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ABSTRACT

Generating ideas and creating prototypes of physical products is a highly non-linear and

iterative process. Current tools divide this process into multiple discrete steps with different

tools to support each of these steps such as CAD modelling, simulation and fabrication.

We believe, design interfaces that combine different steps of the process and create different

layers of abstraction depending on the type of the user and where they are in the process can

support users in generating more creative ideas and creating better functioning prototypes

more efficiently. In order to validate this, we developed three interfaces- a sketch-based

ideation tool, a live programming interface to create IoT devices and a design tool to support

design and fabrication of hand wearables. The foundation of these design interfaces is the

layer of abstraction that allows users to focus on idea generation and converting it into a

tangible prototype with little or no technical knowledge, and a continuous visual feedback

that guides the user to make necessary changes to improve their design. The three tools

were evaluated through user testing for supporting creation of different ideas and converting

them into functional prototypes.
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1. INTRODUCTION

1.1 Product Development and Design Thinking

Product development is defined as the process of creating new products or modifying

existing products so as to offer some kind of benefit to the user. Product development

can involve changing an existing product or creating a completely new one to satisfy the

newly defined wants of the user or the market [ 1 ]. There are many definitions of product

development offered in literature. It is important to understand each of them has its validity

based on the type of the product and the type of the problem the product is trying to solve.

In general, we can classify it into the folllowing steps:

1. Idea generation

3. Concept/prototype development and testing

4. Business model development

In recent years the term ”Design Thinking” has gained popularity and is often linked

towards the human-centered aspect of product development. Design thinking is defined as

a human-centered approach to create innovative solutions by integrating together the user

needs with technology and business. Design thinking looks at product development more

like a problem solving process and highlights the 5 main steps as follows:

1. Empathize

2. Define

3. Ideate

4. Prototype

5. Test

Figure  1.1 shows a graphical view of the listed 5 steps in the famous double diamond

representation by Plattner et al. (2009) [  2 ]. The first diamond is the problem space while

the second diamond is the solutions space. Figure  1.2 shows the journey of a designer in

the solution space. It first starts with an idea, followed by some quick low-fidelity ideation

on a pen and paper. The next step is to translate the idea into a digital version such as

a CAD tool. The CAD tool then creates supporting fabrication files that can be used to

create physical prototypes. These physical prototypes are then tested in real world scenarios
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Figure 1.1. Double Diamond representation of Product Development

or user testing or simulation to evaluate their performance. Based on this feedback the

designer decides whether to reiterate the process again and repeat the cycle until desired

performance and functionality is achieved.

Figure 1.2. A Designer’s Journey through the Solution Space

Humans naturally develop patterns of thinking modeled on repetitive activities and com-

monly accessed knowledge [  3 ]. These patterns of thinking also known as schemas are or-

ganized sets of information and relationships between things, actions and thoughts that

are stimulated and initiated in the human mind when they encounter some environmental

stimuli. As these schemas are stimulated automatically it obstructs the users from think-

ing outside the box and prevents them from viewing the problem in a way that will enable
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them to come up with new solutions. Design thinking frameworks encourage breaking these

schemas and promotes creative thinking to come up with unconventional or out-of-the-box

solutions.

1.2 Tools for Product Development and the Users

The emergence of the field of product design and industrial design is linked to the in-

dustrial revolution in mid 18th century with widespread progress in mechanization and

industrialization. Almost all of the design work was done manually using sophisticated tools

on paper. Over the years Computer Aided Design (CAD) was introduced and design started

taking a digital form on computer screens using 2D parametric sketching and 3D solid mod-

elling. The most popular tools in CAD are Solidworks [ 4 ], Creo [ 5 ] and AutoCAD [  6 ]. With

further advancement in computation and processing powers of computers, various analysis

tools such as ANSYS [  7 ] were released which could validate the performance of a design in

given physics conditions. While these tools are extremely precise and fast, and have saved a

lot time for humans, one needs to have substantial technical knowledge of geometry, design

and engineering to be able to feed the correct input to these tools. This requires spending

time in gaining the domain knowledge and learning the tools. Since these tools are specifi-

cally designed for engineers, the knowledge is already there and with training and practice

they become proficient in using these tools. The challenge lies in making these tools acces-

sible to individuals who do not have domain knowledge but have ideas and want to create

them. This thesis focuses on this category of users who have ideas and want to quickly

validate them or even create working physical prototypes. These users could be creatives,

artists, hobbyists, DIYers or K-12 students. In order to make these tools accessible to this set

of users it is important to understand what the user already knows and what the user needs

to know in order to to successfully create ideas and prototypes. Based on this information,

one needs to create design interfaces by carefully identifying the ”black boxes” or layers of

abstraction. The purpose of these design interfaces is to provide a toolkit that allows them

to be creative and translate their ideas into prototypes without having to worry about the

technical details.
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1.3 Motivation and Research Goals

The Maker movement, DIY culture and garage/backyard labs have inspired a lot of

people with different backgrounds into building their own products from their ideas. This has

created a need for design and prototyping tools for such users who can quickly translate their

ideas to working models without spending too much time in learning those tools. Another

motivation is one of the features of design thinking [ 8 ] that states encourages designers to

make ideas tangible in early stages of product development. Prototypes must be created

as quickly as possible. The maxim when creating or selecting a prototype is: as simple as

possible, as meaningful as necessary. With this as the motivation, the research goals of this

thesis is to create and validate interactive design interfaces that:

1. have a lower barrier of entry

2. promote freedom of thoughts and creativity

3. support rapid creation of functional prototypes

1.4 Scope

Referring to Double diamond representation of product development process in Figure

 1.1 again, the Problem Space deals with understanding the problem and asking counter

questions to reinforce the understanding around the problem. The stages include divergent

thinking for enquiry based research, user interviews and observations to converge to a ’point

of view’ of the problem. Once the problem is clearly identified, the next step is to look for the

solutions. This happens in the solution space where again divergent thinking is promoted to

explore different ideas, followed by convergent thinking in prototyping and testing. This is

an iterative process and has to be repeated multiple times before converging to one solution.

