
LIQUID PROPELLANT POSITIONING AND CONTROL IN EXAMPLE

PROPELLANT TANK

by

Logan Walters

A Thesis

Submitted to the Faculty of Purdue University

In Partial Fulfillment of the Requirements for the degree of

Master of Science in Aeronautics and Astronautics

School of Aeronautics and Astronautics

West Lafayette, Indiana

December 2021

2

THE PURDUE UNIVERSITY GRADUATE SCHOOL

STATEMENT OF COMMITTEE APPROVAL

Dr. Steven Collicott, Chair

School of Aeronautics and Astronautics

Dr. Haifeng Wang

School of Aeronautics and Astronautics

Dr. Timothee Pourpoint

School of Aeronautics and Astronautics

Approved by:

Dr. Gregory Blaisdell

3

Dedicated to my parents Tammy and Richard and sister Aada for their continual support

4

ACKNOWLEDGMENTS

This research was funded as part of a Teaching Assistantship offered by Purdue University’s

Gambaro Graduate Program of Aeronautics and Astronautics. The Rotational Slosh project is

funded by the grant “Spacecraft Pointing Control and Zero-Gravity Slosh” from NASA Flight

Opportunities (sponsor award number: 80NSSC20K0097). The Rotational Slosh project also

features contributions from Purdue students taking AAE 418: Zero-Gravity Flight Experiment.

I would also like to thank my thesis advisor Dr. Collicott for the opportunity to work on this

project. His assistance and guidance over the past year and a half while I have completed this

research has been invaluable.

5

TABLE OF CONTENTS

LIST OF TABLES .. 7

LIST OF FIGURES .. 8

ABSTRACT .. 12

 INTRODUCTION ... 13

 LIQUID TRAPPING INTRODUCTION .. 15

2.1 Zero Gravity Fluid Mechanics .. 15

 LIQUID TRAPPING METHODS ... 17

3.1 Surface Evolver File Setup ... 19

 LIQUID TRAPPING ANALYSIS .. 24

4.1 Specific Case: Characterization of Configurations ... 25

4.2 Specific Case: Filling and Draining .. 32

4.3 Specific Case: Minimum Energy .. 36

4.4 Specific Case: Energy vs Fill Fraction.. 39

4.5 Other Geometries .. 41

 LIQUID TRAPPING SUMMARY ... 49

 ROTATIONAL SLOSH INTRODUCTION ... 50

6.1 Low Gravity Slosh Modeling.. 52

 ROTATIONAL SLOSH EXPERIMENT DESIGN .. 54

7.1 Mechanical Design.. 55

7.1.1 Tank Design ... 55

7.1.2 Moving Components ... 57

7.1.3 Structural Components .. 61

7.1.4 Second Containment .. 65

7.2 Electrical Systems ... 69

7.2.1 Camera System .. 70

7.2.2 Motor System... 74

 ROTATIONAL SLOSH SUMMARY .. 75

 CONCLUSION.. 76

APPENDIX A. ADDITIONAL FIGURES .. 78

6

APPENDIX B: DERIVATION OF WETTING EQUATIONS FOR SURFACE EVOLVER 82

APPENDIX C. SUPERELLIPSOID WETTING APPROXIMATION CODE 91

APPENDIX D. SURFACE EVOLVER SOURCE CODE – SUPERELLIPSOIDAL DOME,

NON-RING SOLUTION .. 95

APPENDIX E. SURFACE EVOLVER SOURCE CODE – SUPERELLIPSOIDAL DOME, RING

SOLUTION... 107

APPENDIX F. SURFACE EVOLVER SOURCE CODE – TORISPHERICAL DOME, NON-

RING SOLUTION .. 116

APPENDIX G. SURFACE EVOLVER SOURCE CODE – TORISPHERICAL DOME, RING

SOLUTION... 125

APPENDIX H. LIQUID RING ANALYTICAL SOLUTION CODE 135

REFERENCES ... 146

7

LIST OF TABLES

Table 7.1. Functions of each pin on the Sony multiport connector. ... 71

Table 7.2. Connections from the multiport connector to power and the remote control unit. 73

Table 7.3. Connections from the multiport connector to power and the Arduino. 73

Table 7.4. Connections from the motor control board to power and the Arduino. 74

Table C.1. A small selection of the coefficients used to approximate the superellipsoid wetting

equation. .. 91

8

LIST OF FIGURES

Figure 2.1. A tank that has a cylindrical section with length equal to two tank radii. In this example,

the domes are 2:1 ellipsoidal end caps. ... 16

Figure 3.1. Example hemispherical, torispherical, ellipsoidal, and superellipsoidal end caps with

azimuthal angle ϕ. ... 18

Figure 3.2. Mean curvature of the example hemispherical, torispherical, ellipsoidal, and

superellipsoidal end caps is plotted against azimuthal angle ϕ. .. 19

Figure 4.1. Possible configurations for a liquid volume inside a 2:1 ellipsoidal tank at a contact

angle of 20° and fill fraction of 0.06 are a spherical interface (left), liquid ring (middle), and

asymmetric droplet (right). ... 25

Figure 4.2. Range of existence for spherical interface solutions inside a tank with a 2:1 ellipsoidal

dome. In the region labeled S, spherical interface solutions are possible, while in the region labeled

NS no spherical interface solutions are possible... 27

Figure 4.3. Range of existence for liquid ring solutions inside a tank with a 2:1 ellipsoidal dome.

In the region labeled R, liquid ring solutions are possible, while outside of it no liquid ring solutions

are possible.. 28

Figure 4.4. Range of existence for asymmetric droplet solutions inside a tank with a 2:1 ellipsoidal

dome. In the region labeled A, asymmetric droplet solutions are possible, while outside of it no

asymmetric droplet solutions are possible. ... 29

Figure 4.5. An asymmetric droplet with a contact angle of 10° and fill fraction of 0.0095 (left) and

an asymmetric droplet with a contact angle of 45° and fill fraction of 0.129 (right) in a tank with

2:1 ellipsoidal end caps. For the lower contact angle case, a small increase in fill fraction would

cause the propellant to transition to a liquid ring, while for the higher contact angle case it would

cause the propellant to reorient with a spherical interface. ... 30

Figure 4.6. Range of existence for each propellant configuration in a tank with 2:1 ellipsoidal end

caps. In regions labeled with S, spherical interface solutions are possible, in regions labeled with

R, liquid ring solutions are possible, and in regions labeled with A, asymmetric droplet solutions

are possible.. 31

Figure 4.7. An example draining procedure for a tank with 2:1 ellipsoidal end caps containing a

liquid with 45° contact angle is overlaid on a diagram showing range of existence for each

propellant configuration. ... 33

Figure 4.8. An example draining procedure for a tank with 2:1 ellipsoidal end caps containing a

liquid with 25° contact angle is overlaid on a diagram showing range of existence for each

propellant configuration. ... 34

Figure 4.9. An example filling procedure for a tank with 2:1 ellipsoidal end caps containing a

liquid with 45° contact angle is overlaid on a diagram showing range of existence for each

propellant configuration. ... 35

9

Figure 4.10. An example filling procedure for a tank with 2:1 ellipsoidal end caps containing a

liquid with 25° contact angle is overlaid on a diagram showing range of existence for each

propellant configuration. ... 36

Figure 4.11. Minimum energy propellant configurations for a tank with 2:1 ellipsoidal end caps.

The region marked with S denotes the combinations of fill fraction and contact angle where a

spherical interface is the minimum energy, the region marked with R denotes the combinations

where a liquid ring is the minimum energy, and the region marked with A denotes the combinations

where an asymmetric droplet is the minimum energy. ... 37

Figure 4.12. Range of existence and minimum energy for a tank with 2:1 ellipsoidal end caps are

overlaid on the same diagram. Solid lines denote boundaries for range of existence, while dashed

lines denote boundaries for minimum energy. .. 39

Figure 4.13. Energy vs fill fraction for each propellant configuration with a 15° contact angle in a

tank with 2:1 ellipsoidal end caps. .. 40

Figure 4.14. Energy difference relative to the minimum energy vs fill fraction for each propellant

configuration with a contact angle of 15° in a tank with 2:1 ellipsoidal end caps. 41

Figure 4.15. Ellipsoidal, superellipsoidal, and torispherical end cap geometries considered. 42

Figure 4.16. Minimum energy propellant configurations for a tank with 2:1 superellipsoidal end

caps with n = 3. The region marked with S denotes the combinations of fill fraction and contact

angle where the spherical interface is the minimum energy, the region marked with R denotes the

combinations where the liquid ring is the minimum energy, and the region marked with A denotes

the combinations where the asymmetric droplet is the minimum energy. The horizontal error bars

show the fill fraction step size. ... 44

Figure 4.17. Minimum energy configurations for tanks with 2:1 ellipsoidal, superellipsoidal, and

torispherical end caps overlaid on the same diagram. The region marked with S denotes where the

spherical interface is the minimum energy, R where the liquid ring is minimum, and A where the

asymmetric droplet is minimum. The blue curve is the boundary for the tank with ellipsoidal end

caps, the red curve is the boundary for the tank with superellipsoidal end caps, and the yellow

curve is the boundary for the tank with torispherical end caps. .. 46

Figure 4.18. Minimum energy configurations for tanks with 4:3 ellipsoidal, superellipsoidal, and

torispherical end caps overlaid on the same diagram. The region marked with S denotes where the

spherical interface is the minimum energy, R where the liquid ring is minimum, and A where the

asymmetric droplet is minimum. The blue curve is the boundary for the tank with ellipsoidal end

caps, the red curve is the boundary for the tank with superellipsoidal end caps, and the yellow

curve is the boundary for the tank with torispherical end caps. .. 48

Figure 7.1. A sketch of the experiment layout. ... 54

Figure 7.2. A CAD model of one of the tanks and PMD vanes used on this experiment. 56

Figure 7.3. A section view of the tank demonstrating how the vanes lie flush against the tank wall

and how the vanes are connected to the tank. ... 56

Figure 7.4. A tank with mounting hardware attached. .. 57

10

Figure 7.5. Tanks rotated inside the second containment, demonstrating the need for chamfers on

the outer two tanks. ... 57

Figure 7.6. Rear view of the tank mounting plate showing the two pivots that are used to rotate the

tank. ... 58

Figure 7.7. A section view of a tank and mounting plate showing the shoulder bolts and PTFE

washers. ... 58

Figure 7.8. Bar assembly orientation and linear guide positioning. ... 59

Figure 7.9. Truss wall location and attachment to linear guides. ... 59

Figure 7.10. Bar assembly position when tanks are rotated. .. 60

Figure 7.11. Motor attachment to the truss wall and rack and pinion interface with the bar

assemblies. .. 60

Figure 7.12. Closeup of a motor mount. ... 60

Figure 7.13. Limit switch mounting and interface with the bar assembly. 61

Figure 7.14. Tall side pylon attachment to truss wall. .. 62

Figure 7.15. Short side pylon attachment to truss wall. .. 62

Figure 7.16. Orientation of the two side assemblies relative to each other. 63

Figure 7.17. Camera and mirror attachment to the tall side middle pylon. 63

Figure 7.18. Camera and mirror attachment to the short side middle pylon. 64

Figure 7.19. Tall side middle pylon weight reduction holes... 65

Figure 7.20. Mirror bracket with stiffening ribs with mirror attached. ... 65

Figure 7.21. Weight reduction pockets on the short side baseplate. ... 66

Figure 7.22. Tall side assembly with the second containment and baseplate. 67

Figure 7.23. The short side second containment accommodates the notch by adding a vertical

sealing surface. .. 68

Figure 7.24. The short side assembly with the second containment and baseplate. 68

Figure 7.25. Diagram showing power distribution to each component in the electrical system along

with data transfer between components. ... 70

Figure A.9.1. Minimum energy propellant configurations for a tank with 2:1 torispherical end caps

with rN = 0.6. The region marked with S denotes the combinations of fill fraction and contact angle

where the spherical interface is the minimum energy, the region marked with R denotes the

combinations where the liquid ring is the minimum energy, and the region marked with A denotes

the combinations where the asymmetric droplet is the minimum energy. The horizontal error bars

show the fill fraction step size. ... 78

11

Figure A.9.2. Minimum energy propellant configuration for a tank with 4:3 ellipsoidal end caps.

The region marked with S denotes the combinations of fill fraction and contact angle where the

spherical interface is the minimum energy, the region marked with R denotes the combinations

where the liquid ring is the minimum energy, and the region marked with A denotes the

combinations where the asymmetric droplet is the minimum energy. The horizontal error bars

show the fill fraction step size. ... 79

Figure A.9.3. Minimum energy propellant configurations for a tank with 4:3 superellipsoidal end

caps with n = 3. The region marked with S denotes the combinations of fill fraction and contact

angle where the spherical interface is the minimum energy, the region marked with R denotes the

combinations where the liquid ring is the minimum energy, and the region marked with A denotes

the combinations where the asymmetric droplet is the minimum energy. The horizontal error bars

show the fill fraction step size. ... 80

Figure A.9.4. Minimum energy propellant configurations for a tank with 4:3 torispherical end caps

with rN = 0.6. The region marked with S denotes the combinations of fill fraction and contact angle

where the spherical interface is the minimum energy, the region marked with R denotes the

combinations where the liquid ring is the minimum energy, and the region marked with A denotes

the combinations where the asymmetric droplet is the minimum energy. The horizontal error bars

show the fill fraction step size. ... 81

12

ABSTRACT

Two topics relating to low gravity fluid behavior in satellite propellant tanks are considered.

In the first, static case, the problem of liquid trapping is examined. Satellite propellant tank end

caps optimized for weight are generally shallower and more oblate than hemispherical end caps of

the same radius. However, these shallower end caps pose an interesting challenge for propellant

management. In the absence of vanes, it is possible for liquid propellant to be trapped in the tank

and become unusable. Understanding of how propellant tends to distribute itself in the bare,

vaneless tank can be used to drive vane design to counteract these tendencies and ensure propellant

remains where desired. The first section of this thesis aims to demonstrate methods that can be

used to identify when, how, and why liquid trapping occurs in a given tank geometry. A fluid

statics code called Surface Evolver is used to calculate possible fluid configurations for different

propellant volumes, contact angles, and end cap designs. The specific case of a cylindrical tank

with 2:1 ellipsoidal end caps is studied extensively for ranges of fill fractions and contact angles

to illustrate the methods used. Results are computed for each possible propellant configuration: a

spherical liquid-gas interface, an asymmetric liquid-gas interface, and a liquid ring. Analytical

solutions are found and compared against Surface Evolver results for the spherical liquid-gas

interface and liquid ring, showing excellent agreement. Results are also found for other aspect ratio

ellipsoidal end caps, superellipsoidal end caps, and torispherical end caps. Each non-hemispherical

dome design is found to be able to trap liquid away from the axis of the tank regardless of contact

angle. The second part of this thesis, focusing on the dynamic case, details the development of an

experimental payload designed to fly on Virgin Galactic’s SpaceShipTwo. This experiment is

designed to obtain data on sloshing behavior of liquids in microgravity in response to rotation. The

payload contains eight scaled down propellant tanks that are rotated while in microgravity, and the

resulting slosh is recorded by video cameras inside the payload. The video will be analyzed after

the experiment to extract data on damping rates and potentially positional data of the liquid-gas

interface. The impact of constraints on the design of the overall experiment are discussed. The

purpose of each component in the experiment is explained and justified relative to the design

constraints. The remaining work that must be completed before flight on SpaceShipTwo is

reviewed, highlighting the most significant unknowns.

13

 INTRODUCTION

Often, it is desired to control the motion and position of propellant inside satellite propellant

tanks while in orbit. However, propellant behavior can be difficult to predict and model in low

gravity. The first half of this thesis examines the static behavior of liquid propellants in low gravity

through the lens of the problem of liquid trapping. The second half of this thesis details the design

of an experimental payload that will fly on Virgin Galactic’s SpaceShipTwo to collect data on

rotational sloshing of propellant in satellite tanks to improve modeling capabilities for the dynamic

case.

The liquid trapping problem describes a way in which liquid can become trapped and

inaccessible when draining liquid propellant from a propellant tank while in low gravity. If liquid

trapping occurs on a satellite, the satellite’s operable life may be cut short by preventing the trapped

propellant from being accessed for course correction, attitude adjustment, or any other required

maneuver. Liquid trapping can be avoided by using propellant management devices (PMDs) like

vanes. Vanes use the surface tension of the liquid propellant to control the propellant distribution

while in zero gravity. In zero-g, liquid tends to wick into corners, so vanes can be strategically

added to create corners near where the liquid needs to be. This makes vanes a particularly attractive

option for most applications since they have no moving parts and require no energy input.

However, to design vanes capable of controlling the propellant distribution, it is first

necessary to understand the fluid behavior inside the bare, vaneless tank. This can be used to

identify which problems the vanes need to solve. Without vanes, the propellant distributions are

heavily dependent on the shape of the end cap. For a hemispherical end cap, characterization of

propellant distributions is easy, and no liquid trapping can occur. These hemispherical end caps

are not generally the minimum weight solutions, however. Depending on the mission

specifications, other geometries, like ellipsoidal or torispherical end caps, can save a significant

amount of weight over hemispherical domes (Bert & Hyler, 1966). As a result, most satellite tanks

use non-hemispherical end caps to store propellant, allowing for the possibility of liquid trapping.

Modeling of the conditions under which liquid trapping occurs can be used to help drive vane

design.

The second half of this thesis considers the problem of rotational slosh and how data can

best be collected to provide better understanding of and modeling capabilities for liquid propellant

14

behavior in these environments. Satellites are sometimes required to undergo pointing maneuvers

while in orbit, such as for earth imaging. During this process, the satellite changes orientation,

rotating the propellant tank along with it. This induces sloshing motion in the propellant stored

within, which can cause unwanted side loads that may change the satellite’s orientation. In such

cases, additional fuel must be spent to correct the error in orientation. This wasted fuel can be

saved and pointing accuracy improved by better understanding the dynamic sloshing of the

propellant in the satellite tank in response to external forces and incorporating this understanding

into control algorithms. However, modeling of low gravity propellant slosh is very complex.

Analytical solutions have very limited practicality due to the strong simplifying assumptions

required. Computational Fluid Dynamics (CFD) can be used to obtain acceptable results, capturing

general trends when compared to experiment but losing some of the fine detail of propellant

behavior. To improve performance, more experimental data is needed to calibrate models. Much

of the existing experimental slosh data has focused on the problem of sloshing in response to linear

movement, but little slosh data exists for tanks undergoing rotation.

An experimental payload is designed to fly on Virgin Galactic’s SpaceShipTwo to help fill

this knowledge gap and provide initial data for rotational sloshing of liquid propellants. The

experiment will contain eight different tanks. Four of them will contain a fluid with contact angle

near 0°, while the other four will contain a fluid with contact angle greater than 20°. Each set of

tanks will have a different liquid volume to allow investigation into how fill fraction influences

propellant slosh. The tanks are rotated 45° about an axis perpendicular to the longitudinal axis

while in microgravity, inducing slosh. The liquid response is recorded using video cameras on

board the payload, from which damping rates will be extracted. In addition, it may be possible to

extract the 3D position of the liquid-gas interface. Both can then be used to serve as points of

comparison for future analysis.

15

 LIQUID TRAPPING INTRODUCTION

2.1 Zero Gravity Fluid Mechanics

A quasi-static fluids approach may be used to analyze liquid trapping. One way to find

propellant configurations in the tank is to find the liquid-gas interface that forms a surface of

constant mean curvature intersecting the wall at the appropriate contact angle and encloses the

liquid volume. Liquid volumes are generally expressed relative to the total tank volume as the fill

fraction. However, when considering a single tank geometry of fixed size, liquid volume can be

used interchangeably with fill fraction. While this approach can be used to find analytical solutions

for certain cases, an energy minimization approach is generally simpler to work with. Assuming

there is no gravity or other acceleration so Bond number is zero, that the tank is perfectly rigid and

smooth, and that the contact angle is uniform on the tank wall, the relevant nondimensional energy

to minimize can be expressed in terms of the non-dimensional free surface area 𝐴𝐹𝑆, which is the

surface area of the liquid gas interface, the non-dimensional wetted area 𝐴𝑤, which is the area of

the wall wetted by the liquid, and contact angle θ.

Here, const is a constant that depends only on the contact angle and tank shape and size. This

constant can be ignored since it does not change during the energy minimization process.

Assuming there is no phase change so the liquid volume remains constant, minimization of this

energy while conserving volume will yield static equilibria solutions for the propellant

configurations. This energy minimization process can be performed numerically with a scalar

minimization code called Surface Evolver (Brakke, 2013). After defining how the free surface

relates to the tank geometry, Surface Evolver can be used to iteratively deform the free surface to

minimize energy while conserving volume at each step.

It is assumed that the liquid exists as a single volume that is at least partially touching one

end cap but is not touching both end caps. When filling and draining is discussed, a slow, quasi-

static process is assumed such that the dynamic fluid motion can be ignored. When discussing

liquid trapping, it is assumed that the outlet is small and located at the center of the end cap.

𝐸 = 𝐴𝐹𝑆 − cos 𝜃 𝐴𝑤 + 𝑐𝑜𝑛𝑠𝑡 (2.1)

16

For simplicity, a tank of radius 𝑅 = 1 is chosen, though results can be easily scaled to

different tank sizes. The fill fraction can be expressed in terms of liquid volume 𝑉𝑙𝑖𝑞, tank volume

𝑉𝑡𝑎𝑛𝑘, end cap volume 𝑉𝑑𝑜𝑚𝑒, tank radius R, and cylinder length L as

Since the propellant volume is isolated at one end of the tank, the length of the cylindrical

section can be selected arbitrarily to be twice the tank radius, as shown in Figure 2.1. Fill fractions

can be scaled to other selections for cylinder length by multiplying by the tank volume for the

assumed cylinder length to obtain the liquid volume, then normalizing by the tank volume

corresponding to the new cylinder length.

Figure 2.1. A tank that has a cylindrical section with length equal to two tank radii. In this

example, the domes are 2:1 ellipsoidal end caps.

𝑓 =
𝑉𝑙𝑖𝑞

𝑉𝑡𝑎𝑛𝑘
=

𝑉𝑙𝑖𝑞

𝜋𝑅2𝐿 + 2𝑉𝑑𝑜𝑚𝑒
 (2.2)

17

 LIQUID TRAPPING METHODS

One dome design that is commonly used to reduce weight is a torispherical end cap, which

consists of a spherical head with radius larger than the tank radius, connected to the tank cylinder

by a toroidal “knuckle”. However, this dome geometry can be difficult to model in Surface Evolver.

The mean curvature, which is a significant contributor to the behavior of fluids on a surface, has

two discontinuities, one where the dome meets the knuckle and another where the knuckle meets

the cylinder. The contact line may get stuck or otherwise behave strangely when moving across

these discontinuities, and so special care must be taken when running the Surface Evolver code.

Another dome design that is used in satellite propellant tanks is an ellipsoidal end cap,

created by revolving an ellipse about the longitudinal axis. Ellipsoidal end caps have continuous

mean curvature on the end cap itself, though a discontinuity in mean curvature still exists at the

junction. This overall improvement in continuity of mean curvature, combined with the simpler

equations used to define the geometry, can make ellipsoidal end caps easier to model in Surface

Evolver than torispherical end caps. Importantly, the ellipsoidal end cap can smoothly morph into

a hemispherical end cap by letting the end cap depth be equal to the tank radius R. This makes it

serve as a good point of comparison against the far simpler to model hemispherical end cap design.

The model of an ellipsoidal end cap can also be extended to capture the effect of tighter

corners near the junction by considering a superellipsoidal end cap. This type of geometry replaces

the exponent of 2 used in the equation for an ellipse with a parameter n > 2 and revolving about

an axis, creating a tighter corner at the junction. This can be used to emulate the effects of a small

knuckle radius on a torispherical dome by introducing a high curvature region at the junction. Like

the ellipsoidal end cap, a superellipsoidal end cap has continuous mean curvature on the dome, but

it also has continuous mean curvature at the junction between the end cap and cylinder. As a result,

a superellipsoidal end cap has no discontinuities in mean curvature anywhere. Despite this, the

mean curvature does change significantly around the junction, especially for high values of n.

Examples of each end cap geometry are shown in Figure 3.1, namely a hemispherical end

cap, an ellipsoidal end cap with minor axis half the major axis (a 2:1 ellipsoid), a 2:1

superellipsoidal end cap with exponent n = 3, and a torispherical end cap with overall depth half

the tank radius and knuckle radius 60% of depth, corresponding to a dome radius of 1.625 R and

a knuckle radius of 0.3 R. The mean curvature for each of these dome geometries is plotted in

18

Figure 3.2, showing the location of discontinuities in mean curvature for each dome geometry. All

dimensions are nondimensionalized by the tank radius, including the mean curvature.

Figure 3.1. Example hemispherical, torispherical, ellipsoidal, and superellipsoidal end caps with

azimuthal angle ϕ.

19

Figure 3.2. Mean curvature of the example hemispherical, torispherical, ellipsoidal, and

superellipsoidal end caps is plotted against azimuthal angle ϕ.

3.1 Surface Evolver File Setup

The coordinate system used in all Surface Evolver models presented places the z-axis along

the tank’s axis of rotation, with the z = 0 plane passing through the junction between the end cap

and cylinder. The end cap is above the z = 0 plane, and the cylindrical section is below this plane.

Before converging, the free surface is initialized to a simple geometry in the Surface Evolver model.

When considering droplet-like solutions, the free surface is initialized as a flat square on the x-y

plane. The vertices and contact line are constrained to the tank wall, and all facets are constrained

to be inside the tank. For ring-like solutions, the free surface is initialized as a truncated pyramid

that omits the top and bottom faces. All initial vertices and both contact lines are constrained to

the tank wall, and all facets and internal edges are constrained to be inside the tank. After

converging, between 7,500 and 15,000 facets are used for most models, depending on the liquid

volume and contact angle. For some cases, particularly those with low volume and contact angle,

facet counts as high as 300,000 facets are required to achieve convergence.

20

When setting up the Surface Evolver model, an equation is needed to define the tank

geometry so the contact line can stay coincident with the tank wall. When z < 0, the contact line is

on the cylinder, so the contact line constraint equation is

where R is the tank radius. When z > 0, the contact line is on the dome, and so the equation will

depend on the end cap geometry. The formulas for a hemispherical end cap, ellipsoidal end cap,

and superellipsoidal end cap are listed below, where 𝑧0 is the depth of an ellipsoidal or

superellipsoidal end cap and 𝑛 is the exponent for a superellipsoidal end cap.

To make comparison with other tank geometries easier, the torispherical end cap is defined

by the end cap depth 𝑧0 and knuckle radius 𝑟𝑁, expressed as a percentage of the end cap depth.

However, it is more convenient to work with the actual knuckle radius 𝑟𝑠 = 𝑟𝑁𝑧0. In addition, other

intermediate variables convenient for the torispherical end caps are

Using these variables, the equation of the torispherical end cap is

𝑥2 + 𝑦2 = 𝑅2, 𝑧 < 0 (3.1)

Hemisphere: 𝑥2 + 𝑦2 + 𝑧2 = 𝑅2, 𝑧 > 0 (3.2)

Ellipsoid: (
𝑥

𝑅
)
2

+ (
𝑦

𝑅
)
2

+ (
𝑧

𝑧0
)
2

= 1, 𝑧 > 0 (3.3)

Superellipsoid: [(
𝑥

𝑅
)
2

+ (
𝑦

𝑅
)
2

]

𝑛
2
+ |

𝑧

𝑧0
|
𝑛

= 1, 𝑧 > 0 (3.4)

 𝑅𝐻 =
2𝑟𝑠𝑅 − 𝑅

2 − 𝑧0
2

2(𝑟𝑠 − 𝑧0)
 (3.5)

 𝑧𝑐𝑒𝑛𝑡𝑒𝑟 = −√𝑅𝐻
2 − 𝑅2 + 2𝑅𝑟𝑠 − 2𝑅𝐻𝑟𝑠 (3.6)

 𝑧𝑐𝑟 =
𝑟𝑠√(𝑅𝐻 − 𝑅)(𝑅𝐻 − 2𝑟𝑠 + 𝑅)

𝑅𝐻 − 𝑟𝑠
 (3.7)

 𝑟𝑐𝑟 = √𝑟𝑠2 − 𝑧𝑐𝑟2 + 𝑅 − 𝑟𝑠 (3.8)

Torispherical: {
𝑥2 + 𝑦2 + (𝑧 − 𝑧𝑐𝑒𝑛𝑡𝑒𝑟)

2 = 𝑅𝐻
2, z > 𝑧𝑐𝑟

√𝑟𝑠2 − 𝑧2 + 𝑅 − 𝑟𝑠 −√𝑥2 + 𝑦2 = 0, 0 < 𝑧 < 𝑧𝑐𝑟
 (3.9)

21

For Surface Evolver to compute the liquid volume, a slightly modified version of Surface

Evolver’s default volume method can be used. This method uses a facet vector integral applied to

the free surface with components

where 𝑓(𝑥, 𝑦) is the height of the dome above the x-y plane, which depends on the end cap

geometry, determined by solving the tank geometry equations for z.

