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He told them another parable: “The kingdom of heaven is like a mustard seed, which a

man took and planted in his field. Though it is the smallest of all your seeds, yet when it

grows, it is the largest of garden plants and becomes a tree, so that the birds of the air

come and perch in its branches.”

Matthew 13:31-32
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ABSTRACT

This dissertation works out novel methodologies for approximately computing the adia-

batic hyperspherical potential energies of more than 2 particles in terms of the variational

principle. The first part uses the root-mean-square radius of a cloud of many atoms as

a natural collective hyperradial coordinate, calculating the condensate energy by holding

that radius fixed at discrete values. A new step beyond the constant-ansatz “K-Harmonic”

approximation (in terms of orbital solutions of the mean-field equation) leads to great im-

provements in minimization of the ground condensate energy. Careful analysis using linear

combinations of orbitals reveals a reduction in macroscopic potential barrier for attractive

condensates as a partial description of many-body correlations in these ultracold atomic

systems. The second part of this dissertation constructs a new ansatz that explicitly takes

two-body correlation into account. Benchmark calculations are performed in comparison

with well-known theory of Efimov physics for 3 bosons. New results on the variational po-

tential energies of more than 3 bosons are obtained, revealing characteristic features of a

deep minimum and a barrier at small values of hyperradii that are intimately connected to

the lowest bound states of N bosons. Comparisons with numerical diagonalization for N = 4

show that the variational potential accounts for the local minimum describing the lowest 4-

body bound state but always diabatically converges to the scattering threshold (regardless of

the presence of bound trimer thresholds). New results on the asymptotic behavior of unitary

Bose gas are obtained for up to 10 particles.
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1. INTRODUCTION TO VARIATIONAL HYPERSPHERICAL

FORMALISM

1.1 Summary of Works in this Dissertation

This dissertation is concerned with the quantum behavior of identical bosons (with mostly

cold atoms like Rb in mind) where the number of particles N varies as large as from 3 to

10,000. We formulate an alternative approach to the usual full diagonalization procedure

found in the literature of adiabatic hyperspherical formalism, in which some hopefully suit-

able ansatz functions are found and variational calculations are performed in order to explore

their consequences. The main aim is to extend the successes of adiabatic hyperspherical the-

ory of 3 and 4 particles to more particles, for two different regimes: very large number of

particles where comparisons with standard mean-field theory are possible, and modest num-

ber of particles where transition from few-body to many-body physics is expected but little

is currently known.

The next part of this chapter summarizes key concepts of two-body physics that anyone

who wishes to study the quantum problem of three or more particles must be familiar with.

The rest of the dissertation is divided into two main parts. The first part, consisting of

chapters  2 and  3 , explores the problem of many-body physics of Bose-Einstein condensates

by first reviewing the standard mean-field theory of Gross-Pitaevskii Equation and its key

predictions, as well as important experimental observations. Then, staying within spherical

symmetry, the root-mean-square radius R of the atomic cloud is taken to be an adiabatic

parameter, the hyperradius of the problem. Potential energies U(R) of the collective system

given each fixed R are computed by a one-body orbital type of ansatz inspired by mean-field

theory. Various results on agreements and deviations between mean-field theory, variational

hyperspherical calculations using orbitals, and previously known hyperspherical approxima-

tion scheme are developed.

The second part, made of chapters  4 and  5 , explores more modest number of particles

N from 3 to 10. As these chapters are more closely attuned to the few-body aspects of adi-

abatic hyperspherical formalism, important features of that few-body theory and milestone

achievements, complemented by experimental results, will be reviewed first. Then, based

13



on what is already known in few-body physics, new kinds of ansatz functions that explicitly

build in two-body correlations will be constructed. Methods regarding the required multi-

dimensional integrals for variational calculations will be developed. Finally, results using

the two-body ansatz will be discussed: both a series of benchmark with known results of

few-body theory and some new predictions for more than 3 particles.

1.2 Review of Two-Body Physics

In order to develop and discuss a microscopic theory of more than 2 interacting particles,

we must start with a review of the two-body formalism and introduce the concept of a

pseudopotential, which is a useful tool for adding in the effect of two-body interactions into

a theory involving more than 2 particles in an accessible manner. There are many excellent

references that treat the quantum-mechanical two-body problem, bound and scattering (see

for example Refs. [ 1 ] and [ 2 ]). Here we summarize some of the main relevant points.

For a spherically symmetric interaction in free space, one may treat the different par-

tial waves separately by expanding ψ =
∑
l,m

Cl,m
uE,l(r)
r

Yl,m(θ, ϕ) and solving the radial

Schrödinger equation (for E > 0, k =
√

2µE
ℏ2 with reduced mass µ = m

2 ):

−1
2
d2

dr2uE,l(r) +
(
V (r) + l(l + 1)

2r2

)
uE,l(r) = 1

2k
2uE,l(r). (1.1)

The regular and irregular solutions for the case V = 0 are the spherical Bessel functions:

u
(1)
E,l = krjl(kr), u(2)

E,l = krnl(kr). Their asymptotic properties are as follows [ 3 ]:

(kr ≫ l) u(1)
E,l → sin

(
kr − lπ

2

)
, u

(2)
E,l → − cos

(
kr − lπ

2

)
, (1.2)

(kr ≪ l) u(1)
E,l → (kr)l+1

(2l + 1)!! + O((kr)l+3), u(2)
E,l → −(2l − 1)!!

(kr)l
+ O((kr)−l+2). (1.3)

For a strictly finite-range potential with some range r0 (V (r ≥ r0) = 0), the radial wave

function at r ≥ r0 takes the form uE,l = C
(
u

(1)
E,l − tan δlu

(2)
E,l

)
. Once the radial Schrödinger

equation is solved within the region of interaction, the phase shift δl can be calculated

by tan δl = W [u(1)
E,l

,uE,l]

W [u(2)
E,l

,uE,l]
at r = r0, where W [f, g] = fg′ − f ′g is the Wronskian. At low

14



energies, plugging in the small asymptotic forms of u(1),u(2) into the expression for tan δl,

one obtains the Wigner threshold laws: tan δl = k2l+1 (c1 + c2k
2 + . . .). Intuitively, this

behavior originates from the centrifugal barrier l(l+1)
2r2 in the Schrödinger equation, so that

at ultracold temperatures, s-wave scattering is the dominant contribution to the partial

wave expansion (except in certain cases, such as spin-polarized fermions for which l = 0

is forbidden by the Pauli exclusion principle). In particular, the s-wave scattering length

is defined to be as = − lim
k→0

tan δ0

k
and is the most important parameter summarizing the

strength of interparticle interaction in discussions of ultracold atomic gas; the scattering

cross section is given by σ = 4πa2
s, for instance.

The threshold laws hold as stated for any potential that falls off faster than any inverse

power law, such as a Gaussian potential. They do not hold for the Coulomb potential, which

requires a separate analysis using the Coulomb functions. A C
r2 potential is another anomaly;

there exists a critical value of C at which the behavior of the wave function changes markedly,

a subject that will be returned to later in discussions of the Efimov effect. For potentials 1
rα

with α > 2, the threshold laws hold for l < α−3
2 and are replaced by kα−2 for l > α−3

2 [ 2 ].

Therefore scattering length is well-defined for α > 3.

Returning to finite-range potentials, notice that 1
kl+1u

(1)
E,l, klu

(2)
E,l, and 1

k2l+1 tan δl all are

of order O(k0). This allows us to analytically continue, k = iκ, to consider the bound

spectrum. Examine uE,l =
(
kl+1C

)
1

kl+1

(
u

(1)
E,l − tan δlu

(2)
E,l

)
, and recall that a bound state

must not have asymptotic exponential divergence of form eκr. This gives a general energy-

dependent condition for the bound state: i tan δ0
l = 1

k2l+1 for an “energy-analytic” phase shift

tan δ0
l = tan δl

k2l+1 . In particular, if there is a high-lying l = 0 bound state very close to the

threshold E = 0, its energy may be approximated by the universal dimer energy [ 4 ]:

E = − ℏ2

2µa2
s

. (1.4)

We emphasize the word “universal”, in that for any potential (regardless of whether it is

an atomic, nuclear, or condensed-matter system), if it has finite range and the system is cold

enough that the de Broglie wavelength vastly exceeds the range, this result is applicable.
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Such universal regimes are where the inner details of the interaction are irrelevant, so that

only the phase shift or, equivalently, the scattering length matters.

Let us examine this further. Note that at sufficiently low energy, the s-wave wave

function outside the range of interaction becomes uE,0 = C
(
r + tan δ0

k

)
= C (r − as), or

f = u
r

= C
(
1 − as

r

)
. In literature this is summarily represented by the Bethe-Peierls bound-

ary condition [ 4 ]: lim
r→0

∂

∂r
(rf) = lim

r→0

r2

as

∂

∂r
f . Hence we get an intuitive interpretation for

the scattering length: it is the zero-intercept of the radial wave function uE,0 at zero energy.

Unitarity condition, as → ±∞, is right where a dimer exists at threshold. A large, positive

as indicates there is a weakly-bound dimer just below threshold, given by Eqn.  1.4 ; a large,

negative as, on the other hand, indicates the dimer has been “pushed” above threshold and

is no longer a bound state.

-4 -2 0 2 4
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1

2
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m
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2

ℏ
2
E

(a) α = −2, as = −3.332r0.
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-4

-2

0
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r/r0

m
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ℏ
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E

(b) α = −6, as = +1.812r0.

Figure 1.1. Demonstration of negative and positive scattering lengths using
gaussian potential V (r) = ℏ2

mr2
0
α exp

(
−
(

r
r0

)2
)

.

Fig.  1.1 shows an example of s-wave states calculated using a gaussian potential V (r) =
ℏ2

mr2
0
α exp

(
−
(

r
r0

)2
)

. When dimensionless α = −2, the potential is too weak to support any

dimer, and the scattering length is as = −3.332r0, where the black dashed line crosses 0.

Blue curve is the numerically solved zero-energy wave function. On the other hand, when

α = −6, there is one dimer at E = −0.74 ℏ2

mr2
0
, while the black dashed line crosses 0 at

as = 1.812r0. Note that the zero-energy wave function (blue curve) and the bound-state
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wave function (orange) look fairly similar when r < 2r0. Eqn.  1.4 gives universal dimer

energy E = −0.305 ℏ2

mr2
0
, quite different from the correct binding energy because as is small.

Under the ultracold conditions we are interested in, the s-wave phase shift is, to a good

approximation, all that matters in controlling the system physics, not the actual shape of the

potential inside the range r0. Therefore, assuming that the scattering length is known from

experiment or theory, we replace the true interaction potential by the Fermi pseudopotential:

V (r⃗) = 2πℏ2as

µ
δ (r⃗) . (1.5)

This pseudopotential was first derived by Fermi [ 5 ] in the context of the effect of sur-

rounding neutral atoms (called perturbers) on the Rydberg spectra of alkali atoms, as a tool

to describe the interaction between the highly excited electron and the perturbers. Substi-

tuted into the Schrödinger equation, the Fermi pseudopotential enforces the Bethe-Peierls

boundary condition on the wave function; the true shape of the wave function for r < r0

is lost (see black dashed lines of Fig.  1.1 ) but is assumed irrelevant, hence it is referred to

as a zero-range interaction. The pseudopotential assumes that only s-wave phase shift is

nonzero, so there is no information regarding the p-wave and higher partial waves. Note in

Fig.  1.1 that, with respect to the wave function when V = 0, the black dashed line appears

to be “pulled inward” for as < 0 and “pushed outward” for as > 0. In particular, for as > 0,

it looks as if a hard-wall boundary condition is imposed at r = as. This is the intuitive

interpretation behind the notion of strength of two-body interaction being proportional to

as in Eqn.  1.5 .

Sometimes the artificial 1
r

divergence of the wave function can cause problems. Note that

in Fig.  1.1 , dividing a black dashed line by r will cause a divergence, whereas dividing a

blue curve by r does not. One can use a regularized pseudopotential [  6 ], which only refers

to the regular (non-divergent) part of the wave function:

V (r⃗) = 2πℏ2as

µ
δ (r⃗) ∂

∂r
r. (1.6)

The pseudopotential is too divergent to be directly diagonalized in a numerical computa-

tion as one would attempt with true potentials, but, used correctly, it greatly simplifies the
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analysis of basic, universal properties of quantum systems. The regularized pseudopotential

is often used in few-body theory [  7 ]; the regularization is unnecessary for other applications

as is the case of the one-body ansatz problem of Ch.  2 and  3 .

Finally, for several atomic species, such as Rb and Cs, the scattering length can in fact

be tuned via Feshbach resonances [ 8 ].

Figure 1.2. Schematics of a Feshbach resonance. Image taken from [ 8 ].

In a magnetic Feshbach resonance, two different channels corresponding to different hy-

perfine states of colliding atoms are coupled by a variable magnetic field; Zeeman splitting

between the different hyperfine states controls the location of the closed channel threshold

with respect to the open channel threshold. A bound state of a closed channel is a resonance

since it can decay into the open channel; if that resonance energy is tuned to be close to

threshold of open channel, scattering length becomes very large, well described by equation

a(B) = abg

(
1 − ∆

B−B0

)
. The term abg refers to the background scattering length of the sin-

gle open channel away from resonance, while ∆ and B0 refer to the width and position of
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the resonance. Note that B = B0 + ∆ is the position of effectively zero scattering length.

Therefore, cold atomic systems provide an ideal venue to study few and many-body physics

with widely tunable interaction strength.
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2. ONE-BODY ANSATZ: INTRODUCTION AND METHOD

2.1 Introduction to Physics of Many Bosons and Mean-Field Theory

Ever since the early pioneering experimental works first demonstrated successful creation

of Bose-Einstein condensates [ 9 ]–[ 11 ], in which bosons are cooled to nK-range temperatures

such that classical statistical physics no longer applies and fundamental quantum mechanics

of cold atoms could be studied rigorously, there has since been an explosion of interest in

understanding the behavior of N bosons. There is truly a wide spectrum of topics. At

the few-body side is, for instance, the study of three-body recombination, a process by

which 3 atoms collide and exit energetically as a dimer and a free atom, providing the main

pathway by which condensates decay in time [ 12 ], [ 13 ]. At the many-body side, for example,

collective excitations of the condensate as a whole have been studied [ 14 ]–[ 16 ] in order to

understand how the effect of s-wave interaction modifies the vibrational frequencies from the

usual harmonic oscillator energy levels.

Consider, then, the following Hamiltonian of N spin-less (or spin-polarized) bosons with

mutual two-body interaction within a spherical trap:

H = − ℏ2

2m

N∑
i=1

∇2
i + 1

2mω
2

N∑
i=1

r2
i +

N∑
i<j

V (ri,j). (2.1)

In this chapter regarding single-particle orbital ansatz, we model the system by using

Fermi pseudopotential V (ri,j) = gδ(r⃗i − r⃗j), where g = 4πℏ2as

m
effectively parametrizes the

interaction in terms of scattering length while assuming that the microscopic details of V

are irrelevant [ 17 ]. The most widely used theory [ 18 ], [ 19 ] is to assume an ansatz wave

function of form Ψ =
N∏

i=1
ϕ(r⃗i) and variationally minimize the energy functional, which gives

the well-known Gross-Pitaevskii (GP) Equation:

− ℏ2

2m∇2ϕ+ 1
2mω

2r2ϕ+ g(N − 1)|ϕ|2ϕ = ϵϕ. (2.2)

The total energy is given by E = Nϵ− 1
2gN(N−1)

∫
|ϕ|4 d3r⃗, where ϵ is the orbital energy

and chemical potential of the system, quantifying the amount of energy required to add an

additional particle to the trap. Note that the total energy is not simply a multiple of ϵ; there
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is a need to compensate for an over-counting of particle interaction terms. The solution to

Eqn.  2.2 must obey the normalization condition
∫

|ϕ|2 d3r⃗ = 1. The above equation is a

number-conserving form, with the non-linear term vanishing for N = 1; one often finds N

rather than N−1 in the literature. The Gross-Pitaevskii Equation is a non-linear mean-field

equation, effectively describing the motion of one particle under the mutual influence of N−1

other particles through the non-linear term. Note that the coupling constant g is linearly

proportional to as. The equation fails when n|as|3 ≫ 1 (where n is the number density),

or in other words when roughly N1/3as ≫ lt (where lt =
√

ℏ
mω

is the trap length scale). A

possible next step is to include a Lee-Huang-Yang correction [  20 ] that gives the next-order

term in
√
na3

s, valid when as > 0; an alternative is to replace the naive pseudopotential by

a regularized pseudopotential [ 21 ], [  22 ].

0 1 2 3 4 5 6

0.0

0.2

0.4

0.6

0.8

1.0

r / lt

ϕ
(
r
)

non-int

N = 1220, as = -4.7163 x 10-4 lt

soliton, l = 0.49 lt

N = 10000, as = 0.01 lt

Thomas-Fermi

Figure 2.1. Comparison of different spherically symmetric solutions of mean-
field equation and their approximations.

Fig.  2.1 shows spherically-symmetric solutions to the mean-field equation under three

different scenarios as well as relevant approximations. The blue curve is the non-interacting

limit, a pure gaussian. Then the chemical potential is ϵ = 3
2ℏω and the total energy is
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E = 3
2Nℏω as usual. Red and green curves are numerical solutions to Eqn.  2.2 that we

calculate using imaginary time propagation [ 23 ] in a finite-difference representation. Split-

operator and Crank-Nicolson [ 24 ] methods were used in each time step; because function

norm is not preserved in imaginary time, normalization condition
∫

|ϕ|2 d3r⃗ = 1 was imposed

at every time step.

The scenario for red curve is very close to the criticality of Eqn.  2.2 ; with just a few

more particles or more negative as, the equation admits no solution. Chemical potential

is ϵ = 0.37ℏω; total energy is E = 1430ℏω. Note that the solution is remarkably well

approximated by a function ϕs
l = 1√

4π

√
12

π2l3
sech

(
r
l

)
, with l = 0.49lt. ϕs

l is the functional

form for a “bright soliton” in quasi-1D settings, explained later. On the other hand, the

numerical solution that is the green curve gives ϵ = 9.47ℏω and E = 68, 710ℏω. The

scenario for green curve is well within the regime where “Thomas-Fermi” approximation can

be applied, in which the kinetic term of Eqn.  2.2 is neglected because the non-linear term

dominates. The “Thomas-Fermi” solution exhibits a square-root cusp that is unphysical, in

disagreement with the green curve for r > 4lt.

A very large volume of literature exists on both theoretical and experimental studies of

the mean-field equation, testing its predictions against real condensates in laboratories. Note

that for negative as, one cannot arbitrarily increase the number of particles; there exists a

threshold critical number of particles Nc above which the system becomes unstable and will

quickly collapse, in a phenomenon known as a “Bosenova” [ 8 ], [ 25 ]. A gaussian variational

treatment [ 26 ], [ 27 ] of Eqn.  2.2 gives an estimate of Nc by the relation Nc
|as|
lt

≈ 0.671, while a

numerical solution [ 28 ] of Eqn.  2.2 puts a lower estimate: Nc
|as|
lt

≈ 0.575. Ref. [ 29 ] studies Nc

beyond spherical symmetry, into the quasi-2D “pancake” and quasi-1D “cigar” configurations

as well. Experiments [ 30 ], [ 31 ] are in reasonable agreement with these predictions, though

they typically quote lower range of values for Nc; due to the metastable nature of condensates

with attractive interaction, and due to quantum fluctuations and tunneling, it may be rather

difficult to have condensate atom number steadily approach Nc in an experiment.

The dynamics of collective excitations of Bose-Einstein condensates are often studied by

complementing a time-dependent version of Eqn.  2.2 with the hallmark theory of Bogoliubov

modes [  32 ], [ 33 ]. In summary, in terms of ground-state solution ϕ0 of Eqn.  2.2 and a set of
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Hartree-Fock excited-state orbitals ϕi, one solves for the excitation energies ℏΩλ = Eλ −E0

using the following matrix equation:

B C

C B


U⃗λ

V⃗λ

 = ℏΩλ

1 0

0 −1


U⃗λ

V⃗λ

 , (2.3)

Bi,j = (ϵi − ϵ0)δi,j + g(N − 1)
∫

dV ϕ∗
i |ϕ0|2ϕj, (2.4)

Ci,j = g(N − 1)
∫

dV ϕ∗
i |ϕ0|2ϕj. (2.5)

For as > 0 indicating an effectively repulsive interaction amongst the particles, in the

limit of large gN , a Thomas-Fermi approximation can be made; within that approximation,

the collective monopole (total L = 0) excitation frequencies are found [ 34 ] to be ∆En =

ℏω
√

2n2 + 3n (compare with the non-interacting result of frequencies 2nℏω for zero angular

momentum trap states). Multiple experiments [ 14 ], [ 35 ] on excitations agree quite reasonably

with the above theories, as well as numerical solutions of the time-dependent version of

Gross-Pitaevksii equation [ 36 ]–[ 38 ].

The non-linear Eqn.  2.2 is neither restricted to spherically symmetric trap nor to zero

angular momentum. A large volume of literature (see [ 39 ] and [ 40 ] for example) studies

non-zero angular momentum solutions of the mean-field equation to describe the quantized

vortices of Bose-Einstein condensate. Another very interesting direction is to study a non-

spherically-symmetric condensate, specifically using cylindrical trap configurations for quasi-

1D and quasi-2D settings. It was shown [ 41 ] that a cylindrical trap plays a peculiar role,

in which the effective one-dimensional scattering length is related to the original s-wave

scattering length as by the following relation (at is transverse oscillator length):

a1D

at

= −1
2
at

as

(
1 − c

as

at

)
, c ≈ 1.4603. (2.6)

Notice that at some finite positive value of as, a1D tends to 0 and hence the one-

dimensional coupling strength g1D, inversely proportional to a1D, diverges; this is known

as a “confinement-induced resonance”. By breaking spherical symmetry and reducing the ef-
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fective dimension, other interesting phenomena are observed; one example is Ref. [ 42 ], which

shows that it is possible to have certain out-of-equilibrium states of quasi-1D Bose gas that do

not thermalize after thousands of collisions. Another phenomenon is the existence of “bright

soliton”, well described by functional form sech(z) in the longitudinal direction that exactly

solves the one-dimensional mean-field equation [  43 ], [ 44 ]. In quasi-one-dimension, unlike

in spherically symmetric system, metastable self-bound droplets can form due to attractive

pair-wise interaction in the absence of longitudinal trap and can propagate with robust wave

form, opening possibilities for manipulating many-body states and demonstrating matter

optics and interferometry.

