone luminance was used, 

with an opening angle of 0.53 steradian at the image center as proposed by [42]. For consistent 

glare estimation with these measures, the “valid” range of DGP is within 0.2 - 0.8, and Ev should 

be above 380 lux [170]. Therefore, the dataset was again screened for values within the “valid” 

DGP and Ev range for a fair comparison with respect to visual comfort sensation, and the resulting 

data points were reduced to 77. There was no filtering for solar disk within the FOV (that could 

result in overflown pixels) since the shades are lowered to 35% (Figure 5.18).  

 

 
Figure 5.19 HDR images captured by Sensor I during a sunny day 

9 AM 12 PM 3 PM
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 Figure 5.20 presents selected examples of captured and re-projected luminance maps at 

three different times of a day (9AM/ 12PM / 3PM) during the experiments, and respective DGP 

values (data screening for DGP was not applied here to present the examples during a day). 

HDRscope [73] was used for visualization of false-color luminance maps. For a fair comparison, 

the logarithmic false color scale was set equally to 0 - 20,000 cd/m2 for all the luminance maps. 

The actual absolute difference in per-pixel luminance is also shown in the last row for each case. 

Some qualitative observations are listed below:  

• Overall, the luminance map re-projection shows a nice resemblance for the majority of 
mapping regions. Although there are some scenes with inaccurate reconstruction, such as the 
exterior scene visible through the window, still the major parts of the room (screen, walls, and 
ceiling) seem to be well aligned. 

• The majority of the pixels, except for directly sunlit areas, showed small absolute luminance 
errors (below 100 cd/m2). Whenever there is a significant sunlit projection on interior surfaces 
(e.g., on the wall or desk at 9 am), the absolute luminance error becomes significantly higher. 

• DGP values calculated from re-projected luminance maps match closely with the measured 
ones from the occupants’ FOV.  
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Figure 5.20 False-color luminance maps comparison: occupant camera-measured vs re-projected 

To evaluate the predicting performance of daylight glare sensation through the proposed 

framework, the root mean squared error (RMSE) between Sensor I re-projection and Sensor II 

measurement was calculated for each of the three metrics (DGP, Lavg and Ev). These are displayed 

together with scatterplots of measured vs re-projected DGP, Lavg and Ev in Figure 5.21. Despite 

the errors associated with pixels of excessive luminance, the RSME is small for all three visual 

comfort performance metrics. These results prove that the proposed framework can be used for 

non-intrusive monitoring of occupant visual comfort for the studied configurations and typical 

office luminance variations.  
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Table 5.7 Experimental data statistics 

 
DGP Lavg (cd/m2) Ev (lux) 

min / max  

(std.) 
RSME R2 

min / max  

(std.) 
RSME R2 

min / max  

(std.) 
RSME R2 

Sensor I 

(Re-projection) 

0.20 / 0.37 

(0.05) 

0.01 0.964 

6 / 995 

(193)  

21  0.993 

28 / 3042 

(548) 

51 0.996 Sensor II 

(Occupant 

position) 

0.20 / 0.34 

(0.04) 

8 / 838 

(179) 

40 / 2669 

(584) 

 

 
Figure 5.21 Scatter plot of DGP, Lavg and Ev with RSME for each metric (re-projected quantities 

vs. actual measurements from occupant position) 

5.8 Discussion  

The framework was evaluated in a typical small private office, under sunny conditions in 

late fall.  The studied cases included a person seated close to the side wall, parallel to the window. 

The results ensure that the method is applicable to (i) cloudy conditions, or any condition with 

lower luminance/illuminance values, since in this case the variation would be much smaller, and 

the relative errors even smaller, (ii) higher solar angles, meaning all other seasons except for winter 

and (ii) in deeper rooms, where the luminance and illuminance values will naturally decrease with 

room depth. Therefore, we do not need to demonstrate the validity of the proposed method for the 

above cases.  

However, in our experimental evaluation, the window did not constitute a significant part 

of the occupants’ fixed FOV. As a result, the solar disc was not visible by the occupant, not were 

RMSE = 0.01 RMSE = 21 cd/m2 RMSE = 51 lux
R2 = 0.964 R2 = 0.993 R2 = 0.996
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extremely bright areas from the sky through the unshaded portion window (as commonly 

recommended). Given the fact that luminance errors were introduced when pixels with high 

luminance were present (i.e., sunlight in the occupants’ FOV), it is worth investigating the validity 

of the method under high or extreme luminance conditions. Although such conditions should be 

normally avoided in occupied offices for glare protection reasons, they can occur sometimes and 

they are useful when evaluating the performance limits of the method, since it is expected that the 

prediction accuracy will be compromised under such conditions. Since the SfM-MVS 3D 

reconstruction pipeline reconstructs the window as a flat surface, it fails to correctly re-project the 

exterior scene through the window. Sensor I is tilted 20 degrees downward, so it is missing a 

significant portion of the sky patch visible through the window (compared to the occupant 

position), the discrepancy in re-projecting the window exterior scene correctly can be intensified. 

This is also related to the relative position between the two sensors.  

For these reasons, an additional evaluation was performed in late fall (end of November) 

when the solar incidence angle remains low. The exact same procedure was followed but the 

window portion within the occupants’ FOV was increased by moving the occupant closer to the 

window (2m away) and in the middle of the room. In this setup, the window region covers a 

significant portion of the occupant FOV in this layout - a solid angle around 0.50 steradian 

according to the fisheye image taken from the occupant position. Furthermore, to allow excessive 

luminance values in the FOV, the shades were moved to 50% (half-open) and 100% (fully open), 

creating different luminous conditions in the room captured from both sensors. A total of 289 

points were collected. These were filtered to (i) remove instances that included the solar disc, since 

they will result in overflown pixels and (ii) as before, check again for values within the “valid” 

DGP range. After these modifications, the dataset was reduced to 119 data points.  

