
RUNNING DEEP NEURAL NETWORKS USING DIVIDE
AND CONQUER CHECKPOINTING AND TENSOR

STREAMING
by

Hamad Ahmed

A Dissertation

Submitted to the Faculty of Purdue University

In Partial Fulfillment of the Requirements for the degree of

Doctor of Philosophy

School of Electrical and Computer Engineering

West Lafayette, Indiana

December 2021

THE PURDUE UNIVERSITY GRADUATE SCHOOL
STATEMENT OF COMMITTEE APPROVAL

Dr. Dimitrios Peroulis, Chair

School of Electrical and Computer Engineering

Dr. Kaushik Roy

School of Electrical and Computer Engineering

Dr. Jan P. Allebach

School of Electrical and Computer Engineering

Dr. Ananth Grama

Department of Computer Science

Dr. Suresh Jagannathan

Department of Computer Science

Approved by:

Dr. Dimitrios Peroulis

2

This thesis is dedicated to my family, friends and advisor for their unconditional support

and help during this PhD.

3

ACKNOWLEDGMENTS

This work was supported, in part, by the US National Science Foundation under Grants

1522954-IIS and 1734938-IIS, by the Intelligence Advanced Research Projects Activity (IARPA)

via Department of Interior/Interior Business Center (DOI/IBC) contract number D17PC00341,

and by Siemens Corporation, Corporate Technology. Any opinions, findings, views, and con-

clusions or recommendations expressed in this material are those of the authors and do not

necessarily reflect the views, official policies, or endorsements, either expressed or implied,

of the sponsors. The U.S. Government is authorized to reproduce and distribute reprints for

Government purposes, notwithstanding any copyright notation herein.

4

TABLE OF CONTENTS

 LIST OF TABLES . 9

 LIST OF FIGURES . 10

 LIST OF SYMBOLS . 11

 ABBREVIATIONS . 12

 ABSTRACT . 14

 1 INTRODUCTION . 15

 2 PRELIMINARIES . 20

 2.1 Overview of Automatic Differentiation . 20

 2.2 Overview of Checkpointing . 23

 3 TENSOR STREAMING . 28

 3.1 Motivation . 28

 3.1.1 Parameterized programs of a high order 28

 3.1.2 Extremely Large Intermediate Outputs 29

 3.1.3 Criss-cross or inter-connected networks 30

 3.1.4 Need for Streaming . 33

 3.2 Streaming Methodology . 33

 3.2.1 Demand fetch . 35

 3.2.2 Streaming plan . 36

 3.3 Activation Streaming . 38

5

 3.4 Tensor Streaming vs. CUDA Unified Memory 39

 4 MODIFICATIONS TO CHECKPOINTING . 42

 5 THE SCORCH LANGUAGE . 46

 5.1 Types . 46

 5.2 Tensor Support . 46

 5.3 Basic Primitives . 47

 5.4 Deep Learning Primitives . 48

 5.5 Garbage Collection . 49

 5.6 Asynchronicity on the GPU . 49

 5.7 Multi-GPU and Multi-Node capability . 50

 5.8 CUDA Streams . 51

 5.9 Tensor Cache Allocator . 52

 5.10 Dynamic execution . 53

 5.11 Further Synergies . 54

 6 EXAMPLES . 56

 6.1 Image Classification . 56

 6.2 Semantic Segmentation . 62

 6.3 GPT-3 . 62

 7 RELATED WORK . 69

 7.1 Checkpointing . 70

6

 7.2 Tensor Streaming . 72

 7.3 Combinations of Checkpointing and Tensor Streaming 73

 7.4 Various Alternative Training Strategies . 74

 7.5 Benchmarking Against Related Work . 75

 8 OBJECT CLASSIFICATION FROM RANDOMIZED EEG TRIALS 78

 8.1 Motivation . 79

 8.2 Data collection protocol . 80

 8.3 Analysis . 80

 8.3.1 Maximum achievable accuracy . 81

 8.3.2 Amount of data required . 81

 8.3.3 Maximum number of decodable classes 83

 8.4 Summary . 83

 9 SPATIO-TEMPORAL ACTIVITY LOCALIZATION IN UNTRIMMED UNCROPPED

VIDEOS . 84

 9.1 Dataset . 85

 9.2 Evaluation Metrics . 86

 9.3 System Design . 86

 9.3.1 Temporal splitting . 88

 9.3.2 Spatial proposal generation . 88

 9.4 Motion Filtering . 89

7

 9.5 Activity Classifier . 90

 9.6 Filtering Heuristics . 92

 9.7 Possible Activity Classes . 92

 9.8 Additional Filtering . 93

 9.9 Results . 93

 10 SUMMARY . 95

 10.1 Scorch . 95

 10.2 Checkpointing . 95

 10.3 Tensor Migration . 96

 10.4 Object Classification from EEG Data . 96

 10.5 Spatio-temporal activity localization . 96

 REFERENCES . 98

 VITA . 109

8

LIST OF TABLES

 3.1 Sizes of weights and tape for a batch size of 30 for ResNets of various depths. . 29

 3.2 Dimension and size of the output of the first layer in a YOLO-3D model for var-
ious number of input frames, b=batch size, c=number of channels, t=temporal,
h=height, w=width . 30

 3.3 Comparison of execution time, activation transport time, and weight transport
time in seconds for some common convolutions used in ResNets. The execution
times are calculated by computing the time needed to execute the FLOPs of
the layer on a 100 TFLOP/s GPU and the transport times are calculated by
computing the time needed to transport a tensor of the given size on a 16 GB/s
PCIe-3.0 bus. Actual times may vary due to launch overheads and bus traffic. . 39

 5.1 Main Scorch tensor primitives. 〈type〉 denotes one of the types byte, char,
short, int, long, float, or double. 〈floating type〉 denotes one of the types float
or double. 〈residence〉 denotes one of the residences cpu, gpu, or streaming. . . . 48

 6.1 Tabular version of Figure 6.2 (a). 61

 6.2 Tabular version of Figure 6.2 (b). 61

 6.3 Tabular version of Figure 6.2 (c). 61

 6.4 Tabular version of Figure 6.2 (d). 62

 6.5 Tabular version of Figure 6.3 (a). 63

 6.6 Tabular version of Figure 6.3 (b). 64

 6.7 Tabular version of Figure 6.3 (c). 64

 6.8 Tabular version of Figure 6.3 (d). 64

 6.9 Tabular version of Figure 6.5 . 66

 7.1 The maximum network depth, for ResNet and GPT, trainable with Scorch and
various other frameworks, on a single Titan V GPU (12 GB RAM) connected to
a CPU with 768 GB RAM. 77

 9.1 Proposal-generation mechanisms, their recall, and average number of proposals
per 3 s interval. For Object-Detector Cuboids, the number refers to the expansion
factor. 89

 9.2 Comparison of different motion thresholds . 90

 9.3 Our results compared to the 2020 ActEV challenge leaderboard as of July 19,
2020, ranked by penalized nAUDC. Starred entries report penalized nAUDC and
Pmiss values based on detections produced prior to the expiration of the real-time
time limit. 94

9

LIST OF FIGURES

 3.1 ResNet[2] on the left and DenseNet[4] on the right showing examples of net-
works with interconnections. While ResNet’s interconnections are fairly local,
DenseNet’s interconnections span the entire network. Reprinted from [2] and
[4] . 32

 6.1 The essence of our Scorch implementation of ResNet 57

 6.1 Cont. The essence of our Scorch implementation of ResNet. 58

 6.2 Run times (in seconds) for 20 iterations of ResNets of various depths, with and
without divide-and-conquer checkpointing with various base-case-durations,
with and without various tensor-streaming methods, and with a batch size of
30 per GPU. There are 8 GPUs per node, so 16 GPUs is over two nodes, 24
GPUs is over three nodes, etc. (a) and (d) use a base-case duration of 20,000.
(c) uses a base-case duration of 10,000. A depth of 152, tensor streaming,
and a single GPU are used when not specified. Tabular versions in Table 6.1 ,
Table 6.2 , Table 6.3 , and Table 6.4 . 60

 6.3 Run times (in seconds) for 20 iterations of DRANets of various depths, with
and without divide-and-conquer checkpointing with various base-case-durations,
with and without various tensor-streaming methods, and with a batch size of
30 per GPU. There are 8 GPUs per node, so 16 GPUs is over two nodes, 24
GPUs is over three nodes, etc. (a) and (d) use a base-case duration of 20,000.
(c) uses a base-case duration of 10,000. A depth of 152, tensor streaming,
and a single GPU are used when not specified. Tabular versions in Table 6.5 ,
Table 6.6 , Table 6.7 , and Table 6.8 . 63

 6.4 The essence of our Scorch implementation of GPT. 67

 6.5 Two graphs depicting the run times of the GPT example. The first graph
depicts the run time vs. the base-case duration for GPT with various num-
bers of parameters. It shows that varying base-case duration does not hurt
performance that much. The second graph depicts run time vs. number of
GPT parameters, increasing to very large numbers of parameters. It shows
that run time scales linearly with number of parameters. 68

 8.1 Classification accuracies of various classifiers on the collected dataset 81

 8.2 Classification accuracies as a function of the fraction of dataset 82

 8.3 Classification accuracies as a function of classes 83

 9.1 System architecture. 87

10

LIST OF SYMBOLS

m meters

s seconds

Hz Hertz

11

ABBREVIATIONS

AI. Artificial Intelligence

AD Automatic Differentiation

GPU Graphical Processing Unit

CPU Central Processing Unit

MB Megabyte

GB Gigabyte

TB Terabyte

RAM Random Access Memory

DL Deep Learning

GPT Generative Pre-Training

CV Computer Vision

CNN Convolutional Neural Networks

VGG Visual Geometry Group

GTX Giga Texel shader eXtreme

BERT Bidirectional Encoder Representations from Transformers

ILSVRC ImageNet Large Scale Visual Recognition Challenge

RTX Ray-tracing Texel eXtreme

POPL Principles of Programming Languages

ICFP International Conference on Functional Programming

PLDI Programming Languages Design & Implementation

CUDA Compute Unified Device Architecture

cuDNN NVIDIA CUDA Deep Neural Network library

COCO Common Objects in Context

V100 NVIDIA Titan V100

MIMD Multiple Instruction Multiple Data

SIMD Single Instruction Multiple Data

2D Two Dimensional

3D Three Dimensional

12

PCIe Peripheral Component Interconnect express

CSP Constraint Satisfaction Problem

FLOP Floating Point Operation

GC Garbage Collection

vDNN Virtualized Deep Neural Networks

moDNN Memory Optimal Deep Neural Networks

ADAM Adaptive Moment Estimation

AdaGrad Adaptive Gradient Estimation

RMSProp Root Mean Square Propagation

YOLO You Only Look Once

EEG Electroencephalography

MEVA Multiview Extended Video Activities

TSM Temporal Segment Networks

SVM Support Vector Machines

13

ABSTRACT

The application of reverse mode automatic differentiation (AD) to a differentiable pro-

gram requires saving the intermediate outputs of each operation on a data structure called

the tape for use during the reverse sweep. This puts a bound on the length of the differ-

entiable program or the depth of a deep neural network because memory is always limited

and the tape has to be able to fit on the available memory. This problem is more severe

for programs that run on the GPU because GPU memory is extremely limited (only 12GB

for most consumer GPUs). Further, for parameterized programs like neural networks, where

our goal is to compute the gradients of model parameters with respect to a scalar loss value,

we also need to store these model parameters on the limited available memory. These model

parameters can grow to be hundreds of GBs in size, inhibiting even the instantiation of such

deep networks on the GPU. In this thesis research, I present Scorch, a new deep learning

framework with built-in support for two key features: (1) divide-and-conquer checkpointing

i.e. rearranging the application of reverse-mode AD to trade-off space vs. time by storing

only parts of the tape at a certain time at the cost of recomputing the other parts later

and (2) tensor streaming between the CPU RAM and GPU RAM synchronized with the

execution of reverse-mode AD. Divide-and-conquer checkpointing lifts the memory bound

caused by the tape as we can run a program that would typically have a huge tape on

limited memory by only keeping a small portion of the tape live at any given time. Tensor

streaming lifts the memory bound caused by the size of the model parameters as we use CPU