2.2 Method of One-Body Ansatz: Orbital Picture

2.2.1 N-Body Hamiltonian

The following discussion of methods in this chapter, as well as results in Ch.  3 , are origi-

nally published in Ref. [ 45 ]. Having reviewed the various fascinating many-body phenomena

observed in cold Bosonic atomic gas and the successes (and limitations) of mean-field theory

in describing them, one cannot help but wonder still about the nature of the non-linear term

in Eqn.  2.2 . As far as Schrödinger Equation continues to remain valid in non-relativistic

quantum mechanics, the true underlying theory of many-particle systems should still be

linear ; the question is how well one can handle the formidable challenge posed by such a

multi-dimensional partial differential equation.

In an attempt to move away from the non-linear approximation, one notices that, for

spherically symmetric configurations, the root-mean-square radius of the cloud of atoms is

a particularly relevant collective degree of freedom that does not appear to have been the

subject of much attention. In fact, the root-mean-square radius is intimately related to the

concept of hyperradius. With the hyperradius as a fixed parameter, one may hope to trace

out the adiabatic potential energy of the system as a whole, not just a single particle in the

mean-field sense. The tremendous success and usefulness of this adiabatic hyperspherical

formalism in the realm of few-body physics will be explored in greater detail in Ch.  4 .

For now, simply take the hyperradius to be the root-mean-square radius: R2 = 1
N

N∑
i=1

r2
i .
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We work with a fundamental assumption that changes in this overall collective coordinate

are far slower than changes in other degrees of freedom, related to different rearrangements

of the particles. In a sense, this is a self-fulfilling prophecy; when calculations show that

non-adiabatic corrections related to hyperradial derivatives are small, then the assumption

is justified.

Return to the N -body Hamiltonian of Eqn.  2.1 with Fermi pseudopotential V (ri,j) =

gδ(r⃗i − r⃗j), and perform a transformation from Cartesian coordinates to a system of coordi-

nates (R,Ω), where Ω refers to the various 3N − 1 degrees of freedom other than R:

N∑
i=1

∇2
i = 1

N

(
1

R3N−1
∂

∂R

(
R3N−1 ∂

∂R

)
− Λ2

R2

)
, (2.7)

H = − 1
2N

1
R

3N−1
2

∂2

∂R2R
3N−1

2 +HA, (2.8)

HA = 1
2N

(
(3N − 1)(3N − 3)

4R2 + Λ2

R2

)
+ 1

2NR
2

+ 4πas

∑
i<j

δ(r⃗i − r⃗j). (2.9)

Here and for the rest of this chapter and Ch.  3 , we shall use dimensionless units with

length in terms of oscillator length lt =
√

ℏ
mω

and energy in terms of oscillator units ℏω.

The external trap only depends on R; this is one of the powerful appeals of using this

collective coordinate. The Hamiltonian is split into a hyperradial kinetic term of second

derivative and HA, which contains all other terms for which R is regarded a constant. A

repulsive term proportional to (3N−1)(3N−3)
4R2 is called a “mock” centrifugal potential, appearing

as a result of removing a first-derivative in R for future convenience. The operator Λ2

is called a “grand angular momentum operator” (see Appendix  B for more details in a

different case when the center-of-mass is removed). In general, there exist eigenfunctions

Yλ,µ, called “hyperspherical harmonics”, that satisfy equation Λ2Yλ,µ = λ(λ + 3N − 2)Yλ,µ,

with integer λ = 0, 1, . . . and different quantum numbers µ distinguishing degenerate states.

The hyperspherical harmonics fully solve the problem when there is no interaction, and even
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for problems with interactions, there are works that generally utilize some form of expansions

in these functions [ 46 ]–[ 49 ].

Now, because of the sheer difficulty of attempting to diagonalize the full Hamiltonian,

consider the following total ansatz wavefunction:

Ψ = F (R)
R(3N−1)/2

B(R,Ω)√
C(R)

. (2.10)

Let bra-ket notation indicate a hyperangular integration with R held fixed: ⟨ψ|ϕ⟩ =∫
ψ∗ ϕ dΩ. Suppose there is some reasonable real ansatz function B that approximately

describes the eigenfunction Φ0 corresponding to the lowest adiabatic eigenvalue U0(R) of HA,

which must exist in principle: HAΦ0 = U0(R)Φ0. C(R) = ⟨B|B⟩ is the a priori unknown

hyperangular normalization integral of B at each fixed R. Then compute ⟨B|H|Ψ⟩ = E⟨B|Ψ⟩

to obtain the following effective one-dimensional Schrödinger Equation:

− 1
2NF ′′(R) − Q(R)

2N F (R) + ⟨B|HA|B⟩
C

F (R) = EF (R), (2.11)

Q(R) = ⟨B|B′′⟩
C

+ 1
4

(
C ′

C

)2

− 1
2
C ′′

C
. (2.12)

Q is called a diagonal non-adiabatic correction, related to how quickly B changes with

respect to R; if Q = 0, one is completely justified in taking R as a slow, adiabatic parameter.

Note that the variational principle holds here, in that the expectation value U(R) of adiabatic

HA must give an upper bound over true lowest adiabatic eigenvalue U0:

U(R) = ⟨B|HA|B⟩
C

≥ U0(R). (2.13)

2.2.2 Choice of Independent-Particle Ansatz

What should the ansatz function B be? In the vein of hyperspherical harmonic expansion

previously mentioned, perhaps the simplest approximation would be to take B to be a

constant [ 50 ]. In fact, the lowest hyperspherical harmonics Y0,0 is a constant; indeed, for non-
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interacting bosons, the total ground-state wave function is
N∏

i=1
e− 1

2 r2
i = e− 1

2 NR2 , depending

only on R with no other dependence. This is known as a “K-Harmonic” approximation, for

which the non-adiabatic correction Q(R) = 0 and the expectation value U(R) takes a simple

analytical form that is easy to interpret. One highlight of that result is that, because of the

dimensionality of the Dirac delta function, there is a R−3 term in U(R) whose sign is given

by as; with a sufficiently large value of Nas, U(R) ceases to support a local minimum, giving

an intuitive picture of macroscopic collapse of attractive condensates.

The K-Harmonic approximation was extended to treat traps that are no longer spher-

ically symmetric, in which case there is not one adiabatic parameter R but two or three

parameters to calculate adiabatic surfaces for the condensates [ 51 ], [ 52 ]. The ideas are sim-

ple enough that even degenerate Fermi gas could be treated in a similar manner in terms of

a Slater determinant of trap eigenstates, for spherically symmetric [ 53 ] and non-symmetric

[ 54 ] systems. Quite recently, an interesting extension was presented that treated dipolar con-

densates within the K-Harmonic framework [  55 ]. However, results [ 50 ] from the K-Harmonic

approximation disagree significantly with known results of mean-field theory, not just for the

collective excitation frequencies, but (more seriously) also the ground-state energies of con-

densates. It is interesting to note that for the K-Harmonic approximation, the largest value

Nc that supports a local minimum in the potential in order for a metastable condensate to

form is given approximately by Nc
|as|
lt

≈ 0.671, in agreement with the gaussian variational

treatment [ 27 ] in over-estimating the critical number of attractive condensate.

The great discrepancies between the predictions of mean-field theory and the K-Harmonic

approximation can be understood by examining the shapes of typical solutions of the mean-

field equation (see Fig.  2.1 ). It is clear that, for both attractive and repulsive two-body

interaction, the solutions of Eqn.  2.2 deviate significantly from a gaussian, and hence there

must be a wealth of information in the total orbital product wave function Ψ =
N∏

i=1
ϕ(r⃗i) that

has not been explored in terms of the root-mean-square radius R. Therefore, we choose now

the ansatz hyperangular function B to be the following functional form:

B(R,Ω) =
N∏

i=1
ϕ(r⃗i) (2.14)
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Note that there is a great variety of different single-particle orbitals ϕ that we may use

in our calculations. Given experimental parameters (N, as, ω), the orbital ϕ that enters the

variational calculation in Eqn.  2.11 does not have to be the correct solution of Eqn.  2.2 . We

may choose to substitute N by some other N0 ̸= N in Eqn.  2.2 and obtain a different orbital

ϕ in order to explore its consequences. In other words, a set of several different N0 will lead

to correspondingly different orbitals, and hence several different results for the expectation

values U(R). This idea is particularly useful for situations with as < 0, for which it may be

possible that Eqn.  2.2 has no solution. On top of N0 ̸= N , we also explore the consequences

of using as independent-particle orbital the bright soliton function ϕs
l = 1√

4π

√
12

π2l3
sech

(
r
l

)
,

which will give a series of different values U(R) for each choice of parameter l > 0. This

choice is motivated by the observation in Fig.  2.1 that the bright soliton orbital does a

remarkable job in approximating the correct numerical solution of the mean-field equation.

2.2.3 Extended Ansatz of Several Orbitals

It was noted that there are non-unique choices of single-particle orbitals ϕ that one may

use for the ansatz channel function in Eqn.  2.14 . A general symmetrized wave function of

form Ŝ[ϕ1(r⃗1) · · ·ϕN(r⃗N)], with symmetrization operator Ŝ and different orbitals ϕ1, ϕ2, . . .,

is too complicated and beyond the scope of this dissertation, but a limited formalism using

several different kinds of orbitals ϕ is implemented as follows. To proceed, we choose an

alternate form of ansatz hyperangular function B in the following manner, with some n > 1:

B(R,Ω) =
n∑

µ=1
Dµ(R)Bµ(R,Ω)√

Cµ(R)
, Bµ(R,Ω) =

N∏
i=1

ϕµ(r⃗i). (2.15)

First select n different orbitals ϕ1(r⃗), . . . , ϕn(r⃗), and construct individual single-orbital

functions Bµ. Denote Cµ,ν = ⟨Bµ|Bν⟩ and Cµ,µ = Cµ, where Cµ is the hyperangular normal-

ization integral of Bµ to be computed. Column vector D⃗ = (D1(R), . . . , Dn(R)) of expansion

coefficients denotes the particular linear combination of Bµ that constitutes the total ansatz,

and it will be computed by a diagonalization procedure to be discussed soon. Be aware

that individual Cµ(R) is not the same as the total normalization integral C(R) = ⟨B|B⟩.

This multi-orbital approach is quite similar in spirit to the configuration-interaction (CI)
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methods routinely implemented in quantum chemistry [  56 ], [ 57 ]. There are some similari-

ties to a recently proposed method of “eigenvector continuation” [ 58 ], where eigenstates of

certain model Hamiltonians are used to approximately diagonalize a different Hamiltonian.

The limited diagonalization scheme here draws inspirations from the adiabatic hyperspher-

ical problems of few-body physics, using basis sets such as correlated gaussians [ 59 ]–[ 61 ] to

diagonalize the fixed-hyperradius adiabatic Hamiltonian.

The following five n by n matrices, O, H, P , Q (not to be confused with the quantity

Q(R)), and P 2 (not P x P ), are needed; their matrix elements are as follows:

Oµ,ν =
〈
Bµ√
Cµ

∣∣∣∣ Bν√
Cν

〉
= Cµ,ν√

Cµ Cν

, (2.16)

Hµ,ν =
〈
Bµ√
Cµ

∣∣∣∣HA

∣∣∣∣ Bν√
Cν

〉
= ⟨Bµ|HA|Bν⟩√

Cµ Cν

, (2.17)

Pµ,ν =
〈
Bµ√
Cµ

∣∣∣∣ ∂∂R
∣∣∣∣ Bν√
Cν

〉
= ⟨Bµ|B′

ν⟩√
CµCν

− C ′
ν

2Cν

Oµ,ν , (2.18)

Qµ,ν =
〈
Bµ√
Cµ

∣∣∣∣ ∂2

∂R2

∣∣∣∣ Bν√
Cν

〉
= ⟨Bµ|B′′

ν ⟩√
CµCν

− C ′
ν

Cν

⟨Bµ|B′
ν⟩√

CµCν

+
3

4

(
C ′

ν

Cν

)2

− C ′′
ν

2Cν

Oµ,ν , (2.19)

P 2
µ,ν =

〈
∂

∂R

 Bµ√
Cµ

 ∣∣∣∣ ∂∂R
(
Bν√
Cν

)〉
=

⟨B′
µ|B′

ν⟩√
CµCν

−
C ′

µ

2Cµ

⟨Bµ|B′
ν⟩√

CµCν

− C ′
ν

2Cν

⟨Bν |B′
µ⟩√

CµCν

+
C ′

µC
′
ν

4CµCν

Oµ,ν . (2.20)

Evaluate the matrix elements of the adiabatic Hamiltonian as follows:
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⟨Bµ|HA|Bν⟩ = ⟨Bµ|Λ2|Bν⟩
2NR2

+
(

(3N − 1)(3N − 3)
8NR2 + 1

2NR
2
)
Cµ,ν

+ 4πas

(
N(N − 1)

2

)
⟨Bµ|δ(r⃗2 − r⃗1)|Bν⟩, (2.21)

⟨Bµ|Λ2|Bν⟩ = R2
(

⟨Bµ|B′′
ν ⟩ + 3N − 1

R
⟨Bµ|B′

ν⟩

−N2⟨Bµ|∇2
1|Bν⟩

)
. (2.22)

The matrices O, H, and P 2 are symmetric, but P and Q are not. O is the overlap

matrix, with Oµ,µ = 1, but the off-diagonal elements do not generally vanish since the basis

of orbitals was not initially chosen with guaranteed orthogonality. In principle O′ = P +

P T and O′′ = Q + QT + 2 P 2, with Pµ,µ = 0 and Qµ,µ = −P 2
µ,µ.

Note that the overall normalization integral is C(R) = ⟨B|B⟩ = D⃗TOD⃗, while ⟨B|HA|B⟩ =

D⃗THD⃗. Now solve the generalized eigenvalue problem at each fixed value of R:

HD⃗ = U(R)OD⃗. (2.23)

An eigenvalue U(R) obtained here is precisely the quantity ⟨B|HA|B⟩
C

for the hyperradial

Eqn.  2.11 concerning F (R). Also, one writes the radial derivative of normalization as

C ′ = 2D⃗TOD⃗′ + D⃗TO′D⃗, C ′′ = 2D⃗′TOD⃗′ + 2D⃗TOD⃗′′ + 4D⃗TO′D⃗′ + D⃗TO′′D⃗, and ⟨B|B′′⟩ =

D⃗TQD⃗ + 2D⃗TPD⃗′ + D⃗TOD⃗′′. First eliminate the term D⃗TOD⃗′′ in Q(R), and then impose

the chosen normalization condition C(R) = D⃗TOD⃗ = 1 at each R for the eigenvector D⃗.

The non-adiabatic correction Q(R) (Eqn.  2.12 ) for the corresponding B(R,Ω) (Eqn.  2.15 )

can then be calculated as follows:

Q(R) = −D⃗′TOD⃗′ − 2D⃗TP T D⃗′ + D⃗T
(1

2(Q−QT ) − P 2
)
D⃗. (2.24)
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Finally, to compute D⃗′, follow the ideas of Ref. [ 62 ] and first differentiate both sides of the

generalized eigenvalue Eqn.  2.23 . Next, solve the system (H−UO)Y⃗ = (−H ′+U ′O+UO′)D⃗,

where Y⃗ = D⃗′ + cDD⃗ for some initially unknown coefficient cD. Using the chosen condition

D⃗TOD⃗ = 1, then cD = D⃗TOY⃗ + 1
2D⃗

TO′D⃗. This type of method is also applied to find the

derivative of any other vector as arises in the next section.

2.2.4 Dealing with Linear Dependence of Similar Orbitals

When we attempt to implement the above multi-orbital formalism using different cho-

sen orbitals ϕµ (such as those seen in Fig.  2.1 ), which all look fairly similar as nodeless

functions, approximate linear dependence can arise between the different basis functions

Bµ(R,Ω). The linear dependence leads to numerical instability that can in turn produce un-

reasonable generalized eigenvalues U(R) of Eqn.  2.23 . Similar linear dependence problems

also arise in Ref. [  59 ], for example, given a particular basis set of correlated gaussians used

to compute few-body adiabatic hyperspherical potential curves. To deal with such patholo-

gies, the generalized eigenvalue problem can be stabilized by a commonly-used procedure

as follows. First, diagonalize the overlap matrix at each R: OX⃗l = olX⃗l. Sort the eigen-

values such that o1 ≥ . . . ≥ on, and define the corresponding orthogonal eigenvector matrix

X =
(
X⃗1, . . . , X⃗n

)
.

Now examine the representation where Õ = XTOX is diagonal. With H̃ = XTHX and
⃗̃D = XT D⃗, the generalized eigenvalue problem in this new representation is H̃ ⃗̃D = U(R)Õ ⃗̃D.

Everything is equivalent to Eqn.  2.23 at this point, but, empirically speaking, if at least one

eigenvalue of O is smaller than some threshold value (typically 10−4), the eigenvalues U

quickly and unphysically collapse towards −∞.

To fix this issue, choose some c < n and define a submatrix Xc of X: Xc =
(
X⃗1, . . . , X⃗c

)
.

Note that Xc
TXc = 1c, but XcXc

T ̸= 1n. One can systematically reduce the dimension of the

basis set, so that B(R,Ω) is composed of c, not n, basis functions, each of which is a suitable

linear combination of Bµ’s. Those linear combinations of Bµ’s with very small corresponding

eigenvalues of O mostly cancel themselves out, so they are thrown away.
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To be concrete, define Õc = Xc
TOXc and H̃c = Xc

THXc, and solve instead the following

generalized eigenvalue problem:

H̃c
⃗̃D = Ũ(R)Õc

⃗̃D. (2.25)

This is referred to as the reduced representation throughout this chapter and Ch.  3 .

The c eigenvalues Ũ are different from the n eigenvalues of Eqn.  2.23 in the primitive

(original) representation, obeying the Hylleraas-Undheim theorem [  63 ] as the basis dimension

is reduced one-by-one. These Ũ are then taken for ⟨B|HA|B⟩
C

of Eqn.  2.11 in the variational

formulation.

Finally, the chosen normalization condition for the eigenvectors is now ⃗̃DT Õc
⃗̃D = 1.

After a lengthy algebraic simplification, the corresponding expression for the non-adiabatic

correction Q(R) of Eqn.  2.12 is as follows:

Q(R) = −Z⃗ ′TOZ⃗ ′ − 2Z⃗TP T Z⃗ ′ + Z⃗T
(1

2(Q−QT ) − P 2
)
Z⃗ (2.26)

Here Z⃗ = Xc
⃗̃D. Of course, if c = n and no linear combination of Bµ’s has been elimi-

nated, this is completely equivalent to the expression for Q(R) (Eqn.  2.24 ) in the primitive

representation of previous section.

2.3 Hyperangular Integration: Contour Deformation

2.3.1 Matrix Elements as 1-D Complex Integrals

Let spherically symmetric orbital ϕ(r⃗i) = 1√
4π
u(ri). Having discussed the formalism

and the various required hyperangular integrals, we finally explain how the integrals are

performed.

For the simplest example, consider Cµ,ν =
∫

dΩBµBν =
∫

dΩ
N∏

i=1
ϕµ(r⃗i)ϕν(r⃗i). At a partic-

ular value of hyperradiusR, write
∫

dΩ =
∫

dΩ dR′ δ(R−R′) = N−3N/2R−(3N−1) ∫ N∏
i=1

d3r⃗i
′δ(R−

R′), where R′ =

√√√√ 1
N

N∑
i=1

r′
i
2, meant to distinguish from R to avoid confusion. As in Ref. [ 60 ],

we use the following representation of Dirac delta function:
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δ(R −R′) = NR

π

∫ ∞

−∞
dk eikN(R′2−R2). (2.27)

After simplification, Cµ,ν becomes:

Cµ,ν(R) = 1
N3N/2R3N−1

∫ N∏
i=1

d3r⃗i
′δ(R −R′)

N∏
j=1

ϕµ(r⃗j
′)ϕν(r⃗j

′)

= 1
N3N/2R3N−1

(
NR

π

) ∫ ∞

−∞
dk e−ikNR2

[∫ ∞

0
dr′ r′2eikr′2

uµ(r′)uν(r′)
]N

. (2.28)

The delta function allows an evaluation of the hyperangular integral in terms of the

individual particle coordinates r⃗i, which is much easier than trying to express ϕ in any

hyperangular coordinate system (see Appendices  B and  C ). For example, for a term in Hµ,ν

coming from the Fermi pseudopotential, dropping primes (′) for notational simplicity, we get

the following:

⟨Bµ|δ(r⃗2 − r⃗1)|Bν⟩

= 1
N3N/2R3N−1

(
NR

π

) ∫ ∞

−∞
dk e−ikNR2

N∏
i=3

[∫
d3r⃗i eikri

2
ϕµ(r⃗i)ϕν(r⃗i)

]

×

 ∫ d3r⃗1

∫
d3r⃗2 eikr12

ϕµ(r⃗1)ϕν(r⃗1)δ(r⃗2 − r⃗1)eikr22
ϕµ(r⃗2)ϕν(r⃗2)


=
( 1

4π

) 1
N3N/2R3N−1

(
NR

π

) ∫ ∞

−∞
dk e−ikNR2

[∫ ∞

0
dr r2e2ikr2 (uµ(r)uν(r))2

]
×
[∫ ∞

0
dr r2eikr2

uµ(r)uν(r)
]N−2

. (2.29)

The other integrals of interest are: ⟨Bµ|B′
ν⟩, ⟨Bµ|B′′

ν ⟩, ⟨B′
µ|B′

ν⟩, and ⟨Bµ|∇2
1|Bν⟩, where

prime denotes ∂
∂R

here. Using ∂
∂R

=
N∑

i=1

∂ri

∂R

∂

∂ri

=
N∑

i=1

ri

R

∂

∂ri

and ∇2u(r) = 1
r2

∂
∂r

(
r2 ∂u

∂r

)
, one

can derive expressions such as an example here:
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⟨Bµ|B′
ν⟩ =

(
N

R

) 1
N3N/2R3N−1

(
NR

π

) ∫ ∞

−∞
dk e−ikNR2

[∫ ∞

0
dr r3eikr2

uµ(r)∂uν

∂r
(r)
]

×
[∫ ∞

0
dr r2eikr2

uµ(r)uν(r)
]N−1

. (2.30)

To close this subsection, the following expression can then be derived for the matrix

element of Λ2, verifying that ⟨Bµ|Λ2|Bν⟩ = ⟨Bν |Λ2|Bµ⟩:

⟨Bµ|Λ2|Bν⟩ = N(N − 1) 1
N3N/2R3N−1

(
NR

π

) ∫ ∞

−∞
dk e−ikNR2

[∫ ∞

0
dr r2eikr2

uµ(r)uν(r)
]N−2

×

[∫ ∞

0
dr r4eikr2

uµuν

]
×
[∫ ∞

0
dr r2eikr2 ∂uµ

∂r

∂uν

∂r

]

−
[∫ ∞

0
dr r3eikr2

uµ
∂uν

∂r

]
×
[∫ ∞

0
dr r3eikr2

uν
∂uµ

∂r

]. (2.31)

2.3.2 Integration by Steepest Descent

Note now that every integral of the previous section has the form
∫∞

−∞ dk e−ikNR2
g(k) [I(k)]β.

