
ALGORITHMS FOR DEGREE-CONSTRAINED SUBGRAPHS
AND APPLICATIONS

by

S M Ferdous

A Dissertation

Submitted to the Faculty of Purdue University

In Partial Fulfillment of the Requirements for the degree of

Doctor of Philosophy

Department of Computer Science

West Lafayette, Indiana

December 2021

THE PURDUE UNIVERSITY GRADUATE SCHOOL
STATEMENT OF COMMITTEE APPROVAL

Dr. Alex Pothen, Chair

Department of Computer Science

Dr. Petros Drineas

Department of Computer Science

Dr. Seth Pettie

Department of Computer Science, University of Michigan-Ann Arbor

Dr. Hemanta Maji

Department of Computer Science

Dr. Pan Li

Department of Computer Science

Approved by:

Dr. Kihong Park

2

ACKNOWLEDGMENTS

Acknowledging is an extremely tough job. Always there are risks to miss out on many.

With this in mind, here is an honest effort to list the bodies I am grateful for during the

PhD journey.

I want to acknowledge the funding agencies, NSF and DOE, for providing financial sup-

port during my PhD journey. My advisor Prof. Alex Pothen maintained a proper balance

of independence and guidance during my PhD. He was always prompt to advise when it was

required. I can not thank you enough for the advice and support. He introduced me to the

art of research, which I am still learning. Besides professional support, he also cared about

my personal well-being. He understands the struggles of international students like me who

leave a significant part of their families overseas and helps them to settle in. His wife, Bobbie

Pothen, is always kind and welcoming to me.

I am grateful to the dissertation committee members, Prof. Petros Drineas, Prof. Seth

Pettie, Prof. Hemanta Maji, and Prof. Pan Li, for their constructive suggestions about my

thesis. I would also like to acknowledge my collaborators across different labs and industries

for the opportunities to work and learn from them. I want to express my gratitude to Dr.

Mahantesh Halappanavar and Dr. Arif Khan of Pacific Northwest National Laboratory, co-

authors of many works presented in this thesis. Thanks to all my fellow group members,

especially Shivaram Gopal, for their encouragement and fruitful discussion.

I want to especially acknowledge the sacrifice and support of my loving wife, Bushra

Ferdousi. She encourages and supports unconditionally for my cause. I also want to express

gratefulness to my parents for their continuing sacrifice for my life. My brother, sister, and

sister-in-law always stood by me when needed.

I am thankful to Dr. Sohel Rahman, my master’s supervisor, and Dr. Arif Dowla, Man-

aging director of ACI Ltd. They have motivated and supported me to apply for a PhD in

the first place. I thank my school and college teachers, especially Mr. Sahadat Hossain and

Mr. Rafi Ahammed, for their tremendous help in my education.

3

I want to express my gratitude to the fellow Bangladeshi students at Purdue University

for the community support. Especially, I want to mention my friends Priyam Biswas, Sagar

Chowdhury, Marufa Khandaker Joyeeta, and Abdullah Al Mamun for the gracious support,

long night addas (informal discussions), and fantastic foods, which immensely helped to

relieve my stress. Time spent with the kids of my friends at Purdue will forever be in my

memory. Among them, I want to mention Shanaya, Yusuf, and Mersiha especially.

Finally, I am ever grateful to the Almighty God for everything.

4

TABLE OF CONTENTS

LIST OF TABLES . 10

LIST OF FIGURES . 11

LIST OF SYMBOLS . 13

ABSTRACT . 14

1 INTRODUCTION . 16

1.1 Basic Terminology . 16

1.2 The degree-constrained subgraph problem 17

1.3 b-matching . 18

1.3.1 Exact algorithms for 1-matching problem 18

1.3.2 Exact algorithms for b-Matching 19

1.3.3 Approximation algorithms for b-Matching 20

1.4 b-edge cover . 21

1.4.1 Exact algorithm for edge cover . 21

Reduction to Perfect Matching: . 22

Reduction to maximum weighted matching: 22

1.4.2 Exact Algorithm for b-Edge Cover 23

Reduction to b′-matching: . 23

Reduction to 1-edge cover . 24

1.4.3 Approximation algorithm for b-Edge Cover 24

1.5 Background on Submodular Optimization 24

1.5.1 Submodular b-Matching . 24

1.5.2 Complexity of Submodular b-Matching and Approximation 27

1.6 Related Work on Submodular b-matching 27

1.7 Contribution of the thesis . 29

2 GREEDY AND LOCAL ALGORITHMS FOR b-Edge Cover 32

5

2.1 Greedy and Lazy Greedy . 32

2.1.1 The Lazy Greedy Algorithm. 34

2.2 b-Nearest Neighbor algorithm . 36

2.3 LSE and S-LSE . 38

2.4 Improving b-Edge Cover empirically . 39

3 LP BASED ALGORITHMS FOR b-Edge Cover 41

3.1 Linear Programming Framework . 41

3.1.1 Dual-Fitting Algorithms . 43

3.2 A 3/2-Approximation Algorithm . 43

3.3 A 2-Approximation Algorithm . 52

3.4 ∆-Approximation Algorithm . 56

4 REDUCTION TO MATCHING BASED ALGORITHMS FOR b-Edge Cover . 62

4.1 b-Edge Cover via compliment to b-Matching 62

4.1.1 Approximation Bounds . 65

4.1.2 Parallel Depth and Work of Suitor and b-Suitor 67

4.2 b-Edge Cover via reduction to a constrained perfect b-Matching 69

4.2.1 Approximate b-Edge Cover using constrained perfect matching . . 71

4.3 Computational Results of b-Edge Cover algorithms 74

4.3.1 Experimental Setup . 74

4.3.2 Edge Cover Results . 75

4.3.3 b-Edge Cover Results . 76

5 LOCAL ALGORITHMS FOR SUBMODULAR b-Matching 80

5.1 Greedy and Lazy Greedy Algorithms . 80

5.2 Locally Dominant Algorithm . 81

5.2.1 ε-Local Dominance and Approximation Ratio 82

5.2.2 Local Lazy Greedy Algorithm . 85

5.2.3 A tight input for locally subdominant Submodular b-Matching . . . 88

5.2.4 Parallel Implementaion of Local Lazy Greedy 88

6

5.3 Experimental Results . 89

5.3.1 Dataset . 90

5.3.2 Serial Performance . 91

5.3.3 Parallel Performance . 91

5.3.4 Effect of α in Concave Polynomial 92

6 HEAVY WEIGHT HIGH CARDINALITY MATCHING 94

6.1 Cardinality sensitive matching formulation 94

6.1.1 Lower bound on the weight . 95

6.1.2 Pareto Optimality of Weight and Cardinality 96

6.1.3 Choosing a suitable value of λ . 97

7 ADAPTIVE ANONYMIZATION USING b-Edge Cover 99

7.1 A Generalized Framework . 99

7.2 Experiments and Results . 107

7.2.1 Shared Memory Results . 108

7.2.2 Distributed Memory Results . 110

8 LOAD BALNCING FOCK MATRIX COMPUTATION USING b-Matching . . 113

8.1 Load Balancing in Quantum Chemistry . 113

8.1.1 Background . 113

8.1.2 Results . 116

9 DEGREE-CONSTRAINEDGRAPH CONSTRUCTION FORMACHINE LEARN-

ING . 120

9.1 Background . 120

9.2 Sparsification through constraining degree 122

9.2.1 The Sparsification Problem . 124

9.2.2 Choice between minimization and maximization 125

Similarity and upper bound . 126

Dis-similarity and lower bound . 126

9.3 Use of approximation in sparsification . 127

7

9.4 Preliminary Experiments and Results . 128

9.4.1 Dataset . 128

Reuters-21578 . 128

20Newsgroup . 129

9.4.2 Experiment results . 129

10 CONCLUSION AND FUTURE WORK . 132

10.1 Summary . 132

10.2 Practical streaming and online algorithms for graph problem 133

10.3 Continuous optimization approaches to combinatorial problems 135

10.4 Other Future work . 136

10.4.1 Algorithms and implementation of the optimal b-matchings and b-edge

covers . 136

10.4.2 Data-locality Sensitive Load-balancing 137

10.4.3 Graph Construction from geometric data 137

10.4.4 Further applications . 138

REFERENCES . 139

A MATH PROGRAMMING FORMULATION OF VARIOUS DCS PROBLEMS . . 151

A.1 Edge-weighted matchings . 151

A.1.1 1-matching . 151

A.1.2 b-matching . 152

A.2 Vertex-weighted matchings . 153

A.2.1 1-matching . 153

A.2.2 b-matching . 154

B REDUCTION FROM b-MATCHING TO 1-MATCHING AND b-EDGE COVER

TO 1-EDGE COVER . 156

B.1 The new graph construction . 156

B.2 Computing b-Matching . 157

B.3 Computing b-Edge Cover . 157

8

B.4 Analysis . 157

B.4.1 Constructing matching in G′
 . 158

VITA . 161

9

LIST OF TABLES

1.1 Algorithms for the submodular b-Matching problem. The last column lists if
the algorithm is concurrent or not. 29

4.1 The structural properties of our graphs listed in increasing order of edges. . . . 74

4.2 Comparison of weights of edge covers computed by approximation algorithms
w.r.t. the exact algorithm. . 76

4.3 Relative performance of runtimes of approximation algorithms w.r.t. the exact
algorithm for edge cover. . 77

4.4 Weight of b-edge covers computed by the Primal Dual algorithms. The differ-
ence is the percentage of increase in weight using b-Nearest Neighbor w.r.t
Primal Dual. . 78

5.1 The properties of the test graphs listed by increasing number of edges. 90

5.2 The objective function values and comparison of the serial run times for the
Lazy Greedy and Local Lazy Greedy algorithms. 91

7.1 Problem sets for adaptive anonymity. 108

7.2 Comparing run times of the Belief Propagation (BP) and MCE algorithms on a
single thread of an Intel Haswell. 108

7.3 Effect of working set memory on runtimes using the MCE algorithm on 32 cores
of an Intel Haswell processor. 108

10

LIST OF FIGURES

3.1 A small graph whose b-Edge Cover is to be computed. 47

3.2 A tight example for primal-dual algorithm. 51

3.3 A tight example for the b-Nearest Neighbor algorithm 55

4.1 Reduction from a b-Matching to a Matching. (Left) Original graph, (Right)
Reduced graph for b = 2. . 68

4.2 Relative Performance of runtimes of the Primal-Dual and bNN algorithms for
b-Edge Cover w.r.t. the Lazy Greedy algorithm. 79

5.1 The original graph. 82

5.2 Pictorial representation of the two cases . 83

5.3 A tight graph. 88

5.4 Scalability of the Local Lazy Greedy algorithm for submodular b-matching
with 67 threads. 92

5.5 Cardinality and weight of matching comparison for various α 93

7.1 An example of an adaptive anonymity problem. Left: usernames and feature
matrix (x, X); Right: the anonymized feature matrix with keys (Y, y); Center: A
bipartite graph that matches each user to a set of anonymized keys compatible
with the user’s data. There are six users and four features, and the privacy
requirements are: k(x0) = 3, k(x1) = 2, k(x2) = 3, k(x3) = 2, k(x4) = 2, k(x5) =
2. The solution using adaptive anonymity masks eight data items, while k-
Anonymity for k ≥ 2 would mask ten elements. 99

7.2 An example for adaptive anonymity. From top to bottom: original input, dis-
similarity matrix (Hamming distances) and anonymized output. 106

7.3 Strong scaling of adaptive anonymity problems on 32 cores of an Intel Haswell
processor. 109

7.4 Strong scaling of adaptive anonymity algorithm on Cori using our hybrid MPI-
OpenMP code. 110

7.5 Weak scaling of adaptive anonymity algorithm on Cori. 111

8.1 Assigning tasks to processors to balance the computational work using a sub-
modular b-matching. 114

8.2 Visualizing the load distribution for the Fock matrix computation for the Ubiq-
uitin protein. Results from: Top, current assignment on NWChemEx. Bottom,
submodular assignment. 117

11

8.3 Runtime comparison per iteration for the default and proposed scheduling with
the sto3g basis functions. 118

8.4 Runtime per iteration for the current (default) and submodular assignments with
the 6-31g basis functions for the Ubiquitin protein in NWChemEx on Summit. . 119

9.1 A typical GSSL flow . 121

9.2 Degree distribution of the generated graph using 3/2-approx edge cover algorithm 130

9.3 Degree distribution of the generated graph using 2-approx k-NN algorithm . . . 130

9.4 Weighted F1 of different percentage of labels and different b- values for Reuters
Dataset . 131

9.5 Weighted F1 of different percentage of labels and different b- values for newsgoup
Dataset . 131

10.1 Contributions of the thesis . 132

12

LIST OF SYMBOLS

n number of vertices of a graph

m number of edges of a graph

∆ maximum degree of a graph

13

ABSTRACT

A degree-constrained subgraph construction (DCS) problem aims to find an optimal

spanning subgraph (w.r.t an objective function) subject to certain degree constraints on the

vertices. DCS generalizes many combinatorial optimization problems such as Matchings and

Edge Covers and has many practical and real-world applications. This thesis focuses on DCS

problems where there are only upper and lower bounds on the degrees, known as b-matching

and b-edge cover problems, respectively. We explore linear and submodular functions as the

objective functions of the subgraph construction.

The contributions of this thesis involve both the design of new approximation algorithms

for these DCS problems, and also their applications to real-world contexts. We designed,

developed, and implemented several approximation algorithms for DCS problems. Although

some of these problems can be solved exactly in polynomial time, often these algorithms

are expensive, tedious to implement, and have little to no concurrency. On the contrary,

many of the approximation algorithms developed here run in nearly linear time, are simple

to implement, and are concurrent. Using the local dominance framework, we developed the

first parallel algorithm submodular b-matching. For weighted b-edge cover, we improved the

classic Greedy algorithm using the lazy evaluation technique. We also propose and analyze

several approximation algorithms using the primal-dual linear programming framework and

reductions to matching. We evaluate the practical performance of these algorithms through

extensive experimental results.

The second contribution of the thesis is to utilize the novel algorithms in real-world ap-

plications. We employ submodular b-matching to generate a balanced task assignment for

processors to build Fock matrices in the NWChemEx quantum chemistry software. Our

load-balanced assignment results in a four-fold speedup per iteration of the Fock matrix

computation and scales to 14,000 cores of the Summit supercomputer at Oak Ridge Na-

tional Laboratory. Using approximate b-edge cover, we propose the first shared-memory

and distributed-memory parallel algorithms for the adaptive anonymity problem. Mini-

mum weighted b-edge cover and maximum weight b-matching are shown to be applicable to

14

constructing graphs from datasets for machine learning tasks. We provide a mathematical

optimization framework connecting the graph construction problem to the DCS problem.

15

1. INTRODUCTION

This thesis explores efficient approximation algorithms and real-life applications for Degree-

constrained subgraph construction (DCS) problems. We construct significant subgraphs

based on two criteria: 1) the subgraph has bounds on vertex degrees (to control sparsity), 2)

and the subgraph optimizes a suitable objective function (to choose significant subgraphs).

The DCS is a broad problem that encompasses several discrete optimization problems, and

could also be viewed as a sketching of the data.

1.1 Basic Terminology

We provide a collection of minimal terminologies to get started. we will re-introduce

many of these terminologies later if it is felt necessary as well as additional notations and

terminologies later part of the thesis.

Almost all the algorithms in the thesis takes undirected graph as an input. A graph

G consists of a finite non-empty sets of elements called the vertices (or nodes) V , and a

collection of unordered pair of vertices called the edges E. A major part of the thesis

assumes the graph is simple i.e., there are no parallel edges or self-loops. If e = {u, v}, where

u, v ∈ V is an edge in G, u and v are called endpoints of the edge. Two edges those share

an endpoint are called adjacent edges. The set of adjacent edges, those share an endpoint

v ∈ V , are called incident on v. If the graph is simple then an edge, {u, v} is a set of

cardinality exactly 2, and E becomes a set of such edges. We employed {u, v} and (u, v)

alternatively to represent an edge throughout the thesis. An unweighted graph is denoted

by G(V, E). We define a function w : E → R≥0, that assigns a non-negative real valued

weight to the edges. In presence of weights, we denote the graph as G(V, E, w). The weight

function can be extended to a subset of edges as follows. Given a set S ⊆ E, we define

w(S) := ∑
e∈S w(e). If G and H are two graphs and every edge of H is also an edge of G,

then H is called an induced subgraph (or simply a subgraph) of G.

Given a set, S ⊂ V , δ(S) is defined as the cut edge set of S i.e., the edges those have

only one endpoint in S. So, the set of the edges incident on a vertex v is δ({v}) (or δ(v)).

16

The degree of a vertex is thus |δ(v)|. Similarly, γ(S) represents the set of edges those have

both endpoints in S.

1.2 The degree-constrained subgraph problem

We now formally define the DCS problem and the variants that we discuss in later

chapters in this thesis. Let G(V, E, w) be the original graph where V and E are the set of

vertices and edges, and w : E → R+ is the weight function on the edges. We denote by n and

m the number of vertices and edges, respectively. Let δ(v) denote the set of edges incident on

a vertex v ∈ V . Our goal is to construct a subgraph of G following a set of degree constraints

on the subgraph. Given a binary function x : E → {0, 1} we define, E ′ := {e ∈ E : x(e) = 1}.

Formally, we are interested in the following general binary optimization problem.

optimize f(E ′),

l(i) ≤
∑

e∈δ(i)
x(e) ≤ u(i), ∀i ∈ V,

x(e) ∈ {0, 1} ∀e ∈ E. (1.1)

Here E ′ consists of the edges in the subgraph, and for such edges x(e) = 1; l(i) and u(i)

are positive integers representing the lower bounds and upper bounds on the degree of a

vertex i, and f is a set function. In this thesis, we limit our focus to linear and submodular

functions. When the function is linear f can be expressed as ∑
e∈E w(e)x(e). For submodular

objective, we do not assume any specific functional form. For concreteness, we state a

submodular function that we have recently applied in [1] for load balancing parallel Fock

matrix computations in quantum chemistry. In this setting, the graph is a bipartite with

two parts in vertex set, say, U and V . The objective function is

f =
∑
u∈U

 ∑
e∈δ(u)

w(e)x(e)
α

+
∑
v∈V

 ∑
e∈δ(v)

w(e)x(e)
α

,

is submodular when α ∈ (0 1).

17

DCS is one of the classical combinatorial optimization problems. The general DCS for

linear function was first described and solved by reduction to b-matching in [2]. The existence

criteria for a DCS with particular lower and upper bounds are shown in [3]–[5]. Several

extensions of basic DCS for linear functions have been addressed recently. If in addition to

the lower bound l(i), we also allow 0, that is the degree of a vertex can be now in the set,

{0, l(i), . . . , u(i)}, the maximization problem becomes NP-hard even for bipartite graphs [6].

If the subgraph also needs to be connected, maximizing the linear function becomes NP-

hard [7] even for l(i) = 0, and u(i) = d, ∀i ∈ V , and d ≥ 2. In [8], the authors provide a

(min{n/2, m/2})-approximation algorithm for any d ≥ 2.

Depending on the constraints and objective function, several special problems can be

developed. We list our problems of interest as follows.

1.3 b-matching

When l(i) = 0 for all the vertices the formulation 1.1 reduces to a b-matching constrained

problem.

Definition 1.3.1. Given a function b(v) that maps each vertex to a natural number i.e.,

b : V → N, a b-matching in a graph G(V, E) is set of edges M ⊆ E such that at most b(v)

edges in M are incident on a vertex v.

If the objective function f is linear, the maximum weight b-matching problem is polyno-

mially solvable, and we will discuss exact algorithms for b-matching is subsequent sections.

If b(v) = 1, ∀v ∈ V , we call it a 1-matching or simply a matching problem. We denote for a

set S ⊆ V , b(S) = ∑
v∈S b(v), and β = maxv∈V b(v).

1.3.1 Exact algorithms for 1-matching problem

We provide an extremely brief review of the exact algorithms for weighted and unweighted

matching problems. A maximum cardinality matching in an unweighted graph has the maxi-

mum number of independent edges. If the graph is bipartite, solving the Linear Programming

(LP) relaxation of the integer programming formulation provides an integral solution due

18

to the total unimodularity of the constraint matrix. Thus it establishes the polynomial

complexity of maximum cardinality matching. The best runtime of maximum cardinality

matching in general bipartite graphs is O(
√

nm) due to Hopcroft and Karp [9]. For regular

biparite graphs, Goel, Kapralov and Khanna in [10] developed a randomized algorithm that

runs in O(n lg n) time. For general non-bipartite graphs unfortunately the LP relaxation

does not guarantee an integral solution. We can generate a stronger LP by adding odd set

constraints which is defined next. Let S be a subset of V of odd cardinality (|S| ≥ 3). Any

matching of G cannot intersect γ(S) in more than (|S| − 1)/2 edges. This gives us a set of

new constraints to the LP relaxation. Edmonds in [11] showed that the new LP with the odd

set constraints has integral solutions. The best runtime for maximum cardinality matching

in general graph matches the runtime as in the biparitite graph i.e, O(
√

nm) [12].

For weighted graphs, the primal-dual Hungarian algorithm [13] solves the bipartite maxi-

mum weighted matching problem. The best runtime (O(nm+n2 log n)) for weighted match-

ing in a bipartite graph is achieved by using Fibonacci heaps in the Hungarian algorithm

and is due to Fredman and Tarjan [14]. Similar to the cardinality version, the general max-

imum weight matching is complicated by the presence of odd set constraints. Edmonds in

the seminal work [11], [15] shows how to avoid maintaining the exponential number of odd

set constraints by introducing blossoms and the data-structures to maintain them in poly-

nomial time, thus showing the maximum weighted matching is solvable in polynomial time.

Using a more complex data structure, Gabow [16] developed an algorithm for maximum

weighted matching in a general graph whose runtime matches the bipartite counterpart. We

have shown an LP formulation of the 1-matching problem with the odd set constraints in

Formulation A.2 .

1.3.2 Exact algorithms for b-Matching

We show a strong LP relaxation of the weighted b-matching problem in Formulation A.5 .

An exact algorithm for a maximum weight b-Matching was first designed by Edmonds

in [11]. Pulleyblank [17] later gave a polynomial time algorithm with complexity O(mnb(V)) =

O(m2n). Cunningham and Marsh [18] developed an algorithm for b-Matching that runs

19

in O(n2m log β) time, and Gabow [2] designed an efficient reduction based algorithm that

requires O(m2 log n log β) time. Anstee [19] proposed a three-stage algorithm where the

b-Matching problem is solved by transforming it to a Hitchcock transportation problem,

rounding the solution to integer values, and finally invoking Pulleyblank’s algorithm. It

requires Õ(n2m). Miller and Pekny in [20] improved the Anstee algorithm further, and de-

veloped an algorithm that requires O(n2m) time. [21] developed another algorithm using the

branch and cut approach, and [22] solved the problem using the cutting plane technique. A

survey of exact algorithms for b-Matchings was provided by [23]. More recently, [24] pro-

posed an exact b-Matching algorithm based on belief propagation. The algorithm assumes

that the solution is unique, and otherwise it does not guarantee convergence.

There are several reductions from b-Matching to 1-matching. Tutte [25] showed a

reduction from b-Matching to matching that creates a new graph by splitting each node

of G into b(v) copies, and replaces each edge (u, v) by b(u)b(v) edges that forms a complete

bipartite subgraph joining the copies of u and v. The new graph has O(m) vertices and

O(β2m) edges. There is a different reduction that replaces each edge by b(u) + b(v) + 1

edges; it thus creates O(βm) edges in total. Using the best weighted matching algorithm

as black-box, this reduction based algorithm runs in Õ(βm2) time. For sparse graphs and

small β, this could be better than the three stage algorithm due to Anstee. In Appendix B ,

we provide a detailed discussion of the second reduction.

1.3.3 Approximation algorithms for b-Matching

Mestre in [26] showed that a b-Matching is a relaxation of a matroid called a 2-extendible

system, and hence that the Greedy algorithm gives a 1/2-approximation for a maximum

weighted b-Matching. Mestre also generalized the Path-Growing algorithm of [27] to ob-

tain an O(βm) time 1/2-approximation algorithm. These algorithms are slower in practice

than a serial b-Suitor algorithm that generalizes the Suitor algorithm [28]. Since the

Path Growing algorithm is inherently sequential, it is not a good candidate for paral-

lelization. Additionally, [26] generalized a randomized algorithm for Matching to obtain

a (2/3 − ε)-approximation algorithm with expected running time O(βm log 1
ε
). [29] have

20

adapted the Greedy algorithm and an integer linear program (ILP) based algorithm to

the MapReduce environment to compute b-Matchings in bipartite graphs. b-Matching

algorithms have also been developed using linear programming [30], [31], but these methods

are orders of magnitude slower than the b-Suitor algorithm. [32] describes a distributed

algorithm based on adding locally dominating edges to the b-Matching, which leads to a

Locally Dominant Edge algorithm.

1.4 b-edge cover

Another special form of Problem 1.1 arises when we assume u(i) ≥ |δ(i)|, i.e., the sub-

graph of interest is lower bounded only, and this is known as b-edge cover.

Definition 1.4.1. Given a function b(v) that maps each vertex to a natural number, a b-edge

cover in a graph is set of edges C such that at least b(v) edges in C are incident on a vertex

v.

When the objective is to minimize a linear function, the corresponding problem is poly-

nomially solvable, since it can be reduced to b-matching [33].

1.4.1 Exact algorithm for edge cover

For the unweighted version of both Matching and Edge Cover , we have a well

established relationship due to Gallai [34] and Norman and Rabin [35]. We restate this

relationship by the following theorem from Schrijver [33 , Theorem 19.1 and 19.2].

Theorem 1.4.1. Let G = (V, E) be a graph with n vertices and m edges. Every maximum

cardinality matching is contained in a minimum cardinality edge cover, and every minimum

cardinality edge cover contains a maximum cardinality matching. Moreover if we have a

maximum cardinality matching in G, we can find a minimum cardinality edge cover in time

O(m), and vice versa.

The O(m) time in the last part of the Theorem 1.4.1 comes from a simple algorithm due

to Norman and Rabin [35]. For each unmatched vertex of a maximum cardinality matching,

21

we add an arbitrary incident edge. This results in a minimum cardinality cover. Thus the

runtime of a minimum cardinality edge cover algorithm is O(
√

(n)m).

There are several reductions from the minimum weighted edge cover to the weighted

matching problem. We sketch a couple of reductions here.

Reduction to Perfect Matching:

Given a graph G = (V, E, w), the reduction creates a second disjoint copy Ḡ = (V̄ , Ē, w̄)

of the original graph, and connects each vertex v ∈ V with its copy v̄ ∈ V̄ . Let G′(V ′, E ′, w′)

denote the new graph, and let µ(v) denote an edge of lowest weight incident on v in G. The

weight function w′ on E ′ is defined as follows: w′(e) = w(e) for each e ∈ E, w′(e′) = w̄(ē)

for each ē ∈ Ē, and w′(v, v̄) = 2w(µ(v)). It is easy to verify that G′ has a perfect matching.

We can compute a minimum weight perfect matching M∗ in G′; then we obtain a minimum

weight edge cover of G by selecting the edges C = (M∗ ∩E)∪ {µ(v) : (v, v̄) ∈M∗,∀v ∈ V }.

Reduction to maximum weighted matching:

We compute a transformed weight w′ for each edge e = (u, v) as

w′(u, v) = µ(u) + µ(v)− w(u, v).

(Note that we write w(u, v) instead of w((u, v)).) Consider how the weight of an edge is

transformed under this mapping. There are three cases.

Case 1 µ(u) = µ(v) = w(u, v). We call such an edge locally subdominant, since this edge is

of minimum weight among all of its neighboring edges. The reader can verify that the

transformation does not change the weight of such an edge; thus w(u, v) = w(u, v).

Case 2 µ(u) = w((u, v)) > µ(v). The reader can verify that w(u, v) = µ(v) < w(u, v).

Case 3 w(u, v) > µ(v) > µ(u). It is easily verified that w(u, v) < µ(u) < w(u, v).

22

The other cases may be obtained from the symmetry of u and v. In all cases, we see

that the transformed weight of an edge is no larger than the minimum weight among

its neighboring edges.

Assume that we are given a Matching M with the transformed weights on the edges.

Define V (M) to be the set of matched vertices in M , and let e(v) denote an edge of minimum

weight incident on v. We can compute an edge cover C as follows:

C = M ∪ {e(v) : v ∈ V \ V (M).

Hence the Edge Cover consists of the matched edges and a set of minimum weight edges

incident on the unmatched vertices.

If M∗ is a maximum weight matching with respect to the weights w, then the resulting

edge cover C∗ is an edge cover of minimum weight with respect to the weights w. Further-

more, Huang and Pettie [36] showed that this reduction is approximation-preserving.

1.4.2 Exact Algorithm for b-Edge Cover

Similar to weighted 1-edge cover, weighted b-Edge Cover admits several reductions

to weighted b-matching. We discuss in Chapter 4.2 how to reduce a b-Edge Cover to a

constraint perfect b-matching problem.

Reduction to b′-matching:

We refer to b′-Matching instead of b-Matching to avoid ambiguity in this subsection.

Given a graph G = (V, E, b), a minimum weight b-Edge Cover can be obtained from a

maximum weight b′-Matching [33] as follows:

1. For each vertex v, compute b′(v) = deg(v)− b(v).

2. Compute Mopt, a maximum weight b′-Matching.

3. Compute a b-Edge Cover as the complement of the matching: Copt = E \Mopt.

23

In this construction, steps 1 and 3 ensure that the computed b-Edge Cover is a valid

cover, and the optimality of the cover depends on step 2.

Reduction to 1-edge cover

Recall that a b-matching can be reduced to 1-matching by replacing each edge with

b(u) + b(v) + 1 edges. In a similar way a weighed b-edge cover can be also be reduced to a

weighted 1-edge cover problem. We provide a detailed of the reduction in Appendix B .

1.4.3 Approximation algorithm for b-Edge Cover

There are several approximation algorithms for the b-edge cover problem. The KNN algo-

rithm provides 2-approximation, and other 2-approximation algorithms include the Locally

subdominant edge and Matching complement algorithms. 3/2-approximation algorithms

include Greedy, Lazy greedy, and Primal dual.

1.5 Background on Submodular Optimization

In this section we describe submodular functions and their properties, formulate the

submodular b-Matching problem, and discuss approximation algorithms for the problem.

1.5.1 Submodular b-Matching

Definition 1.5.1 (Marginal gain). Given a ground set X, the marginal gain of adding an

element e ∈ X to a set A ⊆ X is

ρe(A) = f(A ∪ {e})− f(A).

The marginal gain may be viewed as the discrete derivative of the set A for the element

e. Generalizing, the marginal gain of adding a subset Q to another subset A of the ground

set X is

ρQ(A) = f(A ∪Q)− f(A).

24

Definition 1.5.2 (Submodular set function). Given a set X, a real-valued function f defined

on the subsets of X is submodular if

ρe(A) ≥ ρe(B)

for all subsets A ⊆ B ⊆ X, and elements e ∈ X \ B. The function f is monotone if for all

sets A ⊆ B ⊆ X, we have f(A) ≤ f(B); it is normalized if f(∅) = 0.

We will assume throughout this paper that f is normalized. The concept of submodu-

larity also extends to the addition of a set. Formally, for Q ⊆ X \ B, f is submodular if

ρQ(A) ≥ ρQ(B). If f is monotone then ρe(A) ≥ 0, ∀A ⊆ X and ∀e ∈ X.

Proposition 1.5.1. Let S = {e1, . . . , ek}, Si be the subset of S that contains the first i

elements of S, and f be a normalized submodular function. Then f(S) = ∑k
i=1 ρei(Si−1).

Proof. By construction, S0 = ∅, and Sk = S.

k∑
i=1

ρei(Si−1) =
k∑

i=1
f(Si−1 ∪ ei)− f(Si−1)

= f(Sk)− f(S0) = f(S).

�

Proposition 1.5.2. For sets A ⊆ B ⊆ X, and e ∈ X, a monotone submodular function f

defined on X satisfies ρe(A) ≥ ρe(B).

Proof. There are three cases to consider. i) e ∈ X \ B: The inequality holds by definition

of a submodular function. ii) e ∈ A: Then both sides of the inequality equal zero and the

inequality holds again. iii) e ∈ B \ A: Then ρe(B) = 0, and since f is monotone, ρe(A) is

non-negative. �

Proposition 1.5.2 extends to a set, i.e., monotonicity of f implies that for every A ⊆ B ⊆

X, and Q ⊆ X, ρQ(A) ≥ ρQ(B). Informally Proposition 1.5.2 states that if f is monotone

then the diminishing marginal gain property holds for every subset of X.

25

We are interested in maximizing a monotone submodular function with b-Matching con-

straints. Let G(V, E, W) be a simple, undirected, and edge-weighted graph, where V, E, W

are the set of vertices, edges, and non-negative edge weights, respectively. For each e ∈ E we

define a variable x(e) that takes values from {0, 1}. Let M ⊆ E denote the set of edges for

which x(e) is equal to 1, and let δ(v) denote the set of edges incident on the vertex v ∈ V .

The submodular b-Matching problem is

max f(M)

subject to∑
e∈δ(v)

x(e) ≤ b(v) ∀v ∈ V, (1.2)

x(e) ∈ {0, 1}.

Here f is a non-negative monotone submodular set function, and 0 ≤ b(v) ≤ |δ(v)| is the

integer degree bound on v. Denote β = maxv∈V b(v).

We now consider the b-Matching problem on a bipartite graph with two parts in the

vertex set, say, U and V , where the objective function is a concave polynomial.

f = max
∑
u∈U

 ∑
e∈δ(u)

W (e)x(e)
α

(1.3)

+
∑
v∈V

 ∑
e∈δ(v)

W (e)x(e)
α

subject to ∑
e∈δ(u)

x(e) ≤ b(u) ∀u ∈ U,

∑
e∈δ(v)

x(e) ≤ b(v) ∀v ∈ V,

x(e) ∈ {0, 1}.