The RMSE for each of the three metrics was again calculated and displayed together with 

scatterplots of measured vs re-projected DGP, Lavg and Ev in Figure 5.22. Despite the errors 

associated with problematic re-projection of exterior views and excessive luminance values 

resulting in significant absolute luminance errors, the RSME is relatively small for all three visual 

comfort performance metrics. Nevertheless, the results show that there are several cases with 

inaccurate estimations. Therefore, improvements in future work are required for a correct 

reconstruction of the exterior scene and luminance map re-projection within the occupants’ FOV, 
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for cases where occupants are seated close to unshaded windows under sunny skies. One idea for 

future work is to apply an indoor “mask” on the window surface in the HDR image using a photo-

editing software, so that it is excluded from further analysis.  

 
Figure 5.22 Scatter plot of DGP, Lavg and Ev with RSME for each metric with increased window 

views and open shades (re-projected quantities vs. actual measurements from occupant position) 

5.9 Chapter conclusion 

This study presents the development and implementation of a novel, semi-automated 

framework for non-intrusive monitoring of occupant-perceived luminance distribution, using an 

HDRI sensor. Despite the obvious potential of using HDRI sensors for daylighting controls in 

buildings, there has not been a practical and scalable method to measure occupant-perceived 

luminance maps either without intrusiveness/distraction or manual commissioning. A Structure-

from-Motion and Multi-View-Stereo (SfM-MVS) photogrammetry framework was employed to 

automatically reconstruct the 3D geometry of the room and estimate the occupant head-poses. 

Retrieved 3D context enables the back-projection of the camera-captured luminance distribution 

into 3D spaces that are in turn re-projected to occupant FOVs with the estimated head poses. The 

proposed method does not require expensive devices or labor-intensive commissioning effort for 

modeling of 3D geometry that is essential for non-intrusive luminance re-projection. The user can 

utilize readily available camera devices without knowing camera geometric parameters a priori 

and is only required to take a short video and pictures at the occupant position. The rest of the 

framework including the camera calibration, 3D room reconstruction, and re-projection is fully 

automated. Since the method offers an end-to-end pipeline for occupant-perceived luminance map 

RSME = 0.030 RSME = 236 luxRSME = 130 cd/m2

R2 = 0.774 R2 = 0.949 R2 = 0.983
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creation, there is no need for post-processing or model fitting for its outputs to predict occupant 

visual comfort. 

To demonstrate the method and evaluate the performance of the proposed framework, 

experiments were conducted in a side-lit private office under various luminous conditions. Using 

a sensor installed 2 meters high on the wall, occupant-perceived luminance maps were created. 

The evaluation was performed by calculating three visual comfort metrics from the HDR images: 

daylight glare probability, average luminance of the scene, and vertical illuminance at the eye. The 

RMSE results showed that the quantities computed from the re-projected luminance maps show 

good agreement with the occupant-measured values, except when reflection of direct sunlight 

presents nearby the occupant, where the scale of luminance error becomes noticeable –however, 

these instances should be avoided for glare protection. Also, since the SfM-VMS pipeline does not 

accurately reconstruct the exterior scene through the window, the re-projected luminance maps 

may yield erroneous visual comfort predictions if the occupant FOV is dominated by large bright 

window views.  

The proposed method assumes predominantly diffuse interior surfaces – which is generally 

true in offices - that reduce the error in luminance perceived from different views of the room. 

However, if the specular reflectivity of the surfaces is high, then the performance of the framework 

is compromised. Also, the SfM-MVS pipeline used in this study is an established method but has 

limitations under certain circumstances, such as for surfaces with texture-less regions – such as 

single-color painted walls– because SfM reconstructs points with interest points with distinctive 

features. To address this issue with the proposed method, the user can manually add such features 

if the room is relatively small. Instead, as a future improvement, we can replace the SfM-MVS 

with a different method of 3D reconstruction, such as using RGBD cameras or LiDAR (Light 

Detection and Ranging). Those systems can reconstruct accurate and robust 3D models even 

without the texture-richness of the objects but the equipment required can be expensive. Also, an 

increasing number of end-user products such as smartphones and tablets, include Time-of-Flight 

(ToF) cameras - for depth estimation – or even built-in LiDAR that can serve as an indoor 

reconstruction tool.   

Finally, this study presents a novel first step towards non-intrusive luminance monitoring of 

occupant-perceived scene based on HDRI sensors. Certainly, there are improvements required 

before wide-scale practical application in real buildings. One example is the ambiguity in sensor 
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installation. There are no guidelines for recommended sensor locations with respect to the 

occupant position for this type of applications, and future work should explore the performance of 

various relative positions and installation configurations to ensure a certain performance of the 

method.  
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 PERFORMANCE EVALUATION OF NON-INTRUSIVE LUMINANCE 
MAPPING TOWARDS HUMAN-CENTRIC DAYLIGHTING 

CONTROL 

6.1 Experimental evaluation and data analysis 

To evaluate the luminance re-projection framework, the method was implemented in a full-

scale private office room. Luminance maps collected by an HDRI sensor installed at a non-

intrusive position were re-projected to two different occupant views for a comprehensive analysis 

and assessment. The performance of the re-projected luminance maps was evaluated via per-pixel 

and metric-based comparison to the actual measurements from HDRI sensors installed at the 

corresponding occupant positions.  

6.1.1 Experimental setup 

The experiment was performed in a south-facing office room, 3.2 m wide × 4.0 m long × 

3.2 m high. The façade has a high-performance glazing unit (normal Tv = 64%) with a window-

to-wall ratio of 54%. The room is equipped with interior dark-colored motorized roller shades 

(normal Tv=2.5% and openness factor 2.2%) controllable either via building management system 

or manual override.  

The instrumentation setup and room layout are shown in Figure 6.1 and Figure 6.2. The 

room has a typical side-lit layout where the occupant is seated parallel to the window. Although 

the testbed room is a private office suited for one-person use, two different occupant positions are 

tested to examine the proposed system’s behavior and sensitivity relative to the distance from the 

window (bright source). The occupant position closer to the window (1.5m) is labeled as Position 

I and the other one (2.5m) is labeled as Position II.  The varying distances from the window were 

intended to create different window portions within the occupant FOV as well as the overall 

perception of brightness during the experiment: Position I represented a position exposed to 

frequent bright conditions within the FOV (where glare is very likely without proper shading 

operation) and larger outside views. Position II shares a smaller window view within the FOV of 

the occupant but is also more protected from bright conditions and sunlight. To create a real office-



 

 

118 

like setup, a typical workstation configuration (a table and a computer screen) was set for each 

occupant position.  