Factor g(k) is not being taken to power N , but I(k) =
∫∞

0 dr r2eikr2
uµ(r)uν(r) is taken to

power β = N,N − 1 or N − 2. Because a factor is being powered to large values of N , the

integrand oscillates extremely rapidly on the real line of k, making the original formulation

of the integrals above nearly impossible. The way to solve this problem is by applying the

method of steepest descent [ 64 ].

Start by writing e−ikNR2 [I(k)]β = eNf(k), where f(k) = −ikR2 + β
N

log I(k). Notice that

for k = iκ, κ ∈ R, assuming that I(k) converges, then I(k) is a real, positive quantity, so

f(k) is also real. For example, if u(r) = 2
π1/4 e− r2

2 , then I(k) = (1 − ik)−3/2 if Im k > −1.

As a function of R, there exists a saddle point k = iκ0 where f(k) is a minimum on the

imaginary axis. By the Cauchy-Riemann equations, with k = x+iy, the following conditions

hold at k = iκ0: ∂Re (f)
∂x

= 0, ∂Im (f)
∂x

= 0, ∂2Re (f)
∂x2 < 0, and ∂2Im (f)

∂x2 = 0.
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Therefore, on the contour Γ where k = x + iκ0, x ∈ (−∞,∞), the oscillations in eNf(k)

are minimized as the amplitude rapidly decreases away from the saddle point. We deform

the contour and evaluate the resulting smooth integral by the usual Gaussian quadrature

rules [  65 ]:

∫ ∞

−∞
dk g(k)eNf(k) = eNf(iκ0)

∫
Γ

dk g(k) eN(f(k)−f(iκ0)) . (2.32)

To be more explicit, define the following set of even-parity off-centered gaussian fitting

functions and their corresponding integral transforms, where l is some chosen length scale

(do not confuse it with length scale of bright soliton orbital) and r0 is the distance between

neighboring peaks:

Bn(l, r0, r) = exp
(

−
(
r − nr0

l

)2
)

+ exp
(

−
(
r + nr0

l

)2
)
, (2.33)

Bm(
√

2l, 2r0, r)Bn(
√

2l, 2r0, r)

= exp
(

−(m− n)2r2
0

l2

)
Bm+n(l, r0, r) + exp

(
−(m+ n)2r2

0
l2

)
B|m−n|(l, r0, r), (2.34)

B̃n(l, r0, k) =
∫ ∞

0
dr eikr2

r2Bn(l, r0, r) = exp
(

−(nr0)2

l2

(
1 + 1

ikl2 − 1

))

×
[√

π

2

( 1
l2

− ik
)−3/2

+
√

π
(nr0)2

l4

( 1
l2

− ik
)−5/2 ]

. (2.35)

To evaluate and analytically continue I(k) in the complex plane, we perform a least-

squares fitting approximation with chosen maximum basis index nm for
√
uµ(r)uν(r) (uν if

µ = ν) that is originally expressed in a discrete point grid:
√
uµ(r)uν(r) ≈

nm∑
n=0

CnBn(
√

2l, 2r0, r).

We only deal with nodeless orbitals here, so
√
uµ(r)uν(r) ≥ 0, and also the orbitals are even

functions of r so we choose to describe them with even functions Bn(l, r0, r). Typically, when

we choose l and r0 to be roughly the same value, at least an order of magnitude smaller than

the overall length scale of the orbital, and choose nm large enough to cover the decaying tail

to some sufficiently large radius, this least-squares fitting works quite well in practice. Then

the expansion is used to compute the following:
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I(k) =
∫ ∞

0
dr r2eikr2

(√
uµ(r)uν(r)

)2

=
nm∑

m=0

nm∑
n=0

CmCn exp
(

−(m− n)2r2
0

l2

)
B̃m+n(l, r0, k)

+
nm∑

m=0

nm∑
n=0

CmCn exp
(

−(m+ n)2r2
0

l2

)
B̃|m−n|(l, r0, k) . (2.36)

Expanding
√
uµ(r)uν(r) and taking its square ensures that the resulting approximate I(k)

is positive on the imaginary axis of k (where it converges). If, on the other hand, one expands

uµ(r)uν(r) with µ ̸= ν, then least-squares fitting does not guarantee the positiveness of I(k).

We take the principal branch of log I(k) and search for saddle point k = iκ0, κ0 > − 1
l2

at each

fixed R; again, with I(k) > 0 on the imaginary axis, there will be no unphysical difficulty

arising from the branch cut of log I(k). We emphasize that l should be far smaller than the

size of the orbitals uµ and uν , not only for good fitting but to ensure that the singularity

k = − i
l2

in B̃n(l, r0, k) does not hamper the search for κ0.

2 3 4 5 6
-0.2

-0.1

0.0

0.1

0.2

R / lt

κ
0

Figure 2.2. Typical values of imaginary part κ0 of saddle point.
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Similar procedures are employed to express g(k) as well (for Cµ,ν , g = 1). As an example,

consider ⟨Bµ|B′
ν⟩, for which g(k) =

∫∞
0 dr r3eikr2

uµ(r)∂uν

∂r
(r). Here we approximately expand

by least-squares fitting
√
uµ

(
−1

r

)
∂uν

∂r
=

nm∑
n=0

CnBn(
√

2l, 2r0, r) for a different set of coefficients

Cn. The function
√
uµ

(
−1

r

)
∂uν

∂r
was chosen because the quantity uµ

(
−1

r

)
∂uν

∂r
is positive and

even. Then g(k) = −
∫∞

0 dr r4eikr2
(√

uµ

(
−1

r

)
∂uν

∂r

)2
, and a separate analytic expression for∫∞

0 dr eikr2
r4Bn(l, r0, r) is found and used. In the end, only the ratios of quantities such as

Cµν√
Cµ,Cν

are needed, so a lot of factors, such as the prefactor 1
N3N/2R3N−1

(
NR

π

)
, drop out of

the final results.

1 2 3 4 5 6
-3.0
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-1.5

-1.0

-0.5

0.0

R / lt

f(
i
0
)

Figure 2.3. Typical values of f(k) = −ikR2 + log I(k), β = N , at saddle point k = iκ0.

To illustrate the methods of this section, Figs.  2.2 ,  2.3 , and  2.4 , taken from Ref. [ 45 ],

benchmark the method of steepest descent using a single gaussian orbital 2
π1/4α3/2 exp(−1

2

(
r
α

)2
),

for which the functions I(k) and f(k) can be found analytically. Consider the conditions

N = 104 and as = 10−2 lt, and take α = 2.41529, which variationally minimizes the to-

tal energy of mean-field Eqn.  2.2 . From Ref. [ 50 ], all integrals can be done exactly

with a gaussian orbital, giving for example C′(R)
C(R) = −2NR

α2 . Solid curves are the exact re-

sults without least-squares fitting. Dotted curves are the results of approximately fitting
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Figure 2.4. Example of hyperradial logarithmic derivative of normalization
integral C′(R)

N C(R) .

u =
nm∑
n=0

CnBn(
√

2l, 2r0, r), with nm = 25, r0 = 0.16 lt, and l =
√

2r0. Dashed curves are with

nm = 50, r0 = 0.1 lt, and l =
√

2r0.

In the neighborhood of the local minimum of variational expectation values U(R), which

is located at R = 2.958 lt for chosen parameters, excellent agreement between exact and

approximate results are seen, as well as convergence in terms of the number of fitting func-

tions. Note that κ0 → ∞ as R → 0 and κ0 → − 1
α2 as R → ∞ for the exact result. Both

κ0 and f(iκ0) are nearly 0 in the vicinity of R = 2.958 lt. As hinted by the shape of f(iκ0),

plotting N3N/2R3N−1C (which integrates in R to 1) results in an extremely sharp peak at

the local minimum R = 2.958 lt, indicating that the system, in a state represented by the

gaussian orbital, is localized at the minimum of K-Harmonic adiabatic potential U(R) in

almost point-like manner.

Some deviations between exact and approximate results are observed at small R, and a

more serious deviation is observed at large R away from 2.958 lt. If one wishes to accurately

compute U(R) away from its minimum, more computational effort must be spent to satis-
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factorily describe the far-lying tail of the orbital with fitting functions. Even then, since the

different integrands in k are of the form eNf(iκ0)g(k)eN(f(k)−f(iκ0)), serious questions remain

regarding the accuracy of the method for large values of R (when Nf(iκ0) deviates signifi-

cantly from 0). However, since the method of this chapter can only be expected to describe

the ground-state and perhaps a few of the lowest-lying breathing modes of the condensate,

we shall remain pleased by the benchmark results of Figs.  2.2 ,  2.3 , and  2.4 , and explore the

consequences of the formalism in detail in the next chapter.
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3. ONE-BODY ANSATZ: RESULTS AND DISCUSSION

This chapter explains the results and consequences of the one-body orbital variational ansatz

method that was developed in Ch.  2 . All figures and tables are taken from Ref. [ 45 ], where

they were originally published.

Of many possible examples, two prototypical laboratory conditions are explored in par-

ticular. The first is for values of N up to 104, with scattering length set to as = 10−2lt,

so that results may be compared naturally with the Thomas-Fermi approximation. The

other condition simulates the parameters of Ref. [ 30 ], where 7Li has negative scattering

length as = −27.3 a0 and the trap is almost spherically symmetric with oscillator length

lt = 3.157µm, so as = −4.577 × 10−4 lt. Nc = 1257 is the largest particle number for which

Eq.  2.2 has a solution, while the K-Harmonic approximation predicts Nc = 1465 to be the

largest N that supports a local minimum in the adiabatic hyperspherical potential. Ref. [ 30 ]

actually quotes a wide range of lower experimental estimates for Nc from 650 to 1300.

As for the notation regarding choice of orbitals, ϕN0,as is the solution of Eqn.  2.2 with

interaction term g(N0 − 1)|ϕ|2ϕ, if auxiliary parameter N0 is different from the true physical

N . ϕGP = ϕN,as is the correct Gross-Pitaevskii solution, if it exists. Finally, we also use

the bright-soliton orbital ϕs
l = 1√

4π

√
12

π2l3
sech

(
r
l

)
where appropriate. They are relevant and

particularly useful when as < 0, by which means we can compute potentials even when no

solution of Eqn.  2.2 exists.

3.1 Potentials of Single Mean-Field Orbitals

Fig.  3.1 shows the variational adiabatic potentials U(R) − Q(R)
2N

with non-adiabatic cor-

rections included (see Eqn.  2.11 ) for scattering length as = 0.01 lt and various values of N,

using the correct numerical solution ϕGP for each N. The blue dashed, red dotted, and green

solid curves refer to results of single ϕGP for N = 9600, 9800, and 10000, respectively. The

black circles are the potential for N = 9600 using the K-Harmonic approximation. For the

same scattering length, Fig.  3.2 shows the comparison between values of E obtained from

solving the mean-field equation (black circles) and minima of potentials (Q included) from

ϕGP (blue solid) and from the K-Harmonic approximation (red dashed).
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Figure 3.1. Adiabatic potentials with Q included for as = 0.01 lt, calculated
using ϕGP for N = 9600 (blue dashed), 9800 (red dotted), and 10000 (green
solid). The black circles are the K-Harmonic potential for N = 9600.

Similarly, Fig.  3.3 shows the variational adiabatic potentials with non-adiabatic correc-

tions included for scattering length as = −4.577×10−4 lt and various values of N . The orange

solid, blue dotted, and red dashed curves are calculated using single ϕGP for N = 1197, 1227,

and 1257, respectively. The black circles are computed from the K-Harmonic approximation

for N = 1257. For the same negative scattering length, Fig.  3.4 shows the comparison

between values of E obtained from solving Eqn.  2.2 (black circles) with the extrema of

variational hyperspherical potentials (Q included). Blue solid and dashed curves are minima

and maxima obtained from single ϕGP . Orange dotted and dash-dotted curves are minima

and maxima obtained from the K-Harmonic approximation.

In all cases shown here, the non-adiabatic correction Q(R) was negligible, its contribution

too small to be seen in the scales of figures, justifying the use of root-mean-square radius R as

a slowly-varying parameter. At large R, the variational adiabatic potentials are dominated

by the external trap scaling as R2. At smaller R, the main contributions come from repulsive
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Figure 3.2. Numerically minimized mean-field energy E0(N) (black circles)
compared with the minima of adiabatic potentials (Q included) calculated
using ϕGP (blue solid) and using the K-Harmonic approximation (red dashed),
for as = 0.01 lt.

“mock” centrifugal term proportional to (3N−1)(3N−3)
4R2 and from the interaction term; in the

K-Harmonic approximation, the interaction term is strictly proportional to R−3. When

as > 0, both centrifugal and interaction terms are repulsive; when as < 0, the two terms

compete, with the interaction term winning at very small R.

Note in Figs.  3.1 and  3.3 how ϕGP minimizes the local minimum of the variational hy-

perspherical potential far better than the K-Harmonic approximation does. As N increases,

so does the value of the local minimum; consistent with the trend in changing shapes of

mean-field orbital ϕGP , the location of minimum is pushed outward with increasing N when

as > 0, while it is pulled inward with increasing N when as < 0.

In Fig.  3.3 , the height of the local maximum that temporarily protects the metastable

condensate from collapse steadily decreases with increasing N . There is a great difference in

barrier height between the K-Harmonic (∆E = 188.99 ℏω) and single-ϕGP (∆E = 47.87 ℏω)
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Figure 3.3. Adiabatic potentials with Q included for as = −4.577 × 10−4 lt,
calculated using ϕGP for N = 1197 (orange solid), 1227 (blue dotted), and 1257
(red dashed). The black circles are the K-Harmonic potential for N = 1257.

models for N = 1257, consistent with the over-estimation of Nc by a gaussian orbital.

However, quite surprisingly, there still is quite a large barrier in the potential computed

from ϕGP for N = 1257, even though criticality has been reached according to the mean-

field equation so one would have expected the barrier vanish.

Figs.  3.2 and  3.4 show once again that K-Harmonic approximation significantly over-

estimates the ground-state energy of the many-particle system, while results from ϕGP are

consistent with mean-field predictions. The minima of potentials from ϕGP are slightly lower

than mean-field energies; though the difference is too small to be seen in the scale of the

figures, the discrepancy is consistent with the notion of vibrational zero-point energy that

arises when the hyperradial equation  2.11 is solved. In Fig.  3.4 , the maximum of potential

obtained from ϕGP has almost merged with the minimum at N = 1257, though not quite as

discussed earlier.
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Figure 3.4. Numerically minimized mean-field energy E0(N) (black circles)
compared with the extrema of adiabatic potentials (Q included), for as =
−4.577 × 10−4 lt. Blue solid and dashed curves are minima and maxima from
ϕGP . Orange dotted and dash-dotted curves are minima and maxima from
K-Harmonic approximation.

3.2 Excitation Frequencies from Single Mean-Field Orbitals

Having observed the general topology of the variational potentials and the agreement

with mean-field theory in terms of ground-state energies, we now investigate the lowest few

excitation frequencies. The current hyperspherical formalism is only able to describe the

monopole modes of zero angular momentum.

Figs.  3.5 and  3.6 show the comparison of results from Bogoliubov Equation  2.3 , K-

Harmonic approximation, and single ϕGP calculations. In the limit of very small N , all

results reduce to the non-interacting limit of ∆En = 2nℏω for zero angular momentum trap

states. In Fig.  3.5 concerning positive as, the Bogoliubov predictions converge at large N to

the Thomas-Fermi limit [ 34 ] of ∆En = ℏω
√

2n2 + 3n; therefore the first excitation energy

is predicted to be greater than the non-interacting limit, while higher excitation energies
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Figure 3.5. The first 3 (red, blue, orange) excitation energies Ei −E0 for as =
0.01 lt and varying N . Solid, dotted, and dashed curves are the Bogoliubov
predictions, while solid circles are from the K-Harmonic approximation. Open
circles are the results of single-ϕGP calculations.

are supposed to be smaller than the non-interacting limit. The K-Harmonic approxima-

tion, obtained by solving Eqn.  2.11 with the potential of Ref. [ 50 ], predicts all excitation

frequencies to increase with N , though it agrees quite well with the Bogoliubov theory for

the first excited state. Somewhat surprisingly and disappointingly, the results of variational

potential energies obtained using a single ϕGP orbital are even worse than the predictions of

K-Harmonic approximation. It indicates that, though the orbital ϕGP minimizes the min-

imum of the adiabatic potential well, it performs poorly in minimizing the potential away

from the minimum, resulting in a “tight” potential with overestimated excitation energies.

Most likely, ϕGP alone is not enough to sufficiently describe the many-body correlations and

fluctuations.

In Fig.  3.6 , both ϕGP and the K-Harmonic approximation predict that the excitation

frequencies decrease with increasing N . The frequencies from ϕGP decay faster due to lower

45



0 2 4 6 8 10 12
0

1

2

3

4

5

6

7

N / 102

Δ
E
/
ℏ
ω

Figure 3.6. The first 3 (red, blue, orange) excitation energies Ei −E0 for as =
−4.577×10−4 lt and varying N . Dotted curves are the Bogoliubov predictions,
while solid curves are from the K-Harmonic approximation. Circles are from
single-ϕGP calculations.

barrier height, as seen in Fig.  3.3 . Note that higher excited states decay faster than the first

excited state; given a sufficiently low barrier, there is a limit to the number of metastable

wave functions that one can solve for using Eqn.  2.11 . On the other hand, Bogoliubov theory

predicts that only the first excitation energy decays as N approaches critical number Nc,

while third and higher excitation energies actually increase. The first excitation energy of

Bogoliubov theory decays faster than that from single ϕGP calculation. It will be seen in a

later section that by using multiple orbitals, the barrier height of potential seen in Fig.  3.3 

will reduce tremendously, so there will be better agreement with the Bogoliubov prediction

as a result.
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3.3 Multi-Orbital Calculations, Repulsive Interaction

Fig.  3.7 shows results of implementing the multi-orbital ansatz formalism for 10,000

bosons with as = 10−2 lt. Circles are calculated from only ϕGP , while triangles and squares

are obtained by single orbital calculations, with orbitals obtained for values of N0 lower and

greater than the correct N in the mean-field equation. As expected, ϕGP is superior to all

other orbital in minimizing the minimum of the variational potential, but interestingly, other

choices of orbitals do perform better in minimization away from the local minimum.

These observations provide strong motivation for coupling such different (yet similar-

looking) orbitals together and performing a limited diagonalization procedure. Red solid

curve is from coupling 3 different orbitals; no linear dependence between the orbitals was
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Figure 3.7. Adiabatic potentials with Q included for 104 bosons with
as = 10−2 lt. The orange triangles, black circles, and green squares are
single ϕN0,as results with N0 = 9600.04, 104, and 10399.96. The red solid
curve is the lowest primitive eigenvalue from coupling 3 orbitals with N0 =
9800.02, 104, and 10199.98, with no eigenstate of O removed. The blue
dashed curve is the lowest reduced eigenvalue from coupling 5 orbitals with
N0 = 9600.04, 9800.02, . . . , 10399.96, with 1 eigenstate of O removed.
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Table 3.1. List of ground state E0 and excitation ∆E (units of ℏω) from
solving Eq.  2.11 with different U(R) − Q(R)

2N
, for N = 104 and as = 10−2 lt. n

is the number of coupled orbitals, and δ = n − c is the number of eigenstates
of O thrown away. The orbitals ϕN0,as are identified by values of N0 = N0,1 +
(i − 1)∆N0, i = 1, . . . , n.
type (n,δ) (N0,1,∆N0) E0 ∆E

K-Har. (1,0) n.a. 73346.48 2.23, 4.46, 6.69
ϕGP (1,0) n.a. 68745.42 2.59, 5.19, 7.78
ϕN0,as (3,0) (9800.02,199.98) 68744.71 2.32, 4.60, 6.84
ϕN0,as (5,0) (9500.05,249.975) 68744.52 2.30, 4.55, 6.77
ϕN0,as (5,1) (9600.04,199.98) 68744.69 2.19, 4.43, 6.68
ϕN0,as (5,2) (9800.02,99.99) 68744.71 2.32, 4.59, 6.83

observed. On the other hand, coupling 5 nodeless orbitals with similar shapes did lead to

linear dependence; one of the eigenstates of the overlap matrix had to be removed, and the

result is seen as a blue dashed curve. There is little difference between the two diagonalized

results; it is of little avail to add more and more orbitals to the coupled calculations because

linear dependence issues force us to remove more and more linear combinations, defeating

the purpose. At any rate, the coupled orbital calculations do lead to lower minimum and

broader curvature than single ϕGP calculations.

Using Eqn.  2.11 , we may now solve for hyperradial eigenstates on top of these coupled

potentials, and Table  3.1 summarizes the result. Compared to only using ϕGP , significant

lowering of the hyperradial state energies is now observed from multi-orbital calculations,

but the excitation frequencies are mostly still higher than what the Bogoliubov theory gives.

Actually, for (n,δ) = (5,1) and (N0,1,∆N0) = (9600.04, 199.98), the first excitation energy

is lower than the corresponding Bogoliubov prediction. It is not fully understood how the

variational minimization of U(R) tends to convergence with different B(R,Ω), or whether

it even converges at all. In Ref. [ 66 ], standard configuration-interaction (CI) calculations

(not fixing the hyperradius) using the pseudopotential have been shown to fail to converge

in the absolute sense. In any case, the hyperspherical CI method assumes that each term

of the wavefunction is a simple product of orbitals, which is a very strong limitation on
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the subspace of Hilbert space that the many-body system occupies, possibly explaining the

discrepancies with the Bogoliubov predictions.

3.4 Multi-Orbital Calculations, Attractive Interaction

We finally turn our attention to calculating with multiple orbitals when scattering length

is negative.
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Figure 3.8. Adiabatic potentials with Q included for as = −4.577 × 10−4 lt
and N = 1220; all are single-orbital results. Orange dashed, blue solid, and
red dotted curves are from ϕN0,as with N0 = 1112.41, 1220, and 1257.1. Purple
squares, magenta triangles, and green circles are from ϕs

l with l = 0.38, 0.43,
and 0.64 lt.