26

The objective function Problem 1.3 becomes submodular when α ∈ [0, 1]. This formulation

has been used for peptide identification in tandem mass spectrometry [37], [38], and word

alignment in natural language processing [39].

1.5.2 Complexity of Submodular b-Matching and Approximation

A subset system is a pair (X, I), where X is a finite set of elements and I is a collection

of subsets of X with the property that if A ∈ I and A ⊆ A then A ∈ I. A matroid is a

subset system (X, I) which satisfies the property that ∀A, B ∈ I and |A| < |B|, ∃e ∈ B \A

such that A ∪ {e} ∈ I. Here the sets in I are called independent sets. A subset system is

k-extendible [26] if the following holds: let A ⊆ B, A, B ∈ I and A ∪ {e} ∈ I, where e /∈ A,

then there is a set Y ⊆ B \ A such that |Y | ≤ k and B \ Y ∪ {e} ∈ I.

Maximizing a monotone submodular function with constraints is NP-hard in general; in-

deed, it is NP-hard for the simplest constraint of cardinality for many classes of submodular

functions [40], [41]. A Greedy algorithm that repeatedly chooses an element with the maxi-

mum marginal gain is known to achieve (1− 1/e)-approximation ratio [42], and this is tight

[43]. The Greedy algorithm with matroid constraints is 1/2-approximate. More generally,

with k-matroid intersection and k-extendible system constraints, the approximation ratio of

the Greedy algorithm becomes 1/(k + 1) [44].

1.6 Related Work on Submodular b-matching

The maximum k-cover problem can be reduced to submodular b-Matching [45]. Feige [40]

showed that there is no polynomial time algorithm for approximating the max k-cover within

a factor of (1− 1/e+ ε) for any ε > 0. Thus we obtain an immediate bound on the approxi-

mation ratio of submodular b-Matching.

New approximation techniques have been developed to expedite the greedy algorithm,

especially for cardinality and matroid constraints. The continuous greedy approach for

cardinality and matroid constraints has been introduced in [44]. In [46], the authors improve

the continuous greedy technique to develop faster algorithms for cardinality and intersection

of p-system and l-knapsack constraints. Mirzasoleiman et al. developed a randomized greedy

27

algorithm that is faster than lazy greedy and achieves (1−1/e) approximation in expectation

[47]. They also developed a distributed two-round algorithm for the cardinality constraints in

[48]. Under certain conditions, this algorithm achieves an approximation ratio as good as the

centralized greedy algorithm. But for more general constraints such as matroid or k-system,

the approximation ratio depends on the number of distributed nodes and the maximum

independent set size. [49] gave the first deterministic 1/2 + ε algorithm for submodular

maximization with matroid constraints. The running time of their algorithm is O(np2 +pT),

where n, p are the size of the ground set and rank of the matroids, respectively, and T is

the time required to compute a maximum weight perfect matching in a complete bipartite

graph with 2p vertices.

Surveys on submodular function maximization under different constraints may be found

in [50]–[52].

Several approximation algorithms have been proposed for maximizing monotone submod-

ular functions with b-Matching constraints. If the graph is bipartite, then the b-Matching

constraint can be represented as the intersection of two partition matroids, and the Greedy

algorithm provides a 1/3-approximation ratio. But b-Matching forms a 2-extendible sys-

tem and the Greedy algorithm yields a 1/3-approximation ratio for non-bipartite graphs.

Feldman et al. [53] showed that b-Matching is also a 2-exchange system, and they pro-

vide a 1/(2 + 1
p

+ ε)-approximation algorithm based on local search, with time complexity

O(βp+1(∆ − 1)pnmε−1). (Here p is a parameter to be chosen.) The continuous greedy

and randomized LP rounding algorithms have been used in [54] to compute a submodular

b-Matching algorithm that produces a (1
3+2ε

)(1− 1
e) approximate solution in O(m5) time.

Recently Fuji [45] developed two algorithms for the problem. One of these, Find Walk,

is a modified version of the Path Growing approximation algorithm [27] proposed for 1-

matching with linear weights. Mestre [26] extended the idea to b-Matching. In [45],

Fuji extended this further to the submodular objectives. They showed an approximation

ratio of 1/4 with time complexity O(β m). The second algorithm uses randomized local

search, has an approximation ratio of 1/(2 + 1
p
) − ε, and runs in O(βp+1(∆ − 1)p−1m log 1

ε

time in expectation. Here a vertex is chosen uniformly at random in each iteration, and

the algorithm searches for a certain length alternating path with increasing weights. This

28

algorithm is similar to the 2/3 − ε approximation algorithm for linear weighted matching

in [55] and the corresponding b-Matching variant in [26]. We list several approximation

algorithms for submodular b-Matching in Table 1.1 .

Table 1.1. Algorithms for the submodular b-Matching problem. The last
column lists if the algorithm is concurrent or not.

Alg. Appx. Ratio Time Conc.?
Greedy[42] 1/3 O(βnm) N
Lazy Greedy [56] O(βm log m) N

1/3 assuming 1

Local Search [53] 1/(2 + 1
p

+ ε) O(βp+1(∆− 1)pnmε−1) N
Cont. Grdy+
Rand. Round[54] (1

3+2ε
)(1− 1

e) O(m5) N
Path Growing [45] 1/4 O(βm) N
Rand LS [45] 1/3− ε O(β2m log 1/ε) N

in expectation
Local Lazy O(βm log ∆) Y
Greedy ε

2+ε
assuming 1

1.7 Contribution of the thesis

This thesis makes two major contributions. The first contribution is to develop efficient,

simple to implement and concurrent approximation algorithms for various DCS problems.

The second contribution is to apply the DCS problem to real-life applications. We highlight

these contributions as follows.

• Algorithms

– We develop, analyze and implement several approximation algorithms for b-edge

cover.

∗ We improved the greedy algorithm using lazy evaluation (Chap. 2.1.1), and

show that k-NN algorithm is 2-approximate (Chap. 2.2).

29

∗ We developed a primal-dual 3/2-approximate algorithm for b-Edge Cover.

We also analyzed existing 2- and ∆-approximate algorithms using the primal

dual framework (Chap. 3)

∗ We employ a reduction from b-Edge Cover to b-Matching to construct

a highly parallel 2-approximation algorithm. We have also shown that the

algorithm has logarithmic parallel depth if the weights are chosen uniformly

at random (Chap. 4.1).

∗ We show a novel reduction from b-Edge Cover to a constrained perfect

b-Matching and developed a 3/2-approximate algorithm using this reduc-

tion (Chap. 4.2).

– We design and implement Local Lazy Greedy ,a novel parallel approximation

algorithm for submodular b-Matching. This algorithm is 1/3-approximate and

runs in O(mβ log n time in serial (Chap. 5).

– We introduce Lambda Matching that provides a trade-off between the weights

and cardinality of a matching. We show theoretically and empirically the effec-

tiveness of Lambda Matching to find a matching with large weight and high

cardinality (Chap. 6).

• Applications

– We employ submodular b-Matching to generate a balanced assignment of tasks

to processors for building Fock matrices in quantum chemistry within the NWChemEx

software. Our load-balanced assignment results in a four-fold speedup per itera-

tion of the Fock matrix computation, and scales to 14, 000 cores of the Summit

supercomputer at ORNL (Chap. 8)

– We propose the first shared-memory as well as distributed memory parallel al-

gorithms for the adaptive anonymity problem using an iterative algorithm where

each iteration solves a 2-approximate b-Edge Cover. We are able to solve adap-

tive anonymity problems with hundreds of thousands of instances and hundreds

of features on a supercomputer in under five minutes. (Chap. 7)

30

– We propose to apply DCS problem to construct graphs from dataset in machine

learning problems. We provide a mathematical optimization framework support-

ing the applicability of DCS for the graph construction problem. Using real world

data, We report preliminary experiments that confirm that graphs of high quality

are constructed (Chap. 9).

31

2. GREEDY AND LOCAL ALGORITHMS FOR b-Edge Cover

Greedy is one of the most common algorithmic paradigms. In the greedy paradigm, an

element is added to the partial solution set based on the importance of the element. This

importance criterion could be precomputed or computed at runtime. We describe in this

chapter different greedy algorithms for b-Edge Cover. We will first discuss the algorithms

that require global orderings of edges. Next, we will relax the global ordering to design local

algorithms that need only the information from the neighborhood of an edge. These latter

algorithms are advantageous in parallel environments.

2.1 Greedy and Lazy Greedy

Given a universal set U , and a collection of subsets S of U , a set cover C ⊆ S is a

subcollection of the sets whose union is U . The set cover problem aims to find a minimum

cardinality set cover. If additionally each set s ∈ S has a non-negative weight specified,

the weighted set cover problem is to find a set cover of minimum total weight. The Greedy

algorithm and its analysis for the unweighted set cover is by Johnson [57], Lovász [58],

and Stein [59]. The greedy algorithm for the weighted set cover problem is analyzed by

Chvátal [60]. The b-Edge Cover problem is a special case of the set multicover problem

where the elements correspond to vertices of a graph, and subsets to its edges consisting of

pairs of vertices.

Given an edge cover, we say a vertex, v is saturated w.r.t to the cover if the cover contains

at least b(v) edges incident on v, otherwise we call v unsaturated. The effective weight of an

edge is defined as the weight of the edge divided by the number of its unsaturated endpoints.

The Greedy algorithm for minimum weighted edge cover works as follows. Initially, no

vertices are saturated, and the effective weight of every edge is half of its edge weight. At

each iteration the algorithm chooses an edge of minimum effective weight and adds it to the

cover. It then decrements the b(.) values of the endpoints of this edge by one and updates

the effective weights of its neighboring edges. For the effective weight update, there are three

possibilities for each edge: i) none of its endpoints is saturated, and there is no change in its

effective weight, ii) one of the endpoints is saturated, and its effective weight doubles or iii)

32

both endpoints are saturated, its effective weight becomes infinite, and the edge is marked as

deleted. The algorithm iterates until all vertices are saturated. The algorithm is described

in Algorithm 1 .

Algorithm 1 Greedy-b-Edge Cover (G = (V, E, w, b))
1: C = ∅
2: Compute effective weight of all edges e ∈ E
3: while there exists an unsaturated vertex do
4: Add an edge of minimum effective weight e = (u, v) to C
5: Delete e
6: Decrement b(u) and b(v) by one
7: for x ∈ {u, v} do
8: if b(x) = 0 then update effective weights of edges incident on x
9: Delete any edge (x, y) with b(y) = 0

10: end if
11: end for
12: end while
13: return C

Next, we prove the approximation ratio of the greedy b-Edge Cover algorithm shown

in Algorithm 1 . Note that the b-Edge Coveris a special case of the set multicover problem.

The algorithm 1 necessarily a greedy multiset cover algorithm specialized for b-Edge Cover.

From [61 , Thm. 3.1], it is known the greedy multiset cover is H(a)-approximate, where a is

the maximum size of a subset. In the b-Edge Cover a = 2, resulting in 3/2-approximation.

Nevertheless, we will provide a direct proof of the 3/2-approximation next and will show a

different proof using the primal-dual technique in Chapter 3 .

Lemma 2.1.1. The Greedy-b-Edge Cover is 3/2-approximate.

Proof. The total weight of the b-Edge Cover C is denoted by w(C). When the greedy

algorithm chooses an edge e, let us assume it charges the price per vertex that is newly

covered by e to satisfy the b(.) covering constraints of the vertices. This charge is the current

effective weight of e. Since a vertex v is charged exactly b(v) times, the sum of the prices of

all the vertices is the weight of the greedy edge cover. Formally, let price(u, i) be the price of

u when it is charged for the ith time during the greedy algorithm. Then the total weight of

33

the greedy b-Edge Cover is w(C) = ∑
v∈V

b(v)∑
i=1

price(v, i). Also assume that the price values

for each vertex (stored in a list price(.)) are sorted in descending order.

Now we scan the edges in an optimal edge cover C∗.During the scanning process we also

maintain an array of counters (initialized to zero) of size |V | to update the saturation of the

vertices. For an edge e∗ = {x, y} in an optimal cover C∗, w.l.o.g assume that the greedy

algorithm saturates x and then y. When x is saturated by the greedy algorithm, both x

and y were unsaturated. So, the greedy algorithm pays at most w(e∗)/2 for covering one of

the b(x) constraints. If the greedy algorithm were to choose e∗, one of the price values of

x would be w(e∗)/2. So, there must be a unique price(x, k), where k ∈ [b(x)] that satisfies

price(x, k) ≤ w(e∗)/2. To find that, we assign the first price value of the price(x) list (say

it is k) that is smaller than or equal to w(e∗)/2, and mark this price(x, k) as unavailable.

After we assign the price values of x, we increase the counter for x. Once the counter reaches

b(v) for some v ∈ V , we make all the price values available for that vertex. At this point

for any future assignment of an optimal edge e, we just find a price(x, k) in the price list

that is smaller than or equal to w(e)/2. Note that at this case we do not require uniqueness.

For y we can repeat the same argument as given above, but now for w(e∗). So the total

charge of the vertices of e∗ paid during the greedy algorithm through the price values is at

most 3
2w(e∗). The above charging mechanism ensures that each vertex in the optimal edge

cover is charged at least b(v) times, of which the first b(v) times are unique. Summing over

all e∗ ∈ C∗, the total amount charged by the greedy algorithm to the vertices is at most∑
e∗∈C∗

3
2w(e∗). Now,

3
2

∑
e∗∈C∗

w(e∗) = 3
2w(C∗) ≥

∑
v∈V

b(v)∑
i=1

price(v, i) = w(C).

That concludes the proof. �

2.1.1 The Lazy Greedy Algorithm.

The effective weight of an edge can only increase during the Greedy algorithm, and we

exploit this observation to design a faster variant. The idea is to delay updating effective

34

weights of most edges, which is the most expensive step in the algorithm until it is needed.

If the edges are maintained in non-increasing order of weights in a heap, then we update

the effective weight of only the top edge; if its effective weight is no larger than the effective

weight of the next edge in the heap, then we could add the top edge to the cover as well. A

similar property of greedy algorithms has been exploited in submodular optimization, where

this algorithm is known as the Lazy Greedy algorithm [56].

The pseudocode of the Lazy Greedy algorithm is presented in Algorithm 2 . The

Lazy Greedy algorithm maintains a minimum priority queue of the edges prioritized by

their effective weights. The algorithm works as follows. Initially, all the vertices are unsat-

urated. We create a priority queue of the edges ordered by their effective weights, PrQ. An

edge data structure in the priority queue has three fields: the endpoints of the edge, u and

v, and its effective weight w. The priority queue has four operations. The makeHeap(Edges)

operation creates a priority Queue in time linear in the number of edges. The deQueue()

operation deletes and returns an edge with the minimum effective weight in time logarith-

mic in the size of queue. The enQueue(Edge e) operation inserts an edge e into the priority

queue according to its effective weight. The front() function returns the current top element

in constant time without popping the element itself.

At each iteration, the algorithm dequeues the top element, top, from the queue, and up-

dates its effective weight to top.w. Let the new top element in PrQ be newTop, with effective

weight (not necessarily updated) newTop.w. If top.w is less than or equal to newTop.w, we

can add top to the edge cover and increment the covered edge counter for its endpoints.

Otherwise, if top.w is not infinite, we enQueue(top) to the priority queue. Finally, if top.w

is infinite, we delete the edge. We continue iterating until all the vertices are covered.

Next we compute the approximation ratio of the algorithm.

Lemma 2.1.2. The approximation ratio of the Lazy Greedy algorithm is 3/2, and the

runtime is O(m log m).

Proof. The invariant in the Greedy algorithm is that we select an edge that has mini-

mum effective weight over all edges at every iteration. Now consider an edge x chosen by

the Lazy Greedy algorithm in some iteration. According to the algorithm, the updated

35

Algorithm 2 Lazy Greedy(G(V, E, w))
1: C = ∅; . the edge cover
2: c = Array of size |V | initialized to 0; . indicates the saturation level of the vertex
3: PrQ = makeHeap(E) . Create a min heap from E
4: while there exists an unsaturated vertex do
5: top = PrQ.deQueue()
6: Update effective weight of top edge,
7: assign to top.w
8: if top.w <∞ then
9: newTop = PrQ.front()

10: if top.w ≤ newTop.w then
11: C = C ∪ top
12: Increment c(u) and c(v) by 1
13: else
14: PrQ.enQueue(top)
15: end if
16: end if
17: end while
18: return C

effective weight of x, denoted by x.w, is less than or equal to the effective weight of the

current top element of the priority queue. Since the effective weight of an edge can only

increase, then x has the minimum effective weight over all edges in the queue. So the invari-

ant in the Greedy algorithm is satisfied in the Lazy Greedy algorithm, resulting in the

3/2-approximation ratio.

The runtime for Lazy Greedy is O(m log m), because over the course of the algorithm,

each edge will incur at most two deQueue() operations and one enQueue() operation, and

each such operation costs O(log m). �

The efficiency of the Lazy Greedy algorithm comes from the fact that we do not need

to update effective weights of the edges adjacent to the selected edge in each iteration. But

the price we pay is the logarithmic-cost enQueue() and deQueue() operations.

2.2 b-Nearest Neighbor algorithm

Now we turn to greedy algorithms that works on local neighborhood. The simplest of

these algorithms is a nearest neighbor algorithm described next. The b(v)-nearest neighbor

36

of a vertex v in a graph is the least weighted b(v) edges of adjacent to it. A simple approach

to obtain an edge cover is the following: For each vertex v, insert the b(v)-nearest neighbor

edges into the cover. (We also call these b(v) lightest edge incident on v.) This is the

b-Nearest Neighbor algorithm (bNN) described in Algorithm 3 .

Algorithm 3 b-Nearest Neighbor(G = (V, E, w, b))
1: C = ∅
2: for each v ∈ V do
3: Ev = b(v) lightest edges incident on v
4: C = C ∪ Ev

5: end for
6: return C

Lemma 2.2.1. The approximation ratio of the b-Nearest Neighbor algorithm is 2.

Proof. Let the optimal edge cover be C∗ and the set of edges incident on v in C∗ be E∗
v . Let

C and Ev similarly defined for b-Nearest Neighbor. Since a vertex, v needs to be covered

by b(v) incident edges, the best case for it to be covered by the least weight b(v) edges. So, if

we sum the weights of the incident edges of v chosen by the optimal algorithm it will always

be less or equal than the sum of weights of the b(v) ligtest edges, i.e., w(E∗
v) ≥ w(Eu). An

edge can cover at most two endpoints, so an optimal edge e∗(u, v) ∈ C∗ can be present in

one of E∗
u and E∗

v or in both of them. So, w(C∗) ≥ 1
2

∑
v∈V w(E∗

v) ≥ 1
2w(Eu) ≥ 1

2w(C). �

Lemma 2.2.2. The runtime of b-Nearest Neighbor algorithm is O(m)

Proof. Given an adjacency list representation of a vertex v, we can use a worst-case linear

time selection algorithm [62 , Ch. 9] to find the b(v)-th lowest weight edge, say ev
b . To get the

b(v) cheapest edges, we scan through the adjacency list to find the edges that are strictly

smaller than w(ev
b). If the number of such edges is less than b(v)− 1, then we find necessary

edges with weight w(ev
b). This takes linear time w.r.t to the size of the adjacency list of a

vertex. Summing over all the vertices, this step takes O(m) time. �

37

2.3 LSE and S-LSE

An edge is called locally subdominant at some time in the algorithm if its effective weight

at this point is the minimum effective weight among all of its neighboring edges. An algorithm

that chooses edges that are locally subdominant to add to the edge cover is called the LSE

algorithm. Khan and Pothen [63] showed that such an algorithm is 3/2-approximate. Since

effective weight is dynamic through out the runtime of the algorithm, we ask what would be

the quality guarantee, if we work on the original weight instead of the effective weight. The

S-LSE algorithm [64] iteratively computes a set of locally sub-dominant edges (w.r.t the

original weight) to add to the edge cover. Ties are broken by prioritizing an edge with lower

numbered endpoints. In each iteration locally sub-dominant edges are uniquely defined, and

are independent of each other, i.e., they do not share an endpoint. The algorithm iteratively

finds a set of locally sub-dominant edges, adds them to the edge cover and updates b(v)

values. These edges are marked as deleted from the graph, and new locally dominant edges

are identified. If both endpoints of an edge have their b(v) values satisfied, then it is marked

as deleted from the graph. The algorithm is described in Algorithm 4 .

At each iteration, we calculate the set of locally sub-dominant edges S as follows. Each

vertex u sets a pointer to the edge of least weight incident on it. If the end-points of an

edge point to each other, then the edge is locally sub-dominant. We pick each such edge,

add it to the cover, remove it from further consideration, and decrement the b(v) values of

the end points. The time complexity of the (serial) algorithm is O(m log ∆), where ∆ is the

maximum degree of a vertex.

During the algorithm, an edge (u, v) covers at least one endpoint. It covers both if the

both u and v were under saturated when (u, v) was chosen, otherwise either u or v was under

saturated.

Lemma 2.3.1. The covering edges of a vertex u in the solution are exactly the least weighted

b(u) edges.

Proof. Let us assume that ties in edge weights are broken consistently. Let c(u) denote the

current saturation of u, which is initialized to zero. Consider the cases when an edge (u, v)

was added to the cover. There are two cases. In the first case, (u, v) was added because

38

Algorithm 4 S-LSE(G(V, E, w), b)
1: C = ∅
2: while b(.) constraints are not satisfied do
3: Compute locally sub-dominant edges S of G
4: for each (u, v) ∈ S do
5: C = C ∪ (u, v)
6: E = E \ (u, v)
7: for x ∈ {u, v} do
8: if b(x) > 0 then
9: b(x) = b(x)− 1

10: end if
11: end for
12: end for
13: end while
14: return C

both u and v are under saturated; and in the second one of the endpoints (say u) is under

saturated. In the first case, (u, v) must be an edge that is one of the b(u) and b(v) least

weighted edges incident on u and v. In fact it is the c(u) + 1-th least weighted edge adjacent

to u and c(v) + 1-th least weighted edge adjacent to v, otherwise it cannot be a locally

subdominant edge. We can repeat the argument when (u, v) covers only one endpoint, say

u, and show that it must be the c(u)+1-th least weight edge adjacent to u. This immediately

provides us a decomposition of the cover C into a set of b(.) edges per vertex. Those edges

must be the b(.) least weighted edges incident to the vertex. �

Lemma 2.3.2. S-LSE is 2-approximate.

Proof. Using the Lemma 2.3.1 , we argue that the solution of the S-LSE is essentially the

set of b nearest neighbors. Using Lemma 2.2.1 the approximation ratio is immediate. �

2.4 Improving b-Edge Cover empirically

All of the algorithms that we presented in this chapter may not produce minimal edge

cover i.e., they may have redundant edges in the solution. To see this consider a path graph

of 4 vertices with equal weights on the edges, with b(.) values set to 1. If the algorithms pick

the middle edge first, they are forced to choose the 2 other edges making the middle edge

39

redundant. So, we can improve the edge covers computed by the algorithms by removing

the redundant edges. In Chapter 4 , we will describe an algorithm that produces minimal

covers.

We can also preprocess the original graph by spasification without sacrificing the quality

of the greedy algorithm. The preprocessing works by removing edges with certain weights

but it does not guarantee any improvement on the theoretical time complexity. Let ev
b be a

b(v)th lowest weight edge incident on v. We have the following result.

Lemma 2.4.1. Any edge e(u, v) ∈ E with weight w(e) > 2(w(eu
b)) and w(e) > 2(w(ev

b))

cannot be in the solution of the greedy algorithm.

Proof. For such edge e, the effective weight is at least w(e)/2 which is greater than both

(w(eu
b)) and (w(ev

b)). If any of the endpoints of e is unsaturated, it immediately follows that

e always has a neighboring available edge whose effective weight is strictly greater than e’s

effective weight. Hence, e will not be in the solution of the greedy edge cover. �

It is easy to verify that the Lemma 2.4.1 also applies to the Lazy Greedy the LSE

algorithm, and the primal-dual algorithm presented in Chap 3.2 . In fact the Lemma 2.4.1

applies to an optimal algorithm. Since if e were to be in an optimal edge cover, we could

remove e and add at most two of the available b(.) nearest neighbors of the endpoints resulting

in a better solution. This provides us the following general result concerning an optimal

algorithm.

Lemma 2.4.2. Any edge e(u, v) ∈ E with weight w(e) such that w(e) > w(eu
b) + w(ev

b) can

not be in an optimal edge cover.

40

3. LP BASED ALGORITHMS FOR b-Edge Cover

We describe a mathematical programming formulation of the b-Edge Cover problem to

develop primal-dual framework for developing approximation algorithms for the problem.

Using the primal-dual framework, we will describe a 3/2-approximation algorithm, analyze

the b-Nearest Neighbor algorithm and show a different proof of 2-approximation, and

describe a ∆-approximation algorithm. These results have been published in [65].

3.1 Linear Programming Framework

We begin by describing the primal and dual linear programming (LP) formulations of

the minimum weighted b-Edge Cover problem. We consider a graph G = (V, E, w) and

b : V → N, where w(.) denotes the non-negative weights on the edges, and we need to choose

at least b(v) edges incident on each vertex v. We will say that a vertex v is uncovered or

unsaturated if a current b-Edge Cover has fewer than b(v) edges in it.

Define a vector x ∈ {0, 1}m with the intent that x(e) = 1 if the edge is in the cover, and

0 otherwise. Denote the set of edges incident on a vertex v by δ(v) (i.e., the set of edges

one of whose endpoints is v). The integer linear program (ILP) formulation of the minimum

weighted edge cover problem is as follows.

min
∑
e∈E

w(e)x(e), subject to
∑

e∈δ(v)
x(e) ≥ b(v),∀v ∈ V,

x(e) ∈ {0, 1},∀e ∈ E. (3.1)

The linear programming relaxation of the ILP is obtained by relaxing the binary con-

straint x(e) ∈ {0, 1} to 0 ≤ x(e) ≤ 1. The relaxation is as follows.

min
∑
e∈E

w(e)x(e), subject to
∑

e∈δ(v)
x(e) ≥ b(v),∀v ∈ V,

xe ≥ 0, −x(e) ≥ −1,∀e ∈ E. (3.2)

41

The final constraint, equivalent to x(e) ≤ 1, indicates that we may use each edge e at

most once in the cover. Any x satisfying the constraints of this linear program is a feasible

solution.

To construct the dual program of the relaxed linear program we define a dual variable

for each of the constraints. We define two sets of variables, namely y ∈ Rn
≥0 and z ∈ Rm

≥0.

The dual is as follows.

max
∑
v∈V

b(v)y(v)−
∑
e∈E

z(e),

subject to y(i) + y(j)− z(e) ≤ w(e),∀e = (i, j) ∈ E,

y(v), z(e) ≥ 0, ∀v ∈ V, ∀e ∈ E. (3.3)

Again, any y and z satisfying the constraints of the dual program is dual feasible.

For 1-Edge Cover, the upper bound constraints on the primal variables for the LP

relaxation shown in Eqn. 3.2 , i.e., x(e) ≤ 1 ∀e ∈ E, are not necessary. If in the solution

there is any x(e) > 1, we can change it to x(e) = 1, producing a feasible solution with a lower

objective value. For the b-Edge Cover formulation, without the upper bound constraints

we cannot guarantee that the relaxation produces a solution in [0, 1]. Now consider the dual

problem, Eqn. 3.3 . The dual variable corresponding to each upper bound constraint on x(e)

in the primal is z(e). These variables serve the same purpose as its counterpart constraints

in the primal, by helping the program to choose distinct edges in the cover by providing

enough slack to make some of the dual constraints feasible. We will discuss the role of z(e)

variables in our analysis of the algorithm.

Let C∗ be the objective value of an optimum b-Edge Cover solution, CLP the objective

value of an optimum solution of the relaxed LP shown in Eqn. 3.2 , and Cdual the objective

value of a feasible solution of the dual problem shown in Eqn. 3.3 . Then from linear

programming and weak duality theory we have

Cdual ≤ CLP ≤ C∗. (3.4)

42

3.1.1 Dual-Fitting Algorithms

Now let us assume x is a feasible integral solution to the primal linear program, and let

ya, za be the approximate dual solutions to the corresponding dual program. We say these

are approximate dual variables as they may not necessarily satisfy the dual constraints.

Suppose we have a hypothetical algorithm that satisfies the following two properties:.

Property 3.1.1 (Paid in full). The algorithm finds these primal and approximate dual

variables that maintain the equality of primal and approximate dual objective values, i.e.,

∑
e∈E

w(e)x(e) =
∑
v∈V

b(v)ya(v)−
∑
e∈E

za(e). (3.5)

Property 3.1.2 (Shrinking factor). Let α > 0 be a constant such that y = ya/α and

z = za/α become dual feasible variables.

We can prove that this hypothetical algorithm guarantees an α-approximation. Replacing

ya and za in Eqn. 3.5 , we have

∑
e∈E

w(e)x(e) = α · (
∑
v∈V

b(v)y(e)−
∑
e∈E

z(e)). (3.6)

Since y and z are dual feasible, from Eqns. 3.4 and 3.6 we have,

∑
e∈E

w(e)x(e) = α · (
∑
v∈V

b(v)y(v)−
∑
e∈E

z(e)) ≤ α · CLP ≤ α · C∗. (3.7)

This proves the required α-approximation guarantee. We will now show how to instanti-

ate this hypothetical algorithm to obtain 3/2- and a 2-approximation algorithms for the

b-Edge Cover.

3.2 A 3/2-Approximation Algorithm

Rajagopalan and Vaziraini [66] have employed dual fitting to design an algorithm for

set multicover. The primal dual algorithm that we present for 3/2-approximation of b-

Edge Cover is motivated by this algorithm. It also generalizes a primal dual Edge Cover

43

algorithm discussed in [67]. Our aim is to come up with suitable approximate dual variables

such that the two properties mentioned earlier are satisfied. We first define a few concepts

and variables required to understand the algorithm and its analysis.

• An unsaturated vertex v is covered by one of its incident edges e if during the execution

of the algorithm e is selected to cover that vertex. This e is called a covering edge of

the vertex v. Note that after covering a vertex v by e it may still be unsaturated. Note

also that a b-Edge Cover might include edges incident on v that are not covering

edges of v, since an edge (u, v) may have been chosen as a covering edge of u but not

v. We denote by Sv the set of covering edges of v.

• In general during the run of the algorithm an edge e is available if it can cover at least

one of its endpoints. We define a set Qe to denote the endpoints that e covers, and

hence 0 ≤ |Qe| ≤ 2. The set C includes the edges in the cover.

• The effective weight of an edge, effectiveweight(e), is defined as the ratio of the weight

of the edge and the number of its unsaturated endpoints. The effective weight of an

edge can be thought of as the price the algorithm needs to pay to cover its unsaturated

endpoints. Hence we define price(v, e) as the effective weight of e where v is an unsat-

urated endpoint of e. When an edge e is included in the cover, we fix the price(v, e)

value(s) of the endpoint(s) it covers.

• Let r(v) be a variable defined on each vertex v. We call it the dynamic requirement of

saturation since this variable will let us know whether the vertex v is already saturated

or not. The r(v) values are initialized to the b(v) values.

The output of the algorithm is a set of edges C. We can derive an integral primal solution

from C by setting xe = 1 ∀e ∈ C, and xe = 0 ∀e ∈ E \C. We now introduce max_price(v), a

non-negative variable defined on each vertex v, which is equivalent to the approximate dual

variable ya(v). During the execution of the algorithm we set

max_cprice(v) = r(v)-th lowest effective weight among the edges incident on v.

44

We call this variable the current maximum price of the vertex. max_price(v) is then defined

as the maximum of all max_cprice(v) during the execution of the algorithm. We create

another non-negative variable excess(e) equivalent to za(e) for each edge e. Unlike the

max_price, the excess variable is not necessary during the run of our algorithm, but its

importance lies in the proof analysis. Hence we will defer its definition till then.

The pseudocode of the algorithm is shown in Algorithm 5 . The algorithm iterates un-

til all the vertices become saturated. In each iteration, there are two phases, the Price

Assignment phase, and the Augment Cover phase. The Price Assignment phase

computes the max_cprice(v) values of each unsaturated vertex. These values are used by

the Augment Cover phase to add as many edges to the cover as possible.

Algorithm 5 Primal Dual(G = (V, E, w), b)
1: C = ∅
2: while there exists an unsaturated vertex do
3: Call Price Assignment(G(V, E, w), b,max_cprice)
4: for each v ∈ V , max_price(v) = max{max_cprice(v), max_price(v)} end for
5: Call Augment Cover (G(V, E, w), b, max_cprice, C, r)
6: end while
7: return C

We provide the pseudocode for the Price Assignment phase in Algorithm 6 .

Algorithm 6 Price Assignment(G = (V, E, w), b, max_cprice)
1: for each v ∈ V do
2: if v is unsaturated then
3: max_cprice(v) = {effectiveweight(e) : effectiveweight(e) is the
4: r(v)-th lowest effective weight of an edge incident on v}
5: end if
6: end for

The second phase of the algorithm, the Augment Cover phase, adds edges to the

edge cover using the max_cprice information set by the first phase. The pseudo-code

for the Augment Cover phase is presented in Algorithm 7 . This phase scans the edges

to find eligible ones to add in the cover. An edge e is selected as follows. If the edge

e = (i, j) covers both of its endpoints and if its effective weight is less than or equal to the

45

max_cprice(.) values of both of its endpoints, then it would be included in the cover. Upon

finding such an edge e the algorithm fixes the values of price(i, e) and price(j, e) to the value

of effectiveweight(e). Note that the equation price(i, e) + price(j, e) = w(e) is then satisfied

by this edge. On the other hand if the edge e covers only one endpoint u, to be included in

the cover its effective weight must be less than or equal to the max_cprice(u) value. In this

case we fix price(u, e) to be w(e) so that the equation price(u, e) = w(e) holds. Whenever we

add an edge to the cover, we mark it as deleted and update the r(v) values of its endpoints.