RAM to store these parameters and stream them seamlessly to the GPU as required. These

techniques allow us to run gradient descent on a long running differentiable program or a

deep neural network of any arbitrary size. Scorch is evaluated on several large real-world

examples and show that Scorch is able to create and run gradient descent on the popular

image classification network ResNet with a depth of upto 250,000 layers, a popular image

segmentation network DraNet with a depth of upto 250,000 layers and a popular language

generation model GPT-3 with 175 billion parameters, all while maintaining highly efficient

use of CPU and GPU resources.

14

1. INTRODUCTION

Deep learning (DL) has gained tremendous popularity over the past decade chiefly due to

its outstanding performance on computer vision (CV) tasks. Alexnet [1] demonstrated the

potential of using gradient descent to train CNNs for image classification which led to a

number of deeper CNNs being proposed over the subsequent years. The idea has been that

increasing the depth (number of layers in the network) generally increases accuracy since

deeper networks have more parameters and more non-linearities and can thus represent a

more complex function. In earlier days, increasing the depth beyond a certain point desta-

bilized training because of diminishing gradients but the introduction of skip-connections

[2] has alleviated this problem and made it possible to greatly increase the depth of the

networks.

Consequently, neural networks are getting deeper and performance has generally im-

proved with depth. AlexNet [1] (23 layers) achieved 15.3%, VGG-19 [3] (43 layers) achieved

7.3%, ResNet-152 [2] (464 layers) achieved 5.5%, and DenseNet-201 [4] (606 layers) achieved

6.34% top-5 error rate on the Imagenet validation set.

1
 He, Zhang, Ren, et al. [2] and Huang,

Liu, Van Der Maaten, et al. [4] report even deeper networks with 1,001 and 1,202 layers. Neu-

ral networks are also getting wider i.e. having more convolutional filters at each layer or hav-

ing multiple convolutional layers of various kernel sizes at each level. Googlenet/Inception-v1

[5] (59 convolutions arranged in 22 levels) achieved 6.67% and Inception-v3 [6] (94 convolu-

tions arranged in 42 levels) achieved 4.2% top-5 error rate on the Imagenet validation set.

A straightforward consequence of constructing deeper or wider networks is requiring more

GPU memory.

GPUs have tried to evolve with the growing need for memory and are getting larger

memory sizes. The largest Fermi GPUs had 6 GB RAM, Kepler had 12 GB, Maxwell had

24 GB, Pascal had 16 GB, Volta had 32 GB, Turing had 24 GB, and Ampere had 80 GB.

Yet despite this growth in GPU memory size, neural networks have continued to evolve in a

memory hungry fashion.
1

 ↑ Different authors count layers differently. Here, we count all fully connected, convolutional, activation
function, normalization, pooling, and dropout layers as distinct.

15

Neural networks use the vast majority of their memory for one of two purposes. Back-

propagation requires storing the intermediate values of the network, i.e., the activations,

during the forward sweep for use during the reverse sweep. As networks get deeper, there

are more intermediate values. Beyond this, as networks get deeper they tend to have larger

model order, i.e., numbers of parameters or weights, not only because they get deeper but

also because they get wider.

Neural networks are getting higher model order. AlexNet [1] had 60 million parameters,

VGG-19 [1] had 144 million, BERT large [7] had 340 million, GPT-2 [8] had 1.5 billion, and

GPT-3 [9] had 175 billion.

Though there is also an opposing counter-trend that argues for reducing model order.

While it is an interesting problem to reconfigure a network to give the same performance

with fewer parameters as a network with more parameters, in Scorch we want to expand

the depth of the network to astronomical scale, where it won’t be possible to have so few

parameters that can fit on the GPU RAM.

Training deep networks using gradient descent requires computing the gradients of the

model parameters with respect to a scalar loss value. This is done using reverse-mode

automatic differentiation (AD). Reverse-mode AD saves the output of each intermediate

computation (i.e. output of each layer in the network) during the forward sweep into a data

structure called the ‘tape’. The tape is then consumed in the reverse order during the reverse

sweep to compute the gradients of the model parameters with respect to (w.r.t.) the loss.

Naturally, increasing the depth or width of the network means increasing the size required

to store the tape since more layers mean more intermediate activations or wider layers mean

bigger intermediate activations. This imposes a limit on the maximum depth and width of

the network because GPU RAMs are limited and can only store the model parameters and

the tape upto a certain size. This limitation restrains DL practitioners to experiment with

networks of arbitrary width and depth and has caused the performance on various CV tasks

to stagnate recently as the maximum achievable network size on current GPUs has been

maxed out.

One workaround to this issue is that instead of using a large batch size (say X), use

a batch size of 1 in order to minimize the size of the tape and do X number of forward

16

and reverse sweeeps, averaging the gradients of the model parameters computed during each

reverse sweep and then update the parameters. This is computationally equivalent to using

a batch size of X and makes the tape smaller, allowing a deeper network. However the

network size is still limited to whatever size tape can fit on the GPU RAM with a batch

size of 1, which is 2400 layers in case of Resnet. An even bigger problem is that the model

parameters have to be hosted on the GPU RAM as well and the total size of the parameters

keeps going up as the network gets deeper. This reduces the GPU memory available for

storing the tape and after a certain point, just the parameters become too big to be hosted

on the GPU by themselves.

The current state of the art GPU is NVIDIA’s Quadro RTX which offers 48GB of RAM.

But the more commonly used GPUs have only 12GB of RAM which is barely sufficient to

train Resnet-152 with a batch size of 60. One could use multiple GPUs for training bigger

networks by doing ‘model parallelism‘ i.e. putting a chunk of the model on each GPU and

transmitting the forward activations and the backward gradients across GPUs. This has

shown to be very inefficient because GPUs sit idle when waiting for other GPUs to finish

their job and if the network is so big that it requires tens or hundreds of GPUs, this scheme

becomes infeasible. Instead people use ‘data parallelism‘ to leverage multiple GPUs by

putting a replica of the model on each GPU and synchronize the gradients to perform the

same model update thus allowing an overall bigger batch size to be used which eases training

and reduces convergence time. This brings us back to the limitation that the tape for the

entire network should be able to fit on 1 GPU with atleast a batch size of 1.

Here, we introduce two novel and crucial methods for reducing the GPU memory require-

ments of extremely deep and extremely wide neural networks. The first is an approach to

divide-and-conquer checkpointing [10] generalized to GPU computation performed by arbi-

trary differentiable programs. This reduces the memory requirement for storing the activa-

tions. The second is an approach to tensor streaming that performs just-in-time migration

of data back and forth between the CPU and GPU in parallel to GPU computation. This

allows CPU memory to serve as as kind of virtual memory for the GPU RAM. This is

important because while the largest currently available GPUs have 80 GB of RAM, current

CPUs can contain as much as 8 TB of RAM in a single node.

17

Our methods have been implemented in a system called Scorch.

2
 Scorch is a dialect of

Scheme that has support for GPU computation based, in part, on the Torch library [11].

Almost all deep-learning frameworks, like Torch [11], Caffe [12], MXNet [13], Chainer

[14], TensorFlow [15], Theano [16], DarkNet [17], and PyTorch [18], implement

backpropagation either in a limited domain-specific language or embedded in an existing

programming-language implementation through a foreign-function interface. The techniques

of divide-and-conquer checkpointing and tensor streaming, particularly when generalized to

support not only deep neural networks but also arbitrary differentiable programming, cannot

be implemented in such a fashion because they require specialized low-level support from the

programming-language implementation and run-time system. Thus Scorch is not based on

any existing Scheme implementation but rather on a custom implementation that provides

the requisite low-level support.

Scorch is a ‘middle of the road’ artifact. Most recent publications on differentiable

programming within the POPL, PLDI, and ICFP communities [19]–[28] either do not come

with any implementation at all, or if they do, only come with one that does not run on GPUs

or is incapable of running real-world deep-learning applications at competitive speeds. In

contrast, our implementation has sufficient functionality that it can run real-world computer-

vision applications like ResNet for image classification (Section 6.1) and DRANet for seman-

tic segmentation (Section 6.2) and real-world natural-language processing applications like

the GPT-3 transformer language model (Section 6.3), taking gradients of large long-running

computations on the GPU.

Scorch can run ResNet-152 with a network of the same depth and model order as the

corresponding PyTorch implementation almost as fast as PyTorch. But it can also run

variants of this network with three orders of magnitude greater depth and model order,

something that neither PyTorch nor any other current system can do, and do so with

essentially the same speed relative to the size of the network as the smaller network. As

illustrated in Section 6 , Scorch supports running on a single GPU, multiple GPUs per node,

and multiple nodes with multiple GPUs, using Infiniband for connection between nodes. On

the other hand, Scorch is a research prototype, not a production artifact. It lack the huge
2

 ↑ We will release code at https://github.com/qobi/scorch upon acceptance.

18

https://github.com/qobi/scorch

set of builtin features of a system like PyTorch. Our hope is that others will use our code

as the basis of a future production artifact.

While there has been considerable recent work on both checkpointing and tensor stream-

ing, as we review in Chapter 7 , our work here differs from this work in three key ways. First

unlike all recent work, it supports divide-and-conquer checkpointing and tensor streaming

for arbitrary differentiable programs performing tensor and GPU computation, not just

neural networks. Second, as discussed in Chapter 4 , it supports both divide-and-conquer

checkpointing and tensor streaming in a synergistic fashion with optimizations that are only

possible when these techniques are combined. Third, as discussed in Chapters 4 and 7 , and

demonstrated in Chapters 6 and 7.5 , these techniques are complementary; one alone will not

scale to support extremely deep neural networks and extremely long-running differentiable

programs, yet their combination does.

19

2. PRELIMINARIES

2.1 Overview of Automatic Differentiation

Any particular execution of a program f with a particular control flow can be viewed as

a composition of machine-state transition functions f1, . . . , fT

f = fT ◦ · · · ◦ f1

where x0 is the input machine state and each xt is the intermediate result produced by ft.