Finally, to compute the total energy, equation 3.15 can be used.

The free surface area is computed automatically by Surface Evolver. The wetted area can be

computed by integrating an edge vector integral along the contact line, and this vector field

depends on the geometry of the tank the contact line is touching. On the cylindrical section of the

tank, the vector field to obtain the wetted area is

𝑞1 = 0
𝑞2 = 0
𝑞3 = 𝑓(𝑥, 𝑦) − 𝑧

(3.10)

Hemisphere: 𝑓(𝑥, 𝑦) = √𝑅2 − 𝑥2 − 𝑦2 (3.11)

Ellipsoid: 𝑓(𝑥, 𝑦) =
𝑧0

𝑅
√𝑅2 − 𝑥2 − 𝑦2 (3.12)

Superellipsoid: 𝑓(𝑥, 𝑦) = 𝑧0 [1 − ((
𝑥

𝑅
)
2

+ (
𝑦

𝑅
)
2

)

𝑛
2
]

1
𝑛

 (3.13)

Torispherical: 𝑓(𝑥, 𝑦) =

{

 √𝑅𝐻
2 − 𝑥2 − 𝑦2 + 𝑧𝑐𝑒𝑛𝑡𝑒𝑟, √𝑥2 + 𝑦2 < 𝑟𝑐𝑟

√𝑟𝑠2 − (√𝑥2 + 𝑦2 − 𝑅 + 𝑟𝑠)
2

, √𝑥2 + 𝑦2 > 𝑟𝑐𝑟

 (3.14)

𝐸 = 𝐴𝐹𝑆 − cos 𝜃 𝐴𝑊 (3.15)

𝑞1 =
−𝑦

𝑥2 + 𝑦2
 (
𝑆𝑒𝑛𝑑 𝑐𝑎𝑝

2𝜋
− 𝑅𝑧) 𝑧 < 0

𝑞2 =
𝑥

𝑥2 + 𝑦2
 (
𝑆𝑒𝑛𝑑 𝑐𝑎𝑝

2𝜋
− 𝑅𝑧) 𝑧 < 0

 𝑞3 = 0

(3.16)

22

On the dome, the vector field is

where 𝑆𝑒𝑛𝑑 𝑐𝑎𝑝 is the total surface area of the end cap and 𝐼(𝑧) is a function that depends on the

geometry of the end cap. For each end cap, these correspond to

For a derivation showing how the wetted energy formulas are obtained, see Appendix B.

Note that for the case of the superellipsoidal dome, 𝐼(𝑧) is left in terms of an integral since there

is no analytical solution to this integral. Instead, this integral is approximated using a cubic spline.

First, pulling out constants, normalizing z as 𝑧̅ =
𝑧

𝑧0
, and defining 𝐴𝑅 = (

𝑅

𝑧0
)
2

 to obtain an easier

integral to work with,

𝑞1 =
−𝑦

𝑥2 + 𝑦2
 (
𝑆𝑒𝑛𝑑 𝑐𝑎𝑝

2𝜋
− 𝐼(𝑧)) 𝑧 > 0

𝑞2 =
𝑥

𝑥2 + 𝑦2
 (
𝑆𝑒𝑛𝑑 𝑐𝑎𝑝

2𝜋
− 𝐼(𝑧)) 𝑧 > 0

 𝑞3 = 0

(3.17)

Hemisphere:
𝑆𝑒𝑛𝑑 𝑐𝑎𝑝

2𝜋
= 𝑅2 (3.18)

 𝐼(𝑧) = 𝑅𝑧 (3.19)

Ellipsoidal:
𝑆𝑒𝑛𝑑 𝑐𝑎𝑝

2𝜋
=
𝑅

2
(𝑅 +

sinh−1(𝑏𝑧0)

𝑏
) (3.20)

 𝑏2 =
𝑅2−𝑧0

2

𝑧04
, 𝐼(𝑧) = 𝑅 (

𝑧

2
√1 + 𝑏2𝑧2 +

sinh−1(𝑏𝑧)

2𝑏
) (3.21)

Superellipsoidal:
𝑆𝑒𝑛𝑑 𝑐𝑎𝑝

2𝜋
= 𝑅 𝐼(𝑧0) (3.22)

𝐼(𝑧) = 𝑅∫ (1 − (
𝑧

𝑧0
)
𝑛

)
1/𝑛

√1 + (
𝑅

𝑧0
)
2

(
𝑧

𝑧0
)
2𝑛−2

(1 − (
𝑧

𝑧0
)
𝑛

)

2
𝑛
−2

𝑑𝑧
𝑧

0

 (3.23)

Torispherical:
𝑆𝑒𝑛𝑑 𝑐𝑎𝑝

2𝜋
= 𝑟𝑠 [𝑧𝑐𝑟 + (𝑅 − 𝑟𝑠) sin

−1 (
𝑧𝑐𝑟
𝑟𝑠
)] + 𝑅𝐻(𝑧0 − 𝑧𝑐𝑟) (3.24)

𝐼(𝑧) = {

𝑟𝑠 [𝑧 + (𝑅 − 𝑟𝑠) sin
−1 (

𝑧

𝑟𝑠
)] 𝑧 < 𝑧𝑐𝑟

𝑟𝑠 [𝑧𝑐𝑟 + (𝑅 − 𝑟𝑠) sin
−1 (

𝑧𝑐𝑟
𝑟𝑠
)] + 𝑅𝐻(𝑧 − 𝑧𝑐𝑟) 𝑧 ≥ 𝑧𝑐𝑟

 (3.25)

23

Since small changes in z result in large changes to the integrand of 𝐼(𝑧) near the top of the dome,

the integral can be equivalently expressed in terms of r by the substitution

resulting in

However, this integral suffers from a similar problem near the junction, so each integrand is used

in the range of values where they are most accurate. The point at which this switch takes place is

(𝑟𝑐𝑟 , 𝑧𝑐̅𝑟) = (2−
1

𝑛, 2−
1

𝑛). The equations used to define the cubic spline representing 𝐼(𝑧̅) and 𝐼(𝑟)

are

where ceil(x) is the ceiling function, the coefficients 𝑎𝑖, 𝑏𝑖, 𝑐𝑖, and 𝑑𝑖 can be computed using the

MATLAB script found in Appendix C, the variable t ranges between 0 and 1 for each segment of

the spline, and the variable i is the index of the coefficient for that segment. For details of this

approximation, see Appendix B.

 𝐼′(𝑧̅) =
𝐼(𝑧̅ 𝑧0)

𝑅𝑧0
= ∫ (1 − 𝑧̅𝑛)1/𝑛√1 + 𝐴𝑅 𝑧̅2𝑛−2(1 − 𝑧̅𝑛)

2
𝑛
−2𝑑𝑧̅

𝑧̅

0

 (3.26)

 𝑧 = 𝑧0 [1 − ((
𝑥

𝑅
)
2

+ (
𝑦

𝑅
)
2

)

𝑛
2
]

1
𝑛

 (3.27)

 𝐼′(𝑟) = ∫ 𝑟√1 + 𝐴𝑅(1 − 𝑟𝑛)(2−
2
𝑛
)𝑟(2−2𝑛)

𝑟

0

 𝑑𝑟 (3.28)

 𝐼′(𝑧̅) = 𝑎𝑖
𝑧̅𝑡3 + 𝑏𝑖

𝑧̅𝑡2 + 𝑐𝑖
𝑧̅𝑡 + 𝑑𝑖

𝑧̅
𝑧

𝑧0
< 𝑧𝑐̅𝑟 (3.29)

 𝑡 = 𝑧 mod
𝑧0 𝑧𝑐̅𝑟
𝑁 𝑧̅ − 1

 (3.30)

 𝑖 = ceil (
𝑁 𝑧̅ − 1

𝑧0 𝑧𝑐̅𝑟
 𝑧) (3.31)

 𝐼′(𝑟) = 𝑎𝑖
𝑟𝑡3 + 𝑏𝑖

𝑟𝑡2 + 𝑐𝑖
𝑟𝑡 + 𝑑𝑖

𝑟 𝑟 > 𝑟𝑐𝑟 (3.32)

 𝑡 = 𝑟 mod
𝑟𝑐𝑟

𝑁𝑟 − 1
 (3.33)

 𝑖 = ceil (
𝑁𝑟 − 1

𝑟𝑐𝑟
 𝑟) (3.34)

24

 LIQUID TRAPPING ANALYSIS

For bare, axisymmetric tanks with these end cap geometries, there are three possible types

of propellant configurations: a spherical interface, a liquid ring, and an asymmetric droplet. The

first and simplest of these configurations is a spherical interface where the liquid forms a single

axisymmetric droplet. This results in the free surface of the liquid taking the form of a section of

a sphere. Configurations of this type are quite easy to compute analytically. For a given contact

line height, the necessary radius of the spherical interface can be computed to ensure the interface

intersects with the wall (either cylinder or end cap) at the appropriate contact angle. Once the exact

shape of the interface is known, it is a relatively simple geometry problem to compute the liquid

volume, free surface area, and wetted area, from which fill fraction and energy can be computed.

This analytical solution serves as a convenient method for verifying accuracy of the Surface

Evolver models and is also used to rapidly calculate solutions for this propellant configuration.

The second type of configuration is a liquid ring around the junction between the end cap

and cylinder. This propellant configuration is axisymmetric like in the case with a spherical

interface, but has a second contact line located higher on the end cap. Since there is no liquid at

the center of the end cap, no liquid can be drained, and the remaining propellant volume will be

trapped. It is also possible to develop analytic solutions for this propellant configuration. The

process is like the process for a spherical interface, however instead of spherical sections, sections

of either unduloids or nodoids are used to define the shape of the free surface. The MATLAB code

used to compute these solutions is listed in Appendix H. This method is useful for quickly

computing solutions for the liquid ring for a range of volumes and contact angles, though Surface

Evolver results are also used to verify accuracy of these results.

The third and final possible propellant configuration is an asymmetric droplet, which

encompasses any distribution without rotational symmetry. Though some of these distributions

have liquid at the center of the end cap allowing draining to occur, liquid will tend to coalesce at

the junction when draining for any non-spherical tank geometry. As a result, liquid trapping will

eventually occur even for distributions that are initially able to drain. Unlike the previous cases,

analytical solutions are not feasible, and so Surface Evolver must be used.

25

4.1 Specific Case: Characterization of Configurations

All propellant configurations are found for a range of contact angles and fill fractions for

one specific tank geometry to demonstrate how liquid trapping can occur. A 2:1 ellipsoidal end

cap, where the depth is half the radius, is chosen as it demonstrates all the most common propellant

distributions. This relatively short end cap accentuates the differences between an ellipsoidal end

cap and hemispherical end cap.

When calculating solutions for this tank geometry, analytical solutions are used instead of

Surface Evolver results whenever possible to speed up computations. As a result, energies for the

spherical interface and liquid ring are calculated analytically, while Surface Evolver is only used

for the asymmetric droplet. When fully converged, most of these asymmetric models use between

7,500 and 15,000 facets, depending on the fill fraction and contact angle. Configurations with low

volumes and low contact angles require more facets to fully converge, in some cases requiring

over 300,000 facets.

In general, it is possible for all three of these propellant configurations to exist for a single

combination of tank geometry, contact angle, and liquid volume. For example, in the case of a 2:1

ellipsoidal end cap at a contact angle of 20° and fill fraction of 0.06, either a spherical interface,

liquid ring, or asymmetric droplet is possible depending on the fluid history, as shown in Figure

4.1. Therefore, it is useful to characterize the range of existence for each propellant configuration,

which may overlap with each other. When calculating results for the asymmetric droplet using

Surface Evolver, contact angle is changed in increments of 1° and fill fraction in increments of

0.0005 until the boundary of the range of existence is found.

Figure 4.1. Possible configurations for a liquid volume inside a 2:1 ellipsoidal tank at a contact

angle of 20° and fill fraction of 0.06 are a spherical interface (left), liquid ring (middle), and

asymmetric droplet (right).

26

One method to visualize these results is to consider a single end cap geometry and label the

range of existence on a diagram with fill fraction and contact angle on the abscissa and ordinate,

respectively. Such a diagram is shown for the spherical interface with a 2:1 ellipsoidal end cap in

Figure 4.2, computed using the analytical solution for a spherical interface. Here, the region labeled

with a black S denotes the combinations of contact angles and fill fractions where a spherical

interface is possible, while the region labeled with a black NS denotes the opposite, where no

spherical interface is possible. A black curve separates these two regions, denoting the boundary

between them. The region where no spherical interface is possible is only marked NS here for

convenience, in all future diagrams of this style only the region of existence will be labeled. For

any spherical interface propellant configuration near this boundary, any change in fill fraction that

crosses the boundary causes the top of the bubble to touch the dome, resulting in the propellant

reorienting as a liquid ring.

27

Figure 4.2. Range of existence for spherical interface solutions inside a tank with a 2:1

ellipsoidal dome. In the region labeled S, spherical interface solutions are possible, while in the

region labeled NS no spherical interface solutions are possible.

A similar diagram can be made for the liquid ring, shown in Figure 4.3. The range of

existence for the liquid ring configuration is shown for a 2:1 ellipsoidal end cap, computed using

the analytical solution for a liquid ring configuration. The region labeled with a blue R denotes the

combinations of contact angle and fill fraction for which a liquid ring solution is possible, bounded

by the blue curve. For any combination of fill fraction and contact angle outside of this region, no

liquid ring solution is possible. For a liquid ring distribution on the right boundary, any further

increase in fill fraction would result in the radius of the upper contact line going to zero, causing

the propellant to reorient with a spherical interface. Likewise, on the left boundary, any decrease

in volume from a valid liquid ring solution would cause the ring to split, becoming an asymmetric

droplet.

28

Figure 4.3. Range of existence for liquid ring solutions inside a tank with a 2:1 ellipsoidal dome.

In the region labeled R, liquid ring solutions are possible, while outside of it no liquid ring

solutions are possible.

Finally, a diagram showing the range of existence for an asymmetric droplet in a 2:1

ellipsoidal end cap can be seen in Figure 4.4, computed using Surface Evolver. The region labeled

with a red A indicates the combinations of contact angles and fill fractions for which it is possible

for an asymmetric droplet to form in this tank geometry, and the red curve is the boundary of this

region. The boundary demonstrates a noticeable change in behavior near a contact angle of roughly

20°. This is due to a change in the type of instability exhibited by the asymmetric droplet. For an

asymmetric droplet with contact angle below roughly 20°, increasing the liquid volume past the

boundary results in the droplet extending around the junction between the end cap and cylinder,

becoming a liquid ring. However, for an asymmetric droplet with contact angle above roughly 20°,

increasing the liquid volume past the boundary results in the droplet shifting towards the center of

29

the dome, becoming a droplet with a spherical interface. Examples of asymmetric droplets near

the boundary in each of these states can be seen in Figure 4.5.

Figure 4.4. Range of existence for asymmetric droplet solutions inside a tank with a 2:1

ellipsoidal dome. In the region labeled A, asymmetric droplet solutions are possible, while

outside of it no asymmetric droplet solutions are possible.

30

Figure 4.5. An asymmetric droplet with a contact angle of 10° and fill fraction of 0.0095 (left)

and an asymmetric droplet with a contact angle of 45° and fill fraction of 0.129 (right) in a tank

with 2:1 ellipsoidal end caps. For the lower contact angle case, a small increase in fill fraction

would cause the propellant to transition to a liquid ring, while for the higher contact angle case it

would cause the propellant to reorient with a spherical interface.

The diagrams in Figure 4.2, Figure 4.3, and Figure 4.4 can be combined into a single figure

to show the overlap in range of existence for each type of propellant configuration. Such a diagram

is shown in Figure 4.6 for the 2:1 ellipsoidal end cap. A black S denotes any region where a

spherical interface can exist, a blue R denotes any region where a liquid ring can exist, and a red

A denotes any region where an asymmetric droplet can exist. For example, in the region labeled

SRA, all three solution types are possible, while in the region labeled SA, both spherical and

asymmetric solutions are possible, but not a liquid ring. Some insights can readily be drawn from

this diagram, such as the fact that only the spherical interface solution can exist at high liquid

volumes where the contact line is far from the end cap, or that the liquid ring solutions are more

prevalent at low contact angles, where the propellant can more easily wick into the corner at the

junction. Interestingly, the region where the liquid ring exists fully covers the region where a

spherical interface does not exist, meaning some form of axisymmetric solution is always possible.

This also implies that there is no region where exclusively asymmetric droplet solutions are

possible.

31

Figure 4.6. Range of existence for each propellant configuration in a tank with 2:1 ellipsoidal

end caps. In regions labeled with S, spherical interface solutions are possible, in regions labeled

with R, liquid ring solutions are possible, and in regions labeled with A, asymmetric droplet

solutions are possible.

For the special case of a 0° contact angle propellant, which is a good approximation for many

traditional propellants, there is no overlap in the range of existence for each propellant

configuration. There is only one solution type possible for a given fill fraction: at low fill fractions,

only the liquid ring solution is possible, while at high fill fractions only the spherical interface

solution is possible. As a result, the range of existence for all propellant configurations at a 0°

contact angle can be found easily by using only the analytical solution for a spherical interface.

This remains true regardless of end cap geometry, so long as the tank is axisymmetric and has no

vanes.

32

4.2 Specific Case: Filling and Draining

This type of diagram can be used to better understand liquid behavior during filling and

draining by assuming a slow, quasistatic process. Since only liquid volume changes during filling

and draining, these processes can be represented on the diagram as a horizontal line moving left

or right at constant contact angle. Assuming no major perturbations, the type of propellant

configuration will remain the same during the draining or filling process up until that configuration

type no longer exists, at which point the propellant will reconfigure to one of the other types. If

multiple other solution types exists when the propellant is forced to reconfigure in this way, the

new configuration will depend largely on the type of instability present in the previous

configuration. For example, when starting with a spherical interface and draining, the only way a

further decrease in volume could make a spherical interface impossible is when the top of the

bubble touches the dome, which would result in a transition to the liquid ring.

An example of draining can be seen in Figure 4.7, where the horizontal arrow represents the

draining process of a propellant with contact angle of 45° that starts at a fill fraction of 0.15. Since

the initial volume is a spherical interface, and there exist valid configurations with a spherical

interface at every point along this line, the liquid will remain in the spherical interface

configuration and no liquid trapping will occur. A similar example of draining can be seen in

Figure 4.8, where a lower contact angle of 25° is considered with the same starting fill fraction of

0.15. The configuration starts with a spherical interface and remains spherical as it drains until it

reaches (1), at which point no spherical interface solution exists. Since the bubble touching the top

of the dome is the reason no spherical interface solution exists beyond this point, the propellant

reconfigures as a liquid ring. At this point, the remaining propellant volume is trapped away from

the drain hole, and so in a spacecraft no further liquid would be drained. If the liquid volume were

to be decreased further, the liquid ring would shrink until reaching (2), at which point no liquid

ring solution exists. The liquid ring breaks apart, becoming an asymmetric droplet and remaining

that way as volume goes to zero.

33

Figure 4.7. An example draining procedure for a tank with 2:1 ellipsoidal end caps containing a

liquid with 45° contact angle is overlaid on a diagram showing range of existence for each

propellant configuration.

34

Figure 4.8. An example draining procedure for a tank with 2:1 ellipsoidal end caps containing a

liquid with 25° contact angle is overlaid on a diagram showing range of existence for each

propellant configuration.

A similar analysis can be carried out to consider filling in zero gravity, as might occur when

refueling. In Figure 4.9, the tank starts empty and fills with a propellant with a contact angle of

45°. Assuming the tank fills from the center of the dome, a droplet with a spherical interface will

form around the inlet. As the tank continues to fill, this droplet will grow, maintaining a spherical

interface until filled to the desired level. A similar process occurs in Figure 4.10, except this time

a propellant with a lower contact angle of 25° is used. Again, as the tank begins to fill, a droplet

with a spherical interface forms near the inlet. As the droplet grows, the interface remains spherical

until (1), at which point the top of the bubble touches the dome, resulting in a reconfiguration to a

liquid ring. If more liquid is added, a new droplet will form at the inlet with a spherical interface,

which will grow until the contact line reaches the upper contact line of the liquid ring. Once the

35

two liquid volumes meet, they combine, increasing the volume of the liquid ring. Adding more

liquid will result in this process repeating, forming a new spherical interface droplet that grows

and joins the liquid ring until reaching (2), at which point a liquid ring solution is no longer possible.

This occurs because the radius of the upper contact line goes to zero, causing the propellant to

reconfigure as a droplet with a spherical interface. The propellant configuration will remain a

spherical interface as more propellant is added until the desired level is reached. Therefore, care

should be taken when designing vanes if refueling is required to ensure that either the liquid does

not form multiple volumes during the filling procedure, or that enough propellant is added to force

the formation of a spherical interface.

Figure 4.9. An example filling procedure for a tank with 2:1 ellipsoidal end caps containing a

liquid with 45° contact angle is overlaid on a diagram showing range of existence for each

propellant configuration.

36

Figure 4.10. An example filling procedure for a tank with 2:1 ellipsoidal end caps containing a

liquid with 25° contact angle is overlaid on a diagram showing range of existence for each

propellant configuration.

4.3 Specific Case: Minimum Energy

In addition to computing the range of existence for each type of solution, the energies of

each configuration can be compared to determine the minimum energy solution for a given

combination of fill fraction, contact angle, and tank geometry. Such a plot is shown for the 2:1

ellipsoidal dome in Figure 4.11. The notation used here is like that used in the range of existence

plots, where a black S denotes the combinations of fill fraction and contact angle for which a

spherical interface is the minimum energy, a blue R denotes the combinations for which a liquid

ring is the minimum energy, and a red A denotes the combinations for which an asymmetric droplet

is the minimum energy.

37

Figure 4.11. Minimum energy propellant configurations for a tank with 2:1 ellipsoidal end caps.

The region marked with S denotes the combinations of fill fraction and contact angle where a

spherical interface is the minimum energy, the region marked with R denotes the combinations

where a liquid ring is the minimum energy, and the region marked with A denotes the

combinations where an asymmetric droplet is the minimum energy.

Interestingly, for low volumes the spherical interface is never the minimum energy solution,

indicating that low volume spherical interface solutions may be particularly susceptible to

perturbations. This is particularly noteworthy because liquid trapping occurs in all propellant

configurations besides spherical, suggesting that particular care needs to be taken when designing

vanes to ensure that liquid is held near the outlet even at low volumes.

The energies are computed analytically for the spherical interface and liquid ring and using

Surface Evolver for the asymmetric droplet. Since the free surface in Surface Evolver is discretized

and not exact, the energy computed using Surface Evolver will be a bit higher than its true value.

This result is then compared directly with the exact energies computed analytically for the

38

spherical interface and liquid ring, which will result in some error in the location of the minimum

energy boundary. The true surface can be better approximated by using more facets, especially

when the free surface has high curvature or when discretization errors in volume calculations are

large relative to the overall volume, as is the case at low fill fractions. The result of this error can

be estimated by further refining the surface after fully converged and iterating until the new surface

is fully converged. The new energy can then be compared to the analytical solutions to find a more

accurate estimate of the minimum energy boundary. This process is done manually for contact

angles of 10°, 30°, 50°, and 70°, and it is found that the effect of this error is negligible, with the

boundary fill fraction increasing by a maximum of 0.0005.

The range of existence diagram and minimum energy diagram shown above can be

combined into a single plot to see relationships between the two. The two are combined in Figure

4.12, however the region labels are omitted for legibility. The solid lines define the boundaries for

range of existence of each type of propellant configuration, while the dashed lines are the boundary

between the minimum energy solutions for each type of configuration. One notable thing about

this diagram is that the boundary for range of existence of an asymmetric droplet is consistently

close to its boundary for minimum energy. This is because the energy of the asymmetric droplet

is almost always near the global minimum energy. If an asymmetric droplet is possible, it will

always be the minimum energy or close to the minimum energy. This is not true for the liquid ring,

which for some combinations of fill fraction and contact angle can exist at a much higher energy

than the minimum energy solution. This is shown in the large disparity in size of the range of

existence compared to minimum energy for a liquid ring. Meanwhile, the spherical interface is

only near the minimum energy when neither of the other two solutions exist, limiting the minimum

energy region for the spherical interface to only high fill fractions, despite its existence at low fill

fractions.

39

Figure 4.12. Range of existence and minimum energy for a tank with 2:1 ellipsoidal end caps are

overlaid on the same diagram. Solid lines denote boundaries for range of existence, while dashed

lines denote boundaries for minimum energy.

4.4 Specific Case: Energy vs Fill Fraction

Considering a single contact angle can help understand the relationship between range of

existence and minimum energy for each propellant configuration. Energy is plotted against fill

fraction at a contact angle of 15° in Figure 4.13 for each propellant configuration, omitting the

constant factor in Equation 2.1. The range of existence for each type of configuration can be seen

as well as the minimum energy configuration. This plot provides additional information in the

form of the energy difference between configurations, which corresponds roughly to the instability

of a configuration. The energy difference is plotted against fill fraction in Figure 4.14 to make

these differences easier to see. At low fill fractions, the spherical interface configuration has a

much higher energy than either the asymmetric droplet or liquid ring. Therefore, even though it

40

may be possible for a spherical interface to form at low fill fractions, such configurations may be

particularly unstable and susceptible to perturbations. This is especially noteworthy because the

spherical interface is the only configuration that does not exhibit liquid trapping, showing the need

for special care to be taken when designing vanes to avoid liquid trapping at low fill fractions.

Figure 4.13. Energy vs fill fraction for each propellant configuration with a 15° contact angle in a

tank with 2:1 ellipsoidal end caps.

41

Figure 4.14. Energy difference relative to the minimum energy vs fill fraction for each propellant

configuration with a contact angle of 15° in a tank with 2:1 ellipsoidal end caps.

4.5 Other Geometries

In addition to the detailed analysis performed for the 2:1 ellipsoidal end cap above, solutions

are computed for several other tank geometries to evaluate trends in trapping behavior. A 4:3

ellipsoidal end cap (with depth equal to 0.75 times the radius), 2:1 superellipsoidal end cap with

exponent n = 3, 4:3 superellipsoidal end cap with n = 3, 2:1 torispherical end cap with rN = 0.6,

and 4:3 torispherical end cap with rN = 0.6 are also considered. These tank geometries can be seen

in Figure 4.15. Results are computed for a spherical interface, liquid ring, and asymmetric droplet

for each end cap geometry. The energies for each solution are compared to determine the minimum

energy configuration for a given fill fraction and contact angle. The full range of existence is not

computed for each propellant configuration since special care is required for Surface Evolver to

converge when the configuration is barely stable, as is the case at the edge of a configuration’s

range of existence.

42

Figure 4.15. Ellipsoidal, superellipsoidal, and torispherical end cap geometries considered.

A larger increment in contact angle and fill fraction is used to obtain results for the increased

number of end cap geometries. Contact angle starts at 5°, increasing in 5° increments until 90°.

Fill fraction starts at 0.005, increasing in increments of 0.005 until the spherical interface

represents the minimum energy solution. Surface Evolver is used to compute liquid ring and

asymmetric droplet solutions for each geometry, while the analytical solution is used for the

spherical interface to save computation time. Results for a contact angle of 0° are computed

analytically using the methods discussed in Section 4.1. Since the Surface Evolver results are

discretized, the computed energies are higher than their true values. These approximate energies

for the liquid ring and asymmetric droplet are compared directly with the exact energies from the

analytical spherical interface solution, so the minimum energy boundaries presented here will be

shifted slightly from their true values. While this error source is also present in the discussion of

the 2:1 ellipsoid in Section 4.3, it is far more pronounced here since all models use exactly 1088

43

facets each, roughly a factor of 10 less than those used previously. However, due to the increased

fill fraction step size, the result of this error is still estimated to be less than the increment in fill

fraction.