The scope of this thesis lies in the solution space; developing design interfaces to promote

idea generation and evaluation, and creating prototypes for testing. These proposed design

interfaces combine different steps of idea generation along with active feedback on the idea’s

performance. The three design interfaces that will be discussed in the following chapters are:
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1. Sketch2Sim: a sketch-based ideation tool

2. IoTMaker: a live programming interface for creating IoT devices

3. FabHandWear: a design tool to support design and fabrication of hand wearables

1.5 Thesis Organization

The thesis begins with literature review and related work for the design interfaces followed

by detailed chapters on each of the three design interfaces- Sketch2Sim, IoTMaker and

FabHandWear. In each chapter we discuss the motivation, development and testing for each

of the design interfaces. Towards the end we conclude with our findings from development

of the three interfaces and how they can help establish design rationale for similar design

interfaces.
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2. RELATED WORK

The two steps in the solution space of product development are Ideation and Rapid Pro-

totyping. While ideation is more of an abstract process and revolves around the designer’s

intuition, creativity and prior experience, Rapid Prototyping gives a structure to these ab-

stract ideas and translates them into tangible models that can validate the ideas. Both the

steps are necessary and critical to successfully come up with a solution. In the following

sections we shall discuss some prior research on both these steps.

2.1 Sketch-based Ideation Tools

Ideation is the first step in problem solving. Engineers and designers often begin ideation

with some rough sketches of their ideas on a pen and paper or white board followed by iter-

ating on these sketches until they feel confident with the idea and then translate the sketch

into some digital format or CAD model. Sketching promotes creativity by supporting ex-

ploration [  9 ]. Sketching allows rapid idea generation without having to learn a new tool. In

the early stage of product design it is very important to explore as many different ideas as

possible before bolting down any one of them. Another advantage of ’sketch’ is it creates

a natural abstraction of the intricacies of the designs. Sketches are mostly 2D schematics

that define shape, form factor, location, orientation, forces and motion directions. At sketch

level one doesn’t worry about the performance, friction, wear and tear and tolerances. This

kind of abstraction is necessary in the early stages so that it does not constrain the think-

ing of the designer. This very practice of sketching for ideation has been explored by the

research community to augment these static sketches on a paper. Cobbie [  10 ] is a sketch-

ing companion robot that collaborates with the user by generating new sketches based on

user’s sketches. Another way to augment static sketches is to create them digitally and have

smart tools that can understand the sketch intent or refine the sketch for higher fidelities

[ 11 ]. Image recognition from freehand sketches has also been explored widely in supporting

ideation and creativity through digital sketches. Juxtapoze [  12 ], a clipart composition tool

that uses freehand sketches and suggests different images of objects with similar shapes,

Alchemy [ 13 ] on the other hand is a character design and concept art tool based on digital
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freehand sketching. Both the tools promote creative expression and serendipitous discov-

eries. Freehand sketch to art is one way of creative ideation while there is also work that

translates sketch to 3D models. Co3deator [  14 ] is a collaborative tool that allows users to

create solid 3D assemblies from a combination of their sketches to create different designs.

SketchOpt [  15 ] and DreamSketch [  16 ] create generative 3D models from sketch based inputs.

2.2 Design tools for IoT Devices

With the tremendous technological innovation over the past decade today we are sur-

rounded by internet connected devices all the time. These internet connected devices or

Internet of Things (IoT) devices are supported by two main pillars - 1. Electronic hardware

that allows the communication between input and output components and 3. the program

that defines the behavior of these IoT devices. In order to create functional prototypes of

these smart devices one needs to be able to understand and connect these three pillars which

are discussed below in greater detail.

2.2.1 Programming

Creating a functional piece of program requires one to understand various complex as-

pects of computing such as compiling, interpretation and have sufficient knowledge of dif-

ferent programming languages. Programming is only a part of creating IoT devices and for

one to be able to quickly create prototypes an in-depth knowledge may not be necessary.

There are many higher level programming languages that are fairly easy to learn. These

programming tools allow creators to focus on the functionality without having to worry

about the internal workings of the code. Block-based programming languages are one such

example [  17 ]. Scratch [ 18 ] is a popular block based programming platform for beginner and

expert level coders to create games and on-screen interactive prototypes by simply dragging

and dropping code blocks like puzzle pieces. This approach converts an otherwise intimi-

dating subject into a playful experience and promotes faster learning and creativity. Block

programming has also been extended to robotics and STEM learning kits. One level below

block programming are Integrated Development Environments (IDE). IDEs support higher
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level programming languages for different applications. Many robotics kits come with their

own IDE to support programming of input and output devices on their platform [  19 ], [  20 ].

These IDEs support libraries of different components such as motors and sensors and contain

functions to code quickly without having to understand the logic behind them and create

fairly complex to even commercial grade prototypes.

2.2.2 Electronics Toolkits

The second aspect of IoT devices involves putting together various input and output

devices such as actuators, LEDs and sensors. With the Maker movement and DIY culture,

hardware development is now democratized and the term ’tinkering’ has gained popularity.

Such ’tinkering’ kits have reduced the barrier of entry for hardware development. Arduino

[ 19 ] and Raspberry Pi [ 20 ] are two such hardware prototyping platforms that are accessible

to beginner and expert users. At the heart of these kits is a pre-soldered PCB that allows

plug and play of various input/output devices. The kits also support extensible modules

in form of shields that allows more complex or specific functionality based on user’s needs.

For example, a wifi or bluetooth shield can enable communication between multiple devices

located at different locations or access data from cloud. More such kits mainly addressed

to K-12 learning include Sphero [  21 ], micro-bit [  22 ], Lego Mindstorms [  23 ], VEX Robotics

[ 24 ]. All of these kits are based on the principle of fastening the creation of functional

prototypes. One very interesting example is microBit [ 22 ] that combines block programming

with live simulation of electronics on the screen. Based on the block code of different logical

and input/output device blocks the interface renders an animation of the electronics circuit.