(We update both r(u) and r(v) when an edge (u, v) is deleted for identifying redundant edges

in a post-processing.)

Algorithm 7 Augment Cover(G = (V, E, w, b), max_cprice, price,C, r)
1: for each e = (u, v) ∈ E do
2: if u and v are both covered then
3: Mark (u, v) as deleted
4: Continue
5: end if
6: if u and v are both uncovered and effectiveweight(e) ≤

{max_cprice(u), max_price(v)} then
7: Set price(u, e) and price(v, e) to effectiveweight(e)
8: C = C ∪ (u, v)
9: Decrease r(u) and r(v) by 1

10: Mark (u, v) as deleted
11: else if only u is uncovered and effectiveweight(e) ≤ max_cprice(u) then
12: Set price(u, e) to effectiveweight(e)
13: C = C ∪ (u, v)
14: Decrease r(u) and r(v) by 1
15: Mark (u, v) as deleted
16: else if only v is uncovered and effectiveweight(e) ≤ max_cprice(v) then
17: Set price(v, e) to effectiveweight(e)
18: C = C ∪ (u, v)
19: Decrease r(u) and r(v) by 1
20: Mark (u, v) as deleted
21: end if
22: end for

Once the algorithm terminates, we have settled the price(v, e) values for each vertex and

covering edge pair. We also have updated max_price(v) values for each vertex. For each

vertex v there are two kinds of edges incident on v. One kind is the set of covering edges,

46

which were the edges used to cover vertex v. The second kind would be other edges incident

on v that were necessary to cover the other endpoint w of an edge (v, w). Let Sv denote the

set of covering edges incident on each vertex v, and note that |Sv| = b(v). Observe also that

when the algorithm terminates, the value of max_price(v) = max{price(v, e) : e ∈ Sv}.

We have not yet defined how we get the other set of approximate dual variables, i.e.,

excess. These variables are not necessary for the execution of algorithm, but needed for the

proof analysis. We motivate this variable by means of a small example.

a

b c d

e1(10) e2(20)

e3(30) e4(30)

Figure 3.1. A small graph whose b-Edge Cover is to be computed.

Example 1. Consider the graph with four vertices a,b,c and d in Fig. 3.1 , with the edge

labels and weights also shown. The b(v) value is 2 for each vertex v except d, for which

it is 1. The optimal edge cover is the graph itself. We run the primal dual algorithm on

this problem. First in the Price Assignment phase, we assign the price values of each

vertex and edge pair. Here price(a, e1) = price(b, e1) = 5, price(a, e2) = price(c, e2) = 10,

price(b, e3) = price(c, e3) = 15, and price(c, e4) = price(d, e4) = 15. The max_cprice(v)

values are as follows: max_cprice(a) = 15, max_cprice(b) = 10, max_cprice(c) = 15 and

max_cprice(d) = 15. In the next phase, suppose we scan through edges in the order e1, e2, e3

and e4. We select e1 since the effective weight of this edge is less than the max_cprice(.)

values for both endpoints. We decrease the r(a) and r(b) values by 1 and mark e1 as deleted.

Similarly we select e2 and e3. Note that now a, b and c are saturated. We cannot add e4 in

this phase because the effective weight of e4, which is now 30, is greater than max_cprice(d)

which is 15. Next we start the second iteration. In the Price Assignment phase, we set

max_cprice(d) as 30 and in the Augment Cover phase we select e4, since the effective

weight of e4 now equals max_cprice(d).

47

At the termination of the algorithm, the max_price values for our example are as follows.

max_price(a) = 10, max_price(b) = 15, max_price(c) = 15 and max_price(d) = 30. Let us

consider the dual constraints defined in Eqn. 3.3 . For e1 the left side of the constraint using

the approximate duals is, max_price(a) + max_price(b) − excess(e). But max_price(a) +

max_price(b) = 25, which is much greater than weight of e1. So we have a large excess

on the summation that we need to balance. This is the purpose of the approximate dual,

excess. If an edge e was not included in a cover we set excess(e) = 0. If an edge e = (i, j)

covered both of its endpoints when e was added to the cover, we set

excess(e) = (max_price(i)− price(i, e)) + (max_price(j)− price(j, e)).

Otherwise if e covered only one endpoint i when it was added to the cover, then

excess(e) = max_price(i)− price(i, e).

We can restate this as

excess(e) =
∑

q∈Qe

(max_price(q)− price(q, e)).

In the example, the excess values of the edges are as follows: excess(e1) = (10−5)+(15−5) =

15; excess(e2) = (10 − 10) + (15 − 10) = 5; excess(e3) = (15 − 15) + (15 − 15) = 0; and

excess(e4) = 30−30 = 0. Observe that all of the dual constraints now become feasible except

for e4, where the left side of the constraint is max_price(c) + max_price(d) − excess(e) =

15 + 30 − 0 = 45, which is greater than the weight of the edge. We will show that we can

scale the approximate duals in such a way that the scaled dual variables always satisfy the

constraints.

Lemma 3.2.1. The approximation ratio of the primal dual algorithm is 3/2.

Proof. First note that by construction max_price(v) is non-negative; since it is the maximum

of the price values of incident edges of a vertex, excess(e) is also non-negative. We need to

show that assuming α = 3/2, the paid in full and shrinking factor properties defined in

48

Section 3.1.1 are maintained. Using the approximate duals, max_price and excess, we

will first show that the objective value of dual LP defined in Eqn. 3.3 equals the weight of the

cover that we get from the algorithm. Let us first consider the right side of the (approximate)

dual objective value i.e., ∑
e∈E excess(e). Note that ∑

e∈E excess(e) = ∑
e∈C excess(e), since

excess(e) = 0 if e is not in the cover. Then we have,

∑
e∈C

excess(e)

=
∑
e∈C

∑
q∈Qe

(max_price(q)− price(q, e))

=
∑
e∈C

∑
q∈Qe

max_price(q)−
∑
e∈C

∑
q∈Qe

price(q, e)

=
∑
v∈V

b(v) ·max_price(v)−
∑
e∈C

w(e).

(3.8)

The second term in the last line of Eqn. 3.8 follows because ∑
q∈Qe price(q, e) is equal to

w(e), an invariant we maintain during the execution of Augment Cover phase. For the

first term note that a particular vertex v ∈ V will appear exactly b(v) times in the sum.

Replacing ∑
e∈E excess(e) in the objective value of the dual LP from Eqn. 3.3 ,

∑
v∈V

b(v) ·max_price(v)−
∑
e∈E

excess(e)

=
∑
v∈V

b(v) ·max_price(v)−
∑
v∈V

b(v) ·max_price(v) +
∑
e∈C

w(e)

=
∑
e∈C

w(e).

(3.9)

But we cannot substitute max_price for y and excess for z because these are not dual

feasible. Define α ≡ 3/2. Set y = max_price/α and z = excess/α. We will show that the

scaled variables y and z now become feasible. There are two scenarios to consider.

49

For the first scenario assume that an edge e belongs to the cover. We have two cases:

Case 1. e = (i, j) covers both of its endpoints. Then replacing y(i), y(j) and z(e), the left

side of the first constraint in Equation 3.3 ,

1
α
· (max_price(i) + max_price(j)− (max_price(i)− price(i, e))

− (max_price(j)− price(j, e)))

= 1
α

(price(i, e) + price(j, e)) ≤ 1
α

w(e) ≤ w(e).

(3.10)

The last line follows from the fact that during the algorithm we maintain

price(i, e) + price(j, e) = w(e)

. Case 2. The edge e covers only one endpoint, say i. Using the definitions of y(i), y(j) and

z(e) with e = (i, j), the left side of the constraint in Equation 3.3 becomes

1
α
· (max_price(i) + max_price(j)− (max_price(i)− price(i, e)))

= 1
α

(max_price(j) + price(i, e)).
(3.11)

From the algorithm, price(i, e) = w(e). When vertex j was saturated, vertex i was still

unsaturated. We have not picked e as a covering edge for j. So all of the price values of the

covering edge incident on j must be ≤ w(e)/2. Since max_price of a vertex is the maximum

of the price values of the covering edges incident on that vertex, max_price(j) ≤ w(e)/2. So

we have
1
α
· (max_price(j) + price(i, e)) ≤ 1

α
· 32w(e) ≤ w(e).

We now consider the second scenario when e is not part of the b-Edge Cover and

excess(e) = 0. So the left side of the constraint becomes

1
α
· (max_price(i) + max_price(j)).

50

Without loss of generality assume i has become saturated first and then j. This immediately

establishes that max_price(i) ≤ w(e)/2 and max_price(j) ≤ w(e). Now we have

1
α
· (max_price(i) + max_price(j)) ≤ w(e).

We combine the analysis as follows.

∑
e∈C

w(e)

=
∑
v∈V

b(v) ·max_price(v)−
∑
e∈E

excess(e) [from Eqn.3.9]

= α · (
∑
v∈V

b(v)y(v)−
∑
e∈E

z(e)) [replacing max_price and excess]

= α · Cdual ≤ α · CLP ≤ α · C∗. [from Eqn. 3.6]

This gives the 3/2-approximation ratio. �

a

b c

d
ε

x2x

2x

Figure 3.2. A tight example for primal-dual algorithm.

The approximation ratio is tight, and a tight example is the graph shown in Figure 3.2 .

Suppose b = 1 for each vertex. In the first iteration the primal-dual algorithm will add

(a, d) to the cover, and it can not add any other edge. In the second iteration since all the

remaining edges have the same effective weight, it may add any one of the edges (a, c), (a.b)

or (b, c). Suppose it chooses the edge (a, c). Then to cover the vertex b, it has to choose

either (a, b) or (b, c), resulting in a cover with weight 3x + ε, whereas the optimal weight is

2x + ε. So as ε→ 0, we get the approximation ratio 3/2.

Next we derive the time complexity of the algorithm. We can do a couple of optimizations

on the general algorithm presented in Algorithm 5 , which are as follows.

51

• During the Augment Cover phase when an edge is selected we mark all the neigh-

boring vertices of its covered endpoints as potential vertices. During the Price As-

signment phase need update the max_price values of only the potential vertices.

• During the Price Assignment phase, when the max_price value changes, we mark

all of its incident edges as potential covering edges. In Augment Cover phase we

can scan only these edges.

Lemma 3.2.2. The time complexity of Algorithm 5 is O(β ∆m).

Proof. Initially all the vertices and edges are marked as potential (see the optimization of

the algorithm just mentioned). During the execution of the algorithm a vertex v can be

marked at most deg (v) times as potential. Each time it is marked it will have to find an

edge incident on it with the r(v)-th minimum effective weight. One can find such an entry

in O(β deg (v)) time. Summing over all vertices we obtain O(β ∆m).

Similarly, during the Price Assignment phase, an edge e = (i, j) can be marked at

most deg (i) + deg (j) = O(∆) times. Summing over m edges we obtain O(∆m). Hence the

total complexity is O(β ∆m). �

3.3 A 2-Approximation Algorithm

We have presented in Algorithm 3 the b-Nearest Neighbor algorithm for finding a

b-Edge Cover. It is similar to the popular and well known K-Nearest Neighbor graph

construction algorithm, used in many domains including machine learning and data mining

to represent data by a sparse graph or to sparsify a graph. The difference between these

problems is how the values of k and b are defined. In the former case k is constant for

all vertices while the latter case is more general, with the option to set user defined values

of b(v) for each vertex in the graph. This algorithm, like many other algorithms for the

b-Edge Cover problem, could have redundant edges in the cover, i.e., edges that could be

removed while the residual edges form a b-Edge Cover, thus resulting in an edge cover of

lower weight. However, even without removing such edges, we can show that this algorithm

gives us an approximate solution to the b-Edge Cover problem, where the weight of the

52

cover is at most twice the optimal weight. In this section we will prove this result using the

dual fitting framework developed in Sec. 3.1.1 .

Lemma 3.3.1. The approximation ratio of the b-Nearest Neighbor algorithm is 2.

Proof. Let x be the primal integral solution and C a b-Edge Cover computed by the

algorithm; hence x(e) = 1, if e ∈ C and otherwise x(e) = 0. Let Sv denote the set of the b(v)

lightest edges incident on v. We will define a price value for each covering vertex and edge

pair, and consider an edge e = (i, j) ∈ C. If the weight of the edge e is among the lightest b(i)

edges incident on the vertex i and the lightest b(j) edges incident on j, then we set price(i, e) =

price(j, e) = w(e)/2. In this case we say the edge e covers both of its endpoints. Otherwise

if e is only among the lightest b(i) (b(j)) edges incident on i (j), we assign price(i, e) = w(e)

(price(j, e) = w(e)). In this case the edge e covers only one its endpoints. Next we set the

approximate dual variables. We define for each vertex v, max_price(v) = max
e∈Sv

price(v, e).

For each edge e ∈ C, let Qe denote its covered endpoints. Note that Qe may contain one

or two vertices. We define for each e ∈ C, excess(e) = ∑
q∈Qe(max_price(q) − price(q, e)).

If an edge e is not included in the cover then we set excess(e) = 0. Note that since price

values of a vertex and edge pair are always non-negative, max_price is non-negative. Again

as max_price(v) ≥ price(v, e),∀e ∈ Sv, the excess variable is also non-negative.

We will now show that with α = 2, the two properties mentioned in Sec. 3.1.1 are satisfied

by the approximate dual variables max_price and excess.

The first property is the equality of primal objective and approximate dual objective

functions, and this follows directly from the corresponding proof in the 3/2-approximation

algorithm described in Section 3.2 .

For the second property, we will show that setting y(v) = max_price(v)/α and z(e) =

excess(e)/α for α = 2 make these dual feasible. We consider two scenarios for an edge e ∈ E.

In the first scenario e belongs to the cover. Then replacing y(v) and z(e) on the left side

of the first constraint of Eqn. 3.3 , we obtain

y(i) + y(j)− z(e) = 1
α

(max_price(i) + max_price(j)

−
∑

q∈Qe

(max_price(q)− price(q, e))).
(3.12)

53

We have two cases to consider.

Case 1. The edge e covers both of the endpoints, and hence Qe = {i, j}. Recall that in this

case e is among the lightest b(i) edges incident on i, and the lightest b(j) edges incident on

j. The price values are then assigned as price(i, e) = price(j, e) = w(e)/2. Simplifying, we

obtain

y(i)+y(j)− z(e) = 1
α

((max_price(i) + max_price(j))

− (max_price(i)− price(i, e))− (max_price(j)− price(j, e)))

= 1
α

(price(i, e) + price(j, e))

= 1
α

(w(e)/2 + w(e)/2) ≤ w(e).

(3.13)

Case 2. e covers only one endpoint, say i. In this case we assign price(i, e) = w(e).

y(i) + y(j)− z(e) = 1
α

(max_price(i) + max_price(j)

− (max_price(i)− price(i, e))

= 1
α

(max_price(j) + price(i, e))

≤ 1
α

(w(e) + w(e)) ≤ 1
2(2w(e)) ≤ we.

(3.14)

The last line follows because max_price(j) ≤ w(e), since j is saturated and e is not a covering

edge for j.

We now consider the second scenario when e is not part of the cover. In this case

excess(e) = 0, and the left side of the constraint becomes

1
α
· (max_price(i) + max_price(j)).

Without loss of generality assume i was saturated first and then j. This establishes that

max_price(i) ≤ w(e) and max_price(j) ≤ w(e) since i and j were covered by an edge with

lower weight than that of e. We have

1
α
· (max_price(i) + max_price(j)) ≤ 1

2 · 2w(e) ≤ w(e).

54

We combine these analyses as follows.

∑
e∈C

w(e) =
∑
v∈V

bv ·max_price(v)−
∑
e∈E

excess(e) [from Eqn.3.9]

= α · (
∑
v∈V

b(v)y(v)−
∑
e∈E

z(e)) [replacing max_price and excess]

= α · ECdual ≤ α · ECLP ≤ α · EC∗. [from Eqn. 3.6]

�

As in the 3/2-approximation algorithm we can also show the tightness of the approxima-

tion ratio of the b-Nearest Neighbor algorithm. We generate a graph with n vertices,

where n is odd, as follows. The vertex v0 is connected to all other vertices v1 . . . v(n−1). Each

vertex vi for odd i > 0 is connected with v(i+1). All edges have the same weight x. We let

b = 1 for every vertex. An example for n = 9 is shown in Figure 3.3 .

v0

v1

v3

v5

v7

v2

v4v6

v8 x

x

x

x

x

x
x

x

x

x

x

x

Figure 3.3. A tight example for the b-Nearest Neighbor algorithm

The optimal edge cover for this example would have weight 5x, consisting of the four

edges not incident on v0 and one edge incident on v0. But the b-Nearest Neighbor could

produce an edge cover with weight 8x by choosing all edges incident on v0. For a graph with

n vertices, the optimal weight would be 1
2(n − 1) ∗ x + x but the b-Nearest Neighbor

55

could produce an edge cover with weight (n− 1) ∗x. Thus the approximation ratio is 2(n−1)
n+1 ,

which as n→∞ is 2.

The time complexity of the b-Nearest Neighbor algorithm is O(m) as shown in Ch-

pater 2.2 .

3.4 ∆-Approximation Algorithm

Here we present another algorithm based on linear programming duality for b-Edge Cover,

with an approximation ratio of ∆, which is larger than the ratios 3/2 and 2 for the algorithms

we have considered thus far. We do this for several reasons. First, the worst-case approxi-

mation ratio does not always determine how well an algorithm does practically. Second, the

analysis of this algorithm enables us to present a different technique for designing a primal

dual algorithm. This algorithm is derived from an algorithm for set multicover designed by

[68], which leads to a better approximation ratio for vertex cover.

Recall that due to weak duality and LP relaxation, the objective value of any feasible

solution to the dual problem in Eqn. 3.3 is a lower bound for the optimum b-Edge Cover in

Eqn. 3.1 . But in general a dual feasible solution does not guarantee an approximation ratio.

However, there exists a particular dual feasible solution, a maximal dual feasible solution,

whose objective value provides a bound on the optimum value. A dual feasible solution

(denoted ȳ and z̄) is maximal if it satisfies the following three properties.

1. There does not exist a feasible solution(y, z) with y ≥ ȳ, z ≥ z̄ and

∑
v∈V

b(v)y(v)−
∑
e∈E

z(e) >
∑
v∈V

b(v)ȳ(v)−
∑
e∈E

z̄(e).

2. z̄(e) = 0 whenever ȳ(i) + ȳ(j) < w(e).

3. ∑
v∈V

ȳ(v) ≤
∑
v∈V

b(v)ȳ(v)−
∑
e∈E

z̄(e).

The proposed algorithm is as follows.

1. Find a maximal dual feasible solution (ȳ,z̄).

56

2. Output the Cover C = {e = (i, j)|ȳ(i) + ȳ(j)− z̄(e) = w(e)}.

We will first show that such an algorithm would provide a ∆-approximation.

Lemma 3.4.1. The algorithm is a ∆-approximation algorithm for b-Edge Cover.

Proof. We first establish that C is a feasible cover. For the sake of contradiction, assume

that C is not a feasible cover; hence there exists a vertex v that is not covered by at least

b(v) edges. Let

ε = min
e∈δ(v)

{εe = w(e)− (ȳ(i) + ȳ(j)− z̄(e)) and εe > 0}.

We show that the value of ε is well-defined. According to our assumption at most b(v) − 1

edges incident on v are included in C. Since ȳ and z̄ are dual feasible, there must be at least

one edge e where ȳ(i) + ȳ(j)− z̄(e) < w(e), equivalently w(e)− (ȳ(i) + ȳ(j)− z̄(e)) > 0. We

set ȳ(v) = ȳ(v) + ε, and z̄(e) = z̄(e) + ε, for edges e ∈ δ(v) and e ∈ C. The variables(ȳ, z̄)

are dual feasible. But this contradicts the maximality (property I) of ȳ, z̄, since ȳ increases

the first term of the dual objective value by at least b(v)ε, and z̄ increases the second term

by at most (b(v)− 1)ε, with a net increase of at least ε. This establishes that C is a feasible

cover.

Now since (ȳ, z̄) is a dual feasible solution, the weak duality theorem applies.

∑
v∈V

b(v)ȳ(v)−
∑
e∈E

z̄(e) ≤ CLP ≤ C∗. (3.15)

Using Property III, we obtain

∑
v∈V

ȳ(v) ≤ C∗. (3.16)

57

From the construction of the cover we have

∑
e∈C

w(e) +
∑
e∈C

z̄(e) =
∑

e=(i,j)∈C

ȳ(i) + ȳ(j)

=
∑
v∈V

∑
e∈(δ(v)∩C)

ȳ(v)

≤
∑
v∈V

|δ(v)|ȳ(v)

≤∆
∑
v∈V

ȳ(v) ≤ ∆ · C∗.

(3.17)

In the last line, we have used Eqn. 3.16 . Hence we have established the ∆-approximation

ratio for the proposed algorithm. �

Next our goal is to design an algorithm that produces a maximal feasible dual solution.

One such algorithm is shown on Algorithm 8 .

Algorithm 8 Dual Feasible(G = (V, E, w), b)
1: Initialize yv = 0 and ze = 0, ∀v ∈ V and ∀e ∈ E
2: Assign w′(e) = w(e), ∀e ∈ E
3: while there exists an unsaturated vertex v ∈ V do
4: f = arg min{w′(e) : e ∈ δ(v)− C}
5: y(v) = y(v) + w′(f); C = C ∪ {f}
6: for e ∈ δ(v) do
7: w′(e) = w′(e)− w′(f)
8: if w(e) < 0 then
9: z(e) = z(e)− w′(e)

10: w′(e) = 0
11: end if
12: end for
13: decrease r(v) by 1
14: if r(v) = 0 then
15: Mark v as saturated
16: end if
17: end while

The algorithm first initializes the dual variables (y, z) to zero. For each edge it maintains

a variable, the residual weight w′. This is initialized by the weight of the edge. In each

iteration, it picks an unsaturated vertex, v, and then it finds an adjacent edge f incident

58

to v with minimum residual weight. Upon finding the edge f , it adds f to the cover, adds

w′(f) to y(v), and subtracts w′(f) from the residual weights of all edges incident on v. Note

that the iteration in line 6 of the algorithm goes over all edges incident on v, including f

and other edges that may have been added to the cover in earlier iterations. If the weight

of any residual edge (say e) becomes negative, it subtracts w′(e) from z(e) (thus the value

of z(e) increases), and sets w′(e) to zero. It then decreases the requirement r(v) by 1, and

marks v as saturated if r(v) = 0.

The output of the algorithm is the set C. We will now show that the dual vectors derived

are maximal and satisfy the three properties.

Claim 1. The variables y and z are non-negative.

Proof. The initial edge weights are non-negative, and the algorithm maintains the residual

weight w′ to be non-negative. The variable y is updated by adding w′ to it, and z(e) is

updated by subtracting w′(e) when its value is negative, and hence these variables are non-

negative as well. �

Claim 2. All edges e in the cover C satisfy y(i) + y(j)− z(e) = w(e).

Proof. Let i be a vertex at some iteration of the algorithm and f = (i, j) be an available edge

with minimum residual weight w′(f). We have w′(f) ≥ 0 from the previous Claim, and then

we add w′(f) to y(i). In the for loop over edges, we will now subtract w′(f) from all edges

incident on i, including the edge f . Hence w′(f) is set to zero. Every time the weight of an

edge is decreased by some amount in the algorithm, it is transferred to the y(.)-variable of

one of its endpoints. Hence at this point in the algorithm, y(i) + y(j) − z(e) = w(f), since

z(f) is zero as long as w′(f) is non-negative. In future iterations involving other available

edges incident on i or j, the invariant y(i) + y(j) − z(e) = w(e) is maintained by increasing

the value of z(e). �

Claim 3. The inequality y(i) + y(j)− z(e) ≤ w(e) holds ∀e ∈ E \ C.

Proof. Since w′(e) ≥ 0 for the edges not in the cover, the two endpoints of such edges have

absorbed a weight of at most w(e). Note that in this case z(e) = 0. �

59

So (y, z) is a dual feasible solution, but we need to show that it is also maximal.

Lemma 3.4.2. The dual vector (y, z) of the Dual Feasible algorithm is maximal.

Proof. Property I: Each vertex v is covered by b(v) edges for which the dual constraints

y(v)+y(u)−z((v, u) = w(v, u) are tight (according to Claim 1). Suppose we increase a dual

variable y(v) by a non-negative amount ε. Now at least b(v) constraints (those corresponding

to the covering edges of v) are violated. (We say at least, since if there is an edge incident on

v that is not a covering edge with residual weight less than ε, its constraint is also violated.)

To compensate for the constraint violations, we need to add ε to at least b(v) elements of

z. So the increase in objective function is exactly b(v)ε while the decrease is at least b(v)ε.

Hence the objective function value for (y, z) is not greater than that of (ȳ, z̄).

Property II: According to the construction, the residual weight w′(e) ≥ 0, ∀e ∈ E \ C.

That means for such edges e we have y(i) + y(j) ≤ w(e). Since w′(e) ≥ 0, line 8 of the

algorithm will never be satisfied for e, resulting in z(e) = 0.

Property III: Since z(e) = 0, ∀e ∈ E \ C, it suffices to show that

∑
e∈C

z(e) ≤
∑
v∈V

(b(v)− 1) y(v).

We will prove this using induction on the number of iterations in the algorithm. Let yt

and zt denote the variable y and z after t iterations, and let the number of iterations in the

algorithm be denoted by T . We will show that the inequality above is true in every iteration:

∑
e∈C

z(e)t ≤
∑
v∈V

(b(v)− 1) y(v)t, t = 1, . . . , T.

For t = 1, the left side is zero since the w′(e) values for all the edges are non-negative

after the first iteration, and the right side is ≥ 0, since we must have identified an edge

incident on a vertex v with the minimum weight and added its weight to y(v). Note that

if b(v) equals 1 the right side is zero, and otherwise it is greater than zero. We inductively

assume that the inequality holds for t = 1, . . . , k − 1.

Denote the vertex selected at the k-th iteration by p, and let f be the minimum weight

edge incident on p with weight w′(f). Then the right hand side of the displayed equation

60

increases by (b(p)−1)w′(f). Now this could lead to increase in some z(e)k, where e is incident

on p. When f is included in the cover, there are at most (b(p) − 1) covering edges already

incident on the vertex p. In the current iteration, only the z(.) values of these edges can

increase, and hence the net increase on the left side is at most (b(p) − 1)w′(f). Hence the

inequality is preserved at the end of this iteration. �

We can show a tight example for the ∆-approximation algorithm by considering the

graph in Fig. 3.3 with different weights as follows. The weights of the edges (vi, v(i+1))

where i = 1 . . . 7, are changed to 2ε/∆. Other weights remain the same. The maximum

degree in this graph is n− 1. Assuming b = 1 for every vertex, the optimal cover weight is

∆/2 ∗ (2ε/∆) + x = ε + x, whereas if the Dual Feasible algorithm picks the first vertex to

be v0, the weight of the edge cover could be ∆x. Taking the ratio we have ∆x
ε+x

. As ε → 0,

the ratio approaches ∆.

Lemma 3.4.3. The time complexity of the Dual Feasible algorithm is O(β m).

Proof. A vertex v can be selected at most b(v) times. When it is selected it has to find the

edge with minimum residual weight, which can be found in O(deg(v)) time. Summing over

all vertices we get ∑
v∈V b(v) · deg(v) = O(β m). �

61

4. REDUCTION TO MATCHING BASED ALGORITHMS FOR

b-Edge Cover

Matching is one of the fundamental and well-studied combinatorial problems. There are

interesting relationships between edge cover and matching. One can exploit theses re-

lationships to design new algorithms. In this chapter, we show two such algorithms for

b-Edge Cover. One of them uses the complimentary relationship between b-Matching

and b-Edge Cover. We call it MCE algorithm [64]. The other reduces the b-Edge Cover

to a constrained perfect b-matching.

4.1 b-Edge Cover via compliment to b-Matching

In this section, we discuss the details of the Matching Complement Edge cover (MCE)

algorithm. We will describe 2-approximate parallel algorithm using b-Suitor.

An optimal algorithm for the minimum weight b-Edge Cover problem can be obtained

by computing a maximum weight b′-Matching, by the following three step procedure [33]:

1. For each vertex v, compute b′(v) = deg(v)− b(v), where deg(v) is the degree of v.

2. Compute M∗, a maximum weight b′-Matching.

3. A min weight b-Edge Cover is the complement of the matching: C∗ = E \M∗.

In this construction, steps 1 and 3 ensure that the computed b-Edge Cover is a valid

cover, and the optimality of the cover depends on step 2. If we compute an approximate

b′-Matching, keeping steps 1 and 3 fixed, then the solution to the b-Edge Cover may not

necessarily be an approximate solution for b-Edge Cover. However, we have showed in [64]

that if the b′-Matching is computed using the b-Suitor algorithm then the corresponding

b-Edge Cover will satisfy 2-approximation bounds. We show a parallel MCE algorithm

using 1/2-approximate parallel b-Suitor in Algorithm 9 .

Since b-Suitor is an essential part of the MCE algorithm, we briefly describe a variant

of it in Algorithm 10 . For more details, we refer the reader to the papers [69]. The b-Suitor

algorithm is derived from the Suitor algorithm for maximum weighted matching [70]. The

62

Algorithm 9 Parallel MCE(G, b)
1: C = ∅
2: for v ∈ V in parallel do
3: b′(v) = max{0, deg(v)− b(v)}
4: end for
5: M=Parallel_b-Suitor(G, b′)
6: for v ∈ V in parallel do
7: C = C ∪ {N(v) \M(v)}
8: end for
9: return b-Edge Cover C

algorithm is based on vertices making proposals to each other, just as in the Stable Matching

problem. Vertices can propose in any order, but each vertex must propose to its current

heaviest eligible neighbor. A vertex v is an eligible neighbor of a vertex u if v does not

already have a proposal of higher weight from another neighbor of v. A vertex u can also

annul the proposal made by a vertex w to a mutual neighbor v, if the weight of the edge (u, v)

is higher than the weight of (v, w). In this case, u proposes to v, and annuls the proposal

(v, w); now w must propose to its next heaviest eligible neighbor. An edge is matched when

two vertices propose to each other. Since we can annul proposals, any vertex can make

proposals thus increasing the parallelism.

The parallel b-Suitor algorithm is shown in Algorithm 10 . The algorithm maintains a

queue Q of vertices whose b(v) values are not satisfied yet, for which it tries to find partners

during the current iteration of the while loop; and also a queue of vertices Q′ whose proposals

are annulled in this iteration, and will be processed again in the next iteration. (This is what

“delayed” means; annulled vertices are not processed in the same iteration. “Partial” means

that the adjacency lists are partially sorted to find a subset of heaviest neighbors.) The

algorithm then seeks a partner for each vertex u in Q in parallel. It tries to find b(u)

proposals for u to make while the adjacency list N(u) has not been exhaustively searched

thus far in the course of the algorithm.

Consider the situation when a vertex u has i − 1 < b(u) outstanding proposals. The

vertex u can propose to a vertex p in N(u) if it is a heaviest eligible neighbor in the set N(u)

63

Algorithm 10 Parallel_b-Suitor(G, b)
1: Q = V ; Q′ = ∅;
2: S(v) = ∅, min-priority heap ∀v
3: while Q 6= ∅ do
4: for vertices u ∈ Q in parallel do
5: i = 1;
6: while i <= b(u) and N(u) 6= exhausted do
7: Let p ∈ N(u) be an eligible partner of u;
8: if p 6= NULL then
9: Lock S(p);

10: if p is still eligible then
11: i = i + 1;
12: Add u to S(p);
13: if u annuls the proposal of v then
14: Add v to Q′; Update db(v);
15: Remove v from S(p);
16: end if
17: end if
18: Unlock S(p);
19: else
20: N(u) = exhausted;
21: end if
22: end while
23: end for
24: Update Q using Q′; Update b using db;
25: end while
26: return S

and if the weight of the edge (u, p) is greater than the lowest offer that p has. In this case,

p would accept the proposal of u rather than its current lowest offer.

If the algorithm finds a partner p for u, then the thread processing the vertex u attempts

to acquire the lock for the priority queue S(p) so that other vertices do not concurrently

become Suitors of p. This attempt might take some time to succeed since another thread

might have the lock for S(p). Once the thread processing u succeeds in acquiring the lock,

then it needs to check again if p continues to be an eligible partner, since by this time another

thread might have found another Suitor for p, and its lowest offer might have changed. If

p is still an eligible partner for u, then we increment the count of the number of proposals

made by u, and make u a Suitor of p. If in this process, we dislodge the last Suitor x of p,

64

then we add x to the queue of vertices Q to be processed in the next iteration. Finally the

thread unlocks the queue S(p).

We fail to find an eligible partner p for a vertex u when we have exhaustively searched all

neighbors of u in N(u), and none offers a weight greater than the lowest offer u has. In this

case u will have fewer than b(u) matched neighbors. After we have considered every vertex

u ∈ Q to be processed, we can update data structures for the next iteration. We update Q

to be the set of vertices in Q; and the vector b to reflect the number of additional partners

we need to find for each vertex u using db(u), the number of times u’s proposal was annulled.

4.1.1 Approximation Bounds

In this section, we show that MCE is a 2-approximation algorithm for b-Edge Cover.

We will need a Lemma from [63]. The Greedy algorithm for b-Matching matches edges

in increasing order of (static) edge weights.

Lemma 4.1.1. When the Greedy algorithm for b-Matching matches an edge, it is a

locally dominant edge in the residual graph (the graph induced by the currently unmatched

edges).