This can be written as a straight-line single-assignment program:

x1 = f1(x0)
...

xT = fT (xT−1)

The chain rule

f(x0) = fT (xT−1)× · · · × f1(x0)

gives a method for computing the derivative of f assuming known derivatives of the primitive

machine-state transition functions ft. Since each machine state xt : Rn is a vector, the

machine-state transition functions ft : Rn → Rn are functions from vectors to vectors, the

derivatives ft : Rn → Rn×n are functions from vectors to Jacobian matrices, i.e., matrices of

partial derivatives, and × is matrix-matrix multiplication. This would require space to store

the intermediate Jacobian matrices that is quadratic in the machine-state size n. To alleviate

this, instead of computing Jacobians, one computes Jacobian-column-vector products:

f(x0)× x́0 = fT (xT−1)× · · · × f1(x0)× x́0

20

Right-associating this as

f(x0)× x́0 = (fT (xT−1)× · · · × (f1(x0)× x́0))

allows computing a Jacobian-column-vector product where the intermediate values take space

O(n). This can be written as a straight-line single-assignment program:

x1 = f1(x0)

x́1 = f1(x0)× x́0

...

xT = fT (xT−1)

x́T = fT (xT−1)× x́T−1

In the above, the values x́ are known as the tangents of the associated primal values x.

Taking x́0 to be basis vectors allows computing the entire Jacobian matrix, one column at

a time. In practice, the machine-state transitions functions ft are sparse, reading only a

small portion of the machine state xt−1 and changing only a small portion of the machine

state xt, the operations ft(xt−1)× x́t−1 are coalesced into stepwise Jacobian-column-vector-

product functions associated with the machine-state transition functions, and these are also

sparse. The above is the essence of what is known as Automatic Differentiation in forward-

accumulation mode, or forward AD [29]. Note that the variables xt−1 and x́t−1 are live only

when computing ft and ft. Thus, as formulated above, forward AD takes O(n) space, the

same as computing the primal.

One can also compute a row-vector-Jacobian product, equivalently a Jacobian-transpose-

column-vector product.

x̀T × f(x0) = x̀T × fT (xT−1)× · · · × f1(x0)

f(x0)> × x̀>0 = fT (xT−1)> × · · · × f1(x0)> × x̀>0

21

Left-associating the former or right-associating the latter as

x̀T × f(x0) = ((x̀T × fT (xT−1))× · · · × f1(x0))

f(x0)> × x̀>0 = (fT (xT−1)> × · · · × (f1(x0)> × x̀>0))

can also be formulated as a straight-line single-assignment program:

x1 = f1(x0)
...

xT = fT (xT−1)

x̀>T−1 = fT (xT−1)> × x̀>T−1

...

x̀>0 = f1(x0)> × x̀>1

In the above, the values x̀ are known as the cotangents. Taking x̀T to be basis vectors al-

lows computing the entire Jacobian matrix, one row at a time. In practice, the operations

ft(xt−1)> × x̀>t are coalesced into sparse stepwise row-vector-Jacobian-product functions as-

sociated with the machine-state transition functions. The above is the essence of what is

known as Automatic Differentiation in reverse-accumulation mode, or reverse AD [30] and

generalizes backpropagation [31]. Unlike forward AD, where the computation of the val-

ues x and x́ can be interleaved, reverse AD separates them into two sweeps: a forward sweep

that computes the values x and a reverse sweep that computes the values x̀. Crucially, the

values x are live throughout the forward sweep and into the reverse sweep when they are

consumed by the reverse sweep in reverse order. These saved values are sometimes known as

the tape. The need to save a tape means that reverse AD, as formulated above, takes O(nT)

space.

Real programs do not have a machine state of a fixed size n. They compute a function

f : Rn → Rm whose Jacobian is an m × n matrix, where often m = 1, i.e., a gradient. In

this case, when m = 1 and the primal computation takes O(T) time, a fundamental tradeoff

22

arises: forward AD requires a factor of O(1) more space and a factor of O(n) more time to

compute a gradient than to compute the primal, while reverse AD requires a factor of O(T)

more space and a factor of O(1) more time. We refer to this as the space/time penalty of

AD. In particular, reverse AD incurs a linear space penalty O(T) in the running time of

the program, equivalently neural-network depth. To allow the user to chose whichever is

appropriate to the circumstances, Scorch exposes both forward and reverse AD to the user

with two simple primitives:

j*(f, x, x́) = 〈f(x), f(x)× x́〉

*j(f, x, ỳ) = 〈f(x), f(x)> × ỳ>〉

2.2 Overview of Checkpointing

Griewank [10] presented a method to trade off recomputation for reduced memory re-

quirements of reverse AD. Suppose one could decompose a function f = h ◦ g with the

following straight-line single-assignment program with an intermediate value v0 = uS:

u1 = g1(u0)
...

uS = gS(uS−1)

v0 = uS

v1 = h1(v0)
...

vT = hT (vT−1)

Reverse AD would do what appears below on the left. Instead one could do what appears

below on the right.

23

u1 = g1(u0)
...

uS = gS(uS−1)

v0 = uS

v1 = h1(v0)
...

vT = hT (vT−1)

v̀>T−1 = hT (vT−1)> × v̀>T
...

v̀>0 = h1(v0)> × v̀>1

ù>S = v̀>0

ù>S−1 = gS(uS−1)> × ù>S
...

ù>0 = g1(u0)> × ù>1

u1 = g1(u0)
...

uS = gS(uS−1)

v0 = uS

v1 = h1(v0)
...

vT = hT (vT−1)

v̀>T−1 = hT (vT−1)> × v̀>T
...

v̀>0 = h1(v0)> × v̀>1

u1 = g1(u0)
...

uS = gS(uS−1)

ù>S = v̀>0

ù>S−1 = gS(uS−1)> × ù>S
...

ù>0 = g1(u0)> × ù>1

This trades off recomputing g for not having to simultaneously have the values us and vt be

live, thus doubling the time but halving the space.

Imposing an individual checkpoint [32] on a program execution will reduce the space

needed for the tape by a constant amount and not change its space complexity. But impos-

ing certain kinds of checkpointing schedules on a program execution can change its space

complexity and lead to sublinear space penalty. A left-branching checkpoint tree with O(T)

branches will reduce the space penalty to O(1) at the expense of a time penalty of O(T)

[33]. A right-branching checkpoint tree with O(
√
T) branches will reduce the space penalty

to O(
√
T) at the expense of a time penalty of O(1) [34]. Note that a right-branching check-

point tree with O(1) or O(T) branches will not yield sublinear space penalty. We refer to a

24

right-branching checkpoint tree with a space penalty of O(
√
T) as square-root checkpoint-

ing. A suitably balanced checkpoint tree leads to O(lg T) space and time penalties [10]. We

refer to this as divide-and-conquer checkpointing. Different strategies for choosing the split

point S and deciding when to terminate the divide-and-conquer recursion lead to different

space-time tradeoffs.

Neural networks are often formulated as simple lists of layers and thus it is often easy

to partition these lists into the requisite checkpointing schedule. But we wish to be able

to impose the requisite checkpointing schedule on an arbitrary differentiable program which

may contain conditionals, loops, and function calls that make the correspondence between

the program text and the underlying step sequence opaque. Moreover, some systems require

that the user annotate program-text intervals that induce checkpoint intervals under the

constraint that annotated intervals in the program text not cross constituent boundaries.

Under this constraint, it may not be possible to impose the requisite checkpointing schedule.

checkpointVLAD [35] introduced a general-purpose automatic mechanism for imposing

the requisite checkpointing schedule on the underlying sequence of program steps induced

by an arbitrary differentiable program, without any user annotation, even one whose control

flow varies over the course of execution.

Scorch is based on checkpointVLAD and exposes divide-and-conquer checkpointing

to the user with a simple primitive

checkpoint-*j(f, x, ỳ) = 〈f(x), f(x)> × ỳ>〉

implemented as follows:

base case (when computing f(x) is fast):

〈y, x̀〉 = *j(f, x, ỳ) (step 0)

inductive case:

h ◦ g = f (step 1)

z = g(x) (step 2)

〈y, z̀〉 = checkpoint-*j(h, z, ỳ) (step 3)

〈z, x̀〉 = checkpoint-*j(g, x, z̀) (step 4)

25

Note that checkpoint-*j is mathematically equivalent to *j, differing only in asymptotic

space and time complexity. This allows one to apply divide-and-conquer checkpointing to a

program simply by replacing calls to *j with calls to checkpoint-*j.

The key difficulty in implementing the above is step 1, splitting a procedure f into the

composition of two procedures g and h. This is accomplished by introducing a general

interruption and resumption interface, reminiscent of engines [36]–[38], via three primitives:

primops(f, x) 7→ T Return the number T of evaluation steps needed to

compute y = f(x).

interrupt(f, x, S) 7→ z Run the first S steps of the computation of f(x)

and return a capsule z.

resume(z) 7→ y If z = interrupt(f, x, S), return y = f(x).

With this, step 1 could be formulated as S = bprimops(f,x)
2 c, g could be formulated as

λx.interrupt(f, x, S), and h could be formulated as resume.

With suitable hardware and operating system support, primops could be implemented via

a mechanism to time a computation, interrupt could be implemented via a timer interrupt,

and resume could be implemented by a return from interrupt. Scorch implements this inter-

face by converting the program to continuation passing style (CPS) [39]–[42], threading a step

count and step limit, along with ordinary and interruption continuations, insertion of step

limit checks to call either the ordinary or interruption continuation depending on whether

the step limit was reached, and having the capsule passed to the interruption continuation

close over the ordinary continuation. This approach allows low-overhead fine-grained check-

pointing. Its simplicity relies on the program being purely functional, with no mutation, so

computation can be repeated.

For this to work, it must be possible to apply *j in the base case, step 0, to func-

tions f that contain interrupt or are resume. Moreover, it must be possible to apply *j

in the base case, step 0, to functions f whose domain and/or range are, or can include,

capsules z. The divide-and-conquer nature of checkpoint-*j further requires that the above

interface nest. To handle the recursion in step 3, it must allow interrupting a resumption,

i.e., interrupt(resume, . . .). To handle the recursion in step 4, it must also allow schedul-

26

ing two interrupts, i.e., interrupt(λx.interrupt(. . .), . . .) so that the sooner one happens

first and the later one happens upon resumption. Siskind and Pearlmutter [35] describe how

all this is done.

27

3. TENSOR STREAMING

3.1 Motivation

In the previous section we have shown how to reduce the size of the tape for a program of

arbitrary length to able to fit in a limited memory budget. We have shown that this comes

with an increase in run time as we recompute parts of the tape during the reverse sweep but

checkpointing makes it possible to atleast be able to run these large programs and compute

gradients.

Checkpointing is sufficient to do gradient computations for programs where the tape is

long but there are three scenarios where checkpointing alone is not enough and we need

additional techniques to be able to compute gradients in such situations.