Figure 4.16 shows the minimum energy propellant configuration for a 2:1 superellipsoidal

end cap with n = 3. The notation used is the same as Figure 4.11, where a black S represents the

combinations of fill fraction and contact angle where the spherical interface is the minimum energy

solution, a blue R denotes the region where the liquid ring is the minimum energy solution, and a

red S denotes the region where the asymmetric droplet is the minimum energy solution. The curve

separating these regions is the boundary at which two different configurations have the same

energy. Horizontal error bars on the boundary represent the size of the fill fraction increment used.

Similar diagrams for the other end cap geometries discussed in the section can be seen in Appendix

A.

44

Figure 4.16. Minimum energy propellant configurations for a tank with 2:1 superellipsoidal end

caps with n = 3. The region marked with S denotes the combinations of fill fraction and contact

angle where the spherical interface is the minimum energy, the region marked with R denotes the

combinations where the liquid ring is the minimum energy, and the region marked with A

denotes the combinations where the asymmetric droplet is the minimum energy. The horizontal

error bars show the fill fraction step size.

An interesting comparison can be made regarding the behavior of propellant in end caps

with depth z0 = 0.5. The minimum energy configurations for these end caps can be seen in Figure

4.16 and Figure A.1 of Appendix A, along with the minimum energy for the 2:1 ellipsoidal end

cap which can be seen in Figure 4.11. These diagrams are combined into one figure in Figure 4.17,

with the different color curves representing the boundary for the corresponding end cap geometry.

The same general trends can be observed for each geometry, with the spherical interface as the

minimum energy for high volumes, asymmetric droplet as the minimum for low volumes, and the

liquid ring solution as the minimum energy for low contact angles, with fill fraction nestled

45

between the two. The behavior exhibited by the torispherical end cap is very similar to that of the

ellipsoidal end cap. This is largely due to the torispherical knuckle radius being specifically chosen

to result in nearly the same geometry as the 2:1 ellipsoidal end cap. Even though the geometries

are nearly identical, there are some discrepancies that are discernible even with the relatively large

steps in fill fraction and contact angle used. This indicates that mean curvature, which differs more

substantially between these two geometries, plays a notable role in the boundaries of the minimum

energy propellant configuration. Compared to the ellipsoidal and torispherical end cap, the

superellipsoidal end cap has a more prominent liquid ring region. This is due to the tighter corner

at the junction, which allows for higher volume liquid ring solutions to wick into the junction. The

boundary between spherical interface and asymmetric droplet solutions is quite similar for all cases.

At high contact angles, the boundary for the superellipsoidal end cap deviates from the other two,

transitioning to a spherical interface at a lower fill fraction. This indicates that the asymmetric

droplet is less stable at high fill fractions for the superellipsoidal end cap than for the ellipsoidal

or torispherical end caps.

46

Figure 4.17. Minimum energy configurations for tanks with 2:1 ellipsoidal, superellipsoidal, and

torispherical end caps overlaid on the same diagram. The region marked with S denotes where

the spherical interface is the minimum energy, R where the liquid ring is minimum, and A where

the asymmetric droplet is minimum. The blue curve is the boundary for the tank with ellipsoidal

end caps, the red curve is the boundary for the tank with superellipsoidal end caps, and the

yellow curve is the boundary for the tank with torispherical end caps.

A similar comparison can be performed for an end cap depth of z0 = 0.75. Minimum energy

diagrams for each individual end cap geometry can be seen in Figures A.2, A.3, and A.4 of

Appendix A. These diagrams are combined into a single diagram in Figure 4.18, showing the

minimum energy configuration for each end cap geometry. The same trends as discussed before

can be seen, with the spherical interface solution representing the minimum energy at large fill

fractions, the asymmetric droplet representing the minimum at low fill fractions, and the liquid

ring representing the minimum between the two at low contact angles only. The most noticeable

effect of increasing the end cap depth to 0.75 is decreasing the prominence of liquid ring solutions.

47

By increasing the end cap depth, the curvature at the junction decreases. As a result, liquid is

wicked into the junction less strongly, causing the liquid ring configuration to be less stable for

end cap geometries with z0 = 0.75 than with z0 = 0.5. Between the three end cap geometries here,

the superellipsoidal end cap has the most prominent liquid ring region, followed by the ellipsoidal

end cap, then torispherical end cap. The liquid ring region is most prominent for the

superellipsoidal end cap since it has a tighter corner at the junction, while the torispherical end cap

has the least prominent liquid ring region because it has the lowest curvature at the junction. The

differences in the liquid ring region are more significant for the deeper end caps, however this is

primarily because the end cap geometries themselves differ more for the z0 = 0.75 end caps. The

boundary between the spherical interface and asymmetric droplet minimum energy configurations

is similar for all three cases, though they deviate a bit, particularly at high contact angle and fill

fraction. This deviation is most significant for the superellipsoidal end cap, indicating that the

asymmetric droplet is less stable for large volumes in the superellipsoidal end cap than for the

ellipsoidal or torispherical end cap.

48

Figure 4.18. Minimum energy configurations for tanks with 4:3 ellipsoidal, superellipsoidal, and

torispherical end caps overlaid on the same diagram. The region marked with S denotes where

the spherical interface is the minimum energy, R where the liquid ring is minimum, and A where

the asymmetric droplet is minimum. The blue curve is the boundary for the tank with ellipsoidal

end caps, the red curve is the boundary for the tank with superellipsoidal end caps, and the

yellow curve is the boundary for the tank with torispherical end caps.

49

 LIQUID TRAPPING SUMMARY

The problem of liquid trapping is analyzed using analytical methods and Surface Evolver.

Results are computed and analyzed for bare, vaneless tanks with ellipsoidal, superellipsoidal, and

torispherical end caps. For these geometries, three different possible propellant configurations are

identified: a spherical interface, a liquid ring, and an asymmetric droplet. Propellant configurations

in these tank geometries are computed using Surface Evolver for a wide range of fill fractions and

contact angles. Detailed results are computed for the case of a tank with 2:1 ellipsoidal end caps,

which are used to discuss range of existence and minimum energy configurations for each solution

type. Propellant filling and draining behavior are also discussed for this end cap geometry. Results

for other end cap geometries are compared to evaluate general trends in minimum energy liquid

configurations.

50

 ROTATIONAL SLOSH INTRODUCTION

Each tank inside the rotational slosh payload will contain one of two liquids. The first is

silicone oil, which is a nontoxic liquid that has a contact angle near 0° when used with acrylic.

Most traditional propellants have contact angles near 0° as well, making it an excellent option for

simulating these propellants. The other liquid that will be used is tripropylene glycol diluted with

water, which is also nontoxic and easy to work with. The contact angle of tripropylene glycol when

used with acrylic varies depending on the level of dilution but will be chosen so the contact angle

is near 20°. Tripropylene glycol is a good point of comparison for propellants with non-zero

contact angle such as hydrogen peroxide and more recent green propellants while also serving as

a great benchmark for computational models.

Before the start of the experiment, the tanks are initially rotated 22.5° from the vertical. The

experiment then waits to receive power from SpaceShipTwo, at which point the Arduinos used to

control the electronics will power on and turn the cameras and accelerometer on. The

accelerometer will then begin recording data, waiting for a sustained period of near zero gravity

to indicate the start of the experiment. At this point the cameras are triggered to begin recording,

and, after allowing the liquid to reach equilibrium, the first tank rotations can occur. The tanks

rotate 45°, ending up at 22.5° opposite their starting location, mirrored about the vertical. The tank

rotations will occur at one of two speeds about an axis perpendicular to the longitudinal axis going

through either the middle of the tank or top of the tank. There will be 20 seconds between rotations

to allow time for the liquid slosh to dampen and return to its equilibrium position. Sloshing

behavior of fluids in microgravity is very difficult to predict, so the waiting time between rotations

is chosen based on experience from previous low gravity fluid experiments, though may be subject

to updating based on ground testing of the payload. The first rotation will be slow and about the

middle pivot, holding for 20 seconds at the new location before rotating back to their original

location at the faster speed, still rotating about the middle pivot. After waiting for oscillations to

dampen again, the process is repeated for the other pivot about the top of the tanks. This process

is then repeated until zero-g time concludes. Once the accelerometer detects acceleration consistent

with the end of zero-g time, the motors will stop, and the cameras will stop recording and power

off.

51

An order of magnitude estimate for tank rotation speed can be found by scaling satellite data.

The propellant slosh inside the tanks is driven primarily by the acceleration experienced by the

liquid in response to tank rotation, so the angular acceleration α will be one of the most important

quantities to consider. Other relevant variables are the rotational velocity Ω, tank radius R, fluid

kinematic viscosity ν, density ρ, and surface tension σ. Using the Buckingham π theorem gives

three nondimensional quantities, one roughly equivalent to a Bond number, another roughly

equivalent to a Reynolds number, and the last roughly equivalent to a Weber number. These

equivalences can be shown by noting that velocities inside the tank are proportional to RΩ and

accelerations to Rα.

The satellite angular velocity and tank radius could be obtained for NASA’s Plankton,

Aerosol, Cloud, ocean Ecosystem (PACE) satellite, but not the angular acceleration or fluid

properties. Experimental payload tank angular velocities are computed based on the Reynolds

number and Weber number assuming the fluid properties are of the same order of magnitude for

both the experiment and PACE. The subscript exp represents variables for the experimental

payload and the subscript PACE represents variables from the PACE satellite.

A very rough estimate for the angular acceleration of the PACE satellite can be obtained by

combining rotation rates with an estimate for thruster fire duration and assuming a single firing of

a thruster accelerates the satellite to its maximum rotational velocity. An experiment on the PACE

propulsion subsystem recorded thruster firing data for a few seconds (Mikhailovsky, Stahl, &

Mulkey, 2020), indicating that the fire length is of a similar order of magnitude. Assuming the

Π1 =
𝜌𝑅3𝛼

𝜎
~
𝛥𝜌𝑅2𝑎

𝜎
= 𝐵 (6.1)

Π2 =
𝑅2Ω

𝜈
~
𝑅𝑢

𝜈
= 𝑅𝑒 (6.2)

Π3 =
𝜌𝑅3Ω2

𝜎
~
𝜌𝑅𝑢2

𝜎
= 𝑊𝑒 (6.3)

(Ω𝑒𝑥𝑝)2 = (
𝑅𝑃𝐴𝐶𝐸
𝑅𝑒𝑥𝑝

)

2

Ω𝑃𝐴𝐶𝐸 = 40°/sec (6.4)

(Ω𝑒𝑥𝑝)3 = (
𝑅𝑃𝐴𝐶𝐸
𝑅𝑒𝑥𝑝

)

3/2

Ω𝑃𝐴𝐶𝐸 = 10°/sec (6.5)

52

thrust from the thruster is constant during its fire time, 𝛼 =
Ω

𝑡
 can be substituted into the equation

for Π1. The experimental payload tanks likely take between 0.01 s and 0.1 s to accelerate to full

speed, which can be used to estimate the angular acceleration of the experimental payload tanks.

A scaling based on Bond number can then be performed to estimate the tank rotation rate.

The lower bound of this range corresponds to the assumption that the experimental payload

tanks take 0.01 s to fully accelerate, while the upper bound assumes that the tanks take 0.1 s to

fully accelerate. These results are of the same order of magnitude as those computed using the

Reynolds number and Weber number, lending some confidence to these approximate results. As a

result, tank rotation rates of 10°/s and 40°/s were chosen to be the fast rotation speed and slow

rotation speed, respectively.

6.1 Low Gravity Slosh Modeling

The problem of liquid sloshing in low gravity is complex and difficult to handle analytically.

As discussed in the liquid trapping sections, analysis of even static cases can be difficult in low

gravity, where the dominance of surface tension and wetting can result in a highly curved free

surface. The problem is even more complicated in the dynamic case, where analytical solutions

are nearly impossible. Those that do exist require very strong simplifying assumptions to obtain

any results, and most works that discuss low-g sloshing focus on linear slosh, neglecting rotational

slosh entirely. Analytical treatment of the topic generally requires assuming that the flow is

inviscid and incompressible, and only subject to small perturbations, allowing the problem to be

reduced to a tractable form. Results can only be obtained for the simplest tank geometries due to

the complex boundary conditions involved. However, these analytical solutions only predict the

natural frequencies of the sloshing motion and does not predict any damping at all (Reynolds &

Satterlee, 1966). These results can be used to find an equivalent mechanical model to which linear

damping can be added if rough estimates of damping times are required, though it is unclear how

accurate such an approximation is (Dodge & Garza, 1967).

Π1 =
𝜌𝑅3𝛼

𝜎
=
𝜌𝑅3Ω

𝜎𝑡
 (6.6)

(Ω𝑒𝑥𝑝)1 =
𝑡𝑒𝑥𝑝

𝑡𝑃𝐴𝐶𝐸
(
𝑅𝑃𝐴𝐶𝐸
𝑅𝑒𝑥𝑝

)

3

Ω𝑃𝐴𝐶𝐸 = 4.7°/sec − 47°/sec (6.7)

53

As a result, a different approach needs to be taken to consider real world tank geometries

and to estimate damping. CFD is a particularly attractive option, as it allows prediction of the full

3D fluid motion without the need for strong simplifying assumptions. However, this benefit does

come at the cost of significant computation time. To help build confidence in results, more

experimental data needs to be gathered to compare to CFD. One recent example of the success of

this approach is the NASA SPHERES-Slosh Experiment. The SPHERES-Slosh experiment flew

on the International Space Station and was used to collect long term linear slosh behavior for

liquids in propellant tanks in response to acceleration. Acceleration history of the tank was

recorded during the experiment, which could be used as an input to CFD models. A CFD model

using data from the SPHERES-Slosh experiment shows general agreement with experimental

results but is not able to completely capture the details of the fluid motion (Lapilli, et al., 2015). A

later analysis of the SPHERES-Slosh data by members of the same group using a different CFD

model yielded similar results (Kirk, Storey, Marsell, & Schallhorn, 2017). These results are

consistent with other studies comparing CFD to experiment, where CFD can capture general trends

and some of the details of fluid motion, but significant discrepancies remain (Walls, Kirk, de Luis,

& Haberbusch, 2011). While these results demonstrate how CFD can be used effectively when

modeling low-g slosh, they also show some of its limitations. Currently, the complete physics of

how fluids behave in low gravity is not fully understood, being unable to account for phenomena

such as contact angle hysteresis. For these reasons, many more low gravity fluids experiments will

be required so they can continue to provide test cases for CFD models. One avenue that has had

minimal exploration yet is low-g sloshing in response to tank rotations about an axis perpendicular

to the longitudinal axis. No major experimental or numerical studies have been performed

investigating liquid response to this motion, despite applicability to satellite pointing maneuvers.

There is little reason to expect CFD models to handle rotational sloshing significantly differently

than linear sloshing, the only thing lacking is experimental data.

54

 ROTATIONAL SLOSH EXPERIMENT DESIGN

Several design constraints are imposed on the experiment design by Virgin Galactic to

operate on SpaceShipTwo. The two that are the most significant drivers of experiment design are

the volume and weight limits. The maximum dimensions of the experiment, including payload box,

are 18.50” W x 11.25” H x 21.50” D (Virgin Galactic, 2019). This is what drove the separation of

the experiment into a tall and short side, using mirrors to view tanks on the opposite side. Mirrors

allow the cameras to be located out of the way of other components while still being sufficiently

far from the tanks to have each camera able to see two tanks without a high field of view lens that

would introduce necessary distortion. A sketch of the experiment layout is shown in Figure 7.1.

The weight limit for the experiment, including the payload box, is 50 lbs. (Virgin Galactic, 2019).

Since the payload box design is not yet finalized, a conservative estimate of 20 lbs. is assumed,

leaving a 30 lbs. weight budget for the rest of the experiment. This had to be considered for every

component designed, most of which feature additional holes solely for weight reduction purposes.

Though not as significant to overall experiment design, the maximum power draw of 50 W at

24-28 V (Virgin Galactic, 2019) serves as a constraint on the electrical system that had to be

accommodated.

Figure 7.1. A sketch of the experiment layout.

55

7.1 Mechanical Design

7.1.1 Tank Design

The tank and vane geometries are scaled down from the propellant tanks used on the Cassini

mission, which are typical of interplanetary satellite tanks. The design is also not export controlled,

making it convenient to serve as a basis for the tank design in this experiment. The Cassini tanks

have a diameter of 0.62 m (Enright & Wong, 1994), while the tanks used in this experiment have

a diameter of 1.33”, resulting in a scaling factor of 18.35. The tanks have two hemispherical end

caps joined by a cylindrical section. Eight vanes are placed inside the tank to hold propellant near

the outlet, shown in Figure 7.2. The bottom of each individual vane lies flush against the

hemispherical tank wall, shown in Figure 7.3. No filling or draining occurs through the outlet since

the propellant volumes are fixed during flight. Instead, the tanks are filled while on the ground

through a hole on the top of the tanks and sealed with a screw and gasket to prevent leakage. The

vanes are fixed to the end cap using a wire inserted from the side of the tank, which is kept in place

by gluing a small acrylic rod in from the side. Additional glue is added at the base of the vanes to

prevent twisting. Both features can be seen in Figure 7.3. Each half of the tank is glued together

once the vanes are fixed in place, then polished to ensure clear view of the liquid inside. Acrylic

brackets are glued to the tanks, which are used to hold bolts running the length of the tank to ensure

that the two tank halves do not separate during flight, which would leak liquid inside the

experiment. The brackets are also used to mount the tanks to an aluminum backplate, which is

shown along with the brackets in Figure 7.4. Slots are added to the top and bottom of the tank

CAD model to serve as additional weight reduction if needed. These will only be machined if the

total weight exceeds the weight limit and can be seen in Figure 7.4. The two outer tanks require

chamfers on their outer edges to ensure the tanks fit completely within the second containment

when rotated. Figure 7.5 shows the rotated tanks relative to the second containment wall.

56

Figure 7.2. A CAD model of one of the tanks and PMD vanes used on this experiment.

Figure 7.3. A section view of the tank demonstrating how the vanes lie flush against the tank

wall and how the vanes are connected to the tank.

57

Figure 7.4. A tank with mounting hardware attached.

Figure 7.5. Tanks rotated inside the second containment, demonstrating the need for chamfers on

the outer two tanks.

7.1.2 Moving Components

The tank backplates are attached to the rest of the assembly by two pivots that are used to

rotate the tanks. One pivot is a simple hole located at the center of the backplate, while the other

is a slot located near the top of the tank and can be seen in Figure 7.6. The pivots are each attached

to bars that can move independently from side to side. By moving one bar horizontally while

holding the other stationary, the tanks can be rotated about either pivot. The tanks are attached to

the bar using shoulder bolts, providing a smooth surface to help minimize friction. To further

minimize friction, PTFE washers are used on either side of the backplate, helping ensure consistent

tank rotation. A section view is shown in Figure 7.7.

58

Figure 7.6. Rear view of the tank mounting plate showing the two pivots that are used to rotate

the tank.

Figure 7.7. A section view of a tank and mounting plate showing the shoulder bolts and PTFE

washers.

Each bar is attached to a stationary truss wall located on the opposite side of the tanks. Two

linear guides per bar are used to affix the bars to the truss wall, with the rail attached to the bars

and guide attached to the truss wall. The locations of the linear guides can be seen in Figure 7.8,

and the way they interface with the truss wall is shown in Figure 7.9. A view of how the bars move

59

when the tanks are rotated can be seen in Figure 7.10. Ball bearings fit between the rail and guide

to minimize friction and allow smooth translation of the bars. The two bars interface with the

motors by means of a rack and pinion. The rack is screwed onto the bars, while the pinion is

attached to the motor gearbox output. The motors are oriented in opposite directions to reach each

bar as shown in Figure 7.11. The motors themselves are attached to the truss wall using a custom

machined bracket that is screwed onto the end of the gearbox, shown in Figure 7.12.

Figure 7.8. Bar assembly orientation and linear guide positioning.

Figure 7.9. Truss wall location and attachment to linear guides.

60

Figure 7.10. Bar assembly position when tanks are rotated.

Figure 7.11. Motor attachment to the truss wall and rack and pinion interface with the bar

assemblies.

Figure 7.12. Closeup of a motor mount.

61

Limit switches provide absolute positional feedback to rotate the motors consistently. Four

limit switches are attached to each truss wall for a total of eight, one for each direction and for

each bar. An extension on each bar slides inside the limit switch, interrupting a laser and sending

a signal to the Arduinos controlling the motors, which then stops the motor rotation. This set up is

shown in Figure 7.13.

Figure 7.13. Limit switch mounting and interface with the bar assembly.

7.1.3 Structural Components

The truss wall is attached to three pylons, which rigidly connect the whole assembly to a

baseplate and serve as mounting points for the cameras and mirror brackets. This is also where the

asymmetries between the tall and short side become noticeable. For the tanks to be visible to the

opposite side’s cameras, the entire assembly discussed up to this point, including the truss wall,

tanks, motors, and bar assemblies, are located at different heights for each side. On the tall side,

tanks are placed near the top of the payload box and away from the baseplate as shown in Figure

7.14, while on the short side the tanks are placed near the baseplate, as shown in Figure 7.15. This

allows the height of the mirrors to align with the height of the tanks on the opposite side, as shown

in Figure 7.16. Cameras are attached to the top of the tall side middle pylon using a custom

machined aluminum bracket, while the mirror brackets are attached near the bottom of the tall side

middle pylon and can be seen in Figure 7.17. The short side assembly is the exact opposite, with

the cameras attached to the bottom of the middle pylon, while the mirror brackets are attached to

the top, shown in Figure 7.18. The pylons on the left and right of the short side assembly also have

62

notches removed from their bases to accommodate the dimensions of the payload box, which will

be discussed in more detail in the second containment section.

Figure 7.14. Tall side pylon attachment to truss wall.

Figure 7.15. Short side pylon attachment to truss wall.

63

Figure 7.16. Orientation of the two side assemblies relative to each other.

Figure 7.17. Camera and mirror attachment to the tall side middle pylon.

64

Figure 7.18. Camera and mirror attachment to the short side middle pylon.

Due to their large size, special care had to be taken to minimize the weight of the pylons and

truss walls. As much material is removed as possible from these components by adding pockets,

leaving only material where needed. An example of this is shown in Figure 7.19 for the tall side

middle pylon. For each camera to have an unobstructed view of two tanks on the opposite side,

the mirror brackets must be angled outward since they are closer to the middle pylon than the tanks

that they need to view. Initial estimates for the required angles are estimated using the CAD model

and known camera field of view and dimensions. The parts involved are then 3D printed to test

the angles with the actual camera and lens. Based on the camera view, angles are iteratively

adjusted until the entirety of the opposing tanks could be seen. This method helped minimize

uncertainty, lending more confidence to the mirror setup. Another problem faced by the mirror

brackets is that they are relatively thin and span far from the middle pylon from a cantilevered

support. This led to concerns regarding vibrations in the mirror brackets during launch. A cursory

vibration analysis using SolidWorks resulted in the addition of stiffening ribs to ensure the natural

frequencies of the mirror bracket are outside the range of those that will be experienced during

launch. These stiffening ribs are shown in Figure 7.20.

65

Figure 7.19. Tall side middle pylon weight reduction holes.

Figure 7.20. Mirror bracket with stiffening ribs with mirror attached.

7.1.4 Second Containment

Some form of second containment is required to capture any stray liquid in the rare event

that a leak occurs in one of the tanks. The tall side and short side each have their own second

containment, enclosing that side’s tanks, cameras, and motors. Each second containment seals

against a 0.5” thick aluminum baseplate, which is also used to mount the experiment to the payload

box. The payload box has an array of holes that screw on from under the baseplate. These are blind

tapped holes to maintain a watertight seal and are the main driver of the baseplate thickness. This

thickness also makes the baseplates an ideal location to pass wires into the second containment

needed for power and communication with external electronics. A small blind hole will be drilled

in the side of the baseplate that matches up with a similar blind hole on the top of the baseplate.

This creates a passage for wires to enter that can be sealed with a connector. The baseplates are

some of the heaviest components in the experiment, and so special care is taken to minimize their

weight as much as possible. Luckily, the full thickness of the baseplate is only needed at hole

66

locations, along with a few connecting ribs to provide additional rigidity. Everywhere else, the

thickness is reduced to 1/8”, saving approximately 2.3 lbs. for each side. This configuration is

shown for the short side in Figure 7.21.

Figure 7.21. Weight reduction pockets on the short side baseplate.

The rest of the experiment is connected to the baseplate by the pylons, which are screwed in

from the bottom of the baseplate. Since they are attached using through holes, gaskets are

compressed underneath the pylons to maintain a watertight seal. The main wall of the second

containment is made from 10 thousandths of an inch thick acrylic sheet. Since the second

containment wall carries essentially no load, the wall can be very thin to minimize weight. Each

second containment will have the acrylic wall cut out of a single large sheet, which can be bent to

the appropriate shape. The acrylic wall is attached to the baseplate with 90° aluminum angles along

the baseplate perimeter. The aluminum angle’s vertical face is glued to the acrylic wall, while the

other face is screwed onto the baseplate, compressing a gasket to form a watertight seal. The

second containment for the tall side can be seen in Figure 7.22.

67

Figure 7.22. Tall side assembly with the second containment and baseplate.

The short side second containment is complicated by two corner notches that accommodate

the mounting of the payload box to SpaceShipTwo. The two side pylons go over the top of the

notch, preventing the second containment from simply going around the notches. Instead, the

second containment goes over and seals against the top of the notches. These elevated sealing

surfaces are connected to the baseplate using sloped sealing surfaces to create a single continuous

seal along the perimeter of the second containment as shown in Figure 7.23. Each notch has one

sloped sealing surface in front of the notch on the side of the second containment and another to

the side of the notch on the rear of the second containment. The short side baseplate will be

machined out of a single piece of aluminum and will include the notches. The short side second

containment and baseplate can be seen in Figure 7.24.

68

Figure 7.23. The short side second containment accommodates the notch by adding a vertical

sealing surface.

Figure 7.24. The short side assembly with the second containment and baseplate.

69

7.2 Electrical Systems

The primary functions of the electrical system are to power and control the motors and

cameras. The four cameras need to be able to be controlled remotely while being charged. The

four motors are each controlled by its own motor control board that handles routing of power and

provides a simple interface for controlling the motors with an external device. Controls are handled

by three Arduinos that connect to the motor control boards, cameras, and to each other. An

accelerometer is used to detect when zero-g time begins and determine when to trigger the cameras

to record and the motors to move. Eight limit switches are also used to provide absolute positional

feedback to the motors, increasing accuracy of rotations. The motor control boards and Arduinos

are located at the bottom of the gap between the tall side and short side second containments,

making wiring through the second containment baseplate simple.

The electrical system must be able to route the power provided by Virgin Galactic’s

SpaceShipTwo to each component at the appropriate voltage. The SpaceShipTwo provides up to

50W power at 24-28V for use by the experiment (Virgin Galactic, 2019). The motors can run on

any voltage between 9 and 50 V DC, so the provided power can be connected directly to the motor

control board. The Arduinos all run at 9 V DC, so a 9 V DC-DC converter is required to power

them. Another 5 V DC-DC converter is used both to charge the cameras and to power the

accelerometer. High efficiency DC-DC converters are required to minimize the waste heat

produced by the experiment.

The Arduino Uno Rev3 is chosen for its small footprint, large number of ports, extensive

documentation, and general ease of use. One Arduino will be used to control all cameras, another

will be used to control half the motors and limit switches, and the last serves as a master controlling

the other two Arduinos while also handling the other half of the motors and limit switches. The

master Arduino also manages the accelerometer, which it uses to determine when to signal to the

other two Arduinos when to begin recording or running the motors. The accelerometer used is the

ADXL345, which is chosen primarily for its ease of use, small size, and minimal IO requirements.

High precision is not required since it is only checking for a continuous period of low gravity to

begin the experiment, though the acceleration history may be logged as well to aid in data analysis.

The camera control Arduino’s fourteen digital IO pins are enough to control all cameras while

communicating with the master Arduino, because each camera needs only three digital IO pins.

Each motor control board also requires three digital IO pins from the Arduino; however, this does

70

not leave enough available IO for the limit switches. Rather than connect the limit switches to the

master Arduino and then send a signal to the motor control Arduino to stop running the

corresponding motor, half the motors and limit switches are assigned to the motor control Arduino

while the other half is assigned to the master Arduino. This minimizes the delay between a limit

switch being triggered and the motor receiving the signal to stop rotating, helping keep rotations

consistent. A diagram showing how each component is powered and connected is shown in Figure

7.25.

Figure 7.25. Diagram showing power distribution to each component in the electrical system

along with data transfer between components.