Theorem 4.1.2. MCE is a 2-approximation algorithm for b-Edge Cover.

Proof. Let the optimal minimum weight b-Edge Cover be denoted by C∗, the complement

of an optimal maximum weight b′-Matching, M∗. Also, let the b-Edge Cover computed

by MCE be denoted by C, which takes the complement of the 1/2-approximate matching

M , obtained by b-Suitor.

Consider an edge e(u, v) ∈ C∗ \ C, which belongs to the optimal edge cover but not the

approximate edge cover. This implies that e(u, v) ∈ M \M∗ since the covers are obtained

by complementing the matched edges. The worst case scenario for b′-Matching is when

b-Suitor matches the edge e(u, v), and thus cannot match two other edges that belong to

M∗, say e(x, u) ∈ M∗ and e(v, y) ∈ M∗. Hence e(x, u) 6∈ M and e(v, y) 6∈ M . Since the

65

b-Suitor algorithm computes the same matching as the Greedy algorithm, e(u, v) must

be a locally dominating edge when it is matched, by Lemma 4.1.1 . Thus

w(u, v) ≥ w(x, u); w(u, v) ≥ w(v, y); hence

2w(u, v) ≥ w(x, u) + w(v, y).
(4.1)

Since e(x, u) 6∈M and e(v, y) 6∈M , both of these edges belong to the approximate cover C.

Therefore, the weight of C can be bounded as follows.

w(C) = w(C∗)− w(u, v) + w(x, u) + w(v, y)

≤ w(C∗)− w(u, v) + 2w(u, v) (from Eqn 4.1)

= w(C∗) + w(u, v).

(4.2)

By summing over all edges in the optimal cover that are not included in the approximate

cover, C∗ \ C, we obtain

w(C) ≤ w(C∗) +
∑

(u,v)∈C∗

w(u, v)

= w(C∗) + w(C∗) = 2 w(C∗).
(4.3)

Thus MCE is a 2-approximation algorithm for b-Edge Cover. �

Lemma 4.1.3. A b-Edge Cover computed by the MCE algorithm does not have redundant

edges.

Proof. An approximate maximum weight b′-Matching M of a graph computed by the

b-Suitor algorithm cannot have two neighboring vertices u and v, with u having fewer than

b′(u) and v having fewer than b′(v) incident edges belonging to M . For, then we can add the

edge e(u, v) to the b′-Matching without violating the matching constraints and increase

the weight of the approximate matching. But this contradicts the fact that the b-Suitor

algorithm computes a maximal matching. By considering the complement, a b-Edge Cover

obtained by the MCE algorithm cannot have two super-saturated neighboring vertices in

C. Hence a cover computed by the MCE algorithm does not have redundant edges. �

66

4.1.2 Parallel Depth and Work of Suitor and b-Suitor

In this section we show that the Suitor [70] and the b-Suitor algorithms have provably

low parallel depth and work. The depth is the number of time steps needed by the parallel

algorithm, and the work is the total number of operations performed by the algorithm. These

are the first results on the depth of the Suitor and b-Suitor algorithms that we know of.

The low depth and work of b-Suitor immediately establish the low depth of the parallel

MCE algorithm, since the other two steps of the algorithm are embarrassingly parallel (i.e.,

of constant depth) with linear work.

Theorem 4.1.4. The expected parallel depth of the Suitor algorithm that computes a 1/2-

approximate 1-matching in a graph is O(log(∆) log m), when the weights of the edges are

chosen uniformly at random.

Proof. We begin by analyzing an algorithm related to the Suitor algorithm, the Locally

Dominant Edge (LDE) algorithm. This algorithm adds an edge to the approximate matching

when there are no neighboring edges of higher weight (it becomes locally dominant), and

then deletes all of the neighboring edges. An algorithm of Blelloch, Fineman and Shun [71]

for computing an unweighted maximal matching in parallel uses random priorities on the

edges to compute the matching. Hence it is equivalent to the LDE algorithm for weighted

matching with random edge weights, and an analysis of the maximal matching algorithm

shows that the LDE algorithm has the stated parallel depth.

Now we turn to the Suitor algorithm and consider its relationship to the LDE algo-

rithm. Specifically we consider the “delayed” version of the algorithm in which a vertex with

a proposal annulled is queued for further processing in the next iteration. In the LDE algo-

rithm, an edge is matched when it becomes locally dominant, detected by its two endpoints

pointing to each other. In the Suitor algorithm, each vertex u keeps track of the highest

weight of the proposal it has received so far. A neighbor of u could use this information, if it

is already available, to propose to its next heaviest eligible neighbor without first proposing

to u. Hence if we view the computations of these algorithms in rounds, in the Suitor algo-

rithm, a vertex gets matched in the same or an earlier round relative to the LDE algorithm.

Hence the Suitor algorithm also has O(log(∆) log m) depth. �

67

Theorem 4.1.5. The expected work in the Suitor algorithm is O(m) when the edge weights

are chosen uniformly at random.

Proof. The adjacency lists can be sorted in expected linear time using bucket sort when the

weights are chosen randomly [62]. The Suitor algorithm needs to go through the sorted

adjacency list of each vertex at most once. �

Obtaining linear work for the maximal matching algorithm of Blelloch et al. [71] is more

complicated, and is accomplished by working on a prefix of the graph whose size is carefully

chosen, which increases the depth to O(log4 m/ log log m).

Figure 4.1. Reduction from a b-Matching to a Matching. (Left) Original
graph, (Right) Reduced graph for b = 2.

We now show that these results can be extended to the b-Suitor algorithm by reducing

the b-Matching problem to the 1-matching problem in a modified graph. This reduction

is due to Tutte [25]. We replace each vertex u with b(u) vertices in the modified graph; each

edge (u, v) is replaced by a complete bipartite graph of b(u) b(v) edges, with weights equal

to the original weight of the edge (u, v). We restrict only one of the edges in the bipartite

subgraph to be matched, but other vertices in this subgraph could be matched to edges in

other subgraphs. We show an example of the reduction in Figure 4.1 . The value of b is 2.

We see each edge is replaced by a complete bipartite graph with the same weight. In the

example graph, if we choose (A1, B1) as a matched edge then we can not match the edge

68

(A2, B2). With this restriction, a 1/2-approximate matching in the transformed graph would

correspond to a 1/2- approximate b-Matching in the original graph.

The reduced graph has O(m) vertices, O(β2m) edges, and the maximum degree β∆ ≤ ∆2.

Thus the parallel depth of b-Suitor algorithm when the edge weights are uniformly random

becomes O(log(∆2) log(β2m)) = O(log ∆ log m). Similarly the work becomes O(β2 m).

(Recall that β = maxv b(v), and b(V) = ∑
v b(v).) We can derive similar depth and work

results for the MCE algorithm too.

4.2 b-Edge Cover via reduction to a constrained perfect b-Matching

One of the ways to construct a minimum weighted 1-edge cover is to reduce it to a perfect

matching instance [33 , Chapter 19]. Given a graph G = (V, E, w), the reduction creates a

second disjoint copy Ḡ = (V̄ , Ē, w̄) of the original graph, and connects each vertex v ∈ V

with its copy v̄ ∈ V̄ . Let G′(V ′, E ′, w′) denote the new graph, and let µ(v) denote an edge

of lowest weight incident on v in G. The weight function w′ on E ′ is defined as follows:

w′(e) = w(e) for each e ∈ E, w′(e′) = w̄(ē) = w(e) for each ē ∈ Ē, and w′(v, v̄) = 2w(µ(v)).

It is easy to verify that G′ has a perfect matching. We can compute a minimum weight

perfect matching M∗ in G′; then we obtain a minimum weight edge cover of G by selecting

the edges C∗ = (M∗ ∩ E) ∪ {µ(v) : (v, v̄) ∈M∗,∀v ∈ V }.

We now modify this graph construction to compute a minimum weight b-edge cover.

As earlier, we create a second disjoint copy Ḡ of the graph G. But now µ(v) is a list of

b(v) lowest weight edges incident on v in G. µ(v̄) is also defined similarly for Ḡ. Let the

new graph be G′(V ′, E ′, w′), where V ′ = V ∪ V̄ . For each vertex v ∈ V in G′ we add

b(v) connecting edges from v to its copy v̄. These edges have one to one correspondence

with the edges in the list µ(v). We denote the connecting edges by the indices in the µ(.)

list. Thus (v, v̄, i) represents the i-th connecting edge joining v and v̄, which corresponds

to the i-th edge in µ(v), denoted by µ(v, i). The weight function is defined as follows:

w′(e) = w(e), ∀e ∈ E, and w′(e) = w̄(ē) = w(e), ∀ē ∈ Ē. The weight of the connecting edges

w′((v, v̄, i)) = 2w(µ(v, i)). We solve the minimum weight perfect b-matching problem on G′

with an additional set of constraints. The additional constraints are necessary to avoid the

69

selection of a connecting edge and its corresponding original edge in the same matching. We

can formulate the constrained perfect b-matching as follows.

min
∑
e∈E′

w′(e)x(e)

subject to
∑

e∈δ(v)
x(e) = b(v),∀v ∈ V ′,

xµ(v,i) + x(v,v̄,i) ≤ 1, ∀v ∈ V, i ∈ [b(v)],

xµ(v̄,i) + x(v,v̄,i) ≤ 1, ∀v̄ ∈ V̄ , i ∈ [b(v̄)],

x(e) ∈ {0, 1},∀e ∈ E ′. (4.4)

Here x(e) is a binary variable defined on edges of G′, and δ(v) is the set of edges incident

on the vertices of G′. In Problem 4.4 , the second and third set of constraints ensure that a

perfect matching does not contain both an original edge and its corresponding connecting

edge.

Let M ′
∗ denote the optimal solution of Problem 4.4 . We can recover a b-edge cover from

M ′
∗ as follows: C∗ = (M ′

∗ ∩ E) ∪ {µ(v, i) : v ∈ V, i ∈ [b(v)] and (v, v̄, i) ∈ M ′
∗}. We will show

that C∗ is a minimum weighted b-edge cover.

Lemma 4.2.1. C∗ is an optimal b-edge cover

Proof. Let M and M̄ be the disjoint subset of the optimal matching in G and Ḡ respectively,

i.e., M = M ′
∗ ∩ E and M̄ = M ′

∗ ∩ Ē. Also let S be the set of connecting edges in M ′
∗. So,

M ′
∗ = M ∪M̄ ∪S. Since G and Ḡ are copy of each others M is a valid matching in Ḡ and M̄

is a valid matching in G. We observe that w′(M) = w′(M̄), otherwise we could replace the

larger subset with the smaller one and achieve matching whose weight is less than w′(M ′)

contradicting the optimality of M ′
∗. Since the connecting edges are assigned weights twice

their corresponding edge weights, we see that:

w(C∗) = w′(M) + 1
2w′(S) = 1

2
(
w′(M) + w′(M̄) + w′(S)

)
= 1

2w′(M ′
∗). (4.5)

Now we will discuss a reverse construction that will take any b-edge cover of G as in-

put and construct some perfect b-matching of G′. We start with a feasible b-edge cover C

70

and an empty matching M ′. For each edge e ∈ C, if e can be added without violating the

matching constraints in G′, we add e and ē into M ′. If not one of the endpoints of e must

be under-saturated in G′. If e has an available corresponding connecting edge then we insert

the connecting edge in the matching, otherwise we choose a feasible (w.r.t the constraints

of Problem 4.4) connecting edge with maximum weight. Note that such a connecting edge

must be available since we have b(.) parallel edges to choose from. The weight of the se-

lected connecting edge is at most twice the weight of e. Hence, w′(M ′) ≤ 2w(C). Using

Equation 4.5 ,

w(C∗) = 1
2w′(M ′

∗) ≤
1
2w′(M ′) ≤ w(C).

The second inequality is due to the optimality of M ′
∗. �

4.2.1 Approximate b-Edge Cover using constrained perfect matching

We now turn to approximation algorithms. We will show that a greedy (instead of an

optimal) constrained perfect b-matching of G′ provides a 3/2-approximate b-edge cover of G.

But before that, let us discuss an improvement of the graph construction technique which

might be helpful in achieving practical efficiency.

We can avoid copying the graphs by creating a new graph where there are b(v) loop edges

for each vertex, v ∈ V . These loop edges are equivalent to the connecting edges of the earlier

construction thus correspond to b(v) lowest weighted edges incident on v. These are denoted

by (v, v, i),∀v ∈ V, i ∈ [b(v)]. Also µ(v, i) now represents the original edge corresponding to

the i-th loop edge incident on v. Formally the new graph is G′(V ′, E ′, w′), where V ′ = V ,

and E ′ = E ∪ {(v, v, i) : v ∈ V, i ∈ [b(v)]}. As before the weights w′(e) = w(e), ∀e ∈ E, and

w′((v, v, i)) = 2w(µ(v, i)). This construction is equivalent to the earlier one but creates fewer

vertices and edges as it avoids making the second disjoint copy of the graph. Recall that

β = maxv∈V b(v). The numbers of vertices and edges in G′ using the new transformation are

n and m + ∑
v∈V b(v) ≤ m + β n, respectively; the earlier transformation creates 2n vertices

and 2m + β n edges.

71

The approximation algorithm using greedy matching is shown in Algorithm 11 . We

maintain a saturation counter array cV of size n initialized to b(v) for each vertex v to count

how many edges incident on v need to be added to an edge cover to saturate the vertex. An

edge from the original graph is feasible if the counter on both of its endpoints is greater than

0. A loop edge (v, v, i) is feasible if the counter on v is greater than 0; it will be added to an

edge cover only if the original edge that it corresponds to has not already been included in

the current edge cover.

Note that the analysis of the algorithm works with effective weights of the edges, defined

as the weight of the edge divided by the number of its unsaturated endpoints. The algorithm

starts with an empty cover, and hence the number of unsaturated endpoints for all edges is

2. The effective weight of each original edge is half of its actual weight.

Algorithm 11 Constrained Greedy Prf. Match(G′, cV)
1: sort edges in E ′ in ascending order of half of the weights.
2: C = ∅
3: for e ∈ E ′ do
4: if e is a feasible edge then
5: if e is a loop edge (v, v, i) and µ(v, i) /∈ C then
6: C = C ∪ µ(v, i) . Let µ(v, i) := (v, x)
7: cV (v) = cV (v)− 1
8: cV (x) = cV (x)− 1
9: else

10: C = C ∪ e . Let e := (u, v)
11: cV (u) = cV (u)− 1
12: cV (v) = cV (v)− 1
13: end if
14: end if
15: end for

Lemma 4.2.2. The edge cover from algorithm 11 is 3/2-approximate.

Proof. We will show by induction that the edge has the lowest effective weight when the

algorithm decides to insert an edge into C, the edge has the lowest effective weight. The

Greedy algorithm that constructs an edge cover by adding such edges is known to be 3/2-

approximate [65], and hence the result follows. Note that the Greedy algorithm (Chapter 2.1)

72

requires one to update the effective weight of the edges during the algorithm. In contrast,

our graph construction allows us to work with the initial weights.

We say a phase of the algorithm begins with the search for a feasible edge to add to

the cover, and ends when the algorithm succeeds in finding such an edge. The first phase

ends after the first iteration of the for loop, since initially all the edges are feasible and the

algorithm chooses one with minimum weight, which is also the minimum effective weight.

This edge cannot be a loop edge since we have multiplied the weight of such edges by a

factor of two.

We assume inductively that the algorithm chooses edges with the smallest effective weight

for the first i phases. Let us consider the edge e chosen in the i + 1-th phase.

If e is not a loop edge then both of its endpoints are not saturated yet, and its effective

weight is w′(e)/2 = w(e)/2. For contradiction, assume e is not the edge with a minimum

effective weight, and e′ be such an edge. There are two cases, e′ is a regular edge or a loop

edge. If e′ is a regular edge, its effective weight is w′(e′)/2 = w(e′)/2. But since we sorted

according to the half of weights, this edge should have been considered earlier phases which

contradicts the induction hypothesis. Similarly if e′ is a loop edge, the effective weight of

the corresponding edge is w′(e′)/2. We can repeat the same argument as above and show

that this is a minimum effective weighted edge.

If e(v, v, k) is a loop edge, then obviously one endpoint of the corresponding edge µ(v, k) is

covered (i.e., this vertex is saturated or over-saturated) hence the effective weight of µ(v, k)

is w′(v, v, k)/2 = w(µ(v, k)). which is exactly the effective weight of µ(v, k). The same

argument as for the first case shows that µ(v, k) has the lowest effective weight amongst all

the feasible edges. This concludes the proof. �

The difference between the greedy algorithm and the constrained greedy algorithm is

that in the latter, by modifying the graph, we establish a linear relationship between the

effective weight and the weights of the reduced graph. That allows us to get rid of the

dynamic weight updates of the edges.

Lemma 4.2.3. The runtime of Algorithm 11 is O(m log n).

73

Proof. It is easy to verify that given the graph G′, the algorithm 11 runs in O(m log n)

time. We will now describe how we can construct G′ in O(m) time. Note that the most

computationally expensive step to compute G′ is to find the b(v)-th lowest weight edge for

each vertex. Given an adjacency list representation of a vertex v, we can use a worst-case

linear time selection algorithm [62 , Ch. 9] to find the b(v)-th lowest weight edge, say sb. To

get the b(v) cheapest edge, we scan through the adjacency list to find the edges that are

strictly smaller than w(sb). If the number of such edges is less than b(v) − 1, then we find

necessary edges with weight w(sb). This takes linear time w.r.t to the size of the adjacency

list of a vertex. Summing over all the vertices, this step takes O(m) time. �

4.3 Computational Results of b-Edge Cover algorithms

4.3.1 Experimental Setup

All the experiments were conducted on a Purdue Community cluster computer called

Rice, consisting of an Intel Xeon E5-2660 v3 processor with 2.60 GHz clock, 32 KB L1 data

and instruction caches, 256 KB L2-cache, 25 MB L3 cache, and 64 GB memory per node.

For compilation we have used the g++ compiler.

Table 4.1. The structural properties of our graphs listed in increasing order of edges.
Problems Vertices Edges Mean

Degree
Fault_639 616,923 5,715,102 19
bone010 986,703 7,861,302 16
Serena 1,382,121 13,716,976 20
mouse_gene 43,126 14,461,095 671
dielFilterV3real 1,102,824 21,583,469 39
Flan_1565 1,564,794 22,636,872 29
kron_g500-logn21 1,544,087 91,040,932 118
hollywood-2011 1,985,306 114,492,816 115
G500_21 1,598,722 118,594,475 148
SSA21 2,089,808 123,097,397 118
eu-2015 10,972,981 257,659,403 47

Our testset consists of both real-world and synthetic graphs shown in Table 4.1 . We

generated two classes of RMAT graphs: (a) G500, representing graphs with skewed degree

74

distributions from the Graph 500 benchmark [72] and (b) SSCA, from the HPCS Scalable

Synthetic Compact Applications graph analysis (SSCA#2) benchmark. We used the follow-

ing parameter settings: (a) a = 0.57, b = c = 0.19, and d = 0.05 for G500, and (b) a = 0.6,

and b = c = d = 0.4/3 for SSCA. Additionally we consider seven problems taken from the

the SuiteSparse Matrix Collection [73] covering application areas such as medical science,

structural engineering, and sensor data. We also have a large web-crawl graph(eu-2015) [74]

and a movie-interaction network(hollywood-2011) [75].

All reported results are the average of five runs on a graph with random edge weights.

For Edge Cover the uniform random weights are in the range [1 100]. Since LEDA works

only with integer weights, the real-valued weights are then rounded to their nearest integers.

For the b-Edge Cover experiment, the uniform random weights are chosen from the range

[1 1000].

4.3.2 Edge Cover Results

We compare four algorithms: the exact algorithm that computes the minimum weight of

an edge cover using the weight transformation described in the previous chapters of this the-

sis; the nearest neighbor algorithm (NN); the 3/2-approximation primal dual algorithm (PD)

and a 1/2-approximate maximum weight matching algorithm that with the approximation-

preserving weight transformation obtains a 3/2-approximation minimum weight edge cover

(Match). We use LEDA’s maximum weight matching code to compute the maximum match-

ing with transformed weights, and the Suitor algorithm to compute the approximate match-

ing. We removed redundant edges from the edge covers computed by these algorithms.

In Table 4.2 we report the minimum weight computed by the exact algorithm, and the

distance to optimality of the other algorithms, computed as (approx− opt)/opt ∗ 100, where

opt and approx are weights from the optimal and approximation algorithms, respectively.

Note that all three algorithms perform much better than their worst-case ratios (3/2 for PD

and Match; 2 for the NN algorithm). The Match algorithm is the best performer, followed

by PD and then NN.

75

Table 4.2. Comparison of weights of edge covers computed by approximation
algorithms w.r.t. the exact algorithm.

Problems OPT distance from
weight optimality (%)

PD NN Match
Fault_639 2,475,175 3.21 5.75 1.07
bone010 4,500,059 3.20 5.73 1.04
serena 5,477,688 3.21 5.62 1.01
mouse_gene 188,517 1.94 3.86 1.24
dielFilterV3real 3,007,336 2.80 4.77 0.82
Flan_1565 4,362,155 3.17 5.62 1.15
kron_g500 26,301,787 0.12 0.18 0.01
hollywood_11 9,310,300 1.87 3.69 0.45
G500_21 25,624,663 0.11 0.16 0.01
ssa21 8,243,419 2.85 4.05 0.66
eu-2015 218,514,387 0.49 0.89 0.03
Geo. Mean 1.32 2.25 0.28

In Table 4.3 , we compare the run times of the algorithms. We report the time taken by

the exact algorithm, and report the relative performance of the approximation algorithms

as the ratio of the run time of the exact to that of the approximation algorithm. Larger the

relative performance, the faster the algorithm. Notice that the NN algorithm is the fastest,

followed by the Match algorithm, and then the PD algorithm. But the run times of the

approximation algorithms are within a factor of two of each other.

4.3.3 b-Edge Cover Results

The implementation of an optimal b-Edge Cover algorithm is left as a future work of

this thesis. In this section we compare the approximation algorithms instead. We compare

the Primal-dual algorithm (PD), the Lazy Greedy algorithm (LG), and the b-nearest neigh-

bor algorithm (bNN). In a future work [76], we plan to report the computational results of

the greedy constrained greedy perfect matching algorithm.

Both PD and the LG algorithms are 3/2-approximate and compute the same b-Edge

Cover, while bNN is 2-approximate. In Table 4.4 , we report the weights of the b-edge covers.

We include the weight computed by the original algorithm, and then the weight obtained

76

Table 4.3. Relative performance of runtimes of approximation algorithms
w.r.t. the exact algorithm for edge cover.

Problems Time(s) Rel. Perf.
Exact Alg. PD NN Match

Fault_639 8.78 36.61 73.32 44.23
bone010 13.37 37.70 77.23 43.97
serena 21.48 36.58 74.27 43.28
mouse_gene 14.39 35.74 69.13 40.79
dielFilterV3real 27.30 34.78 69.05 40.74
Flan_1565 27.20 32.91 63.50 39.85
kron_g500 147.89 37.92 78.83 43.96
hollywood_11 122.78 33.88 65.43 39.84
G500_21 182.00 36.95 77.53 41.99
ssa21 233.71 40.62 87.41 46.00
eu-2015 408.40 41.22 85.88 48.84
Geo. Mean 36.73 74.33 42.97

by removing redundant edges. The last two columns show the percentage difference in

weights between the bNN and PD algorithms. The results show that the PD algorithm

computes smaller weights for the edge cover. The difference in weights between the two

original algorithms can be large, up to 13% for these problems, with a geometric mean of

about 5%. However, after removing redundant edges, this difference narrows to at most 3%.

This implies that more redundant edges are removed from the bNN algorithm.

The run times of the algorithms are plotted in Fig. 4.2 as the ratio of the run time of

the LG algorithm to the run time of the second algorithm. Values higher than one for an

algorithm means that the algorithm is faster than LG. Note that in geometric mean, the

PD algorithm is about 3 times faster than the LG, and the bNN algorithm is about 8 times

faster.

The ∆-approximation algorithm was implemented by [63] and compared with the LSE

algorithm, which has approximation ratio of 3/2. The performance of the latter algorithm

was highly sensitive to the order in which the vertices are processed, both for the weights

and the runtimes. Generally the LSE algorithm computed lower weights and it was also

faster.

77

Table 4.4. Weight of b-edge covers computed by the Primal Dual al-
gorithms. The difference is the percentage of increase in weight using
b-Nearest Neighbor w.r.t Primal Dual.

Problem Primal Dual difference(%)
original remove orig. rem.

redundant red.
bone010 3.93E+09 3.93E+09 0.00 0.00
Fault_639 2.86E+09 2.86E+09 0.00 0.00
Serena 6.85E+09 6.84E+09 0.07 0.00
Flan_1565 1.06E+10 1.04E+10 2.14 0.12
G500_21 6.78E+09 6.62E+09 2.20 0.20
kron_g500 6.00E+09 5.86E+09 3.02 0.36
eu-2015 3.28E+10 3.22E+10 3.63 0.28
mouse_gene 1.11E+08 1.06E+08 5.29 0.45
hollywood_11 9.80E+09 9.53E+09 7.21 1.65
dielFilterV3real 7.47E+09 7.30E+09 10.50 3.03
ssa21 9.26E+09 8.59E+09 12.88 0.90
Geo. Mean 4.77 0.51

Several of the approximation algorithms for the b-Edge Cover problem have been

implemented on parallel computers. The LSE algorithm and the Matching Complement

Edge cover (MCE) algorithm have been implemented on shared memory parallel machines:

an IBM Power-8 with 764 cores and an Intel Xeon with 36 cores [64]. The Primal Dual 3/2-

approximation algorithm has been implemented by us on multiple cores of an Intel Xeon

(Ferdous and Pothen, unpublished). The MCE algorithm has also been implemented on

8, 192 cores of a distributed memory parallel computer with good speedups [77], and it has

been used to solve the adaptive anonymity problem, which we discuss in the next subsection.

78

Figure 4.2. Relative Performance of runtimes of the Primal-Dual and bNN
algorithms for b-Edge Cover w.r.t. the Lazy Greedy algorithm.

79

5. LOCAL ALGORITHMS FOR SUBMODULAR b-Matching

5.1 Greedy and Lazy Greedy Algorithms

A popular algorithm for maximizing submodular b-Matching is the Greedy algorithm

[42], where in each iteration, an edge with the maximum marginal gain is added to the

matching. In its simplest form the Greedy algorithm could be expensive to implement, but

submodularity can be exploited to make it efficient. The efficient implementation is known

as the Lazy Greedy algorithm [56], [78]. As the maximum gain of each edge decreases

monotonically in the course of the algorithm, we can employ a maximum heap to store the

gains of the edges. Since the submodular function is normalized, the initial gain of each edge

is just the function applied on the edge, and at each iteration we pop an edge e from the

heap. If e is an available edge, i.e., e can be added to the current matching without violating

b-Matching constraints, we update its marginal gain g(e). We compare g(e) with the next

best marginal gain of an edge, available as the heap’s current top. If g(e) is greater than or

equal to the marginal gain of the current top, we add e to the matching; otherwise we push e

to the heap. We iterate on the edges until the heap becomes empty. Algorithm 12 describes

the Lazy Greedy approach.

Algorithm 12 Lazy Greedy Algorithm (G(V, E, W))
pq = max heap of the edges keyed by marginal gain
while pq is not empty do

Edge e = pq.pop()
Update marginal gain of e
if e is available then

if marg_gain of e ≥ marg_gain of pq.top() then
Add e to the matching
update b(.) values of endpoints of e

else
push e and its updated gain into pq

end if
end if

end while

The maximum cardinality of a b-Matching is bounded by β n. In every iteration of

the Greedy algorithm, an edge with maximum marginal gain can be chosen in O(m) time.

80

Hence the time complexity of the Greedy algorithm is O(β n m). The worst-case running

time of the Lazy Greedy algorithm is no better than the Greedy algorithm [56]. However,

by making a reasonable assumption we can show a better time complexity bound for the

Lazy Greedy algorithm.

The adjacent edges of an edge e = (u, v) constitute the set N(e) = {e′ : e′ ∈ δ(u) or e′ ∈

δ(v)}. Likewise, the adjacent vertices of a vertex u are defined as the set N(u) = {v : (u, v) ∈

δ(u)}.

Assumption 1. The marginal gain of an edge e depends only on its adjacent edges.

With this assumption, when an edge is added to the matching only the marginal gains

of adjacent edges change. We make this assumption only to analyze the runtime of the

algorithms but not to obtain the quality of the approximation. This assumption is applicable

to the objective function in Problem 1.3 that has been used in many applications, including

the one considered in this thesis of load balancing Fock matrix computations

Lemma 5.1.1. Under Assumption 1 , the time complexity of Algorithm 12 is O(β m log m).

Proof. The time complexity of Algorithm 12 depends on the number of push and pop oper-

ations in the max heap. We bound how many times an edge e is pushed into the heap. The

edge e is pushed when its updated marginal gain is less than the current top’s marginal gain,

and thus the number of times the marginal gain of e is updated is an upper bound on the

number of push operations on it. From our assumption, the update of the marginal gain of

an edge e can happen at most 2β times. Hence an edge is pushed into the priority queue O(β)

times, and each of these pushes can take O(log m) time. Thus the runtime for the all pushes

is O(β m log m). The number of pop operations are at most the number of pushes. Thus the

overall runtime of the Lazy Greedy algorithm for b-Matching is O(β m log m). �

5.2 Locally Dominant Algorithm

We introduce the concept of ε-local dominance, use it to design an approximation algo-

rithm for submodular b-Matching, and prove the correctness of the algorithm.

81

a

b c

d

e

f

g

10 10

10
10

10
10 10

10
10

Figure 5.1. The original graph.

5.2.1 ε-Local Dominance and Approximation Ratio

The Lazy Greedy algorithm presented in Algorithm 12 guarantees a 1
3 approx. ratio

[44], [79] by choosing an edge with the highest marginal gain at each iteration, and thus it is

an instance of a globally dominant algorithm. We will show that it is unnecessary to select

a globally best edge because the same approximation ratio could be achieved by choosing an

edge that is best in its neighborhood.

Recall that given a matching M , an edge e is available w.r.t M if both of its end-points

are unsaturated in M .

Definition 5.2.1 (Locally dominant matching). An edge e is locally dominant if it is avail-

able w.r.t a matching M , and the marginal gain of e is greater than or equal to all available

edges adjacent to it. Similarly, for an ε ∈ (0, 1], an edge e is ε- locally dominant if its

marginal gain is at least ε times the marginal gain of any of its available adjacent edges. A

matching M is ε-locally dominant if every edge of M is ε-locally dominant when it is added

to the matching.

A globally dominant algorithm is also a locally dominant one. Thus our analysis of

locally dominant matchings would establish the same approximation ratio for the Greedy

and Lazy Greedy algorithms.

Theorem 5.2.1. Any algorithm that produces an ε-locally dominant b-Matching is ε
2+ε

-

approximate for a submodular objective function.

Proof. Let M∗ denote an optimal matching and M be a matching produced by an ε-locally

dominant algorithm. Denote |M | = k. We order the elements of M such that when the edge

82

ei

Mi−1 Ti−1

(a) Case i. ei ∈ Ti−1

ei

M∗
i

Mi−1 Ti−1

(b) Case ii. ei /∈ Ti−1

Figure 5.2. Pictorial representation of the two cases

ei is included in M , it is an ε-locally dominant edge. Let Mi denote the locally dominant

matching after adding ei to the set, where M0 = ∅ and Mk = M .

Our goal is to show that for each edge in the locally dominant algorithm, we may charge

at most two distinct elements of M∗. At the ith iteration of the algorithm when we add ei

to Mi−1, we will show that there exists a distinct subset M∗
i ⊂M∗ with |M∗

i | ≤ 2 such that

ρei(Mi−1) ≥ ερe∗
j
(Mi−1), for all e∗

j ∈M∗
i . We will achieve this by maintaining a new sequence

of sets {Tj}, where Ti−1 is the reservoir of potential edges that ei could be charged to. The

initial set of this sequence of sets is T0, which holds the edges in the optimal matching M∗.

The sequence of T -sets shrink in every iteration by removing the elements charged in the

previous iteration, so that it stores only the candidate elements that could be charged in

this and future iterations. Formally, M∗ = T0 ⊇ T1 ⊇ · · · ⊇ Tk = ∅ such that for 1 ≤ i ≤ k,

the following two conditions hold.

i) Mi ∪ Ti is also a b-Matching and

ii) Mi ∩ Ti = ∅.

The two conditions are satisfied for M0 and T0 because M0 ∪ T0 = M∗ and M0 ∩ T0 =

∅ ∩M∗ = ∅.

Now we will describe the charging mechanism at each iteration. We need to construct

the reservoir set Ti from Ti−1. Recall that ei is added at the ith step of the ε-locally dominant

matching to obtain Mi. There are two cases to consider:

i) If ei ∈ Ti−1, the charging set M∗
i = {ei}, Mi = Mi−1 ∪ {ei}, and Ti = Ti−1 \ {ei}.

ii) Otherwise, let M∗
i be a smallest subset of Ti−1 such that (Mi−1 ∪ . . . ∪ {ei} ∪ Ti−1) \M∗

i

is a b-Matching. Since a b-matching is a 2-extendible system, we know |M∗
i | ≤ 2. Then

83

Mi = Mi−1 ∪ {ei}; and Ti = Ti−1 \M∗
i .

Note that the two conditions on Mi and Ti from the previous paragraph are satisfied after

these sets are computed from Mi−1 and Ti−1. Since M is a maximal matching, we have

Tk = ∅; otherwise we could have added any of the available edges in Tk to M .

Now when ei is added to Mi−1, all the elements of M∗
i are available. This set M∗

i must

be the adjacent edges of ei. Thus ∀e∗
j ∈ M∗

i , we have ερe∗
j
(Mi−1) ≤ ρei(Mi−1). We can sum

the inequality for each element of e∗
j ∈M∗

i , leading to ∑
j ρe∗

j
(Mi−1) ≤ 2

ε
ρei(Mi−1).