3.1.1 Parameterized programs of a high order

Parameterized programs (neural networks being a major example) need memory to store

two kinds of objects: the tape, and the parameters of the model also commonly called the

weights. These parameterized programs run gradient descent to compute the gradients of

these parameters with respect to a loss which is mostly a scalar value. Hence these programs

are of the form Rm → R1 where m is the number of parameters also called as the model order.

Reverse mode automatic differentiation the algorithm of choice for gradient computation of

these parameters because the loss value is scalar. The gradients of the parameters are

computed and then used to update the parameters using various update methodologies for

example SGD[43], SGD with momentum[31], AdaGrad[44], RMSProp[45], Adam[46] etc.

A parameterized program of the above kind has the form where each step of the program

takes an input and a parameter and computes the output. Increasing the size of such

program means increasing the number of these steps leading to an increase in the number of

parameters. For the specialized case of neural networks where each step is a neural network

layer and each layer takes an input and a parameter(weight), increasing the size means

increasing the number of layers which increases the total size of the weights of the network.

28

Table 3.1. Sizes of weights and tape for a batch size of 30 for ResNets of various depths.
depth weights (GB) tape (GB)

152 0.22 8.85
1,500 2.11 86.23

10,000 14.04 576.08
50,000 69.94 2,870.64

100,000 139.66 5,732.41
1,000,000 1,395.87 57,295.71

As we keep increasing the size of these programs, we run into the situation where the

parameters alone use up all of the available memory budget, leaving no room for storing the

tape even if the tape is very small by virtue of checkpointing. Increasing the size of these

programs further leads to the situation where the parameters do not even fit on the available

memory budget thus making it impossible to even instantiate such programs.

We demonstrate this for the example of the popular ResNet [2] network. Table 3.1 shows

the memory needed by the weights of the network as well as the tape of the network. Note

that the for a ResNet with 152 layers, the total of weights and tape will fit on a 12GB GPU,

but increasing the number of layers further will cause us to run out of memory. We can fix

this by using checkpointing to reduce the size of the tape but notice that for a ResNet with

10,000 layers, even the weights will not fit on a 12GB GPU.

3.1.2 Extremely Large Intermediate Outputs

Checkpointing reduces the length of the tape or the number of nodes in the tape at any

given point in the program so we can fit it in a limited memory budget. But when working

with neural networks, we often run into situations where the size of each tape node i.e. the

size of the output of each intermediate layer is too big to make checkpointing feasible.

This is a common occurence with 3D computer vision models. We demonstrate this with

the example of the popular 2D object detection network YOLO[17]. YOLO in its 2D form,

takes as input an image and outputs the coordinates and class ids of the detected objects in

the image. To convert YOLO to a 3D model which takes as input a video and outputs the

29

Table 3.2. Dimension and size of the output of the first layer in a YOLO-
3D model for various number of input frames, b=batch size, c=number of
channels, t=temporal, h=height, w=width

input number tensor dimension tensor size
of frames [b, c, t, h, w] (GB)

2 [1, 32, 2, 608, 608] 0.088
16 [1, 32, 16, 608, 608] 0.7
32 [1, 32, 32, 608, 608] 1.4
64 [1, 32, 64, 608, 608] 2.8

128 [1, 32, 128, 608, 608] 5.6
300 [1, 32, 300, 608, 608] 13.2

timestamps, spatial coordinates and class ids of detected activity instances in that video, a

natural extension would be to replace the 2D convolutions in the stock YOLO model with

3D convolutions. We refer to this model as YOLO-3D.

A consequence of converting YOLO to YOLO-3D is that the output of each layer has

an added temporal dimension. This greatly increases the size of each tape node. Table 3.2

shows that as we increase the number of input frames for such a temporal model, even with

a batch size of 1, the cost of memory for the output layers starts to become inhibitively

large. A typical video is 30 fps, which means that as we start to input about one second of

a video, the output of each layer becomes about 1GB in size.

For such scenarios, checkpointing becomes severely constrained because the YOLO model

has 153 layers but on a 12GB GPU, a tape of only about 10 tensors can be held. We will need

to checkpoint with a very small base case but recall that checkpointing also stores capsules

in order to resume an interruption. Checkpointing produces O(lgT) number of capsules,

each containing atleast one tensor for resumption, so the tape needs to be even smaller than

10 tensors.

3.1.3 Criss-cross or inter-connected networks

For a program that is of the kind

30

y0 = f0(x0)

yi = fi(yi−1), i = (1, 2, . . . n)

where i is strictly an integer sequence of 1 through n, the output of each intermediate

step depends only on the output of the previous step. In this case the tape consists of

yi, i = (0, 1, . . . n − 1) in sequence and checkpointing is able to reduce the length of this

tape.

But consider a program of the form

y0 = f0(x0)

yi = fi(yi−1), i ∈ [1, n]

Where i is not a strict sequence, the output of each intermediate step does not necessarily

depend on the output of the step right before it, but it could depend on the output of any step

that came before it. This is a common occurence in neural network that contain short-cut

connections e.g. ResNet[2] and DenseNet[4] as shown in Figure 3.1 .

Recall that in checkpointing, all the variables that are required in future computations

are stored in capsules. This increases the size of the capsules. The worst case program would

do

y0 = f0(x0)

y1 = f1(y0)
...

yn−1 = fn−1(yn−1)

yn = fn(y0, y1, . . . yn−1)

31

(a) (b)

Figure 3.1. ResNet[2] on the left and DenseNet[4] on the right showing exam-
ples of networks with interconnections. While ResNet’s interconnections are
fairly local, DenseNet’s interconnections span the entire network. Reprinted
from [2] and [4]

32

Where the output of the last step uses the outputs of all the previous steps. The outputs

of all the previous steps in this case will be stored in capsules and checkpointing, though

operating in theory, but won’t give us any space saving.

3.1.4 Need for Streaming

The above situations highlight the fact that checkpointing alone doesn’t allow running

all kinds of programs of arbitrary sizes and number of parameters. Our goal here is to be

able to do executions on the GPU which has a very limited memory, but we can leverage

the CPU RAM which is normally magnitudes larger in size in order to overcome the above

problems. The rest of this section describes a new kind of tensor called the streaming tensor

that allows using the CPU RAM as an addendum to the GPU RAM.

3.2 Streaming Methodology

Scorch supports various kinds of tensors: byte, char, short, int, long, float, and

double that can reside on either the cpu or gpu. A cpu tensor any kind is always manipulated

on the cpu and a gpu tensor of any kind is always manipulared on the gpu. We introduce

a new class of tensors called streaming tensors whose primary residence is on the cpu but

are always manipulated on the gpu. These streaming tensors are brought to the gpu for

manipulation and then evicted when there is a need to free up space. While this migration

is reminiscent of virtual memory, we do not use any hardware or operating-system support

like memory management units (MMUs) or page faults. The migration is solely handled in

software.

We use the following policy for streaming tensors:

1. A streaming tensor can reside on both the cpu and the gpu but it uses the cpu as its

primary residence. A streaming tensor object contains slots for holding a cpu copy and

a gpu copy as well as a flag that mark its gpu copy as evictable or non-evictable.

2. A streaming tensor can be created from either a cpu tensor or a gpu tensor upon

invocation of unary_streaming_tensor on the cpu or gpu tensor.

33

3. If it is created from a cpu tensor, there is nothing to be done since the tensor’s data

already resides on the cpu.

4. If it is created from a gpu tensor, memory is allocated on the cpu and a copy of the

data from the gpu to the cpu is initiated. The gpu copy is marked as non-evictable

during the copy operation so it is not deleted before the copy operations has finished.

When the copy is complete, the streaming tensor resides on both the cpu and the gpu

and the gpu copy is marked as evictable.

5. When a primitive needs to manipulate a streaming tensor and it is only resident on

the cpu, memory is allocated on the gpu and a copy is initiated from the cpu to the

gpu. The gpu copy is marked as non-evictable so that it cannot be deleted until the

copy operation is finished and until the primitive function that caused this copy has

finished using the data. When the copy is complete, the streaming tensor resides on

both the cpu and the gpu.

6. When a function needs to manipulate a streaming tensor and it is resident on the gpu

as a results of (4) or (5), the function proceeds and executes. In case of (5), the gpu

copy is now marked as evictable.

7. Whenever memory needs to allocated on the gpu in order to hold the gpu copy of a

streaming tensor, the following are done in order:

(a) If there is sufficient free space available on the gpu then proceed with allocation.

(b) If there isn’t sufficient free space available on the gpu then run the garbage collector

and repeat (a).

(c) If there isn’t sufficient free space available on the gpu then evict all streaming

tensors from the gpu that are marked as evictable and repeat (a).

(d) If there isn’t sufficient free space available on the gpu then compact the cache

memory and repeat (a).

(e) If there isn’t sufficient free space available on the gpu then wait until all CUDA

streams have finished execution to see if some streaming tensors with gpu copies

34

that were non-evictable before are now evictable. Evict these gpu copies and

repeat (a).

(f) If there isn’t sufficient free space available on the gpu then raise an out of memory

error.

8. In the default mode of Scorch, the output of a primitive whose inputs were cpu tensors

is a cpu tensor, the output of a primitive whose inputs were gpu tensors is a gpu tensor

and the output of a primitive whose inputs were a mix of gpu tensors and streaming

tensors is also a gpu tensor, not a streaming tensor.

To make streaming work with AD, we make the change to the AD framework that

if we are computing the cotangent of a parameter that is a streaming tensor, we invoke

unary_streaming_tensor on the cotangent. This converts the cotangent to a streaming

tensor and ensures that the gradients of the parameters are also streaming tensors and will

not overflow the GPU RAM.

3.2.1 Demand fetch

The above policy suffices running programs with parameters that will not fit on the GPU

but will fit on the CPU using algorithm 1 .

Algorithm 1 Gradient descent with parameters as streaming tensors
1: procedure Gradient Descent(f, parameters, update rule, loss cotangent)
2: parameters = unary_streaming_tensor(parameters)
3: loss, parameters gradient = *j(f, parameters, loss cotangent)
4: parameters = update_rule(parameters, parameters gradient)
5: return parameters

We call this paradigm ‘demand-fetch’ because the program runs up to the point where

when a primitive needs to access a streaming tensor which is not resident on the gpu, it

pauses and waits for the streaming tensor to become resident on the gpu and then proceeds.

Note that this increases the total execution time of the program because it has to wait for

the data to be copied from the gpu to the cpu.

35

3.2.2 Streaming plan

The NVIDIA GPUs are equipped with DMA controllers and can copy data between page

locked CPU memory and GPU memory without interrupting code execution. This allows us

to move data between the two memories while the GPU is working on executing other parts

of the program.

For static iterative programs with no control-flow, where the access pattern of the tensors

will be the same across iterations, there is an opportunity to record the access pattern and

overlap the copying of streaming tensors from the cpu to the gpu with GPU execution.

To record this access pattern of streaming tensors, we introduce a new primitive called

get-streaming-plan:

get-streaming-plan(f, x) 7→ p Return a streaming plan p, a list of all streaming

tensors accessed while computing f(x), in the order

they were accessed.