Keeping in mind that for the situation of Ref. [ 30 ], the mean-field equation numerically

predicts the critical number for as = −4.577 × 10−4 lt to be Nc = 1257, Figs.  3.8 and  3.9 

show various single-orbital calculations using different types of orbitals for N = 1220 and

N = 1300, respectively. In Fig.  3.8 , amongst the different kinds of numerical orbitals one

can obtain from Eqn.  2.2 using different auxiliary parameter N0, indeed ϕGP (the correct
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Figure 3.9. Adiabatic potentials with Q included for as = −4.577×10−4 lt and
N = 1300; all are single-orbital results. Orange dashed, blue dotted, and red
solid curves are from ϕN0,as with N0 = 1149.27, 1203.19, and 1257.12. Magenta
triangles, green circles, and purple squares are from ϕs

l with l = 0.38, 0.43, and
0.48 lt.

solution for N = 1220, giving blue curve) does the best job in minimizing the local minimum

of metastable condensate potential. Note now that a bright soliton orbital of length scale

l = 0.64 lt gives a potential curve that closely follows the blue curve, but when we calculate

using a different soliton orbital of smaller l = 0.38 lt, simulating a situation where the

condensate happens to be more squeezed in, a completely different curve (purple squares)

is obtained in which there is no local minimum. Then, if we were to perform a coupled

calculation using several of these orbitals, we should obtain a curve that roughly traces out

which orbital happens to give the lowest variational value at each R, consequently leading

to much lower local maximum protecting the condensate.

Similarly, Fig.  3.9 shows single-orbital calculations for N = 1300. There is no ϕGP for this

scenario, making the soliton orbitals particularly useful for analysis. Auxiliary parameter

N0 = 1257.12 is the largest it can be so that mean-field Eqn.  2.2 admits a numerical
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solution; its results are shown as a red curve. If we only had access to orbitals of form ϕN0,as ,

we would mistakenly have concluded that N = 1300 still somehow supports a metastable

condensate (remember that the K-Harmonic approximation predicts Nc = 1465), but the

different soliton results, particularly for l = 0.38 lt (magneta triangles), make it clear that

the true correct potential curve has no local minimum to support a metastable condensate.
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Figure 3.10. Adiabatic potentials for N = 1257, as = −4.577 × 10−4 lt.
Open brown circles and open blue triangles are U with Q included from single
ϕN0,as , with N0 = 1257 and 1251.51. Red squares, purple filled circles, and
orange filled triangles are U with Q included from single ϕs

l with l = 0.39, 0.44,
and 0.49 lt. The 5 (green, red, blue, orange, and purple) dashed curves are
the primitive generalized eigenvalues U , without Q, from coupling the above 5
orbitals. The dotted black curve includes Q for the lowest eigenvalue.

Examine now some of the single-particle results for N = 1257 in Fig.  3.10 , for which

the mean-field equation says criticality of attractive condensate has been met. Once again,

ϕGP does the best job in minimizing the local minimum of metastable condensate; it gives

the open brown circles here (the same as the red dashed curve of Fig.  3.3 , which predicts

a barrier height of ∆E = 47.87 ℏω). Similar to Fig.  3.8 , soliton results (red squares) hint
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at much lower barrier height for the true potential. Using the 5 orbitals which give the

5 different single-orbital results of Fig.  3.10 , we now couple these orbitals and obtain 5

generalized eigenvalues from Eqn.  2.23 . The 5 orbitals are sufficiently distinguishable from

one another that no linear dependence was detected. The 5 colored dashed curves of Fig.

 3.10 give the 5 generalized eigenvalues without non-adiabatic correction Q, while the black

dotted curve is the lowest generalized eigenvalue with Q included.

Fig.  3.10 is the only figure of this chapter in which the contributions of non-adiabatic

correction are explicitly shown, as single-orbital calculations consistently gave negligible

non-adiabatic values. The difference between the green dashed and black dotted curves is

noticeable but quite small, so the adiabatic formalism is still applicable. Not shown are the

higher generalized eigenvalues with Q; the non-adiabatic correction gave very high peaks at

every avoided crossing between the dashed curves, indicating breakdown of adiabatic theory.

The most important conclusion of Fig.  3.10 is that the barrier protecting the metastable

condensate is much, much lower for the coupled potential (dotted black) than it is for the

single-ϕGP potential (open brown circles), now only about 2ℏω. Clearly, adding more orbitals

and thereby doing a better job accounting for the many-body correlations is necessary for

a partially satisfactory theory of metastable condensates. The single-orbital theory would

have predicted the critical number Nc to be far higher than what the mean-field theory

predicts, even if the orbital used happens to be the solution of the mean-field equation; the

coupled-orbital potential is now more consistent with the mean-field theory. We take the

dotted black curve as black circles of Fig.  3.11 and solve for hyperradial eigenstates F (R)

using Eqn.  2.11 . Because the variational potential diverges as R−3, the problem of Eqn.

 2.11 is not well defined for range of R all the way to 0 (infinitely many nodes will appear),

so a cutoff must be introduced; Fig.  3.11 chose cutoff Rc = 0.75 lt.

States such as the magenta curve of Fig.  3.11 show up, strongly dependent on the choice

of Rc, indicating collapsed states. Other states, such as the green and orange curves, do show

up above the value of local minimum and below the maximum, but they also depend strongly

on the value of Rc, indicating that they are fast-decaying shape resonances if they can even

be taken seriously. On the other hand, the red curve with E = 1468.08ℏω does appear to

be mostly stable with varying Rc, indicating a credible shape resonance for the metastable
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Figure 3.11. Hyperradial eigenstates F (R) for N = 1257 and as = −4.577 ×
10−4 lt from solving Eqn.  2.11 . The potential, represented by black circles
here, is the dotted black curve of Fig.  3.10 . Boundary condition F (Rc) = 0
at Rc = 0.75 lt is chosen. Dotted lines denote the eigenenergies; solid and
dashed curves are the corresponding wavefunctions F (R) (scaled arbitrarily).
Magenta denotes a collapsed state outside the minimum well; red denotes a
metastable state, while green and orange denote rapidly decaying states.

condensate. Using WKB, we estimate the tunneling lifetime for macroscopic collapse of this

metastable state to be 0.43 s; using Siegert pseudostates [  67 ], we approximate the lifetime

to be roughly 0.5 s.

If we are to take the state represented by the green curve of Fig.  3.11 seriously, then

the difference in energy between the red and green states is about 1ℏω. Therefore, the first

excitation frequency is lower than what the single-ϕGP theory predicts (see very last red circle

at the bottom right of Fig.  3.6 ) in better agreement with the Bogoliubov prediction. But

our results with the variational hyperspherical potentials cast some doubts on the validity of

the Bogoliubov approximation for the second and higher excited states. Imagine a coupled-

orbital potential for N = 1220, similar to the black dotted curve of Fig.  3.10 , by examining

the single-orbital curves of Fig.  3.8 . Such a potential would have a barrier much higher
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than that for N = 1257, supporting many metastable states. But as one increases N , the

barrier will decrease, and the number of metastable states will decrease as a result. This

physical picture is inconsistent with Bogoliubov theory, which places no limits on the number

of eigenvalues of Eqn.  2.3 as N → Nc (there are as many eigenvalues as there are orbitals in

the basis), with higher excitation frequencies increasing as N increases.

3.5 Summary and Outlook

Using some choice of one independent-particle orbital ansatz, or some linear combination

of such orbitals, we have successfully computed the variational adiabatic hyperspherical po-

tentials of many bosons in a spherically-symmetric trap with zero total angular momentum.

The 3N − 1 hyperangular degrees of freedom have been treated by a reformulation in terms

of a one-dimensional complex integral, with method of steepest descent applied to handle

the fast oscillations that come about as a result of large particle number. A mechanism was

formulated to handle any linear dependence between orbitals if it does appear.

The single-orbital calculations, using the correct numerical solution to the mean-field

Gross-Pitaevskii equation given particle number N and scattering length as with respect to

oscillator length lt, have been shown to minimize the local minimum of the variational poten-

tial for the Bose-Einstein condensate better than any other choice of orbital. In particular,

remarkable improvement over the standard K-Harmonic approximation has been achieved in

minimizing the many-body ground-state energy in agreement with mean-field theory. How-

ever, fundamental disagreements between the methods of this dissertation and Bogoliubov

theory on collective monopole excitation frequencies have been observed for as > 0, most

likely because our simple, restricted choice of ansatz does not sufficiently capture the complex

many-body correlations.

A coupled many-orbital calculation did not sufficiently lower the values of excitation

frequencies when as > 0, with persistent discrepancies from the Bogoliubov predictions, but

using a combination of numerical and bright soliton orbitals, a significant reduction in barrier

height of variational potential has been observed for as < 0. Somewhat surprisingly, even

when we use the solution of the mean-field equation as the ansatz, that orbital alone gives a
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variational potential with barrier far higher than that implied by mean-field theory. Several

coupled orbitals, on the other hand, do reduce the barrier to a value consistent with the

prediction of critical condensate number Nc from mean-field theory, with tunneling lifetime

approximately 0.5s for the conditions of Ref. [  30 ].

Direct and straightforward extensions of the work of Ch.  2 and this chapter are available

for the future, mainly in terms of using mean-field orbitals with non-zero angular momentum

for condensate vortices, and in terms of breaking spherical symmetry for applications in quasi-

1D and quasi-2D settings. However, there are several apparent issues with the methods

presented here. The first is that the current method obviously breaks down for unitary

Bose gas with very large scattering length, for which a regularized pseudopotential [ 22 ]

would probably have to be used instead. The other is that, due to the zero-range nature of

the pseudopotential, not only does the variational potential collapse with behavior R−3 for

as < 0, but it is not clear whether the potential can even converge at all for finite R (along the

lines of Ref. [ 66 ]). Finally, within spherical symmetry, a trap is required to obtain a sensible

solution of the mean-field equation to use as an ansatz orbital, hence we may not decouple the

results of variational calculations from the spherical trap and cannot investigate the large-R

asymptotic behavior of the hyperspherical potential within the current limitations of this

theory. Therefore, we take a step back to more modest number of particles and explicitly

construct a completely different ansatz that takes pair-wise correlations into account in Ch.

 4 and  5 , for which finite-range numerical two-body interactions may be used and for which

a unitary Bose gas can be studied quite naturally.
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4. TWO-BODY ANSATZ: INTRODUCTION AND METHOD

4.1 Introduction to Physics of Few Bosons

To obtain ideas on how to construct reasonable two-body ansatz functions, we now re-

view the main results of adiabatic hyperspherical theory as it was originally applied to few

particles. The idea of choosing a collective coordinate, the hyperradius, as a slowly-varying

parameter and calculating an effective potential energy at each fixed hyperradius in a way

similar to Born-Oppenheimer approximation was originally introduced by Macek [ 68 ] in the

context of autoionizing states of helium. Macek defined the hyperradius R =
√
r2

1 + r2
2 in

terms of the two electron coordinates and solved the electronic Schrödinger equation at each

fixed R. At large R, each adiabatic potential energy channel can be classified as either one

electron bound and the other ionized, or both ionized, making R a natural coordinate to

study the bound and continuum states of two electrons at once.

Since then, the adiabatic hyperspherical formalism has particularly grown as a favorite

theoretical toolkit in the context of neutral ultracold atoms. In this context, with the center-

of-mass degrees of freedom separated out, the hyperradius is proportional to
N∑

i<j

r2
i,j, where

r1,2 is the distance between particles 1 and 2. For instance, with three atoms, each adiabatic

hyperspherical potential channel can be classified at large hyperradius as describing either

all three particles unbound from each other, or a dimer (two bound atoms) and a free atom.

The hyperspherical formalism is well-suited for describing the intriguing phenomenon of

Efimov trimers (molecules made of three atoms). Efimov first predicted [ 69 ] that at a two-

body resonance (in other words, when a dimer is formed right at zero energy), an infinite

number of trimers can be formed, each related to another by a peculiar geometric scaling.

At large but finite negative scattering length, when the interaction is too weak to support a

dimer, there still may be a large (but finite) number of trimers (called Borromean states).

Observe Fig.  4.1 , taken from Ref. [ 70 ], which sketches the energies of two neighboring

trimers labeled by indices n and n + 1. Within the hyperspherical formalism, it turns out

[ 70 ], [ 71 ] that when |as| → ∞ (corresponding to the central vertical axis of Fig.  4.1 ), the

lowest adiabatic hyperspherical potential is given by ℏ2

2mN

(−s2
0−1/4
ρ2

)
, where s0 ≈ 1.00624 and
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Figure 4.1. Diagram of trimer binding energies, three-body continuum, and
atom-dimer continuum thresholds in terms of inverse scattering length. Verti-
cal axis is κ = sign(E)

√
m|E|
ℏ2 . Figure taken from Ref. [ 70 ].

ρ2 = 1
N2

N∑
i<j

r2
i,j. Therefore, solving the one-dimensional Schrödinger equation in ρ gives the

universal relation between neighboring trimers as:

|E(n+1)|
|E(n)|

= exp
(−2π

s0

)
≈ 1

(22.7)2 . (4.1)
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If the adiabatic hyperspherical potential maintains the form ℏ2

2mN

(−s2
0−1/4
ρ2

)
all the way

to ρ = 0, as zero-range theory would imply, Eqn.  4.1 says there is not a well-defined ground

state with energy E(0) but a collapse to E → −∞, known as a “Thomas collapse” [ 72 ],

but calculations with realistic finite-range potentials [ 73 ] do set a well-defined ground-state

trimer, from which excited trimer energies can be deduced by Eqn.  4.1 . The value of the

first trimer energy, dependent on the particular two-body potential under consideration, is

referred to in the literature as “setting a three-body parameter”.

For finite values of as < 0, the hyperspherical potential [  74 ] exhibits a barrier and tran-

sitions to a repulsive potential for ρ ≫ as, and for finite as > 0, the potential converges to a

dimer threshold below E = 0 at large ρ, so there will not be an infinite number of trimers as

a result. Fig.  4.1 sketches a series of negative scattering length a
(n)
− where the n-th trimer

first appears. Ref. [ 75 ] was the first experimental evidence of Efimov trimers, more than 30

years after Efimov’s original predictions. By sweeping through a range of scattering lengths

using magnetic Feshbach resonance, the experimentalists detected a large enhancement of

three-body recombination when as hit one value of a(n)
− . Then three free atoms approach-

ing each other become coupled to an excited Efimov trimer, quickly decaying into a deeply

bound dimer and a free atom and energetically leaving the system.

Concerning the computation of adiabatic hyperspherical potentials of three particles,

zero-range theories [ 7 ], [ 70 ] using the regularized pseudopotential (see Eqn.  1.6 ) often de-

compose the wave function into a pairwise form: Φ(ρ; Ω) =
N∑

i<j

ϕ(ρ; ri,j). This is called a

Faddeev decomposition [ 76 ], [ 77 ]. In such theories, though the function ϕ appears to only

depend on a particular pair of particles, it is calculated by taking the influence of all N

particles. A curious set of papers [ 78 ], [ 79 ] attempt to generalize the Faddeev decomposition

for more than 3 particles and have claimed that an attractive 1/ρ2 potential emerges for

many-particle systems as well; if true, then Efimov physics for more than 3 particles would

be observed. These results do not seem to be consistent with Ref. [ 80 ] that shows that

(N − 1)-body resonance does not lead to an infinite number of N -body bound states when

N > 3, nor to numerical results of four bosons [  81 ] that will be discussed later, but they
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did provide a motivation to try to formulate a different two-body numerical ansatz to study

more than 3 bosons in this dissertation.

In contrast to a sum symmetrization of Faddeev, one may consider a product-symmetrized

wave function instead, an idea that goes back to Jastrow [ 82 ]. Jastrow wave functions

are frequently used in computational chemistry to handle electron correlation in Quantum

Monte Carlo methods, for example [  83 ]. A paper [ 84 ] attempted to calculate the adiabatic

hyperspherical potentials by a product symmetrization of functions depending on ri,j using

Bethe-Peierls boundary condition, though rather aggressive approximations have been made

due to difficulties in computation. We shall also consider product symmetrization when able

in this dissertation.

Moving away from zero-range theories, for N = 3, adiabatic hyperspherical potentials

can be computed fruitfully in terms of Smith-Whitten hyperangles (see Appendix  C ), in

which the problem is recast into a coupled partial differential equation in two dimensions

[ 73 ], [ 85 ], [ 86 ]. One highlight of such approach is the notion of Van der Waals universality

[ 87 ]. One may compute the adiabatic hyperspherical potential using different strengths

of two-body interaction that admit correspondingly more and more dimers but the same

scattering length. One would think that deeper two-body Van der Waals potentials should

lead to deeper minimum of lowest hyperspherical potential and hence set a different three-

body parameter, but large non-adiabatic corrections compensate for the stronger two-body

interaction and give rise to similar three-body parameters.

Because there are 3N − 4 hyperangular degrees of freedom that one must account for,

obtaining results for 4 particles has been difficult, but a breakthrough was achieved in terms

of correlated gaussian basis sets [  59 ]–[ 61 ]. A milestone discovery for 4 bosons [ 81 ] is that,

attached to each hyperspherical potential that converges to an Efimov trimer threshold,

two related tetramer (4-body) bound states (or resonances when the associated trimer is an

excited state) are found.

Finally, in the interest of extending the successes of adiabatic hyperspherical method

to more particles, Diffusion Monte Carlo methods [ 88 ], [ 89 ] have been successfully applied

to realistic atomic two-body interactions to compute the lowest adiabatic hypersphercal

potential that converges to a cluster (in other words, not to a scattering continuum where
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all N particles are unbound). Though the methods cannot be used to compute excited

hyperspherical potential curves, these works promise some form of viability in tackling the

problem of more than 4 bosons; we are therefore motivated to formulate ansatz approaches

to describe the continuum channels of several bosons within the hyperspherical framework.

4.2 Method of Two-Body Ansatz

4.2.1 N-Body Hamiltonian with Center-of-Mass Removed

Once again, we start with N identical spin-less (or spin-polarized) bosons, interacting

via short-range two-body potential energies and possibly under a spherically symmetric trap.

After we separate out the center-of-mass degrees of freedom and define the N − 1 relative

Jacobi vectors as described in Appendix  A , the Hamiltonian looks as follows:

HCM = − ℏ2

2mN∇2
CM + 1

2mNω
2R2

CM , (4.2)

H = − ℏ2

2m

N−1∑
k=1

∇2
ηk

+ 1
2mω

2
N−1∑
k=1

η2
k +

N∑
i<j

V (ri,j). (4.3)

In this dissertation, we consider in particular two types of different finite-range interac-

tions. One is a gaussian potential of form V (ri,j) =
(

ℏ2

mr2
0

)
α exp

(
−
(

ri,j

r0

)2
)

, with a dimen-

sionless parameter α that characterizes the interaction strength. The other is a soft-core

Van der Waals interaction of form V (ri,j) = − C6
r6

i,j+σ6 = −
(

ℏ2

m l2
vdw

)(
16 l6vdw

r6
i,j+σ6

)
. An auxiliary

parameter σ > 0 has been introduced to cut off the collapse near origin and determine the

number of dimers, while lvdw = 1
2

(
m C6
ℏ2

)1/4
is a Van der Waals length, giving a typical finite

length-scale of the interaction.

Next, we define the relative hyperradius ρ =
[

1
N

N−1∑
k=1

η2
k

]1/2

. As discussed in Appendix  A ,

ρ2 = 1
N2

N∑
i<j

r2
i,j; there is a clear geometrical meaning to the hyperradius as giving a measure

of the overall size of the N -particle system through the various two-body distances. This

relative hyperradius ρ is related to the hyperradius R =
[

1
N

N∑
i=1

r2
i

]1/2

of Ch.  2 (defined

without removing the center-of-mass) by the relation ρ2 = R2 −R2
CM .
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We transform the coordinate system from a Cartesian system of vectors η⃗1, . . . , η⃗N−1 to

(ρ,Ω), with 3N−4 hyperangles summarily represented by Ω. Then the relative Hamiltonian

is now written:

H = − ℏ2

2mN

(
1

ρ(3N−4)/2
∂2

∂ρ2ρ
(3N−4)/2

)
+ ℏ2

2mN

(
(3N − 4)(3N − 6)

4ρ2

)

+ 1
2mNω

2ρ2 +Had, (4.4)

Had = ℏ2

2mN

(
Λ2

ρ2

)
+

N∑
i<j

V (ri,j). (4.5)

The term proportional to (3N−4)(3N−6)
4ρ2 is a “mock” centrifugal potential, originating as a

result of eliminating a first-derivative term in ρ for future convenience. The adiabatic (fixed-

hyperradius) Hamiltonian Had is composed of an angular-momentum-like term proportional

to Λ2

ρ2 and all pairwise interactions. Λ2 is a “grand angular momentum operator” with

eigenfunctions Yλ,µ(Ω) (see Appendix  B ).

Let bra-ket notation indicate a hyperangular integration with fixed hyperradius, ⟨ψa|ψb⟩ =∫
dΩψa ψb, with real functions. In principle, at each fixed hyperradius, there exists a

complete, orthonormal set of eigenfunctions of the adiabatic Hamiltonian: Hadϕµ(ρ; Ω) =

Uµ(ρ)ϕµ(ρ; Ω). Then, expanding the total wave function as Ψν =
∑

µ

Fν,µ(ρ)
ρ(3N−4)/2ϕµ(ρ; Ω), the

Schrödinger Equation becomes (exactly with no approximation here):

− ℏ2

2mNF ′′
ν,µ(ρ) +

[
Uµ(ρ) + ℏ2

2mN

(
(3N − 4)(3N − 6)

4ρ2

)
− ℏ2

2mNQµ,µ + 1
2mNω

2ρ2
]
Fν,µ(ρ)

− ℏ2

2mN
∑

µ′ ̸=µ

[
2Pµ,µ′F ′

ν,µ′(ρ) +Qµ,µ′Fν,µ′(ρ)
]

= EνFν,µ(ρ), (4.6)

Pµ,µ′ =
〈
ϕµ

∣∣∣∣ ∂∂ρ
∣∣∣∣ϕµ′

〉
, Qµ,µ′ =

〈
ϕµ

∣∣∣∣ ∂2

∂ρ2

∣∣∣∣ϕµ′

〉
. (4.7)

The complicated system of N interacting particles in (3N−3)-dimensional space has been

reduced to coupled ordinary differential equations in a single coordinate. Quite often, the

off-diagonal terms of derivative coupling matrices P and Q can be neglected to an excellent

61



adiabatic approximation, in which the various channels µ may be regarded as decoupled from

each other. However, this formalism is very difficult to implement in many cases, simply

from the technical challenges of computing the channel functions ϕµ in the first place. This

dissertation is therefore concerned with choices of ansatz for channel functions.