Rewriting the summation we have,

ρei(Mi−1) ≥
ε

2
∑

j
ρe∗

j
(Mi−1)

≥ ε

2
∑

j
ρe∗

j
(Mi−1 ∪ {e∗

1, . . . , e∗
j−1})

= ε

2
∑

j
(f(Mi−1 ∪ {e∗

1, . . . , e∗
j })

− f(Mi−1 ∪ {e∗
1, . . . , e∗

j−1}))

= ε

2(f(Mi−1 ∪ {e∗
1, . . . , e∗

|M∗
i |})− f(Mi−1))

= ε

2(f(Mi−1 ∪M∗
i)− f(Mi−1))

≥ ε

2(f(M ∪M∗
i)− f(M)).

In line 2, each of the summands is a superset of Mi−1, and the inequality follows from

submodularity of f (Proposition 1.5.2). Line 3 expresses the marginal gains in terms of

the function f . The fourth equality is due to telescoping of the sums, the fifth equality

replaces the set M∗
i for its elements, and the last inequality follows by monotonicity of f

(from Proposition 1.5.2).

84

We now sum over all the elements in M as follows.

∑
i

ρei(Mi−1) ≥
ε

2
∑

i
(f(M ∪M∗

i)− f(M)),

f(M) ≥ ε

2
∑

i
(f(M ∪ {M∗

1 ∪ . . . M∗
i })

− f(M ∪ {M∗
1 , . . . , M∗

i−1}))

= ε

2(f(M ∪M∗)− f(M))

≥ ε

2(f(M∗)− f(M)).

f(M) ≥ ε

2 + ε
f(M∗).

The left side of the second line of the above equations is due to Proposition 1.5.1 , while

the right side comes from Proposition 1.5.2 . The next equality telescopes the sum, and the

fourth inequality is due to monotonicity of f . Finally the last line is a restatement of the

inequality above it. �

Corollary 5.2.2. Any algorithm that produces an ε-locally dominant semi-matching is ε
1+ε

-

approximate for a submodular objective function.

Proof. A semi-matching (there are matching constraints on only one vertex part in a bi-

partite graph) forms a matroid, which is a 1-extendible system [26]. So by definition of

1-extendible system, |M∗
i | ≤ 1. We can substitute this value in appropriate places in the

proof of Lemma 5.2.1 and get the desired ratio. �

5.2.2 Local Lazy Greedy Algorithm

Now we design a locally dominant edge algorithm to compute a b-Matching, outlining

our approach in Algorithm 14 . We say that a vertex v is available if there is an available

edge incident on it, i.e., adding the edge to the matching does not violate the b(v) constraint.

For each vertex v ∈ V , we maintain a priority queue that stores the edges incident on

v. The key value of the queue is the marginal gain of the adjacent edges. At each iteration

of the algorithm we alternate between two operations: update and matching. In the update

85

step, we update a best incident edge of an unmatched vertex v. Similar to Lazy Greedy,

we can make use of the monotonicity of the marginal gains, and the lazy evaluation process is

shown in Algorithm 13 . After this step, we can consider a best incident edge for each vertex

as a candidate to be matched. We also maintain an array (say pointer) of size |V | that

holds the best vertex found in the update step. The next step is the actual matching. We

scan over all the available vertices v ∈ V and check whether pointer(v) also points to v (i.e.,

pointer(pointer(v)) = v). If this condition is true, we have identified a locally dominant

edge, and we add it to the matching. We continue the two steps until no available edge

remains.

Algorithm 13 Lazy Evaluation (Max Heap pq)
1: while pq is not empty do
2: Edge e = pq.pop()
3: Update marginal gain of e
4: if e is available then
5: if marg_gain of e ≥ marg_gain of pq.top() then
6: break
7: else
8: push e and its updated gain into pq
9: end if

10: end if
11: end while

We omit the short proofs of the following two results.

Lemma 5.2.3. The Local Lazy Greedy algorithm is locally dominant.

Corollary 5.2.4. For the b-Matching problem with submodular objective, the Local Lazy

Greedy algorithm is 1/3-approximate.

Lemma 5.2.5. Under Assumption 1 , the time complexity of Algorithm 14 is O(β m log ∆).

Proof. As for the Lazy Greedy algorithm, the number of total push operations is O(mβ log ∆)

(the argument of the logarithm is ∆ instead of m because the maximum size of a priority

queue is ∆). We maintain two arrays, say PotentialU and PotentialM, of vertices that hold

the candidate vertices for iteration in the update and matching step, respectively. Initially

86

Algorithm 14 Local Lazy Greedy Algorithm
. Initialization

1: for v ∈ V do
2: pq(v) := max-heap of the incident edges keyed by marginal gain
3: pointer(v) = pq(v).top
4: end for

. Main Loop
5: while ∃ an edge with both its endpoints available do

. Updating
6: for v ∈ V such that u is available do
7: Update pq(v) using Lazy Evaluation (pq(v))
8: pointer(v) = pq(v).top
9: end for

. Matching
10: for u ∈ V such that u is available do
11: v = pointer(u)
12: if v is available and pointer(v) == u then
13: M = M ∪ {u, v}
14: end if
15: end for
16: end while

all the vertices are in PotentialU and PotentialM is empty. The two arays are set to empty

after their corresponding step. In the update phase, we insert the vertices for which the

marginal gain changed into PotentialM. In the matching step, we iterate only over the ver-

tices in PotentialM array. When an edge (u, v) is matched in the matching step, we insert

u, v if they are unsaturated and all their available neighboring vertices into the PotentialU.

This is the array on which in the next iteration, update would iterate. Since a vertex u can

be inserted at most b(u) + ∑
v∈N(u) b(v) times into the array, the overall size of PotentialU

array during the execution of the algorithm is O(mβ). The PotentialM is always a subset

of PotentialU. So it is also bounded by O(mβ).Combining all these we get, an O(β m log ∆)

time complexity. �

87

b

a c

d

e

f
e1 e2

e3 e4 e5

Figure 5.3. A tight graph.

5.2.3 A tight input for locally subdominant Submodular b-Matching

Here we demonstrate tightness of the greedy 1/3-approximate Submodular b-Matching.

For simplicity, we will work on b = 1. Consider the graph in Figure 5.3 . The weight of the

edges are all 1. Let xi’s be the binary variable that takes {0,1}. The objective function we

are considering is f = x1 + x2 + x3 + x4 + x5−x2x4. f is monotone submodular. To see this,

take two sets A = e1, B = e1, e2. we add e4 to A resulting a marginal gain of 1, But when e4

is added to B the marginal gain is 0. It is monotone because adding new element to set does

not lower the functional value. Now the greedy variants of algorithms (including the local

lazy greedy) could choose e2, e4 as the matching output that results f = 0+1+0+1−1 = 1,

whereas the optimal one is e1, e3, e5 with f = 1 + 0 + 1 + 0 + 1− 0 = 3.

5.2.4 Parallel Implementaion of Local Lazy Greedy

Both the standard Greedy and Lazy Greedy algorithm offer little to no concur-

rency. The Greedy algorithm requires global ordering of the gains after each iteration,

and the Lazy Greedy has to maintain a global priority queue. On the other hand, the

Local Lazy Greedy algorithm is concurrent. Here local dominance is sufficient to main-

tain the desired approximation ratio. We present a shared memory parallel algorithm based

on the serial Local Lazy Greedy in Algorithm 15 .

One key difference between the parallel and the serial algorithms is on maintaining the

potentialU and potentialM arrays. One option is for each of the processors to maintain

individual potentialU and potentialM arrays and concatenate them after the corresponding

steps. These arrays may contain duplicate vertices, but they can be handled as follows. We

maintain a bit array of size of n initialized to 0 in each position. This bit array would be reset

88

Algorithm 15 Parallel Local Lazy Greedy
. Initialization

1: for v ∈ V in parallel do
2: pq(v) := max-heap of the incident edges keyed by marginal gain
3: pointer(v) = pq(v).top
4: end for

. Main Loop
5: while ∃ an edge where both endpoints are available do

. Updating
6: for v ∈ V such that v is available in parallel do
7: Update pq(v) according to Lazy Evaluation (pq(v))
8: pointer(v) = pq(v).top
9: end for

. Matching
10: for u ∈ V such that u is available in parallel do
11: v = pointer(u)
12: if v is available and u < v and pointer(v) == u then
13: Mark (u, v) as a matching edge
14: end if
15: end for
16: end while

to 0 at every iteration. We only process vertices that have 0 in its corresponding position in

the array. To make sure that only one processor is working on the vertex, we use an atomic

test-and-set instruction to set the corresponding bit of the array. Thus the total work

in the parallel algorithm is the same as of that the serial one i.e., O(β m log ∆). Since the

fragment inside the while loop is embarrassingly parallel, the parallel runtime depends on

the number of iterations. This number depends on the weights and the edges in the graph,

but in the worst case, could be O(βn). We leave it for future work to bound the number of

iterations under different weight distributions (say random) and different graph structures.

5.3 Experimental Results

The experiments on the serial algorithm were run on an Intel Haswell CPUs with 2.60

GHz clock speed and 512 GB memory. The parallel algorithm was executed on an Intel

89

Knights Landing node with a Xeon Phi processor (68 physical cores per node) with 1.4 GHz

clock speed and 96 GB DDR4 memory.

5.3.1 Dataset

We tested our algorithm on both real-world and synthetic graphs shown in Table 5.1 .

(All Tables and Figures from this section are at the end of the paper.) We generated two

classes of RMAT graphs: (a) G500, representing graphs with skewed degree distributions

from the Graph 500 benchmark [72] and (b) SSCA, from the HPCS Scalable Synthetic

Compact Applications graph analysis (SSCA#2) benchmark using the following parameter

settings: (a) a = 0.57, b = c = 0.19, and d = 0.05 for G500, and (b) a = 0.6, and b = c = d =

0.4/3 for SSCA. Moreover, we considered eight problems taken from the SuiteSparse Matrix

Collection [73] covering application areas such as medical science, structural engineering, and

sensor data. We also included a large web-crawl graph(eu-2015) [74] and a movie-interaction

network(hollywood-2011) [75].

Table 5.1. The properties of the test graphs listed by increasing number of edges.
Problems Vertices Edges Mean

Degree
Fault_639 638,802 13,987,881 44
mouse_gene 45,101 14,461,095 641
Serena 1,391,349 31,570,176 45
bone010 986,703 35,339,811 72
dielFilterV3real 1,102,824 44,101,598 80
Flan_1565 1,564,794 57,920,625 74
kron_g500-logn21 2,097,152 91,040,932 87
hollywood-2011 2,180,759 114,492,816 105
G500_21 2,097,150 118,594,475 113
SSA21 2,097,152 123,097,397 117
eu-2015 11,264,052 257,659,403 46
nlpkkt240 27,993,600 373,239,376 27

90

5.3.2 Serial Performance

In Table 5.2 we compare the Local Lazy Greedy algorithm with the Lazy Greedy

algorithm. Each edge weight is chosen uniformly at random from the set [1, 5]. The sub-

modular function employed here is the concave polynomial with α = 0.5, and b = 5 for

each vertex. Since both Lazy Greedy and Local Lazy Greedy algorithms have equal

approximation ratios, the objective function values computed by them are equal, but the

Local Lazy Greedy algorithm is faster. For the largest problem in the dataset, the

Local Lazy Greedy algorithm is about five times faster than the Lazy Greedy, and it

is about three times faster in geometric mean.

Table 5.2. The objective function values and comparison of the serial run
times for the Lazy Greedy and Local Lazy Greedy algorithms.

Problems Weight Time (sec.) Rel. Perf
LG LLG LG/LLG

Fault_639 3.07E+06 61.05 16.83 3.63
mouse_gene 1.90E+05 50.68 22.41 2.26
Serena 6.69E+06 155.81 40.27 3.87
bone010 4.80E+06 177.37 44.15 4.02
dielFilterV3real 5.35E+06 221.92 62.22 3.57
Flan_1565 7.63E+06 310.31 72.00 4.31
kron_g500-logn21 3.69E+06 304.85 105.58 2.89
hollywood-2011 8.59E+06 622.73 163.26 3.81
G500_21 3.93E+06 344.13 137.06 2.51
SSA21 9.46E+06 588.16 285.79 2.06
eu-2015 2.40E+07 1098.40 396.16 2.77
nlpkkt240 1.31E+08 2456.34 465.30 5.28
Geo. Mean 3.29

5.3.3 Parallel Performance

Performance of the parallel implementations of the Local Lazy Greedy algorithm is

shown by a scalibility plot in Figure 5.4 . Figure 5.4 reports results from a machine with 68

threads, with all the cores on a single socket. We see that all problems show good speedups,

and all but three problems show good scaling with high numbers of threads.

91

1 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 6467
Threads

0

10

20

30

40

50

60

Sc
al

ib
ilit

y

Fault_639
mouse_gene
Serena
bone010
dielFilterV3real
Flan_1565
kron_g500-logn21

hollywood-2011
G500_21
SSA21
eu-2015.mtx
nlpkkt140

hollywood-2011
G500_21
SSA21
eu-2015.mtx
nlpkkt140

Figure 5.4. Scalability of the Local Lazy Greedy algorithm for submod-
ular b-matching with 67 threads.

5.3.4 Effect of α in Concave Polynomial

In this experiment we vary α of the concave polynomial function from 0.1 to 1 with

spacing of 0.1. In Figure 5.5 , we plot the α Vs. linear weight (the left axis) and Cardinality

(the right axis) of the matching. we observe how the weight function and cardinality of the

matching changes with α. The weight function here is the linear weight of the corresponding

matching. We see that, for all the problems decreasing α increases the cardinality of the

matching. We also see that for many problems decreasing α also increases the linear weight.

It is surprising that although we are solving for the submodular maximization, the match-

ing output is a better alternative than the greedy matching algorithm for linear objective

function.

92

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

1000

2000

3000

4000

5000

6000

7000

Ca
rd

. D
iff

.

Fault_639
Card. Diff.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

2000

4000

6000

8000

10000

mouse_gene
Card. Diff.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

5000

10000

15000

20000

Serena
Card. Diff.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

2500

5000

7500

10000

12500

15000

bone010
Card. Diff.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

5000

10000

15000

20000

25000

30000

35000

Ca
rd

. D
iff

.

dielFilterV3real
Card. Diff.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

2000

4000

6000

8000

10000

12000
Flan_1565

Card. Diff.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

50000

100000

150000

200000

250000

300000

kron_g500-logn21
Card. Diff.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

50000

100000

150000

200000

250000

hollywood-2011
Card. Diff.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
alpha

0

50000

100000

150000

200000

250000

300000

350000

Ca
rd

. D
iff

.

G500_21
Card. Diff.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
alpha

0

50000

100000

150000

200000

SSA21
Card. Diff.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
alpha

0

200000

400000

600000

800000

1000000

eu-2015.mtx
Card. Diff.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
alpha

0

100000

200000

300000

400000

nlpkkt140
Card. Diff.

0

10000

20000

30000

40000

50000

60000

Wt. Diff. 0

10000

20000

30000

40000

Wt. Diff. 0

25000

50000

75000

100000

125000

150000

175000

Wt. Diff. 0

20000

40000

60000

80000

100000

120000

W
ei

gh
t D

iff
.

Wt. Diff.

0

50000

100000

150000

200000

250000

Wt. Diff. 0

20000

40000

60000

80000

100000

120000

140000

Wt. Diff. 0

200000

400000

600000

800000

Wt. Diff. 0

200000

400000

600000

800000

1000000

1200000

W
ei

gh
t D

iff
.

Wt. Diff.

0

200000

400000

600000

800000

Wt. Diff. 0

200000

400000

600000

800000

1000000

Wt. Diff. 0

500000

1000000

1500000

2000000

Wt. Diff. 0

500000

1000000

1500000

2000000

2500000

W
ei

gh
t D

iff
.

Wt. Diff.

Figure 5.5. Cardinality and weight of matching comparison for various α

93

6. HEAVY WEIGHT HIGH CARDINALITY MATCHING

In many scientific applications, we may require matchings with heavy weights but also high

cardinalities. In this chapter, we will introduce Lambda Matching ,that provides a trade-

off between the weight and cardinality of the matching. This is achieved by formulating the

matching problem as a bi-objective optimization problem.

6.1 Cardinality sensitive matching formulation

A matching is an independent set of edges in a graph. We restate the maximum weight

matching formulation described in Chapter 1 .

Consider a graph G(V, E, w), where V and E are the vertex and edge sets respectively,

and w is a positive weight function defined on the edges. We denote the number of vertices

|V | by n and the number of edges |E| by m throughout this section. The maximum weight

matching problem on the graph G can be formulated as follows.

max
∑
e∈E

w(e)x(e) (6.1)

subject to
∑

e∈δ(v)
x(e) ≤ 1,

x(e) ∈ {0, 1}.

Here δ(v) is the set of edges incident on vertex v and x is the characteristic vector of the

matching.

The formulation (6.1) maximizes only the weight function, and does not consider the

cardinality of the matching. We can reformulate the matching problem to account for the

cardinality by introducing a non-negative parameter λ, and modifying the formulation to

max
∑
e∈E

w(e)x(e) + λ
∑
e∈E

x(e) (6.2)

subject to
∑

e∈δ(v)
x(e) ≤ 1,

x(e) ∈ {0, 1}.

94

The formulation (6.2), called Lambda Matching, has two terms in its objective func-

tion. The first term by itself would maximize the weight of a matching while the second term

by itself would maximize its cardinality. The parameter λ ≥ 0 incorporates the trade-off

between these two objectives. If λ = 0, then this produces a maximum weight matching

as in Problem (6.1). It is intuitive that increasing λ would also increase the cardinality of

the matching and possibly decrease the weight of the matching in terms of the original edge

weights. Ultimately when the value of λ is sufficiently large, we will obtain a maximum cardi-

nality matching from this formulation. We note that computing a Lambda Matching has

the same time complexity as computing a maximum weight matching since the modification

amounts to translating the original weight of every edge by λ. We can obtain the weight of

a matching in terms of the original weights of the edges by subtracting λ from the weight of

each matched edge.

6.1.1 Lower bound on the weight

As we increase λ the weight of the matching (projected to the original edge weights) may

decrease. In this section we will establish a lower bound on the weight of the transformed

matching projected to the original edge weights. Let Mλ
∗ be the optimum matching returned

by the algorithm using the parameter value λ, and let Wλ be the total weight of this matching.

Then M0
∗ denotes the maximum weight matching of G when λ = 0, i.e., this would be the

maximum sum weight matching in G. We also have

Wλ(Mλ
∗) =

∑
e∈Mλ

∗

w(e) + λ|Mλ
∗ | (6.3)

= W0(Mλ
∗) + λ|Mλ

∗ |.

The first term on the right-hand-side is the weight of the matching in terms of the original

weights of the edges, and the second term reflects the additional weight due to the translation

of the edge weights by λ. Thus W0(M0
∗) is the weight of the optimum matching with λ = 0.

Let M c be a matching of maximum weight among all maximum cardinality matchings in G.

We are interested in computing a lower bound for the weight W0(Mλ
∗).

95

Lemma 6.1.1. W0(Mλ
∗) ≥ max{W0(M c) + λ|M c|, W0(M0

∗) + λ|M0
∗ |} − λ|Mλ

∗ |.

Proof. Since Mλ
∗ is the maximum weight matching for Lambda Matching, the weight of

this matching must be at least the weight of the matching M0
∗ translated by λ. Using a

similar argument we can show that the weight of Mλ
∗ is equal to or larger than the weight

of M c translated by λ. Thus we have

Wλ(Mλ
∗) ≥ max{Wλ(M c), Wλ(M0

∗)}

≥ max{W0(M c) + λ|M c|,

W0(M0
∗) + λ|M0

∗ |}.

We can substitute Eq. 6.3 on the left side of the inequality to obtain the lower bound we

seek.

W0(Mλ
∗) + λ|Mλ

∗ | ≥ max{W0(M c) + λ|M c|,

W0(M0
∗) + λ|M0

∗ |}

W0(Mλ
∗) ≥ max{W0(M c) + λ|M c|,

W0(M0
∗) + λ|M0

∗ |} − λ|Mλ
∗ |.

�

6.1.2 Pareto Optimality of Weight and Cardinality

To show the Pareto optimality between weight and cardinality, we have to prove:

1. The weight W0(Mλ
∗) is largest among matchings with cardinality |Mλ

∗ |, and

2. The cardinality of Mλ
∗ is the highest among matchings with weight W0(Mλ

∗).

Note that if λ = 0, the second condition may not always be satisfied. For example, consider

a path graph with 4 vertices {a, b, c, d} with edge weights (a, b) = (c, d) = 1 and (b, c) = 2.

This has two maximum weight matchings, namely (a, b), (c, d) and (b, c). For λ = 0 the

Lambda Matching could return the latter matching, thus violating the second condition.

96

Lemma 6.1.2. For λ > 0, the matching computed by solving Lambda Matching is Pareto

optimal w.r.t weight and cardinality.

Proof. (Proof of weight:) For a contradiction, suppose there exists another matching Mλ
1

with |Mλ
1 | = |Mλ| but W0(Mλ

1) > W0(Mλ). Then we have Wλ(Mλ
1) > Wλ(Mλ), and Mλ

∗

cannot be an optimum matching.

(Proof of cardinality:) For a contradiction, suppose we have a matching Mλ
1 with weight

W0(Mλ
1) = W0(Mλ

∗) but |M1
λ | > |Mλ

∗ |. As λ > 0, we see λ|M1
λ | > λ|Mλ

∗ |. Again Wλ(Mλ
1) >

Wλ(Mλ
∗), which is a contradiction. �

6.1.3 Choosing a suitable value of λ

We require some matching concepts for this discussion. Given a matching M of a graph,

a path or cycle P is called alternating if it consists of edges chosen alternatively from M and

E \M . An augmenting path with respect to the current matching is an alternating path

that begins and ends with unmatched vertices; by switching matching edges to non-matching

edges and vice versa we can increase the cardinality of the matching. Now we can develop

some guiding principles for choosing the value of λ.

Lemma 6.1.3. Let γ be the maximum weight and δ be the minimum weight of the edges in G.

If λ = max{ (k−1)
2 γ− (k+1)

2 δ, 0}+ε, where ε > 0, then Mλ
∗ obtained from Lambda Matching

has the maximum weight among all matchings such that there exists no augmenting path of

length k(≥ 3) or less w.r.t the matching.

Proof. Suppose choosing λ as mentioned in the lemma does not lead to a maximum weight

matching with the augmenting path length guarantee. So there is an augmenting path, say

P , of length k w.r.t to the optimal matching Mλ
∗ . In P , there are k−1

2 matched edges and
k+1

2 unmatched edges. Let ∆ be the change of weight if we augment along P . First assume

97

that (k−1)
2 γ > (k+1)

2 δ. Since the weight of each matched edge in P can be at most γ and the

weight of each matched edge can be at least δ, we have

∆ ≥ k + 1
2 δ + k + 1

2 λ− (k + 1)
2 γ − k − 1

2 λ

= k + 1
2 δ + k2 − 1

4 γ − (k + 1)2

4 δ + (k + 1)
2 ε

− k − 1
2 γ − (k − 1)2

4 γ + k2 − 1
4 δ − k − 1

2 ε

= (k + 1
2 − k − 1

2)ε > 0.

We have substituted for λ in the second line. The last line follows since k+1
2 > k−1

2 .

Now if (k−1)
2 γ ≤ (k+1)

2 δ, we have

∆ ≥ k + 1
2 δ + k + 1

2 λ− (k − 1)
2 γ − k − 1

2 λ

= (k + 1
2 δ − (k − 1)

2 γ) + (k + 1
2 − k − 1

2)ε > 0.

The second line follows by replacing λ by ε. The final inequality is due to the fact that
(k−1)

2 γ ≤ (k+1)
2 δ, and k+1

2 > k−1
2 .

Hence in both cases the augmentation increases the weight, which is a contradiction since

we began with a maximum weight matching. Thus such an augmenting path does not exist

with respect to the matching Mλ
∗ in the graph. �

Corollary 6.1.4. The Lambda Matching obtained by setting λ = max{ (n−2)
4 γ− (n+2)

4 δ, 0}+

ε, where n is the number of vertices in the graph and ε > 0, is a matching of maximum

weight among all maximum cardinality matchings of G.

Proof. The maximum length of an augmenting path of a graph is n/2 (or (n− 1)/2 if n is

odd). We get the desired λ using k = n/2 in Lemma 6.1.3 . �

98

7. ADAPTIVE ANONYMIZATION USING b-Edge Cover

7.1 A Generalized Framework

username

Anna (x0) 1 0 0 0
Robert (x1) 0 0 0 0
Paul (x2) 0 0 1 1
Peter (x3) 1 0 1 1
Carl (x4) 1 1 0 0
Olaf (x5) 0 1 1 1

x0

x1

x2

x3

x4

x5

y0

y1

y2

y3

y4

y5

key

* * 0 0 172 (y0)
* 0 0 0 236 (y1)
* * 1 1 672 (y2)
* 0 1 1 229 (y3)
1 * 0 0 761 (y4)
0 * 1 1 298 (y5)

Figure 7.1. An example of an adaptive anonymity problem. Left: usernames
and feature matrix (x, X); Right: the anonymized feature matrix with keys
(Y, y); Center: A bipartite graph that matches each user to a set of anonymized
keys compatible with the user’s data. There are six users and four features,
and the privacy requirements are: k(x0) = 3, k(x1) = 2, k(x2) = 3, k(x3) =
2, k(x4) = 2, k(x5) = 2. The solution using adaptive anonymity masks eight
data items, while k-Anonymity for k ≥ 2 would mask ten elements.

In this section we give a precise mathematical description of the problem and an algorithm

that achieves adaptive anonymity and high utility of the shared data at the same time.

We start with the definition of adaptive anonymity, which is generalized from k-anonymity

proposed in [80].

Definition 7.1.1. A release of data is said to have the adaptive-anonymity property if the

information for each individual v contained in the release cannot be distinguished from the

information of at least k(v)− 1 individuals in the dataset.

The difference between adaptive anonymity and k-anonymity is that the latter uses a

uniform value k for all individuals instead of a value k(v) for each individual v. For k-

anonymity, the value of k has to be the maximum of k(v) for all v to satisfy the privacy

requirements. If there exists a user who would like their record to be confused with all others,

in the k-anonymity setting, the obfuscated data will have little utility.

Our model is illustrated in Figure 7.1 . We are given a dataset X ∈ Zn×f , where n is

the number of individuals and f is the number of features. Each row xv ∈ Zf of X is a

99

contribution of the user v to the dataset and consists of f discrete features. A feature might

be race, age, height, weight, income bracket, etc. A vector k of length n, where an element

k(v) of k is a privacy parameter of the v-th user is also given. The value k(v) specifies that

the data of the v-th user must be indistinguishable from that of k(v) − 1 other users. The

output of the algorithm is an anonymized dataset Y ∈ (Z ∪ {∗})n×f , where the ∗ symbol

indicates that a particular feature has been masked. Each feature vector xv ∈ X is associated

with a username xv ∈ Z and each row yu of Y is associated with a key yu ∈ Z. Keys are

output together with a matrix Y . The sensitive information that needs to be hidden from

an adversary (one who is trying to discover the identity of the users from the value of their

features) is the matching between usernames xv and corresponding keys yu. We call this

the canonical matching. Thus, the goal of the adversary is to reveal as many edges of the

canonical matching as possible. The engine must publish data in such a way that instances

with larger privacy parameter k(v) have a smaller probability of being matched with the

corresponding key by the adversary.

We say that feature vector xv ∈ X is compatible with vector yu ∈ Y if xv(l) = yu(l) for

every 1 ≤ l ≤ f such that yu(l) 6= ∗. Hence yu can be obtained from (confused with) xv after

masking some attributes of xv. Thus either the feature values agree between the instances

or we can match a ‘*’ in the second vector to 0, 1, or * in the first.

In the suppression model analyzed here the goal is to mask as few attributes in X as

possible to produce Y (to get as high utility of the published data as possible), but in such

a way that each entry xv of X can be confused with at least k(v) rows yu in Y . Thus we

have the following measure of the utility of the presented scheme.

Definition 7.1.2. The utility of the suppression model is the ratio of the number of unmasked

features and the total number of features, nf . The goal of the database algorithm producing

obfuscated data is to minimize the number of masked features such that all privacy constraints

are met.

100

Given a dataset X, we define a function γ(i, j, l) as follows,

γ(i, j, l) =

1 if Xil 6= Xjl,

0 otherwise.

For an undirected graph G with an adjacency matrix G ∈ {0, 1}n×n and a dataset X, we

define the Hamming distance h(G) as

h(G) =
∑

i

∑
j

Gij
∑

l

γ(i, j, l).

Here Gij is either zero or one.

Given a graph G, we compute an expression for the number of stars to put in the dataset.

The maximum number of stars one can put is nf . Let us consider a node i in the graph G,

and a column l in X. Now we find the rows j of column l which correspond to neighbors of

the node i, i.e, Gij = 1. If every such element Xjl is equal to Xil, then we do not have to put

a star in Yil; otherwise we need to put a star in the position Yil. Mathematically this can be

expressed as follows.

s(G) = nf −
∑

i

∑
l

∏
j

(1−Gij γ(i, j, l)).

The second term in this equation counts the positions in the matrix Y where no stars are

needed. If Xjl = Xil then γ(i, j, l) = 0; if this is true for all neighbors j of node i, then every

term in the product is 1, and then the value of Yil is set to Xil and not a star.

Choromanski, Jebara and Tang proposed the following method [81] that finds a good-

quality approximation of G. First the algorithm minimizes h(G) over all graphs G satisfying

the privacy requirements. Then a variational upper bound [82] on s(G) is iteratively min-

imized with the use of the weighted version of the Hamming distance. The first phase of

their algorithm solved the b-Matching problem exactly.

It is clear from the definition that there are two goals for solving the adaptive anonymity

problem: group instances to satisfy privacy constraints and hide as little data as possible.

Since optimal solution for this problem is NP-complete [81], our approximate solution comes

from the observation that if we group similar instances together (w.r.t. their corresponding

101

features) then we need to hide fewer features. Our proposed adaptive anonymity algorithm

is shown in Algorithm 16 .

Algorithm 16 Adaptive Anonymity (X ∈ Zn×f , k ∈ Zn, ε)
1: Let cε = log(ε

1+ε)
2: Initialize W ∈ Rn×f to the all ones matrix
3: Initialize Y to X
4: while not converged do
5: Let G be a weighted graph, where:
6: Eij =

∑
l(Wil + Wjl)γ(i, j, l) . Compute Graph

7: C = b-Edge Cover (G, E, k− 1) . Grouping Step
8: for all i, l do . Update W
9: Wil ← exp(

∑
j Cijγ(i, j, l) cε)

10: end for
11: end while
12: for all i, l do
13: if Cij = 1 and Xjl 6= Xil for any j then
14: Yil = ∗
15: end if
16: end for
17: Ypublic = MY , where M is a random row permutation of Bn×n

The algorithm is a variational optimization algorithm which iterates until some conver-

gence criterion is met or a maximum number of iterations is reached. First, the algorithm

creates a complete graph of n vertices corresponding to instances and a weight multiplier

matrix initialized to all ones. Within an iteration, the algorithm assigns the weight of an

edge between two vertices based on some dissimilarity measure between the two instances,

multiplied by the weight multiplier. Next, the algorithm performs a grouping step based on

the current weight assignment, and then the weight multipliers are adjusted based on the

grouping.

A critical part of Algorithm 16 is how the grouping step is done. There are two re-

quirements for the grouping step: i) each instance v has to be in a group with k(v) − 1

other instances, and ii) “similar” instances should be grouped together in order to minimize

number of masked data elements. In order to achieve this goal, we use a b-Edge Cover

formulation for the grouping step.

102

Definition 7.1.3. A b-Edge Cover in a graph is a subgraph C such that every vertex v

has at least b(v) edges incident on it in the subgraph. If the edges are weighted, then a cover

that minimizes the sum of weights of its edges is a minimum weight b-Edge Cover.

Given the definition of the b-Edge Cover, we group instances together with the follow-

ing three steps:

1. Create a complete graph G where the instances are the vertices.

2. Calculate the edge weight between a pair of vertices using the dissimilarity measure

between the corresponding instances. The dissimilarity between two instances is the

number of the features in which the instances do not agree.

3. Set b(v) = k(v) − 1 for each vertex, and solve a b-Edge Cover problem with the

input (G, b).

Since b-Edge Cover is a minimization problem, it will group less dissimilar, i.e., more

similar vertices together; each vertex v is grouped with k(v) − 1 other vertices. We use a

2-approximation algorithm called the MCE algorithm for the b-Edge Cover problem [64],

[67]. we have compared the anonymizations obtained with the 3/2-approx and 2-approx

b-Edge Cover algorithms, LSE and MCE respectively, and found less than 1% difference

in utility. The details of the MCE algorithm are explained the next section.

Now we provide more details of our b-Edge Cover based formulation of adaptive

anonymity, in Algorithm 16 . The algorithm starts by initializing the weight multiplier ma-

trix W ∈ Rn×f , to all 1’s. The matrix W associates a weight Wij ≥ 1 to each entry of

input dataset Xij, which the algorithm updates at each iteration. The algorithm iterates

until the utility measure converges or a maximum number of iterations is reached. At each

iteration, we compute edge weights in the graph as the weighted sum of the product of the

weight multipliers and the dissimilarity between two instances. Then we group instances

using a b-Edge Cover C in the graph and the k(v) values. Finally, we update the weight

multipliers based on the following rule: We proportionally increase the multiplier value as-

sociated with the feature l of the instance i, Wil, based on how many times the feature

Xil differs with Xjl, the corresponding feature of other instances j grouped together with

103

i. We increase the weight multiplier of a feature when it has the potential to create more

maskings because we compute an approximate minimum weight b-Edge Cover. When the

algorithm converges, we mask a feature if it does not agree with other values of the same

feature in the same group. Then we publish a row-permuted copy of the masked data. The

time complexity of Algorithm 16 per iteration is as follows: the Compute Graph step has

complexity of O(n2f); the Update W step has complexity of O(nkf), where k is max(k(v));

and the grouping Step has time complexity O(n2logn) if an exact b-Edge Cover algorithm

is used. If a 2-approximate b-Edge Cover algorithm is used, the time complexity of the

last step becomes O(βm), where β = maxv∈V b(v).