In a fashion similar to primops, get-streaming-plan takes a procedure f and argument x,

where x is a list of all parameters converted to streaming tensors and evaluates f(x), not for

the purpose of getting a result, but rather for the purpose of returning the access pattern of

the streaming tensors in x. We call this access pattern ‘streaming plan’. It is simply a list

of streaming tensors.

We then introduce another new primitive:

call-with-streaming-plan(p, f, x) 7→ f(x)

Evaluate f(x) while running a background thread to opportunistically copy the

non-GPU-resident streaming tensors in the streaming plan p, in order, from

the CPU to the GPU.

Importantly, the background thread is given a small memory budget called the ‘streaming

budget’ which is a fraction of the total GPU memory and it goes through the streaming plan p

implementing the following policy on each tensor.

1. If the streaming tensor is resident on the gpu, then do nothing.

36

2. If the streaming tensor is not resident on the gpu then allocate memory within the

streaming budget and initiate a copy from the cpu to the gpu. Mark the gpu copy as

non-evictable so that it is not deleted during the copy or before the primitive that will

be using this tensor from the main thread has finished using it.

3. If sufficient memory is not available to be allocated in (2), then wait and keep inspecting

the streaming tensors already brought on by (2) to see which ones have been marked

as evictable as a result of functions executing in the main thread. Once a tensor is

evictable, evict the gpu copy. Allocate memory once enough contiguous free space is

available.

Note that the background thread works in its own memory budget which is a separate

memory pool than that being used by the main thread. Only the background thread is

allowed to allocate or free space from within this pool. There is no interaction between the

two threads except when functions in the main thread finish execution and mark gpu copies

of streaming tensors to be evictable and the background thread when looking to allocate

memory, sees these tensors marked as evictable and evicts them. This methodology ensures

that there is no need for synchronization between the main and the background thread and

there will be no race conditions.

Note that the above policy still works cohesivly with the demand-fetch framework. Once

the background thread starts copying of a streaming tensor, it marks it as non-evictable.

When the main thread tries to access a tensor and sees it as non-evictable, it can tell that

this tensor is either available to be used or in the process of being made available. The main

thread then just waits until it is available. This also ensures that the main thread is paused

if the background thread is lagging behind so it does not start demand fetching tensors that

were going to be made available by the streaming thread in the future. The demand-fetching

of a tensor from the main thread only kicks in when the main thread tries to access a tensor

that is not being processed by the background thread.

The above scheme of creating a streaming plan and then calling with streaming plan

ensures that the parameters are always kept on the CPU but they are eagerly brought on

to the GPU in the background and made available to the GPU as soon as it needs them.

37

Assuming that the copy of tensors is fast and can be completely hidden under GPU execution,

we incur no overhead anymore and the program runs as if all parameters were always resident

on the GPU.

Algorithm 2 Gradient descent with a streaming plan
1: procedure Gradient Descent2 (f, parameters, update rule, loss cotangent)
2: parameters = unary_streaming_tensor(parameters)
3: g = lambda(parameters)(Gradient Descent(f, parameters,

update_rule, loss_cotangent))
4: p = get-streaming-plan(g, parameters)
5: parameters = call-with-streaming-plan(p, g, parameters)
6: return parameters

3.3 Activation Streaming

We have showed how to solve the issue raised in Section 3.1.1 but we still haven’t solved

the issues of Section 3.1.2 and Section 3.1.3 . The tensor streaming framework described so

far is limited to the streaming of parameters and doesn’t apply to the intermediate outputs

of a program because we have the stipulation that the output of a primitive whose inputs

were a mix of gpu and streaming tensors is a gpu tensor.

To resolve this, we lift the above stipulation and provide a new mode in our program

that can be enabled and switches to the policy where the output of each gpu manipulation

is converted to a streaming tensor. This leads to the following additions to the policy of

Section 3.2 .

9. In the activation streaming mode, we invoke unary_make_intermediate_streaming_tensor

on the output of primitives whose inputs were gpu tensors, streaming tensors or a mix

of the two. The unary_make_intermediate_streaming_tensor creates a streaming ten-

sor but does not initiate a copy of the tensor from the gpu to the cpu. The tensor is

added to a list called ‘intermediate tensors’.

10. Whenever we access a tensor that is on the intermediate tensors list, we move it to the

bottom. This has the effect that the tensors are sorted top to bottom with respect to

their last usage.

38

Table 3.3. Comparison of execution time, activation transport time, and
weight transport time in seconds for some common convolutions used in
ResNets. The execution times are calculated by computing the time needed
to execute the FLOPs of the layer on a 100 TFLOP/s GPU and the transport
times are calculated by computing the time needed to transport a tensor of the
given size on a 16 GB/s PCIe-3.0 bus. Actual times may vary due to launch
overheads and bus traffic.

input weight execution activation weight
shape shape time transport time transport time

256×56×56 64×256×1×1 1.65×10-5 6.02×10-3 4.09×10-6

64×56×56 64×64×3×3 3.47×10-5 1.50×10-3 9.21×10-6

64×56×56 256×64×1×1 1.67×10-5 1.50×10-3 4.09×10-6

512×28×28 128×512×1×1 1.77×10-5 3.01×10-3 1.63×10-5

128×28×28 128×128×3×3 3.47×10-5 7.50×10-4 3.68×10-5

128×28×28 512×128×1×1 1.78×10-5 7.50×10-4 1.63×10-5

11. When we need to allocate new memory and options 7(a)-(e) are exhausted, we initiate

a copy of the tensor at the top of the intermediate tensors list and evict the gpu copy.

We keep repeating this until there is enough space available or the intermediate tensors

list becomes empty at which point we raise an out of memory error.

Activation streaming solves the issues of Section 3.1.1 and Section 3.1.3 . We don’t make

it the default mode of operation of Scorch because it is generally cost inhibitive to stream

large intermediate output tensors. It is generally faster to recompute them, which is what

checkpointing does, but slower to transfer them back and forth between the GPU and the

CPU. This mode should only be used when all other options have been exhausted. Table 3.3

shows the time required to compute intermediate outputs and the time required to transport

them.

3.4 Tensor Streaming vs. CUDA Unified Memory

CUDA supports data migration between the CPU and GPU using unified memory, a

single address space that is accessible from any CPU and GPU in the system. The user allo-

cates unified memory using a special-purpose function cudaMallocManaged. Upon accessing

39

this memory on any CPU or GPU, the CUDA driver automatically migrates the pages to

the relevant device and makes them available for access. When a GPU runs low on memory,

the CUDA driver migrates old pages back to the CPU to make room for new pages. Without

any special-purpose user programming, the migration of memory pages is triggered by page

faults, i.e., accessing the data on a device where it is not resident triggers a page fault, the

driver halts program execution, migrates the data, and resumes execution. We call this mode

‘unified memory no prefetching’.

The CUDA driver is not aware of the size of a tensor so in the no prefetching mode, it

only brings on the page that is touched by a GPU kernel. Pages are only 4kB in size so

in the no prefetching mode, several page faults need to be triggered and several migrations

need to happen in order for the whole tensor to be available. This can be made more efficient

by prefetching an entire tensor when a gpu primitive tries to access a tensor by making call

to a special-purpose function cudaMemPrefetchAsync. We call this mode ‘unified memory

prefetching’ and it is synonymous to our ‘demand-fetch’ paradigm.

Since we have the functionality to record the access pattern and make a streaming plan

for the execution of our program, we can call cudaMemPrefetchAsync on the tensors in a

background thread much like our call-with-streaming-plan primitive. We call this mode

‘unified memory prefetching with plan’.

Unified memory behaves similar to tensor streaming, still there are some differences which

make tensor streaming more efficient than unified memory. Tensor streaming always keeps

a copy of the tensor on the CPU. Thus data copied to the GPU can be evicted after the

program is finished using it without having to copy it back to the CPU. Since Scorch is a

functional language, where we do not mutate data, we are always sure that any data copied

to the GPU will not be changed and need not be copied back. Unified memory, on the other

hand, migrates instead of copies, and has to copy data back to the CPU after processing.

We performed experiments using tensor streaming, unified memory no-prefetching, ,uni-

fied memory prefetching and unified memory prefetching with plan to compare their per-

formance (Section 7.5). Tensor streaming performs much better than all three variants of

unified memory. Note that both tensor streaming and unified memory have the propensity

to fill up GPU RAM by not evicting used data until the memory is full and space is required

40

to copy or migrate new data. We circumvent this issue by limiting the amount of GPU

RAM available to these mechanisms. Tensor streaming makes sure that data copied to the

GPU does not get evicted until it is used. Unified memory prefetching, on the other hand,

can migrate pages back before they are used, to make room for new prefetched pages, which

results in on-demand migration of old pages when the program tries to access them. Indeed

our experiments showed that unified memory no-prefetching actually performed better than

unified memory prefetching.

41

4. MODIFICATIONS TO CHECKPOINTING

In this chapter, we discuss the crucial modifications to the checkpointing algorithm to make

it feasible for use with training deeper neural networks. While Siskind and Pearlmutter

[35], and the associated checkpointVLAD implementation, provided divide-and-conquer

checkpointing, it was only a proof-of-concept. It did not support tensors, did not support

GPU computation, and was only ever run on a single tiny unrealistic artificial pedagogi-

cal benchmark (Siskind and Pearlmutter [35 , Figs. 28 and 29]), specifically designed solely

to demonstrate that it exhibited the theoretical O(lg T) space penalty, while Tapenade

(Hascoët and Pascual [47]) did not (Siskind and Pearlmutter [35 , Fig. 30]). (Tapenade

exhibits O(T) space penalty on this example.)

Because checkpointVLAD did not support tensors and GPU computation, it could

not be applied to practical deep-learning applications. Scorch significantly builds upon

checkpointVLAD by adding support for tensor computation that runs both on the CPU

and on the GPU. It also adds support for multiple GPUs and multiple nodes. This allows

it to be useful and practical for realistic, large deep-learning applications such as ResNet

(Section 6.1), DRANet (Section 6.2), and GPT (Section 6.3). The contribution of Scorch

over checkpointVLAD as an artifact is enormous. The source-code base grew from 8,366

lines to 97,793 lines. The checkpointing algorithm also evolved in substantive ways. We now

discuss one such evolutionary enhancement that is crucial to running the examples shown

later.

Machine learning often iterates a simple gradient-descent step to update the model pa-

rameters θ. The gradient∇θf(θ, x), denoted as θ̀, can be computed with *j (or checkpoint-*j).

〈l, θ̀〉 = *j(f, θ, 1)

θ := δ(θ, θ̀, η,m)

Here, l = f(θ) is the loss, δ is the update function which could be any of SGD, SGD

with momentum, AdaGrad, AdaBoost, Adam etc. η are the hyper-parameters required

by the update function and could be the learning-rate, momentum etc. m is the state of

42

the parameters. Different optimization methods use different state variables for example,

SGD with momentum uses the velocity of the parameters, Adam uses the first and second

moments, etc.

When the model order is high, the model parameters θ do not fit in GPU RAM. The

gradients of the parameters also do not fit in GPU RAM since they are the same size as

the parameters. As described in Section 3.2 , the parameters are kept on the CPU and only

brought to the GPU for manipulation, and the computed cotangents are also converted to

streaming tensors immediately and shipped to the CPU. This means that when we are about

to perform the update step, the parameters θ and their gradients θ̀ reside on the CPU.