Three calibrated fisheye HDRI sensors - namely Sensor I, II, and III - were installed at 

different positions: Sensor I and Sensor II (occupant sensors) were installed at occupant Positions 

I and II to capture the actual luminance distributions perceived from the virtual occupants. Both 

sensors were installed at seated occupant eye height (1.2 m from above the floor). Sensor III was 

vertically attached to the wall behind the occupant positions at 1.8 m height and served as the non-

intrusive HDRI sensor for luminance monitoring. Each of the sensors was connected to a single 

Raspberry Pi B+ single-board computer for HDR image collection and real-time processing. 

Example images taken from the sensors are presented in Figure 6.3. 

 
Figure 6.1 Instrumentation and space layout for experiment (left: side view; right: top view) 

 
Figure 6.2 Interior view of testbed office 
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Figure 6.3 LDR images captured by HDRI sensors (a) Sensor I (b) Sensor II (c) Sensor III 

6.1.2 Experimental procedure and data collection 

Before the data collection, the 3D mesh model of the room and HDRI-sensor perceived 

depth maps required for the luminance map re-projection were retrieved via COLMAP-OpenMVS 

3D reconstruction pipeline[146,160]. The luminance maps stored in Raspberry Pi B+ were post-

processed on a separate desktop computer. The post-processing includes: i) the re-projection of 

luminance maps captured by the Sensor III into the occupant FOVs; ii) re-projection of luminance 

maps measured by occupant sensors into a standardized fisheye projection; iii) visual comfort 

metrics calculation from all output luminance maps for performance evaluation of the proposed 

system.    

The re-projected luminance maps were collected and compared against the luminance maps 

taken from the occupant positions (Sensor I and Sensor II readings). Luminance map captured by 

all the HDRI sensors was synchronized via Python scripts with a 5-minute-interval. To test the 

performance of the proposed system in realistic conditions, roller shades were controlled based on 

a glare protection mode, including a sun-tracking algorithm and a buffer zone (>1.1m from the 

window) similar to a model-based control [100], to avoid sunlight on the work plane near the 

person, as in Figure 6.2 (any customized shading control is possible but that is outside the scope 

of this study). The algorithm requires calculation of the solar profile angle (Ω) and knowing the 

basic room geometry. The experiment was performed in sunny days with intermittent cloud 

coverages in Spring 2021, from 9 AM to 6 PM each day.   

The luminance maps collected from non-intrusive Sensor III were re-projected into an 

equidistant fisheye projection with FOV of 170 degrees. The reason for not choosing the 180-

degree-FOV is because the current version of Open3D-Python, used for the re-projection, does not 
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support capturing such extremely distorted still images from the reconstructed 3D models: the 

occupant-perceived scene is re-projected into a pinhole with a small focal length, which is in turn 

re-mapped into an equidistant fisheye image via OpenCV-Python remap function. For this method, 

the one-to-one pixel correspondence between the original camera projection and the target 

projection needs to be calculated based on the camera geometric parameters estimated through the 

calibration procedure. Luminance maps captured from occupant positions are also converted to the 

same equidistant projection as the re-projected maps. As shown in Figure 6.4b, the resulting 

luminance maps are equidistant images centered at square (1:1 aspect ratio) resolution where the 

principal (distortion) center matches the image center. The reason for synchronizing the projection 

between the non-intrusive HDRI sensor and the occupant sensors is two-fold: i) to align the pair 

of images (the re-projected luminance map and the occupant sensor measurement) as much as 

possible for pixel-to-pixel comparison; ii) to create luminance maps that have Evalglare-

compatible fisheye projection (equidistant projection) for further analysis using this tool [65]. 

 
Figure 6.4 Fisheye transformation example. Concentric circles represent incident angles with 10-

degree increment (a) Original Sensor I projection (180-degree FOV); (b) Output equidistant 

fisheye projection (170-degree FOV) 

6.2 Performance evaluation 

The performance of the luminance re-projection pipeline was investigated four-fold as 

summarized below.  
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• The per-pixel similarity between the actual measurement from occupant sensors and 
the re-projected luminance maps was quantified via a similarity metric named 
Structural Similarity Index Measure (SSIM).  

• Comparison of visual comfort metrics - DGP and vertical illuminance (𝐸𝐸𝑣𝑣) - was 
performed to evaluate practical implications for visual comfort prediction through the 
proposed system. 

• Region-by-region analyses of SSIM and visual comfort metrics: The re-projected 
luminance maps and the occupant sensor measurements were compared regionally to 
detect errors between regions of interest, as well as to identify the major source of 
errors. 

• A case example of DGP threshold was determined to evaluate occupant glare 
prediction from re-projected luminance maps, based on Receiver Operating 
Characteristic (ROC) curves. 

6.2.1 Structural Similarity Index Measure (SSIM) 

Structural Similarity Index (SSIM) was used as a measure to evaluate the similarity 

between the re-projected luminance maps and the measured from the actual occupant positions. 

SSIM is a perceptual measure that quantifies the degradation of image quality between a pair of 

images -a reference image and a test image [171]. The metric is formulated as an average of 

products of comparison metrics for three key features, locally extracted from a pair of images. The 

key features include luminance, contrast, and structure. The major advantage of using the metric 

over simpler similarity measures that consider pixel-to-pixel error quantification is that it allows 

comparing images in superpixel-scale (a perceptual group of pixels that share common 

characteristics). Thus, we can quantify the similarity between luminance maps where the 

coordinates of corresponding pixels do not exactly match (due to the re-projection process). The 

equational form of local SSIM computed from a local window (region) of reference image X and 

test image Y is: 