Suppose then that there is a (real) function Φµ(ρ; Ω) that one may hope to reason-

ably approximate an actual channel function ϕµ. Write the total wave function as Ψν,µ =
Fν,µ(ρ)

ρ(3N−4)/2
Φµ(ρ;Ω)√

Cµ(ρ)
, where Cµ(ρ) = ⟨Φµ|Φµ⟩ is a hyperangular normalization integral. Then, the

Schrödinger Equation of such a wave function, upon projection of Φµ, becomes as follows:

− ℏ2

2mNF ′′
ν,µ(ρ) +

Uµ(ρ) + ℏ2

2mN

(
(3N − 4)(3N − 6)

4ρ2

)
− ℏ2

2mNQµ(ρ)

+ 1
2mNω

2ρ2

Fν,µ(ρ) = Eν,µFν,µ(ρ), (4.8)

Uµ(ρ) = ⟨Φµ|Had|Φµ⟩
Cµ

=
(

ℏ2

2mNρ2

)
1
Cµ

⟨Φµ|Λ2|Φµ⟩ +
(

1
Cµ

)
N∑

i<j

⟨Φµ|V (ri,j)|Φµ⟩, (4.9)

Qµ(ρ) =
〈

Φµ√
Cµ

∣∣∣∣∣∣ ∂
2

∂ρ2

∣∣∣∣∣∣ Φµ√
Cµ

〉
=
(
C ′

µ

2Cµ

)2

−
(

1
Cµ

)〈
∂Φµ

∂ρ

∣∣∣∣∣∣∂Φµ

∂ρ

〉
. (4.10)

Note an application of the variational principle here, that the quantity Uµ begotten from

any particular ansatz Φµ must be an upper bound on the lowest adiabatic eigenvalue:

⟨Φµ|Had|Φµ⟩
Cµ

≥ U exact
0 (ρ) = ⟨ϕ0|Had|ϕ0⟩. (4.11)

A finite value for the lowest adiabatic eigenvalue must exist for any ρ > 0, for a finite-

range two-body interaction that is considered here. Furthermore, because the space of hy-

perangles is finite (for example, a typical Delves hyperangle β has range [0, π

2 ] in Appendix

 B ), the adiabatic eigenvalue problem is in essence a bound-state problem (in other words,

does not lead to a continuum of channel functions). Hence, one may optimistically search
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for several different ansatz functions Φµ, each approximating one discrete channel function

ϕµ out of many.

4.2.2 Jπ = 0+ Symmetrized Hyperspherical Harmonics

Next, we consider how to construct reasonable ansatz for channel functions that describe

N bosons. We restrict our attention to zero total orbital angular momentum and even

parity, summarized by symbol Jπ = 0+. This must be the symmetry of the ground state of

N bosons, bound or unbound, and also the symmetry of common Bose-Einstein condensates

produced in laboratories; hence, it is the most accessible and promising symmetry for probing

with a variational calculation.

First, examine how to construct some (but not all) fully-symmetrized hyperspherical

harmonics Yλ,µ(Ω) (see Appendix  B for definitions of hyperspherical harmonics and Delves

hyperangles) of symmetry Jπ = 0+. Imagine first a function ϕ(r1,2) that only depends

on the distance between particles 1 and 2. Then the action of grand angular momentum

operator Λ2 on ϕ(r1,2) is to differentiate only in terms of Delves hyperangle β1 (recall that

r1,2 =
√

2Nρ cos β1):

Λ2ϕ(r1,2) = −
(

1
cos2 β1 sin3N−7 β1

)
∂

∂β1

(
cos2 β1 sin3N−7 β1

∂ϕ

∂β1
(r1,2)

)

= ν(ν + 3N − 5)ϕ(r1,2). (4.12)

For an arbitrary number ν, there are two different solutions to this eigenvalue equation,

written in terms of Gauss hypergeometric function 2F1 [ 3 ], [  90 ]:
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f1 = 2F1

(
−ν

2 ,
ν + 3N − 5

2 ,
3N − 6

2 , sin2 β1

)
=
(

1
cos β1

)
2F1

(−ν − 1
2 ,

ν + 3N − 6
2 ,

3N − 6
2 , sin2 β1

)
, (4.13)

f2 = 2F1

(
−ν

2 ,
ν + 3N − 5

2 ,
3
2 , cos2 β1

)
=
(

1
sin3N−8 β1

)
2F1

(
ν + 3

2 ,
−ν − 3N + 8

2 ,
3
2 , cos2 β1

)
. (4.14)

The function f1 is irregular (i.e. diverges) at β1 = π

2 , while f2 is irregular at β1 = 0. To

kill the divergence, one must choose ν = 2n, n = 0, 1, . . ., in which case both f1 and f2 are

proportional to a Jacobi polynomial P ( 3N−8
2 , 1

2)
n (cos 2β1) = P

( 3N−8
2 , 1

2)
n

(
r2

1,2
Nρ2 − 1

)
.

Note now that any particle pair may be labeled (1, 2) instead, and hence the following

set of functions must be some (but emphatically not all) of symmetrized hyperspherical

harmonics of symmetry Jπ = 0+:

Λ2Yn(Ω) = (2n)(2n+ 3N − 5)Yn(Ω), (4.15)

Yn(Ω) =
N∑

i<j

P
( 3N−8

2 , 1
2)

n

(
r2

i,j

Nρ2 − 1
)
. (4.16)

These functions must have symmetry Jπ = 0+ because they are rotationally invariant

and invariant under parity operator. Notice that n = 1 is forbidden here, because Y1(Ω) = 0

(this can be shown by noting that ρ2 = 1
N2

N∑
i<j

r2
i,j). This does not prove that ν = 2 is a

forbidden eigenvalue for N non-interacting bosons of symmetry Jπ = 0+; it merely says

that, should ν = 2 symmetrized hyperspherical harmonics exist, it cannot be expressed in

terms of Yn(Ω). See Appendix  D for an explicit proof that n = 1 is forbidden for N = 3.

Appendix  D also shows that, up to n = 5, the functions Yn(Ω) are the correct nondegenerate

symmetrized hyperspherical harmonics, and that the first two-fold degeneracy occurs for

n = 6, for which Y6(Ω) is one of two eigenfunctions.
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4.2.3 Construction of Explicit Two-Body Ansatz

Having examined the structure of the non-interacting eigenstates of the adiabatic Hamil-

tonian Had, now we consider how they might be modified by the two-body interaction.

Begin by examining the adiabatic eigenvalue equation that one wishes he could solve:

Had ϕµ(ρ; Ω) =
 ℏ2

2mN

(
Λ2

ρ2

)
+

N∑
i<j

V (ri,j)
ϕµ(ρ; Ω) = Uµ(ρ)ϕµ(ρ; Ω). (4.17)

First, in order to apply the tools of scattering theory to the adiabatic hyperspherical

potentials U(ρ), one is typically interested in asymptotic behavior of the potentials at large

ρ. We restrict ourselves to two-body interactions with some finite range r0, decaying faster

than r−3 so that the s-wave scattering length is well-defined. When ρ ≫ r0, then V (ri,j) is

negligible except for very small parts of hyperangular space (called coalescence regions).

Furthermore, for typical dilute gaseous systems in experiments, one might suppose that

as 2 particles interact with each other, the other N−2 particles are all far away from everyone

else and act as “spectators”, to a first-order approximation. Hence, suppose for a moment

that a channel function may be replaced by a function that only depends on r1,2:

[
ℏ2

2mN

(
Λ2

ρ2

)]
ϕ(r1,2) =

[
ℏ2

2mN

(
ν(ν + 3N − 5)

ρ2

)]
ϕ(r1,2) = −

(
ℏ2

2mNρ2

)

×
(

1
cos2 β1 sin3N−7 β1

)
∂

∂β1

(
cos2 β1 sin3N−7 β1

∂ϕ

∂β1
(r1,2)

)
, r1,2 ≫ r0. (4.18)

Solutions to this equation for a priori undetermined ν are given by the functions f1 and

f2 of Equations  4.13 and  4.14 . f2 is inappropriate because there is no physical reason why

the wave function should diverge as β1 → 0, as r1,2 becomes very large. However, f1 is

sensible because it has precisely the divergent behavior that one expects an s-wave function

to have: f(r) ≈ C
(
1 − as

r

)
.

Next, as r1,2 approaches r0, one must take V (r1,2) into account. In the limit r1,2 → 0,

the operator Λ2

2Nρ2 approaches the form − 1
r2

d
dr

(
r2 d

dr

)
, familiar in two-body radial Schrödinger
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Equation. Therefore, we approximate ϕ(r1,2) as a zero-energy scattering wave function under

the influence of V (r1,2), as one typically assumes when using Fermi pseudopotential:

− ℏ2

mr2
1,2

d
dr1,2

(
r2

1,2
dϕ

dr1,2
(r1,2)

)
+ V (r1,2)ϕ(r1,2) = 0, r1,2 < r0. (4.19)

In summary, the following is how the two-body ansatz function ϕ(r1,2) is constructed

when fixed hyperradius is much larger than range r0 of interaction (recall once more that

r1,2 =
√

2Nρ cos β1):

ϕν(r1,2) =


u(r1,2)
Cm r1,2

, r1,2 ≤ rc

f1, r1,2 > rc

(4.20)

−ℏ2

m
u′′(r1,2) + V (r1,2)u(r1,2) = 0. (4.21)

Function u(r1,2) is the two-body zero-energy scattering wave function (multiplied by r1,2),

while f1 is introduced in Equation  4.13 with as-of-yet undetermined value of ν. We solve

for u(r) numerically with boundary conditions u(0) = 0, u′(0) = 1 up to r = rc using

Numerov’s method [ 91 ], [ 92 ]. A two-body matching radius rc has been introduced here, kept

fixed with varying hyperradii for simplicity. rc must be sufficiently large so that u(r) is well

represented as a linear function C(r − as) when r ≥ rc, but also sufficiently small that it is

reasonable to approximate the operator Λ2

2Nρ2 as − 1
r2

d
dr

(
r2 d

dr

)
. Also, a matching coefficient

Cm = Cm(ρ) is introduced to enforce continuity of ϕν at r1,2 = rc. See Appendix  E for more

details on evaluating f1 and other quantities involving hypergeometric functions, as well as

hyperangular and hyperradial derivatives of ϕν .

Next, we must determine the parameters ν in f1. We do so by imposing a continuity of

the log-derivative of rϕν(r) at r = rc. With ρ fixed, write shorthand x1 = cos β1 = r1,2√
2Nρ

.

Then ν = ν(ρ) is a discrete parameter that satisfies the following equation at r1,2 = rc,

x1 = xc = rc√
2Nρ

:

66



(√
2Nρ

) u′(r1,2)
u(r1,2)

=
d

dx1
(x1f1)
x1f1

=
(

(ν + 1)(ν + 3N − 6)
3N − 6

)
2F1(−ν

2 ,
ν+3N−5

2 , 3N−4
2 , 1 − x2

1)
2F1(−ν−1

2 , ν+3N−6
2 , 3N−6

2 , 1 − x2
1)
. (4.22)

The parameter ν is not quite directly related to the variational adiabatic hyperspherical

potential, because Eqn.  4.9 shows that contributions from the small-r part of ϕν and from

the two-body interactions must also be computed, but ν gives a sense for the nodal structure

of the ansatz outside the coalescence regions when all particles are far from each other.

However, as maximum allowed two-body distance given hyperradius, rm =
√

2Nρ, starts

to approach chosen matching radius rc as one takes ρ smaller and smaller, the conditions

for Eqn.  4.20 start to break down. In particular, because the range of rc < r < rm

starts to shrink, the nodal structure of ϕν for excited states starts to become unphysical;

symmetrizing ϕν will not lead to any sensible approximation for an excited channel function.

This is one regime where the theory breaks down, but it is observed that excited potential

curves exhibit repulsive ρ−2 behavior, and hence it is not of any interest to try to compute

the excited hyperspherical potentials accurately for small ρ.

For the ground state represented by the first ϕν that has nodeless f1, when rm < rc, we

replace ϕν by an alternative ansatz constructed purely out of zero-energy numerical two-body

scattering wave function:

ϕa(r1,2) = u(r1,2)
r1,2

(4.23)

In this construction, ν and Cm are no longer relevant. The only parameter to be tuned is

the strength of the two-body interaction, which determines the number of nodes of u(r) and

hence the number of dimers by Levinson’s Theorem [ 2 ]. It is observed that if u(r) has a node

in range 0 < r < rm, this ansatz does not give sensible results of variational calculations.

Symmetrizing such ϕa is not expected to faithfully model the nodal structure of the actual

channel function. On the other hand, if u(r) is nodeless, then an ansatz constructed out

of ϕa gives a potential curve that connects smoothly to the potential curve of lowest ϕν for
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larger ρ. Such calculation is crucial to avoid a Thomas collapse of attractive ρ−2 for N = 3

and give estimates for bound states of N bosons.

4.2.4 Analysis of Two-Body Ansatz

To understand Eqn.  4.22 better, consider the zero-range limit, with finite range of inter-

action r0 → 0, so one may also take matching radius rc → 0. Then the left-hand-side of Eqn.

 4.22 reaches limit −
√

2Nρ
as

. Meanwhile, the right-hand-side approaches −2 Γ(−ν
2 )Γ( ν+3N−5

2 )
Γ(−ν−1

2 )Γ( ν+3N−6
2 ) .

For N = 3, Eqn.  4.22 then tends to the following limit:

ρ

as

= 1√
6

(ν + 2)
sin

(
π

2(ν + 1)
)

sin
(

π

2ν
) . (4.24)

Compare with the well-known results of three-body zero-range theory (see [ 7 ] for one

derivation using the Lippmann-Schwinger Equation, and beware the different convention

for hyperradius with different mass scaling). With two-body interaction V (r) taken to be

regularized pseudopotential
(

4πℏ2as

m

)
δ(r⃗) ∂

∂r
r (regularization introduced to deal with zero-

energy wave function u(r)
r

= C
(
1 − as

r

)
that exhibits divergent behavior), the exact adiabatic

eigenvalues of Had with symmetry Jπ = 0+ are calculated to be ℏ2

2mN

(
ν(ν+4)

ρ2

)
, where ν is a

solution of the following equation:

ρ

as

= 1√
6

[
(ν + 2) sin

(
π

2(ν + 1)
)

+ 8√
3 sin

(
π

6(ν + 2)
)]

sin
(

π

2ν
) . (4.25)

Fig.  4.2 shows the right-hand-sides of Eqns.  4.24 and  4.25 for real and complex values

of ν. There are vertical asymptotes at ν = 0, 2, 4, . . ., indicating the known hyperspherical

harmonic eigenvalues of Sec.  4.2.2 when particles do not interact and as = 0. The asymptotes

separate solutions ν into different discrete branches. As shown in Appendix  D , ν = 2 is

forbidden for 3 non-interacting bosons, and Eqn.  4.25 neglects this asymptote correctly, but

Eqn.  4.24 incorrectly asserts this value of ν as a non-interacting solution. Indeed, there is

a term proportional to sin
(

π

6(ν + 2)
)

in Eqn.  4.25 that is missing in Eqn.  4.24 , and that

term comes precisely from the simultaneous contribution of particle 3 as particles 1 and 2

interact with each other.
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Figure 4.2. Right-hand-sides of Eqns.  4.25 (solid) and  4.24 (dashed), as a
function of ν̃ = ν + 3N−5

2 = ν + 2, which is either positive real or positive
imaginary.

Recall that when Eqn.  4.24 was derived by constructing ansatz ϕν in Eqn.  4.20 , only 2

particles were considered while the other N−2 particles were ignored. Though we shall later

attempt to take all N particles into account by symmetrizing ϕν in a summation as inspired

by the methods of Faddeev decomposition, our theory is not the same as exact Faddeev

decomposition [ 4 ], [  76 ], [  77 ], [  93 ], which takes all N particles into account in computing a

component of form ϕ(ri,j).

The second branch of Eqn.  4.22 , corresponding to 0 < ν ≤ 2 in Fig.  4.2 , consistently gave

unreasonable results for variational hyperspherical potentials of this work. It was noted that

the function Yn in Eqn.  4.16 is 0 when n = 1, and similarly, when ρ ≫ |as|, corresponding

sum-symmetrized ϕν tends to cancel itself out (this is referred to as a “spurious” solution in

Faddeev decomposition). Hence the second branch shall be ignored in all future discussions,

even though the third branch of Eqn.  4.24 may overestimate ν compared to the second

branch of Eqn.  4.25 .

Also worth emphasizing again is that for the exact zero-range theory, the solutions ν

of Eqn.  4.25 directly give the adiabatic hyperspherical potentials ℏ2

2mN

(
ν(ν+4)

ρ2

)
. However,

the solutions ν obtained from the logarithmic-derivative matching condition of Eqns.  4.22 

and  4.24 are not directly related to the variational adiabatic hyperspherical potentials U(ρ);

they only approximately denote the nodal behavior of the ansatz function outside any coa-
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lescence region where ri,j vanishes. The expectation value of the grand angular momentum

operator Λ2 must include contributions from the numerical zero-energy scattering wave func-

tion u(ri,j), and the expectation value of the finite-range interactions V (ri,j) must also be

computed in contrast to zero-range theory.

Of particular interest are the lowest solutions to Eqns.  4.24 and  4.25 when |as| ≫ ρ. In

that limit, lowest solutions νapp and νex to Eqns.  4.24 and  4.25 , respectively, can be written

as a linear expansion in ρ
as

:

νapp ≈ −1 − 2
√

6
π

(
ρ

as

)
+ O

((
ρ

as

)2
)
, (4.26)

νex ≈ −2 + i
[
s0 + 1.65317

(
ρ

as

)
+ O

((
ρ

as

)2
)]

, s0 ≈ 1.00624. (4.27)

In the true limit |as| → ∞, exact ν = −2 + is0 gives rise to adiabatic eigenvalue
ℏ2

2mN

(−s2
0−4
ρ2

)
of Had, and when mock centrifugal term ℏ2

2mN

(
15
4ρ2

)
is added, it gives final

result for the attractive hyperspherical potential ℏ2

2mN

(−s2
0−1/4
ρ2

)
; this is the heart of “Efimov”

physics of 3 bosons.
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(a) ϵ(ρ) for first three ϕν
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Figure 4.3. ϵ = ν̃2 =
(
ν + 3N−5

2

)2
and Cm as functions of ρ.

Fig.  4.3 shows ϵ(ρ) = ν̃2 =
(
ν + 3N−5

2

)2
and matching coefficient Cm(ρ) relevant for con-

structing ϕν with N = 4 bosons, soft-core Van der Waals interaction with σ = 1.6471095lvdw,

and as = −10, 000lvdw. The two-body interaction is too weak to support any dimer. Match-

ing radius rc = 15lvdw was chosen. ϵ and |Cm| are always observed to follow an order, with
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Figure 4.4. First and third ϕν(r1,2) at fixed ρ.

the first ansatz having lowest values and so on. Because |as| is so large, values of ϵ(ρ) re-

main nearly constant as functions of ρ; when as is chosen to be comparable to ρ, ϵ changes

noticeably. However, notice the steep increase of ϵ for 2nd and 3rd ansatz at small ρ; this

is a sign of the breakdown of excited-state ansatz at small ρ that was previously discussed

in Sec.  4.2.3 . As ρ decreases, ϕν attempts to squeeze in nodes at a shrinking range of

rc < r < rm =
√

2Nρ in an unphysical manner.

Fig.  4.4 illustrates the first and third ansatz function ϕν(r) when ρ = 50.41lvdw and maxi-

mum rm =
√

2Nρ = 142.6lvdw. Parameters (ν, Cm) for the 1st function are (−0.9936, 8.895×

10−3); they are (3.422, 0.1641) for the 3rd function. Note the behavior for r > rc = 15lvdw;

the first function is nodeless, while the third function has two nodes. No hyperangular nor-

malization is applied here; the functions are initially chosen with normalization ϕν(rm) = 1.

Also note the steep peak of the functions for r < rc. In the zero-range limit, the peaks

would have diverged with r−1 behavior, but they reach finite values due to the finite-range

interactions. As ρ increases, ϕν exhibits an ever taller peak at shrinking range of r < rc

(shrinking because rc is constant but maximum rm increases). This behavior caused great

complications in performing the necessary hyperangular integration and had to be overcome.
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4.3 Direct Hyperangular Integration

4.3.1 Product and Sum Symmetrization for N = 3

Having constructed the two-body functions ϕν(r1,2) and ϕa(r1,2) of Eqns.  4.20 and  4.23 ,

next we consider the necessary hyperangular integrals for implementing the formalism of

Eqn.  4.8 . First we consider N = 3, for which we can consider and perform computations

using both product and sum symmetrization. With two-body function ϕ (subscript ν and a

suppressed), we construct symmetrized ansatz functions:

Φ(p)(ρ; Ω) =
N∏

i<j

ϕ(ri,j), (4.28)

Φ(s)(ρ; Ω) =
N∑

i<j

ϕ(ri,j). (4.29)

Both Eqns.  4.28 and  4.29 are mathematically valid ways of fully symmetrizing the ansatz

function to describe N bosons. The product form is inspired by the Jastrow wave function,

and the sum form is inspired by the Faddeev decomposition, as discussed in Sec.  4.1 .

There are 5 different types of hyperangular integrals that must be computed:

I1 = C(ρ) = ⟨Φ|Φ⟩,

I2 = ⟨Φ|Λ2|Φ⟩,

I3 =
N∑

i<j

⟨Φ|V (ri,j)|Φ⟩,

I4 = 1
2C

′(ρ) =
〈

Φ
∣∣∣∣ ∂∂ρ

∣∣∣∣Φ〉,
I5 =

〈
∂Φ
∂ρ

∣∣∣∣∂Φ
∂ρ

〉
. (4.30)

See Appendix  E for details on how to compute the hyperangular and hyperradial deriva-

tives of ϕ(ri,j). We proceed by using the Smith-Whitten coordinate system with 2 hyperan-

gles θ and ϕ. (See Appendix  C.1 . It should be clear from context when one refers to function
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ϕµ and when one refers to coordinate ϕ.) The Euler angle contribution
∫ 1

4 sin β dα dβ dγ = π2

is the same for all 5 integrals and may be ignored, since final quantities of interest in Eqn.

 4.8 involve I2
I1

and other similar quotients.

In particular, the two-body distances are as follows:

r1,2 =
√

3ρ
√

1 + cos (2θ) cos (2ϕ),

r1,3 =
√

3ρ
√

1 + cos (2θ) cos
(

2ϕ− 2π

3

)
,

r2,3 =
√

3ρ
√

1 + cos (2θ) cos
(

2ϕ+ 2π

3

)
. (4.31)

For instance, to compute ∂
∂θ
ϕ(r1,2) that appears in I2, one needs ∂

∂θ
r1,2 = −3ρ2 sin 2θ cos 2ϕ

r1,2
.