We thus have two choices: we can either perform the update step on the CPU or copy

both the model parameters θ and their gradients θ̀ back to the GPU, perform the update step

on the GPU, and copy the result back to the CPU. Both of these methods are inefficient:

the former because the CPU takes longer to perform the update computation than the GPU

and the latter because it incurs twice the communication cost.

To enable a more efficient solution, we introduce new primitives that fuses the update

step into the gradient computation

〈l, θ〉 = *j-update(f, θ, l̀, δ(η),m)

〈l, θ〉 = checkpoint-*j-update(f, θ, l̀, δ(η),m)

where θ = δ(θ, θ̀, η,m). Crucially, such fusion allows the gradient computation to be special-

ized so that the last step of the gradient computation is interleaved with the update step.

Thus the last step of the gradient computation does not initiate copying the model-parameter

gradients θ̀ back to the CPU allowing their eviction, but rather copies the model parame-

ters θ to the GPU, if needed, during the last step of the gradient computation. Since the

model-parameter gradients θ̀ are not exposed as output of this primitive, they become dead

upon completion and can be evicted without copying to the CPU. The model-parameter

gradients θ̀ are never allocated explicitly as a tensor, streaming or otherwise, and only exist

ephemerally as the internal intermediate values inside the *j-update primitive. This allows

43

performing the update step on the GPU and alleviates the need to explicitly represent and

transport the model-parameter gradients.

One further provision we need in order to make AD work with tensor streaming is in-place

update of parameters. For the specialized case of machine learning optimization algorithms,

the parameters are only updated after the gradient computation has been performed. The

new parameters are used for the next iteration whereas the old parameters are discarded.

This gives us the opportunity to reuse the memory of the old parameters for the new pa-

rameters. This is actually crucial to make the streaming paradigm work with AD because

recall that a streaming plan is a list of tensors in their order of execution. If we discard the

old parameters, we are discarding the tensors on the streaming plan. We would then need

to create a new streaming plan in order to record the access of the new tensors. Instead, we

make two more variants of the AD operators

〈l, θ〉 = *j-update!(f, θ, l̀, δ(η),m)

〈l, θ〉 = checkpoint-*j-update!(f, θ, l̀, δ(η),m)

The ! indicates that the update step does a side-effect i.e. it performs the update in place

so that the streaming plan remains valid across iterations and we do not have to recreate

the streaming plan before each iteration.

Neural networks are a restricted form of program formed by composing specific kinds of

layers in specific kinds of computation graphs. Many deep-learning frameworks are domain-

specific languages (DSLs) for this restricted form of program. Backpropagation in neural

networks is a restricted form of reverse AD for this restricted form of program. Many deep-

learning frameworks only support backpropagation for this restricted form of program. In

contrast, Scorch supports differentiable programming; it supports reverse AD (as well as

forward AD) of arbitrary programs. (Extremely) deep neural networks are a restricted form

of (extremely) long-running programs. Some deep-learning frameworks only support check-

pointing for neural networks. Further, some support only limited forms of checkpointing

that do not lead to sublinear space penalty and do not support divide-and-conquer check-

44

pointing. In contrast, Scorch supports divide-and-conquer checkpointing to allow taking

gradients of arbitrary extremely long-running programs, not just extremely-deep neural net-

works. Furthermore, prior frameworks, like Tapenade, that supported differentiable pro-

gramming, including the ability to apply both forward and reverse AD, as well as limited

forms of divide-and-conquer checkpointing, to arbitrary programs, lacked support for ten-

sors and GPU computation, rendering them ill-suited to deep learning. In contrast, Scorch

supports tensors and GPU computation and is well suited to deep learning, being able to

employ divide-and-conquer checkpointing for taking gradients through extremely deep neu-

ral networks as a special case. We illustrate this with our ResNet (Section 6.1), DRANet

(Section 6.2), and GPT (Section 6.3) examples.

Ultimately, the efficiency of a system that performs divide-and-conquer checkpointing

depends on the efficiency of the underlying interruption and resumption mechanism that

is used to break the execution of an arbitrary program up into intervals to impose the

requisite balanced nested checkpointing schedule onto the execution of that program. Our

experiments in Section 6 evaluate the run times while changing the base-case duration, i.e.,

changing the depth of the divide-and-conquer checkpointing recursion, to make the requisite

size of the tape (i.e., the length of the red and blue lines and the number of violet lines in

Figure ??) longer or shorter. This measures the overhead of the interruption and resumption

mechanism.

45

5. THE SCORCH LANGUAGE

The Scorch language is nominally a subset of r4rs [48] with additions for differentiable

programming. It is based on the vlad language [35], [49]. The syntax of the user interface is

very much like that of Scheme, a widely known programming language in order to facilitate

users to rapidly pickup and use Scorch. The back end of Scorch is written in C.

5.1 Types

Scorch uses a single polymorphic type called thing which can take on any of the

following types: true, false, null, char, string, bundle, tape, pair, closure, capsule,

data-loader or 〈residence〉-〈type〉-tensor where 〈type〉 denotes one of the types byte, char,

short, int, long, float, or double and 〈residence〉 denotes one of the residences cpu, gpu, or

streaming. Type checking is performed dynamically during execution to call the specialized

type variant of the primitive functions.

5.2 Tensor Support

To create cpu-〈type〉-tensors, our C backend interfaces with the Torch[11] TH library

to access the following two structures.

typedef struct THStorage

{

real *data;

ptrdiff_t size;

int refcount ;

char flag;

THAllocator * allocator ;

void * allocatorContext ;

struct THStorage *view;

} THStorage ;

typedef struct THTensor

{

46

long *size;

long * stride ;

int nDimension ;

THStorage * storage ;

ptrdiff_t storageOffset ;

int refcount ;

char flag;

} THTensor ;

The THStorage struct holds the memory and a reference count of the storage. The

THTensor struct points to a THStorage and contains the nDimension, size and stride fields

that allow viewing the memory as a multi-dimensional object. These structs are expanded

via macros to generate code for the types Byte, Char, Short, Int, Long, Float, and Double.

To create gpu-〈type〉-tensors, our C backend interfaces with the TorchTHC library

to access the complementary versions of the above two structs for cudamemory and are

expanded via macros to generate code for the types CudaByte, CudaChar, CudaShort, CudaInt,

CudaLong, Cuda, and CudaDouble.

A Scorch object ‘thing’ just wraps around such Tensor objects.

Note that there is nothing magical about the TH and THC interfaces and we could have

made our own memory objects but we utilized Torchś already mature libraries to save time.

5.3 Basic Primitives

Scorch has the standard unary basis procedures sqrt, exp, log, sin, cos, zero?, positive?,

and negative? that work on scalars as well as pointwise on tensors of all types and residences.

Scorch has the standard binary basis procedures +, -, *, /, max, min, atan, =, <, >, <=,

and >= that work on scalars, a tensor and a scalar, or a scalar and a tensor, or two tensors

of the same type and dimensions, in a pointwise fashion.

For the case of tensors, all of the above primitives are wrappers around standard functions

from the Torch library. Again, there is nothing magical about the Torch library and this

was done for the sake of not reinventing the wheel.

47

Table 5.1. Main Scorch tensor primitives. 〈type〉 denotes one of the types
byte, char, short, int, long, float, or double. 〈floating type〉 denotes one of
the types float or double. 〈residence〉 denotes one of the residences cpu, gpu,
or streaming.

list->〈residence〉-〈type〉-tensor fill-〈residence〉-〈type〉 〈residence〉-〈type〉-tensor?
〈residence〉-〈type〉 randn-〈residence〉-〈floating type〉 normal-〈residence〉-〈floating type〉
size tensor->list view
transpose narrow-tensor expand-tensor
concat-tensors dot sumall
addmv addmm baddbmm
addr resize pad
crop decimate interpolate
interpolate-to-size upsample-nearest downsample-nearest
permute ReLU LeakyReLU
GeLU sigmoid convolve
transpose-convolve batch-normalization-training batch-normalization-test
initialize-batch-normalization layer-normalization convolve-add-tied
embedding max-pool average-pool
dropout dropout-planewise max-value
index-of-max cross-entropy-loss softmax
fused-scale-mask-softmax

5.4 Deep Learning Primitives

Table 5.1 presents the main basis procedures that operate specifically on tensors. There

are a few more that do not concern us here. Most are simple wrappers around Torch[11] and

cuDNN [50]. Some are our own implementation in cuda [51]. And some are implemented

in Scorch as user code in a standard library. While this set of tensor procedures is tiny

compared with that in PyTorch, it is sufficiently rich to allow implementing all of the

examples in Section 6 .

Most Scorch basis procedures can take one or more tensors as input and yield a tensor

as output. Tensors have a variety of types (byte, char, short, int, long, float, or double)

and a variety of residences (cpu, gpu, or streaming). Scorch basis procedures generally

require all input tensors to have the same type and residence, and produce output tensors

of the same type and residence as the input tensors. They generally also allow a mix of gpu

and streaming tensors as input, producing a gpu tensor as output. Primals and associated

tangent or cotangent values are not specifically constrained to have the same type and

residence. Any constraint between the mutual types and residences of primals and their

48

associated tangents and cotangents results from the fact that the Jacobian-column-vector-

product and row-vector-Jacobian-product functions are implemented either as primitives or

as compositions of other basis functions and the constraints follow from the properties of

this implementation.

5.5 Garbage Collection

Scorch is a functional programming language and we use Boehm garbage collector (GC)

[52] to reclaim dead objects and their associated memory. The use of GC greatly simplifies

the programming of the backend. The GC periodically examines the state of the program

and frees up memory allocated to the pointers that are no longer live.

GC is periodically automatically invoked according to some parameters or criterions

internal to the GC. Most likely it is triggered based on how much of the heap has been

used up. Since we mostly work with cudamemory and the GC has no notion of how much

memory is left on the GPU, we have to call GC manually in the scenarios where we need to

allocate GPU memory but there is no free memory available.

When we create tensor objects, we put the calls to free the tensors in the finalizers of

these objects so when the objects are collected by GC, the finalizers are invoked which make

the appropriate calls to the underlying Torch library to free the associated memory.

5.6 Asynchronicity on the GPU

Scorch very carefully only uses GPU operations that can be launched asynchronously

i.e. the control is returned to the CPU once a kernel is launched. This allows the CPU to

continue execution and stay ahead of the GPU. The CPU tries to quickly fill up the GPU

hardware FIFO queue in order to keep it fully loaded and reach maximum performance.

Since most GPU operations are done on tensors which can take a long time, this has the

benefit that all CPU execution is practically hidden under GPU computations. The only

inevitable synchronization is when we have to copy data from the GPU to get the output of

a program e.g. the loss value. But such calls are few and far between, and an appropriately

written Scorch program runs at close to 100% GPU utilization.