We discuss theoretical guarantees on the quality of the computed solution below. We

will need the following lemma.

Lemma 7.1.1. For any graph G, the Hamming distance h(G) and the number of stars s(G)

satisfy s(G) ≤ h(G) ≤ ks(G), where k = maxv∈V k(v).

Proof. The first inequality is immediate since we need at most one star for each difference

that contributes to the Hamming distance. We consider the contributions that an instance

i and a feature l make to h(G) and s(G).

h(G) =
∑

i

∑
j

Gij
∑

l

γ(i, j, l) =
∑

i

∑
l

Gij
∑

j
γ(i, j, l)

≡
∑

i

∑
l

hil(G).

s(G) = nf −
∑

i

∑
l

∏
j

(1−Gijγ(i, j, l)

=
∑

i

∑
l

(1−
∏

j
(1−Gijγ(i, j, l)))

≡
∑

i

∑
l

sil(G).

Now we consider two cases. Case 1: If for every instance j such that Gij = 1, we have

γ(i, j, l) = 0, then hil(G) = 0 and sil(G) = 0, and hence the inequality holds.

Case 2: There is some j such that Gij = 1 and γ(i, j, l) = 1. Then, considering the worst-case

hil(G) =
∑

j
Gijγ(i, j, l) ≤ k.

104

Also sil(G) = 1 since we need a star here. Hence

hil(G) ≤ k ≤ k · sil(G).

Summing over all i and l, we obtain the lemma. �

Theorem 7.1.2. The first iteration of the while-loop in Algorithm 16 finds a b-Edge Cover

C such that

s(C) ≤ αk min
G∈Bn×n

s(G),

where the minimum in the expression is over all adjacency matrices satisfying privacy re-

quirements, and α is the approximation ratio of the b-Edge Cover algorithm.

Proof. Initially the variational matrix W has all elements set to one, and hence in the first

iteration the objective of the b-Edge Cover is proportional to the Hamming distance of G.

Suppose Ĝ = argmin h(G); then h(C) ≤ α h(Ĝ) since we have an approximation algorithm

for b-Edge Cover. For any graph G, s(G) ≤ h(G) from the Lemma. Combining, we have

s(C) ≤ h(C) ≤ α h(Ĝ). Now suppose G∗ = argmin s(G). Since Ĝ minimizes h(G), we

have h(Ĝ) ≤ h(G∗). From the Lemma 7.1.1 , we have h(G) ≤ k s(G). Combining all these,

s(C) ≤ h(C) ≤ α h(Ĝ) ≤ α h(G∗) ≤ αk s(G∗). �

We illustrate the Grouping step by a b-Edge Cover by the example shown in Fig-

ure 7.2 , with six instances and six binary features. Each user expects 2-anonymity, i.e.,

each user wants to be confused with at least one other user. The anonymity algorithm com-

putes a b-Edge Cover with b = 1 for each node. Given the input data, the anonymity

algorithm first constructs a dissimilarity matrix S. Each row of the matrix defines the dissim-

ilarity between that instance and all other instances in the input. For example, the second

entry of the first row denotes the dissimilarity between user U1 and U2 which is 2, because the

instances disagree in features f2 and f4. This dissimilarity matrix acts as the input adjacency

matrix to the b-Edge Cover algorithm where each entry refers to the weight of an edge.

The bold-font entries are the edges included in the b-Edge Cover. We see that grouped

pairs are: (U1, U2), (U3, U4) and (U5, U6). Next the anonymity algorithm uses this grouped

105

Instances f1 f2 f3 f4 f5 f6
U1 1 0 1 0 1 0
U2 1 1 1 1 1 0
U3 0 1 0 1 0 1
U4 0 0 0 0 0 1
U5 1 1 0 0 0 0
U6 1 1 0 0 0 1

S U1 U2 U3 U4 U5 U6
U1 - 2 6 4 3 4
U2 - 4 6 3 4
U3 - 2 4 2
U4 - 3 2
U5 - 1
U6 -

Instances f1 f2 f3 f4 f5 f6
U1 1 * 1 * 1 0
U2 1 * 1 * 1 0
U3 0 * 0 * 0 1
U4 0 * 0 * 0 1
U5 1 1 0 0 0 *
U6 1 1 0 0 0 *

Figure 7.2. An example for adaptive anonymity. From top to bottom: origi-
nal input, dissimilarity matrix (Hamming distances) and anonymized output.

output to mask entries in the following manner: for each pair, it finds the dissimilar features

and mask those features with a ∗. For example, U5 and U6 are grouped and the instances

do not agree on feature f6, so the algorithm puts ∗ in the corresponding f6 entries. As we

can see, there are 6× 6 = 36 entries and after one iteration the algorithm masks 10 entries.

Thus the utility at this iteration is 1− 10/36 = 0.722, i.e., 72%.

An important feature of our framework, specifically in the shared memory context, is

that the memory requirement of Algorithm 16 is linear in the number of instances, whereas

a state-of-the-art algorithm [81] requires quadratic memory. This significant reduction

comes from an interesting property of the MCE algorithm for solving the b-Edge Cover

problem.

106

7.2 Experiments and Results

We conducted our experiments on Cori, a Cray XC40 supercomputer at NERSC, Berke-

ley. Each node on Cori consists of two 16-core 2.3 GHz Intel E5-2698 (Haswell) processors

with 128 GB RAM. Each core in a node has its own 64 KB L1 cache and 256 KB L2 cache,

as well as a 40 MB shared L3 cache per socket. Cori nodes are also interconnected with the

Cray Aries network using the Dragonfly topology.

We used the Intel MPI implementation for inter-node communication and OpenMP for

intra-node multi-threading, and compiled the code with the built-in compiler wrapper opti-

mized for the system, CC-2.5.12 with the flags -O3 -qopenmp. Our hybrid implementation

used the following MPI-openMP settings: one OpenMP process for each of the 32 cores on

a node, and one MPI process per node. Hyper-threading did not improve the performance

of our code.

We consider eight datasets for adaptive anonymity experiments in Table 7.1 . We use four

small datasets in our experiments to compare an adaptive anonymity algorithm by Choro-

manski et al [81], which groups individuals using belief propagation and exact b-matching

algorithms, with our approximate b-edge cover approach. For each of these problems, these

authors picked a specific privacy requirement k that varies with each data item, and we use

the same values to be consistent with their work. The values for k ranged from 2 to 10. The

earlier belief propagation algorithm is not capable of solving the larger problems in our test

set. We consider three larger problems from a Machine Learning Repository at University

of California, Irvine [83], and one from the Centers for Medicare and Medicaid Services [84],

to demonstrate that the approximate b-edge cover approach can solve them. We generated

b(v) values for each problem as the minimum of the degree of a vertex and a uniform random

integer between one and the square root of the number of vertices. For each experiment we

repeat the computations three times and report the average run-time. The utility for each

problem is invariant since the same b-edge cover is computed. Our algorithm terminates if

three consecutive iterations do not show any improvement in the utility measure. For smaller

problems the algorithm terminates within four iterations and for the larger problems it takes

three to nine iterations. However, most of the feature masking occurs in the first iteration.

107

Table 7.1. Problem sets for adaptive anonymity.
Problem Instances Features
Caltech36 768 101
Reed98 962 139
Haverford76 1,446 145
Simmons81 1,518 140
UCI_Adult 32,561 101
USCensus1990 158,285 68
Poker_hands 500,000 95
CMS 745,280 512

For example, the CMS dataset achieves a utility of 79.3% in 6 iterations, whereas the utility

after the first iteration is 70.9%.

Table 7.2. Comparing run times of the Belief Propagation (BP) and MCE
algorithms on a single thread of an Intel Haswell.

Problem BP MCE Rel. Perf. Utility
Diff (%)

Caltech36 13m 15s 10s 80 -0.85
Reed98 20m 47s 22s 57 -0.32
Haverford76 1h 07m 55s 73 0.23
Simmons81 59m 29s 45s 79 -0.81

7.2.1 Shared Memory Results

Table 7.3. Effect of working set memory on runtimes using the MCE algo-
rithm on 32 cores of an Intel Haswell processor.
Problems on the fly 8 ∗ khn 32 ∗ khn 128 ∗ khn Utility
UCI_Adult 1m 48s 18s 15s 20s 90.4%

USCensus1990 3h 47m 13m 19m 22m 87.1%
Poker_hands >24h 51m 46m 1h 02m 81.3%

CMS >24h 6h 11m 6h 48m 6h 16m 79.3%

In Table 7.2 , we compare the run-times of the belief propagation algorithm (BP) [81],

with the MCE based algorithm. BP algorithms are well-known in Machine Learning, and

108

have been used to solve a variety of problems including graph matching [85]. We observe

that the MCE algorithm is 55 to 80 times faster than the BP algorithm. The last column of

Table 7.2 shows that b-Edge Cover also achieves this improvement without compromising

the utility, since the differences are less than 1%. We proceed to describe results from our

parallel algorithm that can solve large problems, which are not feasible for the BP algorithm.

Figure 7.3. Strong scaling of adaptive anonymity problems on 32 cores of an
Intel Haswell processor.

Next we show the impact of the linear memory formulation of the adaptive anonymity

problem in the shared memory context using 32 cores on one node of Cori. We consider

four larger problems to illustrate the effect of trading computation for space. The problems

Poker_hands and CMS have roughly 500K and 750K instances. Assuming each entry of E

is a 4 byte integer, storing the full matrix E would require approximately 1TB and 2TB of

memory, respectively, but our machine only has 128GB of memory. Hence we cannot solve

these problems with an algorithm that needs the entire dissimilarity matrix for computations.

For these problems, we randomly generate k values between kl = 5 and kh = 100 for privacy

parameters. We partially generate the dissimilarity matrix using the following strategy: for

each row, we generate t∗kh entries, with t ∈ {8, 32, 128}, yielding a total memory requirement

of t ∗ khn for n rows in the dissimilarity matrix E. We summarize the results in Table 7.3 .

The fastest result for each problem is indicated in bold font. We observe that “on the fly”

computation, i.e, no storage for the matrix, is significantly slower than using optimal part

109

Figure 7.4. Strong scaling of adaptive anonymity algorithm on Cori using
our hybrid MPI-OpenMP code.

sizes. We mask less than 25% of the data elements for these problems. Our linear memory

formulation also shows the adaptability of our algorithm in terms of memory constraints. A

user can easily choose a size factor t dependent on the memory available, and provide it as

an input to the algorithm.

Next we show the strong scaling performance of the adaptive anonymity algorithm that

uses the MCE algorithm on all eight problems in Figure 7.3 . For the larger four problems,

we use the best part sizes from Table 7.3 . We observe that the algorithm achieves a speedup

of 27× on 32 threads for the larger problems. The smaller problems do not scale well beyond

16 threads because the amount of work available per thread is small, and cannot offset the

NUMA costs.

7.2.2 Distributed Memory Results

We report the strong and weak scaling performance of our algorithm on the three largest

problems. The distributed memory implementation does not employ the linear memory

formulation, since it is not memory-constrained as the shared memory implementation is.

110

Figure 7.5. Weak scaling of adaptive anonymity algorithm on Cori.

The implementation uses a hybrid strategy, i.e., each compute node is assigned one MPI

task for inter-node communication and each node uses 32 OpenMP threads for parallel

computation. In Figure 7.4 , we report the strong scaling performance of our algorithm. An

ideal speed-up curve is plotted so that the reader could compare its slope with the observed

slopes of the three problems. We observe that the algorithm scales well up to 8, 192 cores,

and that initially some problems exhibit super-linear speed-up.

This is due to the smaller memory available on fewer processors. For example, Poker_hands

roughly requires 1 TB of memory for the data and data structures, but 8 compute nodes (256

cores) have only 1 TB memory in total. Since the operating system requires some memory

as well, the problem does not fit in the memory. Hence it is likely that many memory swaps

occur, slowing the code for fewer processors. The UCI_Adult problem strongly scales to

1, 024 cores but not beyond it, due to its small size.

The adaptive anonymity problem has quadratic memory complexity in the number of

instances,and hence for each problem we randomly pick 12.5%, 25%, 50% and 100% of all

instances and run on 64, 256, 1024 and 4096 cores, respectively. We repeat the process three

times for each problem and the report the average run-times in Figure 7.5 . Our algorithm

111

exhibits reasonably good weak scaling as the curves are nearly horizontal, implying that it

could potentially scale beyond 8K cores with larger problem sizes.

112

8. LOAD BALNCING FOCK MATRIX COMPUTATION

USING b-Matching

8.1 Load Balancing in Quantum Chemistry

We show an application of submodular b-Matching in Self-Consistent Field (SCF) com-

putations in computational chemistry [86].

8.1.1 Background

The SCF calculation is iterative, and we focus on the computationally dominant kernel

that is executed in every SCF iteration: the two-electron contribution to the Fock matrix

build. The algorithm executes forty to fifty iterations to converge to a predefined tolerance.

The two-electron contribution involves a Θ(n4) calculation over Θ(n2) data elements,

where n is the number of basis functions. The computation is organized as a set of n4 tasks,

where only a small percentage (< 1%) of tasks contribute to the Fock matrix build. Before

starting the main SCF iterative loop, the work required for the Fock matrix build in each

iteration is computed from the number of nonzeros in the matrix, which is proportional to the

work across all SCF iterations. This step is inexpensive since it only captures the execution

pattern of the Fock matrix build algorithm without performing other computations. The task

assignment is recorded prior to the first iteration and then reused across all SCF iterations.

The Fock matrix build itself is also iterative (written as a Θ(n4) loop), where each

iteration represents a task that computes some elements of the Fock matrix. For a given

iteration, a task is only executed upon satisfying some domain constraints based on the

values in two other pre-computed matrices, the Schwarz and density matrices.

The default load balancing used in NWChemEx [87] is to assign iteration indices of the

outermost two loops in the Fock matrix build across MPI ranks using an atomic counter

based work sharing approach. All MPI ranks atomically increment a global shared counter

to identify the loop iterations to execute. This approach limits scalability of the Fock build

since the work and number of tasks across MPI ranks are not guaranteed to be balanced.

113

300

200

100

50

M2

M1

b=1 b=2

300

200

100

50

M2

M1

b=1 b=2

300

200

100

50

M2

M1

b=1 b=2

300

200

100

50

M2

M1

b=1 b=2

Figure 8.1. Assigning tasks to processors to balance the computational work
using a submodular b-matching.

114

The task assignment problem here naturally corresponds to a b-Matching problem. Let

G(U, V, W) be a complete bipartite graph, where U, V, W represent the sets of blocks of the

Fock matrix, the set of machines, and the load of the (block,machine) pairs, respectively.

The b value for each vertex in U is set to 1; for each vertex in V , it is set to d|U |/|V |e in

order to balance the number of MPI messages that each processor needs to send. We will

show that a submodular objective with these b-Matching constraints implicitly encodes

the desired load balance. To motivate this, we use the square root function (α = 0.5) as our

objective function in Eqn. (1.3).

We consider the execution of the Greedy algorithm for Submodular b-Matching on

a small example consisting of four tasks with work loads of 300, 200, 100 and 50 on two

machines M1 and M2. The b-Matching constraint requires each processor to be assigned

two tasks. At the first iteration, we assign the first block (load 300) to machine M1. Note that

assigning the second block to machine M1 would have the same marginal gain as assigning

it to M2 if the objective function were linear. But since the square root objective function

is submodular, the marginal gain of assigning the second block to the second machine is

higher than assigning it to the first machine. So we will assign the second block (load 200)

to machine M2. Then the third block of work 100 would be assigned to M2 rather than

M1, due to the higher marginal gain, and finally the last block with load 50 would be

assigned to M1 due to the b-Matching constraint. We see that modeling the objective by

a submodular function implicitly provides the desired load balance, and the experimental

results will confirm this.

Assigning tasks to machines is a classic scheduling problem. The most studied objec-

tive here is minimizing the makespan, i.e., the maximum total time used by any machine.

The problem of makespan minimization can be generalized to a General Assignment Prob-

lem(GAP), where there is a fixed processing time and a cost associated with each task and

machine pair. The goal is to assign the tasks into available machines with the assignment

cost bounded by a constant C and makespan at most T . Shmoys and Tardos [88] extended

the LP relaxation and rounding approach [89] to GAP. The makespan objective can be a sur-

rogate to the load balancing that we are seeking, but the GAP problem does not encode the

115

b-matching constraints on the machines. Computationally solving a GAP problem entails

computing an LP relaxation that is expensive for large problems.

Another possible approach is to model our load balancing problem as a multiple knapsack

problem (MKP). In an MKP, we are given a set of n items and m knapsacks such that each

item i has a weight (profit) wi and a size si, and each knapsack j has a capacity cj. The goal

here is to find a subset of items of maximum weight such that they have a feasible packing

in the knapsacks. MKP is a special case of GAP [90], and like the GAP, we cannot model

the b(v) constraints by MKP.

Our formulation of load balancing has the most similarity with the Submodular Welfare

Maximization (SWM) problem [91]. In the SWM problem, the input consists of a set of n

items to be assigned to one of m agents. Each agent j has a submodular function vj, where

vj(S) denotes the utility obtained by this agent if the set of items S is allocated to her. The

goal is to partition the n items into m disjoint subsets S1, . . . , Sm to maximize the total

welfare, defined as ∑m
j=1 vj(Sj). The greedy algorithm achieves 1/2- approximation ratio [91].

Vondrak’s (1− 1/e)-approximation [92] is the best known algorithm for this problem. This

algorithm uses continuous greedy relaxation of the submodular function and randomized

rounding. Although we have modeled our objective as the sum of submodular functions,

unlike the SWM, we have the same submodular function for each machine; our approach

could be viewed as Submodular Welfare Maximization with b-matching constraints. In the

original SWM problem, there are no constraints on the partition size, but in our problem we

are required to set an upper bound on the individual partition sizes.

8.1.2 Results

As a representative bio-molecular system we chose the Ubiquitin protein to test perfor-

mance, varying the basis functions used in the computation to represent molecular orbitals,

and to demonstrate the capability of our implementation to handle large problem sizes. The

assignment algorithm is general enough to be applied to any scenario where such computa-

tional patterns exist, and does not depend on the molecule or the basis functions used.

116

We visualize the load on the processors in Fig. 8.2 . The standard deviation for the

current assignment is 105, and the coefficient of variation (Std./Avg.) is 7.5 × 10−2; while

these quantities for the submodular assignment are 436 and 3 × 10−4, respectively. It is

clear that the latter assignment achieves much better load balance than the former. The

run time is plotted against the number of processors in Figure 8.4 . It can be seen that

the current assignment does not scale beyond 3000 processors, where as the submodular

assignment scales to 8000 processors of Summit. The better load balance also leads to

a four-fold speedup over the default assignment. Since the Fock matrix computation takes

about fifty iterations, we reduce the total run time from 30 minutes to 8 minutes on Summit.

0 500 1000 1500 2000 2500 3000 3500 4000
500000

1000000

1500000

0 500 1000 1500 2000 2500 3000 3500 4000
Ranks

500000

1000000

1500000

Lo
ad

s

Figure 8.2. Visualizing the load distribution for the Fock matrix compu-
tation for the Ubiquitin protein. Results from: Top, current assignment on
NWChemEx. Bottom, submodular assignment.

117

1k 2k 3k 4k 6k 8k
of processors

2

4

6

8

10

12

14

16

Ti
m

e
(S

ec
.)

fo
r a

n
ite

ra
tio

n

Default
SubMod

Figure 8.3. Runtime comparison per iteration for the default and proposed
scheduling with the sto3g basis functions.

118

1k 2k 3k 4k 6k 8k
of processors

10

20

30

40

50

60

70

Ti
m

e
(S

ec
.)

fo
r a

n
ite

ra
tio

n

Default
SubMod

Figure 8.4. Runtime per iteration for the current (default) and submodu-
lar assignments with the 6-31g basis functions for the Ubiquitin protein in
NWChemEx on Summit.

119

9. DEGREE-CONSTRAINED GRAPH CONSTRUCTION FOR

MACHINE LEARNING

9.1 Background

We have n samples of data and C discrete classes. The data is further divided into l

labeled and u unlabeled examples. Let L = {(x1, y1), . . . , (xl, yl} be the labeled samples,

where (xi, yi) is the ith tuple of feature vector and corresponding label. Let also U =

xl+1, . . . , xl+u be the unlabeled data. Here, n = l + u, usually l� u. Our goal is to infer the

labels of U .

Semi-supervised learning (SSL) is useful in this situation because of the imbalance of

the labeled samples. One can also think of SSL as halfway between supervised and unsu-

pervised learning. Most of the SSL algorithms are transductive in nature. A transductive

learning algorithm aims to provide a prediction for only the given test cases. In contrast,

an inductive learning is more ambitious, where the goal is to learn a rule or function that

can predict any test case from the entire space. One of the important assumptions in SSL is

the manifold assumption, which states that a low dimensional manifold embeds the higher

dimensional input data. Graph-based learning employs a graph to approximate this mani-

fold. During the last decade, the graph-based approaches have gained significant attention

[93]–[95]. GSSL has been successfully applied to a number of inference tasks. Text classifica-

tion [96], [97], sentiment analysis [98], question answering [99], part-of-speech tagging [100],

web-page classification [101], class-instance acquisition [102], [103], image colourisation [104],

and detection of solar photovoltaic arrays [105] are a few examples.

Typically a GSSL consists of two sub-problems: graph construction and label inference.

A graph is explicit in some applications, such as a node or link prediction in social network-

ing. Here, we are interested in situations where the graph relationship is not apparent. One

has to construct the nodes and edges out of the dataset. In GSSL, data samples become the

vertices, and the edges represent the similarity or distance between the examples. Graph

construction methods can further be divide into two categories, namely task-independent

and task-dependent construction [94]. Task-independent construction does not use the la-

bels, whereas the task-dependent methods do the opposite. In this chapter, we consider

120

Figure 9.1. A typical GSSL flow

only task-independent construction. The most commonly practiced way here is creating the

nearest neighbor graphs. A k-nearest neighbor chooses k top similar items of a sample. A

ε- neighborhood graph uses a global threshold ε to select the edges.

k-NN is simple to construct and also preserves clustering in some sense [106]. However,

it also has disadvantages. A k-NN graph is highly irregular; thus often has local hubs. The

irregularity of k-nn graph has been addressed in [107]. In [107], the author showed that

this irregularity affects the inference algorithm. To create a regular graph, they suggested

employing perfect b−matching. A b-matching is a subgraph of the complete graph where

each vertex has a degree exactly b. Modification of the original KNN graph construction

approaches is also developed. In [108], the authors applied mutual knn to construct a graph.

In mutual knn, an edge is inserted into the graph if and only if this edge is in the top k

neighbors on both of the endpoints. In [109], [110], a knn is constructed sequentially using

a relevance measure.

121

The label inference follows the graph construction. In most of the settings, there are few

instances with known labels, which are called seeds. The seed vertices are initialized with the

labels. The earliest and the most popular label inference algorithm is the Gaussian Random

Field (GRF) (aka Label Propagation) [111]. GRF obtains a smooth label assignment over

the graph keeping the labels on the seed nodes unaltered. Suppose the constructed graph

is G(V, E, w), where V is the set of vertices, E is the set of edges, and w is the weight

non-negative weight function on edge. Let S be the set of (seed node, label) pairs, and

Y ∈ 0, 1n×C be the indicator matrix for the labels. Here Y is initialized with seed labels. At

every iteration of the label propagation, for all the (node, label) pairs, Y is updated as the

normalized weighted sum of all the neighbors of the node. The new labels are then clamped

for the seeds to maintain their original labels. It is apparent that for each node u, the uth

row of Y provides a probability distribution over the classes. Once this algorithm converges,

we infer the most probable labels from Y . The algorithm is presented as pseudocode in

Algorithm 17 .

Other transductive label inference methods include Local and global consistency [112],

Adsorption based approaches [113], [114], information regularization [115], and measure

propagation [97].

9.2 Sparsification through constraining degree

A simple, undirected, and a weighted graph is represented by sets V , E, and function w

as follows.

• V is the set of vertices. Assume |V | = n.

• E is the set of edges. An edge is an unordered tuple e{vi, vj}, where vi, vj ∈ V . As the

graph is simple and undirected we have vi 6= vj and e{vi, vj} = e{vj, vi}.

• w is a non-negative function defined on edges where w(e) > 0,∀e ∈ E and zero

otherwise.

Adjacency Matrix of the graph is denoted by A ∈ {0, 1}n×n. Sometimes we represent the

weight function as a matrix w ∈ Rn×n. A(e{vi, vj}) = A(e{vj, vi}) = 1 for the edges e in E

122

Algorithm 17 LabelPropagation(G(V, E, W), S, Y)
t = 0
Y t = 0
for u ∈ U do

if u is one of the seeds then
l← label of u
Y t

ul = 1
else

k ← random integer between 1 and C
Y t

uk = 0
end if

end for
while not converged do

t = t + 1
for u ∈ U do

for l← 1 : C do
Y t

ul =
∑

(u,v)∈E
WuvY t−1

vl∑
(u,v)∈E

Wuv

end for
end for
for (u, l) ∈ S do

for k ← 1 : C do
Y t

uk = 0
end for
Y t

ul = 1 . Clamping the know labels
end for

end while
for u ∈ U do

Label(u) = argmaxlY
t

ul

end for

123

and zero otherwise. For notation convenience we will often use A(e) and w(e). The set of

incident edges on a vertex is denoted by δ(v). The degree of a vertex v can be computed as∑
e∈δ(v) A(e).

We represent the dataset as D ∈ Rn×f , where n is the number of entries, and f is the

number of features. We can compute the complete graph from this dataset as follows. The

entries represent the vertices. For any two entries i, j with i 6= j we add an edge. The

weight function on the edges is the similarity or distance measure between the entries. By

the definition of our Adjacency and Weight matrix, it is clear that the W obeys the two

properties.

• A(e) = 0 =⇒ w(e) = 0

• A(e) = 1 =⇒ w(e) > 0

More formally these two properties ensure that ∑
e∈E w(e)A(e) = ∑

e∈E w(e). We define,

W = ∑
e∈E w(e).

9.2.1 The Sparsification Problem

Let X be the adjacency matrix of the sparsified graph. We use the weighted Frobenius

norm of a matrix as the objective function to the sparsification problem. This norm weighted

low-rank approximation of matrices [116]. Given two matrices, M and T of dimension p, q

where each entry of T is positive, the weighted Frobenius norm is defined as ||M ||T :=√∑p,q
i,j T (i, j)M(e)2. For our purpose, we would adopt the corresponding distance measure

namely,

||A−X||2w

Following the definition of the norm, we define the weighted Frobenius distance as

||A−X||2w =
∑
e∈E

w(e)(A(e)−X(e))2

With the degree bound, we can now formalize our optimization problem as follows.

124

optimize
∑
e∈E

w(e)(A(e)−X(e))2

subject to∑
e∈δ(v)

X(e) is bounded (9.1)

We can expand the objective function as follows.

||A−X||2W =
∑
e∈E

w(e)(A(e)−X(e))2

=
∑
e∈E

w(e)(A(e)2 + X(e)2 − 2A(e)X(e))

=
∑
e∈E

w(e)(A(e) + X(e)− 2A(e)X(e))

=
∑
e∈E

(w(e) + w(e)X(e)− 2w(e)X(e))

=
∑
e∈E

(w(e)− w(e)X(e))

=
∑
e∈E

w(e)−
∑
e∈E

w(e)X(e)

= W−
∑
e∈E

w(e)X(e) (9.2)

The third line follows because both A and X are binary matrices. The fourth line is due

to the properties of the weight matrix W . The first part of the equation 9.2 does not depend

on the variable X. So optimizing ||A−X||2W amounts to optimizing −∑
e∈E W (e)X(e).

9.2.2 Choice between minimization and maximization

The unconstrained problem of optimizing −∑
e∈E w(e)X(e) is not particularly useful as

depending on minimizing or maximizing; it would compute the empty or full graph. Our

notion of sparsification is through bounding the degree. Informally we want to optimize

125

−∑
e∈E w(e)X(e) with the constraint that the resulting graph has some bound on the degree

of the vertices. We explore two types of constraints, namely upper and lower bounds.

Similarity and upper bound

We assume that the user has a target degree of vertices for the sparsified graph. Let the

target degrees be b(v) ∀v ∈ V . We also assume that w here is a similarity measure between

the vertices (with an edge). In this scenario the natural objective function is to minimize the

weighted Frobenius distance i.e., ||A−X||2W or maximize ∑
e∈E w(e)X(e). The unconstrained

optimization would not make any sense because this would produce the complete graph as

the optimal solution. This motivates us to design the following optimization problem upper

bounding the degrees.

max
∑
e∈E

w(e)X(e)

subject to,∑
e∈δ(v)

X(e) ≤ b(v)∀v ∈ V (9.3)

X(e) ∈ {0, 1}

We note that this discrete optimization problem is solvable in polynomial time and known

as b−matching. We discuss the exact and approximation algorithms for b-matching in the

Chapter 1.3 of this thesis.

Dis-similarity and lower bound

In contrast if our weight matrix represents distance or dis-similarity, one would be inter-

ested to maximize ||A − X||2W which amounts to minimize ∑
e∈E w(e)X(e). Once again, it

should be intuitive that the unconstrained or only the upper bound constraints on the de-

grees do not make sense because it would result in an empty graph. As a consequence, if our

126

weight matrix is a distance measure, we are interested in solving the following optimization

problem.

min
∑
e∈E

w(e)X(e)

subject to,∑
e∈δ(v)

X(e) ≥ b(v)∀v ∈ V (9.4)

X(e) ∈ {0, 1}

This combinatorial problem has a polynomial solution and known as b−edge cover in

the literature. We discuss the exact and approximation algorithms for b-matching in the

Chapter 1.4 of this thesis.

9.3 Use of approximation in sparsification

In the previous section, we have established the optimality of the graph sparsification

problem through equivalent problems such as optimal b-Matching and b-Edge Cover.

Although these problems have polynomial time solution, often the algorithms are complex

and computationally expensive. The best known optimal algorithm for solving optimally

b-Matching or b-Edge Cover requires Õ(mn2) time. This is prohibitive in most of the

real-life problems.

An alternative approach is to compute approximate solutions of b-Matching or b-Edge

Cover. We would like to analyze the approximation guarantee of the sparsification objective

given that the equivalent problems are solved approximately. Let the optimal solution of

the b-Matching problem is OPTmc and the approximate solution is APPRmc. Let also be

the approximation factor 0 < α < 1 i.e., APPRmc ≥ αOPTmc. It is straightforward from

equation 9.2 that the optimal sparsification objective is W − OPTmc. Then we have the

following guarantee.

Lemma 9.3.1. W− APPRmc ≤W−OPTmc + (1− α)OPTmc

127

Proof. From the definition of the approximation algorithm,

APPRmc ≥ αOPTmc

W− APPRmc ≤W− αOPTmc

≤W−OPTmc + OPTmc − αOPTmc

≤W−OPTmc + (1− α)OPTmc

�

For the corresponding lower bound problem a similar result holds. Assuming the optimal

and approximate solution of the b−edge cover problem respectively as OPTec and APPRec.

Also let β > 1 be the approximation factor i.e., APPRec ≤ βOPTec, then the following

results hold for the sparsification problem.

Lemma 9.3.2. W− APPRec ≥W−OPTec − (β − 1)OPTec

The proof is very similar to the lemma 9.3.1 .

9.4 Preliminary Experiments and Results

In this section, we will report results of our preliminary experiments. Our target appli-

cation here is text classification.

9.4.1 Dataset

For the preliminary experiment, we chose two popular text classification dataset. We

describe the dataset next.

Reuters-21578

Reuters-21578 [117] corpus consists of 21578 documents in 135 categories. These doc-

uments appeared on the Reuters newswire in 1987. We used here the ModApte version.

The documents with multiple category labels are discarded. After that, the total number of

documents is 8293, with 65 categories.

128

20Newsgroup

The 20Newsgroup is a popular data set for experiments in text applications of machine

learning techniques. It consists of approximately 20,000 messages on newsgroup, and was

originally distributed by Lang [118]. The dataset has 20 labels (newsgroups) with (nearly)

even distribution across the documents.

We conduct standard pre-processing steps on the dataset. We remove the stop words and

generate a bag of words representation of it. Cosine distance and cosine similarity is used

for the distance or similarity measure between two examples. For the graph construction,

we apply the matching and edge cover construction on a large k-nn graph. For example, if

we want to create a b-edge cover graph, where b = 10, we first generate a 30-NN graph, and

run our b-edge cover algorithm using b = 10.

9.4.2 Experiment results

We plot in Fig. 9.2 , and Fig. 9.3 the quality of the graphs generated by the 3/2-

approximate b-Edge Cover algorithm and the b-Nearest Neighbor algorithms for different

values of b for the reuters dataset. We can see that compared to the b-Nearest Neighbor

graphs, the edge cover graphs are more regular in degree distribution.

We apply the Label propagation algorithm describe in Algorithm 17 in the generated

graphs, and calculate the weighted F1 score. We plot the accuracies for Reuters and 20News-

group dataset in Fig. 9.4 , and Fig. 9.5 . As b increases all the graph construction algorithms

accuracy drop. But compared to b-Nearest Neighbor the approximate b-Matching and

b-Edge Cover graphs provide more stable score.