This allows users to view their code’s behavior before they can actually put together the

connections physically. In this way the user can debug the code earlier in the design process

and save time, effort and frustration that would occur if the device does not behave as

expected. Although microBit Live programming interface offers tremendous advantage in

early debugging of code through the live simulator it still comes with a small set of peripheral

devices that limit the users from exploring wider range of ideas. Additionally, the microBit

board requires the users to have some basic understanding of circuit connections and basic
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bread boarding skills thus increasing the barrier of entry. In order to address these limitations

it is necessary to add more input/output devices that can support more functionalities,

thus expanding the scope for creativity. Secondly there needs to be a layer of abstraction

with respect to pin connections and power systems. With these two additional features we

propose IoTMaker a live programming interface with a wide electronic repository that can

be connected by simple plug and play interaction. This interface is discussed in Chapter  4 .

2.3 Design tools for Hand Wearables

Hands are the most versatile human body parts. One can accomplish a variety of actions

using hands such as waving, grabbing, touching, pointing. This makes hands the most

suitable part for wearable design. While hands offer this flexibility in interaction they are

different for different individuals. This makes hand wearable design challenging because

of the anatomical variability in hand forms, multiple degrees of freedom, and absence of

standard manufacturing techniques. These challenges influence the accuracy and comfort

of hand wearables [  25 ], [  26 ] , [ 27 ], [  28 ], [  29 ]. This creates a need for design tools that

support creation of custom-fit hand wearables. One such design tool that supports creation

of custom-fit wearables are ElectroDermis [  30 ]. Electrodermis allows users to scan their body

parts that is converted into a 3D mesh. The software tool then flattens the 3D mesh and

allows users to place sensors and generate fabrication files. While Electrodermis supports

creation of custom-fit wearable patches for different individuals it requires sophisticated 3D

scanning tools and is more suitable for simpler geometries. Another such design tool LASEC

[ 31 ] supports design for manufacturing of custom shapes of wearables. The design tool is

based on a parametric stretchable pattern of wearable patch that can be laser cut. The

system supports ease of fabrication but does not offer much support for custom-fit hand

wearable design as it requires the user to manually measure the dimensions of the hand

and recreate the desiered shape in the interface. In order to address these gaps in hand

wearable design tools, we propose FabHandWear [ 32 ] an end to end system for creation of

customized and functional hand wearables. Chapter  5 in this thesis will cover the design

interface workflow and hand parameterization feature of this tool.
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3. DESIGN INTERFACE FOR SKETCH-BASED IDEATION

Figure 3.1. Sketch2Sim: A Sketch-based Early Stage Design Exploration Tool

3.1 Overview

Sketch2Sim is a an early stage exploratory ideation tool that promotes creative thinking

to support users to come up with different design ideas. It is meant for different types of

users from beginners to experts. A simple use case of designing a terrestrial vehicle that

can go from one end of the terrain to another has been considered for the study of this

interface. The common approach to solve such a design problem would be to start with

some sketches on a paper and then re-create them on a CAD package. In S2S we offer a

digital version of freehand sketcher that can provide instantaneous feedback to the user and

support exploratory ideation. S2S is a web based application that is based on creativity

support design principles established on prior research.
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3.2 System Design

3.2.1 Motivation

Engineering design process begins with an engineer creating sketches of his ideas. After

a few sketches they may select a design that they think will ’do the job’ based on their

intuition or prior experience. This design is then translated into a CAD package [  4 ], [  5 ],

[ 6 ]. The CAD files are then validated by running simulations or developing low fidelity

prototypes. It is only after this point that the engineer is able to get some kind of feedback

and find out whether the design successfully does the desired job. One has to invest a lot

of time and resources before he/she can get any kind of feedback about their design idea.

Another problem specially among non-expert users, would be when one is not very familiar

to the CAD packages or simulation and prototyping tools. One has to spend time learning

these tools and this might also prevent them from trying more complex ideas that would

be difficult to model or prototype. These type of users are important in ideation process

because they are not domain experts and can offer ’out of the box’ ideas unlike experienced

engineers who tend to follow ’ingrained patterns of thinking’ [  3 ]. With this motivation one

can identify a need for a tool that can provide some kind of feedback on the design’s behavior

at the sketch level while still encouraging ’breadth of exploration’.

3.2.2 Design Principles

Sketch2Sim is based on principles of design thinking [ 8 ] and principles for creativity

support [  33 ]. As an early stage ideation tool the following features were considered when

developing S2S:

Design Thinking Principles:

1. Encourage wild ideas

2. Go for Quantity

3. Be visual and make it tangible

4. Fail early and often
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5. Stay focused

6. Let’s have fun

Principles of creativity support:

1. Support exploration

2. Low Threshold, High Ceiling, and Wide Walls

3. Support data Interchange with other tools

4. Make It As Simple As Possible - and Maybe Even Simple

5. Choose Black Boxes Carefully

6. Enable users to invent things

Figure 3.2. The Ideal Ideation Tool

It is also important to understand that early stage ideation tools should also support ra-

tionality along with creativity. Creative ideas are not only the ones that are different from

the obvious solutions but also have a strong rationale for why they are different. An ideal

ideation tool would be one that combines creativity and Rationality [  34 ]. One should be

able to combine their conscious and unconscious minds.
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3.3 Implementation

3.3.1 The Problem

A simple use case of a terrestrial vehicle that needs to go from one end to other end of

the terrain is considered. The problem here is to design a 2D vehicle that can overcome

three different types of terrains- 1. Flat terrain with an obstacle, 2. Uneven terrain, 3.

Upwards slope terrain. This use case was considered since it does not require one to have

any specific domain knowledge and is easily accessible to users with different backgrounds.

The problem only requires knowledge of gravity, friction, collision, space, area and motion,

which everyone understands even if they may not know the technical terms. The 2D vehicle

can be made of 1. Parts that can have any shape and size and 2. Pin joints that can be

powered (motors) or non-powered (free pin joints). The simplicity of problem is aimed to

make users feel confident about solving it and encourage them to think freely.

3.3.2 The Interface

Figure 3.3. Sketch2Sim Interface

S2S is a web based application developed using React.js [  35 ]. The GUI is divided into two

parts- 1. Sketcher and 2. Simulator. The Sketcher is the creativity side while the simulator

is the rationality side of this ideation tool. The sketcher takes in freehand sketch input from
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the user which is then interpreted into a design graph that creates the kinematic model of

the different sketch entities and their interrelations. This graph is then passed to the physics

engine Matter.js [  36 ] which renders the simulation of the 2D vehicle design in the predefined

terrain.