49

5.7 Multi-GPU and Multi-Node capability

It is common in deep learning applications to leverage multiple GPUs on the same node or

on multiple nodes for the same program to speed up training. There are two main paradigms

in which multiple GPUs are leveraged:

• Data Parallelism: Each GPU contains the exact same copy of the network and its

parameters. The input data is split along the batch dimension so that each GPU has

a chunk of the input batch. Each GPU runs the forward pass, computes the loss and

runs the backward pass to compute the gradients of the parameters with respect to

its loss. Each GPU broadcasts its gradients to all other GPUs so that each GPU gets

an average of the gradients across all GPUs. The averaged gradients are then used to

update the parameters on each network.

• Model Parallelism: The network is split across multiple GPUs. The first GPU executes

its part of the network and passes the output to the next GPU. The process continues

until the last GPU computes the loss and then the backward pass is initiated in the

reverse direction. This paradigm is mostly inefficient since GPUs sit idle except the

one that is executing its part of the network.

Scorch provides the ability to do data parallelism. We do so by launching multiple

processes of the same program through OpenMPI[53]. Each process runs unhindered by

other processes, the only point of communication between them is when the gradients need to

be averaged. Gradient averaging is done using the NVIDIA NCCLlibrary[54] which gathers,

averages and broadcasts the averaged gradients to all processes. This extends to multi-node

cases, multiple processes can be launched on multiple nodes and Scorch seamlessly handles

gradient averaging across all processes.

Note that each process runs independently with its own data and address space. But we

often run into situations where we want to run a very deep network and use tensor streaming

to host the parameters on the CPU RAM. But CPU RAM is also limited and doesn’t allow

as many copies of the parameters to be created on the CPU RAM as the number of processes.

For such cases, all the processes on a given node use shared memory. The master process on

50

each node allocates a chunk of shared memory using mmap and all the slave processes on that

node map this shared memory into their address space. The master process then creates

the parameters inside this shared memory and they automatically become available to all

the slave processes. While doing gradient computation, the slave processes broadcast their

gradients during the gradient averaging step, but then discard them, only the master process

retains a copy of the gradients and performs the update of the parameters.

5.8 CUDA Streams

cudaprovides the notion of streams which are work queues. Work submitted to a specific

stream is always executed in order. Work submitted to two different streams can be executed

in parallel, depending on the availability of GPU resources. Care has to be taken that work

that is dependent on previous work is always added to the same stream. Scorch uses four

streams to fully utilize parallelism

• execution stream

• asynchronous copy stream

• update stream

• nccl stream

The execution stream is responsible for executing the main program on the GPU. It does

all the computation involved in the program.

The asynchronous copy stream is used by the streamer or the data loader thread to move

data between the CPU and the GPU. Where there is a dependency that the execution stream

will use something from the asynchronous copy stream e.g. the data preloaded by the data

loader thread, or where the asynchronous copy stream will use something from the execution

stream e.g. the computed cotangents that need to be streamed to the CPU, synchronization

between the two streams is carefully inserted to run such operations in the correct order.

The update stream is used to carry out the computations of the update step when using

*j!, checkpoint-*j!, *j-update! or checkpoint-*j-update! because the updates can be run

in parallel while the execution stream is carrying out the remaining reverse sweep.

51

The nccl stream is used in the multi-GPU case to carry out the reduce operation between

the cotangent tensors resident on various GPUs. Again, careful synchronization is inserted

between the execution, update and nccl streams to make sure that data is only used by

another stream when the previous stream has finished its operation on it.

5.9 Tensor Cache Allocator

The standard way to allocate GPU memory is by making calls to the cudaMalloc function

and to free memory is by making calls to the cudaFree function. However both of these

functions are synchronous i.e. they synchronize the CPU and the GPU by waiting for all

operations queued to the GPU to finish and then perform the malloc or free operation. This

synchronization is expensive since it blocks the host (CPU) thread and in a program where

there are thousands of malloc and free calls, the run time easily gets dominated by just these

two calls.

PyTorch and TensorFlow deal with this issue by allocating all memory required

by the program at the beginning and then reusing it throughout the lifetime of the pro-

gram. This is not possible in a checkpointed-AD paradigm since tensors of different sizes are

live during different checkpointing intervals and dynamic memory allocation and freeing is

unavoidable.

To avoid synchronization of the CPU and GPU, we allocate all available GPU memory

at the beginning of the program and run our own cache allocator on it. We provide two calls

cacheCudaMalloc and cacheCudaFree that allocate memory or return memory to this pool

without causing synchronization.

When doing tensor streaming, we wish to overlap the data migration with GPU execution.

The cudaMemcpy function which is used to copy memory between the CPU and the GPU is also

a synchornized function and cost prohibitive. cudaprovides a variant called cudaMemcpyAsync

which asynchronously copies memory between the CPU and the GPU with the condition

that the memory allocated on the CPU must be page locked and registered with cuda.

Allocating page locked memory and registering with cudais again synchronous and cost

prohibitive so we allocate a chunk of CPU memory at the beginning of the program and

52

register it with CUDA and run the same cache allocator on it as well. We provide two calls

cacheHostMalloc and cacheHostFree to allocate memory or return memory to this pool.

Since GPU memory is overall limited and we allocate big chunks as tensors, the memory

can quickly get fragmented. When the fragmentation is bad such that there is enough

total free space available to service a memory allocation request but the memory is not

contiguous, we provide a function called compactCache for each of the GPU and CPU cache.

The compactCache function starts at the top of the cache and moves allocated memory

upwards to fill up the free spaces in between. This is done in an asynchronous fashion but

is still an expensive operation. However, it rarely gets called in most practical programs.

Further, we have several threads (e.g. main thread, data loader thread, streamer thread),

each owning a stream (GPU work queue) and working independently of each other. To

avoid synchronization between these threads, we provide each of them with their own cache.

Because we only make asynchronous GPU calls in almost all of our primitives, the CPU

mostly runs ahead of the GPU and keeps queuing operations on the GPU. This results in

the scenario where the CPU frees a tensor and allocates that memory to another tensor even

before the function that used that tensor has been executed on the GPU, but since each

thread has its independent stream that only works in its own memory pool, that memory is

not overwritten by another stream and the relevant stream of that thread executes operations

in sequence.

The only exception to this is the data loader which allocates memory in its pool to

preload the data but that memory is used by the main thread, and the nccl stream which

synchronizes the memory regions across GPUs. Careful stream synchronization is placed in

these scenarios to make sure that memory is never overwritten before it has been completely

utilized.

5.10 Dynamic execution

Just like PyTorch, Scorch dynamically executes a program i.e. it executes functions

as it encounters them unlike TensorFlow which constructs a graph of the computation

prior to running it and then executes it. This dynamic execution allows us to put control

53

flow in the program where execution can follow conditionals on runtime, allowing us to write

programs such as ray tracers with termination conditions determined on run time.

5.11 Further Synergies

The design and implementation of Scorch is synergistic; all of its features interoperate

and play well together.

Divide-and-conquer checkpointing is well suited to a pure functional language. The ma-

chine state that needs to be saved upon interruption is reflected in immutable continuations,

allowing computation to be repeated and resumed multiple times (Figure ??f) from the same

saved state.

Divide-and-conquer checkpointing and tensor streaming serve complementary purposes.

Divide-and-conquer checkpointing reduces the memory requirement for the tape, which cor-

responds to neural-network activations. Tensor streaming reduces the GPU RAM require-

ment for model parameters, which correspond to the neural-network weights. One could

imagine an alternate design that used static methods for constructing streaming plans based

on a fixed program structure or neural-network architecture. Indeed, the access patterns of

forward and reverse AD are sufficiently simple that this could be done easily; forward AD

accesses the model parameters in the same order for the primal and tangent computation,

while reverse AD accesses the model parameters in the reverse order from the forward sweep

during the reverse sweep. However the access pattern of divide-and-conquer checkpointing

is far more complex and difficult to analyze statically as it depends on the base-case dura-

tion and the precise number of virtual-machine instructions that can be executed between

interrupts. Using get-streaming-plan to dynamically construct a streaming plan through

profiling makes this easier. The fact that our design allows tensors to be copied on demand,

without a streaming plan, or with an inaccurate one, has several advantages. First, it avoids

a chicken-and-egg problem and allows the plan to be constructed in the first place by run-

ning code when a plan is not yet available. Second, it allows our system to operate correctly,

albeit less efficiently, if one constructs a representative streaming plan for a specific control

54

flow that induces a particular access pattern, but uses it when the dynamic control flow

varies and induces different access patterns.

55

6. EXAMPLES

We evaluate the performance of our implementation on three real-world examples. The

Scorch source code for these examples is included in the supplementary material. For all

of the examples below, we have written full-fledged implementations that support training,

i.e., computation of gradients of the loss function and associated parameter updates. We

further implemented data loaders that support training on large real-world datasets. Fully

training all of these models to state-of-the-art levels of performance would take an immense

amount of time and is not our purpose here. Our purpose here is simply to demonstrate

the feasibility of training extremely large variants of these widely-used models, purely from

the perspective of fitting these models into GPU RAM. Thus we do not train them to

state-of-the-art levels of performance; we only train them for a few iterations to measure run

times.

6.1 Image Classification

Our first example is ResNet [2], one of the most prominent and highest performing deep-

learning image-classification systems that is widely used in the computer-vision community.

What is relevant to our purposes is that the ResNet neural-network architecture is formulated

as a cascade of various kinds of blocks whose input and output are tensors of the same size.

This allows blocks of the same kind to be repeated by varying amounts to create shallower or

deeper networks. The original ResNet paper evaluated variants with 18, 20, 32, 34, 44, 50,

56, 101, 110, 152, and 1,202 layers. Here, we reimplement ResNet in Scorch (Figure 6.1)

and evaluate variants with 152, 302, 602, 1,001, 1,502, 3,003, 5,000, 10,001, 20,000, 50,000,

100,001, 150,002, and 250,001 layers, simply by changing the hyperparameters nblocks1,

nblocks2, nblocks3, and nblocks4, to demonstrate that Scorch allows training extremely

deep neural networks, ones that would be impossible to train on any other existing system.

The ability to train such extremely deep networks relies crucially on divide-and-conquer

checkpointing and tensor streaming.