Effectively Λ2 = − 1
sin 4θ

∂
∂θ

(
sin 4θ ∂

∂θ

)
− 1

cos2 2θ
∂2

∂ϕ2 in I2. To simplify that integral, perform an

integration by parts as follows:

I2 = −
∫

π/4

0
dθ
∫ 2π

0
dϕ sin 4θΦ

(
1

sin 4θ
∂

∂θ

(
sin 4θ ∂

∂θ

)
+ 1

cos2 2θ
∂2

∂ϕ2

)
Φ

=
∫

π/4

0
dθ
∫ 2π

0
dϕ sin 4θ

( ∂

∂θ
Φ
)2

+ 1
cos2 2θ

(
∂

∂ϕ
Φ
)2
 . (4.32)

Because, by virtue of the numerical two-body wave function u(r), the ansatz function

ϕν or ϕa does not diverge anywhere, the surface term
[
sin 4θΦ ∂Φ

∂θ

]π/4

0
vanishes. The other

surface term
[
Φ ∂Φ

∂ϕ

]2π

0
also vanishes because of full periodicity in angle ϕ. All efforts have

been made in this work to avoid second-derivatives of any kind, because the log-derivative

matching condition in Eqns.  4.20 and  4.22 guarantees continuity of the first derivative of

the ansatz two-body function, but not continuity of the second derivative.

Full ranges of angles θ and ϕ are [0, π

4 ] and [0, 2π], but given complete particle exchange

symmetry of the integrands in I1 to I5, the range of ϕ may be restricted to [0, π

6 ], and hence∫
dΩ may be effectively taken to be

∫ π/4
0 dθ

∫ π/6
0 dϕ sin 4θ. Symmetry factor 12 from reduction

of range of ϕ may be ignored because quotients of integrals are to be taken later. To prove
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this assertion, one can show straightforwardly that the integrands I1, . . . , I5 remain invariant

upon the following 4 transformations: ϕ → ϕ+ π, ϕ → ϕ+ π

3 , ϕ → ϕ+ 2π

3 , and ϕ → π

3 − ϕ.

In the restricted ranges θ ∈ [0, π

4 ] and ϕ ∈ [0, π

6 ], there is only one coalescent point, namely

where r2,3 = 0 at (θ, ϕ) = (0, π

6). Recall that when ρ ≫ r0, the two-body ansatz function

ϕν(r) varies rapidly at small r comparable to r0 (see Fig.  4.4 ). Therefore, one must divide

the domain of integration into 4 parts, with some auxiliary length scale r̃:

• Reg. I: 0 < θ < r̃
ρ
, 0 < ϕ < π

6 − r̃
ρ

• Reg. II: 0 < θ < r̃
ρ
, π

6 − r̃
ρ
< ϕ < π

6

• Reg. III: r̃
ρ
< θ < π

4 , 0 < ϕ < π

6 − r̃
ρ

• Reg. IV: r̃
ρ
< θ < π

4 , π

6 − r̃
ρ
< ϕ < π

6

r̃ should be about an order of magnitude greater than the range r0 of two-body inter-

action, indicating at which values of r < r̃ the function ϕν varies rapidly. It could be but

need not be the same as matching radius rc in Eqn.  4.20 . Notice how the quotient r̃
ρ

keeps

shrinking as ρ → ∞. Region II is the smallest region that covers the coalescence region of

r2,3. The fact that the coalescence regions may be pinpointed easily for 3 particles using the

Smith-Whitten coordinates is a gift that should not be taken for granted. Such a procedure

becomes far more difficult for more than 3 particles as will be apparent in the next section.

Because the integrals of this section are all two-dimensional, it is sufficient to divide each

region of integration into rectangular sectors and apply nested quadrature at each sector.

The usual Gauss-Legendre or more sophisticated Gauss-Kronrod quadrature may be used in

each dimension, with increasing number of sectors until desired convergence is met [ 65 ].

4.3.2 Sum Symmetrization for N > 3

Next, we consider how to compute the 5 types of hyperangular integrals (see Eqns.  4.30 )

when there are more than 3 particles. A great deal of initial effort was invested in attempting

to do computations using both product and sum symmetrized ansatz (Eqns.  4.28 ,  4.29 )

in full (3N − 4)-dimensional space using Delves hyperangles (see Appendix  B ). Several
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candidate probability distributions were made to implement the widely-used Metropolis-

Hastings algorithm (part of a wide variety of variational Monte Carlo methods [ 94 ]). Only

poorly converged results could be obtained from this approach for all cases except when

V (r) = 0, when ansatz ϕν(r) does not vary rapidly in a small hyperangular region.

The fundamental road block was the rapidly varying behavior of the ansatz function

ϕν(r) when ρ is far greater than the range of two-body interaction (see Fig.  4.4 ). Recall that

in Delves coordinates, distance between particles 1 and 2 is given by r1,2 =
√

2Nρ cos β1. Be-

cause the total hyperangular volume element dΩ has factor cos2 β1, the volume element reg-

ularizes the integrand by a factor r2 (recall dV = r2 sin θ dr dθ dϕ in usual three-dimensional

problems). However, the function f1 of Eqn.  4.13 and hence the ansatz ϕν roughly have a

1/r divergent behavior, and the hyperangular derivative of ϕν scales as r−2. Though ϕν does

not truly diverge at any point in real space, the rapidly varying nature of the symmetrized

ansatz at small localized regions of hyperangular space makes the function extremely difficult

for any conventional Monte Carlo method to properly handle.

Most fortunately, the sum-symmetrized ansatz of Eqn.  4.29 has a particularly simple

structure that bypasses the difficulties, so we now strictly deal with this form of ansatz for

more than 3 particles. Note now that, because of exchange symmetry, the integrals I1 and

I2 of Eqns.  4.30 may be decomposed into three separate terms as follows (let shorthand

ϕ1,2 = ϕ(r1,2) ):

I1 = C(ρ) = ⟨Φ|Φ⟩ = 1
2N(N − 1)

∫
dΩϕ2

1,2

+N(N − 1)(N − 2)
∫

dΩϕ1,2 ϕ1,3

+ 1
4N(N − 1)(N − 2)(N − 3)

∫
dΩϕ1,2 ϕ3,4, (4.33)

I2 = ⟨Φ|Λ2|Φ⟩ = 1
2N(N − 1)

∫
dΩϕ1,2 Λ2 ϕ1,2

+ 1
2N(N − 1)(N − 2)

∫
dΩ

(
ϕ1,2 Λ2 ϕ1,3 + ϕ1,3 Λ2 ϕ1,2

)
+ 1

8N(N − 1)(N − 2)(N − 3)
∫

dΩ
(
ϕ1,2 Λ2 ϕ3,4 + ϕ3,4 Λ2 ϕ1,2

)
. (4.34)
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Integrals I4 and I5 are decomposed in a very similar manner as well. Above expressions are

straightforward to show by listing all possible terms and rearranging the labels for identical

particles. What this means is that for sum-symmetrization, all the terms are classified into

2-body terms involving r1,2 only, 3-body terms involving r1,2 and r1,3, and 4-body terms

involving r1,2 and r3,4. Let us refer to these three terms by a second index and write I1 =

I1,1 + I1,2 + I1,3, and so on.

Integral I3, involving two-body interactions V (r), is somewhat different and is decom-

posed as follows (write V1,2 = V (r1,2)):

I3 =
N∑

i<j

⟨Φ|V (ri,j)|Φ⟩ = 1
2N(N − 1)⟨Φ|V1,2|Φ⟩ = I3,1 + I3,2 + I3,3 + I3,4

= 1
2N(N − 1)

∫
dΩV1,2 ϕ

2
1,2

+N(N − 1)(N − 2)
∫

dΩV1,2 ϕ
2
1,3

+ 1
4N(N − 1)(N − 2)(N − 3)

∫
dΩV1,2ϕ

2
3,4

+ 1
2N(N − 1)

∫
dΩV1,2


 N∑

i<j

ϕi,j

2

−
N∑

i<j

ϕ2
i,j

 . (4.35)

Some explanation is needed for this decomposition. First, to accurately calculate I3, one

must pay careful attention to the finite-range nature of V (r), which is negligible for most of

configuration space when ρ ≫ r0. Because r1,2 =
√

2Nρ cos β1 only depends on one Delves

hyperangle, we first express V solely in terms of V1,2.

Next, because of the presence of V1,2, it is not possible to decompose solely in terms

of particles 1 to 4 as was done in Eqns.  4.33 and  4.34 . At most 6 different particles can

appear, and it is too complicated to explicitly write out all the terms. Instead, we again

note that the function ϕν(r) roughly scales as 1/r when near a coalescence region. When

we isolate out all the diagonal terms of form ϕ2
i,j from Φ2, the remainder will give a smooth

integrand under the regularizing influence of volume element dΩ (effectively of form r2
i,j for

every particle pair (i, j)). This remainder gives term I3,4, and the only fast-varying behavior

comes from V1,2.
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Finally, the term V1,2

N∑
i<j

ϕ2
i,j can be classified into one of three terms by shuffling the

identical particle indices, giving terms I3,1, I3,2, and I3,3. In many ways, they can be handled

in a similar fashion as integrals I1,1, I1,2, and I1,3.

Before we give more details about the integrals themselves, we discuss the numerical

methods of integration. When the dimension of an integral is 1 or 2, it suffices to again divide

into rectangular sectors and apply (nested) Gauss-Legendre or Gauss-Kronrod quadrature,

as it was done in Sec.  4.3.1 . However, when the dimension is 3 or higher, it is more practical

to switch to a multi-dimensional method. As will be shown later, the full range of integration

is divided into certain regions in order to anticipate and individually handle rapidly varying

parts of integral. In each region where the integrand is expected to be smooth, usual Monte

Carlo integration has been attempted first, which approximates an integral in rectangular

space of vector X⃗ with volume V by
∫

dX⃗f(X⃗) ≈ V
N

N∑
i=1

f(X⃗i), where N is the number of

randomly chosen points [ 94 ].
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Figure 4.5. 2Nmρ2

ℏ2 I3,4 for third sum-symmetrized ansatz ϕν . Blue curve
computed using Sobol sequences, and red dots computed from Monte Carlo
method.

Fig.  4.5 shows as red dots the values of integral I3,4 obtained from Monte Carlo method

for the sum-symmetrized third ansatz ϕν , for the same conditions as in Fig.  4.3 with N = 4,
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soft-core Van der Waals interaction with σ = 1.6471095lvdw, as = −10, 000lvdw, and matching

radius rc = 15lvdw. To deal with the short-range nature of V1,2, the range of hyperangle β1 is

split into two using parameter r̃ = 10lvdw, explained later; at each fixed ρ, 100,000 randomly

chosen hyperangular points in 8-dimensional space are used separately for both ranges of

β1. Observe the not-so-optimal convergence of the results. Because terms from two different

regions of space are added, and because there is a nodal structure to the ansatz function,

unavoidable catastrophic cancellation occurs. The Monte Carlo method here suffers from

similar pathologies as the infamous sign problem that plagues other applications of Quantum

Monte Carlo methods [ 88 ], [  95 ]. Because Monte Carlo methods fundamentally converge with

error of the order of 1/
√
N , with N the number of random points, computational resources

required to converge the integrals to acceptable precision would be far too expensive.

Luckily, a class of alternative methods exists for multidimensional integrals in rectangular

space, known as quasi-random methods [ 96 ]. In particular, we use Sobol sequences [ 97 ],

which are designed to construct a sampling of rectangular region of d-dimensional space that

is more “uniform” than a pseudorandom sampling (see Fig.  4.6 for a 2D example). Open-

source codes from “https://people.math.sc.edu/Burkardt/f src/toms659/toms659.html” are

gratefully acknowledged and used to generate the Sobol sequences.
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(b) Quasi-random (x,y)

Figure 4.6. 5000 points (x,y) chosen randomly or from Sobol sequence.

The blue curve in Fig.  4.5 is the result of using Sobol sequences to compute the integral

I3,4 for the same conditions as red dots previously explained. Because integration using Sobol

sequences converges with error of the order of (log N)d

N
, with d the number of dimensions of
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space and N the number of sample points, quasi-random integration has consistently given

more stable results with less noise than Monte Carlo integration. Hence, Sobol sequence is

the method of choice in this dissertation for integration when dimension is 3 or higher.

Two-Body Terms

Recall the first component of each integral that only depends on r1,2 (integrals I4 and I5

are very similar to I1):

I1,1 = 1
2N(N − 1)

∫
dΩϕ2

1,2, (4.36)

I2,1 = 1
2N(N − 1)

∫
dΩϕ1,2 Λ2 ϕ1,2, (4.37)

I3,1 = 1
2N(N − 1)

∫
dΩV1,2 ϕ

2
1,2. (4.38)

In Delves coordinates (see Appendix  B ), r1,2 =
√

2Nρ cos β1 only depends on one hy-

perangle. The other 3N − 5 hyperangles are analytically integrated out, so hyperangular

integration of any function g(r1,2) becomes:

∫
dΩ g(r1,2) = 16

(
π

(3N−5)/2
) Γ

(
3
2

)
Γ
(

3
2(N − 2)

) ∫ π/2

0
dβ1 cos2 β1 sin3N−7 β1 g(r1,2). (4.39)

Effectively Λ2 = −
(

1
cos2 β1 sin3N−7 β1

)
∂

∂β1

(
cos2 β1 sin3N−7 β1

∂
∂β1

)
here, so apply integration

by parts to the integral involving Λ2 to obtain:

∫
dΩϕ1,2 Λ2 ϕ1,2 = 16

(
π

(3N−5)/2
) Γ

(
3
2

)
Γ
(

3
2(N − 2)

) ∫ π/2

0
dβ1 cos2 β1 sin3N−7 β1

(
∂ϕ1,2

∂β1

)2

.

(4.40)

For large ρ, each integral must be split into two parts. Choose a parameter r̃, roughly

an order of magnitude greater than the range r0 of two-body interaction, to designate values

of r < r̃ where ansatz ϕν varies rapidly. Then let βc = cos−1
(

r̃√
2Nρ

)
, and split the range
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of β1 into two parts: [0, βc] and [βc,
π

2 ]. As ρ → ∞, βc → π

2 , indicating an ever-shrinking

coalescence region.

Three-Body Terms

Next, recall the components of integrals that depend on distances r1,2 and r1,3:

I1,2 = N(N − 1)(N − 2)
∫

dΩϕ1,2 ϕ1,3, (4.41)

I2,2 = 1
2N(N − 1)(N − 2)

∫
dΩ

(
ϕ1,2 Λ2 ϕ1,3 + ϕ1,3 Λ2 ϕ1,2

)
, (4.42)

I3,2 = N(N − 1)(N − 2)
∫

dΩV1,2 ϕ
2
1,3 (4.43)

This time, the appropriate coordinates are given in Appendix  C.2 when N > 3. Integra-

tion of 3N − 7 hyperangles other than (δ, θ, ϕ) gives c̃ = 4
(
π(3N−6)/2

) Γ( 3
2)

Γ( 3
2 (N−3)) . First of all,

I1,2 is calculated as follows:

∫
dΩϕ1,2 ϕ1,3 = 4c̃

∫
π/2

0
dδ
∫

π/4

0
dθ
∫ 2π/3

π/6
dϕ

(
sin5 δ cos3N−10 δ sin 4θ

)
ϕ1,2 ϕ1,3. (4.44)

By exchange symmetry, the range of ϕ is truncated from [0, 2π] to [π

6 ,
2π

3 ], with symmetry

factor 4 out in front. Unlike in Sec.  4.3.1 , the range of ϕ cannot be restricted to [0, π

6 ],

because ϕ2,3 is missing in the integrand. The relevant coalescence point is when either δ = 0

(both r1,2 and r1,3 are 0), or when (θ, ϕ) = (0, π

2) so that r1,2 = 0. It is straightforward,

albeit tedious, to divide the region of integration into pieces to isolate regions around the

coalescence points, similar to what was shown in Sec.  4.3.1 .

Next, I2,2 is computed by again applying integration by parts:
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∫
dΩ

(
ϕ1,2 Λ2 ϕ1,3 + ϕ1,3 Λ2 ϕ1,2

)
= 8c̃

∫
π/2

0
dδ
∫

π/4

0
dθ
∫ 2π/3

π/6
dϕ

(
sin5 δ cos3N−10 δ sin 4θ

)
×
[(
∂ϕ1,2

∂δ

∂ϕ1,3

∂δ

)
+ 1

sin2 δ

(
∂ϕ1,2

∂θ

∂ϕ1,3

∂θ

)
+ 1

sin2 δ cos2 2θ

(
∂ϕ1,2

∂ϕ

∂ϕ1,3

∂ϕ

)]
. (4.45)

The same argument for particle symmetry can be applied as for I1,2, with same range of

ϕ (again do not confuse with functions ϕ1,2 and ϕ1,3) and same coalescence points.

Finally, I3,2 is slightly different:

∫
dΩV1,2 ϕ

2
1,3 = 2c̃

∫
π/2

0
dδ
∫

π/4

0
dθ
∫

π

0
dϕ

(
sin5 δ cos3N−10 δ sin 4θ

)
V1,2 ϕ

2
1,3. (4.46)

I3,2 is different from all other integrals in that the range of angle ϕ can only be cut in

half to [0, π]. Relevant coalescence point is when either δ = 0 (both r1,2 and r1,3 are 0), or

(θ, ϕ) = (0, π

2) so r1,2 = 0, or (θ, ϕ) = (0, 5π

6 ) so r1,3 = 0. Actually, (θ, ϕ) = (0, 5π

6 ) is not

really relevant because V1,2 would quickly become negligible at that point for large ρ.

Four-Body Terms

Now consider the components of integrals that depend on r1,2 and r3,4:

I1,3 = 1
4N(N − 1)(N − 2)(N − 3)

∫
dΩϕ1,2 ϕ3,4, (4.47)

I2,3 = 1
8N(N − 1)(N − 2)(N − 3)

∫
dΩ

(
ϕ1,2 Λ2 ϕ3,4 + ϕ3,4 Λ2 ϕ1,2

)
, (4.48)

I3,3 = 1
4N(N − 1)(N − 2)(N − 3)

∫
dΩV1,2ϕ

2
3,4. (4.49)

This is the only part of the dissertation where we make use of the H-type Jacobi tree

that was introduced in Appendix  A . Then relevant Jacobi vectors are η⃗1 =
√

1
2 (r⃗2 − r⃗1) and

η⃗2 =
√

1
2 (r⃗4 − r⃗3), described in terms of two Delves hyperangles β1 and β2 (see Appendix  B ).
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Integration of other 3N − 6 hyperangles gives c̃ = 64
(
π(3N−6)/2

) Γ( 3
2)

Γ( 3
2 (N−3)) . Any function of

β1, β2 is integrated as follows:

∫
dΩ g(β1, β2) = c̃

∫
π/2

0
dβ1

∫
π/2

0
dβ2

(
cos2 β1 sin3N−7 β1

) (
cos2 β2 sin3N−10 β2

)
g(β1, β2).

(4.50)

For I2,3, again apply integration by parts to obtain:

∫
dΩ

(
ϕ1,2 Λ2 ϕ3,4 + ϕ3,4 Λ2 ϕ1,2

)
= 2c̃

∫
π/2

0
dβ1

∫
π/2

0
dβ2

(
cos2 β1 sin3N−7 β1

)
×
(
cos2 β2 sin3N−10 β2

) (∂ϕ1,2

∂β1

∂ϕ3,4

∂β1

)
. (4.51)

Note that only derivatives with respect to β1 appear, because ϕ1,2 does not depend on

β2. Because η1 =
√
Nρ cos β1 and η2 =

√
Nρ sin β1 cos β2, r1,2 vanishes when β1 = π

2 , and

r3,4 vanishes when β1 = 0 or β2 = π

2 .

Many-Body Terms

Finally, recall one remaining term, I3,4, for the integral involving V :

I3,4 = 1
2N(N − 1)

∫
dΩV1,2


 N∑

i<j

ϕi,j

2

−
N∑

i<j

ϕ2
i,j

 . (4.52)

Use the usual K-type Jacobi vectors of Appendix  A and Delves hyperangles of Appendix

 B to describe this multi-dimensional system. As was discussed previously, we do not expect

rapidly varying behavior from dΩ


 N∑

i<j

ϕi,j

2

−
N∑

i<j

ϕ2
i,j

. We need only account for the

finite-range of V1,2 when ρ is sufficiently large. Since again r1,2 =
√

2Nρ cos β1, the protocol

is the same as for the integrals involving only r1,2. Choose a fixed parameter r̃: ansatz ϕν

varies rapidly when r < r̃. Let βc = cos−1
(

r̃√
2Nρ

)
. Split the total volume into two parts,

where the range of β1 is split into [0, βc] and [βc,
π

2 ], while the range of all other hyperangles

remains intact.
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5. TWO-BODY ANSATZ: RESULTS AND DISCUSSION

The results of this chapter are not yet published; a manuscript will be submitted shortly.

We again emphasize that, because our ansatz functions only depend on two-body distances

ri,j, only symmetry class Jπ = 0+ is of interest here. Also, out of a series of solutions ν of

Eqn.  4.22 that define the ansatz function ϕν (see Eqn.  4.20 ), as explained in Sec.  4.2.4 , the

second value of ν with one node of ϕν consistently gives unphysical results for the potential

and is ignored.

5.1 Benchmark for N = 3

First, we compute the variational adiabatic hyperspherical potentials for 3 particles using

our two-body ansatz functions ϕν or ϕa and compare with both standard numerical methods

and zero-range theory for 3 bosons.
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Figure 5.1. Dimensionless coefficients of ℏ2

2mNρ2 of the adiabatic potentials
for 3 bosons, with soft-core Van der Waals interaction, σ = 1.7180713lvdw,
as = −10lvdw. Black lines are from zero-range theory; blue lines are from B-
spline diagonalization of Had, courtesy of Yu-Hsin Chen. Red dots are from
product symmetrization of ϕν with lowest value of ν; brown dots are from sum
symmetrization of ϕν with 3rd, 4th, and 5th values of ν.
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Figure 5.2. Coefficient of ℏ2

2mNρ2 of the lowest adiabatic potential for 3 bosons,
with soft-core Van der Waals interaction, σ = 1.7180713lvdw, as = −10lvdw.
Black dots are from zero-range theory; blue dots are from B-spline diago-
nalization of Had, courtesy of Yu-Hsin Chen. Orange curve is from product
symmetrization of ϕa.