129

Figure 9.2. Degree distribution of the generated graph using 3/2-approx edge
cover algorithm

Figure 9.3. Degree distribution of the generated graph using 2-approx k-NN algorithm

130

0 20 40 60 80 100

0.1

0.2

0.3

0.4

0.5

1.0%
knn
ec
bm

0 20 40 60 80 100

0.1

0.2

0.3

0.4

0.5

0.6

2.0%
knn
ec
bm

0 20 40 60 80 100

0.1

0.2

0.3

0.4

0.5

0.6

0.7

5.0%
knn
ec
bm

0 20 40 60 80 100

0.2

0.3

0.4

0.5

0.6

0.7

0.8
10.0%

knn
ec
bm

Figure 9.4. Weighted F1 of different percentage of labels and different b-
values for Reuters Dataset

0 20 40 60 80 100

0.1

0.2

0.3

0.4

0.5%

knn
ec
bm
mutknn

0 20 40 60 80 100

0.1

0.2

0.3

0.4

0.5

0.6
1.0%

knn
ec
bm
mutknn

0 20 40 60 80 100

0.1

0.2

0.3

0.4

0.5

0.6

2.0%

knn
ec
bm
mutknn

0 20 40 60 80 100

0.1

0.2

0.3

0.4

0.5

0.6

0.7

5.0%

knn
ec
bm
mutknn

0 20 40 60 80 100
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
10.0%

knn
ec
bm
mutknn

Figure 9.5. Weighted F1 of different percentage of labels and different b-
values for newsgoup Dataset

131

10. CONCLUSION AND FUTURE WORK

10.1 Summary

Figure 10.1. Contributions of the thesis

We highlight the contributions of the thesis in Figure 10.1 . We have investigated several

algorithmic paradigms to design approximate b-edge cover and b-matching. We improved

the traditional greedy algorithm for b-edge cover by introducing lazy evaluation. We also

analyzed the b-nearest neighbor algorithm in the edge cover framework and provided its ap-

proximation guarantees. Linear Programming based framework is used to develop a primal-

dual 3/2-approximate algorithm. We also analyzed several existing algorithms using different

Primal-dual algorithmic techniques. Matchings and edge covers are related problems. We

use existing and novel reduction techniques to design approximation algorithms for edge

cover problems. We developed a 2-approximate highly parallel MCE algorithm using a com-

plimentary relation, and we propose a novel constrained perfect matching based reduction.

For the submodular b-matching, we introduced the local dominance framework and devel-

oped parallel algorithms that combine the local dominance and the lazy greedy algorithm.

In many real-life applications, one needs to find matchings that have high cardinalities and

132

large weights. We augment the traditional matching formulation to account for cardinalities

and weights. We show that a simple weight translation achieves Pareto optimality of weights

and cardinality.

We also applied the algorithms to aolve various real-life problems. We provide an opti-

mization framework that connects graph construction from data to degree-constrained sub-

graphs. We also use the edge coves to solve an adaptive anonymity problem. Using a

2-approximate highly parallel MCE algorithm that scales up to 8,000 cores, we were able

to anonymize datasets in minutes that took hours previously. We employed submodular

b-matchings to generate a balanced assignment of tasks to processors for building Fock ma-

trices in the NWChemEx Chemistry software. This assignment results in a four-fold speedup

per iteration using 14,000 processors of the Summit Supercomputer at Oak Ridge National

Laboratory.

Next, we discuss few future work related to the thesis.

10.2 Practical streaming and online algorithms for graph problem

We are observing an outstanding growth in data generation. The advances in data

collections and simulations of scientific experiments have made data generation exceptionally

fast relative to its analysis. The enormous amount of data is impossible to analyze as a

whole. Even constructing a graph between the observed entities of the dataset often requires

more memory than is available. There are also situations where the complete data is not

observable, and one needs to analyze it as a stream.

The computational approaches that model this situation correspond to streaming and

online algorithms. These algorithms view data as dynamic entities. Streaming algorithms

process the input as a sequence of items, which may be examined only a limited number of

times (passes), where a pass is complete when we observe the whole data. The length of the

sequence is often limited. For example, let G be a graph with n vertices and m edges. In a

streaming model, we could only observe o(n) edges of G at a time. The number of passes

is often constant (ideally just one). The online algorithms assume an extreme setting where

the number of passes is just one, and the input sequence length is O(1).

133

For graph problems, a relaxed semi-streaming setting [119] is often used. In a semi-

streaming algorithm, O(npolylog(n)) edges is observed. The semi-streaming model for graph

problems is introduced because most of the problems become provably intractable if the

available space is sublinear in n, the number of vertices [120].

There exist Primal-dual algorithmic frameworks for both online and streaming algo-

rithms. Buchbinder and Naor [121] proposed a primal-dual approach for designing online

algorithms. Using this framework, they designed algorithms for combinatorial problems such

as online set cover, generalized caching, maximizing ad-auction revenue, etc. We are inter-

ested in utilizing this framework for computing degree-constrained subgraph problems in the

online setting.

Problems related to matchings have been recently considered in the semi-streaming set-

ting. A breakthrough in streaming maximum weight Matching came in 2018 when Paz and

Schwartzman developed a (1/(2 + ε)) algorithm in a single-pass [122]. The authors utilize a

classic offline local-ratio based 2-approximate algorithm [123] due to Bar-Yehuda and Even

to design the streaming one. For the submodular Matching, the first results are a 1/7.75-

approximate Matching in a single pass and 1/(3 + ε)-approximation when using O(ε−3)

passes [124]. Using a randomized primal dual technique, Levin and Wajc [125] developed the

best known 1/5.828-approximate submodular b-Matching and 1/(3+ε)-approximate linear

weight b-Matching in a single pass. They extended the local-ratio algorithm of Paz and

Schwartzman [122] by reinterpreting them in the primal-dual framework. The submodular

function was extended to a real function using concave closure to formulate a linear program

(LP). The algorithm maintains a stack of edges and vertex potentials (the duals). When an

edge arrives, the marginal gain of the edge is compared to a function of the corresponding

vertex potentials, and the algorithm probabilistically decides on adding the edge to the stack.

Finally, at the end of the stream, the stack is unwound greedily in reverse order. One future

work could extend this local ratio-based algorithm to covering problems such as edge cover

and b-edge covers.

134

10.3 Continuous optimization approaches to combinatorial problems

A significant part of algorithm design is concerned with problems optimizing discrete

objects such as graphs or set systems. When optimizing over combinatorial objects, an

obvious algorithm exists, i.e., to enumerate all possible solutions and pick the right one.

Although this algorithm runs in finite time, the complexity increases exponentially to the size

of the problem. Much of the efforts in combinatorial algorithms is to avoid such exponential

difficulty by designing algorithmic techniques whose complexity increases algebraically (or

polynomially) to the problem size. Traditionally these algorithms are discrete and often

leverage the rich theory developed from operation research such as duality and integrality.

An alternative continuous approach to combinatorial algorithms exists. These approaches

consist of three steps at a high level: the combinatorial problem of interest is modeled as

a continuous optimization formulation. The continuous problem is solved. Finally, the

continuous solution is projected back to a discrete one. We mention two early examples of

this model.

Weighted matching in a bipartite graph is simpler than the non-bipartite graph as the

constraint matrix has a special structure known as total unimodularity. Due to this, one

can model the matching problem as a linear program relaxing the integrality. The total

unimodularity ensures that the solution from LP relaxation is integral, and from weak duality,

this solution is also optimal. Note that here the third step is not necessary since the solution

is already discrete.

Computing a minimum weighted vertex cover in a non-bipartite graph is NP-hard. One

of the well-known 2-approximation algorithms relaxes the ILP formulation to an LP, and

solves the LP. Unlike bipartite matching, we do not have an integrality guarantee. But

rounding the real solution to {0, 1} leads to a 2-approximation guarantee.

For both problems, solving an LP is the most demanding step. Although used extensively

in practice, the classical simplex method to solve an LP is shown to be exponential for some

worst-case input. Polynomial-time algorithms such as ellipsoid and interior-point methods

exist for solving LPs. The interior-point method is more efficient than the ellipsoid method

with runtime depending on the current matrix multiplication complexity, which is O(n2.37)

135

at present [126]. It establishes the complexity of LP-based maximum weighted bipartite

matching as O(m2.37) and vertex cover as O(n2.37) time. But the best alternative combina-

torial algorithms for both these problems are theoretically and practically faster than the

continuous methods.

A breakthrough discovery in applying continuous approaches to combinatorial problems

happened when Spielman and Teng [127] showed that the Laplacian system of equations

could be solved in nearly-linear time. Using this as a black-box, a continuous method to com-

pute max-flow is developed and shown to improve the runtime of decade-old combinatorial

problems significantly [128]. Often the continuous formulation is solved by a gradient-based

iterative algorithm. Typically the steps inside an iteration are highly concurrent and should

benefit from the modern heterogeneous architecture. Although there is recent work on devel-

oping continuous algorithms for matching related problems, there is no known work for the

edge covers. One future work is to investigate the continuous approaches to the matching

problems and extend them to the edge covers. Another future direction is to implement the

algorithms on serial, parallel, and distributed architectures.

10.4 Other Future work

There are several short-term future directions that follow from the work in the thesis.

10.4.1 Algorithms and implementation of the optimal b-matchings and b-edge
covers

For optimal b-matching, direct, flow-based and reduction-based algorithms exist. For

optimal b-matching, direct, flow-based, and reduction-based algorithms exist. The direct

algorithm uses the blossom techniques of Edmond; the flow-based one transforms b-matching

to min-cost flow, and the reduction-based approach reduces the b-matching problem to the

1-matching problem. One future work could be to implement algorithms using these three

paradigms and compare them.

136

10.4.2 Data-locality Sensitive Load-balancing

In NWChemEx, the input matrices for computing the Fock matrix are replicated at each

node. This replication allowed us to model the block-processor computation graph as a

complete bipartite graph where a block’s adjacent edges have uniform weights. For large

problems, this replication might be prohibitive. Instead, one could partition the input to

the available processors. In most modern supercomputers, processor-to-processor commu-

nication is not homogeneous. We propose to incorporate data locality in our submodular

assignment. Specifically for Fock matrix computation, our algorithm takes a given partition

of input matrices, a network topology (i.e., the communication latency of the processors),

and the nonzero pattern of the final Fock matrix. With this information, we form a block-

processor bipartite graph. In one partition, we have the blocks of the Fock matrix (the

computational units), and the other partition has the available processors. Each computa-

tion unit, i.e., each block, has a non-uniform communication cost across the processors. The

edge cost could combine the computational cost discovered from the nonzero pattern and

the communication cost of moving the block to a processor. In future, We plan to apply

our submodular b-matching approach on this block-processor graph to find a load-balanced

assignment.

10.4.3 Graph Construction from geometric data

Knowing the characteristics of data may also help to devise better algorithms. A special

case is when the data items are points in the space. In many machine learning applications,

the data is transformed to a feature matrix, where the rows embed the entry in hyper-

dimensional space. Due to the metric property that ensures triangle inequalities, the graph

construction can be simpler and more efficient than the general case. One future work is to

explore such geometric aspects of data for graph construction.

137

10.4.4 Further applications

Combinatorial optimization is exceptionally rich in algorithms and analysis. Future work

can bring some of this beautiful theoretical work to life, i.e., connect them with appropriate

scientific applications.

One such application is community detection. Community detection techniques are ex-

tensively used in many scientific data analyses. But unfortunately, many of these techniques

are heuristic and do not provide any provable guarantee on the objective. In particular one

can use Network design methods, which is a class of combinatorial algorithms that provide

clusters of vertices with provable communities.

Another interesting application is when the graphs are from multiple sources, such as

protein-protein interaction networks from different tissues or molecule-molecule networks.

One mandatory step to analyze these graphs is by graph or network alignment. It is a method

to uncover the correspondence among nodes across different networks. These multiple net-

works are often combined to form a large graph, and one can use the degree-constrained

subgraph approach to construct this graph.

138

REFERENCES

[1] S. Ferdous, A. Pothen, A. Khan, A. Panyala, and M. Halappanavar, “A parallel ap-
proximation algorithm for submodular b-matching,” in Proceedings of the First SIAM
Conference on Applied and Computational Discrete Algorithms (ACDA), SIAM, 2021.
doi: 10.1137/1.9781611976830.5 .

[2] H. N. Gabow, “An efficient reduction technique for degree-constrained subgraph and
bidirected network flow problems,” in Proceedings of the Fifteenth Annual ACM Sym-
posium on Theory of Computing, 1983, pp. 448–456.

[3] L. Addario-Berry, K. Dalal, and B. A. Reed, “Degree constrained subgraphs,” Discrete
Applied Mathematics, vol. 156, no. 7, pp. 1168–1174, 2008.

[4] K. Heinrich, P. Hell, D. G. Kirkpatrick, and G. Liu, “A simple existence criterion for
(g< f)-factors,” Discrete Mathematics, vol. 85, no. 3, pp. 313–317, 1990.

[5] L. Lovász, “The factorization of graphs. II,” Acta Mathematica Academiae Scien-
tiarum Hungarica, vol. 23, no. 1-2, pp. 223–246, 1972.

[6] A. Arulselvan, Á. Cseh, M. Groß, D. F. Manlove, and J. Matuschke, “Matchings with
lower quotas: Algorithms and complexity,” Algorithmica, vol. 80, no. 1, pp. 185–208,
2018.

[7] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the Theory
of NP-Completeness. USA: W. H. Freeman & Co., 1979, isbn: 0716710447.

[8] O. Amini, D. Peleg, S. Pérennes, I. Sau, and S. Saurabh, “Degree-constrained sub-
graph problems: Hardness and approximation results,” in International Workshop on
Approximation and Online Algorithms, Springer, 2008, pp. 29–42.

[9] J. E. Hopcroft and R. M. Karp, “An n5/2 algorithm for maximum matchings in
bipartite graphs,” SIAM J. Comput., vol. 2, no. 4, pp. 225–231, 1973. doi: 10.1137/
0202019 . [Online]. Available: https://doi.org/10.1137/0202019 .

[10] A. Goel, M. Kapralov, and S. Khanna, “Perfect matchings in o(n log n) time in
regular bipartite graphs,” in Proceedings of the 42nd ACM Symposium on Theory
of Computing, STOC 2010, Cambridge, Massachusetts, USA, 5-8 June 2010, L. J.
Schulman, Ed., ACM, 2010, pp. 39–46. doi: 10 . 1145/1806689 . 1806697 . [Online].
Available: https://doi.org/10.1145/1806689.1806697 .

[11] J. Edmonds, “Maximum matching and a polyhedron with 0, 1-vertices,” Journal of
research of the National Bureau of Standards B, vol. 69, no. 125-130, pp. 55–56, 1965.

139

https://doi.org/10.1137/1.9781611976830.5
https://doi.org/10.1137/0202019
https://doi.org/10.1137/0202019
https://doi.org/10.1137/0202019
https://doi.org/10.1145/1806689.1806697
https://doi.org/10.1145/1806689.1806697

[12] S. Micali and V. V. V. Vazirani, “An O(
√
|V | · |E|) algorithm for finding maximum

matching in general graphs,” in Proceedings of the 21st Annual Symposium on Foun-
dations of Computer Science (FOCS), IEEE Computer Society, 1980, pp. 17–27. doi:
10.1109/SFCS.1980.12 . [Online]. Available: http://dx.doi.org/10.1109/SFCS.1980.12 .

[13] H. W. Kuhn, “The hungarian method for the assignment problem,” Naval research
logistics quarterly, vol. 2, no. 1-2, pp. 83–97, 1955.

[14] M. L. Fredman and R. E. Tarjan, “Fibonacci heaps and their uses in improved network
optimization algorithms,” J. ACM, vol. 34, no. 3, pp. 596–615, 1987. doi: 10.1145/
28869.28874 . [Online]. Available: https://doi.org/10.1145/28869.28874 .

[15] J. Edmonds, “Paths, trees, and flowers,” Can. J. Math., vol. 17, pp. 449–467, 1965.

[16] H. N. Gabow, “Data structures for weighted matching and nearest common ancestors
with linking,” in Proceedings of the First Annual ACM-SIAM Symposium on Dis-
crete Algorithms, San Francisco, California, USA: Society for Industrial and Applied
Mathematics, 1990, pp. 434–443.

[17] W. R. Pulleyblank, “Faces of matching polyhedra,” PhD thesis, Faculty of Mathe-
matics, University of Waterloo, 1973.

[18] A. B. Marsh III, “Matching algorithms,” PhD thesis, The Johns Hopkins University,
1979, p. 220, isbn: 9798661646057. [Online]. Available: https://www.proquest.com/
dissertations - theses /matching - algorithms/docview/302927413/ se - 2 ?accountid=
13360 .

[19] R. P. Anstee, “A polynomial algorithm for b-matchings: An alternative approach,”
Information Processing Letters, vol. 24, no. 3, pp. 153–157, 1987.

[20] D. L. Miller and J. F. Pekny, “A staged primal-dual algorithm for perfect b-matching
with edge capacities,” ORSA J. of Computing, vol. 7, pp. 298–320, 1995.

[21] M. W. Padberg and M. R. Rao, “Odd minimum cut-sets and b-matchings,” Mathemat-
ics of Operations Research, vol. 7, no. 1, pp. 67–80, 1982, issn: 0364765X, 15265471.
[Online]. Available: http://www.jstor.org/stable/3689360 .

[22] M. Grötschel and O. Holland, “Solving matching problems with linear programming,”
Mathematical Programming, vol. 33, no. 3, pp. 243–259, Dec. 1985, issn: 1436-4646.
doi: 10.1007/BF01584376 . [Online]. Available: https://doi.org/10.1007/BF01584376 .

140

https://doi.org/10.1109/SFCS.1980.12
http://dx.doi.org/10.1109/SFCS.1980.12
https://doi.org/10.1145/28869.28874
https://doi.org/10.1145/28869.28874
https://doi.org/10.1145/28869.28874
https://www.proquest.com/dissertations-theses/matching-algorithms/docview/302927413/se-2?accountid=13360
https://www.proquest.com/dissertations-theses/matching-algorithms/docview/302927413/se-2?accountid=13360
https://www.proquest.com/dissertations-theses/matching-algorithms/docview/302927413/se-2?accountid=13360
http://www.jstor.org/stable/3689360
https://doi.org/10.1007/BF01584376
https://doi.org/10.1007/BF01584376

[23] M. Müller-Hannemann and A. Schwartz, “Implementing weighted b-matching algo-
rithms: Towards a flexible software design,” ACM J. Exp. Algorithmics, vol. 4, p. 7,
1999. doi: 10.1145/347792.347815 . [Online]. Available: https://doi.org/10.1145/
347792.347815 .

[24] B. Huang and T. Jebara, “Fast b-matching via sufficient selection belief propagation,”
in Proceedings of the Fourteenth International Conference on Artificial Intelligence
and Statistics, 2011, pp. 361–369.

[25] W. T. Tutte, “A short proof of the factor theorem for finite graphs,” Canadian Journal
of Mathematics, vol. 6, pp. 347–352, 1954.

[26] J. Mestre, “Greedy in approximation algorithms,” in Proceedings of the 14th European
Symposium on Algorithms, Springer, 2006, pp. 528–539.

[27] D. E. Drake and S. Hougardy, “A simple approximation algorithm for the weighted
matching problem,” Information Processing Letters, vol. 85, no. 4, pp. 211–213, 2003.

[28] A. Khan, A. Pothen, M. M. Patwary, N. Satish, N. Sundaram, F. Manne, M. Halap-
panavar, and P. Dubey, “Efficient approximation algorithms for weighted b-matching,”
SIAM Journal on Scientific Computing, vol. 38, no. 5, S593–S619, 2016.

[29] G. De Francisci Morales, A. Gionis, and M. Sozio, “Social content matching in Mapre-
duce,” Proceedings of the VLDB Endowment, vol. 4, no. 7, pp. 460–469, 2011.

[30] C. Koufogiannakis and N. E. Young, “Distributed algorithms for covering, packing
and maximum weighted matching,” Distributed Computing, vol. 24, no. 1, pp. 45–63,
2011.

[31] F. M. Manshadi, B. Awerbuch, R. Gemulla, R. Khandekar, J. Mestre, and M. Sozio,
“A distributed algorithm for large-scale generalized matching,” Proceedings of the
VLDB Endowment, vol. 6, no. 9, pp. 613–624, 2013.

[32] G. Georgiadis and M. Papatriantafilou, “Overlays with preferences: Distributed, adap-
tive approximation algorithms for matching with preference lists,” Algorithms, vol. 6,
no. 4, pp. 824–856, 2013.

[33] A. Schrijver, Combinatorial Optimization: Polyhedra and Efficiency. Volume A: Paths,
Flows and Matchings. Springer, 2003.

[34] T. Gallai, “Uber extreme punkt-und kantenmengen, annales universitatis scientiarum
budapestinensis de rolando eotvos nominatae,” Sectio Mathematica, vol. 2, pp. 133–
138, 1959.

141

https://doi.org/10.1145/347792.347815
https://doi.org/10.1145/347792.347815
https://doi.org/10.1145/347792.347815

[35] R. Z. Norman and M. O. Rabin, “An algorithm for a minimum cover of a graph,”
Proceedings of the American Mathematical Society, vol. 10, no. 2, pp. 315–319, 1959.

[36] D. Huang and S. Pettie, “Approximate generalized matching: f -factors and f -edge
covers,” CoRR, vol. abs/1706.05761, 2017. arXiv: 1706 .05761 . [Online]. Available:
http://arxiv.org/abs/1706.05761 .

[37] W. Bai, J. Bilmes, and W. S. Noble, “Bipartite matching generalizations for peptide
identification in tandem mass spectrometry,” in Proceedings of the 7th ACM Interna-
tional Conference on Bioinformatics, Computational Biology, and Health Informatics,
2016, pp. 327–336.

[38] W. Bai, J. Bilmes, and W. S. Noble, “Submodular generalized matching for peptide
identification in tandem mass spectrometry,” IEEE/ACM Transactions on Computa-
tional Biology and Bioinformatics, vol. 16, no. 4, pp. 1168–1181, 2018.

[39] H. Lin and J. Bilmes, “Word alignment via submodular maximization over matroids,”
in Proceedings of the 49th Annual Meeting of the Association for Computational
Linguistics: Human Language Technologies, 2011, pp. 170–175.

[40] U. Feige, “A threshold of ln n for approximating set cover,” Journal of the ACM
(JACM), vol. 45, no. 4, pp. 634–652, 1998.

[41] A. Krause and C. Guestrin, “Near-optimal nonmyopic value of information in graphi-
cal models,” in Proceedings of the Twenty-first Conference on Uncertainty in Artificial
Intelligence, 2005, pp. 324–331.

[42] G. L. Nemhauser, L. A. Wolsey, and M. L. Fisher, “An analysis of approximations for
maximizing submodular set functions—I,” Mathematical Programming, vol. 14, no. 1,
pp. 265–294, 1978.

[43] G. L. Nemhauser and L. A. Wolsey, “Best algorithms for approximating the maximum
of a submodular set function,” Mathematics of Operations Research, vol. 3, no. 3,
pp. 177–188, 1978.

[44] G. Calinescu, C. Chekuri, M. Pál, and J. Vondrák, “Maximizing a monotone submod-
ular function subject to a matroid constraint,” SIAM Journal on Computing, vol. 40,
no. 6, pp. 1740–1766, 2011.

[45] K. Fujii, “Faster approximation algorithms for maximizing a monotone submodular
function subject to a b-matching constraint,” Information Processing Letters, vol. 116,
no. 9, pp. 578–584, 2016.

142

https://arxiv.org/abs/1706.05761
http://arxiv.org/abs/1706.05761

[46] A. Badanidiyuru and J. Vondrák, “Fast algorithms for maximizing submodular func-
tions,” in Proceedings of the twenty-fifth annual ACM-SIAM symposium on Discrete
algorithms, SIAM, 2014, pp. 1497–1514.

[47] B. Mirzasoleiman, A. Badanidiyuru, A. Karbasi, J. Vondrák, and A. Krause, “Lazier
than Lazy Greedy,” in Proceedings of the Twenty-ninth AAAI Conference on Artificial
Intelligence, AAAI Press, 2015, pp. 1812–1818, isbn: 0262511290.

[48] B. Mirzasoleiman, A. Karbasi, R. Sarkar, and A. Krause, “Distributed submodular
maximization,” The Journal of Machine Learning Research, vol. 17, no. 1, pp. 8330–
8373, 2016.

[49] N. Buchbinder, M. Feldman, and M. Garg, “Deterministic (1/2+ ε)-approximation
for submodular maximization over a matroid,” in Proceedings of the Thirtieth Annual
ACM-SIAM Symposium on Discrete Algorithms, SIAM, 2019, pp. 241–254.

[50] N. Buchbinder and M. Feldman, “Submodular functions maximization problems,”
in Handbook of Approximation Algorithms and Metaheuristics, Second Edition, Vol-
ume 1: Methologies and Traditional Applications, T. F. Gonzalez, Ed., Chapman and
Hall/CRC, 2018, pp. 753–788. doi: 10.1201/9781351236423-42 . [Online]. Available:
https://doi.org/10.1201/9781351236423-42 .

[51] A. Krause and D. Golovin, “Submodular function maximization,” in Tractability:
Practical Approaches to Hard Problems, L. Bordeaux, Y. Hamadi, and P. Kohli, Eds.,
Cambridge University Press, 2014, pp. 71–104.

[52] E. Tohidi, R. Amiri, M. Coutino, D. Gesbert, G. Leus, and A. Karbasi, “Submodular-
ity in action: From machine learning to signal processing applications,” IEEE Signal
Processing Magazine, vol. 37, no. 5, pp. 120–133, 2020.

[53] M. Feldman, J. S. Naor, R. Schwartz, and J. Ward, “Improved approximations for
k-exchange systems,” in Proceedings of the European Symposium on Algorithms,
Springer, 2011, pp. 784–798.

[54] V. Chaoji, S. Ranu, R. Rastogi, and R. Bhatt, “Recommendations to boost content
spread in social networks,” in Proceedings of the 21st International Conference on
World Wide Web, 2012, pp. 529–538.

[55] S. Pettie and P. Sanders, “A simpler linear time 2/3-ε approximation for maximum
weight matching,” Information Processing Letters, vol. 91, no. 6, pp. 271–276, 2004.

[56] M. Minoux, “Accelerated greedy algorithms for maximizing submodular set func-
tions,” in Proceedings of the 8th IFIP Conference on Optimization Techniques, Springer,
1977, pp. 234–243.

143

https://doi.org/10.1201/9781351236423-42
https://doi.org/10.1201/9781351236423-42

[57] D. S. Johnson, “Approximation algorithms for combinatorial problems,” Journal of
Computer and System Sciences, vol. 9, no. 3, pp. 256–278, 1974.

[58] L. Lovász, “On the ratio of optimal integral and fractional covers,” Discrete Mathe-
matics, vol. 13, no. 4, pp. 383–390, 1975.

[59] S. K. Stein, “Two combinatorial covering theorems,” Journal of Combinatorial The-
ory, Series A, vol. 16, no. 3, pp. 391–397, 1974.

[60] V. Chvatal, “A greedy heuristic for the set-covering problem,” Mathematics of Oper-
ations Research, vol. 4, no. 3, pp. 233–235, 1979.

[61] G. Dobson, “Worst-case analysis of greedy heuristics for integer programming with
nonnegative data,” Mathematics of Operations Research, vol. 7, no. 4, pp. 515–531,
1982.

[62] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to Algorithms.
MIT Press, 2009.

[63] A. Khan and A. Pothen, “A new 3/2-approximation algorithm for the b-edge cover
problem,” in Proceedings of the SIAM Workshop on Combinatorial Scientific Com-
puting, 2016, pp. 52–61.

[64] A. Khan, A. Pothen, and S. M. Ferdous, “Parallel algorithms through approxima-
tion: b-edge cover,” in 2018 IEEE International Parallel and Distributed Processing
Symposium (IPDPS), 2018, pp. 22–33. doi: 10.1109/IPDPS.2018.00013 .

[65] A. Pothen, S. Ferdous, and F. Manne, “Approximation algorithms in combinatorial
scientific computing,” Acta Numerica, vol. 28, pp. 541–633, 2019. doi: 10 . 1017 /
S0962492919000035 .

[66] S. Rajagopalan and V. V. Vazirani, “Primal-dual RNC approximation algorithms
for (multi)-set (multi)-cover and covering integer programs,” in Proceedings of 1993
IEEE 34th Annual Foundations of Computer Science, 1993, pp. 322–331. doi: 10.
1109/SFCS.1993.366855 .

[67] S M Ferdous, A. Khan, and A. Pothen, “New approximation algorithms for minimum
weighted edge cover,” in Proceedings of SIAM Workshop on Combinatorial Scientific
Computing, 2018, pp. 97–108.

[68] N. G. Hall and D. S. Hochbaum, “A fast approximation algorithm for the multicov-
ering problem,” Discrete Applied Mathematics, vol. 15, no. 1, pp. 35–40, 1986.

144

https://doi.org/10.1109/IPDPS.2018.00013
https://doi.org/10.1017/S0962492919000035
https://doi.org/10.1017/S0962492919000035
https://doi.org/10.1109/SFCS.1993.366855
https://doi.org/10.1109/SFCS.1993.366855

[69] A. Khan, A. Pothen, M. M. Patwary, M. Halappanavar, N. Satish, N. Sundaram, and
P. Dubey, “Designing scalable b-matching algorithms on distributed memory multi-
processors by approximation,” in SC ’16: Proceedings of the International Conference
for High Performance Computing, Networking, Storage and Analysis, 2016, pp. 773–
783.

[70] F. Manne and M. Halappanavar, “New effective multithreaded matching algorithms,”
in Proceedings of the 28th International Parallel and Distributed Processing Sympo-
sium, IEEE, 2014, pp. 519–528.

[71] G. E. Blelloch, J. T. Fineman, and J. Shun, “Greedy sequential maximal indepen-
dent set and matching are parallel on average,” in Proceedings of 24th SPAA, Pitts-
burgh, Pennsylvania, USA, 2012, pp. 308–317, isbn: 978-1-4503-1213-4. doi: 10.1145/
2312005.2312058 . [Online]. Available: http://doi.acm.org/10.1145/2312005.2312058 .

[72] R. C. Murphy, K. B. Wheeler, B. W. Barrett, and J. A. Ang, “Introducing the Graph
500,” Cray User’s Group, 2010.

[73] T. Davis and Y. Hu, “The University of Florida Sparse Matrix Collection,” ACM
Transactions on Mathematical Software, vol. 38, no. 1, 1:1–1:25, 2011.

[74] P. Boldi, A. Marino, M. Santini, and S. Vigna, “BUbiNG: Massive crawling for the
masses,” in Proceedings of the Companion Publication of the 23rd International Con-
ference on World Wide Web, 2014, pp. 227–228.

[75] P. Boldi and S. Vigna, “The WebGraph framework I: Compression techniques,” in
Proceedings of the 13th International Conference on World Wide Web, 2004, pp. 595–
602.

[76] J. Langguth, S. Ferdous, and A. Pothen, “Faster approximation algorithms for the
b-edge cover problem,” Work in progress, 2021.

[77] A. Khan, K. Choromanski, A. Pothen, S. Ferdous, M. Halappanavar, and A. Tumeo,
“Adaptive anonymization of data using b-edge cover,” in Proceedings of the Interna-
tional Conference for High Performance Computing, Networking, Storage, and Anal-
ysis, ser. SC ’18, Dallas, Texas: IEEE Press, 2018, 59:1–59:11. [Online]. Available:
http://dl.acm.org/citation.cfm?id=3291656.3291735 .

[78] A. Krause, A. Singh, and C. Guestrin, “Near-optimal sensor placements in Gaussian
processes: Theory, efficient algorithms and empirical studies,” Journal of Machine
Learning Research, vol. 9, no. 8, pp. 235–284, 2008. [Online]. Available: http://jmlr.
org/papers/v9/krause08a.html .

145

https://doi.org/10.1145/2312005.2312058
https://doi.org/10.1145/2312005.2312058
http://doi.acm.org/10.1145/2312005.2312058
http://dl.acm.org/citation.cfm?id=3291656.3291735
http://jmlr.org/papers/v9/krause08a.html
http://jmlr.org/papers/v9/krause08a.html

[79] M. L. Fisher, G. L. Nemhauser, and L. A. Wolsey, “An analysis of approximations for
maximizing submodular set functions—II,” in Polyhedral Combinatorics: Dedicated
to the memory of D.R. Fulkerson, M. L. Balinski and A. J. Hoffman, Eds., Berlin,
Heidelberg: Springer Berlin Heidelberg, 1978, pp. 73–87, isbn: 978-3-642-00790-3.
doi: 10.1007/BFb0121195 . [Online]. Available: https://doi.org/10.1007/BFb0121195 .

[80] L. Sweeney, “K-anonymity: A model for protecting privacy,” International Journal
of Uncertainty, Fuzziness and Knowledge-Based Systems, vol. 10, no. 5, pp. 557–570,
2002.

[81] K. Choromanski, T. Jebara, and K. Tang, “Adaptive anonymity via b-matching,” in
27th Annual Conference on Neural Information Processing Systems (NIPS), 2013,
pp. 3192–3200.

[82] M. I. Jordan, Z. Ghahramani, T. Jaakkola, and L. K. Saul, “An introduction to
variational methods for graphical models,” Machine Learning, vol. 37, no. 2, pp. 183–
233, 1999.

[83] K. Bache and M. Lichman, UCI Machine Learning Repository, 2013. [Online]. Avail-
able: http://archive.ics.uci.edu/ml .

[84] Centers for Medicare & Medicaid Services, https://www.cms.gov/OpenPayments/
About/Resources.html , Accessed: 2018-02-15.