Figure 3.4. Sketching System Architecture

3.3.3 Sketcher

The Sketcher is developed on a graphing object javascript library Go.js [  37 ]. The Sketcher

is based on some simple rules that are motivated from natural sketching habits. The sketcher

rules are listed below:

1. Create a part in a single stroke

2. Each part has to be a closed shape

3. Use the correct brushes to differentiate between parts (black), motors (red) and free

pin joints (green)

4. Two parts that are connected by a joint should have an overlapping and corresponding

joint drawn in the overlapping region
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Figure 3.5. Sketching Rules

The two main features of the sketcher are refining the sketch entities and interpreting

the design into the design graph. The first feature of refining simply fits circles and polygons

(concave and convex) into the freehand sketch. It also recognizes the joints based on brush

Figure 3.6. Refining Freehand Sketch Strokes to fit Shapes

colors. The second feature of interpreting the sketch into a design graph work together with

the sketcher rules. The sketcher assumes a layered drawing of different entities and any two

entities that have a connection between them must overlap with the type of joint drawn

in the overlapping region. This rule is very intuitive and natural for one to overlap two
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connected parts with the joint in the overlapping region. The backend interprets the parts

and joints based on the overlaps and brush colors and then converts it into a graph structure.

Figure 3.7. Generating Graph Model from Sketch

3.3.4 Simulator

Once the graph is generated by the sketcher backend it is then transferred to the physics

engine which then applies physical properties such as mass, gravity, friction and constraints

to the parts so that the entire 2D car assembly can be simulated in the preloaded terrains.

The simulator acts like a instant feedback to the designer on how their design performs. The

visual simulation also gives out hints to the designer on what changes would make the design

perform better and help in building intuition. Now the user can create another design and

iterate through the process until they are satisfied. The graph generated by the Sketcher

can be downloaded as a .json file to save the design and promote file interchange with other

tools.

3.4 Testing & Results

3.4.1 Testing

The system was tested for its robustness and support for different possible shape and

joint combinations. Figure ?? shows the breadth of designs that the system was able to
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Figure 3.8. JSON file format for saving designs and transferring to other tools

successfully translate in the physics engine from the freehand sketches without losing the

user’s intent. A preliminary user study was conducted with three users. The study steps

involved a short practice session followed by a free play. The users were asked to ’think aloud’

while they sketched and share their intentions. The feedback gained from the preliminary

user study was used to determine the next directions of Sketch2Sim. Figure  3.11 shows the

different ideas explored by one of the users.

3.4.2 Results

From the preliminary study the system’s sketching usability was validated. The Sketcher

was easy to learn and allowed users to sketch their ideas freely. From the observational

notes it was clear that the users were enjoying the tool and found it engaging. The instant

feedback helped users identify why their design works or does not work and nudged them on

what would be the possible changes that can help them improve their design. Figure  3.10 

shows the timeline of different ideas generated by one of the user. It can be noted that not

all designs of the same idea origin were created back-to-back but are distributed randomly.

This verifies the non-linear exploratory support of the tool.
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Figure 3.9. Different designs that can be supported by the tool

The designs generated by the users were clustered together into bubble of different ideas

as shown in Figure  3.11 . From the Idea Bubble it is evident that the user explored a large

variety of ideas and even combined different ideas. Looking at the four design ideas in the

orange ellipse it can be noted that the user was making incremental changes to their design

based on the feedback from the simulator. The user was determined to make their design

work by small tweaks in the shape of the the chassis. The two ideas in the green ellipse show

how the user combined the idea of ”Dead weight bhind” with ”Chassis shape change to clear

obstacle”. Finally the design in blue ellipse shows the most optimized design after combining

the two ideas and dropping the dead weight and achieving the same effect of moving the

center of gravity behind by changing the shape of the chassis. One of the users also made

a remark ’I like the fact that I can quickly start over if my design does not work’ which

is similar to throwing away a sketch and grabbing a new sheet to start afresh. The study

also validated the SIAM (Search for Ideas in Associative Memory) [  38 ] model’s two cognitive

states during ideation - productive ideation and impasse. During the productive ideation

state users created many different ideas but after some time they exhausted their ideas and

reached an impasse state.
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Figure 3.10. Idea Timeline: Designs based on same ideas were created at
different points of time

3.5 Limitations & Future Work

The preliminary study also uncovered some limitations of the tool. Once the user ran out

of ideas reached the state of cognitive impasse they did not know what to do. The system

can have a feature to help the user overcome this impasse and again enter the productive

state by nudging. Nudging could be done by offering some indirect hints or suggestions or

inspirations to the user on detecting a long period of inactivity in the system. One of the

users with expertise in sketching also expressed some frustration with the sketcher for not

supporting multi-stroke sketching for the same part. In the next version they system can

support this feature by grouping nearby strokes together and enclosing them into a single

shape.

3.6 Conclusion

In this chapter we discussed Sketch2Sim, a sketch-based design exploration tool for 2D

terrestrial vehicles. We established design principles for ideation tools based on prior work

and developed a system that allows users to create freehand sketches of 2D vehicles and

provides instant feedback on the design’s behaviour in predefined terrains. Finally, the tool

was evaluated for its usability and design exploration abilities by performing a preliminary
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Figure 3.11. Ideation Bubble: Different ideas explored by a user to design a
2D vehicle that can overcome an obstacle

user study. The study results allowed the team to find the next directions and features to

improve the tool and its ideation capabilities.