Fig.  5.1 shows the results for the lowest 4 adiabatic hyperspherical potentials of 3 bosons

interacting with soft-core Van der Waals potential, with parameter σ = 1.7180713lvdw that

admits no dimer and gives as = −10lvdw. The potentials include “mock-centrifugal” term and

diagonal non-adiabatic correction Q, but with no spherical trap. Zero-range theory (black

lines) and numerical diagonalization of the adiabatic Hamiltonian (blue lines), courtesy of

Yu-Hsin Chen, agree well except at small values of ρ. For ρ ≫ |as|, these coefficients converge

to values λ(λ + 4) + 15
4 , λ = 0, 4, 6, . . . The red dots are from our new two-body ansatz ϕν ,

with lowest value of ν from Eqn.  4.22 and product symmetrization applied. They agree

excellently with both zero-range and numerical diagonalization results for the lowest curve

at large values of ρ. The brown dots are obtained from our ansatz ϕν for 3rd and higher

values of ν, sum-symmetrized. As previously discussed, we neglect the second value of ν

that leads to a spurious solution. We consistently observe that product symmetrization of
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ϕν with 3rd and higher values of ν leads to poor results that do not agree with any previous

theories. On the other hand, the sum-symmetrized ansatz curves agree well with excited

curves from zero-range theory and numerical diagonalization, except at small values of ρ

where the ansatz is known to fail.

For the same conditions as in Fig.  5.1 , Fig.  5.2 shows the result for the lowest potential

curve at smaller values of ρ. Excellent agreement between numerical diagonalization and our

product-symmetrized ansatz function ϕa are observed. At very small values of ρ, they reduce

to the mock-centrifugal value 15
4 ; as ρ increases, they admit a potential well and then become

repulsive for ρ ≫ |as|. We observe that, even though ϕν and ϕa are two different ansatz

functions, they give potential curves that connect smoothly at ρ = 7lvdw. At these small

values of ρ, discrepancies with zero-range theory are observed; zero-range theory predicts

convergence at ρ = 0 to value −s2
0 − 1/4, s0 ≈ 1.00624.
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Figure 5.3. Comparison between zero-range theory and product-symmetrized
ansatz from different finite-range interactions for the coefficient of ℏ2

2mNρ2 of the
lowest hyperspherical potential, N = 3, as = −10, 000lvdw.

We are particularly interested in what our new ansatz method predicts for the lowest

hyperspherical potential curve, so Figs.  5.3 and  5.4 compare the results of zero-range theory
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Figure 5.4. Comparison between zero-range theory and sum-symmetrized
ansatz from different finite-range interactions for the coefficient of ℏ2

2mNρ2 of
the lowest hyperspherical potential, N = 3, as = −10, 000lvdw.

with values computed from ϕν with 4 different finite-range interactions, product-symmetrized

and sum-symmetrized, respectively. The finite-range interactions are either gaussians or soft-

core Van der Waals potentials (same finite range r0 = lvdw), with differently tuned strengths

so that they may support either 0 or 1 deep dimer, all giving rise to the same scattering length

near unitarity. Note that the zero-range result converges to value −s2
0 − 1/4, s0 ≈ 1.00624

at ρ = 0, with a linear correction for nonzero values of ρ (see Eqn.  4.27 ) because the system

is not at absolutely unitary limit |as| → ∞.

In Fig.  5.3 , excellent agreement between zero-range theory and product-symmetrized

ansatz results for all 4 finite-range interactions is observed in the regime ρ ≫ |as|, with

deviations for smaller values of ρ as expected for finite-range calculations. The assumptions

of zero-range theory, that the details of the finite-range interaction are irrelevant for ρ ≫ r0,

are validated. On the other hand, in Fig.  5.4 , results from the sum-symmetrized ansatz

differ quite noticeably from zero-range predictions. It is encouraging that at least the sum-

symmetrized ansatz still predicts the adiabatic hyperspherical potential to be attractive,
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giving qualitatively the correct behavior. If we fit the numerical curves of Fig.  5.4 to form

A+Bρ+ C
ρ
, with a linear term inspired by Eqn.  4.27 and a 1

ρ
term visually apparent, all 4

results give roughly the same value of A from -0.499 to -0.505 (well above −s2
0 − 1/4), and

similar values of B, but very different values of C. One must not extrapolate this fit to larger

ρ and claim that the adiabatic potential asymptotically behaves as 1/ρ, because the linear

expansion in Eqn.  4.27 is in terms of ρ
as

; asymptotically, when ρ ≫ |as|, the hyperspherical

potential will converge to “mock” centrifugal term ℏ2

2mN

(
(3N−4)(3N−6)

4ρ2

)
= ℏ2

2mN

(
15
4ρ2

)
. It is

interesting to note that in Fig.  5.4 , gaussian and Van der Waals potentials will give roughly

the same results when they admit the same number of deep dimers.

5.2 Potential Curves for N > 3

Next, we discuss the results of sum-symmetrized ansatz for more than 3 particles. We

use gaussian or soft-core Van der Waals two-body interactions that do not support any deep

dimer in order to simplify the calculations.
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Figure 5.5. Variational adiabatic hyperspherical potentials for N = 4, Van
der Waals potential, as = −300lvdw. Dashed curves are non-interacting poten-
tials with λ = 0, 4, 6, and 8.
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Figure 5.6. Lowest variational adiabatic hyperspherical potential for N = 4,
Van der Waals potential, as = −300lvdw.

Fig.  5.5 shows the results for sum-symmetrized ϕν for 4 particles with soft-core Van der

Waals interaction, as = −300lvdw. The solid curves are the numerical results from the ansatz,

using the 1st, 3rd, 4th, and 5th values of ν that are solutions of the log-derivative matching

condition Eqn.  4.22 (once again, the 2nd value of ν is omitted). The dashed curves are the

non-interacting potentials ℏ2

2mNρ2

(
λ(λ+ 3N − 5) + (3N−4)(3N−6)

4

)
= ℏ2

2mNρ2 (λ(λ+ 7) + 12)

with λ = 0, 4, 6, 8. It is clear that the mutual particle interaction made the hyperspher-

ical potentials less repulsive relative to the non-interacting limit, but what is even more

striking, perhaps, is the existence of a potential barrier and a very deep local minimum for

the lowest potential curve for small values of ρ, as seen in Fig.  5.6 . Fig.  5.6 used ansatz

ϕa (Eqn.  4.23 ) made purely of numerical two-body wave function u(r) with no reference to

parameter ν, but we verified that the potential of Fig.  5.6 connects smoothly to the lowest

potential of Fig.  5.5 .

We appear to obtain consistently similar shapes of the variational adiabatic hyperspheri-

cal potentials for N > 3. It is interesting to note that the shape of the lowest potential looks

88



0 50 100 150 200 250 300
-0.002

-0.001

0.000

0.001

0.002

0.003

0.004

0.005

ρ/lvdw

m
l v
d
w
2

ℏ
2
E

Figure 5.7. Variational adiabatic hyperspherical potentials for N = 10, Van
der Waals potential, as = −300lvdw. Dashed curves are non-interacting poten-
tials with λ = 0, 4, 6, and 8.

quite similar to what was predicted in Ref. [ 98 ] for 5 bosons, not from directly diagonalizng

the adiabatic Hamiltonian but by fitting parameters to reproduce bound-state energies. Fig.

 5.7 shows the results for N = 10, with the same soft-core Van der Waals potential that

admits as = −300lvdw, using sum-symmetrized ansatz ϕν with 1st, 3rd, 4th, and 5th values

of ν that are solutions of the log-derivative matching Eqn.  4.22 . The dashed curves are the

non-interacting potentials ℏ2

2mNρ2

(
λ(λ+ 3N − 5) + (3N−4)(3N−6)

4

)
= ℏ2

2mNρ2 (λ(λ+ 25) + 156)

with λ = 0, 4, 6, 8. Notice how much stronger the “mock” centrifugal potential is now,

compared to the case for N = 4.

Once again, the lowest potential curve is less repulsive compared to the non-interacting

limit, with the appearance of a barrier and a deep local minimum near small values of ρ.

However, unlike in Fig.  5.5 where the numerical excited curves all consistently are less

repulsive than the non-interacting excited curves, in Fig.  5.7 , ansatz results for the excited

curves exhibit less obvious behavior. It is quite likely that for N = 10, there are many

degenerate excited hyperspherical harmonics (eigenfunctions of Λ2) that would couple and
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mix in the presence of interaction, while each of our ansatz function corresponds to only one

particular hyperspherical harmonic in the non-interacting limit. Hence, the ansatz results

for the excited potential curves are unlikely to be correct for large values of N . However,

since there is no degeneracy for the lowest hyperspherical harmonics (a constant), we may

still hope that the lowest variational hyperspherical potential gives sensible descriptions of

N bosons relevant for condensate physics.

5.3 Comparison of Potentials for N = 4
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Figure 5.8. Coefficient of ℏ2

2mNρ2 of the lowest variational potential for N = 4,
for gaussian (blue) or soft-core Van der Waals (red) interaction with same
r0 = lvdw, with as = −10, 000lvdw. Black dashed line is the non-interacting
limit of 12.

To better understand the physics implied by the lowest variational hyperspherical poten-

tial from our sum-symmetrized ansatz, we first examine the effect of different finite-range

interactions on the potential. Fig.  5.8 shows the coefficients of ρ−2 for the lowest potential

curve of 4 bosons, where blue curve is computed with a gaussian potential and red curve

is computed with soft-core Van der Waals potential. The two interactions have the same
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length scale, r0 = lvdw, and admit as = −10, 000lvdw, close to unitarity. The black dashed

line is the non-interacting limit of 12.
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Figure 5.9. Comparison of lowest 2 adiabatic potentials computed by corre-
lated gaussian basis (solid color, diagonal Q neglected, courtesy of M. Higgins)
with sum symmetrized ϕν (dashed color), for N = 4, using gaussian interac-
tion with as = −4r0. Black dotted lines are non-interacting potentials with
λ = 0, 4.

Both curves begin at ρ = 0 from the non-interacting limit of 12 and quickly become

attractive due to the effects of interaction. The variational hyperspherical potential using

gaussian interaction has a local minimum about twice as deep as that of potential from Van

der Waals interaction; the potential from gaussian interaction also has a barrier about twice

as high as that of the potential from Van der Waals interaction. These values of variational

potential at small ρ imply different values of binding energies for the first tetramer. Ref. [ 99 ]

says the gaussian interaction admits the first tetramer at as = −1.96r0 and the first trimer

at as = −4.245r0; for Van der Waals interaction with different choices of small-r cutoff,

the first trimer occurs close to as = −10lvdw [ 87 ]. However, at large ρ, both blue and red

curves approximately converge to the same constant value. Once again fitting these curves

at large ρ > 10r0 to a form A + Bρ + C
ρ
, gaussian interaction gives A = 1.86 and soft-core
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Figure 5.10. Comparison of lowest adiabatic potential computed by corre-
lated gaussian basis (solid, Q neglected, courtesy of M. Higgins) with sum sym-
metrized ϕa (dashed), for N = 4, using gaussian interaction with as = −4r0.

Van der Waals gives A = 1.85. Our theory therefore predicts asymptotically an effectively

repulsive ρ−2 potential for 4 unitary bosons without an external trap, in disagreement with

the prediction of Ref. [ 78 ].

Next, in Fig.  5.9 , we compare the 2 lowest adiabatic hyperspherical potentials for 4 bosons

with gaussian interaction, as = −4r0, using correlated gaussian diagonalization procedure

(solid color, courtesy of Michael Higgins) and using our sum-symmetrized ansatz ϕν (dashed

color). Black dotted lines are the two lowest non-interacting potentials with λ = 0 and 4.

Because the first trimer occurs at as = −4.245r0 [ 99 ], there is no bound cluster threshold

for a potential to converge to; therefore, our ansatz must provide an upper bound on the

correct lowest hyperspherical potential. Because as is small, the second potential from our

ansatz is hardly different from the non-interacting limit, while the first potential has the

characteristic peak and minimum as discussed previously.

Now observe the results obtained by diagonalizing Had using correlated gaussians. The

lowest potential has a barrier far lower than that predicted by our ansatz. An analysis
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of N = 3 hyperspherical potential for as = −4r0 reveals that while there is no trimer, a

shape resonance occurs at E ≈ 5 × 10−3 ℏ2

mr2
0
. Indeed, in that energy range, there is a broad

avoided crossing between the solid blue and orange curves; the orange curve crosses over

from λ = 0 non-interacting potential to λ = 4 non-interacting potential. Meanwhile, our

ansatz approach does correctly describe the local minimum of the lowest potential curve,

as seen in Fig.  5.10 . Our ansatz predicts one tetramer at E = −0.364 ℏ2

mr2
0
; the correlated

gaussian potential gives tetramer E = −0.399 ℏ2

mr2
0
.
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Figure 5.11. Comparison of lowest 2 adiabatic potentials computed by corre-
lated gaussian basis (solid color, diagonal Q neglected, courtesy of M. Higgins)
with lowest sum symmetrized ϕν potential (dashed blue), for N = 4, using
gaussian interaction with as = −5r0. Black dotted line is non-interacting
potential with λ = 0. Black dashed line is the trimer threshold at E =
−0.01147 ℏ2

mr2
0
.

Consider next the results of Fig.  5.11 , which show the adiabatic hyperspherical potentials

of 4 bosons with as = −5r0. Now the interaction is strong enough to support one trimer

at E = −0.01147 ℏ2

mr2
0
, designated as a horizontal black dashed line. The blue solid curve

from correlated gaussian diagonalization approximately approaches the trimer threshold,

even though we believe the calculations are not quite converged. This time, our ansatz
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potential closely follows the lowest curve down to the local minimum, but then it crosses

over to the second potential (solid orange) given by correlated gaussians, converging at the

continuum threshold. Indeed, our ansatz functions ϕν were never designed to model any kind

of a cluster state, but suited for interacting, unbound particles instead (or universal dimers

if as > 0). Our ansatz potential predicts one tetramer at E = −0.504 ℏ2

mr2
0
; the correlated

gaussian potential (solid blue) predicts two tetramers at E = −0.536 ℏ2

mr2
0

and E = −0.023 ℏ2

mr2
0
,

consistent with the predictions of Ref. [  81 ].

5.4 Asymptotic Potentials of Unitary Bosons
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Figure 5.12. Asymptotic values of coefficients of ℏ2

2mNρ2 for the lowest ansatz
variational potential (red) near unitarity, compared with “mock” centrifugal
non-interacting coefficient (3N−4)(3N−6)

4 (blue).

Finally, we present new results that predict the asymptotic form of the adiabatic hy-

perspherical potentials for unitary Bose gas of modest particle numbers. These results are

compared with the well-known “mock” centrifugal potential ℏ2

2mNρ2

(
(3N−4)(3N−6)

4

)
, which ef-
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fectively keeps N non-interacting bosons far from each other in the absence of a central

trap.

Fit: 14.0332 - 6.0518 N
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Figure 5.13. Difference between the two asymptotic coefficient values of Fig.
 5.12 , compared with a linear fit.

Fig.  5.12 shows our results for the asymptotic coefficients (red dots) of ρ−2 of the lowest

variational adiabatic hyperspherical potential of N bosons in comparison with the “mock”-

centrifugal values (blue dots) (3N−4)(3N−6)
4 . We obtained these results by computing the

lowest sum-symmetrized ansatz for each N with a soft-core Van der Waals interaction that

is tuned to give as = −10, 000lvdw. Then, for values of ρ from 7 to 500lvdw, we fit the

potentials multiplied by 2N(ρ/lvdw)2 to a form A+Bρ+ C
ρ

to extract the coefficient A. We

again emphasize that the fitting function is not to be directly extrapolated for large ρ. The

linear term in ρ is merely a correction to account for the finite value of as (see Eqn.  4.27 ).

Fig.  5.13 shows the difference between our unitary values and the “mock”-centrifugal

values for the coefficients; they are reasonably well described by a linear fit. The noticeable

deviation of values for N = 9 and 10 from the linear fit is probably due to the potentials
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being not quite converged. Again, our predictions disagree with the prediction of Ref. [ 78 ],

which claims that the unitary value of coefficient is attractive and scales as N2.

5.5 Summary and Outlook

In the previous Ch.  4 and this chapter, we have explored a new method to approximately

compute the variational adiabatic hyperspherical potentials that converge to the scattering

continuum for particle numbers up to 10, treating quite a different regime from the Diffusion

Monte Carlo results of D. Blume [ 88 ], [  89 ] for the lowest potential that converges to a cluster

state. Based on the known methods of Faddeev decomposition, we constructed a numerical

two-body function that explicitly takes the zero-energy scattering boundary condition into

account and approximately solves the adiabatic Hamiltonian outside the coalescence region.

For N = 3, we performed both sum-symmetrization and product-symmetrization, akin to

the methods of Faddeev and Jastrow, and verified that product-symmetrized wavefunction

does a superior job of describing the lowest hyperspherical potential that leads to Efimov

trimers, because all three particles must simultaneously act on one another for a trimer

to form. For the product-symmetrized ansatz, we verified the assumptions of zero-range

theory, that the microscopic details of two-body interaction are irrelevant to a good degree

for ultracold atoms.

For N > 4, we only treated sum-symmetrization due to computational constraints, but

we obtain reasonable pictures for how the hyperspherical potentials are modified from the

non-interacting limit due to pairwise interaction. We observe that the small-hyperradius

behavior of the variational potential, and hence the local well and barrier, are dependent on

the particular two-body interaction under consideration. In particular, we have compared

our ansatz results with the results of direct adiabatic Hamiltonian diagonalization using

correlated gaussians for N = 4. We observed how our ansatz ignores the realistic avoided-

crossing structures of the hyperspherical potentials if there is a shape resonance for a trimer;

if a real trimer can be supported by the two-body interaction, then our ansatz variational

potential diabatically crosses over from the lowest to the 1st excited potential obtained by

diagonalization.
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Finally, we present new results on the asymptotic behavior of N > 3 unitary bosons,

which partially verify the results of Ref. [  80 ] that there is no true Efimov effect for more

than 3 bosons. We obtain repulsive ρ−2 asymptotic potentials for unitary bosons, though

there is a linear, negative discrepancy from the non-interacting limit for the coefficient of

ρ−2 in disagreement with a result in literature [ 78 ].

The materials of previous Ch.  4 and this chapter are not yet published, and we still

have much work to do to verify our initial findings and build on new results. In particular,

we would like to understand the behavior of our ansatz potentials in the presence of a

spherical trap and compare with mean-field theory for modest number of bosons. We are

currently working to verify and compare our unitary Bose gas results with correlated gaussian

predictions for N = 4. Finally, we are working to fully map out the predictions of our

methodology in the regime where an N -th bound state first appears, in order to look for

any possible universal relations between the values of scattering length where such clusters

emerge.
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A. JACOBI VECTORS OF N PARTICLES

Consider N identical particles with position vectors r⃗i. If one were to remove the center

of mass R⃗CM = 1
N

N∑
i=1

r⃗i, then one must choose a particular “Jacobi tree” of N − 1 relative

Jacobi vectors. Though different mass scaling conventions exist in certain applications with

a fixed number of particles [ 71 ], here we modify an alternate convention [ 84 ] that is more

easily generalizable for variable number of identical particles.

Before we proceed, it helps to first note that, because
(

N∑
i=1

r⃗i

)2

=
N∑

i=1
r2

i + 2
N∑

i<j

r⃗i · r⃗j and

N∑
i<j

r2
i,j = (N − 1)

N∑
i=1

r2
i − 2

N∑
i<j

r⃗i · r⃗j, therefore
N∑

i=1
r2

i = 1
N

N∑
i<j

r2
i,j +NR2

CM .

Unless otherwise stated, this dissertation employs the following default, natural choice of

Jacobi tree (referred to as the K-type in the context of 4 particles in Ref. [ 100 ]) with Jacobi

vectors

η⃗k =
√

k

k + 1

r⃗k+1 − 1
k

k∑
j=1

r⃗j

 , k = 1, . . . , N − 1. (A.1)

For example, η⃗1 =
√

1
2 (r⃗2 − r⃗1), and η⃗2 =

√
2
3

(
r⃗3 − 1

2 (r⃗1 + r⃗2)
)
. Generally, η⃗k connects

particle k + 1 with the center of mass of particles 1, . . . , k. Then one may define a transfor-

mation matrix M of dimension (N,N − 1) as follows:

Mi,j =



−
√

1
j(j+1) , i ≤ j√

j
j+1 , i = j + 1

0, i > j + 1

(A.2)


r⃗1 − R⃗CM

...

r⃗N − R⃗CM

 = M


η⃗1
...

η⃗N−1

 ,


η⃗1
...

η⃗N−1

 = MT


r⃗1
...

r⃗N

 (A.3)
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Notice that MTM = 1N−1 but MMT ̸= 1N . Any pairwise distance ri,j can be written

in terms of Jacobi vectors and does not depend on the center of mass. Indeed, letting

ηk,l, l = 1, 2, 3 be a Cartesian component of η⃗k, then

r2
i,j =

3∑
l=1

(
N−1∑
k=1

(Mi,k −Mj,k)ηk,l

)2

. (A.4)

On the other hand, it became necessary to also construct a generalization of the H-type

Jacobi tree in Ref. [ 100 ] (relevant for describing two dimers moving asymptotically far from

each other) by the following alternate definitions of Jacobi vectors, only for N > 3:

η⃗1 =
√

1
2 (r⃗2 − r⃗1) , (A.5)

η⃗k =
√
k − 1
k

r⃗k+2 − 1
k − 1

k+1∑
j=3

r⃗j

 , k = 2, . . . , N − 2 (A.6)

η⃗N−1 =
√

2(N − 2)
N

 1
N − 2

N∑
j=3

r⃗j

− 1
2 (r⃗1 + r⃗2)

 (A.7)

For example, if N = 4, then η⃗2 =
√

1
2 (r⃗4 − r⃗3) and η⃗3 = 1

2 (r⃗3 + r⃗4 − r⃗1 − r⃗2). In words,

η⃗2, . . . , η⃗N−2 constitute a K-type Jacobi tree of the subsystem of particles 3 to N , while the

last Jacobi vector gives the distances between the centers of mass of particles (1, 2) and

(3, . . . , N).

1
3

2
1

23

Figure A.1. Illustration of the K-type and H-type Jacobi trees for 4 particles.
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For both Jacobi trees, the following can be proved by straightforward manipulation:

1. d3r⃗1 · · · d3r⃗N =
(
N3/2 d3R⃗CM

)
d3η⃗1 · · · d3η⃗N−1

2.
N∑

i=1
∇2

i = 1
N

∇2
CM +

N−1∑
k=1

∇2
ηk

3.
N−1∑
k=1

η2
k =

N∑
i=1

r2
i −NR2

CM = 1
N

N∑
i<j

r2
i,j

Hence, the 3 CM degrees of freedom may be unambiguously separated from a Hamiltonian

of N bosons with pairwise interactions and a central trapping potential. Later, when we

define the hyperradius ρ =
(

1
N

N−1∑
k=1

η2
k

)1/2

as proportional to the radius of a hypersphere

residing in a (3N − 3)-dimensional space of Jacobi vectors (the choice of 1
N

in the definition

is mere convention), it is clear that the hyperradius is related to pairwise distances ri,j and

thus gives an overall size of the gaseous system. Finally, the hyperradius does not depend on

the Jacobi tree, and the same set of 3N − 4 hyperangles may be used to describe the Jacobi

vectors of either tree, conveniently resulting in the same functional form of the Laplacian.
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B. DELVES HYPERANGLES

Building on Appendix  A , one may now move away from a Cartesian system by defining the

hyperradius ρ =
(

1
N

N−1∑
k=1

η2
k

)1/2

. What remains is to choose a particular set of 3N − 4 hyper-

angles Ω that describe all possible configurations of Jacobi vectors, given fixed hyperradius.