[85] S. Sanghavi, D. Malioutov, and A. Willsky, “Belief propagation and LP relaxation for
weighted matching in general graphs,” IEEE Transactions on Information Theory,
vol. 57, no. 4, pp. 2203–2212, 2011.

[86] T. P. Hamilton and H. F. Schaefer III, “New variations in two-electron integral eval-
uation in the context of direct SCF procedures,” Chemical Physics, vol. 150, no. 2,
pp. 163–171, 1991.

[87] K. Kowalski, R. Bair, N. P. Bauman, J. S. Boschen, E. J. Bylaska, J. Daily, W. A.
de Jong, T. Dunning, N. Govind, R. J. Harrison, M. Keçeli, K. Keipert, S. Krish-
namoorthy, S. Kumar, E. Mutlu, B. Palmer, A. Panyala, B. Peng, R. M. Richard,
T. P. Straatsma, P. Sushko, E. F. Valeev, M. Valiev, H. J. J. van Dam, J. M. Waldrop,
D. B. Williams-Young, C. Yang, M. Zalewski, and T. L. Windus, “From NWChem
to NWChemEx: Evolving with the computational chemistry landscape,” Chemical
Reviews, vol. 121, no. 8, pp. 4962–4998, 2021, PMID: 33788546. doi: 10.1021/acs.
chemrev.0c00998 . eprint: https://doi.org/10.1021/acs.chemrev.0c00998 . [Online].
Available: https://doi.org/10.1021/acs.chemrev.0c00998 .

[88] D. B. Shmoys and É. Tardos, “An approximation algorithm for the generalized as-
signment problem,” Mathematical Programming, vol. 62, no. 1, pp. 461–474, 1993.

146

https://doi.org/10.1007/BFb0121195
https://doi.org/10.1007/BFb0121195
http://archive.ics.uci.edu/ml
https://www.cms.gov/OpenPayments/About/Resources.html
https://www.cms.gov/OpenPayments/About/Resources.html
https://doi.org/10.1021/acs.chemrev.0c00998
https://doi.org/10.1021/acs.chemrev.0c00998
https://doi.org/10.1021/acs.chemrev.0c00998
https://doi.org/10.1021/acs.chemrev.0c00998

[89] J. K. Lenstra, D. B. Shmoys, and É. Tardos, “Approximation algorithms for schedul-
ing unrelated parallel machines,” Mathematical Programming, vol. 46, no. 1, pp. 259–
271, 1990.

[90] C. Chekuri and S. Khanna, “A polynomial time approximation scheme for the multiple
knapsack problem,” SIAM Journal on Computing, vol. 35, no. 3, pp. 713–728, 2005.

[91] B. Lehmann, D. Lehmann, and N. Nisan, “Combinatorial auctions with decreasing
marginal utilities,” Games and Economic Behavior, vol. 55, no. 2, pp. 270–296, 2006.

[92] J. Vondrák, “Optimal approximation for the submodular welfare problem in the value
oracle model,” in Proceedings of the Fortieth Annual ACM Symposium on Theory of
Computing, 2008, pp. 67–74.

[93] X. J. Zhu, “Semi-supervised learning literature survey,” University of Wisconsin-
Madison Department of Computer Sciences, Tech. Rep., 2005.

[94] A. Subramanya and P. P. Talukdar, “Graph-based semi-supervised learning,” Synthe-
sis Lectures on Artificial Intelligence and Machine Learning, vol. 8, no. 4, pp. 1–125,
2014. doi: 10 .2200/S00590ED1V01Y201408AIM029 . eprint: https ://doi . org/10 .
2200/S00590ED1V01Y201408AIM029 . [Online]. Available: https://doi.org/10.2200/
S00590ED1V01Y201408AIM029 .

[95] O. Chapelle, B. Schölkopf, and A. Zien, Eds., Semi-Supervised Learning. The MIT
Press, 2006, isbn: 9780262033589. doi: 10.7551/mitpress/9780262033589.001.0001 .
[Online]. Available: https://doi.org/10.7551/mitpress/9780262033589.001.0001 .

[96] M. Orbach and K. Crammer, “Graph-based transduction with confidence,” in Joint
European Conference on Machine Learning and Knowledge Discovery in Databases,
Springer, 2012, pp. 323–338.

[97] A. Subramanya and J. Bilmes, “Semi-supervised learning with measure propagation,”
Journal of Machine Learning Research, vol. 12, no. Nov, pp. 3311–3370, 2011.

[98] A. B. Goldberg and X. Zhu, “Seeing stars when there aren’t many stars: Graph-
based semi-supervised learning for sentiment categorization,” in Proceedings of the
first workshop on graph based methods for natural language processing, Association
for Computational Linguistics, 2006, pp. 45–52.

[99] A. Celikyilmaz, M. Thint, and Z. Huang, “A graph-based semi-supervised learning
for question-answering,” in Proceedings of the Joint Conference of the 47th Annual
Meeting of the ACL and the 4th International Joint Conference on Natural Language
Processing of the AFNLP, 2009, pp. 719–727.

147

https://doi.org/10.2200/S00590ED1V01Y201408AIM029
https://doi.org/10.2200/S00590ED1V01Y201408AIM029
https://doi.org/10.2200/S00590ED1V01Y201408AIM029
https://doi.org/10.2200/S00590ED1V01Y201408AIM029
https://doi.org/10.2200/S00590ED1V01Y201408AIM029
https://doi.org/10.7551/mitpress/9780262033589.001.0001
https://doi.org/10.7551/mitpress/9780262033589.001.0001

[100] A. Subramanya, S. Petrov, and F. Pereira, “Efficient graph-based semi-supervised
learning of structured tagging models,” in Proceedings of the 2010 Conference on
Empirical Methods in Natural Language Processing, Association for Computational
Linguistics, 2010, pp. 167–176.

[101] R. Liu, J. Zhou, and M. Liu, “Graph-based semi-supervised learning algorithm for
web page classification,” in Sixth International Conference on Intelligent Systems
Design and Applications, IEEE, vol. 2, 2006, pp. 856–860.

[102] P. Talukdar, J. Reisinger, M. Pasca, D. Ravichandran, R. Bhagat, and F. Pereira,
“Weakly-supervised acquisition of labeled class instances using graph random walks,”
in Proceedings of the 2008 Conference on Empirical Methods in Natural Language
Processing, 2008, pp. 582–590.

[103] P. P. Talukdar and F. Pereira, “Experiments in graph-based semi-supervised learning
methods for class-instance acquisition,” in Proceedings of the 48th annual meeting of
the association for computational linguistics, Association for Computational Linguis-
tics, 2010, pp. 1473–1481.

[104] B.-B. Liu and Z.-M. Lu, “Image colourisation using graph-based semi-supervised
learning,” IET image processing, vol. 3, no. 3, pp. 115–120, 2009.

[105] Y. Zhao, R. Ball, J. Mosesian, J.-F. de Palma, and B. Lehman, “Graph-based semi-
supervised learning for fault detection and classification in solar photovoltaic arrays,”
IEEE Transactions on Power Electronics, vol. 30, no. 5, pp. 2848–2858, 2014.

[106] V. Satuluri, S. Parthasarathy, and Y. Ruan, “Local graph sparsification for scalable
clustering,” in ACM SIGMOD, ACM, 2011, pp. 721–732.

[107] T. Jebara, J. Wang, and S.-F. Chang, “Graph construction and b-matching for semi-
supervised learning,” in Proceedings of the 26th Annual International Conference on
Machine Learning, ser. ICML ’09, Montreal, Quebec, Canada: ACM, 2009, pp. 441–
448, isbn: 978-1-60558-516-1. doi: 10 . 1145/1553374 .1553432 . [Online]. Available:
http://doi.acm.org/10.1145/1553374.1553432 .

[108] K. Ozaki, M. Shimbo, M. Komachi, and Y. Matsumoto, “Using the mutual k-nearest
neighbor graphs for semi-supervised classification of natural language data,” in Pro-
ceedings of Computational Natural Language Learning, ACL, 2011, pp. 154–162.

[109] L. Berton, A. de Andrade Lopes, and D. A. Vega-Oliveros, “A comparison of graph
construction methods for semi-supervised learning,” in 2018 International Joint Con-
ference on Neural Networks (IJCNN), IEEE, 2018, pp. 1–8.

148

https://doi.org/10.1145/1553374.1553432
http://doi.acm.org/10.1145/1553374.1553432

[110] D. A. Vega-Oliveros, L. Berton, A. M. Eberle, A. de Andrade Lopes, and L. Zhao,
“Regular graph construction for semi-supervised learning,” in Journal of physics:
Conference series, IOP Publishing, vol. 490, 2014, p. 012 022.

[111] X. Zhu, Z. Ghahramani, and J. D. Lafferty, “Semi-supervised learning using gaussian
fields and harmonic functions,” in Proceedings of the 20th International conference
on Machine learning (ICML-03), 2003, pp. 912–919.

[112] D. Zhou, O. Bousquet, T. N. Lal, J. Weston, and B. Schölkopf, “Learning with local
and global consistency,” in Advances in neural information processing systems, 2004,
pp. 321–328.

[113] S. Baluja, R. Seth, D. Sivakumar, Y. Jing, J. Yagnik, S. Kumar, D. Ravichandran, and
M. Aly, “Video suggestion and discovery for youtube: Taking random walks through
the view graph,” in Proceedings of the 17th international conference on World Wide
Web, 2008, pp. 895–904.

[114] P. P. Talukdar and K. Crammer, “New regularized algorithms for transductive learn-
ing,” in Joint European Conference on Machine Learning and Knowledge Discovery
in Databases, Springer, 2009, pp. 442–457.

[115] A. Corduneanu and T. Jaakkola, “On information regularization,” in Proceedings of
the Nineteenth conference on Uncertainty in Artificial Intelligence, 2002, pp. 151–158.

[116] N. Srebro and T. Jaakkola, “Weighted low-rank approximations,” in Proceedings of the
Twentieth International Conference on International Conference on Machine Learn-
ing, ser. ICML’03, Washington, DC, USA: AAAI Press, 2003, pp. 720–727, isbn:
1-57735-189-4. [Online]. Available: http ://dl .acm.org/citation .cfm?id=3041838 .
3041929 .

[117] D. D. Lewis, UCI machine learning repository. [Online]. Available: https://archive.
ics.uci.edu/ml/machine-learning-databases/reuters21578-mld/ .

[118] K. Lang, “Newsweeder: Learning to filter netnews,” in Proceedings of the Twelfth
International Conference on Machine Learning, 1995, pp. 331–339.

[119] J. Feigenbaum, S. Kannan, A. McGregor, S. Suri, and J. Zhang, “On graph problems
in a semi-streaming model,” Theoretical Computer Science, vol. 348, no. 2-3, pp. 207–
216, 2005.

[120] A. McGregor, “Graph stream algorithms: A survey,” ACM SIGMOD Record, vol. 43,
no. 1, pp. 9–20, 2014.

149

http://dl.acm.org/citation.cfm?id=3041838.3041929
http://dl.acm.org/citation.cfm?id=3041838.3041929
https://archive.ics.uci.edu/ml/machine-learning-databases/reuters21578-mld/
https://archive.ics.uci.edu/ml/machine-learning-databases/reuters21578-mld/

[121] N. Buchbinder and J. Naor, “The design of competitive online algorithms via a primal-
dual approach,” Foundations and Trends in Theoretical Computer Science, vol. 3,
no. 2-3, pp. 93–263, 2007.

[122] A. Paz and G. Schwartzman, “A (2+ ε)-approximation for maximum weight matching
in the semi-streaming model,” ACM Transactions on Algorithms (TALG), vol. 15,
no. 2, pp. 1–15, 2018.

[123] R. Bar-Yehuda and S. Even, “A local-ratio theorem for approximating the weighted
vertex cover problem,” in North-Holland Mathematics Studies, vol. 109, Elsevier,
1985, pp. 27–45.

[124] A. Chakrabarti and S. Kale, “Submodular maximization meets streaming: Matchings,
matroids, and more,” Mathematical Programming, vol. 154, no. 1, pp. 225–247, 2015.

[125] R. Levin and D. Wajc, “Streaming submodular matching meets the primal-dual
method,” in Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms
(SODA), SIAM, 2021, pp. 1914–1933.

[126] M. B. Cohen, Y. T. Lee, and Z. Song, “Solving linear programs in the current matrix
multiplication time,” Journal of the ACM (JACM), vol. 68, no. 1, pp. 1–39, 2021.

[127] D. A. Spielman and S.-H. Teng, “Nearly-linear time algorithms for graph partitioning,
graph sparsification, and solving linear systems,” in Proceedings of the thirty-sixth
annual ACM symposium on Theory of computing, 2004, pp. 81–90.

[128] Y. T. Lee, S. Rao, and N. Srivastava, “A new approach to computing maximum flows
using electrical flows,” in Proceedings of the forty-fifth annual ACM symposium on
Theory of computing, 2013, pp. 755–764.

150

A. MATH PROGRAMMING FORMULATION OF VARIOUS

DCS PROBLEMS

We review the integer and linear programming formulation for matching and b-matching

problem.

A.1 Edge-weighted matchings

A.1.1 1-matching

The Integer Linear Programming (ILP) formulation of maximum weight 1-matching or

matching is shown in Formulation A.1 .

max
∑
e∈E

w(e)x(e),

∑
e∈δ(i)

x(e) ≤ 1, ∀i ∈ V,

x(e) ∈ {0, 1}, ∀e ∈ E. (A.1)

Relaxing the integrality constraints to fractional one provides a linear programming re-

laxation of Problem A.1 . But this relaxation does not yield an integral solution, and one

can introduce a new set of constraints that would guarantee integrality. Such Linear pro-

gramming formulation with additional odd set constraints is shown in Formulation A.2 .

max
∑
e∈E

w(e)x(e),

∑
e∈δ(i)

x(e) ≤ 1, ∀i ∈ V,

∑
e∈γ(S)

x(e) ≤ (|S| − 1)/2, ∀S ⊆ V, |S| ≥ 3, |S| odd,

x(e) ≥ 0, ∀e ∈ E. (A.2)

For a perfect matching the second set of constraints in Formulation A.1 becomes ∑
e∈δ(i) x(e) =

1, ∀i ∈ V . In this case, there is an alternative LP formulation that uses odd cut set con-

151

straints. In a perfect matching, there must be at least one cut edge from any odd subset

of vertices of the graph. The alternative LP formulation for perfect matching is shown in

Formulation A.3

max
∑
e∈E

w(e)x(e),

∑
e∈δ(i)

x(e) = 1, ∀i ∈ V,

∑
e∈δ(S)

x(e) ≥ 1, ∀S ⊆ V, |S| ≥ 3, |S| odd,

x(e) ≥ 0, ∀e ∈ E. (A.3)

A.1.2 b-matching

The Integer Linear Programming (ILP) formulation of maximum weight b-matching is

shown in Formulation A.4 .

max
∑
e∈E

w(e)x(e),

∑
e∈δ(i)

x(e) ≤ b(i), ∀i ∈ V,

x(e) ∈ {0, 1}, ∀e ∈ E. (A.4)

The Linear programming relaxation of maximum weighted b-matching with the odd set

constraints is shown in Formulation A.5 .

152

max
∑
e∈E

w(e)x(e),

∑
e∈δ(i)

x(e) ≤ b(i), ∀i ∈ V,

∑
e∈γ(S)

x(e) ≤ (b(S)− 1)/2, ∀S ⊆ V, |S| ≥ 3, b(S) odd,

0 ≤ x(e) ≤ 1, ∀e ∈ E. (A.5)

Similar to the 1-matching, for a perfect b-Matching, we have an alternative LP formu-

lation shown in Formulation A.6 .

max
∑
e∈E

w(e)x(e),

∑
e∈δ(i)

x(e) = b(i), ∀i ∈ V,

∑
e∈δ(S)

x(e) ≥ 1, ∀S ⊆ V, |S| ≥ 3, b(S) odd,

0 ≤ x(e) ≤ 1, ∀e ∈ E. (A.6)

A.2 Vertex-weighted matchings

In a vertex weighted matching, the weight function is defined on vertices. So the graph

is G(V, E, w), where w : V → R+.

A.2.1 1-matching

A vertex-weighted matching can be reduced to an edge-weighted matching by assigning an

edge weight that equals the sum of the weight of this edge’s endpoints. This transformation

allows us to apply the formulation developed for edge-weighted matchings. But in this

section, we will develop a direct formulation using a new set of variables that holds the

153

matching information of the vertices. The ILP and a LP formulation of vertex weighted

matching is shown in A.7 , and A.8 respectively.

max
∑
v∈V

w(v)y(v),

∑
e∈δ(i)

x(e) ≤ y(i), ∀i ∈ V,

x(e) ∈ {0, 1}, ∀e ∈ E

y(v) ∈ {0, 1}, ∀v ∈ V. (A.7)

max
∑
v∈V

w(v)y(v),

∑
e∈δ(i)

x(e) ≤ y(i), ∀i ∈ V,

∑
e∈γ(S)

x(e) ≤ (|S| − 1)/2, ∀S ⊆ V, |S| ≥ 3, |S| odd,

y(v) ≥ 0, ∀v ∈ V. (A.8)

A.2.2 b-matching

We show the IP and LP formulation for vertex weighted b-Matching formulation in A.9

and A.10 respectively.

max
∑
v∈V

w(v)y(v),

∑
e∈δ(i)

x(e) ≤ b(i)y(i), ∀i ∈ V,

x(e) ∈ {0, 1}, ∀e ∈ E

y(v) ∈ {0, 1}, ∀v ∈ V. (A.9)

154

max
∑
e∈E

w(e)x(e),

∑
e∈δ(i)

x(e) ≤ b(i)y(i), ∀i ∈ V,

∑
e∈γ(S)

x(e) ≤ (b(S)− 1)/2, ∀S ⊆ V, |S| ≥ 3, b(S) odd,

0 ≤ x(e) ≤ 1, ∀e ∈ E,

0 ≤ y(v) ≤ 1, ∀v ∈ V. (A.10)

155

B. REDUCTION FROM b-MATCHING TO 1-MATCHING AND

b-EDGE COVER TO 1-EDGE COVER

In this section, we will describe a polynomial time reduction that transforms a maxi-

mum weighted b-Matching to a maximum weighted 1-matching problem, and a minimum

weighted b-Edge Cover to a minimum weighted 1-edge cover problem.

B.1 The new graph construction

Given a graph G(V, E, w) and b(.) values defined on each vertex, we create a new graph

G′(V ′, E ′, w′) as follows. For each vertex v ∈ V , we create b(v) new copies of v in V ′. Denote

the copy vertex set of v by φ(v). Also for each edge e(u, v) ∈ E, we insert two new vertices

in V ′. We call these new vertices pe,u and pe,v. Formally,

V ′ = {∪v∈V φ(v)} ∪ {∪e(u,v)∈E(pe,u ∪ pe,v)}.

For each vertex v ∈ V , We set b(v′) = b(v) ∀v′ ∈ φ(v), and b(pe,u) = b(pe,v) = 1 ∀e ∈

E. Note that |V ′| = ∑
v b(v) + |E| = O(m).

Now let us describe the edge set E ′. For each edge, e ∈ E, we insert an edge (pe,u, pe,v)

in E ′. We call this edge as the middle edge of e. Again for each edge, e(u, v) ∈ E, we create

b(u) and b(v) more edges in E ′. These connect each of the copy vertices in φ(u) with pe,u,

and copy vertices in φ(v) with with pe,v. These edges are called outer edges of e. Formally,

E ′ = {∪(pe,u, pe,v) : e(u, v) ∈ E} ∪ {∪(u′, pe,u) : u′ ∈ φ(u), e(u, v) ∈ E}}

We note that |E ′| = |E|+ ∑
v∈V d(v)b(v) = m + O(βm) = O(βm).

So for each edge e(u, v) in G, we have b(u) + b(v) + 1 corresponding edges in G′. The

weight of all these edges are set to w(e).

156

B.2 Computing b-Matching

Let M ′
∗ be the maximum weighted matching in G′. We show how to recover a b-Matching

M∗
b from M ′

∗. During the b-Matching construction we will also build a set S, that holds

the edges those are in M ′
∗ but can not be in M∗

b . Both M∗
b and S are initialized to the empty

set. Since M ′
∗ is a maximal matching, we have the following cases for each edge e(u, v).

1. Two outer edges of e are in M ′
∗. Set M∗

b = M∗
b ∪ e.

2. Only one of the outer edges is in M ′
∗. In this case, we can replace this outer edge with

the middle edge (pe,u, pe,v). This does not change the weight of the matching. We set

S = S ∪ (pe,u, pe,v).

3. The middle edge (pe,u, pe,v) is in M ′
∗. We set S = S ∪ (pe,u, pe,v).

B.3 Computing b-Edge Cover

We can repeat the graph construction for b-Edge Cover too. Let C ′
∗ be the minimum

weighted edge cover of G′. For each edge e ∈ E, we have the following cases.

1. Two outer edges of e are in C ′
∗. In this case C∗

b = C∗
b ∪ e.

2. An outer and a middle edge are in C ′
∗. In this case, we can replace the middle edge

with another outer edge and construct a feasible cover with same weight. We set

C∗
b = C∗

b ∪ e.

3. The middle edge (pe,u, pe,v) is in C ′
∗. We set S = S ∪ (pe,u, pe,v).

B.4 Analysis

We define for a set T of edges in G or G′, W (T) = ∑
e∈T w(e). Also let ∑

e∈E w(e) = W.

Note that the construction of b-Matching or b-Edge Cover as discussed above does

not depend on the optimality of the matching or the edge cover in G′. We can repeat the

same construction given any maximal matching or minimal edge cover.

157

Likewise, we can do a reverse construction i.e., we start with a b-Matching or b-Edge

Cover in G and compute a maximal matching or minimal edge cover in G′. Next we will

discuss this reverse construction.

B.4.1 Constructing matching in G′

Given any b-Matching Mb, we can construct a maximal matching in G′ as follows. We

start with a empty set M ′.

• For a matching edge e(u, v) ∈ Mb, we insert the two of the unmatched outer edge in

M ′. Since Mb is a valid b-matching i.e., it has at most b(u) and b(v) edges incident to

u and v, we must find two of the outer edges available to match in G′.

• We make M ′ maximal by selecting necessary middle edges. These edges are inserted

into the set S.

We can repeat the same reverse construction for any b-Edge Cover Cb too and create a

minimal edge cover C ′.

We define a pair (Mb, M ′), where either Mb and M ′ is connected by either the usual or

the reverse construction. Similarly (Cb, C ′) is defined for b-Edge Cover .

Proposition B.4.1. W ′(S) = W−W (Mb)

Proof. For each edge e ∈ E, either e in Mb or e is in S. So,

W (Mb) + W ′(S) = W (Mb) + W (S) = W

�

Proposition B.4.2. W ′(S) = W−W (Cb)

Proof. The proof follows the same argument as in the proof of Proposition B.4.1 . �

Proposition B.4.3. Given any pair (Mb, M ′) we have

W (Mb) = W ′(M ′)−W.

158

Proof. By construction,

W (Mb) =1
2(W ′(M ′)−W (S))

=1
2(W ′(M ′)−W + W (Mb))

W (Mb) =W ′(M ′)−W.

�

The second line comes from Proposition B.4.1 . Similarly we can show the following result

for b-Edge Cover.

Proposition B.4.4. Given any pair (Cb, C ′) we have

W (Cb) = W ′(C ′)−W.

Lemma B.4.1. M∗
b is a maximum weighted b-Matching

Proof. Replace Proposition B.4.3 using M∗
b and M ′

∗

W (M∗
b) = W ′(M ′

∗)−W.

Now take any b-Matching, Mb of G and perform the reverse construction. Let M ′ be

the maximal matching in G′ from the reverse construction. We have

W (M∗
b) =W ′(M ′

∗)−W

≥W ′(M ′)−W.

The last line is due to the fact the M ′
∗ is a maximum weighted matching in G′. Again using

Proposition B.4.3 ,

159

W (M∗
b) =W ′(M ′

∗)−W

≥W ′(M ′)−W

=W (Mb).

�

Similarly, we can show the following result for b-Edge Cover.

Lemma B.4.2. C∗
b is a minimum weighted b-Edge Cover.

Proof. Using Proposition B.4.4 using C∗
b and C ′

∗,

W (C∗
b) = W ′(C ′

∗)−W.

Now take any b-Edge Cover, Cb of G and perform the reverse construction. Let C ′ be

the minimal edge cover. We have

W (C∗
b) =W ′(C ′

∗)−W

≤W ′(C ′)−W.

The last line is due to the fact the C ′
∗ is a minimum weighted edge cover. Using Proposi-

tion B.4.4 ,

W (C∗
b) =W ′(C ′

∗)−W

≤W ′(M ′)−W

=W (Cb).

�

160

VITA

Personal Information

Place and Date of Birth: Dhaka, Bangladesh | 25 December 1988

Address: 224 Arnold Drive, Apt 12,

West Lafayette, In-47906, USA

Phone: +1(765)-409-8632

Email: sferdou@purdue.edu ; ferdous.csebuet@gmail.com

� : https://smferdous1.github.io | � : http://bit.ly/linkedIn-smf

Professional Appointments

2016 – 2021 Graduate Research Assistant

Department of Computer Science

School of Science

Purdue University, USA.

2015 – 2016 Ross Fellow

Purdue Graduate School

Purdue University

IN,USA.

Jun – Aug 2021 PhD Intern

Data Science and Machine Intelligence Group

Pacific Northwest National Lab

WA, USA.

161

mailto:sferdou@purdue.edu
mailto:ferdous.csebuet@gmail.com
https://smferdous1.github.io/
http://bit.ly/linkedIn-smf

Jun – Aug 2021 PhD Intern

ENSA Group

Nokia Bell Labs

NJ, USA.

May – Aug 2017 PhD Intern

Data Science and Machine Intelligence Group

Pacific Northwest National Lab

WA, USA.

Mar – Jul 2015 Assistant Professor

Department of Computer Science and Engineering

Ahsanullah Univ. of Science and Technology

Dhaka, Bangladesh.

2011 – 2015 Lecturer

Department of Computer Science and Engineering

Ahsanullah Univ. of Science and Technology

Dhaka, Bangladesh.

Education

2015 – 2021 PhD in Computer Science, Purdue University, West Lafayette, Indiana

Thesis: “Algorithms for degree-constrained subgraphs and applications”

Advisor: Prof. Dr. Alex Pothen | GPA: 3.93/4.00.

2011 – 2014 MSc Engg. in Computer Science and Engineering
Bangladesh University of Engineering and Technology (BUET)
Thesis: “Practically Efficient Algorithms for Minimum String Cover and Min-
imum Common String Partition”
Advisor: Prof. Dr. M. Sohel Rahman | GPA: 3.33/4.00.

2006 – 2011 BSc Engg. in Computer Science and Engineering, BUET
9/138, Degree with Honours | GPA: 3.89/4.00.

162

Fellowships

2020 – 2021 John R. Rice Fellowship for Scientific Computing, Department of Com-

puter Science, Purdue University.

2015 – 2016 Ross Fellowship for incoming graduate student.

2006 – 2011 Dean’s list and merit scholarship in each of the four academic years in

undergrad for excellent academic results.

Awards & Honors

2018 Travel grant for attending SIAM Combinatorial Scientific Computing Work-

shop in Bergen, Norway.

2017 Third best prize on SIAM Computationasl Science and Enginneging student

poster competition at Purdue University.

2016 Travel and accommodation grant for attending Week long SAMSI sum-

mer school on optimization at Research Triangle Park, NC.

2008 Tenth among 50 teams in ACM Inter Collegiate Programming Contest

Regional Dhaka Site.

Courses and Projects during PhD
Selected courses

• Statistical Machine Learning • Algorithm Design, Analysis and Implementation • Com-

putational Methods in Optimization • Mathematical Toolkit for Computer Science • Data

Communication and Computer Networks • Parallel Computing • Quantum Computation

and Information • Reinforcement Learning • Approximation Algorithm in Action.

Selected projects

163

Spr. 2018 Implementing Grover’s search
Grover’s search is one of the most influential quantum algorithms. In Spring 2018, I com-
pleted a Quantum Computation course offered by Prof. Sabre Kais. As a class project, I
implemented Grover’s search in IBM QISKIT. I tested my implementation using 6 Qubits
in IBM Quantum simulator.

Spr. 2017 On bounding the weight of b-matching problem
In this project, I investigate Lagrangian-relaxation based upper bounds for the maximum
weight b-matching problem. The problem is formulated as an integer program, and then
the relaxed dual problem is solved using subgradient methods to compute the upper bound.
Since the method may not find a feasible b-matching, a simple heuristic is presented to find
feasible solutions from the dual optimal variables. Preliminary experiments show that the
method generates bounds that are close to bounds obtained from a linear programming
based relaxation, but could be faster than the latter by an order of magnitude.

Fall 2015 Modeling Air Travel Demand between two cities
The goal of this team project was to model the air travel demand between any two cities,
based on the socio-technical factors, using machine learning techniques. The demand was
treated as a categorical value. We picked 30 major US airports and collected demand
data between two airports for the last 10 years. we considered publicly available such as
population of the cities, average income of the cities, distance between two airports, airport
category and so on. Using SVM as learning algorithm, we were able to acheive 72% test
accuracy.

Others
Certifications

Jun 2012 Algorithms: Design and Analysis, Part 1, Stanford University, Coursera

(earned 87.8%)

Aug 2012 Machine Learning, Stanford University, Coursera (earned 97.3%)

Dec 2012 Algorithms: Design and Analysis, Part 2, Stanford University, Coursera

(earned 82.5%)

Mar 2016 Approximation Algorithms Part I, Ecole normale superieure, Coursera

(earned 96%)

164

Review experiences

Served as a reviewer in journal PLoS ONE and ACM Transactions on Parallel

Computing.

Extra-curricular Activities

2018 – 2019 Served as General Secretary, Bangladesh Students association, Purdue Uni-

versity.

2017 – 2018 Served as Web Master, Bangladesh Students association, Purdue University.

165

	TITLE PAGE
	COMMITTEE APPROVAL
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF SYMBOLS
	ABSTRACT
	INTRODUCTION
	Basic Terminology
	The degree-constrained subgraph problem
	b-matching
	Exact algorithms for 1-matching problem
	Exact algorithms for b-Matching
	Approximation algorithms for b-Matching

	b-edge cover
	Exact algorithm for edge cover
	Reduction to Perfect Matching:
	Reduction to maximum weighted matching:

	Exact Algorithm for b-Edge Cover
	Reduction to b′-matching:
	Reduction to 1-edge cover

	Approximation algorithm for b-Edge Cover

	Background on Submodular Optimization
	Submodular b-Matching
	Complexity of Submodular b-Matching and Approximation

	Related Work on Submodular b-matching
	Contribution of the thesis

	GREEDY AND LOCAL ALGORITHMS FOR b-Edge Cover
	Greedy and Lazy Greedy
	The Lazy Greedy Algorithm.

	b-Nearest Neighbor algorithm
	LSE and S-LSE
	Improving b-Edge Cover empirically

	LP BASED ALGORITHMS FOR b-Edge Cover
	Linear Programming Framework
	Dual-Fitting Algorithms

	A 3/2-Approximation Algorithm
	A 2-Approximation Algorithm
	Δ-Approximation Algorithm

	REDUCTION TO MATCHING BASED ALGORITHMS FOR b-Edge Cover
	 b-Edge Cover via compliment to b-Matching
	Approximation Bounds
	Parallel Depth and Work of Suitor and b-Suitor

	b-Edge Cover via reduction to a constrained perfect b-Matching
	Approximate b-Edge Cover using constrained perfect matching

	Computational Results of b-Edge Cover algorithms
	Experimental Setup
	Edge Cover Results
	b-Edge Cover Results

	LOCAL ALGORITHMS FOR SUBMODULAR b-Matching
	Greedy and Lazy Greedy Algorithms
	Locally Dominant Algorithm
	ε-Local Dominance and Approximation Ratio
	Local Lazy Greedy Algorithm
	A tight input for locally subdominant Submodular b-Matching
	Parallel Implementaion of Local Lazy Greedy

	Experimental Results
	Dataset
	Serial Performance
	Parallel Performance
	Effect of α in Concave Polynomial

	HEAVY WEIGHT HIGH CARDINALITY MATCHING
	Cardinality sensitive matching formulation
	Lower bound on the weight
	Pareto Optimality of Weight and Cardinality
	Choosing a suitable value of λ

	ADAPTIVE ANONYMIZATION USING b-Edge Cover
	A Generalized Framework
	Experiments and Results
	Shared Memory Results
	Distributed Memory Results

	LOAD BALNCING FOCK MATRIX COMPUTATION USING b-Matching
	Load Balancing in Quantum Chemistry
	Background
	Results

	DEGREE-CONSTRAINED GRAPH CONSTRUCTION FOR MACHINE LEARNING
	Background
	Sparsification through constraining degree
	The Sparsification Problem
	Choice between minimization and maximization
	Similarity and upper bound
	Dis-similarity and lower bound

	Use of approximation in sparsification
	Preliminary Experiments and Results
	Dataset
	Reuters-21578
	20Newsgroup

	Experiment results

	CONCLUSION AND FUTURE WORK
	Summary
	Practical streaming and online algorithms for graph problem
	Continuous optimization approaches to combinatorial problems
	Other Future work
	Algorithms and implementation of the optimal b-matchings and b-edge covers
	Data-locality Sensitive Load-balancing
	Graph Construction from geometric data
	Further applications

	REFERENCES
	MATH PROGRAMMING FORMULATION OF VARIOUS DCS PROBLEMS
	Edge-weighted matchings
	1-matching
	b-matching

	Vertex-weighted matchings
	1-matching
	b-matching

	REDUCTION FROM b-MATCHING TO 1-MATCHING AND b-EDGE COVER TO 1-EDGE COVER
	The new graph construction
	Computing b-Matching
	Computing b-Edge Cover
	Analysis
	Constructing matching in G′

	VITA