7.2.1 Camera System

This experiment will use four Sony RX0 II cameras with the Ribcage modification from

Back-Bone. These cameras can record 4K footage and come with a small form factor. The Ribcage

modification offers a CNC machined mounting plate that provides a simple and secure connection

point. Three major challenges needed to be solved to use these cameras during the experiment.

The first and simplest is to be able to charge the camera’s battery using power supplied by

SpaceShipTwo. The experiment may sit idle for a few days on SpaceShipTwo after the payload is

 otor Control Board otor

2 28 V DC from

SpaceShipTwo

 V DC DC

Converter

5V DC DC

Converter

 otor Control Board otor

 otor Control Board otor

 otor Control Board otor

Arduino

 aster

Arduino

 Cameras

Arduino

 otors

Camera Camera Camera Camera

Accelerometer

 imit

Switch

 imit

Switch

 imit

Switch

 imit

Switch

Power

Data

 imit

Switch

 imit

Switch

 imit

Switch

 imit

Switch

71

loaded, which could completely drain the camera batteries. The second is to power on or off the

camera based on an Arduino signal. The last is to remotely trigger the camera to begin or stop

recording based on an Arduino signal. These cameras come with simple built-in ways to

accomplish all of these, allowing charging over a Micro-USB cable and power on/off and

recording capabilities over Bluetooth. However, Bluetooth cannot be used on the flight due to

electromagnetic interference, eliminating the normally recommended remote control method for

the RX0 II.

Unexpectedly, the Micro-USB compatible port on the camera that is used for charging and

communicating with the computer is not a Micro-USB connector, and instead is a proprietary

multiport connector from Sony. This connector adds a few extra pins in addition to the normal

USB connections. Sony does not provide specifications for these connectors; however, others have

reverse engineered their function. A third party supplier of breakout boards for the Sony multiport

connectors lists the function of each pin on their website (STUDIO1productions, n.d.), shown in

Table 7.1. These breakout boards also provide a convenient way to interface with the cameras

since wires can be soldered to the breakout boards to interface with the rest of the electrical system.

Table 7.1. Functions of each pin on the Sony multiport connector.

Pin Function

A1 VBUS

A2 USB D-

A3 USB D+

A4 USB ID

A5 Ground

1 Power On / Off

2 Ground

3 Composite Video Out

4 Audio Out L / Shutter Release

5 Audio Out R Audio / Activate

Camera / Focus

6 Select

7 UART RX

8 UART TX

9 XReset Req

10 3.3 Volt Output

72

In addition to the usual USB connections, these connectors include a pin for power on/off

and a pair of wires for serial communication with the cameras. When the power on/off pin is

shorted to ground, the camera will turn on or off. The serial connection is used to trigger the camera

to begin or stop recording, however no official documentation is available from Sony on the

communication format. Sony sells camera remote control units that are compatible with the RX0

II and use the multiport connector to remotely control the camera’s functions. These functions

include powering on/off and recording, activated by pressing physical buttons on the remote

control unit. The physical buttons on the remote control can be bypassed by opening the case to

access the circuit board inside. Based on the board layout obtained from a YouTube video by user

Elliot Lowndes (Lowndes, 2017), which can be verified by probing the circuit board during use,

wires can be soldered to the circuit board to control the cameras electronically. By shorting these

wires to ground, the effects of pressing the buttons on the remote control unit can be replicated

exactly. The Arduino can control when these are shorted by connecting the wires to its digital IO

pin and ground. This allows the camera to be turned on/off or begin/stop recording remotely,

however there is no way to charge the camera while using the remote control as intended because

the camera’s charging port and communications share the same connector. This problem is solved

by cutting off the remote control’s connector and soldering them to the multiport breakout board.

Of course, this requires knowing what each individual wire on the remote control board needs to

connect to, which can be determined by manually probing each pin with a multimeter while using

the remote control. Once the wires are identified and connector soldered to the remote control unit,

extra wires can be added for charging following the USB Battery Charging Specification. Since

no USB communication is needed, the connector is designated as a dedicated charging port by

shorting the two USB data lines D+ and D- together. The USB power pin can be connected to 5V

and the USB ground to ground. These connections are summarized in Table 7.2.

73

Table 7.2. Connections from the multiport connector to power and the remote control unit.

Multiport Pin Remote Control Pin Function

1 P4 Power On / Off

2 P13 Ground

6 P7 Select

7 P6 UART RX

8 P5 UART TX

10 P1 3.3 V

Using the camera remote control unit is simple and can consistently trigger the camera,

however it does require the payload to contain four of the remote control boards, adding

unnecessary weight. The Arduinos that are used to determine when to start recording are already

capable of serial communication that could be used trigger the camera recording and they are also

capable of shorting the power on/off pin to ground. A GitHub page from Anton Slooten was

invaluable in this process, as they had already reverse engineered the serial communications sent

between the camera and computer during the recording process. When beginning communications,

the camera first checks for a 100 kΩ resistor between a selector pin and ground (Slooten, 2017).

With the addition of this resistor, the two serial communication lines can be connected directly to

two of the Arduino’s digital IO pins, allowing serial communication between the camera and

Arduino using the Arduino’s SoftwareSerial library using commands reverse engineered by

Slooten. These connections are summarized in Table 7.3.

Table 7.3. Connections from the multiport connector to power and the Arduino.

Multiport Pin Destination Function

A1 5V in VBUS

A2 Shorted to A3 USB D-

A3 Shorted to A2 USB D+

A5 Ground Ground

1 Arduino Digital IO Power On / Off

2 Ground Ground

6 100 kΩ to Ground Selector

7 Arduino Digital IO UART RX

8 Arduino Digital IO UART TX

74

7.2.2 Motor System

This experiment uses four Maxon EC-I 30 45W brushless motors. These motors are

primarily selected for their known low electromagnetic interference, small profile, high torque,

and familiarity. These motors can provide much more torque than is required to rotate the tanks,

preventing the motors from being moved by forces caused by the liquid sloshing inside the tanks.

The required gearbox reduction can be easily calculated from the desired tank rotational speed

discussed at the beginning of this section. The tank rotational speed can be used to compute the

linear speed of the bar, which can then be used to find the motor speed. Setting the motor speed to

be near its maximum for the fast tank rotation speed yields a reduction of 318.

The motors are controlled using a separate motor controller board from the motor

manufacturer Maxon, one board for each of the four motors. Each motor board takes in power to

route to a motor along with signals indicating if the motor is enabled, and if so its direction and

speed. The direction and enable pins are simple digital inputs that can be set to either high or low

by the Arduino. The speed pin, on the other hand, takes in an analog signal from 0V to 5V, with

0V corresponding to no rotation and 5V corresponding to maximum speed. However, the motor

behaves poorly at low commanded speeds, so the enable pin must be disabled when the motor is

not in use rather than simply setting the speed pin to 0V. Based on testing, a PWM signal can be

used for the motor speed input instead of an analog signal without degrading motor performance.

This allows the speed pin to be connected directly to the Arduino PWM out rather than through a

digital-analog converter first, saving weight. The connections between the motor control board

and Arduino are summarized in Table 7.4.

Table 7.4. Connections from the motor control board to power and the Arduino.

Motor Control Board Destination Function

J1 – 1 Ground Power Ground

J1 – 3 Power In Vcc 9-50VDC

8 Arduino PWM Out Setspeed

5 Arduino Digital IO Direction

4 Arduino Digital IO Enable

1 Ground Ground

75

 ROTATIONAL SLOSH SUMMARY

Accurate predictions about liquid slosh behavior in low gravity are difficult to make.

Currently, very little data exists regarding rotational slosh in satellite propellant tanks while in

orbit, making improvements on existing models difficult. Additional experimental data can be used

to help calibrate models and improve their accuracy, which can translate into improved fuel

efficiency for satellites undergoing pointing maneuvers in orbit. The rotational slosh payload will

record video of liquid slosh in scaled down tanks while being rotated about different pivots and at

different speeds. Damping rates and fluid positional information can then be extracted from the

video feed to serve as a point of comparison for future computational models

76

 CONCLUSION

Liquid trapping can occur in any vaneless tank with non-hemispherical end caps regardless

of contact angle. Characterization of different propellant distributions can be used to help

understand why liquid trapping occurs, and therefore how it can be avoided. A combination of

Surface Evolver and analytical solutions are used to identify these conditions for a wide range of

contact angles and a few end cap geometries, including hemispherical, ellipsoidal, superellipsoidal,

and torispherical domes. Surface Evolver in particular is a useful tool for generating these results,

since once set up it can be used to compute each type of solution quickly and easily for a wide

range of fill fractions and contact angles. Surface Evolver does suffer from some amount of

discretization error; however, this can be minimized by using an appropriate number of facets and

performing sufficient iterations to ensure the free surface is fully converged. When using non-

hemispherical end caps, understanding of how liquid propellants interact with the bare tank,

especially with respect to liquid trapping, is critical for successful vane design.

Additional work is still required on the rotational slosh payload before flight. Several parts

still need to be machined, including the entirety of secondary containment. Tanks need to be

polished and assembled. The rest of the experiment also needs to be assembled, and weight

estimates need to be verified using final parts to ensure the weight budget is not exceeded. Testing

of camera remote triggering still needs to be completed. Arduino code needs to be written for the

mission plan, which itself stills needs to be finalized. The details of how features will be extracted

from the recorded video need to be determined. Since the primary time of interest is when the fluid

is damping after the tanks have already rotated, the liquid should be the only thing moving in the

camera feeds. This could make edge detection possible on the fluid to track the free surface

position and find damping rates. The presence of bubbles in the liquid would make such an

approach difficult, but the slow rotation speeds involved may prevent bubble formation. Video can

be recorded during ground tests once the experiment is assembled to check lighting conditions and

test the accuracy of these methods. Another avenue that may be worth pursuing is the addition of

extra data logging to the experiment. Inertial Measurement Units (IMUs) could be added to the

tanks to provide a more detailed acceleration history, isolating the movement of the tanks from the

experiment and any play involved in the mechanical connections with the motor. If this data is

used as a point of comparison for any computational models, an acceleration history that can serve

77

as an input into the model would reduce sources of error, providing a more accurate understanding

of model performance. IMUs do not need to be added to every tank to be useful, either. If during

ground testing it is determined that the tank motion is very similar across tanks, a single IMU on

each side might be used to obtain accurate motion data for all tanks. The usefulness of such a

feature depends on the backlash present in the system and repeatability of the motors and limit

switches in rotating the same amount each time. The inclusion of IMUs for additional data logging

will largely be decided by whether there is sufficient weight in the weight budget and IO on the

Arduinos.

Modeling of static equilibrium propellant configurations can be used to avoid liquid trapping

and aid in vane design. A lack of experimental data for the dynamic case of rotational slosh poses

a problem for validation of future models making predictions about liquid response to this motion.

The rotational slosh experiment aims to collect data that will fill part of this knowledge gap.

Prediction of low-g propellant motion in satellite propellant tanks can be difficult. However,

successful modeling of these phenomena can lead to improved vane designs, better fuel efficiency,

and many more advancements, making the significant effort required worthwhile.

78

APPENDIX A. ADDITIONAL FIGURES

Figure A.9.1. Minimum energy propellant configurations for a tank with 2:1 torispherical end

caps with rN = 0.6. The region marked with S denotes the combinations of fill fraction and

contact angle where the spherical interface is the minimum energy, the region marked with R

denotes the combinations where the liquid ring is the minimum energy, and the region marked

with A denotes the combinations where the asymmetric droplet is the minimum energy. The

horizontal error bars show the fill fraction step size.

79

Figure A.9.2. Minimum energy propellant configuration for a tank with 4:3 ellipsoidal end caps.

The region marked with S denotes the combinations of fill fraction and contact angle where the

spherical interface is the minimum energy, the region marked with R denotes the combinations

where the liquid ring is the minimum energy, and the region marked with A denotes the

combinations where the asymmetric droplet is the minimum energy. The horizontal error bars

show the fill fraction step size.

80

Figure A.9.3. Minimum energy propellant configurations for a tank with 4:3 superellipsoidal end

caps with n = 3. The region marked with S denotes the combinations of fill fraction and contact

angle where the spherical interface is the minimum energy, the region marked with R denotes the

combinations where the liquid ring is the minimum energy, and the region marked with A

denotes the combinations where the asymmetric droplet is the minimum energy. The horizontal

error bars show the fill fraction step size.

81

Figure A.9.4. Minimum energy propellant configurations for a tank with 4:3 torispherical end

caps with rN = 0.6. The region marked with S denotes the combinations of fill fraction and

contact angle where the spherical interface is the minimum energy, the region marked with R

denotes the combinations where the liquid ring is the minimum energy, and the region marked

with A denotes the combinations where the asymmetric droplet is the minimum energy. The

horizontal error bars show the fill fraction step size.

82

APPENDIX B: DERIVATION OF WETTING EQUATIONS FOR

SURFACE EVOLVER

GENERAL WETTING EQUATION

The wetted area can be computed using the definition of surface area for a surface defined by

𝑟(𝑧, 𝜙).

𝐴𝑤 = ∫(∫ |𝑟𝑧 × 𝑟𝜙|𝑑𝑧
𝑧0

𝑧

) 𝑑𝜙

Looking at the inner integral,

∫ |𝑟𝑧 × 𝑟𝜙|𝑑𝑧
𝑧0

𝑧

= ∫ |𝑟𝑧 × 𝑟𝜙|𝑑𝑧
𝑧0

0

−∫ |𝑟𝑧 × 𝑟𝜙|𝑑𝑧
𝑧

0

Defining

𝐼(𝑧) = ∫ |𝑟𝑧 × 𝑟𝜙|𝑑𝑧
𝑧

0

𝐶 = ∫ |𝑟𝑧 × 𝑟𝜙|𝑑𝑧
𝑧0

0

= 𝐼(𝑧0)

and noting that

𝑆𝑒𝑛𝑑 𝑐𝑎𝑝 = ∫ ∫ |𝑟𝑧 × 𝑟𝜙|𝑑𝑧
𝑧0

𝑧

𝑑𝜙
2𝜋

0

= ∫ 𝐶 𝑑𝜙
2𝜋

0

= 2𝜋𝐶

⇒ 𝐶 =
𝑆𝑒𝑛𝑑 𝑐𝑎𝑝

2𝜋

where 𝑆𝑒𝑛𝑑 𝑐𝑎𝑝 us the end cap surface area. Substituting,

𝐴𝑤 = ∫(
𝑆𝑒𝑛𝑑 𝑐𝑎𝑝

2𝜋
− 𝐼(𝑧)) 𝑑𝜙

Since 𝜙 = atan2(𝑦, 𝑥),

𝑑𝜙 =
−𝑦

𝑥2 + 𝑦2
𝑑𝑥 +

𝑥

𝑥2 + 𝑦2
𝑑𝑦

𝐴𝑤 = ∫
−𝑦

𝑥2 + 𝑦2
(
𝑆𝑒𝑛𝑑 𝑐𝑎𝑝

2𝜋
− 𝐼(𝑧)) 𝑑𝑥 + ∫

𝑥

𝑥2 + 𝑦2
(
𝑆𝑒𝑛𝑑 𝑐𝑎𝑝

2𝜋
− 𝐼(𝑧)) 𝑑𝑦 + 0 𝑑𝑧

83

The wetted energy can then be found by multiplying by the negative cosine of the contact angle

CA, splitting into x, y, and z components for input into Surface Evolver.

𝑒1 = cos(𝐶𝐴)
𝑦

𝑥2 + 𝑦2
 (
𝑆𝑒𝑛𝑑 𝑐𝑎𝑝

2𝜋
− 𝐼(𝑧))

𝑒2 = −cos(𝐶𝐴)
𝑥

𝑥2 + 𝑦2
 (
𝑆𝑒𝑛𝑑 𝑐𝑎𝑝

2𝜋
− 𝐼(𝑧))

𝑒3 = 0

Therefore, for each type of end cap geometry, it is only necessary to determine 𝐼(𝑧) and
𝑆𝑒𝑛𝑑 𝑐𝑎𝑝

2𝜋
,

which can be substituted into these formulas to find the necessary wetting equations.

CYLINDRICAL SECTION

For the cylindrical section where z < 0, a parameterization of a cylinder is

𝑟(𝑧, 𝜙) = [𝑅 cos𝜙 , 𝑅 sin 𝜙 , 𝑧]

Taking partial derivatives,

𝑟𝑧 = [0, 0, 1,]

𝑟𝜙 = [−𝑅 sin 𝜙 , 𝑅 cos𝜙 , 0]

The cross product is

𝑟𝑧 × 𝑟𝜙 = [−𝑅 cos𝜙 , −𝑅 sin𝜙 , 0]

which has magnitude

|𝑟𝑧 × 𝑟𝜙| = 𝑅

Substituting, 𝐼(𝑧) is

𝐼(𝑧) = ∫ |𝑟𝑧 × 𝑟𝜙|𝑑𝑧
𝑧

0

= ∫ 𝑅 𝑑𝑧
𝑧

0

= 𝑅𝑧

This, combined with the value of
𝑆𝑒𝑛𝑑 𝑐𝑎𝑝

2𝜋
 for the end cap used, can be used to define the wetting

equation on the cylindrical section where z < 0.

84

HEMISPHERICAL END CAP

A parameterization of a sphere is

𝑟(𝑧, 𝜙) = [√𝑅2 − 𝑧2 cos𝜙 , √𝑅2 − 𝑧2 sin 𝜙 , 𝑧]

Taking partial derivatives,

𝑟𝑧 = [
𝑧

√𝑅2 − 𝑧2
cos 𝜙 ,

𝑧

√𝑅2 − 𝑧2
sin𝜙 , 1]

𝑟𝜙 = [−√𝑅2 − 𝑧2 sin 𝜙 , √𝑅2 − 𝑧2 cos𝜙 , 0]

The cross product is

𝑟𝑧 × 𝑟𝜙 = [−√𝑅2 − 𝑧2 cos𝜙 , √𝑅2 − 𝑧2 sin𝜙 , 𝑧]

The magnitude is

|𝑟𝑧 × 𝑟𝜙| = 𝑅

Substituting, 𝐼(𝑧) is

𝐼(𝑧) = ∫ |𝑟𝑧 × 𝑟𝜙|𝑑𝑧
𝑧

0

= ∫ 𝑅 𝑑𝑧
𝑧

0

= 𝑅𝑧

The end cap surface area is, since 𝑧0 = 𝑅,

𝑆𝑒𝑛𝑑 𝑐𝑎𝑝

2𝜋
= 𝐼(𝑧0) = 𝐼(𝑅) = 𝑅

2

ELLIPSOIDAL END CAP

A parameterization of an ellipsoid is

𝑟(𝑧, 𝜙) = [𝑅√1 − (
𝑧

𝑧0
)
2

cos𝜙 , 𝑅√1 − (
𝑧

𝑧0
)
2

sin 𝜙 , 𝑧]

Taking partial derivatives,

𝑟𝑧 = [

−𝑅𝑧

𝑧02√1 − (
𝑧
𝑧0
)
2
cos 𝜙 ,

−𝑅𝑧

𝑧02√1 − (
𝑧
𝑧0
)
2
sin𝜙 , 1

]

𝑟𝜙 = [−𝑅√1 − (
𝑧

𝑧0
)
2

sin 𝜙 , 𝑅√1 − (
𝑧

𝑧0
)
2

cos𝜙 , 0]

85

The cross product is

𝑟𝑧 × 𝑟𝜙 = [𝑅√1 − (
𝑧

𝑧0
)
2

cos 𝜙 , 𝑅√1 − (
𝑧

𝑧0
)
2

sin𝜙 ,
𝑅2𝑧

𝑧02
]

The magnitude is

|𝑟𝜃 × 𝑟𝜙| = 𝑅√1 +
𝑅2 − 𝑧02

𝑧04
𝑧2

Defining 𝑏2 =
𝑅2−𝑧0

2

𝑧04
 and substituting into 𝐼(𝑧),

𝐼(𝑧) = ∫ |𝑟𝑧 × 𝑟𝜙|𝑑𝑧
𝑧

0

= ∫ 𝑅√1 + 𝑏2𝑧2𝑑𝑧
𝑧

0

= 𝑅 (
𝑧

2
√1 + 𝑏2𝑧2 +

sinh−1(𝑏𝑧)

2𝑏
)

The surface area is then

𝑆𝑒𝑛𝑑 𝑐𝑎𝑝

2𝜋
= 𝐼(𝑧0) = 𝑅 (

𝑧0
2
√1 + 𝑏2𝑧02 +

sinh−1(𝑏𝑧0)

2𝑏
) =

𝑅

2
(𝑅 +

sinh−1(𝑏𝑧0)

𝑏
)

REDUCTION OF ELLIPSOID TO HEMISPHERE

In the limit as 𝑧0 → 𝑅, 𝑏 → 0, and 𝑎 = √𝑅2 − 𝑧02 → 0,

lim
𝑧0→𝑅

𝐼(𝑧) = lim
𝑧0→𝑅

𝑅 (
𝑧

2
√1 + 𝑏2𝑧2 +

sinh−1(𝑏𝑧)

2𝑏
) =

𝑅

2
lim
𝑏→0

𝑧√1 + 𝑏2𝑧2 +
𝑅

2
lim
𝑏→0

sinh−1(𝑏𝑧)

𝑏

=
𝑅𝑧

2
+
𝑅

2
lim
𝑏→0

𝑧/√𝑏2𝑧2 + 1

1
=
𝑅𝑧

2
+
𝑅𝑧

2
= 𝑅𝑧

lim
𝑧0→𝑅

𝑆𝑒𝑛𝑑 𝑐𝑎𝑝

2𝜋
= lim

𝑧0→𝑅

𝑅

2
(𝑅 +

sinh−1(𝑏𝑧0)

𝑏
) =

𝑅2

2
+
𝑅

2
lim
𝑧0→𝑅

(

𝑧0
2 sinh−1 (

√𝑅2 − 𝑧02

𝑧0
)

√𝑅2 − 𝑧02

)

=
𝑅2

2
+
𝑅

2
lim
𝑎→0

(

(𝑅2 − 𝑎2) sinh−1 (
𝑎

√𝑅2 − 𝑎2
)

𝑎
)

=
𝑅2

2
+
𝑅

2
lim
𝑎→0

(

𝑅 − 2𝑎 sinh−1 (
𝑎

√𝑅2 − 𝑎2
)

1
) =

𝑅2

2
+
𝑅2

2
= 𝑅2

which is the same result as obtained in the hemispherical case.

86

SUPERELLIPSOIDAL END CAP

A parameterization of a superellipsoid is

𝑟(𝑧, 𝜙) = [𝑅 (1 − (
𝑧

𝑧0
)
𝑛

)
1/𝑛

cos𝜙 , 𝑅 (1 − (
𝑧

𝑧0
)
𝑛

)
1/𝑛

sin𝜙 , 𝑧]

Taking partial derivatives,

𝑟𝑧 = [−
𝑅

𝑧0
(
𝑧

𝑧0
)
𝑛−1

(1 − (
𝑧

𝑧0
)
𝑛

)

1
𝑛
−1

cos 𝜙 , −
𝑅

𝑧0
(
𝑧

𝑧0
)
𝑛−1

(1 − (
𝑧

𝑧0
)
𝑛

)

1
𝑛
−1

sin𝜙 , 1]

𝑟𝜙 = [−𝑅 (1 − (
𝑧

𝑧0
)
𝑛

)

1
𝑛
sin𝜙 , 𝑅 (1 − (

𝑧

𝑧0
)
𝑛

)
1/𝑛

cos𝜙 , 0]

The cross product is

𝑟𝑧 × 𝑟𝜙 = [𝑅 (1 − (
𝑧

𝑧0
)
𝑛

)
1/𝑛

cos𝜙 , 𝑅 (1 − (
𝑧

𝑧0
)
𝑛

)
1/𝑛

sin𝜙 ,
𝑅2

𝑧02
𝑧𝑛−1(𝑧0

𝑛 − 𝑧𝑛)
2
𝑛
−1]

The magnitude is

|𝑟𝜃 × 𝑟𝜙| = 𝑅 (1 − (
𝑧

𝑧0
)
𝑛

)
1/𝑛

√1 + (
𝑅

𝑧0
)
2

(
𝑧

𝑧0
)
2𝑛−2

(1 − (
𝑧

𝑧0
)
𝑛

)

2
𝑛
−2

Substituting into 𝐼(𝑧),

𝐼(𝑧) = ∫ |𝑟𝑧 × 𝑟𝜙|𝑑𝑧
𝑧

0

= ∫ 𝑅 (1 − (
𝑧

𝑧0
)
𝑛

)
1/𝑛

√1 + (
𝑅

𝑧0
)
2

(
𝑧

𝑧0
)
2𝑛−2

(1 − (
𝑧

𝑧0
)
𝑛

)

2
𝑛
−2

𝑑𝑧
𝑧

0

Defining 𝑧̅ =
𝑧

𝑧0
 and 𝐴𝑅 = (

𝑅

𝑧0
)
2

,

𝐼(𝑧) = 𝑅𝑧0∫ (1 − 𝑧̅𝑛)1/𝑛√1 + 𝐴𝑅 𝑧̅2𝑛−2(1 − 𝑧̅𝑛)
2
𝑛
−2𝑑𝑧̅

𝑧̅

0

The inner integral with respect to 𝑧̅ cannot be evaluated analytically and so must be approximated.

This integral is defined as 𝐼′(𝑧̅).

𝐼′(𝑧̅) = ∫ 𝑓(𝑧̅) 𝑑𝑧̅
𝑧̅

0

= ∫ (1 − 𝑧̅𝑛)1/𝑛√1 + 𝐴𝑅 𝑧̅2𝑛−2(1 − 𝑧̅𝑛)
2
𝑛
−2𝑑𝑧̅

𝑧̅

0

𝐼(𝑧) = 𝑅𝑧0 𝐼′(𝑧̅)

The end cap surface area is

𝑆𝑒𝑛𝑑 𝑐𝑎𝑝

2𝜋
= 𝐼(𝑧0) = 𝑅𝑧0 𝐼′(1)

87

APPROXIMATION OF SUPERELLIPSOIDAL WETTING EQUATION

When approximating the integral 𝐼′(𝑧̅), 𝐼′(𝑧̅) is first evaluated numerically for a range of

values of 𝑧̅. These values are then used to construct a cubic spline, which can be implemented as

a piecewise function into Surface Evolver. By using a cubic spline to connect values of 𝐼′(𝑧̅), the

second derivative of the approximated 𝐼′(𝑧̅) can remain continuous when moving from one

interval to another. This helps prevent the contact line from sticking at the boundaries of these

piecewise intervals. To further improve accuracy, a second approximation is used near the dome,

where small changes in z result in large changes in location. By using a second expression for 𝐼′(𝑧̅)

in terms of r near the dome, from here on referred as 𝐼′(𝑟), similar levels of accuracy can be

maintained at each point on the dome. Expressing 𝐼′(𝑧̅) in terms of r gives 𝐼′(𝑟) as

𝐼′(𝑟) = ∫ 𝑟√1 + 𝐴𝑅(1 − 𝑟𝑛)(2−
2
𝑛
)𝑟(2−2𝑛)

𝑟

0

 𝑑𝑟

The point on the dome to switch between these approximations is chosen to be (𝑟𝑐𝑟, 𝑧𝑐̅𝑟) =

(2−
1

𝑛, 2−
1

𝑛), which corresponds to the point at which the slope of 𝑧̅ vs r is -1. In total, 𝑁 𝑧̅ = 1000

points are used for the approximation of 𝐼′(𝑧̅) near the junction and 𝑁𝑟 = 1000 points are used

for the approximation of 𝐼′(𝑟) near the top of the dome. For 𝐼′(𝑧̅), the cubic spline approximation

is

𝐼′(𝑧̅) = 𝑎𝑖
𝑧̅𝑡3 + 𝑏𝑖

𝑧̅𝑡2 + 𝑐𝑖
𝑧̅𝑡 + 𝑑𝑖

𝑧̅

𝑡 = 𝑧 mod
𝑧0 𝑧𝑐̅𝑟
𝑁 𝑧̅ − 1

𝑖 = ⌈
𝑁 𝑧̅ − 1

𝑧0 𝑧𝑐̅𝑟
 𝑧⌉

Similarly, for 𝐼′(𝑟),

𝐼′(𝑟) = 𝑎𝑖
𝑟𝑡3 + 𝑏𝑖

𝑟𝑡2 + 𝑐𝑖
𝑟𝑡 + 𝑑𝑖

𝑟

𝑡 = 𝑟 mod
𝑟𝑐𝑟

𝑁𝑟 − 1

𝑖 = ⌈
𝑁𝑟 − 1

𝑟𝑐𝑟
 𝑟⌉

The coefficients 𝑎𝑖, 𝑏𝑖, 𝑐𝑖, and 𝑑𝑖 can be computed by enforcing continuity of the 0th, 1st

and 2nd derivatives at each point. For the end points at the top of the dome and at the junction

between the dome and cylinder, these derivatives are computed analytically and enforced to create

88

a complete system of equations which can be solved with linear algebra. The values of these

coefficients for the case of 𝑛 = 3, 𝑧0 = 0.5 and the MATLAB script used to generate them can be

found in Appendix C.