30



4. DESIGN INTERFACE FOR IOT DEVICES

Figure 4.1. IoTMaker: A System for Ideation and Rapid Prototyping of IoT devices

4.1 Overview

IotMaker is a system that allows users to design, build and interact with internet con-

nected electro-mechanical devices or IoT devices. IotMaker encourages users to ’think wild’

with their ideas without constraints and provides simple user-friendly tools to translate their

ideas into working prototypes of IoT devices. It is mainly targetted towards the K-12 com-

munity but it can extend to the DIY and maker community and even to expert users. The

system is made of a live programming simulator that uses block-based programming language

to create a simulation of the electronic components, a plug-n-play electronic board that sup-

ports a wide variety of Input/Output components, and lastly a mobile app that allows users

to control their devices wirelessly and play with them. Each of the three components support

the ideation, development and control aspect of the IoT devices. The system was evaluated

by expert users and 15 students, and was found to be helpful in reducing the barrier of entry

for creation of IoT devices with advanced functionalities. In this chapter we focus on the

design, development and testing of IoTMaker’s workflow.
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4.2 System Design

4.2.1 Motivation

The maker movement has led to the development of simplified toolkits that make cre-

ating technological prototypes an engaging and playful experience. This has increased the

accessibility of tech to individuals who are driven with creativity and curiosity but not nec-

essarily having a technical background. Technology is also becoming a part of art and design

community due to these toolkits. The underlying philosophy of these toolkits lies in the cre-

ation of ’black boxes’. How well are the complex aspects of technology abstracted and only

limited information is made available to the users. This kind of abstraction is an important

feature that makes these tools have lower barriers of entry. Knowing just enough about the

components so as to be able to put them together to create a functional prototype gives the

users the freedom to think creatively and make their imagination tangible. Creative explo-

ration and learning the science are the two main goals of these toolkits. Although many

such toolkits are available as discussed in section  2.2 , there is still a lot of scope to develop

and improve such toolkits to bring in a balance of creativity, learning and user experience.

Having identified block-based programming coupled with a live simulation of electronics as

an interesting approach to make IoT device creation an engaging and efficient in microBit

[ 22 ] our team expanded on this idea to propose IoTMaker a live programming interface with

an extended electronics repository of plug and play devices.

Figure 4.2. Learning curve comparison between IoTMaker and other systems
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4.2.2 Design Principles

IoTMaker as a system makes transition from programming to electronics and controls

continuous by: the block-based programming interface has a visual simulation of the MakAR

board and the various electronics components. This familiarizes users with the components of

electronics repository before they physically assemble them. User already has a visual mem-

ory of how to connect, what each component looks like and how each component functions.

User is more aware of what to expect and what could possibly go wrong, thus reducing the

errors and frustration. The system has carefully placed black boxes to allow more ’tinkering’

and reduce frustration. The main design principles IoTMaker is based on are:

1. Low ceilings, wide walls

2. Flow

3. Play

4. Visualization

5. Open Ended

Figure  4.2 compares IotMaker with other tools that that have discrete learning milestones

in each step and requires longer time until the final device is created.

4.3 Implementation

The complete system is made of three sub-systems- the live programming interface, the

MakAR board and the electronics repository and a companion mobile app. This thesis shall

only focus on the development of the live programming simulator and its testing.

4.3.1 Live Programming Simulator

The live programming interface is the entry point of the IoTMaker workflow. The first

step of creating an ioT device is to decide which components to use and how to use them.
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Figure 4.3. IoTMaker Workflow

The Live Programming Simulator (LPS) is a web-based interface that is divided into two

parts as shown in Figure  4.4 .

First the input side (left screen) which is comprised of block based programming panel

that utilizes Google’s Blockly [ 17 ] project to allow users to drag and drop different component

and logical blocks to create a code and then generate a javaScript equivalent of this code.

Each component of IoT device is represented by a block. The team modified a version of

Blocklyduino [  39 ] to reuse the logical blocks along with some pre-existing electronics blocks.

Since we expanded the electronics repository some new blocks had to be created. This was

done by using Google Blockly’s developer tools [  40 ]. Creation of blocks is a way of abstraction

of the electronic components. Instead of looking at a completely unfamiliar electronic device

the user will be looking at a puzzle piece that has simple buttons or dropdowns to control

the functionality of that component. It was also important to identify the functionality of

the component and how it behaves in the code. For example, a motor or a servo is an output
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Figure 4.4. IoTMaker’s Live Programming Simulator Interface

device and a light sensor is an input device. Thus the shape and connections of the blocks had

to carefully designed to prevent the user from creating a syntactically wrong code. The blocks

design also inherently prevented the users from attaching the devices to wrong pins based on

the type of the device. These inherent features in the block design allows users to focus on

ideation and creativity instead of worrying about the internal details. Once the blocks are

placed in the desired order the user simply hits the ”Run” button which translates the block

code into a javascript equivalent. This JavaScript code generated from the blocks is then

passed on to the Simulator (right screen). The Simulator translates the JavaScript code into

a series of visual animations that simulate how the input/output components would function

if they were programmed that way. The LPS gives instant feedback on the behavior of the

IoT devices and allows user to make changes and view the updated behavior. The simulation

panel populates the graphics of the electronic components that are present in the block code

and also supports user interactions on these graphics for input devices. For example, the

temperature sensor has a slider that allows the user to change the temperature value and

see real time behavior of the other components based on their code logic. This reduces the

time and resources that would be spent in getting the physical prototype built and tested.

The LPS allows users to see and fix potential errors that might occur in their devices early

on in the design process. Thus, saving time and effort and preventing frustration. The
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LPS interface is also based on the principle of supporting creativity through the block based

programming panel and verifying the rationality of the idea through the visual simulation

panel as discussed in Figure  3.2 .

4.3.2 Hardware Prototyping ToolKit

Figure 4.5. Electronics Repository

Once the user is satisfied with their code and the behavior of the IoT device in the LPS

the next step is to physically put together the components. Hardware assembly can be a

difficult task specially for novice users. The long datasheets, the pin connection diagrams

and the power requirements can all be overwhelming. In order to address this problem,

IoTMaker offers a modular hardware toolkit. The toolkit is comprised of the MakAR Board

and set of input/output components. The MakAR board has an inherent PCB design that

ensures correctness of pin connection and power supply while allowing users to simply plug-

n-play the desired components. At the heart of the MakAR Board is the Wifi-enabled

microcontroller unit (MCU), Adafruit HUZZAH32 ESP32 Feather Board [  41 ]. The board
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layout is carried out in alignment to usability principles. The various components on the

board were divided into user interaction and non-user interaction components. The former

were placed on the front side on the MakAR board while the later were placed on the rear

side to reduce visual clutter and improve focus. The front side consists of a small OLED

display and the input/output ports along with a rotary encoder knob on the side to navigate

the screen. The design takes into account the Gestalt’s Principles of perceptual organization

[ 42 ]. The principle of proximity states that objects which are close together in space tend

to be grouped together when visually inspected; whereas, the principle of continuity states

that objects that are arranged in straight or curved lines tend to be grouped together. In

accordance with these principles, the input/output ports were grouped separately in straight

lines to help distinguish between similar input/output male pin headers on the MakAR board.