Then in the Hamiltonian of N bosons, the trap term proportional to
N−1∑
k=1

η2
k only depends

on the hyperradius, while the Laplacian of Jacobi vectors must be of form

N−1∑
k=1

∇2
ηk

= 1
N

[
1

ρ3N−4
∂

∂ρ

(
ρ3N−4 ∂

∂ρ

)
− Λ2

ρ2

]

= 1
N

[
1

ρ(3N−4)/2
∂2

∂ρ2

(
ρ(3N−4)/2

)
− (3N − 4)(3N − 6)

4ρ2 − Λ2

ρ2

]
. (B.1)

The operator Λ2 is a “grand angular momentum operator”, operating on the 3N − 4

hyperangles with the eigenvalue equation Λ2Yλ,µ(Ω) = λ(λ + 3N − 5)Yλ,µ(Ω). For N = 2,

the eigenvalue equation reduces to the usual spherical harmonic differential equation. The

functions Yλ,µ(Ω) are called hyperspherical harmonics [ 101 ], forming a complete, orthonormal

basis in a hypersphere of fixed hyperradius. They are identified by non-negative integer

quantum number λ and a set of quantum numbers µ that distinguish the different degenerate

states. Indeed they are the adiabatic channel eigenfunctions of interest in this dissertation

when the particles do not interact.

At a first glance, the simplest and most easily generalizable set of coordinates can be

constructed by first considering the N−1 pair of spherical coordinates (θi, ϕi) for each Jacobi

vector (of either K-type or H-type tree in Appendix  A ). Of course, θi ∈ [0, π] and ϕi ∈ [0, 2π],

with definition tan θi =
√
η2

i,x + η2
i,y/ηi,z and tanϕi = ηi,y/ηi,x. Then the remaining N − 2

hyperangles βi ∈ [0, π

2 ] are defined from the norms ηi of Jacobi vectors as follows:
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η1 =
√
Nρ cos β1,

η2 =
√
Nρ sin β1 cos β2,

...

ηN−2 =
√
Nρ sin β1 · · · sin βN−3 cos βN−2,

ηN−1 =
√
Nρ sin β1 · · · sin βN−3 sin βN−2. (B.2)

Hyperangles of such construction were first introduced by Delves [ 102 ]–[ 104 ], and their

utility lies in formal simplicity and ease of generalization for N particles. It follows that the

grand angular momentum operator for N > 2 takes the following form:

Λ2 = −
N−2∑
l=1

[
Cl

(
1

cos2 βl sin3N−4−3l βl

)
∂

∂βl

(
cos2 βl sin3N−4−3l βl

∂

∂βl

)]
+

N−1∑
k=1

[
L2

k

x2
k

]
, (B.3)

Cl =


1, l = 1
l−1∏
k=1

sin−2 βk, l > 1
(B.4)

L2
k = − 1

sin θk

∂

∂θk

(
sin θk

∂

∂θk

)
− 1

sin2 θk

∂2

∂ϕ2
k

, (B.5)

xk = ηk√
Nρ

. (B.6)

Furthermore, the differentials are:

d3η⃗1 · · · d3η⃗N−1 =
(
N (3N−3)/2ρ3N−4 dρ

)
dΩ, (B.7)

dΩ =
(

N−2∏
k=1

cos2 βk sin3N−4−3k βk dβk

)(
N−1∏
l=1

sin θl dθl dϕl

)
, (B.8)

and total hyperangular volume Ω =
∫

dΩ = 4
(
π(3N−4)/2

)
Γ
(

3
2

)
/Γ
(

3
2(N − 1)

)
.
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C. SMITH-WHITTEN HYPERANGLES

C.1 Three Particles

Though the Delves hyperangles, introduced in Appendix  B , are easy to construct for a

general number of particles, they are often not the most convenient set of hyperangles to do

numerical computation with. For instance, certain three-body works [ 73 ], [ 85 ], [ 86 ] make use

of a different coordinate system, called the Smith-Whitten hyperangles [  105 ]–[ 109 ], where

the 5 hyperangles are separated into 3 external Euler angles and 2 internal hyperangles.

Recall first a conventional definition of Euler angles (α, β, γ) [ 110 ], [ 111 ]; one may rotate

using these angles to go from lab-frame axes (x̂, ŷ, ẑ) to rotating body-frame axes (ê1, ê2, ê3).

Figure C.1. Illustration of the Euler angles (α, β, γ). Taken from Figure 3.4 of Ref. [ 110 ].

115



The range of angles α and γ is [0, 2π], while the range of β is [0, π]. Note now that

at any instant in time, there exists a plane on which three bodies reside. Define a vector

A⃗ =
√

3
2 (η⃗1 × η⃗2), with K-type Jacobi vectors described in Appendix  A . The norm of A⃗ is

equal to the area of triangle spanned by the three bodies; define the body-frame so that ê3

and A⃗ point in the same direction (this defines the Euler angles α and β).

We follow Ref. [ 107 ] and define γ so that in the body-frame (ê1, ê2, ê3), the moment-of-

inertia tensor component Ix,y is 0; also, we choose which is ê1 and which is ê2 by choosing

to have Iy,y ≥ Ix,x. Then in the body-frame, the components of Jacobi vectors are defined

as follows with two internal hyperangles θ and ϕ:

η1,x =
√

3ρ cos θ cosϕ,

η1,y = −
√

3ρ sin θ sinϕ,

η2,x =
√

3ρ cos θ sinϕ,

η2,y =
√

3ρ sin θ cosϕ. (C.1)

When θ = 0, all 3 particles lie on the same line; when θ = π

4 , the 3 particles form an

equilateral triangle. Because the norm of vector A⃗ is proportional to sin 2θ, the range of θ

is restricted to [0, π

4 ]. As for the range of ϕ, letting it take the full range of [0, 2π] causes

an ambiguity that a transformation γ → γ + π, ϕ → ϕ + π leads to the same particle

configuration; we now choose ranges ϕ ∈ [0, 2π] and γ ∈ [0, π].

Most importantly, the two-body distances are now expressed solely in terms of the internal

hyperangles, regardless of the frame of reference:

r1,2 =
√

3ρ
√

1 + cos (2θ) cos (2ϕ),

r1,3 =
√

3ρ
√

1 + cos (2θ) cos
(

2ϕ− 2π

3

)
,

r2,3 =
√

3ρ
√

1 + cos (2θ) cos
(

2ϕ+ 2π

3

)
. (C.2)
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Also, dΩ = (sin 4θ dθ dϕ)(1
4 sin β dα dβ dγ), and Ω =

∫
dΩ = π3.

1 23
⃗η 1

1 2

3

⃗η 1

⃗η 2

Figure C.2. Illustration of Smith-Whitten coordinates (θ, ϕ) = (0, 0) and (π

4 , 0).

Next, consider the total angular momentum J⃗ = −iη⃗1 × ∇⃗η1 − iη⃗2 × ∇⃗η2 . In body-frame,

the components of J⃗ = Jxê1 + Jy ê2 + Jz ê3 are given by [ 109 ]:

Jx = −i
[
−cos γ

sin β
∂

∂α
+ sin γ ∂

∂β
+ cos γ

tan β
∂

∂γ

]
,

Jy = −i
[

sin γ
sin β

∂

∂α
+ cos γ ∂

∂β
− sin γ

tan β
∂

∂γ

]
,

Jz = −i ∂
∂γ
. (C.3)

Finally, the grand angular momentum operator Λ2 takes the following form with Smith-

Whitten coordinates:

Λ2 = − 1
sin 4θ

∂

∂θ

(
sin 4θ ∂

∂θ

)
− 1

cos2 2θ

(
∂

∂ϕ
+ i sin 2θJz

)2

+ J2
x

sin2 θ
+

J2
y

cos2 θ
+ J2

z . (C.4)

Then by expansion in terms of Wigner D-functions, the fixed-hyperradius adiabatic

Schrödinger’s equation becomes a two-dimensional coupled partial differential equation in
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terms of θ and ϕ. For total Jπ = 0+ of interest in this dissertation, with ansatz functions

only dependent on two-body distances ri,j, the Euler angles are ultimately irrelevant, and

hence one may take Λ2 = − 1
sin 4θ

∂
∂θ

(
sin 4θ ∂

∂θ

)
− 1

cos2 2θ
∂2

∂ϕ2 .

C.2 More than Three Particles

Unfortunately, the Smith-Whitten coordinate system discussed above is specialized for

N = 3 with no obvious means to generalize for more particles. For 4 particles, there exists a

scheme to again separate out the 3 Euler angles and deal with 5 internal hyperangles [  112 ],

but that is not of interest here. Among N > 3 particles, only the Euler angles of particles

1 to 3, described by K-type Jacobi vectors η⃗1 and η⃗2 in Appendix  A , shall be considered in

this work.

To do so, introduce a new hyperangle δ ∈ [0, π

2 ], defined by the relations η2
1 + η2

2 =

Nρ2 sin2 δ and η2
3 + . . .+ η2

N−1 = Nρ2 cos2 δ. Once again, with the body-frame of particles 1,

2, and 3 defined the same as above, now define the components of Jacobi vectors η⃗1 and η⃗2

in that body-frame as follows:

η1,x =
√
Nρ sin δ cos θ cosϕ,

η1,y = −
√
Nρ sin δ sin θ sinϕ,

η2,x =
√
Nρ sin δ cos θ sinϕ,

η2,y =
√
Nρ sin δ sin θ cosϕ. (C.5)

The only crucial difference from the definitions of Equations  C.1 is the introduction of

sin δ. As for the remaining Jacobi vectors η⃗3, . . . , η⃗N−1, define their own hyperangles in the

manner of Delves as described in Appendix  B . More specifically, if N = 4, then there are

additional two spherical angles (θ3, ϕ3) for η⃗3, while norm η3 =
√

4ρ cos δ. If N > 4, there are

N − 3 pairs of spherical angles (θ3, ϕ3), . . . , (θN−1, ϕN−1), while the norms of Jacobi vectors

are related as follows:
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η3 = (
√
Nρ cos δ) cos β3,

η4 = (
√
Nρ cos δ) sin β3 cos β4,

...

ηN−2 = (
√
Nρ cos δ) sin β3 · · · sin βN−3 cos βN−2,

ηN−1 = (
√
Nρ cos δ) sin β3 · · · sin βN−3 sin βN−2. (C.6)

The differential volume element takes the following form:

dΩ =
(
sin5 δ cos3N−10 δ dδ

)
(sin 4θ dθ dϕ)

(1
4 sin β dα dβ dγ

)

×
[

N−2∏
k=3

cos2 βk sin3N−3k−4 βk dβk

]
×
[

N−1∏
l=3

sin θl dθl dϕl

]
. (C.7)

If N = 4, βk is not defined so replace the terms involving βk by 1 in Eqn.  C.7 . Integrating

over the various terms in dΩ except (δ, θ, ϕ) gives 4
(
π(3N−6)/2

)
Γ
(

3
2

)
/Γ
(

3
2(N − 3)

)
.

Most importantly, the two-body distances amongst particles 1, 2, and 3 only depend on

three hyperangles, similar to Eqn.  C.2 for N = 3 but with sin δ inserted:

r1,2 =
√
Nρ sin δ

√
1 + cos (2θ) cos (2ϕ),

r1,3 =
√
Nρ sin δ

√
1 + cos (2θ) cos

(
2ϕ− 2π

3

)
,

r2,3 =
√
Nρ sin δ

√
1 + cos (2θ) cos

(
2ϕ+ 2π

3

)
. (C.8)

Finally, though the full form of grand angular momentum operator is more complicated,

because this dissertation is concerned with functions depending only on (δ, θ, ϕ), one may

take the operator to effectively be as follows:
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Λ2 = −
( 1

sin5 δ cos3N−10 δ

)
∂

∂δ

(
sin5 δ cos3N−10 δ

∂

∂δ

)

+ 1
sin2 δ

[
− 1

sin 4θ
∂

∂θ

(
sin 4θ ∂

∂θ

)
− 1

cos2 2θ
∂2

∂ϕ2

]
. (C.9)
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D. THREE-BODY HYPERSPHERICAL HARMONICS

In Section  4.2.2 , functions Yn(Ω) (see Equation  4.16 ) are shown to be some, but not all, of

the symmetrized hyperspherical harmonics of symmetry Jπ = 0+, governing the physics of N

non-interacting bosons. Here we explicitly compute some of the symmetrized hyperspherical

harmonics for N = 3 and compare with Yn for pedagogic purposes.

It is helpful to recall again the expressions for two-body distances in terms of Smith-

Whitten hyperangles (see Appendix  C ):

r1,2 =
√

3ρ
√

1 + cos (2θ) cos (2ϕ),

r1,3 =
√

3ρ
√

1 + cos (2θ) cos
(

2ϕ− 2π

3

)
,

r2,3 =
√

3ρ
√

1 + cos (2θ) cos
(

2ϕ+ 2π

3

)
. (D.1)

For N = 3, the functions Yn take the following form:

Yn(Ω) =
3∑

i<j

P
( 1

2 , 1
2)

n

(
r2

i,j

3ρ2 − 1
)

= P
( 1

2 , 1
2)

n

(
cos (2θ) cos (2ϕ)

)
+ P

( 1
2 , 1

2)
n

(
cos (2θ) cos

(
2ϕ− 2π

3

))
+ P

( 1
2 , 1

2)
n

(
cos (2θ) cos

(
2ϕ+ 2π

3

))
. (D.2)

On the other hand, for symmetry Jπ = 0+, as explained in Appendix  C , the Euler angles

are irrelevant and only two hyperangles (θ, ϕ) must be considered. Then the hyperspherical

harmonic eigenvalue equation becomes:

Λ2Yν,µ(Ω) =
[
− 1

sin 4θ
∂

∂θ

(
sin 4θ ∂

∂θ

)
− 1

cos2 2θ
∂2

∂ϕ2

]
Yν,µ(Ω)

= ν(ν + 4)Yν,µ(Ω). (D.3)
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It was noted in Appendix  C that a coordinate transformation γ → γ + π, ϕ → ϕ + π

leads to the same particle configuration; because the functions of interest here do not depend

on γ, one must impose a periodic boundary condition as ϕ → ϕ + π. After also imposing

regularity as θ → 0 and θ → π

4 , the hyperspherical harmonics before symmetrization are

(disregard normalization):

Y n,m
ν (Ω) = cos|m|(2θ)P (0,|m|)

n (cos 4θ) exp(2imϕ). (D.4)

The eigenvalue is given by ν = 4n+ 2|m|, with n = 0, 1, . . . and m any integer.

Next, it can be shown by straightforward algebra [ 105 ] that to fully symmetrize Y n,m
ν ,

one need only generate and add up 6 terms, each with ϕ replaced by one of the following:(
ϕ,−ϕ, 2π

3 − ϕ,−2π

3 − ϕ, ϕ− 2π

3 , ϕ+ 2π

3

)
. Positive and negative m give the same symmetrized

functions, so only treat m ≥ 0. Also, m must be a multiple of 3 or the symmetrized function

becomes 0.

The following table summarizes, up to ν = 12, each possible pairs (n,m) and their

corresponding symmetrized functions (normalization ignored):

ν (n,m) Y n,m
ν

0 (0,0) 1
2 n.a. 0
4 (1,0) cos 4θ
6 (0,3) cos3 2θ cos 6ϕ
8 (2,0) 3 cos2 4θ − 1
10 (1,3) cos3 2θ(5 cos 4θ − 3) cos 6ϕ
12 (3,0) 5 cos3 4θ − 3 cos 4θ

(0,6) cos6 2θ cos 12ϕ

Table D.1. Summary of Symmetrized Hyperspherical Harmonics for N = 3, Jπ = 0+.

Notice that to have ν = 2, (n,m) must be (0, 1), which gives symmetrized Y n,m
ν = 0,

proving that ν = 2 really is forbidden for N = 3, Jπ = 0+ [ 74 ]. Up to ν = 10, there is no

degeneracy, and each symmetrized Y n,m
ν is the same as corresponding Yn of Eqn.  D.2 up to

a constant. The first degeneracy occurs for ν = 12. The function Y6 of Section  4.2.2 , given

by Eqn.  D.2 , is one of two linear combinations of Y 3,0
12 and Y 0,6

12 .
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E. EVALUATION OF TWO-BODY ANSATZ

In Section  4.2.3 , an explicitly constructed two-body ansatz function ϕν(r1,2) was introduced

in Equation  4.20 , as well as a defining equation for parameter ν (Eqn.  4.22 ), which both

use a Gauss hypergeometric function 2F1. This appendix gives more details on evaluating

a hypergeometric function, as well as information regarding hyperangular and hyperradial

derivatives of ϕν(r1,2). Ref. [ 90 ] gives a more complete background on the general theory

and applications of hypergeometric functions.

We are concerned with functions 2F1(a, b, c, z), where 0 ≤ z ≤ 1, c > 0, and (a, b) are

either real or complex conjugates so that a + b and ab are real. The Gauss power series is

defined for |z| < 1:

2F1(a, b, c, z) =
∞∑

n=0

(a)n(b)n

(c)nn! z
n = 1 + ab

c
z + a(a+ 1)b(b+ 1)

c(c+ 1)2! z2 + . . . (E.1)

The series converges on the closed disk |z| ≤ 1 when c − a − b > 0, converges on the

open disk |z| < 1 when −1 < c− a− b ≤ 0, and diverges when c− a− b ≤ −1. Whenever a

hypergeometric function appears, we apply various known transformations (see [ 90 ]) so that

not only c − a − b > 0 to ensure convergence of power series, but also z ≤ 1
2 so that the

power series converges quickly and can be easily implemented numerically. Each term of the

power series is computed and added cumulatively until desired convergence criterion is met.

For example, when c > a + b, the following transformation may be used when z > 1
2 to

speed convergence, depending on the value of c:

c < 1 : F (a, b, c, z) = Γ(c)Γ(c− a− b)
Γ(c− a)Γ(c− b)F (a, b, a+ b− c+ 1, 1 − z)

+ (1 − z)c−a−b Γ(c)Γ(a+ b− c)
Γ(a)Γ(b) F (c− a, c− b, c− a− b+ 1, 1 − z), (E.2)
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c ≥ 1 : F (a, b, c, z) = 1
zc−1

Γ(c)Γ(c− a− b)
Γ(c− a)Γ(c− b)F (a− c+ 1, b− c+ 1, a+ b− c+ 1, 1 − z)

+ (1 − z)c−a−b Γ(c)Γ(a+ b− c)
Γ(a)Γ(b) F (1 − a, 1 − b, c− a− b+ 1, 1 − z)

. (E.3)

Now, in Eqn.  4.20 for the ansatz ϕν(ri,j) defined piecewise, the function f1 is a hy-

pergeometric function with argument z = 1 − x2
i,j = 1 − r2

i,j

2Nρ2 . When (i, j) = (1, 2), then

x1,2 = r1,2√
2Nρ

= cos β1, depending on only one Delves hyperangle. But for other particle pairs,

xi,j = ri,j√
2Nρ

ranges from 0 to 1 and is a more complicated combination of various hyperangles.

At any rate, if α is one of 3N − 4 hyperangles Ω, one computes the hyperangular derivative

of ϕν as follows (omit indices i, j in r and x for clarity):

∂ϕν

∂α
= ∂x

∂α

∂ϕν

∂x
=


√

2Nρ
Cm

(
∂x
∂α

)
d
dr

(
u(r)

r

)
, r ≤ rc(

∂x
∂α

)
∂f1
∂x
, r > rc

(E.4)

∂f1

∂x
= 1
x2

(
ν(ν + 3N − 5)

3N − 6

)
F
(−ν − 1

2 ,
ν + 3N − 6

2 ,
3N − 4

2 , 1 − x2
)
. (E.5)

Recall that matching coefficient Cm and parameter ν only depend on ρ. The term ∂xi,j

∂α

can be treated separately on a case-by-case basis, while d
dr

(
u(r)

r

)
and ∂f1

∂xi,j
are computed

straightforwardly.

One must also compute the hyperradial derivative of ϕν in order to compute the diagonal

non-adiabatic correction Q. This time, xi,j in f1 is treated as constant, while one must

consider the hyperradial derivatives of Cm(ρ) and ϵ(ρ) = (ν̃(ρ))2, which are estimated by

differentiating a cubic-spline interpolation formula [ 113 ]. ν̃ = ν+ 3N−5
2 is either positive real

or purely imaginary iy, y ≥ 0. ϵ is always real and more appropriate for differentiation than

ν. Then one treats the hyperradial derivative of ϕν as follows:

∂ϕν

∂ρ
=


− C′

m(ρ)
(Cm(ρ))2

(
u(r)

r

)
+ 1

Cm(ρ)

(
r
ρ

)
d
dr

(
u(r)

r

)
, r ≤ rc

∂f1
∂ρ
, r > rc

(E.6)

When 1 − x2 ≤ 1
2 , the function ∂f1

∂ρ
can be written as follows:
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∂f1

∂ρ
= ϵ′(ρ)

x

∂

∂ϵ

[
F
(

− ν̃

2 + 3N − 7
4 ,

ν̃

2 + 3N − 7
4 ,

3N − 6
2 , 1 − x2

)]
= −ϵ′(ρ)

4x F̃
(

− ν̃

2 + 3N − 7
4 ,

ν̃

2 + 3N − 7
4 ,

3N − 6
2 , 1 − x2

)
, (E.7)

F̃ (a, b, c, z) = 1
a− b

(
∂

∂b
− ∂

∂a

)
F (a, b, c, z). (E.8)

F̃ (a, b, c, z) is a newly defined function for the purposes here, symmetric under the ex-

change of a and b. Evaluate the following power series, well-defined when c > a + b and

original F (a, b, c, z) has convergent power series:

F̃ (a, b, c, z) =
∞∑

n=1

[
n−1∑
l=0

1
(a+ l)(b+ l)

]
(a)n(b)n

(c)nn! z
n. (E.9)

When 1 − x2 > 1
2 , above expression for ∂f1

∂ρ
is not desirable because the power series of

F̃ (a, b, c, z) converges slowly. In that case, begin with the original expression for f1 in Eqn.

 4.13 , transform it using either Eqn.  E.2 or  E.3 , differentiate with respect to ϵ, then put

appropriate terms together in terms of functions F and F̃ , now with z = x2 so that the

power series of F and F̃ converge quickly.
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