REDUCTION OF SUPERELLIPSOID TO ELLIPSOID

The equations for the superellipsoidal case reduce to the equations for the ellipsoid when letting

𝑛 = 2. The integral 𝐼(𝑧) becomes

𝐼(𝑧) = 𝑅𝑧0 𝐼
′(𝑧̅) = 𝑅𝑧0 ∫ √1 − 𝑧̅2√1 + (

𝑅

𝑧0
)
2 𝑧̅2

1 − 𝑧̅2
𝑑𝑧̅

𝑧̅

0

= 𝑅𝑧0 ∫ √1 + ((
𝑅

𝑧0
)
2

− 1) 𝑧̅2 𝑑𝑧̅
𝑧̅

0

= 𝑅 ∫ √1 + (
𝑅2 − 𝑧02

𝑧02
) (

𝑧

𝑧0
)
2

 𝑑𝑧
𝑧

0

= 𝑅 ∫ √1 + 𝑏2𝑧2 𝑑𝑧
𝑧

0

= 𝑅 (
𝑧

2
√1 + 𝑏2𝑧2 +

sinh−1(𝑏𝑧)

2𝑏
)

where 𝑏2 =
𝑅2−𝑧0

2

𝑧04
, and is the same as for the ellipsoidal end cap wetting equation.

TORISPHERICAL END CAP

For the torispherical end caps, the knuckle and dome need to be considered separately. On the

knuckle, where 𝑧 < 𝑧𝑐𝑟, the parameterization of a torus can be used.

𝑟(𝜃, 𝜙) = [(𝑅 − 𝑟𝑠 + 𝑟𝑠 cos 𝜃) cos 𝜙 , (𝑅 − 𝑟𝑠 + 𝑟𝑠 cos 𝜃) sin𝜙 , 𝑟𝑠 sin 𝜃]

Taking derivatives,

𝑟𝜃 = [−𝑟𝑠 sin 𝜃 cos𝜙 , −𝑟𝑠 sin 𝜃 sin 𝜙 , 𝑟𝑠 cos 𝜃]

𝑟𝜙 = [−(𝑅 − 𝑟𝑠 + 𝑟𝑠 cos 𝜃) sin 𝜙 , (𝑅 − 𝑟𝑠 + 𝑟𝑠 cos 𝜃) cos𝜙 , 0]

The cross product is

𝑟𝜃 × 𝑟𝜙

= [−𝑟𝑠 cos 𝜃 (𝑅 − 𝑟𝑠 + 𝑟𝑠 cos 𝜃) cos𝜙 , −𝑟𝑠 cos 𝜃 (𝑅 − 𝑟𝑠 + 𝑟𝑠 cos 𝜃) sin𝜙 , 𝑟𝑠 sin 𝜃 (𝑅 − 𝑟𝑠 + 𝑟𝑠 cos 𝜃)]

The magnitude is

|𝑟𝜃 × 𝑟𝜙| = 𝑟𝑠(𝑅 − 𝑟𝑠 + 𝑟𝑠 cos 𝜃)

89

Substituting,

𝐼(𝑧) = ∫ |𝑟𝑧 × 𝑟𝜙|
𝑧

0

𝑑𝑧 = ∫ |𝑟𝜃 × 𝑟𝜙|
𝜃

0

𝑑𝜃 = ∫ 𝑟𝑠(𝑅 − 𝑟𝑠 + 𝑟𝑠 cos 𝜃)
𝜃

0

𝑑𝜃

= 𝑟𝑠[(𝑅 − 𝑟𝑠)𝜃 + 𝑟𝑠 sin 𝜃]

Since 𝑧 = 𝑟𝑠 sin 𝜃, 𝜃 = sin−1 (
𝑧

𝑟𝑠
),

𝐼(𝑧) = 𝑟𝑠 [𝑧 + (𝑅 − 𝑟𝑠) sin
−1 (

𝑧

𝑟𝑠
)]

On the spherical dome, where 𝑧 ≥ 𝑧𝑐𝑟, 𝐼(𝑧) is

𝐼(𝑧) = ∫ |𝑟𝑧 × 𝑟𝜙|
𝑧

0

𝑑𝑧 = ∫ |𝑟𝑧 × 𝑟𝜙|
𝑧𝑐𝑟

0

𝑑𝑧 + ∫ |𝑟𝑧 × 𝑟𝜙|
𝑧

𝑧𝑐𝑟

𝑑𝑧 = 𝐼(𝑧𝑐𝑟) + ∫ |𝑟𝑧 × 𝑟𝜙|
𝑧

𝑧𝑐𝑟

𝑑𝑧

= 𝑟𝑠 [𝑧𝑐𝑟 + (𝑅 − 𝑟𝑠) sin
−1 (

𝑧𝑐𝑟
𝑟𝑠
)] + ∫ |𝑟𝑧 × 𝑟𝜙|

𝑧

𝑧𝑐𝑟

𝑑𝑧

On the dome, the parameterization of a sphere can be used.

𝑟(𝑧, 𝜙) = [√𝑅𝐻
2 − 𝑧2 cos𝜙 , √𝑅𝐻

2 − 𝑧2 sin𝜙 , 𝑧]

Taking partial derivatives,

𝑟𝑧 = [
𝑧

√𝑅𝐻
2 − 𝑧2

cos 𝜙 ,
𝑧

√𝑅𝐻
2 − 𝑧2

sin𝜙 , 1]

𝑟𝜙 = [−√𝑅𝐻
2 − 𝑧2 sin 𝜙 , √𝑅𝐻

2 − 𝑧2 cos𝜙 , 0]

The cross product is

𝑟𝑧 × 𝑟𝜙 = [−√𝑅𝐻
2 − 𝑧2 cos𝜙 , √𝑅𝐻

2 − 𝑧2 sin𝜙 , 𝑧]

The magnitude is

|𝑟𝑧 × 𝑟𝜙| = 𝑅𝐻

Integrating,

∫ |𝑟𝑧 × 𝑟𝜙|
𝑧

𝑧𝑐𝑟

𝑑𝑧 = ∫ 𝑅𝐻

𝑧

𝑧𝑐𝑟

𝑑𝑧 = 𝑅𝐻(𝑧 − 𝑧𝑐𝑟)

Substituting,

𝐼(𝑧) = 𝑟𝑠 [𝑧𝑐𝑟 + (𝑅 − 𝑟𝑠) sin
−1 (

𝑧𝑐𝑟
𝑟𝑠
)] + 𝑅𝐻(𝑧 − 𝑧𝑐𝑟)

90

For the entire end cap,

𝐼(𝑧) = {

𝑟𝑠 [𝑧 + (𝑅 − 𝑟𝑠) sin
−1 (

𝑧

𝑟𝑠
)] 𝑧 < 𝑧𝑐𝑟

𝑟𝑠 [𝑧𝑐𝑟 + (𝑅 − 𝑟𝑠) sin
−1 (

𝑧𝑐𝑟
𝑟𝑠
)] + 𝑅𝐻(𝑧 − 𝑧𝑐𝑟) 𝑧 ≥ 𝑧𝑐𝑟

The end cap surface area is

𝑆𝑒𝑛𝑑 𝑐𝑎𝑝

2𝜋
= 𝐼(𝑧0) = 𝑟𝑠 [𝑧𝑐𝑟 + (𝑅 − 𝑟𝑠) sin

−1 (
𝑧𝑐𝑟
𝑟𝑠
)] + 𝑅𝐻(𝑧0 − 𝑧𝑐𝑟)

91

APPENDIX C. SUPERELLIPSOID WETTING APPROXIMATION CODE

SAMPLE OUTPUT

Table C.1. A small selection of the coefficients used to approximate the superellipsoid wetting

equation.

𝑖 𝑎𝑖
𝑧̅ 𝑏𝑖

𝑧̅ 𝑐𝑖
𝑧̅ 𝑑𝑖

𝑧̅ 𝑗 𝑎𝑖
𝑟 𝑏𝑖

𝑟 𝑐𝑖
𝑟 𝑑𝑖

𝑟
1 -0.00013 5.23E-08 1 0 1 -4.88E-07 -1 0 1.549038

50 -0.00692 -0.00052 0.999985 0.038891 50 -5.02E-05 -1 -0.07778 1.547526

100 -0.00136 -0.00115 0.999915 0.078574 100 -0.00041 -1.00002 -0.15715 1.542864

150 0.016934 -0.00037 0.99984 0.118254 150 -0.0014 -1.00012 -0.23653 1.535053

200 0.048265 0.003344 0.999934 0.157934 200 -0.00336 -1.00039 -0.31592 1.524091

250 0.093165 0.011572 1.00049 0.197625 250 -0.00666 -1.00097 -0.39534 1.509978

300 0.152396 0.025972 1.001934 0.237355 300 -0.01176 -1.00204 -0.47482 1.492712

350 0.226908 0.048306 1.004823 0.277168 350 -0.01925 -1.00385 -0.55442 1.472289

400 0.317763 0.080453 1.009862 0.317136 400 -0.0299 -1.00673 -0.6342 1.448705

450 0.426054 0.124424 1.017907 0.35736 450 -0.04481 -1.01111 -0.71427 1.421949

500 0.552866 0.182356 1.029982 0.39798 500 -0.06556 -1.01759 -0.79476 1.392008

550 0.699356 0.256522 1.047284 0.439179 550 -0.09448 -1.02698 -0.87588 1.35886

600 0.867115 0.349349 1.071196 0.481191 600 -0.13515 -1.04046 -0.95789 1.322477

650 1.058988 0.463516 1.103304 0.524308 650 -0.19315 -1.05973 -1.04119 1.282815

700 1.280603 0.602186 1.145422 0.568892 700 -0.2775 -1.08732 -1.12633 1.239813

750 1.542994 0.769471 1.19965 0.61538 750 -0.40331 -1.12719 -1.21412 1.193383

800 1.867012 0.971314 1.268479 0.664301 800 -0.59699 -1.18564 -1.30575 1.143398

850 2.291185 1.217068 1.354993 0.716293 850 -0.90711 -1.2733 -1.40309 1.089671

900 2.887336 1.522397 1.463243 0.772134 900 -1.42872 -1.40891 -1.50913 1.03192

950 3.795614 1.914984 1.598948 0.832793 950 -2.363 -1.62783 -1.62892 0.969711

1000 5.313934 2.447014 1.770874 0.899519 1000 -4.18138 -2.00249 -1.77158 0.902334

MATLAB Source Code

z0 = 0.5;

n = 3;

R0 = 1;

AR = (R0/z0)^2;

zcyl = 1;

%% Compute Comparison Solution

N = 1001;

z_cr = 2^(-1/n);

r_cr = 2^(-1/n);

z = linspace(0, z_cr, N);

r = linspace(r_cr, 0, N);

I_z = z_computeIntegral(z, n, AR);

I_r = I_z(end) + r_computeIntegral(r, n, AR);

92

%% Compute z Spline

N_zSpline = 1001;

zSpline = linspace(0, z_cr, N_zSpline);

I_zSpline = zeros(size(zSpline));

for i = 1:length(zSpline)

 [~, ind] = min(abs(z - zSpline(i)));

 I_zSpline(i) = I_z(ind);

end

slope_zSpline_1 = 1;

slope_zSpline_end = (1-z_cr.^n).^(1/n) .* sqrt(1 + AR.*(1-z_cr.^n).^(2/n-

2).*z_cr.^(2*n-2));

p_zSpline = spline(zSpline, [slope_zSpline_1, I_zSpline, slope_zSpline_end]);

%% Compute r Spline

N_rSpline = 1001;

rSpline = linspace(r_cr, 0, N_rSpline);

I_rSpline = zeros(size(rSpline));

for i = 1:length(zSpline)

 [~, ind] = min(abs(r - rSpline(i)));

 I_rSpline(i) = I_r(ind);

end

slope_rSpline_1 = -r_cr.^n.*(1-r_cr.^n).^(1/n-1).*sqrt(1 + AR*r_cr.^(2-

2*n).*(1 - r_cr.^n).^(2-2/n));

slope_rSpline_end = 0;

p_rSpline = spline(rSpline, [slope_rSpline_end, I_rSpline, slope_rSpline_1]);

%% Compute Spline Error

I_zSpline_Comp = ppval(p_zSpline, z);

I_rSpline_Comp = ppval(p_rSpline, r);

zTotal = [z, (1-r.^n).^(1/n)];

ITotal = [I_z, I_r];

ITotalSpline = [I_zSpline_Comp, I_rSpline_Comp];

error_spline = sqrt(sum((ITotalSpline - ITotal).^2)/numel(ITotal));

emax_spline = max(abs(ITotalSpline-ITotal));

integrand_z = @(z1) (1-z1.^n).^(1/n) .* sqrt(1 + AR.*(1-z1.^n).^(2/n-

2).*z1.^(2*n-2));

error_Integral = (integral(@(z1) integrand_z(z1), 0, z_cr) - integral(@(r1)

integrand_r(r1, n, AR), r_cr, 0) - ITotal(end));

%% Plot Results

figure

hold on; grid on

plot(z, I_z)

plot(z, I_zSpline_Comp)

figure

hold on; grid on

plot(r, I_r)

plot(r, I_rSpline_Comp)

figure

hold on; grid on

plot(zTotal, ITotal)

plot(zTotal, ITotalSpline)

93

figure

hold on; grid on

plot(zTotal, ITotalSpline - ITotal)

%% Output for SE

% z wetting constraint

zVals = linspace(1, 1+z0*z_cr, 1000);

zCoeffs = p_zSpline.coefs';

z_ind = max(1, ceil((zVals-1)/(z0*z_cr)*(N_zSpline-1)));

zCalc = mod((zVals-1)/(z0), z_cr/(N_zSpline-1));

zCalc(zVals >= 1+z0*z_cr) = z_cr/(N_zSpline-1);

Icalc_zSpline = zCoeffs(1, z_ind).*zCalc.^3 + zCoeffs(2, z_ind).*zCalc.^2 +

zCoeffs(3, z_ind).*zCalc + zCoeffs(4, z_ind);

zCalcString = sprintf("((%.16g*(z-1)) %% (%.16g))", 1/z0, z_cr/(N_zSpline-1));

zIndString = sprintf("maximum(1, ceil(%.16g*(z-1)))", (N_zSpline-1)/(z0*z_cr));

zWettingString = sprintf("zCoeffs3[%s]*%s^3 + zCoeffs2[%s]*%s^2 +

zCoeffs1[%s]*%s + zCoeffs0[%s]", zIndString, zCalcString, zIndString,

zCalcString, zIndString, zCalcString, zIndString);

zCoeffs3 = sprintf("define zCoeffs3 real[%d] = {", length(zCoeffs));

zCoeffs2 = sprintf("define zCoeffs2 real[%d] = {", length(zCoeffs));

zCoeffs1 = sprintf("define zCoeffs1 real[%d] = {", length(zCoeffs));

zCoeffs0 = sprintf("define zCoeffs0 real[%d] = {", length(zCoeffs));

for i = 1:length(zCoeffs)

 if i == length(zCoeffs)

 additionalString = " }";

 else

 additionalString = ",";

 end

 zCoeffs3 = sprintf("%s %.16f%s", zCoeffs3, zCoeffs(1, i), additionalString);

 zCoeffs2 = sprintf("%s %.16f%s", zCoeffs2, zCoeffs(2, i), additionalString);

 zCoeffs1 = sprintf("%s %.16f%s", zCoeffs1, zCoeffs(3, i), additionalString);

 zCoeffs0 = sprintf("%s %.16f%s", zCoeffs0, zCoeffs(4, i), additionalString);

end

% r wetting constraint

rVals = linspace(0, r_cr, 1000);

rCoeffs = p_rSpline.coefs';

r_ind = max(1, ceil(rVals/r_cr*(N_rSpline-1)));

rCalc = mod(rVals, r_cr/(N_rSpline-1));

rCalc(rVals >= r_cr) = r_cr/(N_rSpline-1);

Icalc_rSpline = rCoeffs(1, r_ind).*rCalc.^3 + rCoeffs(2, r_ind).*rCalc.^2 +

rCoeffs(3, r_ind).*rCalc + rCoeffs(4, r_ind);

rCalcString = sprintf("((r_calc) %% (%.16g))", r_cr/(N_rSpline-1));

rIndString = sprintf("maximum(1, ceil(%.16g*(r_calc)))", (N_rSpline-1)/r_cr);

rWettingString = sprintf("rCoeffs3[%s]*%s^3 + rCoeffs2[%s]*%s^2 +

rCoeffs1[%s]*%s + rCoeffs0[%s]", rIndString, rCalcString, rIndString,

rCalcString, rIndString, rCalcString, rIndString);

rCoeffs3 = sprintf("define rCoeffs3 real[%d] = {", length(rCoeffs));

rCoeffs2 = sprintf("define rCoeffs2 real[%d] = {", length(rCoeffs));

rCoeffs1 = sprintf("define rCoeffs1 real[%d] = {", length(rCoeffs));

rCoeffs0 = sprintf("define rCoeffs0 real[%d] = {", length(rCoeffs));

94

for i = 1:length(rCoeffs)

 if i == length(rCoeffs)

 additionalString = " }";

 else

 additionalString = ",";

 end

 rCoeffs3 = sprintf("%s %.16f%s", rCoeffs3, rCoeffs(1, i), additionalString);

 rCoeffs2 = sprintf("%s %.16f%s", rCoeffs2, rCoeffs(2, i), additionalString);

 rCoeffs1 = sprintf("%s %.16f%s", rCoeffs1, rCoeffs(3, i), additionalString);

 rCoeffs0 = sprintf("%s %.16f%s", rCoeffs0, rCoeffs(4, i), additionalString);

end

% Plot SE Output

figure

hold on; grid on

plot(1+zTotal*z0, ITotal)

plot(zVals, Icalc_zSpline)

plot(1+z0*(1-rVals.^n).^(1/n), Icalc_rSpline)

% Combine for SE output

coeffString = sprintf("%s\n%s\n%s\n%s\n%s\n%s\n%s\n%s\n", zCoeffs3, zCoeffs2,

zCoeffs1, zCoeffs0, rCoeffs3, rCoeffs2, rCoeffs1, rCoeffs0);

wettingString = sprintf("#define super_wetting ((super_SA) - RT*zMax_sup*((z

< %.16g) ? (%s) : (%s)))\n\n", 1+z_cr*z0, zWettingString, rWettingString);

syms nSym

betaFunc = double(subs(beta(1/nSym, 2/nSym), nSym, n));

defineString = sprintf("#define zMax_sup (%.3f)\n#define n (%d)\n", z0, n);

betaFuncString = sprintf("#define betaFunc (%.16f)\n", betaFunc);

SA_String = sprintf("#define super_SA (%.16f)\n", z0*ITotal(end));

outString = defineString + betaFuncString + SA_String + coeffString +

wettingString;

clipboard("copy", outString)

function res = integrand_r(r1, n, AR)

 res = r1.^n.*(1-r1.^n).^(1/n-1).*sqrt(1 + AR*r1.^(2-2*n).*(1 -

r1.^n).^(2-2/n));

 res(r1 == 0) = 0;

end

function I_z = z_computeIntegral(z, n, AR)

 integrand_z = @(z1) (1-z1.^n).^(1/n) .* sqrt(1 + AR.*(1-z1.^n).^(2/n-

2).*z1.^(2*n-2));

 for i = 1:length(z)

 I_z(i) = integral(@(z1) integrand_z(z1), 0, z(i));

 end

end

function I_r = r_computeIntegral(r, n, AR)

 for i = 1:length(r)

 I_r(i) = integral(@(r1) integrand_r(r1, n, AR), r(i), r(1));

 end

end

95

APPENDIX D. SURFACE EVOLVER SOURCE CODE –

SUPERELLIPSOIDAL DOME, NON-RING SOLUTION

Note: {..} is used to represent the extremely large arrays output from the MATLAB code in

Appendix C to save space.

#define RT 1

#define ZC RT

PARAMETER ang = 15

#define cosca cos(ang*pi/180)

#define sinca sin(ang*pi/180)

#define eps 1e-9

PARAMETER outputCLFile = ""

PARAMETER outputHeightFile = ""

PARAMETER outputEnergyFile = ""

PARAMETER r_std = 0

PARAMETER z_std = 0

PARAMETER maxInd = 6

define maxFrac_mat real[maxInd]

define minFrac_mat real[maxInd]

define theta_mat real[maxInd]

PARAMETER index = 1

PARAMETER asymmetric = 1;

PARAMETER toroidal = 0;

PARAMETER diff = 100;

PARAMETER theta1 = 0;

PARAMETER theta2 = 0;

PARAMETER cyl_vol = (pi*RT^2*ZC)

#define cyl_eqn (RT^2 - (x^2 + y^2) = 0)

// HEMISPHERE

#define hemi_eqn (z > ZC ? RT^2 - (x^2 + y^2 + (z-ZC)^2) = 0 :\

 cyl_eqn)

#define hemi_vol (2/3*pi*RT^3 + cyl_vol)

#define hemi_H RT

#define hemi_z (sqrt(RT^2 - (x^2 + y^2)) + ZC)

96

#define hemi_SA (RT^2)

#define hemi_wetting (hemi_SA - RT*(z-ZC))

#define hemi_n 2

#define hemi_z0 1

#define hemi_diff (0)

// ELLIPSE

#define zMax_ell (0.5*RT)

PARAMETER CONST_z0_ell = zMax_ell

#define ellipse_eqn (z > ZC ? 1 - ((x/RT)^2 + (y/RT)^2 + ((z-ZC)/zMax_ell)^2)

= 0 :\

 cyl_eqn)

#define ellipse_vol (2/3*pi*RT^2*zMax_ell + cyl_vol)

#define ellipse_H (zMax_ell + ZC - RT)

#define ellipse_z (zMax_ell*sqrt(1 - (x^2+y^2)/RT^2) + ZC)

#define bVal ((RT^2 - zMax_ell^2)/zMax_ell^4)

#define ellipse_SA (RT/2*(zMax_ell*sqrt(bVal*zMax_ell^2+1) +

asinh(sqrt(bVal)*zMax_ell)/sqrt(bVal)))

#define ellipse_wetting ((ellipse_SA) - 1/2*RT*((z_calc)*sqrt(bVal*(z_calc)^2

+ 1) + asinh(sqrt(bVal)*(z_calc))/sqrt(bVal)))

#define ellipse_n 2

#define ellipse_z0 zMax_ell

// SUPERELLIPSE

#define zMax_sup (0.750)

#define n (3)

#define betaFunc (3.6275987284684357)

#define super_SA (0.9563491000262874)

define zCoeffs3 real[1000] = {...}

define zCoeffs2 real[1000] = {...}

define zCoeffs1 real[1000] = {...}

define zCoeffs0 real[1000] = {...}

define rCoeffs3 real[1000] = {...}

define rCoeffs2 real[1000] = {...}

define rCoeffs1 real[1000] = {...}

define rCoeffs0 real[1000] = {...}

#define super_wetting ((super_SA) - RT*zMax_sup*((z < 1.595275394488075) ?

(zCoeffs3[maximum(1, ceil(1679.894733193164*(z-1)))]*((1.333333333333333*(z-

97

1)) % (0.0007937005259840997))^3 + zCoeffs2[maximum(1,

ceil(1679.894733193164*(z-1)))]*((1.333333333333333*(z-1)) %

(0.0007937005259840997))^2 + zCoeffs1[maximum(1, ceil(1679.894733193164*(z-

1)))]*((1.333333333333333*(z-1)) % (0.0007937005259840997)) +

zCoeffs0[maximum(1, ceil(1679.894733193164*(z-1)))]) : (rCoeffs3[maximum(1,

ceil(1259.921049894873*(r_calc)))]*((r_calc) % (0.0007937005259840997))^3 +

rCoeffs2[maximum(1, ceil(1259.921049894873*(r_calc)))]*((r_calc) %

(0.0007937005259840997))^2 + rCoeffs1[maximum(1,

ceil(1259.921049894873*(r_calc)))]*((r_calc) % (0.0007937005259840997)) +

rCoeffs0[maximum(1, ceil(1259.921049894873*(r_calc)))])))

#define super_n n

#define super_z0 zMax_sup

#define super_eqn (z > ZC ? 1 - (((x/RT)^2 + (y/RT)^2)^(n/2) + abs((z-

ZC)/zMax_sup)^n) = 0 :\

 cyl_eqn)

#define super_vol (2*pi/(3*n)*RT^2*zMax_sup*betaFunc + cyl_vol)

#define super_H (zMax_sup + ZC - RT)

#define super_z (zMax_sup*(1 - ((x/RT)^2 + (y/RT)^2)^(n/2))^(1/n) + ZC)

// Poles

#define r_calc ((((z-1)/(sqrt(x^2+y^2)*CONST_z0))^CONST_n + 1)^(-1/CONST_n))

#define z_calc ((z-1)/sqrt(x^2+y^2)*r_calc)

#define x_calc (r_calc*x/sqrt(x^2+y^2))

#define y_calc (r_calc*y/sqrt(x^2+y^2))

// DEFINE MODEL

parameter frac := 0.45

parameter CONST_TANKVOL = ellipse_vol

#define tankeqn ellipse_eqn

#define delH ellipse_H

#define capzEqn ellipse_z

#define wettingEqnPart ellipse_wetting

#define endCapSA ellipse_SA

PARAMETER CONST_n = ellipse_n

PARAMETER CONST_z0 = ellipse_z0

98

parameter maxFrac = maximum(0.1, ceil((1*(CONST_TANKVOL - cyl_vol - pi/6*(1-

sinca)/cosca*(3 + ((1-sinca)/cosca)^2))/CONST_TANKVOL)/0.01)*0.01 + 0.05)

parameter minFrac = 0.01

constraint 1 // draw the tank

formula: tankeqn

constraint 2 convex // on tank wall

formula: tankeqn

constraint 3 nonnegative // inside the tank

formula: tankeqn

constraint 4 // on center axis

formula: x = 0

constraint 5 // on center axis

formula: y = 0

constraint 9

formula: 0

constraint 10

formula: 0

quantity myvol fixed = (CONST_TANKVOL - cyl_vol) method facet_vector_integral

vector_integrand:

q1: 0

q2: 0

q3: (capzEqn - z)

quantity xmom info_only method facet_vector_integral

vector_integrand:

q1: 0

q2: 0

q3: x*(capzEqn - z)

99

quantity ymom info_only method facet_vector_integral

vector_integrand:

q1: 0

q2: 0

q3: y*(capzEqn - z)

quantity wettedEnergy energy method edge_vector_integral

vector_integrand

q1: (z > ZC ? cosca*(y_calc)/(r_calc)^2 * (wettingEqnPart) :

RT*cosca*y/(x^2+y^2) * ((ZC-z) + (endCapSA)))

q2: (z > ZC ? -cosca*(x_calc)/(r_calc)^2 * (wettingEqnPart) : -

RT*cosca*x/(x^2+y^2) * ((ZC-z) + (endCapSA)))

q3: 0

quantity wettedArea info_only method edge_vector_integral

vector_integrand:

q1: (z > ZC ? -(y_calc)/(r_calc)^2 * (wettingEqnPart) : RT*cosca*y/(x^2+y^2)

* ((ZC-z) + (endCapSA)))

q2: (z > ZC ? (x_calc)/(r_calc)^2 * (wettingEqnPart) : -RT*cosca*x/(x^2+y^2)