SSIM(𝐱𝐱, 𝐲𝐲) = �2𝜇𝜇𝑥𝑥𝜇𝜇𝑦𝑦+𝐶𝐶1��2𝜎𝜎𝑥𝑥𝑦𝑦+𝐶𝐶2�
�𝜇𝜇𝑥𝑥2+𝜇𝜇𝑦𝑦2+𝐶𝐶1��𝜎𝜎𝑥𝑥2+𝜎𝜎𝑦𝑦2+𝐶𝐶2�

                                                                                                      (6.1)                                             

where 𝜇𝜇𝑒𝑒 and 𝜇𝜇𝑒𝑒 are mean pixel intensity of X and Y, 𝜎𝜎𝑒𝑒 and 𝜎𝜎𝑒𝑒 are the standard deviation of X 

and Y, 𝜎𝜎𝑒𝑒𝑒𝑒 is the correlation between X and Y, and 𝐶𝐶1−2𝐵𝐵 represents stability constants that are 

usually determined by the dynamic range of the data. Finally, the global SSIM value can be 

calculated by taking the mean of entire local SSIM values across the image. 
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MSSIM(𝐱𝐱, 𝐲𝐲) = 1
𝑀𝑀
∑ SSIM�x𝑗𝑗 , y𝑗𝑗�𝑀𝑀
𝑗𝑗=1                                                                                                     (6.2)                                         

where x𝑗𝑗  and y𝑗𝑗  are image patches covered by the j-th local window and the number of local 

windows over the images is represented by M. The metric value is adjusted to be ranged between 

[0, 1], where a value of 1 indicates that the two images are identical while 0 indicates they are 

completely dissimilar. Since fisheye images processed for this analysis contained zero-filled pixels 

outside of the fisheye circle outside the maximum FOV, those pixels are excluded when pixel-

averaging for global SSIM calculation. 

6.2.2 Visual comfort metrics comparison – DGP and Ev 

To assess the proposed re-projection pipeline with respect to the practical implication (can 

we effectively predict occupant visual comfort from the re-projected luminance maps?), two visual 

comfort metrics, DGP and Ev were compared. They were validated as the best glare predictors in 

terms of performance and robustness in a recent cross-validation study [71]. The commonly used 

DGP threshold for noticeable glare is 0.35, while the threshold for Ev derived from simplified DGP 

(DGPs) is 2,670 lux. Note that DGPs was derived from a correlation to the original DGP metric 

and assumes there is no direct sun or specular reflection within occupant FOV [67]. Both metrics 

are calculated using Evalglare [65], open command-line software for glare analysis on fisheye 

HDR images. 

6.2.3 Region-by-region analysis 

To quantify errors segmented by regions of interest, four different masks were applied to 

the luminance maps. The purpose of this analysis was to understand the magnitude of regional 

error in the re-projected image that can potentially occur in a real office environment and to 

identify the major contributor to the error. The four regions of interest (Figure 6.5) include Interior 

regions excluding the window, Window region, Task area (defined as the pixels that refer to the 

30-degree-FOV zone center-aligned at an image), and the Computer screen. For each region, a 

numeric array filled with 0 (for the non-interest region) and 1 (for interest region) was manually 

created via photo-editing software. Each of the luminance maps was then multiplied with the 

masks, thus each resulting luminance map includes each region of interest, while the rest of the 

pixels were filled with zeros. SSIM and visual comfort metrics were then computed again from 
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the fabricated (mask-applied) luminance maps. For each region, MSSIM was computed from only 

the corresponding pixels within the mask. For visual comfort metrics (DGP and Ev), applying the 

mask for small regions (window, task area, and screen) is not suitable since metrics computed 

from such a limited portion do not convey meaningful information. Alternatively, the metrics were 

computed applying only the interior mask, so we could isolate the effect of window –the major 

candidate for introducing errors in re-projected luminance maps.  Examples of interior-masked 

luminance maps are shown in Figure 6.6. 

 
Figure 6.5 Masks by region. (a) Interior; (b) Window; (c) Task; and (d) Computer screen as seen 

from occupant Sensor I 

 
Figure 6.6 Masked luminance map with interior region-only as seen from occupant sensors (a) 

Sensor I (b) Sensor II 

6.2.4 Receiver Operating Characteristic (ROC) Curve  

To assess the predictive power of the proposed non-intrusive luminance monitoring 

framework, a diagnostic analysis based on Receiver Operating Characteristic (ROC) curve was 

(a) (b) (c) (d)

(a) (b)



 

 

124 

used. ROC curve is a graphical plot that evaluates the diagnostic accuracy of a binary classifier 

system. In human-centric daylighting research, Rodriguez et al. [172] and Wienold et al. [169] 

utilized the ROC curve-based analyses as an assessment tool to examine the discriminative power 

of glare metrics developed from human experiments. The major outcomes provided by ROC are 

two: the diagnostic accuracy of the test and the optimal cut-off value for the test. 

ROC curve is a probability curve that plots the true positive rate (TPR) of a binary classifier against 

its false-positive rate (FPR) at various cut-off (threshold) values. TPR in visual comfort metrics 

can be interpreted as a probability of being classified as positive from a visually disturbed person, 

while FPR corresponds to a probability of having a positive result from a person without a comfort 

issue. An ideal binary classifier is a classifier that has 100% TPR and 0% FPR that completely 

distinguishes between positive and negative instances. The 45-degree diagonal line from (0, 0) to 

(1, 1) serves as a reference line that refers to a completely useless classifier that cannot distinguish 

between the true positives and negatives. Thereby, the higher the ROC curve drawn above the 

reference line, the better the diagnostic accuracy of the classifier. It is practically impossible to 

have a perfect classifier due to the probabilistic nature of human visual perception. Nevertheless, 

ROC can still serve as an effective tool to assess the general performance of a classifier and to 

choose an optimal threshold value based on TPR/FPR trade-offs.  

Some useful diagnostic indicators can be extracted from a ROC analysis. Area Under 

Curve (AUC) is one of the commonly used summary measures for overall diagnostic accuracy of 

the classification that is invariant to the cut-off value. AUC can be retrieved by integrating the area 

beneath the ROC curve with respect to the FPR and practically lies between 0.5 and 1.0. A model 

whose predictions are completely uninformative has an AUC of 0.5 (a random classifier); one 

whose predictions are 100% accurate has an AUC of 1.0 (an ideal classifier). The rule-of-thumb 

interpretation of model accuracy based on AUC value is presented in Table 6.1 [173]. 