The front of the MakAR board gives access to the 5 for input and 5 for output ports. In

order to support a wide range of input components the MakAR board gives access to three

different types of input pin headers. The 3-pin and 4-pin inputs headers connect to devices

that supply simple analog/digital data to the MCU, the 5-pin input header supports I2C

communication protocol thus expanding the variety of possible input/output components.

Along with plug and play support to a wide range of input/output components the MakAR

board also optimizes power distribution by splitting the power across three different power

sources. The MCU, OLED display, and rotary encoder are powered by a 3.7-volt Lithium-

Polymer battery. The input/output components are powered by two 9-volt Lithium-Ion

batteries, thus allowing the MakAR board to operate with all pins and components being

used simultaneously at maximum load condition. Apart from the input/output components

listed in Figure  4.5 intermediate/expert users can also add more components to the list and

expand the system.

4.3.3 Controller Mobile App

After the user has written the program using the Live programming simulator and as-

sembled their hardware components onto the MakAR board, now they needs to control and

interact with their physical IoT devices. To enable this interaction we developed a mobile

37



application that acts like a remote control to trigger different functions in the devices. The

app was made using Unity’s 3D application development suite [ 43 ] that allows apps to be

deployed on multiple platforms - smartphones and PCs. Upon startup, the mobile app in-

terprets a text file generated by the IoTMaker Web application. This text file is comprised

of all the user-created function names and this list is loaded into the app. The app allows

four different types of control interactions

1. The ”Action” option that is a simple button press to trigger a function

2. The ”Toggle” option that activates or deactivates a function

3. The ”Slider” that allows continuous increment or decrement of a value

4. The ”Directional Pad” that allows four-direction control to a particular function

. The communication between the mobile app and the MakAR board is carried out using

the User Datagram Protocol (UDP) packets. The UDP utilizes a Wi-Fi network and the IP

address of the MakAR board to transmit commands and data between the app and the IoT

device.

4.4 Testing Results

IoTMaker was evaluated through two user study procedures - Expert study and Youth

study. Expert study was conducted to gain insights on the system from users that were

familiar with developing and using electro-mechanical devices. Youth study was conducted

with high school students most of which had none to little experience with creating electro-

mechanical devices. Both the studies were followed by survey questions to evaluate the

usability and learning support of the system.

4.4.1 Expert Study

The goal of the Expert study was to gain a perspective of IoTMaker’s performance from

the point of view of users who are experts in developing systems and tools for creating for
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similar electromechanical devices. The study was based on a qualitative analysis by the

experts to uncover:

1. Design considerations to support learning

2. User Experience mainly addressed towards kids

3. Usefulness of the Live Programming Simulator

4 expert users began with a pre-user study survey that involved questions related to

their background and experience in working with electro-mechanical devices. Based on the

responses all users were familiar and confident with creating and using electro-mechanical

devices.

Followed by the pre-user study survey, the users were asked to perform the 5 coding

challenges (Figure  4.6 ). A pseudo-code document along with instructions on how to progress

from one step to the next was used as a form of instruction manual for the Coding Challenges.

Following the pseudo code, users recreated the code in the IoTMaker’s Live Programming

Interface. Between two Coding Challenges, users had to upload their code to the MakAR

board and use the Controller app to control their IoT devices. The last coding challenge

was an open-ended one that allowed the users to come up with their own ideas to generate

a code for a car.

Figure 4.6. IoTMaker Coding Challenges
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All the experts were able to complete all 5 coding challenges with little or no issues within

the allotted time. The table below summarizes the responses to the post-user study survey,

it is clear the system met the expectations of the experts and they had a smooth experience

interacting with IoTMaker.

4.4.2 Youth Study

The team conducted a youth study with 15 students between the age group of 11 to

18 to evaluate IoTMaker. The aim of this study was to answer the following two research

questions: RQ1 How does IoTMaker support youth in creating higher level programming

concepts in a simple and robust way? RQ2 What does the MakAR board do to open the

capacity for live programming complex electro-mechanical devices? The flow of the study

was as follows- 1. users were asked to fill out a pre-survey that gathered data about their

background and experience with EMDs, 2. Users were introduced to the system and given

a brief explanation. 3. After this users were asked to perform the 4 coding challenges,

skipping the challenge 4. 4. Students were asked to share their feedback via the post-user

study survey and interview.

4.4.3 Results

Based on the pre-survey most students were not familiar to live programming tools (M =

2.133, m = 2, σ = 0.247, scale of 1 to 7). All the teams except one successfully completed all

4 coding challenges in 90 minutes. While most students had issues following the pseudo code

they verbally mentioned it was mainly because they were too impatient about trying this new

toolkit. The system was positively rated for usability and user experience. Overall the results

indicated that the tool was useful to help novices learn how to navigate and manipulate

electronics, that it reduces the time to build IoT devices from scratch while offering time to

improve upon iterations, and significantly reduces the barrier to entry for novice users. From

these Youth studies, it can be inferred that (1) IoTMaker is an attractive and usable tool

for young people who are interested in learning how to program physical computing devices,

(2) The plug-and-play MakAR board makes programming physical computing devices easier
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and more enjoyable, and (3) Live Programming is a great tool to assist novice users in

creating complex devices that would require more skill than they otherwise would possess;

thus, lowering the barrier of entry and providing a higher entry point to this level of physical

computing.

4.5 Limitations & Future Work

The present version of the Live Programming Simulator only generates visual feedback

for the electronic components. A lot of IoT devices have mechanical components such as

gears, joints and links attached to the actuators in order to perform a particual task. The

present version of the interface does not account for these mechanical components and the

user can run into problems of misalignment and interference only when the physical device

is assembled. The interface needs to include the mechanical components into the simulator

for early detection of such mechanical issues. In the next version of the Live programming

interface the team plans to support a set of modular mechanical components that can be

assembled by simple drag and drop operations and programmed using the same block based

interface.