* ((ZC-z) + (endCapSA)))

q3: 0

vertex

 1 RT 0 ZC fixed constraint 1 // outline only

 2 0 RT ZC fixed constraint 1 // outline only

 3 -RT 0 ZC fixed constraint 1 // outline only

 4 0 -RT ZC fixed constraint 1 // outline only

 5 RT 0 0 fixed constraint 1 // outline only

 6 0 RT 0 fixed constraint 1 // outline only

 7 -RT 0 0 fixed constraint 1 // outline only

 8 0 -RT 0 fixed constraint 1 // outline only

 9 0 0 (ZC+delH) fixed constraint 1 // outline only

11 RT 0 0 constraint 2 9 // bubble

12 0 RT 0 constraint 2 // bubble

13 -RT 0 0 constraint 2 10 // bubble

14 0 -RT 0 constraint 2 // bubble

100

edge

 1 1 2 constraint 1 fixed bare no_refine color blue // outline only

 2 2 3 constraint 1 fixed bare no_refine color blue // outline only

 3 3 4 constraint 1 fixed bare no_refine color blue // outline only

 4 4 1 constraint 1 fixed bare no_refine color blue // outline only

 5 5 6 constraint 1 fixed bare no_refine color blue // outline only

 6 6 7 constraint 1 fixed bare no_refine color blue // outline only

 7 7 8 constraint 1 fixed bare no_refine color blue // outline only

 8 8 5 constraint 1 fixed bare no_refine color blue // outline only

 9 1 9 constraint 1 fixed bare no_refine color blue // outline only

10 2 9 constraint 1 fixed bare no_refine color blue // outline only

11 3 9 constraint 1 fixed bare no_refine color blue // outline only

12 4 9 constraint 1 fixed bare no_refine color blue // outline only

13 1 5 fixed bare no_refine color blue // outline only

14 2 6 fixed bare no_refine color blue // outline only

15 3 7 fixed bare no_refine color blue // outline only

16 4 8 fixed bare no_refine color blue // outline only

21 11 12 constraint 2 9 wettedArea wettedEnergy // bubble

22 12 13 constraint 2 10 wettedArea wettedEnergy // bubble

23 13 14 constraint 2 10 wettedArea wettedEnergy // bubble

24 14 11 constraint 2 9 wettedArea wettedEnergy // bubble

face

1 21 22 23 24 constraint 3 myvol xmom ymom // bubble

body

1 1 density 0

read

lh := histogram(edge where not fixed, length)

ah := histogram(face, area)

vug := {{V 3; u 3; g3}3;}

r_outline := {refine edge where on_constraint 1}

changeVol := {myvol.target := (frac*CONST_TANKVOL)}

calcFrac := {print (myvol.value/CONST_TANKVOL)}

//drain := {frac := frac - 0.001; changeVol; vug; g5; {vug; g50}3}

//fill := {frac := frac + 0.001; changeVol; vug; g5; {vug; g50}3}

101

eraseHeightFile := {printf "">>>outputHeightFile}

eraseCLFile := {printf "">>>outputCLFile}

eraseEnergyFile := {printf "">>>outputEnergyFile}

outputHeight := {printf "%.16g, %.16g\n", frac,

vertex[14].z>>outputHeightFile}

outputCL := {foreach vertex vv where on_constraint 2 do {

 printf "%.2g %.16g %.16g %.16g\n ",frac,x,y,z>>outputCLFile

 };

 }

outputCLFile := "test.txt"

pertr := {set vertex where on_constraint 2 or on_constraint 3 z z-0.01*y};

pertl := {set vertex where on_constraint 2 or on_constraint 3 z z+0.01*y};

ar := {printf "%.4f\n", (wettedArea.value)}

drain := {frac := maximum(0.001, ceil((frac-0.001)*1000-0.5)/1000);

changeVol}

fill := {frac := ceil((frac+0.01)*1000-0.5)/1000; changeVol}

averageVert := {fix vertex where on_constraint 2; {V;u}100; unfix vertex

where on_constraint 2}

averageEdge := {fix vertex where on_constraint 3; {V;u}10; unfix vertex where

on_constraint 3}

converge := {{averageVert; g20}10; averageVert}

slow_converge := {{{V;u}10; vug}20; {vug; g20}10};

//{vug 20; {averageVertSmall; g20}20; averageVert; {averageVertSmall;

g100}20; averageVert; g1000}

//converge := {quiet on; autodisplay off; vug 20; {vug; g20}50; {vug; g50}20;

{vug; g100}10; g1000; quiet off; autodisplay on}

//{quiet on; autodisplay off; vug 3; {{V;u}100; vug 10}20; {vug; g5}5;

{V;u}100; {vug; g20}20; {V;u}100; {vug; g50}20; g1000; quiet off; autodisplay

on};

checkAsymmetric := {r_1 := 0; r_2 := 0; z_1 := 0; z_2 := 0; numVert := 0;

 foreach vertex vv where on_constraint 2 do {

 r_1 := r_1 + sqrt(x^2 + y^2);

 r_2 := r_2 + x^2 + y^2;

 z_1 := z_1 + z;

 z_2 := z_2 + z^2;

102

 numVert := numVert + 1;

 };

 r_std_old := r_std; z_std_old := z_std;

 r_std := sqrt((r_2/numVert) - (r_1/numVert)^2); z_std :=

sqrt((z_2/numVert) - (z_1/numVert)^2);

 if (r_std + z_std) >= 0.05 then {asymmetric := 1} else

{asymmetric := 0};

 diff := maximum(abs(r_std - r_std_old), abs(z_std -

z_std_old));

 };

checkToroidal := {theta0 := sum(vertex where original == 12, atan2(y,

x));//theta0 := atan2(ymom.value, xmom.value);

 theta1_old := theta1; theta2_old := theta2;

 theta1 := max(vertex where on_constraint 10 and

sqrt(x^2+y^2) > 0.5, theta0/abs(theta0)*(atan2(-x*sin(theta0) +

y*cos(theta0), x*cos(theta0) + y*sin(theta0)) + pi/4) % (2*pi) - pi/4);

 theta2 := max(vertex where on_constraint 9 and

sqrt(x^2+y^2) > 0.5, -theta0/abs(theta0)*(atan2(-x*sin(theta0) +

y*cos(theta0), x*cos(theta0) + y*sin(theta0)) - pi/4) % (2*pi) - pi/4);

 diff2 := (theta1+theta2) - (theta1_old+theta2_old);

 if (theta1 + theta2 - 2*pi) > 0 then {

 toroidal := 1

 } else {

 toroidal := 0

 }};

outputValues := { hit_vert := 0;

 checkAsymmetric;

 hit_vert := 0; toroidal := 0;

 foreach vertex vv where hit_constraint 3 do {

 hit_vert := hit_vert + 1;

 };

 checkToroidal;

 printf "%.2f %.3f %d %d %d %.16f %.16f %.16f\n", ang, frac,

asymmetric, toroidal, hit_vert, r_std, z_std, total_energy>>outputEnergyFile

 }

103

tilt := {checkAsymmetric; if (asymmetric == 0) then {pertr 20; vug}5;

slow_converge; checkAsymmetric};

convergeLoopSlow := {conj_grad on; diff := 100; energyDiff := -100;

oldEnergy := total_energy; while ((diff > 10^-4) && (energyDiff < 0) &&

(toroidal == 0)) do { vug; checkAsymmetric; checkToroidal; energyDiff :=

total_energy - oldEnergy; oldEnergy := total_energy}; conj_grad off};

maxLength := 0.05;

r2 := {refine edge where length > maxLength and not fixed};

maxDiff := 10^-8;

//convergeLoopRefine := {quiet on; conj_grad on; diff := 100; while ((diff >

maxDiff) && (toroidal == 0) && (asymmetric == 1)) do { r2; averageVert; g20;

checkAsymmetric; checkToroidal; }; conj_grad off; quiet off};

convergeLoopRefine := {quiet on; conj_grad on; diff := 100; numNoChange := 0;

while ((numNoChange < 5) && (toroidal == 0) && (asymmetric == 1)) do { r2;

averageVert; g20; checkAsymmetric; checkToroidal; if (diff < maxDiff) then

{numNoChange := numNoChange + 1; print numNoChange} else {numNoChange := 0}};

conj_grad off; quiet off};

convergeLoopRefineNoGradLong := {quiet on; conj_grad off; diff := 100;

numNoChange := 0; while ((numNoChange < 5) && (toroidal == 0) && (asymmetric

== 1)) do { r2; averageVert; g20; checkAsymmetric; checkToroidal; if (diff <

maxDiff) then {numNoChange := numNoChange + 1; print numNoChange} else

{numNoChange := 0}}; conj_grad off; quiet off};

convergeLoopRefineNoGrad := {quiet on; conj_grad off; diff := 100; while

(diff > 10^-7) do { r2; averageVert; g20; checkAsymmetric; }; quiet off};

convergeLoop := {quiet on; conj_grad on; diff := 100; while ((diff > 10^-8)

&& (toroidal == 0) && (asymmetric == 1)) do { averageVert; g20;

checkAsymmetric; checkToroidal; }; conj_grad off; quiet off};

averageLoop := {diff := 100; while (diff > 0.0003) do { {{V;u}10; vug};

checkAsymmetric; checkToroidal; }};

endLength := 0.05;

convergeLoopRefineLoop := {maxLength := 0.08; while (maxLength > endLength -

0.005) do {convergeLoopRefine; maxLength := maxLength - 0.015};};

numFile := 4; maxAng := 90;

104

setNoDumpOn := {ang.no_dump on; frac.no_dump on};

setNoDumpOff := {ang.no_dump off; frac.no_dump off};

tempDumpFileName := sprintf "AsymmetricBoundary/tempDump/n%d_z0_%.3f_4.dmp",

CONST_n, CONST_z0

outputEnergyFile := sprintf "AsymmetricBoundary/n%d_z0_%.3f_%d.txt", CONST_n,

CONST_z0, numFile

dumpCurr := {setNoDumpOff; dump sprintf

"Asymmetric/Dump/n%d_z0_%.3f_theta%d_f%.1f_4.dmp", CONST_n, CONST_z0, ang,

frac*100; setNoDumpOn}

dumpTempDumpFile := {setNoDumpOn; asymmetric.no_dump on; toroidal.no_dump on;

dump tempDumpFileName; setNoDumpOff; asymmetric.no_dump off};

tilt2 := {fix vertex where on_constraint 2; {pertr 5; vug; averageVert}20;

unfix vertex where on_constraint 2; vug 50; {vug; g20}50};

//findBoundary := {while ((asymmetric == 1) && (toroidal == 0)) do { vug 20;

dumpTempDumpFile; convergeLoopRefineLoop; outputValues; dumpCurr;

replace_load tempDumpFileName; fill }};

prepSurface := {r; {r; vug}2; {vug; g20}5; {r; vug}; refine edge where

on_constraint 2; vug 20; tilt2; checkAsymmetric; if (asymmetric == 0) then

{ convergeLoopRefineNoGrad; tilt2; printf

"n%d_z0_%.3f_theta%d_f%g_4_prepSurface\n", CONST_n, CONST_z0, ang,

frac*100>>outputEnergyFile}}

//findBoundary := {while ((asymmetric == 1) && (toroidal == 0)) do

{ conj_grad off; prepSurface; {convergeLoopRefineNoGrad; vug}2;

convergeLoopRefine; outputValues; dumpCurr; replace_load tempDumpFileName;

fill }};

findBoundary := {while ((asymmetric == 1) && (toroidal == 0)) do { conj_grad

off; prepSurface; {r2; averageVert; g20}100; averageEdge 10; vug;

convergeLoopRefineNoGradLong; outputValues; dumpCurr; replace_load

tempDumpFileName; fill }};

runBoundary := {findBoundary; while ang < maxAng do {drain 3; ang := ang + 1;

asymmetric := 1; toroidal := 0; findBoundary}};

runIndividual := {convergeLoopRefineLoop; endLength := 0.015;

convergeLoopRefineLoop; maxLength := 0.015; convergeLoopRefine; maxLength :=

0.01; convergeLoopRefine; dumpCurr}

convergeToroidal := {quiet on; conj_grad on; diff2 := 100; diff := 100; while

(((diff2 > 10^-6) && (diff > 10^-6)) && (toroidal == 0) && (asymmetric == 1))

105

do { r2; averageVert; g20; checkAsymmetric; checkToroidal; }; conj_grad off;

quiet off};

blankDumpFile := sprintf "AsymmetricBoundary/tempDump/n%d_z0_%.3f_blank.dmp",

CONST_n, CONST_z0;

runUp := {runIndividual; outputValues; while ((asymmetric == 1) &&

(toroidal == 0)) do {replace_load blankDumpFile; r; {r; vug}2; {vug;g 20}20;

{r; vug}; refine edge where on_constraint 2; vug 20; tilt; runIndividual;

outputValues; fill}};

runDown := {runIndividual; outputValues; while ((asymmetric == 0) ||

(toroidal == 1)) do {replace_load blankDumpFile; r; {r; vug}2; {vug;g 20}20;

{r; vug}; refine edge where on_constraint 2; vug 20; tilt; runIndividual;

outputValues; fill}};

test := {foreach edge ee where on_constraint 2 do {

 foreach ee.vertex do {

 printf "%.2g %.16g %.16g %.16g\n ",frac,x,y,z>>outputCLFile

 }

 };

 };

diff := 100; diff2 := 100; diff3 := 100; currMaxOld := 0;

checkMaxHeight := {currMax := max(vertex where on_constraint 2, z);

 diff3 := currMax - currMaxOld;

 currMaxOld := currMax;

 }

outputDiffTestFile := "";

updateDiffTestFile := {outputDiffTestFile := sprintf

"AsymmetricBoundary/Test/n%d_z0_%.3f_theta%d_f%.1f.txt", CONST_n, CONST_z0,

ang, frac*100};

outputDiffTest := {checkAsymmetric; checkToroidal; checkMaxHeight; printf

"%.16f %.16f %.16f\n", diff, diff2, diff3>>outputDiffTestFile};

diffTest := {quiet on; conj_grad on; while (1) do { r2; averageVert; g20;

outputDiffTest }; conj_grad off; quiet off};

runDiffTest := {prepSurface; updateDiffTestFile; diffTest};

fixVert := {fix vertex where on_constraint 2};

unfixVert := {unfix vertex where on_constraint 2};

106

increment := {outputValues; dumpCurr; fill}

avgv := {{V;u}100; vug};

avgvFix := {fixVert; {V;u}100; unfixVert};

converge := {vug 20; {vug; g20}5; conj_grad on; avgv 2; {vug; g20}20; U; U;

{vug; g100}; U; fixVert; {V;u}1000; unfixVert; U; {vug; g100}; U};

runAsymmetric := {};

runAsymmetric := {converge; increment; runAsymmetric};

runAsymmetricUntil := {};

runAsymmetricUntil := {avgv 10; converge; increment; if (((asymmetric == 1)

&& (toroidal == 0))) then {runAsymmetricUntil}};

shrink := {avgv 10; vug 5; frac := 0.05; changeVol; vug 5; avgv 10; vug 5;

frac := 0.03; changeVol; vug 5; avgv 10; vug 5; frac := 0.01; changeVol; vug

5; avgv 10; vug 5}

runCase := {};

runCase := {frac := 0.05; changeVol; avgv 3; tilt; avgv 5; shrink; avgv 100;

converge; avgv 10; converge; runAsymmetricUntil; ang := ang + 5; runCase};

107

APPENDIX E. SURFACE EVOLVER SOURCE CODE –

SUPERELLIPSOIDAL DOME, RING SOLUTION

Note: {..} is used to represent the extremely large arrays output from the MATLAB code in

Appendix C to save space.

#define RT 1

#define ZC RT

PARAMETER ang = 90

#define cosca cos(ang*pi/180)

#define sinca sin(ang*pi/180)

#define eps 1e-9

PARAMETER outputCLFile = ""

PARAMETER outputHeightFile = ""

PARAMETER outputEnergyFile = ""

PARAMETER r_std = 0

PARAMETER z_std = 0

PARAMETER maxInd = 2

define maxFrac_mat real[maxInd]

define minFrac_mat real[maxInd]

define theta_mat real[maxInd]

PARAMETER index = 0

PARAMETER cyl_vol (pi*RT^2*ZC)

#define cyl_eqn (RT^2 - (x^2 + y^2) = 0)

// HEMISPHERE

#define hemi_eqn (z > ZC ? RT^2 - (x^2 + y^2 + (z-ZC)^2) = 0 :\

 cyl_eqn)

#define hemi_vol (2/3*pi*RT^3 + cyl_vol)

#define hemi_H RT

#define hemi_z (sqrt(RT^2 - (x^2 + y^2)) + ZC)

#define hemi_SA (RT^2)

#define hemi_wetting (hemi_SA - RT*(z-ZC))

#define hemi_n 2

#define hemi_z0 1

#define hemi_diff (0)

108

// ELLIPSE

#define zMax_ell (0.5*RT)

PARAMETER CONST_z0_ell = zMax_ell

#define ellipse_eqn (z > ZC ? 1 - ((x/RT)^2 + (y/RT)^2 + ((z-ZC)/zMax_ell)^2)

= 0 : cyl_eqn)

#define ellipse_vol (2/3*pi*RT^2*zMax_ell + cyl_vol)

#define ellipse_H (zMax_ell + ZC - RT)

#define ellipse_z (zMax_ell*sqrt(1 - (x^2+y^2)/RT^2) + ZC)

#define bVal ((RT^2 - zMax_ell^2)/zMax_ell^4)

#define ellipse_SA (RT/2*(zMax_ell*sqrt(bVal*zMax_ell^2+1) +

asinh(sqrt(bVal)*zMax_ell)/sqrt(bVal)))

#define ellipse_wetting ((ellipse_SA) - 1/2*RT*((z_calc)*sqrt(bVal*(z_calc)^2

+ 1) + asinh(sqrt(bVal)*(z_calc))/sqrt(bVal)))

#define ellipse_n 2

#define ellipse_z0 zMax_ell

// SUPERELLIPSE

#define zMax_sup (0.750)

#define n (3)

#define betaFunc (3.6275987284684357)

#define super_SA (0.9563491000262874)

define zCoeffs3 real[1000] = {...}

define zCoeffs2 real[1000] = {...}

define zCoeffs1 real[1000] = {...}

define zCoeffs0 real[1000] = {...}

define rCoeffs3 real[1000] = {...}

define rCoeffs2 real[1000] = {...}

define rCoeffs1 real[1000] = {...}

define rCoeffs0 real[1000] = {...}

#define super_wetting ((super_SA) - RT*zMax_sup*((z < 1.595275394488075) ?

(zCoeffs3[maximum(1, ceil(1679.894733193164*(z-1)))]*((1.333333333333333*(z-

1)) % (0.0007937005259840997))^3 + zCoeffs2[maximum(1,

ceil(1679.894733193164*(z-1)))]*((1.333333333333333*(z-1)) %

(0.0007937005259840997))^2 + zCoeffs1[maximum(1, ceil(1679.894733193164*(z-

1)))]*((1.333333333333333*(z-1)) % (0.0007937005259840997)) +

zCoeffs0[maximum(1, ceil(1679.894733193164*(z-1)))]) : (rCoeffs3[maximum(1,

ceil(1259.921049894873*(r_calc)))]*((r_calc) % (0.0007937005259840997))^3 +

rCoeffs2[maximum(1, ceil(1259.921049894873*(r_calc)))]*((r_calc) %

109

(0.0007937005259840997))^2 + rCoeffs1[maximum(1,

ceil(1259.921049894873*(r_calc)))]*((r_calc) % (0.0007937005259840997)) +

rCoeffs0[maximum(1, ceil(1259.921049894873*(r_calc)))])))

#define super_n n

#define super_z0 zMax_sup

#define super_eqn (z > ZC ? 1 - (((x/RT)^2 + (y/RT)^2)^(n/2) + abs((z-

ZC)/zMax_sup)^n) = 0 :\

 cyl_eqn)

#define super_vol (2*pi/(3*n)*RT^2*zMax_sup*betaFunc + cyl_vol)

#define super_H (zMax_sup + ZC - RT)

#define super_z (zMax_sup*(1 - ((x/RT)^2 + (y/RT)^2)^(n/2))^(1/n) + ZC)

// Poles

#define r_calc ((((z-1)/(sqrt(x^2+y^2)*CONST_z0))^CONST_n + 1)^(-1/CONST_n))

#define z_calc ((z-1)/sqrt(x^2+y^2)*r_calc)

#define x_calc (r_calc*x/sqrt(x^2+y^2))

#define y_calc (r_calc*y/sqrt(x^2+y^2))

// DEFINE MODEL

parameter frac := 0.45

parameter CONST_TANKVOL = ellipse_vol

#define tankeqn ellipse_eqn

#define delH ellipse_H

#define capzEqn ellipse_z

#define wettingEqnPart ellipse_wetting

#define endCapSA ellipse_SA

PARAMETER CONST_n = ellipse_n

PARAMETER CONST_z0 = ellipse_z0

parameter maxFrac = maximum(0.1, ceil((1*(CONST_TANKVOL - cyl_vol - pi/6*(1-

sinca)/cosca*(3 + ((1-sinca)/cosca)^2))/CONST_TANKVOL)/0.01)*0.01 + 0.05)

parameter minFrac = 0.01

constraint 1 // draw the tank

formula: tankeqn

110

constraint 2 convex // on tank wall

formula: tankeqn

constraint 3 nonnegative // inside the tank

formula: tankeqn

constraint 4 // on center axis

formula: x = 0

constraint 5 // on center axis

formula: y = 0

quantity myvol fixed = (CONST_TANKVOL - cyl_vol) method facet_vector_integral

vector_integrand:

q1: 0

q2: 0

q3: (capzEqn - z)

quantity wettedEnergy energy method edge_vector_integral

vector_integrand

q1: (z > ZC ? cosca*(y_calc)/(r_calc)^2 * (wettingEqnPart) :

RT*cosca*y/(x^2+y^2) * ((ZC-z) + (endCapSA)))

q2: (z > ZC ? -cosca*(x_calc)/(r_calc)^2 * (wettingEqnPart) : -

RT*cosca*x/(x^2+y^2) * ((ZC-z) + (endCapSA)))

q3: 0

quantity wettedArea info_only method edge_vector_integral

vector_integrand:

q1: (z > ZC ? -(y_calc)/(r_calc)^2 * (wettingEqnPart) : RT*cosca*y/(x^2+y^2)

* ((ZC-z) + (endCapSA)))

q2: (z > ZC ? (x_calc)/(r_calc)^2 * (wettingEqnPart) : -RT*cosca*x/(x^2+y^2)

* ((ZC-z) + (endCapSA)))

q3: 0

vertex

 1 RT 0 ZC fixed constraint 1 // outline only

 2 0 RT ZC fixed constraint 1 // outline only

 3 -RT 0 ZC fixed constraint 1 // outline only

111

 4 0 -RT ZC fixed constraint 1 // outline only

 5 RT 0 0 fixed constraint 1 // outline only

 6 0 RT 0 fixed constraint 1 // outline only

 7 -RT 0 0 fixed constraint 1 // outline only

 8 0 -RT 0 fixed constraint 1 // outline only

 9 0 0 (ZC+delH) fixed constraint 1 // outline only

11 RT 0 ZC constraint 2 // bubble

12 0 RT ZC constraint 2 // bubble

13 -RT 0 ZC constraint 2 // bubble

14 0 -RT ZC constraint 2 // bubble

15 0.5 0 (ZC+delH) constraint 2 // bubble

16 0 0.5 (ZC+delH) constraint 2 // bubble

17 -0.5 0 (ZC+delH) constraint 2 // bubble

18 0 -0.5 (ZC+delH)constraint 2 // bubble

edge

 1 1 2 constraint 1 fixed bare no_refine color blue // outline only

 2 2 3 constraint 1 fixed bare no_refine color blue // outline only

 3 3 4 constraint 1 fixed bare no_refine color blue // outline only

 4 4 1 constraint 1 fixed bare no_refine color blue // outline only

 5 5 6 constraint 1 fixed bare no_refine color blue // outline only

 6 6 7 constraint 1 fixed bare no_refine color blue // outline only

 7 7 8 constraint 1 fixed bare no_refine color blue // outline only

 8 8 5 constraint 1 fixed bare no_refine color blue // outline only

 9 1 9 constraint 1 fixed bare no_refine color blue // outline only

10 2 9 constraint 1 fixed bare no_refine color blue // outline only

11 3 9 constraint 1 fixed bare no_refine color blue // outline only

12 4 9 constraint 1 fixed bare no_refine color blue // outline only

13 1 5 fixed bare no_refine color blue // outline only

14 2 6 fixed bare no_refine color blue // outline only

15 3 7 fixed bare no_refine color blue // outline only

16 4 8 fixed bare no_refine color blue // outline only

21 11 12 constraint 2 wettedArea wettedEnergy // bubble

22 12 13 constraint 2 wettedArea wettedEnergy // bubble

23 13 14 constraint 2 wettedArea wettedEnergy // bubble

112

24 14 11 constraint 2 wettedArea wettedEnergy // bubble

25 16 15 constraint 2 wettedArea wettedEnergy // bubble

26 17 16 constraint 2 wettedArea wettedEnergy // bubble

27 18 17 constraint 2 wettedArea wettedEnergy // bubble

28 15 18 constraint 2 wettedArea wettedEnergy // bubble

29 11 15 constraint 3 // bubble

30 12 16 constraint 3 // bubble

31 13 17 constraint 3 // bubble

32 14 18 constraint 3 // bubble

face

1 21 30 25 -29 constraint 3 myvol // bubble

2 22 31 26 -30 constraint 3 myvol // bubble

3 23 32 27 -31 constraint 3 myvol // bubble

4 24 29 28 -32 constraint 3 myvol // bubble

body

1 1 2 3 4 density 0

read

theta_mat := {30, 15};

minFrac_mat := {0.11, 0.09};

maxFrac_mat := {0.21, 0.22};

ang := theta_mat[1];

maxFrac := maxFrac_mat[1]; minFrac := minFrac_mat[1];

lh := histogram(edge where not fixed, length)

ah := histogram(face, area)

vug := {{V 3; u 3; g3}3;}

r_outline := {refine edge where on_constraint 1}

changeVol := {myvol.target := (frac*CONST_TANKVOL)}

calcFrac := {print (myvol.value/CONST_TANKVOL)}

eraseHeightFile := {printf "">>>outputHeightFile}

eraseCLFile := {printf "">>>outputCLFile}

eraseEnergyFile := {printf "">>>outputEnergyFile}

113

outputHeight := {printf "%.16g, %.16g\n", frac,

vertex[14].z>>outputHeightFile}

outputCL := {foreach vertex vv where on_constraint 2 do {

 printf "%.2g %.16g %.16g %.16g\n ",frac,x,y,z>>outputCLFile

 };

 }

outputCLFile := "test.txt"

pertr := {set vertex where on_constraint 2 or on_constraint 3 z z-0.01*y};

pertl := {set vertex where on_constraint 2 or on_constraint 3 z z+0.01*y};

ar := {printf "%.4f\n", (wettedArea.value)}

drain := {frac := ceil((frac-0.01)*100-0.5)/100; changeVol}

fill := {frac := ceil((frac+0.01)*100-0.5)/100; changeVol}

averageVert := {fix vertex where on_constraint 2; {V;u}100; unfix vertex

where on_constraint 2}

converge := {vug 20; {averageVert; g20}20; {averageVert; g100}20;

averageVert; g1000; averageVert}

slow_converge := {{{V;u}10; vug}20; {vug; g20}10};

//{quiet on; autodisplay off; vug 3; {{V;u}100; vug 10}20; {vug; g5}5;

{V;u}100; {vug; g20}20; {V;u}100; {vug; g50}20; g1000; quiet off; autodisplay

on};

tilt := {if ((r_std + z_std) < 0.05) then {pertr 20; vug}3 }

checkAsymmetric := {r_1 := 0; r_2 := 0; z_1 := 0; z_2 := 0; numVert := 0;

 foreach vertex vv where on_constraint 2 do {

 r_1 := r_1 + sqrt(x^2 + y^2);

 r_2 := r_2 + x^2 + y^2;

 z_1 := z_1 + z;

 z_2 := z_2 + z^2;

 numVert := numVert + 1;

 };

 r_std := sqrt((r_2/numVert) - (r_1/numVert)^2); z_std :=

sqrt((z_2/numVert) - (z_1/numVert)^2);

 };

outputValues := { hit_vert := 0;

 checkAsymmetric;

 hit_vert := 0; toroidal := 0;

114

 foreach vertex vv where hit_constraint 3 do {

 hit_vert := hit_vert + 1;