Table 6.1 Interpretation of AUC value 

AUC = 0.5 0.7 ≤ AUC < 0.8 0.8 ≤ AUC < 0.9 0.9 ≤ AUC AUC = 1.0 

Uninformative Acceptable Excellent Outstanding Ideal 
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In this study, we used DGP and Ev for ROC analysis for the similar reason described in 

Section 6.2.2. Although DGP has a probabilistic nature - its value being correlated with the 

percentage of dissatisfied people -, it provides thresholds that are widely accepted for practical use. 

We chose 0.35 (noticeable glare) as a visual comfort threshold for DGP: a DGP above the value 

was considered to pose a glare risk. For Ev, a cut-off value of 2,670 lux was inversely calculated 

from DGPs value of 0.35. Deriving the Ev from DGPs was valid since the automated roller shades 

control prevented the sunlight from reaching the occupant FOV, guaranteeing the high correlation 

between DGPs and DGP [37]. In a practical perspective, a daylighting system should maintain a 

DGP or Ev (perceived from the occupants) below a certain threshold. Thus, the instances where 

the DGP measured from the occupant position (DGPocc) greater than 0.35 were labeled positive 

and vice-versa for the negative instances (similarly for Ev). DGP and Ev calculated from the re-

projected luminance maps (DGPrp) were treated as the binary classifier subject to the ROC analysis. 

To summarize, the purpose of ROC analysis was to evaluate the performance of visual comfort 

prediction based on the non-intrusive luminance monitoring framework (sub-optimal classifier) 

compared to the system based on HDRI sensor placed at the actual occupant position (assumed as 

an optimal classifier). In this context, TPR and FPR for the ROC curve were defined as presented 

in Table 6.2.  

Table 6.2 DGP classification for ROC analysis 

 DGPrp (Ev) ≥ Threshold DGPrp < Threshold 

DGPocc ≥ 0.35  
(Ev ≥  2,670 lux) True positive (TP) False negative (FN) 

DGPocc < 0.35 
(Ev <  2,670 lux) False positive (FP) True negative (TN) 

 

There remains a practical need to select a specific cut-off value when one attempts to apply 

the non-intrusive luminance monitoring framework to a human-centric daylighting control. 

Several methods exist to determine the cut-off threshold, and in this study we used the three most 

common ones. The first popular method is using the Youden index (𝐽𝐽) method. This method 

defines the optimal cut-off value as the point that maximizes the sum of TPR and TNR over all 

possible cut-off values. Another method is choosing a cut-off value that minimizes the squared 

distance (sqD) between the corresponding point (FPR, TPR) and the top left corner (a perfect 
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classifier) of the ROC plot. Aside from the commonly used methods that pose equal weights to 

TPR and FPR, it is possible to opt a customized cost function (labeled custom) subject to 

minimization as follows: 

𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡 = 𝐶𝐶𝑇𝑇𝑇𝑇𝑇𝑇𝑃𝑃𝑅𝑅 + 𝐶𝐶𝐹𝐹𝑇𝑇𝐹𝐹𝑃𝑃𝑅𝑅 

where 𝐶𝐶𝐹𝐹𝑇𝑇  and 𝐶𝐶𝐹𝐹𝑁𝑁  corresponds to the cost associated with the TPR and FPR. This method is 

particularly useful when it is desired to assign different weights for the classification scores. In 

this study, 𝐶𝐶𝑇𝑇𝑇𝑇 of -2 and 𝐶𝐶𝐹𝐹𝑇𝑇 of 1 was tried to examine the threshold, since false detection of glare 

was deemed less significant than failing to identify discomfort in glary situations. Table 6.3 

summarizes the metrics examined for optimization of the cut-off value for non-intrusive visual 

comfort prediction. 

Table 6.3 Optimization metrics for cut-off determination 

Youden Index (𝐽𝐽) sqD Custom 
Maximize the sum of TPR and 

TNR 
(=Maximizes TPR subtracted 

FPR) 

Minimize the Euclidean 
distance from (TPR:1, FPR:0)  

Minimize the customized cost 
function =  −2 ∗  𝑇𝑇𝑃𝑃𝑅𝑅 + 𝐹𝐹𝑃𝑃𝑅𝑅 

6.3 Results 

A total of 756 points was collected throughout the experiment. Figure 6.7 presents 

representative examples of captured and re-projected luminance maps at the occupant position 

during five different times (9 AM – 5 PM with two-hour-interval) of a day. The images on the first 

row are the false-color luminance maps taken from occupant Sensor I and corresponding re-

projections are shown in the second row. For false-color visualization of luminance maps, 

HDRscope [73] was used. The logarithmic color-scale was synchronized to [0 cd/m2, 20,000 cd/m2] 

for all the luminance maps for a fair comparison in visualization. Some qualitative observations 

preliminary to the further analysis are as follows: 

• At a glance, re-projection and the actual measurement luminance patterns show a nice 
resemblance for most of the image. Despite some misalignment due to the re-projection 
process, the position and the relative proportion of major elements perceived by human vision 
(i.e., building elements and computer screen) look very similar.  
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• The exterior scene visible through the window is poorly re-constructed compared to the interior 
objects, consistent with the observation from Chapter 5. 

 

 
Figure 6.7 Representative false-color luminance maps comparison: occupant camera-measured vs 

re-projected maps 

6.3.1 Data statistics, overall and regional similarity measure of re-projected luminance  

The distribution of visual comfort metrics extracted from all luminance maps is presented in 

Figure 6.8.  The actual DGP measured from the occupant positions ranged between 0.19 – 0.41 for 

Position I and 0.18 – 0.26 for Position II. For Ev, the respective ranges were 497 – 3365 lux and 

279 – 1538 lux. The boxplots present median as middle line in each box and have whiskers with 

maximum 1.6 IQR (interquartile range).   As expected, values are higher for Position I due to 

closer proximity to the window. For all positions and metrics, the re-projection showed slightly 

lower distribution compared to the occupant sensor readings. The percentage of points exceeding 

DGP=0.35 (the pre-defined discomfort threshold) was around 10 % (75 out of 756 points) for 