4.6 Conclusion

In this chapter we discussed the motivation, design, development and user testing for

IoTMaker system that allows K-12 students to learn and build IoT devices. The system is

made of three integral components - Live Programming Interfaces that supports ideation and

creativity, the Hardware Prototyping Kit that supports simple hands-on interaction with the

physical components and the mobile controller that allows remote wireless control of the IoT

devices. From the user studies we evaluated the usability of the Live Programming Interface

and found the overall user experience to be positively scored by the expert users and the

High schoolers. It can be summarized that IoTMaker system:

1. Supports in teaching non-expert users how to create and program physical computing

devices
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2. Makes programming and building IoT devices an enjoyable experience

3. Allows users to be creative and helps focus on the functionality of the device over the

internal technical details

Thus IoTMaker system helps in lowering the barrier of entry and provides wide walls by

supporting creation of a variety of devices of varying complexity.

42



5. DESIGN INTERFACE FOR HAND WEARABLES

a b c d

Form & Function Personalization Fabricate Hand Wearable Wear itParametrized Hand

Figure 5.1. FabHandWear- An end-to-end system for Customized Functional
Hand Wearables

5.1 Overview

FabHandWear(FHW) [  32 ] is an end-to-end system to support ideation, design and fabri-

cation of hand wearables. FabHandWear allows users with different expertise levels to create

their own hand wearables. The system has a web-based application that has a preloaded

parametric hand model which can be customised to the right shape and size of the user. The

app then allows users to place different electronic components on the hand by simple drag

and drop operation followed by creating wiring connections. In the end the app generates

a 2D layout which can be printed for fabrication. Fabrication of the wearable is done using

screen printing and conductive ink paint. FHW makes wearable design and fabrication ac-

cessible to the maker community and lowers the barrier of entry for users who do not have

strong background in electronics or fabrication. FHW is motivated by current limitations in

wearable development and is an attempt to address these limitations by offering an accessible

and user-friendly workflow.

5.2 System Design

5.2.1 Motivation

Creation of electro-mechanical devices (EMD) is becoming more and more accessible

with the development of open-source technologies and plug-n-play modular kits [  19 ], [  20 ].

Development of EMDs and relevant research in three pillars of EMDs - programming and
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electronics have been discussed in section  2.2 . Along with EMDs recently there has been an

increasing research done in wearing these electronic devices on bodies through wearable de-

sign. Despite these tools that enable EMD development for different types of users, wearable

design still stand out of these generic EMD development toolkits and assume a ’high-tech’

or ’futuristic’ category of EMDs that still remains limited to domain experts. FHW breaks

these technical barriers towards wearable tech and offers an easy, user-friendly workflow

from design to fabrication of hand wearables. FHW focusses on hand wearables and builds

upon prior work discussed in section  2.3 . The design objectives and system development are

discussed in detail in the next section.

5.2.2 Design Principles

FanHandWear is a hand wearable tool that can enable users to translate their ideas into

functional wearable prototypes. In order to achieve this goal it was important to carefully

choose the ’black boxes’. User should be able to control the customizable aspects of the

design but need not be exposed to the inner workings of the electronics. For example,

when designing a thermal sensing interaction it is important to know what is a temperature

sensor capable of doing - detect hot and cold attributes. Knowing how the sensor detects

temperature, what are its power ratings and what are the different connecting terminals

is not relevant at this stage. This information will only block the creative thinking of the

designer and add to their cognitive load. Secondly, the fabrication process should not require

sophisticated machinery and should be doable using accessible tools and processes. With

these motivations the following design objectives were identified:

Design Objectives:

1. Functionality

2. Customizability

3. Fabricability

4. Visualization

5. Open Ended
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5.3 Implementation
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Figure 5.2. FabHandWear- Interface

The aim of the design tool is to facilitate and assist the creation of hand wearable

templates which can then be used for fabrication. The design tool interface is structured

into three steps - 1. Hand Customization, 2. Electronics Functionality Design, 3. Design for

Fabrication support

5.3.1 Hand Customization

Hand customization is a feature that allows the users to reconfigure a default 3D hand

mesh to match their hand’s shape and size. This is a particularly important aspect of the

workflow because there is wide range of variability in hand anatomies and it is difficult to

have a ’one size fits all’ kind of a hand wearable. The fit of the wearable directly impacts the

comfort and ergonomics and thus is a deciding factor of user experience. Another problem

with a ’one size fits all’ kind of design will be the reachability of user input components such

as buttons. Thus, the first step is to measure some reference dimensions of the hand and

input them. The hand mesh updates to reflect the size and shape of the user’s hand.

In the backend of this feature is a parameterized hand model that approximates the

dimension of each section of the hand using only 4 hand dimensions. Figure  5.3 shows the
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Figure 5.3. Hand Parameterization: (a) User input 4 hand dimensions; (b) 3
angle values for each finger based on initial reference measurement; (c) 5 length
values for each finger based on initial reference measurement, each length ex-
pressed as multiple of palm height; (d) generation of 30 skeletal points based
on b and c ; (e) generation of 31 outer points based on skeletal points and
multiples of finger width; (f) extruding the 2D outer points and smoothening
the edges

various steps involved in creating a parameterized hand model by starting with just 4 hand

dimensions.

Figure 5.4. FabHandWear- Interface, Hand Customization

5.3.2 Electronics Functionality Design

The next step, Electronic Functionality Design allows users to place various electronic

components on the parametric hand mesh. The interaction is such that the user drags and

drops the electronic components form the side bar and on leaving the mouse the component

snaps itself to the surface of the hand where it was left. At this point, the user can zoom,
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pan and rotate the hand and access any area of the hand mesh to place the components. The

component list is arranged in such a way that it groups them based on the functionality and

makes it easier for the user to find a particular component they are looking for instead of

scrolling through a list of technical names of sensors. Another feature of the EFD is to guide

the user while designing by suggesting components that must go together to The electronic

Figure 5.5. FabHandWear- Interface, Electronics Placement

components are internally stored in a XML format. Each component has the attributes that

define the name, 3D model data, connecting pin location and names. These attributes are

useful in creating correct connection wiring. The next step in EFD is to generate wiring

diagrams. Based on the xml data of the components pins are rendered in a color coded

format. The system makes use of this information to generate routing between components.

Users can also create routing patterns based on their design and click on a pin of same

color on two components to create a connection between them. The system does not allow

connection between two pins of different color and prevents any errors.