 };

 printf "%.2f %.3f %d %.16f %.16f %.16f\n", ang, frac,

hit_vert, r_std, z_std, total_energy>>outputEnergyFile

 }

setNoDumpOn := {ang.no_dump on; frac.no_dump on; index.no_dump on;

maxFrac.no_dump on; minFrac.no_dump on};

setNoDumpOff := {ang.no_dump off; frac.no_dump off; index.no_dump off;

maxFrac.no_dump off; minFrac.no_dump off};

outputEnergyFile := sprintf

"Energy/Superellipsoid/ToroidalFill/n%d_z0_%.3f_theta%d.txt", CONST_n,

CONST_z0, ang

dumpCurr := {dump sprintf "Ring/Dump/n%d_z0_%.3f_theta%d_f%.2g.dmp", CONST_n,

CONST_z0, ang, frac*100}

takeStep := {converge; outputValues; setNoDumpOff; dumpCurr; setNoDumpOn;

fill}

run := {while (frac < (maxFrac+0.005)) do {takeStep} };

outputVertices := {printf "">>>"test.txt"; foreach vertex vv where

on_constraint 3 or on_constraint 2 do { printf "%.16g %.16g %.16g\n", x, y,

z>>"test.txt" }};

tempDumpFile := sprintf "TempDumpFiles/ToroidalFill_n%d_z0_%.3f.dmp",

CONST_n, CONST_z0

incrementAng := { index := index + 1;

 ang := theta_mat[index];

 maxFrac := maxFrac_mat[index]; minFrac :=

minFrac_mat[index];

 outputEnergyFile := sprintf

"Energy/Superellipsoid/ToroidalFill/n%d_z0_%.3f_theta%d.txt", CONST_n,

CONST_z0, ang;

 dumpCurr := {dump sprintf

"Energy/Superellipsoid/ToroidalFill/Dump/n%d_z0_%.3f_theta%d_f%d.dmp",

CONST_n, CONST_z0, ang, frac*100};

 frac := minFrac;

 };

115

runCA := {while index < maxInd do {incrementAng; eraseEnergyFile;

replace_load tempDumpFile; changeVol; slow_converge; run}};

fixVert := {fix vertex where on_constraint 2};

unfixVert := {unfix vertex where on_constraint 2};

increment := {outputValues; dumpCurr; fill}

decrement := {outputValues; dumpCurr; drain}

avgv := {{V;u}100; vug};

converge := {avgv 3; vug 20; {vug; g20}5; conj_grad on; avgv 2; {vug; g20}20;

U; U; {vug; g100}; U; fixVert; {V;u}1000; unfixVert; U; {vug; g100}; U};

runRingUp := {};

runRingUp := {fill; converge; increment; runRingUp};

runRingDown := {};

runRingDown := {converge; decrement; runRingDown};

incrementAng := {outputValues; dumpCurr; ang := ang + 1; outputEnergyFile :=

sprintf "Ring/n%d_z0_%.3f/n%d_z0_%.3f_t%d.txt", CONST_n, CONST_z0, CONST_n,

CONST_z0, ang}

runRingAng := {};

runRingAng := {converge; incrementAng; runRingAng};

shrink := {avgv 10; vug 5; frac := 0.05; changeVol; vug 5; avgv 10; vug 5;

frac := 0.03; changeVol; vug 5; avgv 10; vug 5; frac := 0.01; changeVol; vug

5; avgv 10; vug 5}

116

APPENDIX F. SURFACE EVOLVER SOURCE CODE – TORISPHERICAL

DOME, NON-RING SOLUTION

#define RT 1

#define ZC RT

PARAMETER ang = 90

#define cosca cos(ang*pi/180)

#define sinca sin(ang*pi/180)

#define eps 1e-9

PARAMETER outputCLFile = ""

PARAMETER outputHeightFile = ""

PARAMETER outputEnergyFile = ""

PARAMETER r_std = 0

PARAMETER z_std = 0

define maxFrac_mat real[6]

define minFrac_mat real[6]

PARAMETER index = 1

PARAMETER asymmetric = 1;

PARAMETER toroidal = 0;

PARAMETER diff = 100;

PARAMETER theta1 = 0;

PARAMETER theta2 = 0;

PARAMETER cyl_vol = (pi*RT^2*ZC)

#define cyl_eqn (RT^2 - (x^2 + y^2) = 0)

// TORISPHERICAL

#define z_max (0.75)

#define r_norm (0.6)

#define rS (r_norm*z_max)

#define RH ((2*rS*RT - RT^2 - z_max^2)/(2*(rS-z_max)))

#define zCenter (-sqrt(-RT^2 + 2*RT*rS - 2*RH*rS + RH^2)) //z of sphere

center

#define zcr (rS*sqrt((RH-RT)*(RH - 2*rS + RT))/(RH-rS)) // r of start of

sphere

#define rcr (sqrt(rS^2 - zcr^2) + RT - rS)

117

#define toris_eqn (z > ZC ? (z > (zcr+ZC) ? RH^2 - (x^2 + y^2 + (z-zCenter-

ZC)^2 = 0) :\

 ((sqrt(rS^2 - (z-ZC)^2) + RT - rS -

sqrt(x^2+y^2)) = 0)) :\

 cyl_eqn)

#define toris_vol (pi/3*(2*(RH+zCenter)*RH^2 - (2*rS^2+(RT-

rS)^2+2*rS*RH)*(RH-(RH+zCenter)) \

 + 3*rS^2*(RT-rS)*asin((RH-(RH+zCenter))/(RH-rS))) +

cyl_vol)

#define toris_H (RH + zCenter + ZC - RT)

#define toris_z (sqrt(x^2+y^2) < rcr ? (sqrt(RH^2 - (x^2+y^2)) + ZC

+zCenter) : (sqrt(rS^2 - (sqrt(x^2+y^2)-RT+rS)^2) + ZC))

#define toris_SA ((rcr^2 + (RH-zcr+zCenter)^2)/2 + rS*(zcr + (RT-

rS)*asin(zcr/rS)))

#define toris_wetting ((toris_SA) + (z_calc < (zcr) ? -(rS*((z_calc) + (RT-

rS)*asin((z_calc)/rS))) : RH/RT*(zcr-z_calc) -(rS*((zcr) + (RT-

rS)*asin((zcr)/rS)))))

parameter CONST_zMax = z_max

parameter CONST_rNorm = r_norm

// Poles

#define t_calc ((z-ZC)/sqrt(x^2+y^2))

#define r_calc (t_calc >= zcr/rcr ? (t_calc*zCenter+sqrt(RH^2*(t_calc^2+1)-

zCenter^2))/(t_calc^2+1) : (sqrt(-RT^2*t_calc^2+2*RT*rS*t_calc^2+rS^2) + RT -

rS)/(t_calc^2+1))

#define z_calc (t_calc*r_calc)

#define x_calc (r_calc*x/sqrt(x^2+y^2))

#define y_calc (r_calc*y/sqrt(x^2+y^2))

// DEFINE MODEL

parameter frac := 0.45

parameter CONST_TANKVOL = toris_vol

#define tankeqn toris_eqn

#define delH toris_H

#define capzEqn toris_z

#define wettingEqnPart toris_wetting

#define endCapSA toris_SA

118

parameter maxFrac = maximum(0.1, ceil((1*(CONST_TANKVOL - cyl_vol - pi/6*(1-

sinca)/cosca*(3 + ((1-sinca)/cosca)^2))/CONST_TANKVOL)/0.01)*0.01 + 0.05)

parameter minFrac = 0.01

constraint 1 // draw the tank

formula: tankeqn

constraint 2 convex // on tank wall

formula: tankeqn

constraint 3 nonnegative // inside the tank

formula: tankeqn

constraint 4 // on center axis

formula: x = 0

constraint 5 // on center axis

formula: y = 0

constraint 9

formula: 0

constraint 10

formula: 0

quantity myvol fixed = (CONST_TANKVOL - cyl_vol) method facet_vector_integral

vector_integrand:

q1: 0

q2: 0

q3: (capzEqn - z)

quantity wettedEnergy energy method edge_vector_integral

vector_integrand

q1: (z > ZC ? cosca*(y_calc)/(r_calc)^2 * (wettingEqnPart) :

RT*cosca*y/(x^2+y^2) * ((ZC-z) + (endCapSA)))

q2: (z > ZC ? -cosca*(x_calc)/(r_calc)^2 * (wettingEqnPart) : -

RT*cosca*x/(x^2+y^2) * ((ZC-z) + (endCapSA)))

q3: 0

119

quantity wettedArea info_only method edge_vector_integral

vector_integrand:

q1: (z > ZC ? -(y_calc)/(r_calc)^2 * (wettingEqnPart) : RT*cosca*y/(x^2+y^2)

* ((ZC-z) + (endCapSA)))

q2: (z > ZC ? (x_calc)/(r_calc)^2 * (wettingEqnPart) : -RT*cosca*x/(x^2+y^2)

* ((ZC-z) + (endCapSA)))

q3: 0

vertex

 1 RT 0 ZC fixed constraint 1 // outline only

 2 0 RT ZC fixed constraint 1 // outline only

 3 -RT 0 ZC fixed constraint 1 // outline only

 4 0 -RT ZC fixed constraint 1 // outline only

 5 RT 0 0 fixed constraint 1 // outline only

 6 0 RT 0 fixed constraint 1 // outline only

 7 -RT 0 0 fixed constraint 1 // outline only

 8 0 -RT 0 fixed constraint 1 // outline only

 9 0 0 (ZC+delH) fixed constraint 1 // outline only

11 RT 0 0 constraint 2 9 // bubble

12 0 RT 0 constraint 2 // bubble

13 -RT 0 0 constraint 2 10 // bubble

14 0 -RT 0 constraint 2 // bubble

edge

 1 1 2 constraint 1 fixed bare no_refine color blue // outline only

 2 2 3 constraint 1 fixed bare no_refine color blue // outline only

 3 3 4 constraint 1 fixed bare no_refine color blue // outline only

 4 4 1 constraint 1 fixed bare no_refine color blue // outline only

 5 5 6 constraint 1 fixed bare no_refine color blue // outline only

 6 6 7 constraint 1 fixed bare no_refine color blue // outline only

 7 7 8 constraint 1 fixed bare no_refine color blue // outline only

 8 8 5 constraint 1 fixed bare no_refine color blue // outline only

 9 1 9 constraint 1 fixed bare no_refine color blue // outline only

10 2 9 constraint 1 fixed bare no_refine color blue // outline only

11 3 9 constraint 1 fixed bare no_refine color blue // outline only

12 4 9 constraint 1 fixed bare no_refine color blue // outline only

120

13 1 5 fixed bare no_refine color blue // outline only

14 2 6 fixed bare no_refine color blue // outline only

15 3 7 fixed bare no_refine color blue // outline only

16 4 8 fixed bare no_refine color blue // outline only

21 11 12 constraint 2 9 wettedArea wettedEnergy // bubble

22 12 13 constraint 2 10 wettedArea wettedEnergy // bubble

23 13 14 constraint 2 10 wettedArea wettedEnergy // bubble

24 14 11 constraint 2 9 wettedArea wettedEnergy // bubble

face

1 21 22 23 24 constraint 3 myvol // bubble

body

1 1 density 0

read

lh := histogram(edge where not fixed, length)

ah := histogram(face, area)

vug := {{V 3; u 3; g3}3;}

r_outline := {refine edge where on_constraint 1}

changeVol := {myvol.target := (frac*CONST_TANKVOL)}

calcFrac := {print (myvol.value/CONST_TANKVOL)}

eraseHeightFile := {printf "">>>outputHeightFile}

eraseCLFile := {printf "">>>outputCLFile}

eraseEnergyFile := {printf "">>>outputEnergyFile}

outputHeight := {printf "%.16g, %.16g\n", frac,

vertex[14].z>>outputHeightFile}

outputCL := {foreach vertex vv where on_constraint 2 do {

 printf "%.2g %.16g %.16g %.16g\n ",frac,x,y,z>>outputCLFile

 };

 }

outputCLFile := "test.txt"

pertr := {set vertex where on_constraint 2 or on_constraint 3 z z-0.01*y};

pertl := {set vertex where on_constraint 2 or on_constraint 3 z z+0.01*y};

ar := {printf "%.4f\n", (wettedArea.value)}

121

drain := {frac := maximum(0.001, ceil((frac-0.001)*1000-0.5)/1000);

changeVol}

fill := {frac := ceil((frac+0.01)*1000-0.5)/1000; changeVol}

averageVert := {fix vertex where on_constraint 2; {V;u}100; unfix vertex

where on_constraint 2}

averageEdge := {fix vertex where on_constraint 3; {V;u}10; unfix vertex where

on_constraint 3}

converge := {{averageVert; g20}10; averageVert}

slow_converge := {{{V;u}10; vug}20; {vug; g20}10};

//{vug 20; {averageVertSmall; g20}20; averageVert; {averageVertSmall;

g100}20; averageVert; g1000}

//converge := {quiet on; autodisplay off; vug 20; {vug; g20}50; {vug; g50}20;

{vug; g100}10; g1000; quiet off; autodisplay on}

//{quiet on; autodisplay off; vug 3; {{V;u}100; vug 10}20; {vug; g5}5;

{V;u}100; {vug; g20}20; {V;u}100; {vug; g50}20; g1000; quiet off; autodisplay

on};

checkAsymmetric := {r_1 := 0; r_2 := 0; z_1 := 0; z_2 := 0; numVert := 0;

 foreach vertex vv where on_constraint 2 do {

 r_1 := r_1 + sqrt(x^2 + y^2);

 r_2 := r_2 + x^2 + y^2;

 z_1 := z_1 + z;

 z_2 := z_2 + z^2;

 numVert := numVert + 1;

 };

 r_std_old := r_std; z_std_old := z_std;

 r_std := sqrt((r_2/numVert) - (r_1/numVert)^2); z_std :=

sqrt((z_2/numVert) - (z_1/numVert)^2);

 if (r_std + z_std) >= 0.05 then {asymmetric := 1} else

{asymmetric := 0};

 diff := maximum(abs(r_std - r_std_old), abs(z_std -

z_std_old));

 };

checkToroidal := {theta0 := sum(vertex where original == 12, atan2(y,

x));//theta0 := atan2(ymom.value, xmom.value);

 theta1_old := theta1; theta2_old := theta2;

122

 theta1 := max(vertex where on_constraint 10 and

sqrt(x^2+y^2) > 0.5, theta0/abs(theta0)*(atan2(-x*sin(theta0) +

y*cos(theta0), x*cos(theta0) + y*sin(theta0)) + pi/4) % (2*pi) - pi/4);

 theta2 := max(vertex where on_constraint 9 and

sqrt(x^2+y^2) > 0.5, -theta0/abs(theta0)*(atan2(-x*sin(theta0) +

y*cos(theta0), x*cos(theta0) + y*sin(theta0)) - pi/4) % (2*pi) - pi/4);

 diff2 := (theta1+theta2) - (theta1_old+theta2_old);

 if (theta1 + theta2 - 2*pi) > 0 then {

 toroidal := 1

 } else {

 toroidal := 0

 }};

outputValues := { hit_vert := 0;

 checkAsymmetric;

 hit_vert := 0; toroidal := 0;

 foreach vertex vv where hit_constraint 3 do {

 hit_vert := hit_vert + 1;

 };

 checkToroidal;

 printf "%.2f %.3f %d %d %d %.16f %.16f %.16f\n", ang, frac,

asymmetric, toroidal, hit_vert, r_std, z_std, total_energy>>outputEnergyFile

 }

tilt := {checkAsymmetric; if (asymmetric == 0) then {pertr 20; vug}5;

slow_converge; checkAsymmetric};

convergeLoopSlow := {conj_grad on; diff := 100; energyDiff := -100;

oldEnergy := total_energy; while ((diff > 10^-4) && (energyDiff < 0) &&

(toroidal == 0)) do { vug; checkAsymmetric; checkToroidal; energyDiff :=

total_energy - oldEnergy; oldEnergy := total_energy}; conj_grad off};

maxLength := 0.05;

r2 := {refine edge where length > maxLength and not fixed};

maxDiff := 10^-8;

//convergeLoopRefine := {quiet on; conj_grad on; diff := 100; while ((diff >

maxDiff) && (toroidal == 0) && (asymmetric == 1)) do { r2; averageVert; g20;

checkAsymmetric; checkToroidal; }; conj_grad off; quiet off};

123

convergeLoopRefine := {quiet on; conj_grad on; diff := 100; numNoChange := 0;

while ((numNoChange < 5) && (toroidal == 0) && (asymmetric == 1)) do { r2;

averageVert; g20; checkAsymmetric; checkToroidal; if (diff < maxDiff) then

{numNoChange := numNoChange + 1; print numNoChange} else {numNoChange := 0}};

conj_grad off; quiet off};

convergeLoopRefineNoGradLong := {quiet on; conj_grad off; diff := 100;

numNoChange := 0; while ((numNoChange < 5) && (toroidal == 0) && (asymmetric

== 1)) do { r2; averageVert; g20; checkAsymmetric; checkToroidal; if (diff <

maxDiff) then {numNoChange := numNoChange + 1; print numNoChange} else

{numNoChange := 0}}; conj_grad off; quiet off};

convergeLoopRefineNoGrad := {quiet on; conj_grad off; diff := 100; while

(diff > 10^-7) do { r2; averageVert; g20; checkAsymmetric; }; quiet off};

convergeLoop := {quiet on; conj_grad on; diff := 100; while ((diff > 10^-8)

&& (toroidal == 0) && (asymmetric == 1)) do { averageVert; g20;

checkAsymmetric; checkToroidal; }; conj_grad off; quiet off};

averageLoop := {diff := 100; while (diff > 0.0003) do { {{V;u}10; vug};

checkAsymmetric; checkToroidal; }};

endLength := 0.05;

convergeLoopRefineLoop := {maxLength := 0.08; while (maxLength > endLength -

0.005) do {convergeLoopRefine; maxLength := maxLength - 0.015};};

numFile := 4; maxAng := 90;

setNoDumpOn := {ang.no_dump on; frac.no_dump on};

setNoDumpOff := {ang.no_dump off; frac.no_dump off};

outputEnergyFile := sprintf "Asymmetric/r%.3f_z0_%.3f/r%.3f_z0_%.3f_t%d.txt",

CONST_rNorm, CONST_zMax, CONST_rNorm, CONST_zMax, ang

dumpCurr := {setNoDumpOff; dump sprintf

"Asymmetric/Dump/r%.3f_z0_%.3f_theta%d_f%.1f_4.dmp", CONST_rNorm, CONST_zMax,

ang, frac*100; setNoDumpOn}

tilt2 := {fix vertex where on_constraint 2; {pertr 5; vug; averageVert}20;

unfix vertex where on_constraint 2; vug 50; {vug; g20}50};

runIndividual := {convergeLoopRefineLoop; endLength := 0.015;

convergeLoopRefineLoop; maxLength := 0.015; convergeLoopRefine; maxLength :=

0.01; convergeLoopRefine; dumpCurr}

124

test := {foreach edge ee where on_constraint 2 do {

 foreach ee.vertex do {

 printf "%.2g %.16g %.16g %.16g\n ",frac,x,y,z>>outputCLFile

 }

 };

 };

diff := 100; diff2 := 100; diff3 := 100; currMaxOld := 0;

checkMaxHeight := {currMax := max(vertex where on_constraint 2, z);

 diff3 := currMax - currMaxOld;

 currMaxOld := currMax;

 }

fixVert := {fix vertex where on_constraint 2};

unfixVert := {unfix vertex where on_constraint 2};

increment := {outputValues; dumpCurr; fill}

avgv := {{V;u}100; vug};

avgvFix := {fixVert; {V;u}100; unfixVert};

converge := {avgv 10; vug 20; {vug; g20}5; conj_grad on; avgv 2; {vug;

g20}20; U; U; {vug; g100}; U; fixVert; {V;u}1000; unfixVert; U; {vug; g100};

U};

runAsymmetric := {};

runAsymmetric := {converge; increment; runAsymmetric};

runAsymmetricUntil := {};

runAsymmetricUntil := {converge; increment; if (((asymmetric == 1) &&

(toroidal == 0))) then {runAsymmetricUntil}};

shrink := {avgv 10; vug 5; frac := 0.05; changeVol; vug 5; avgv 10; vug 5;

frac := 0.03; changeVol; vug 5; avgv 10; vug 5; frac := 0.01; changeVol; vug

5; avgv 10; vug 5}

runCase := {};

runCase := {frac := 0.05; changeVol; avgv 3; tilt; avgv 5; shrink; avgv 100;

converge; avgv 10; converge; runAsymmetricUntil; ang := ang + 5; runCase};

125

APPENDIX G. SURFACE EVOLVER SOURCE CODE –

TORISPHERICAL DOME, RING SOLUTION

#define RT 1

#define ZC RT

PARAMETER ang = 90

#define cosca cos(ang*pi/180)

#define sinca sin(ang*pi/180)

#define eps 1e-9

PARAMETER outputCLFile = ""

PARAMETER outputHeightFile = ""

PARAMETER outputEnergyFile = ""

PARAMETER r_std = 0

PARAMETER z_std = 0

PARAMETER maxInd = 6

define maxFrac_mat real[maxInd]

define minFrac_mat real[maxInd]

define theta_mat real[maxInd]

PARAMETER index = 1

PARAMETER asymmetric = 1;

PARAMETER toroidal = 0;

PARAMETER diff = 100;

PARAMETER theta1 = 0;

PARAMETER theta2 = 0;

PARAMETER cyl_vol (pi*RT^2*ZC)

#define cyl_eqn (RT^2 - (x^2 + y^2) = 0)

// TORISPHERICAL

#define z_max (0.75)

#define r_norm (0.6)

#define rS (r_norm*z_max)

#define RH ((2*rS*RT - RT^2 - z_max^2)/(2*(rS-z_max)))

#define zCenter (-sqrt(-RT^2 + 2*RT*rS - 2*RH*rS + RH^2)) //z of sphere

center

126

#define zcr (rS*sqrt((RH-RT)*(RH - 2*rS + RT))/(RH-rS)) // r of start of

sphere

#define rcr (sqrt(rS^2 - zcr^2) + RT - rS)

#define toris_eqn (z > ZC ? (z > (zcr+ZC) ? RH^2 - (x^2 + y^2 + (z-zCenter-

ZC)^2 = 0) :\

 ((sqrt(rS^2 - (z-ZC)^2) + RT - rS -

sqrt(x^2+y^2)) = 0)) :\

 cyl_eqn)

#define toris_vol (pi/3*(2*(RH+zCenter)*RH^2 - (2*rS^2+(RT-

rS)^2+2*rS*RH)*(RH-(RH+zCenter)) \

 + 3*rS^2*(RT-rS)*asin((RH-(RH+zCenter))/(RH-rS))) +

cyl_vol)

#define toris_H (RH + zCenter + ZC - RT)

#define toris_z (sqrt(x^2+y^2) < rcr ? (sqrt(RH^2 - (x^2+y^2)) + ZC

+zCenter) : (sqrt(rS^2 - (sqrt(x^2+y^2)-RT+rS)^2) + ZC))

#define toris_SA ((rcr^2 + (RH-zcr+zCenter)^2)/2 + rS*(zcr + (RT-

rS)*asin(zcr/rS)))

#define toris_wetting ((toris_SA) + (z_calc < (zcr) ? -(rS*((z_calc) + (RT-

rS)*asin((z_calc)/rS))) : RH/RT*(zcr-z_calc) -(rS*((zcr) + (RT-

rS)*asin((zcr)/rS)))))

parameter CONST_zMax = z_max

parameter CONST_rNorm = r_norm

// Poles

#define t_calc ((z-ZC)/sqrt(x^2+y^2))

#define r_calc (t_calc >= zcr/rcr ? (t_calc*zCenter+sqrt(RH^2*(t_calc^2+1)-

zCenter^2))/(t_calc^2+1) : (sqrt(-RT^2*t_calc^2+2*RT*rS*t_calc^2+rS^2) + RT -

rS)/(t_calc^2+1))

#define z_calc (t_calc*r_calc)

#define x_calc (r_calc*x/sqrt(x^2+y^2))

#define y_calc (r_calc*y/sqrt(x^2+y^2))

// DEFINE MODEL

parameter frac := 0.45

parameter CONST_TANKVOL = toris_vol

#define tankeqn toris_eqn

#define delH toris_H

#define capzEqn toris_z

127

#define wettingEqnPart toris_wetting

#define endCapSA toris_SA

parameter maxFrac = maximum(0.1, ceil((1*(CONST_TANKVOL - cyl_vol - pi/6*(1-

sinca)/cosca*(3 + ((1-sinca)/cosca)^2))/CONST_TANKVOL)/0.01)*0.01 + 0.05)

parameter minFrac = 0.01

constraint 1 // draw the tank

formula: tankeqn

constraint 2 convex // on tank wall

formula: tankeqn

constraint 3 nonnegative // inside the tank

formula: tankeqn

constraint 4 // on center axis

formula: x = 0

constraint 5 // on center axis

formula: y = 0

quantity myvol fixed = (CONST_TANKVOL - cyl_vol) method facet_vector_integral

vector_integrand:

q1: 0

q2: 0

q3: (capzEqn - z)

quantity wettedEnergy energy method edge_vector_integral

vector_integrand

q1: (z > ZC ? cosca*(y_calc)/(r_calc)^2 * (wettingEqnPart) :

RT*cosca*y/(x^2+y^2) * ((ZC-z) + (endCapSA)))

q2: (z > ZC ? -cosca*(x_calc)/(r_calc)^2 * (wettingEqnPart) : -

RT*cosca*x/(x^2+y^2) * ((ZC-z) + (endCapSA)))

q3: 0

quantity wettedArea info_only method edge_vector_integral

vector_integrand:

128

q1: (z > ZC ? -(y_calc)/(r_calc)^2 * (wettingEqnPart) : RT*cosca*y/(x^2+y^2)

* ((ZC-z) + (endCapSA)))

q2: (z > ZC ? (x_calc)/(r_calc)^2 * (wettingEqnPart) : -RT*cosca*x/(x^2+y^2)

* ((ZC-z) + (endCapSA)))

q3: 0

vertex

 1 RT 0 ZC fixed constraint 1 // outline only

 2 0 RT ZC fixed constraint 1 // outline only

 3 -RT 0 ZC fixed constraint 1 // outline only

 4 0 -RT ZC fixed constraint 1 // outline only

 5 RT 0 0 fixed constraint 1 // outline only

 6 0 RT 0 fixed constraint 1 // outline only

 7 -RT 0 0 fixed constraint 1 // outline only

 8 0 -RT 0 fixed constraint 1 // outline only

 9 0 0 (ZC+delH) fixed constraint 1 // outline only

11 RT 0 ZC constraint 2 // bubble

12 0 RT ZC constraint 2 // bubble

13 -RT 0 ZC constraint 2 // bubble

14 0 -RT ZC constraint 2 // bubble

15 0.5 0 (ZC+delH) constraint 2 // bubble

16 0 0.5 (ZC+delH) constraint 2 // bubble

17 -0.5 0 (ZC+delH) constraint 2 // bubble

18 0 -0.5 (ZC+delH)constraint 2 // bubble

edge

 1 1 2 constraint 1 fixed bare no_refine color blue // outline only

 2 2 3 constraint 1 fixed bare no_refine color blue // outline only

 3 3 4 constraint 1 fixed bare no_refine color blue // outline only

 4 4 1 constraint 1 fixed bare no_refine color blue // outline only

 5 5 6 constraint 1 fixed bare no_refine color blue // outline only

 6 6 7 constraint 1 fixed bare no_refine color blue // outline only

 7 7 8 constraint 1 fixed bare no_refine color blue // outline only

 8 8 5 constraint 1 fixed bare no_refine color blue // outline only

 9 1 9 constraint 1 fixed bare no_refine color blue // outline only

10 2 9 constraint 1 fixed bare no_refine color blue // outline only

129

11 3 9 constraint 1 fixed bare no_refine color blue // outline only

12 4 9 constraint 1 fixed bare no_refine color blue // outline only

13 1 5 fixed bare no_refine color blue // outline only

14 2 6 fixed bare no_refine color blue // outline only

15 3 7 fixed bare no_refine color blue // outline only

16 4 8 fixed bare no_refine color blue // outline only

21 11 12 constraint 2 wettedArea wettedEnergy // bubble

22 12 13 constraint 2 wettedArea wettedEnergy // bubble

23 13 14 constraint 2 wettedArea wettedEnergy // bubble

24 14 11 constraint 2 wettedArea wettedEnergy // bubble

25 16 15 constraint 2 wettedArea wettedEnergy // bubble

26 17 16 constraint 2 wettedArea wettedEnergy // bubble

27 18 17 constraint 2 wettedArea wettedEnergy // bubble

28 15 18 constraint 2 wettedArea wettedEnergy // bubble

29 11 15 constraint 3 // bubble

30 12 16 constraint 3 // bubble

31 13 17 constraint 3 // bubble

32 14 18 constraint 3 // bubble

face

1 21 30 25 -29 constraint 3 myvol // bubble

2 22 31 26 -30 constraint 3 myvol // bubble

3 23 32 27 -31 constraint 3 myvol // bubble

4 24 29 28 -32 constraint 3 myvol // bubble

body

1 1 2 3 4 density 0

read

lh := histogram(edge where not fixed, length)

ah := histogram(face, area)

vug := {{V 3; u 3; g3}3;}

r_outline := {refine edge where on_constraint 1}

changeVol := {myvol.target := (frac*CONST_TANKVOL)}

130

calcFrac := {print (myvol.value/CONST_TANKVOL)}

//drain := {frac := frac - 0.001; changeVol; vug; g5; {vug; g50}3}

//fill := {frac := frac + 0.001; changeVol; vug; g5; {vug; g50}3}

eraseHeightFile := {printf "">>>outputHeightFile}

eraseCLFile := {printf "">>>outputCLFile}

eraseEnergyFile := {printf "">>>outputEnergyFile}

outputHeight := {printf "%.16g, %.16g\n", frac,

vertex[14].z>>outputHeightFile}

outputCL := {foreach vertex vv where on_constraint 2 do {

 printf "%.2g %.16g %.16g %.16g\n ",frac,x,y,z>>outputCLFile

 };