Position I, while the entire measurement set from Position II was below the threshold. The DGP 

and Ev basic statistics from measured and re-projected images are presented in Table 6.4. 
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Figure 6.8 Visual comfort metrics distribution from luminance maps 

Table 6.4 Data statistics 

Position Measurement 
DGP Ev (lux) 

Range Mean Std Range Mean Std 

Position I 
Occupant 0.19 – 0.41 0.29 0.05 497 – 3365 1913 689 

Re-projection 0.18 – 0.36 0.27 0.04 404 – 3130 1691 641 

Position II 
Occupant 0.18 – 0.26 0.22 0.02 279 – 1538 893 289 

Re-projection 0.17 – 0.24 0.21 0.01 227 - 1323 739 247 
 

For each pair of (occupant sensor-measured and re-projected) luminance maps, the overall 

MSSIM was calculated first. The average of MSSIMs computed from Position I and Position II 

are 0.82 (std=0.08) and 0.85 (std=0.05) respectively (Figure 6.9), which shows that the re-projected 

luminance map can mimic the actual occupant-received luminance despite small issues with 

accurate alignment of pixels etc.  

 
Figure 6.9 MSSIM distribution 
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For a region-scale analysis of SSIM, the masks shown in Figure 6.5 were applied to the 

full SSIM map (Markers outside of the whiskers are outliers). Then, the mean value (MSSIM) for 

each region was computed by averaging the masked SSIM map. As summarized in Table 6.5 and 

Figure 6.10, the mean MSSIM exceeded 0.8 in all regions for both positions, except for the window 

region, where MSSIM values are around 0.5. There is no widely agreed criterion on the acceptable 

range of MSSIM for re-projected luminance maps. However, through this regional comparison of 

MSSIM, it is clear that the method works well for all regions except for the window, which is 

identified as the main source of error between the actual and re-projected luminance distributions. 

Table 6.5 MSSIM statistics by region 

Region Full Interior Window Task Screen 

Position I II I II I II I II I II 

Mean 0.82 0.85 0.84 0.85 0.52 0.51 0.84 0.90 0.82 0.89 

Std. 0.08 0.05 0.07 0.05 0.19 0.03 0.10 0.03 0.12 0.03 

 

 
Figure 6.10 MSSIM distribution by region 
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6.3.2 Visual comfort metrics using re-projected luminance maps 

The error in visual comfort metrics between the actual measurements and re-projected 

luminance maps at the occupant positions was examined in more detail. Figure 6.11 shows the 

scatter plots of measured vs re-projected DGP and Ev. Consistent with the boxplots in Figure 6.8, 

there is a wider spread and higher relative errors for Position I which is closest to the window, as 

expected. The RMSE for both metrics and positions in shown in Table 6.6. Figure 6.12 presents 

the relative error histograms of the visual comfort metrics. The maximum bound of DGP relative 

error is around 20% for Position I and 12% for Position II, while its Ev counterpart is much greater 

(50% and 25%). DGP is less sensitive to luminance pattern differences compared to Ev since the 

extreme luminance of glare source pixel can be smoothed by averaging and Ev is more directly 

correlated with luminance intensity of each pixel, compared to the logarithm applied to the square 

of average source luminance in DGP. 

 
Figure 6.11 Scatter plot comparison of visual comfort metrics (re-projected vs measured luminance 

maps) 

Table 6.6 Error statistics of visual comfort metrics using re-projected luminance maps 

Position 
DGP Ev 

RMSE R2 RMSE R2 
Position I 0.029 0.83 310 lux 0.90 
Position II 0.013 0.92 165 lux 0.97 
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Figure 6.12 Relative error histograms of visual comfort metrics 

Since the exterior scene through the window was identified as the main source of error 

between measured and re-projected luminance maps, DGP and Ev were computed again from the 

interior region that excludes the window region (Figure 6.5a), to examine how this masking scene 

can reduce that error. The scatter plots of DGP and Ev from the interior-masked luminance maps 

are presented in Figure 6.13 (subscript ‘int’ refers to the interior region). Errors in both metrics 

were significantly reduced for all ranges. The DGP RMSE was reduced from 0.029 to 0.006 and 

the Ev RMSE was reduced from 310 lx to 120 lx for Position I. Although the impact of the window 

exclusion is less significant for Position II, the error was reduced for that occupant position as well. 

These results indicate that the non-intrusive luminance re-projection method presents no noticeable 

errors in visual comfort metrics for occupant viewpoints with smaller window views.  
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Figure 6.13 Scatter plot comparison of visual comfort metrics from interior-only luminance maps 

Table 6.7 Error statics of visual comfort metrics from interior-masked luminance maps 

Position 
DGPint Ev, int 

RMSE R2 RMSE R2 
Position I 0.006 0.99 120 lux 0.97 
Position II 0.007 0.98 155 lux 0.97 

 

The ROC curves from the visual comfort metrics-based binary classifiers are presented in 

Figure 6.14. The AUC values from both metrics are above 0.80, meaning that the overall 

discriminative performance of the binary classification based on re-projected DGP and Ev is 

‘excellent’ according to the criterion presented in Table 6.8. The (FPR, TPR) coordinates 

corresponding to optimized cut-off values are displayed in the plot. The DGP threshold values for 

the re-projected occupant maps are 0.280, 0.290, and 0.275 based on Youden Index, sqD, and the 

customized cost function respectively. The TPR and FPR corresponding to the cut-off values are 

presented in Table 6.8, and can be useful for practitioners when choosing an optimal cut-off value.  
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Figure 6.14 ROC curves from re-projected visual comfort metrics 

Table 6.8 Optimized cut-off values from ROC analysis 

  DGP   Ev  
 sqD Youden  Custom sqD Youden  Custom 

Threshold 0.290 0.280 0.275 2250 lux 1860 lux 1860 lux 
TPR 0.89 0.98 1.00 0.77 1.00 1.00 
FPR 0.37 0.38 0.40 0.20 0.38 0.38 

 

6.4 Discussion  

 In this study, the luminance map re-projection pipeline based on a non-intrusive HDRI 

sensor was implemented in a real office room. Two occupant positions, closer and further from 

the window, were examined, and larger window views within the occupant FOV resulted in larger 

errors in re-projected values. In our experiment, the interior roller shade was controlled to the 

highest possible position that prevents direct sunlight around Position I, and the parallel sun-

tracking control allowed a realistic and practical operation that allows outside views. Nevertheless, 

there could be instances with a risk of glare even under this shading operation. According to the 

experimental results, around 10% of the points (75 out of 756) collected from HDRI sensor at 

Position I exceeded DGP of 0.35 (no such cases for Position II). The purpose of this work however 
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was not to develop perfect glare-based controls, but to test the non-intrusive luminance re-

projection framework under reasonable, daylight control scenarios. 