5.3.3 Design for Fabrication support

Once the electronic components are laid out and wiring diagram generated it is time

to convert the design into manufacturable file format. For this step the system translates

the 3D hand model with components and wiring laid out to a flatened 2D layout. In or-

der to generate a manufacturable wearable we need to create a substrate on which all the

components shall stick. This is achieved by letting the user click on outer vertices of of the
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Figure 5.6. FabHandWear- Circuit routing

substrate contour. The system tracks the users consecutive clicks and renders the edges of

the substrate. Following creation of the substrate in 3D it is then mapped against the 2D

hand grid and opened flat using ray-casting. Now FHW can generate a 2D template that can

be printed out. This template consists of the flattened substrate with electronic components

retaining their relative locations and pins and the circuit lines.

Figure 5.7. FabHandWear- Fabrication template and screen printed wearable

Fabrication of the wearable is carried out by simple processes that are accessible to

designers with different backgrounds. The proposed fabrication process does not require any

special tools or sophisticated machines. The steps in fabrication of the wearable involve:

1. screen print the circuit path on a piece of textile that will act as the substrate

2. cure for 5 minutes at 65 deg. C

3. stick the components and connecting pins in their marked locations using electrically

conductive double-sided-tape
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4. paint the connecting pins of the components with conductive ink to ensure connection

with the traces

5. cure the wearable for 5 minutes at 65 deg. C

6. (optional) apply a layer of liquid bandage for durability and wear protection

7. cut the fabric shape as per the markings

8. stick the substrate fabric on the hand using skin friendly adhesive tape

Figure 5.8. FabHandWear- Steps in Fabrications

The substrate fabric was selected based on the following properties

1. skin friendly

2. non-conductive

3. retain shape over time

4. thick enough to not let the ink seep through

5. easily available

Based on the above properties a prior research, Nylon 100% water proof (#6059 water re-

pellent T Nylon) commercially available from good Rich Textiles International was selected.

The conductive ink used was CI-1036 silver ink form Engineered Conductive Materials be-

cause it provides high conductivity, flexibility and short curing time.
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5.4 Testing & Results

5.4.1 Testing

FHW was tested by demonstrating the entire workflow for 4 different applications as

shown in Figure  5.9 . It is clear that FHW design interface offers the ability to create a wide

variety of wearables with different functionalities and a custom hand fit. The system was

also evaluated for usability with individuals from non-technical backgrounds. The users were

given three tasks of varying complexity and required the users to place different components

on different parts of the hand.

a b c d

Figure 5.9. FabHandWear- Example Applications

5.4.2 Results

All users were successfully able to design the wearables. The post study survey outcome

scored the system a mean raw NASA Task Load Index (NASA TLX) of 47.5 (SD=15.083)

and a System Usability Scale (SUS) score of 70.42 (SD=16.61). Figure  5.10 shows custom-

fit for same wearable design on hands of different users. It is clear the variation in hand

dimensions was captured by the tools and corresponding measurements were translated to

the final fabrication template. The created wearable is different for each user and ensures

comfort and reachability for each individual user.
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Figure 5.10. FabHandWear- Custom fit wearable design on different hands

5.5 Limitations & Future work

The FHW’s parametric hand model only supports a 5 finger hand structure and is not

inclusive for designing for individuals with more or less than 5 fingers. In order to address this

the parametric hand model must be redesigned to support a user input of number of fingers.

Second limitation being, the interface does not provide any feedback on the functionality

and ergonomics of the hand wearable. It is only after the user fabricates the final wearable

that he is able to uncover such problems. The system can add another panel that shows

the wearable in function by allowing the user to interact with the different components on

screen and viewing the feedback in realtime.

5.6 Conclusion

FabHandWear is a complete end to end design and fabrication system to develop self-

contained functional hand wearables, enabling multiple levels of customization of shape

and functionality. FabHandWear enables accessibility to makers to encourage exploration

and applications of new forms of hand wearables. We envision an emerging generation of

customizable hand wearables that support hand differences and various functionalities. The

design of a 3D parametrized hand enables us to control hand measurements and the precisely

locting electronic components, which benefits the fit of the resultant wearable. FHW’s design

interface supports a guided workflow for users with little or no experience in electronics to

create custom-fit functional hand wearables. From the user study we evaluated how well the
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systems supports differences in hand dimensions and shapes. We were also able to verify the

scope for creativity and design exploration through the example applications.
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6. CONCLUSION

In this thesis we discussed the design, development and user evaluation of three design

interface workflows. The first one, Sketch2Sim, a sketch-based ideation tool. The significance

of ”sketching” as a preferred mode of ideation was justified by creating a design interface

that translates freehand sketches into physics models for 2D terrestrial vehicle. The feedback

from user study verified how freehand sketching with a physics simulation engine can allow

user to explore design space in breadth and depth. Active simulation from the physics

engine helped user understand the problem deeply and make necessary incremental changes

to their design. The second interface was the Live Programming Simulator for creating IoT

devices.Inspired by microBit’s [  22 ] live simulator we redesigned a visual simulator with more

number of peripheral components. The youth study results showed how IoTMaker’s Live

Programming Simulator supports layers of abstraction necessary to encourage creative idea

generation with robust visual feedback to ensure functionality of the code before it can be run

on the physical prototypes.Lastly, we looked at the third design interface, FabHandWear [ 32 ],

that supports creation of custom fit hand wearables. The workflow of this interface supports

unique hand 3D model generation based on only 3 hand dimensions to finally creating a 2D

hand template that can be fabricated using DIY desktop fabrication tools. By developing

and testing all the three design interfaces the main takeaways were a set of design rationales

to consider when making such interfaces to support ideation and rapid prototyping:

1. Understand the user’s background - what he knows, what doesn’t know

2. Identify themes that the user is familiar with and use them as a layer of abstraction

- such as freehand sketching in Sketch2Sim and puzzle pieces in the IoTMaker’s Live

Programming Simulator

3. Carefully place black boxes to prevent errors, to encourage focus on creation and

functionality and to eliminate the need of technical knowledge or internal functioning

of the final product

4. Support continuous, visual, instantaneous feedback to any changes in the user-created

ideas
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