 }

outputCLFile := "test.txt"

pertr := {set vertex where on_constraint 2 or on_constraint 3 z z-0.01*y};

pertl := {set vertex where on_constraint 2 or on_constraint 3 z z+0.01*y};

ar := {printf "%.4f\n", (wettedArea.value)}

drain := {frac := maximum(0.001, ceil((frac-0.001)*1000-0.5)/1000);

changeVol}

fill := {frac := ceil((frac+0.01)*1000-0.5)/1000; changeVol}

averageVert := {fix vertex where on_constraint 2; {V;u}100; unfix vertex

where on_constraint 2}

averageEdge := {fix vertex where on_constraint 3; {V;u}10; unfix vertex where

on_constraint 3}

converge := {{averageVert; g20}10; averageVert}

slow_converge := {{{V;u}10; vug}20; {vug; g20}10};

//{vug 20; {averageVertSmall; g20}20; averageVert; {averageVertSmall;

g100}20; averageVert; g1000}

//converge := {quiet on; autodisplay off; vug 20; {vug; g20}50; {vug; g50}20;

{vug; g100}10; g1000; quiet off; autodisplay on}

//{quiet on; autodisplay off; vug 3; {{V;u}100; vug 10}20; {vug; g5}5;

{V;u}100; {vug; g20}20; {V;u}100; {vug; g50}20; g1000; quiet off; autodisplay

on};

checkAsymmetric := {r_1 := 0; r_2 := 0; z_1 := 0; z_2 := 0; numVert := 0;

 foreach vertex vv where on_constraint 2 do {

 r_1 := r_1 + sqrt(x^2 + y^2);

131

 r_2 := r_2 + x^2 + y^2;

 z_1 := z_1 + z;

 z_2 := z_2 + z^2;

 numVert := numVert + 1;

 };

 r_std_old := r_std; z_std_old := z_std;

 r_std := sqrt((r_2/numVert) - (r_1/numVert)^2); z_std :=

sqrt((z_2/numVert) - (z_1/numVert)^2);

 if (r_std + z_std) >= 0.05 then {asymmetric := 1} else

{asymmetric := 0};

 diff := maximum(abs(r_std - r_std_old), abs(z_std -

z_std_old));

 };

checkToroidal := {theta0 := sum(vertex where original == 12, atan2(y,

x));//theta0 := atan2(ymom.value, xmom.value);

 theta1_old := theta1; theta2_old := theta2;

 theta1 := max(vertex where on_constraint 10 and

sqrt(x^2+y^2) > 0.5, theta0/abs(theta0)*(atan2(-x*sin(theta0) +

y*cos(theta0), x*cos(theta0) + y*sin(theta0)) + pi/4) % (2*pi) - pi/4);

 theta2 := max(vertex where on_constraint 9 and

sqrt(x^2+y^2) > 0.5, -theta0/abs(theta0)*(atan2(-x*sin(theta0) +

y*cos(theta0), x*cos(theta0) + y*sin(theta0)) - pi/4) % (2*pi) - pi/4);

 diff2 := (theta1+theta2) - (theta1_old+theta2_old);

 if (theta1 + theta2 - 2*pi) > 0 then {

 toroidal := 1

 } else {

 toroidal := 0

 }};

outputValues := { hit_vert := 0;

 checkAsymmetric;

 hit_vert := 0; toroidal := 0;

 foreach vertex vv where hit_constraint 3 do {

 hit_vert := hit_vert + 1;

 };

 checkToroidal;

 printf "%.2f %.3f %d %d %d %.16f %.16f %.16f\n", ang, frac,

asymmetric, toroidal, hit_vert, r_std, z_std, total_energy>>outputEnergyFile

132

 }

tilt := {checkAsymmetric; if (asymmetric == 0) then {pertr 20; vug}5;

slow_converge; checkAsymmetric};

convergeLoopSlow := {conj_grad on; diff := 100; energyDiff := -100;

oldEnergy := total_energy; while ((diff > 10^-4) && (energyDiff < 0) &&

(toroidal == 0)) do { vug; checkAsymmetric; checkToroidal; energyDiff :=

total_energy - oldEnergy; oldEnergy := total_energy}; conj_grad off};

maxLength := 0.05;

r2 := {refine edge where length > maxLength and not fixed};

maxDiff := 10^-8;

//convergeLoopRefine := {quiet on; conj_grad on; diff := 100; while ((diff >

maxDiff) && (toroidal == 0) && (asymmetric == 1)) do { r2; averageVert; g20;

checkAsymmetric; checkToroidal; }; conj_grad off; quiet off};

convergeLoopRefine := {quiet on; conj_grad on; diff := 100; numNoChange := 0;

while ((numNoChange < 5) && (toroidal == 0) && (asymmetric == 1)) do { r2;

averageVert; g20; checkAsymmetric; checkToroidal; if (diff < maxDiff) then

{numNoChange := numNoChange + 1; print numNoChange} else {numNoChange := 0}};

conj_grad off; quiet off};

convergeLoopRefineNoGradLong := {quiet on; conj_grad off; diff := 100;

numNoChange := 0; while ((numNoChange < 5) && (toroidal == 0) && (asymmetric

== 1)) do { r2; averageVert; g20; checkAsymmetric; checkToroidal; if (diff <

maxDiff) then {numNoChange := numNoChange + 1; print numNoChange} else

{numNoChange := 0}}; conj_grad off; quiet off};

convergeLoopRefineNoGrad := {quiet on; conj_grad off; diff := 100; while

(diff > 10^-7) do { r2; averageVert; g20; checkAsymmetric; }; quiet off};

convergeLoop := {quiet on; conj_grad on; diff := 100; while ((diff > 10^-8)

&& (toroidal == 0) && (asymmetric == 1)) do { averageVert; g20;

checkAsymmetric; checkToroidal; }; conj_grad off; quiet off};

averageLoop := {diff := 100; while (diff > 0.0003) do { {{V;u}10; vug};

checkAsymmetric; checkToroidal; }};

endLength := 0.05;

convergeLoopRefineLoop := {maxLength := 0.08; while (maxLength > endLength -

0.005) do {convergeLoopRefine; maxLength := maxLength - 0.015};};

133

numFile := 4; maxAng := 90;

setNoDumpOn := {ang.no_dump on; frac.no_dump on};

setNoDumpOff := {ang.no_dump off; frac.no_dump off};

outputEnergyFile := sprintf "Ring/r%.3f_z0_%.3f/r%.3f_z0_%.3f_t%d.txt",

CONST_rNorm, CONST_zMax, CONST_rNorm, CONST_zMax, ang

dumpCurr := {setNoDumpOff; dump sprintf

"Ring/Dump/r%.3f_z0_%.3f_theta%d_f%.1f_4.dmp", CONST_rNorm, CONST_zMax, ang,

frac*100; setNoDumpOn}

tilt2 := {fix vertex where on_constraint 2; {pertr 5; vug; averageVert}20;

unfix vertex where on_constraint 2; vug 50; {vug; g20}50};

runIndividual := {convergeLoopRefineLoop; endLength := 0.015;

convergeLoopRefineLoop; maxLength := 0.015; convergeLoopRefine; maxLength :=

0.01; convergeLoopRefine; dumpCurr}

test := {foreach edge ee where on_constraint 2 do {

 foreach ee.vertex do {

 printf "%.2g %.16g %.16g %.16g\n ",frac,x,y,z>>outputCLFile

 }

 };

 };

diff := 100; diff2 := 100; diff3 := 100; currMaxOld := 0;

checkMaxHeight := {currMax := max(vertex where on_constraint 2, z);

 diff3 := currMax - currMaxOld;

 currMaxOld := currMax;

 }

fixVert := {fix vertex where on_constraint 2};

unfixVert := {unfix vertex where on_constraint 2};

increment := {outputValues; dumpCurr; fill}

avgv := {{V;u}100; vug};

avgvFix := {fixVert; {V;u}100; unfixVert};

converge := {avgv 10; vug 20; {vug; g20}5; conj_grad on; avgv 2; {vug;

g20}20; U; U; {vug; g100}; U; fixVert; {V;u}1000; unfixVert; U; {vug; g100};

U};

134

shrink := {avgv 10; vug 5; frac := 0.05; changeVol; vug 5; avgv 10; vug 5;

frac := 0.03; changeVol; vug 5; avgv 10; vug 5; frac := 0.01; changeVol; vug

5; avgv 10; vug 5}

incrementAng := {outputValues; dumpCurr; ang := ang + 1; outputEnergyFile :=

sprintf "Ring/r%.3f_z0_%.3f/r%.3f_z0_%.3f_t%d.txt", CONST_rNorm, CONST_zMax,

CONST_rNorm, CONST_zMax, ang}

runRingAng := {};

runRingAng := {converge; incrementAng; runRingAng};

setNoDumpOn;

r_outline 6

showq

ang := 5;

outputEnergyFile := sprintf "Ring/r%.3f_z0_%.3f/r%.3f_z0_%.3f_t%d.txt",

CONST_rNorm, CONST_zMax, CONST_rNorm, CONST_zMax, ang

frac := 0.05; changeVol;

r;

{r; vug}

{vug;g 20}10

{r; vug}

refine edge where on_constraint 2

frac := 0.02; changeVol;

vug 5; {vug; g20}10

135

APPENDIX H. LIQUID RING ANALYTICAL SOLUTION CODE

EQUATIONS

The generatrix of an unduloid is parameterized by the equations 𝑥(𝑢) and 𝑦(𝑢) with free

parameters a and b, obtained from the Wolfram Demonstrations Project (Zeleny, The Unduloid -

Wolfram Demonstrations Project, 2014).

𝑥(𝑢) = ∫ √𝑎2 sin2𝜙 + 𝑏2 cos2 𝜙𝑑𝜙
𝑢

0

+
√𝑎2 − 𝑏2 sin 𝑢 (√𝑎2 − 𝑏2 cos 𝑢 + 𝑎)

√𝑎2 sin2 𝑢 + 𝑏2 cos2 𝑢

𝑦(𝑢) =
𝑏(√𝑎2 − 𝑏2 cos 𝑢 + 𝑎)

√𝑎2 sin2 𝑢 + 𝑏2 cos2 𝑢

The generatrix of a nodoid is parameterized by the equations 𝑥(𝑢) and 𝑦(𝑢) with free parameters

a and β, obtained from the Wolfram Demonstrations Project (Zeleny, Delaunay Nodoids - Wolfram

Demonstrations Project, 2014).

𝑥(𝑢) = 𝑎 (1 − cos 𝑢 + ∫
sin2 𝛼

√sin2 𝛼 + 𝛽
𝑑𝛼

𝑢

0

)

𝑦(𝑢) = 𝑎 (sin 𝑢 + √sin2 𝑢 + 𝛽)

MAIN

clear; clc; close all; tic

N_b = 201;

N_a = 201;

outputUnduloidValues = 1;

outputNodoidValues = 1;

n_mat = 2;

z0_mat = 0.5;

theta_deg_mat = 0:0.001:90;

theta_deg_mat = theta_deg_mat(mod(theta_deg_mat, 0.01)~=0);

numWrite = 0;

for n = n_mat

136

for z0 = z0_mat

for theta_deg = theta_deg_mat

 if outputUnduloidValues

 b_mat = linspace(0, 2, N_b);

 b_mat = [b_mat(1:end-1), linspace(2, 10, N_b), 100, 1000, 10000];

 numWrite = calcUnduloidCase(b_mat, theta_deg, n, z0, 1) + numWrite;

 end

 if outputNodoidValues

 a_range = linspace(0, 1/(2*cosd(theta_deg)), N_a);

 dif_range = calcD(a_range, z0, n, theta_deg);

 [~, ind] = min(abs(dif_range));

 a_mat = linspace(a_range(max(ind-2,1)), 1/(2*cosd(theta_deg)), N_a);

 numWrite = calcNodoidCase(a_mat, theta_deg, n, z0, 1) + numWrite;

 end

end

end

end

function res = calcD(a_mat, z0, n, theta_deg)

 theta = theta_deg*pi/180;

 for i = 1:length(a_mat)

 a = a_mat(i);

 B = 1/a^2 - 2/a*cos(theta);

 u_cr = pi - asin((1-a^2*B)/(2*a));

 u = linspace(u_cr, pi, 10001);

 r = a*(sin(u) + sqrt(sin(u).^2 + B));

 z_tank_der = z0*(1-r.^n).^(1/n-1).*r.^(n-1);

 D = pi - u - theta - atan(z_tank_der);

 res(i) = max(real(D));

 end

end

137

calcUnduloidCase.m

function numWrite = calcUnduloidCase(b_mat, theta_deg, n, z0, outputValues)

 eps = 1e-9;

 maxIter = 100000;

 N = 10001;

 theta = theta_deg*pi/180;

 j = 1;

 f = []; E = []; b_res = []; zLower = []; zUpper = [];

 for b = b_mat

 a = (b^2+1)/(2*cos(theta));

 u_cr = acos((1-b^2)/(1+b^2)*a/sqrt(a^2-b^2));

 u_range = linspace(u_cr, pi, N); u_range = u_range(2:end-1);

 r_range = b*(sqrt(a^2-b^2)*cos(u_range)+a)./sqrt(a^2*sin(u_range).^2+

b^2*cos(u_range).^2);

 dz_dr_inv = sin(u_range)*sqrt(a^2-b^2)/b;

 dz_dr_tank = z0*(1-r_range.^n).^(1/n-1).*r_range.^(n-1);

 dz_dr_tank(1) = -inf;

 dif_range = pi/2-theta-atan(dz_dr_inv)-atan(dz_dr_tank);

 indices = islocalmin(abs(dif_range));

 X = 1:N; indices = X(indices);

 for ind = indices

 if (dif_range(ind)*dif_range(ind+1)>0 &&

dif_range(ind)*dif_range(ind-1)>0)

 continue

 end

 u_max_upper = max([u_range(ind-1), u_range(ind+1)]);

 u_max_lower = min([u_range(ind-1), u_range(ind+1)]);

 r = b*(sqrt(a^2-b^2)*cos(u_max_upper)+a)./

sqrt(a^2*sin(u_max_upper).^2+b^2*cos(u_max_upper).^2);

 dz_dr_inv = sin(u_max_upper)*sqrt(a^2-b^2)/b;

138

 dz_dr_tank = z0*(1-r.^n).^(1/n-1).*r.^(n-1);

 dif = pi/2-theta-atan(dz_dr_inv)-atan(dz_dr_tank);

 s = sign(dif);

 dif = 100; iter = 1;

 while abs(dif) > eps && iter < maxIter

 u_max = (u_max_upper+u_max_lower)/2;

 r = b*(sqrt(a^2-b^2)*cos(u_max)+a)./

sqrt(a^2*sin(u_max).^2+b^2*cos(u_max).^2);

 dz_dr_inv = sin(u_max)*sqrt(a^2-b^2)/b;

 dz_dr_tank = z0*(1-r.^n).^(1/n-1).*r.^(n-1);

 dif = pi/2-theta-atan(dz_dr_inv)-atan(dz_dr_tank);

 if s*dif > 0

 u_max_upper = u_max;

 else

 u_max_lower = u_max;

 end

 iter = iter + 1;

 end

 if abs(dif) > 1e-6

 continue

 end

 if u_max < u_cr

 continue

 end

 u = linspace(u_cr, u_max, N);

 r = b*(sqrt(a^2-

b^2)*cos(u)+a)./sqrt(a^2*sin(u).^2+b^2*cos(u).^2);

 diffR = abs(diff(r));

 maxDiffR = 1e-3;

 maxN = 1000000;

139

 while max(diffR) > maxDiffR && length(u) < maxN

 u_new = (u([diffR, 0] > maxDiffR) + u([0, diffR] >

maxDiffR))/2;

 r_new = b*(sqrt(a^2-b^2)*cos(u_new)+a)./

sqrt(a^2*sin(u_new).^2+b^2*cos(u_new).^2);

 res = sortrows([[u, u_new]', [r, r_new]']);

 u = res(:, 1)'; r = res(:, 2)';

 diffR = abs(diff(r));

 end

 if max(abs(diff(r))) > maxDiffR

 disp(max(abs(diff(r))))

 continue;

 end

 dz_dr_inv = sin(u)*sqrt(a^2-b^2)/b;

 z_integrand = sqrt(a^2*sin(u).^2 + b^2*cos(u).^2);

 z_integral_0 = integral(@(u) sqrt(a^2*sin(u).^2 + b^2*cos(u).^2),

0, u_cr);

%{

 S = zeros(size(u));

 S(1) = z_integrand(1);

 for i = 2:length(u)

 S(i) = S(i-1) + z_integrand(i);

 end

 z_integral = z_integral_0 + (u(2)-u(1))*(S - 0.5*(z_integrand +

z_integrand(1)));

 z = z_integral + sqrt(a^2-b^2)*sin(u).*(sqrt(a^2-

b^2)*cos(u)+a)./sqrt(a^2*sin(u).^2 + b^2*cos(u).^2);

 z = z - z(end) + z0*(1-r(end)^n)^(1/n);

%}

 z_integral = zeros(size(u));

 z_integral(1) = z_integral_0;

 du = diff(u);

 for i = 2:length(u)

140

 z_integral(i) = z_integral(i-1) + (z_integrand(i) +

z_integrand(i-1))*du(i-1)/2;

 end

 z = z_integral + sqrt(a^2-b^2)*sin(u).*(sqrt(a^2-

b^2)*cos(u)+a)./sqrt(a^2*sin(u).^2 + b^2*cos(u).^2);

 z = z - z(end) + z0*(1-r(end)^n)^(1/n);

 if z(1) > 0

 continue

 end

 %% Calculate f

 r_tank = (1 - (z/z0).^n).^(1/n);

 r_tank(z <= 0) = 1;

 V = pi*trapz(z, r_tank.^2 - r.^2);

 R0 = 1; z_cyl = 2;

 Vend_total = 2*pi/(3*n)*R0^2*z0*beta(1/n, 2/n);

 Vtank = (2*Vend_total + pi*R0^2*z_cyl)/2;

 f(j) = V/Vtank;

 %% Calculate Energy

 A_FS = 2*pi*trapz(z, r.*sqrt(1 + dz_dr_inv.^2));

 integrand = @(z1) (1-(z1/z0).^n).^(1/n) .* sqrt(1 + (R0/z0)^2*(1-

(z1/z0).^n).^(2/n-2).*(z1/z0).^(2*n-2));

 A_wet = 2*pi*integral(@(z1) integrand(z1), 0, z(end)) -

2*pi*R0*z(1);

 E(j) = A_FS - cos(theta)*A_wet;

 b_res(j) = b;

 zLower(j) = min(z);

 zUpper(j) = max(z);

 j = j+1;

 end

 end

 numWrite = length(f);

 if outputValues

141

 dir = sprintf("Data/n%d_z0_%.3f", n, z0);

 fName = sprintf("Data/n%d_z0_%.3f/Unduloid_theta%g.txt", n, z0,

theta_deg);

 if ~isempty(f)

 mkdir(dir);

 fprintf("Writing %d values to %s.\n", length(f), fName);

 fid = fopen(fName, 'a');

 for i = 1:length(f)

 fprintf(fid, "%.16f %.16f %.16f %.16f %.16f\n", b_res(i),

f(i), E(i), zLower(i), zUpper(i));

 end

 fclose('all');

 end

 end

 toc

end

calcNodoidCase.m

function numWrite = calcNodoidCase(a_mat, theta_deg, n, z0, outputValues)

 eps = 1e-9;

 N = 10001;

 maxIter = 100000;

 theta = theta_deg*pi/180;

 j = 1;

 f = []; E = []; a_res = []; zLower = []; zUpper = [];

 for a = a_mat

 B = 1/a^2 - 2/a*cos(theta);

 u_cr = pi - asin((1-a^2*B)/(2*a));

 u_range = linspace(u_cr, pi, N);

 r_range = a*(sin(u_range) + sqrt(sin(u_range).^2 + B));

 dz_dr_tank = z0*(1-r_range.^n).^(1/n-1).*r_range.^(n-1);

 dif_range = pi - u_range - theta - atan(dz_dr_tank);

 indices = islocalmin(abs(dif_range));

142

 X = 1:N; indices = X(indices);

 for ind = indices

 if (dif_range(ind)*dif_range(ind+1)>0 &&

dif_range(ind)*dif_range(ind-1)>0)

 continue

 end

 u_max_upper = max([u_range(ind-1), u_range(ind+1)]);

 u_max_lower = min([u_range(ind-1), u_range(ind+1)]);

 r = a*(sin(u_max_upper) + sqrt(sin(u_max_upper).^2 + B));

 dz_dr_tank = z0*(1-r.^n).^(1/n-1).*r.^(n-1);

 dif = pi - u_max_upper - theta - atan(dz_dr_tank);

 s = sign(dif);

 dif = 100;

 iter = 0;

 while abs(dif) > eps && iter < maxIter

 u_max = (u_max_upper+u_max_lower)/2;

 r = a*(sin(u_max) + sqrt(sin(u_max).^2 + B));

 dz_dr_tank = z0*(1-r.^n).^(1/n-1).*r.^(n-1);

 dif = pi - u_max - theta - atan(dz_dr_tank);

 if s*dif > 0

 u_max_upper = u_max;

 else

 u_max_lower = u_max;

 end

 iter = iter+1;

 end

 if abs(dif) > 1e-6

 continue;

 end

 u = linspace(u_cr, u_max, N);

143

 r = a*(sin(u) + sqrt(sin(u).^2 + B));

 diffR = abs(diff(r));

 maxDiffR = 1e-3;

 maxN = 1000000;

 while max(diffR) > maxDiffR && length(u) < maxN

 u_new = (u([diffR, 0] > maxDiffR) + u([0, diffR] >

maxDiffR))/2;

 r_new = a*(sin(u_new) + sqrt(sin(u_new).^2 + B));

 res = sortrows([[u, u_new]', [r, r_new]']);

 u = res(:, 1)'; r = res(:, 2)';

 diffR = abs(diff(r));

 end

 if max(abs(diff(r))) > maxDiffR

 disp(max(abs(diff(r))))

 continue;

 end

 dz_dr = tan(u);

 z_integrand = sin(u).^2./sqrt(sin(u).^2 + B);

 z_integral_0 = integral(@(u) sin(u).^2./sqrt(sin(u).^2 + B), 0,

u_cr);

 S = zeros(size(u));

 S(1) = z_integrand(1);

 for i = 2:length(u)

 S(i) = S(i-1) + z_integrand(i);

 end

 z_integral = z_integral_0 + (u(2)-u(1))*(S - 0.5*(z_integrand +

z_integrand(1)));

 z = a*(1 - cos(u) + z_integral);

 z = z - z(end) + z0*(1-r(end)^n)^(1/n);

144

 if z(1) > 0

 continue

 end

 %% Calculate f

 r_tank = (1 - (z/z0).^n).^(1/n);

 r_tank(z <= 0) = 1;

 V = pi*trapz(z, r_tank.^2 - r.^2);

 R0 = 1; z_cyl = 2;

 Vend_total = 2*pi/(3*n)*R0^2*z0*beta(1/n, 2/n);

 Vtank = (2*Vend_total + pi*R0^2*z_cyl)/2;

 f(j) = V/Vtank;

 %% Calculate Energy

 A_FS = 2*pi*trapz(z, r.*sqrt(1 + dz_dr.^-2));

 integrand = @(z1) (1-(z1/z0).^n).^(1/n) .* sqrt(1 + (R0/z0)^2*(1-

(z1/z0).^n).^(2/n-2).*(z1/z0).^(2*n-2));

 A_wet = 2*pi*integral(@(z1) integrand(z1), 0, z(end)) -

2*pi*R0*z(1);

 E(j) = A_FS - cos(theta)*A_wet;

 a_res(j) = a;

 zLower(j) = min(z);

 zUpper(j) = max(z);

 j = j+1;

 end

 end

 numWrite = length(f);

 if outputValues

 dir = sprintf("Data/n%d_z0_%.3f", n, z0);

 fName = sprintf("Data/n%d_z0_%.3f/Nodoid_theta%g.txt", n, z0,

theta_deg);

 if ~isempty(f)

 mkdir(dir);

 fprintf("Writing %d values to %s.\n", length(f), fName);

145

 fid = fopen(fName, 'a');

 for i = 1:length(f)

 fprintf(fid, "%.16f %.16f %.16f %.16f %.16f\n", a_res(i),

f(i), E(i), zLower(i), zUpper(i));

 end

 fclose('all');

 end

 end

 toc

end

146

REFERENCES

Bert, C. W., & Hyler, W. S. (1966). Structures and Materials for Solid Propellant Rocket Motor

Cases. In Advances in Space Science and Technology (Vol. 8, pp. 87-91). Elsevier.

Brakke, K. (2013, August 25). Surface Evolver. Retrieved from facstaff.susqu.edu:

https://facstaff.susqu.edu/brakke/evolver/evolver.html

Dodge, F. T., & Garza, L. R. (1967). Experimental and Theoretical Studies of Liquid Sloshing at

Simulated Low Gravities. Journal of Applied Mechanics, 555-562.

Enright, P. J., & Wong, E. C. (1994). Propellant Slosh Models for the Cassini Spacecraft.

Astrodynamics Conference. American Institute of Aeronautics and Astronautics.

Kirk, D., Storey, J. M., Marsell, B., & Schallhorn, P. (2017). Progress Towards a Microgravity

CFD Validation Study Using the ISS SPHERES-SLOSH Experiment. AIAA/SAE/ASEE

Joint Propulsion Conference. Atlanta: American Institute of Aeronautics and Astronautics.

Lapilli, G., Kirk, D., Gutierrez, H., Schallhorn, P., Marsell, B., Roth, J., & Moder, J. (2015).

Results of Microgravity Fluid Dynamics Captured with the SPHERES-SLOSH Experiment.

Jerusalem: Internautional Astronautical Congress.

Lowndes, E. (2017, March 13). How to hack the Multi-Terminal: Taking (remote) control of the

Sony A7/S/R. Retrieved from youtube.com:

https://www.youtube.com/watch?v=4P63OWKaa0g

Mikhailovsky, C. Y., Stahl, J. M., & Mulkey, H. W. (2020). PACE Propulsion Subsystem Surge

Analysis and Testing. AIAA Propulsion and Energy Forum. American Institute of

Aeronautics and Astronautics.

Reynolds, W. C., & Satterlee, H. M. (1966). The Dynamic Behavior of Liquids in Moving

Containers. Washington, D.C.: NASA Scientific and Technical Information Division SP-

106.

Slooten, A. (2017, June 1). Research Sony Multi Interface • Aeronavics/ValleyForge Wiki • GitHub.

Retrieved from github.com: https://github.com/Aeronavics/ValleyForge/wiki/Research-

Sony-Multi-Interface-Research

STUDIO1productions. (n.d.). Sony 15 pin Multiport Connector Multi Terminal Pinout. Retrieved

from studio1productions.com: https://www.studio1productions.com/Articles/sony-

pinout.htm

147

Virgin Galactic. (2019). SpaceShipTwo Payload User's Guide.

Walls, L. K., Kirk, D., de Luis, J., & Haberbusch, M. S. (2011). Experimental and Numerical

Investigation of Reduced Gravity Fluid Slosh Dynamics for the Characterization of

Cryogenic Launch and Space Vehicle Propellants. Cryogenic Engineering Conference.

Spokane: American Institude of Physics.

Zeleny, E. (2014, July). Delaunay Nodoids - Wolfram Demonstrations Project. Retrieved from

wolfram.com: https://demonstrations.wolfram.com/DelaunayNodoids/

Zeleny, E. (2014, May). The Unduloid - Wolfram Demonstrations Project. Retrieved from

wolfram.com: https://demonstrations.wolfram.com/TheUnduloid/