 The RMSE of DGP for Positions I and II were each 0.029 and 0.013 respectively, both 

smaller than 0.05 which corresponds to the interval between different categorizations of glare 

perception. Yet, as observed from Figure 6.11, for larger DGP values, the absolute error of DGP 

can exceed 0.05, shifting values to the next glare category. Therefore, we should avoid using the 

original glare perception classification when using DGP from the re-projected luminance maps. 

However, it can be also claimed that the metrics error in comfort caused by the re-projection has 

a reasonable and acceptable range, even when tested at a challenging position close to the window.   

 As a similarity measure to examine the overall quality of re-projected luminance maps 

against the actual luminance maps captured from the occupant positions, the Structural Similarity 

Index (SSIM) was used. There is no agreed threshold criterion for SSIM to evaluate the quality of 

re-projected luminance maps. Further research is required on similarity metrics for luminance 

maps, to deliver semantical information and to globally use for luminance maps captured under 

different conditions. Nevertheless, the mean MSSIM computed from both positions showed good 

agreement with values above 0.80.  

 To evaluate the magnitude of re-projection error segmented by interest regions, a 

superpixel-scale analysis was performed by applying masks of four different regions of interest – 

interior, window, task area, and computer screen. Consistent with the findings from the qualitative 

observation (comparison of luminance maps in Figure 6.7), the window region showed a 

significantly lower MSSIM distribution compared to the others. Due to the poor reconstruction, 

the pixels corresponding to the exterior scene through the window had the greatest intensity and 

structural error, making itself the major contributor of DGP and Ev error computed from the entire 

luminance map. To examine the impact of re-projected window regions on errors in comfort 

metrics, DGP and Ev were re-calculated from the luminance maps where the window regions' 

pixels are excluded (set to 0 cd/m2). Although the comparison is performed with fabricated 

luminance maps, it still provides a useful insight into the proposed system’s performance on re-

projection of interior regions. The exclusion of the window region significantly lowered the RMSE 

of DGP and Ev computed from the luminance maps. The resulting RMSE of DGP is below 0.01 

for both occupant positions. Additional experiments are needed under different room 
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configurations, sun paths, shading systems and luminous conditions, including glare occurrences, 

for a more complete evaluation and generalization of the method.   

 To examine the performance of the visual comfort prediction using the re-projection 

framework, a ROC curve-based analysis was presented. The AUC value from DGP and Ev-based 

classifiers from re-projected luminance maps were 0.81 and 0.89, showing excellent overall 

diagnostic performance across all possible thresholds. A case method to determine the cut-off 

value for visual comfort prediction was presented. Two common methods based on squared 

distance and Youden index, along with a method using customized cost function was used to find 

optimal cut-off values. The ROC curve provides useful insight when choosing an optimal cut-off 

value since it allows to examine the TPR and FPR with varying cut-off values that are largely 

dependent on the classifier characteristics. There is a limitation in that the ROC analysis was not 

based on true on-site occupant responses thus it does not evaluate the actual performance of the 

proposed system to predict occupant visual comfort. Rather, the analysis compares the non-

intrusive luminance monitoring system against the one that works with an HDRI sensor placed at 

the occupant position assuming it as a complete classifier (the ideal but impractical case). 

Experiments involving human subjects are always preferred when assessing the real-world 

performance of visual comfort delivery systems.    

6.5 Chapter Conclusion 

 This study presents the performance evaluation of a non-intrusive luminance monitoring 

framework. The method combines HDRI luminance monitoring from a non-intrusive position with 

3-D reconstruction of the space to allow re-projection of luminance distribution, as perceived from 

the occupants, without labor-intensive commissioning or distractive sensor installation. A 

systematically-designed experiment was performed to collect a wide spectrum of interior luminous 

conditions in a real office environment. The experiment was conducted in a side-lit office with an 

interior roller shade automatically controlled via a sun-tracking-based algorithm and work plane 

sunlight protection. To examine the quality of re-projection relative to the size of the window, two 

different occupant positions were tested, close and further from the window.  

The Structural Similarity Index (SSIM) was used to evaluate the overall agreement between 

re-projected and actual luminance maps captured from the occupant positions. The mean MSSIM 
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computed from both positions was above 0.8. Reasonable RMSE values were observed from the 

comparison of DGP and Ev. As suspected from previous work and from the qualitative comparison 

between selected actual and re-projected luminance maps, the major source of error was confirmed 

to be the pixels of the exterior scene visible through the window. A region-scale analysis was 

performed by applying masks in different regions of interest, to further assess the influence of 

various elements on errors. With the removal of the window region from the luminance maps, the 

RMSE of DGP and Ev were both significantly reduced to negligible values. The result partially 

confirms the hypothesis that the proposed framework can accurately re-project luminance maps 

exposed to any interior surface, even not fully diffuse. The diagnostic performance of the re-

projection-based visual comfort predictor, relative to a predictor based on the occupant sensor 

measurement, was also evaluated. The AUC values above 0.8 from the classifiers revealed that the 

visual comfort prediction from the re-projected luminance map reasonably approximates the 

prediction from the actual HDRI sensor measurement from the occupant position - that even 

includes the large portion of the window within the FOV. 

 The proposed framework requires further improvement. Although the in-situ 

implementation in the testbed office exhibited a partial success, a more robust re-construction of 

the window region is needed for completion. To address the issue, the SfM-MVS pipeline used for 

3D reconstruction can be replaced or reinforced with different methods, such as using RGBD 

cameras or LiDAR (Light Detection and Ranging) that yield robust and accurate 3D models. 

Generally, it is more expensive to operate such systems than the proposed framework, which only 

requires a readily available camera device. However, there is an increasing trend towards end-user 

products equipped with a built-in Time-of-Flight (ToF) camera or even LiDAR sensor that can 

boost the accuracy and robustness of depth estimation and indoor reconstruction. Considering that 

the commercialization of such products has emerged just recently, the future cost of their 

application is expected to reduce.       

Overall, this study presents the systematic evaluation of the performance of the non-

intrusive luminance monitoring framework. Although the framework needs further improvement 

for the wide-scale application across buildings, the results demonstrate the feasibility of the 

framework. When limited to the building interior, the re-projection yielded comfort metric values 

very similar to the actual measurements from the occupant positions. The future study 

recommendation includes the establishment of a systematic method to determine optimal sensor 
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placement concerning the office layout, maximizing the performance of the luminance monitoring 

system. Also, a long-term, large-scale field experiment involving multi-occupants in various office 

environments would provide useful insights on the practical implications of the framework 

towards generalization. 
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 FUTURE WORKS 

This chapter presents recommendations for extensions of this work. 

7.1 Development of open-toolset for High Dynamic Range Imaging application 

 As described in Section 2.5, there exists a need for a user-friendly toolset to facilitate the 

adoption of low-cost camera sensors for human-centric daylight control or visual comfort studies. 

In such context, this thesis aims to develop a Python-based open GUI toolset based on Raspberry 

Pi and its camera module that includes: 

• Camera calibration module: Although the Pi Camera module is factory-calibrated, attaching 

the fisheye lens or any specific filter (e.g. neutral density filter) yields extra needs for geometric 

and photometric calibration per-user customization. The toolset will include the whole 

calibration procedure. The photometric calibration submodule will adopt Debevec’s HDR 

merging algorithm implemented in OpenCV-Python and will include estimation of: a) camera 

response function (CRF); b) absolute calibration factor; and c) vignetting curve. The 

submodule for geometric calibration will be based on OpenCV-Python implementation of  

Kannala and Brandt’s generic camera model [79] which retrieves camera intrinsic parameters 

and radial fisheye distortion coefficients. The module will allow user to interactively perform 

minimum-required manual task needed for parameters-estimation and will be compatible with 

any fisheye lenses up to 180 degrees-FOV.  

• Controller module for window-mounted HDRI sensor: This module is the implementation 

of image-based glare detection/positioning, solar tracking, and shade control logics proposed 

in Chapter 3. It will provide a GUI control panel for HDRI sensor-based shade control logic. 

The GUI panel will display the exterior luminance distribution continuously changing and 

information on glare sources detected by the HDRI sensor– average luminance, solid angle, 

profile angle, etc. Also several shade control logics and relevant parameters – such as detection 

thresholds for glare source and solar disk, geometry and layout of the room - can be selected 

by the user. The shade controls include the conventional sun-tracking algorithm, exterior glare 

protection algorithm and their combination.  
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• Glare assessment tool for visual comfort study: This module is aimed to provide a cost-

effective, standardized solution for people who want to conduct human visual comfort studies 

in buildings. This tool will not only allow the collection user responses and luminance maps 

but will also provide a user-friendly toolsets to easily build programs suit the purpose. The data 

collection can be either fully automated or operated manually and includes the rapid calculation 

of commonly-used visual comfort indicators such as DGP, enabled by a new open glare 

evaluation package based on Python to enhance the computational efficiency and scalability 

from existing software (Evalglare). 

7.2 Improvement of luminance re-projection framework for non-intrusive luminance 
mapping 

 The results from Chapter 5 and Chapter 6 show that the proposed framework for non-

intrusive monitoring can reasonably predict occupant visual comfort in day-lit perimeter zones. 

However, there still exist limitations related to the quality of the 3D as-is model reconstructed via 

SfM-MVS pipeline even it is a long-term-established method. First, SfM under-performs when a 

reconstructed space is lacking textures, which is not extremely rare in modern offices (e.g. matte-

painted walls).  Also, a huge opportunity lies in the enhancement of reconstruction for the window 

region (including the shaded area and exterior scene) to significantly improve the framework 

performance. To this end, two approaches are proposed:  

• Utilization of computer vision techniques for rapid and precise 3D reconstruction, such 

as Structured Light or LiDAR. Such techniques generally require higher-cost devices than 

SfM-MVS. However, they exhibit better robustness and speed, enabling real-time 3D mapping 

of the scenes and the cost barrier is also being lowered, thanks to prosperity in computer vision 

applications.  

• Geo-registration of building surroundings for re-projection of the exterior scene. 

Reconstructing the exterior scene via image-based sensing from indoor space is non-robust 

and sometimes impossible. Thus, instead of re-constructing the exterior scene, we can geo-

register the interior space into the readily available urban-scale 3D model that includes the 

target building and the surroundings. By measuring the exterior luminance map from the HDRI 

sensor installed in the room and corresponding it to the 3D model of the surrounding, we can 

create a better re-projection of the exterior scene perceived by the occupants.  



 

 

140 

7.3 Luminance-based human-centric daylight-linked control  

 Luminance distribution within occupant FOV has almost-full accountability of human 

visual perception. Thus the luminance monitoring framework proposed in Chapter 5 has the 

potential to effectively aid human-centric daylight control to suit personal comfort and preference 

and maximize health benefits while reducing energy consumption. To this end, modern machine 

learning techniques including deep learning can be engaged, incorporating the existing knowledge 

on human visual systems and responses to luminous conditions. The camera sensor is able to 

continuously monitor luminance conditions, providing a wealth of data in real time.  Occupant 

feedback can be collected through sporadic web surveys and through actions. Image processing 

and significant variable identification is required before proceeding with AI-enabled learning of 

preferred luminous scenes. An important achievement goal is to develop a user interface to 

efficiently enable economical user response collection and delivering a satisfactory user 

experience for a variety of luminous conditions. A major challenge in this study is associated with 

data collection and processing, since models such as deep neural networks may require substantial 

data size due to the information-rich nature of luminance maps without effort to retain the model 

and data simplicity. 
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