For our experiments, we train ResNet on the ILSVRC 2012 training set [55] for 20 iter-

ations. Figure 6.2 compares run times for doing this with the Scorch and PyTorch [56]

56

(define ((first-block) (list weights-conv weights-bn))
(sequential-layer

((convolution-layer-no-bias ’(3 3) (list ’(2 2) ’(1 1)))
weights-conv)

((batch-normalization-training-layer) weights-bn)
((ReLU-layer))
((max-pool-layer ’(3 3) ’(1 1) ’(2 2)))))

(define (build-blocks i n)
(if (= i n)

’()
(cons (if (zero? i)

resnet-block-conv-shortcut
resnet-block-identity-shortcut)

(build-blocks (+ i 1) n))))

(define (((resnet-block-identity-shortcut)
(list weights-conv1 weights-bn1

weights-conv2 weights-bn2
weights-conv3 weights-bn3))

x)
(((ReLU-layer))

(+ x
((sequential-layer

((convolution-layer-no-bias ’(0 0) (list ’(1 1) ’(1 1)))
weights-conv1)

((batch-normalization-training-layer) weights-bn1)
((ReLU-layer))
((convolution-layer-no-bias ’(1 1) (list ’(1 1) ’(1 1)))

weights-conv2)
((batch-normalization-training-layer) weights-bn2)
((ReLU-layer))
((convolution-layer-no-bias ’(0 0) (list ’(1 1) ’(1 1)))

weights-conv3)
((batch-normalization-training-layer) weights-bn3)) x))))

Figure 6.1. The essence of our Scorch implementation of ResNet

57

(define (((resnet-block-conv-shortcut)
(list weights-conv1 weights-bn1

weights-conv2 weights-bn2
weights-conv3 weights-bn3
weights-conv-sh weights-bn-sh))

x)
(((ReLU-layer))

(+ ((sequential-layer
((convolution-layer-no-bias ’(0 0) (list ’(1 1) ’(1 1)))

weights-conv1)
((batch-normalization-training-layer) weights-bn1)
((ReLU-layer))
((convolution-layer-no-bias ’(1 1) (list ’(1 1) ’(1 1)))

weights-conv2)
((batch-normalization-training-layer) weights-bn2)
((ReLU-layer))
((convolution-layer-no-bias ’(0 0) (list ’(1 1) ’(1 1)))

weights-conv3)
((batch-normalization-training-layer) weights-bn3)) x)

((sequential-layer
((convolution-layer-no-bias ’(0 0) (list ’(1 1) ’(1 1)))

weights-conv-sh)
((batch-normalization-training-layer) weights-bn-sh)) x))))

(define ((last-block) (list weights-fc1 biases-fc1))
(sequential-layer ((average-pool-layer ’(7 7) ’(0 0) ’(1 1)))

((flatten-layer))
((fc-layer) (list weights-fc1 biases-fc1))))

(define (resnet nblocks1 nblocks2 nblocks3 nblocks4)
(list first-block

(build-blocks nblocks1)
(build-blocks2 nblocks2)
(build-blocks2 nblocks3)
(build-blocks2 nblocks4)
last-block))

Figure 6.1. Cont. The essence of our Scorch implementation of ResNet.

58

implementations of ResNet under various conditions. Each iteration involves using reverse

AD to compute the gradient of a loss function on a batch of 30 images and updating the

weights. When n GPUs are used, the batch size is 30n. Figure 6.2 (a) compares the run

time of the Scorch implementation of ResNet-152, with and without divide-and-conquer

checkpointing, with and without tensor streaming, with the PyTorch implementation, for

various numbers of GPUs. The Scorch run time, without divide-and-conquer checkpointing

and tensor streaming, is generally the same as the PyTorch run time. Divide-and-conquer

checkpointing and tensor streaming generally reduce the speed by no more than a factor of

two. Figure 6.2 (b) compares the run time of the Scorch implementation, on a single GPU,

with divide-and-conquer checkpointing and tensor streaming, for various depths and base-

case durations. The run time is generally the same for a given depth, as the base-case dura-

tion varies, demonstrating that our implementation incurs little overhead in the interruption

and resumption mechanism. Figure 6.2 (c) compares the run time of the Scorch implemen-

tation, on a single GPU, with divide-and-conquer checkpointing and tensor streaming, for

various depths, all with a base-case duration of 10,000. This shows that our implementation

can scale to a depth of 250,001. The run time scales slightly superlinerarly due to the O(lg T)

time penalty of divide-and-conquer checkpointing. The largest previous version of ResNet

in the original paper has a depth of 1,202; we increase that 200×. Figure 6.2 (d) compares

the run times with the implementation of tensor streaming from Section 3 with an alternate

implementation based on NVidia unified memory, both with and without prefetching, where

prefetching is used to implement the streaming plan, for the Scorch implementation on a

single GPU, with divide-and-conquer checkpointing, and with a base-case duration of 20,000.

The implementation of tensor streaming from Section 3 vastly outperforms the alternate one

based on NVidia unified memory, irrespective of whether prefetching is used.

59

(a) (b)

(c) (d)

Figure 6.2. Run times (in seconds) for 20 iterations of ResNets of various
depths, with and without divide-and-conquer checkpointing with various base-
case-durations, with and without various tensor-streaming methods, and with
a batch size of 30 per GPU. There are 8 GPUs per node, so 16 GPUs is over two
nodes, 24 GPUs is over three nodes, etc. (a) and (d) use a base-case duration
of 20,000. (c) uses a base-case duration of 10,000. A depth of 152, tensor
streaming, and a single GPU are used when not specified. Tabular versions in
Table 6.1 , Table 6.2 , Table 6.3 , and Table 6.4 .

60

Table 6.1. Tabular version of Figure 6.2 (a).
divide-and-conquer tensor number of GPUs

checkpointing? streaming? 1 8 16 24 32 40
6.10 8.60 11.05 12.65 14.44 14.56

! 9.02 11.31 13.06 12.72 16.67 16.54
! 7.21 12.12 14.47 16.01 17.92 19.50

! ! 10.14 18.77 20.57 23.84 25.92 26.54
PyTorch 5.54 9.51 9.93 10.52 12.18 12.11

Table 6.2. Tabular version of Figure 6.2 (b).
base-case duration

depth 20,000 15,000 10,000 5,000 1,000 500
152 9.50 9.42 10.69 11.54 13.47 14.45
302 18.73 18.64 20.57 22.21 25.71 27.32
602 38.18 37.97 41.51 44.66 51.06 54.17

1,001 61.49 66.77 67.15 71.90 88.04 92.73
1,502 118.37 127.45 128.82 136.79 155.70 164.55
3,002 210.89 213.95 226.65 240.57 271.47 285.39
5,000 377.18 378.03 403.50 426.58 477.87 499.98

10,001 843.62 842.82 889.73 941.23 1,069.89 1,215.57
20,000 2,602.14 2,578.20 2,706.30 2,839.45 3,350.23 4,077.27
50,000 13,316.80 13,056.80 13,641.62 14,590.75 18,507.70 23,173.54

100,001 55,252.44 59,785.77 86,397.07 95,946.12

Table 6.3. Tabular version of Figure 6.2 (c).
depth 152 302 602 1,001 1,502 3,002 5,000
run time 10.24 18.28 37.13 59.65 115.85 211.58 381.81

depth 10,001 20,000 50,000 100,001 150,002 250,001
run time 850.11 2,550.95 13,147.40 55,252.44 150,520.09 286,834.95

61

Table 6.4. Tabular version of Figure 6.2 (d).
tensor unified memory unified memory

depth streaming no prefetching prefetching
152 9.50 8.86 14.03
302 18.73 27.82 42.41
602 38.18 78.66 124.69

1,001 61.49 347.65 449.97
1,502 118.37 1,215.70 1,583.53
3,002 210.89 3,854.67 5,069.40
5,000 377.18 14,061.10 15,550.48

6.2 Semantic Segmentation

Image classification, as performed by ResNet, is the task of labeling an entire image with

a single class. Semantic segmentation is the task of labeling each pixel in an image with a

class. The current highest-performing system [57] for doing semantic segmentation on the

Microsoft COCO dataset [58] is DRANet [59]. DRANet is based on ResNet, using ResNet

as the backbone of an encoder while adding a custom decoder, allowing it to similarly scale

to arbitrary depths. The original published version of DRANet had a depth of 101. Here,

we reimplement DRANet in Scorch and evaluate variants with depths of 152, 302, 602,

1,001, 1,502, 3,003, 5,000, 10,001, 20,000, 50,000, 100,001, 150,002, and 250,001. For our

experiments, we train DRANet on the CityScapes training set [60] for 20 iterations with a

batch size of 4 images per GPU. Figure 6.3 repeats the same analyses as Figure 6.2 except

that it omits a comparison with PyTorch, as we are unaware of any publicly available

implementation of DRANet in PyTorch. Note that Figure 6.3 exhibits the same broad

pattern of run times as Figure 6.2 , suggesting that the performance enhancements due to

divide-and-conquer checkpointing and tensor streaming are robust and apply generally.

6.3 GPT-3

Transformers are a deep-learning architecture receiving significant current attention in the

natural-language processing community [61]. The largest transformer with publicly available

code and pretrained models is GPT-2 [8]. While the original implementation of GPT-2 is

62

(a) (b)

(c) (d)

Figure 6.3. Run times (in seconds) for 20 iterations of DRANets of various
depths, with and without divide-and-conquer checkpointing with various base-
case-durations, with and without various tensor-streaming methods, and with
a batch size of 30 per GPU. There are 8 GPUs per node, so 16 GPUs is over two
nodes, 24 GPUs is over three nodes, etc. (a) and (d) use a base-case duration
of 20,000. (c) uses a base-case duration of 10,000. A depth of 152, tensor
streaming, and a single GPU are used when not specified. Tabular versions in
Table 6.5 , Table 6.6 , Table 6.7 , and Table 6.8 .

Table 6.5. Tabular version of Figure 6.3 (a).
divide-and-conquer tensor number of GPUs

checkpointing? streaming? 1 8 16 24 32 40
4.54 7.33 8.73 10.49 11.26 10.66

! 5.64 9.00 9.95 11.79 12.81 12.00
! 6.72 13.29 15.53 17.49 17.72 17.88

! ! 8.72 17.13 21.63 23.06 23.14 23.65

63

Table 6.6. Tabular version of Figure 6.3 (b).
base-case duration

depth 20,000 15,000 10,000 5,000 1,000 500
152 9.39 9.57 10.28 10.80 13.23 13.77
302 17.47 17.94 19.80 21.63 24.70 26.54
602 37.20 44.72 40.36 44.61 50.59 51.46

1,001 61.91 64.17 67.63 72.84 92.48 94.20
1,502 121.75 152.42 131.15 138.99 155.40 174.64
3,002 214.91 223.00 237.50 258.19 292.94 301.05
5,000 392.81 410.57 435.44 468.61 544.68 620.74

10,001 1,068.42 1,073.65 1,118.32 1,215.36 1,408.04 1,655.18
20,000 3,194.90 3,356.24 3,356.70 3,629.19 4,309.78 5,147.45
50,000 15,897.71 15,146.42 15,781.00 17,125.07 22,952.32 27,140.59

100,001 58,175.23 62,774.44 95,554.15 112,486.25

Table 6.7. Tabular version of Figure 6.3 (c).
depth 152 302 602 1,001 1,502 3,002 5,000
run time 9.39 17.47 37.20 61.91 121.75 214.91 392.81

depth 10,001 20,000 50,000 100,001 150,002 250,001
run time 1,068.42 3,194.90 15,897.71 58,175.23 133,972.58 274,792.20

Table 6.8. Tabular version of Figure 6.3 (d).
tensor unified memory unified memory

depth streaming no prefetching prefetching
152 9.39 10.80 11.74
302 17.47 27.40 27.79
602 37.20 60.07 68.97

1,001 61.91 118.84 137.62
1,502 121.75 269.95 324.73
3,002 214.91 629.95 767.03
5,000 392.81 1,691.66 1,966.71

64

in TensorFlow [62], a version rewritten in PyTorch is available [63]. The developers of

GPT-2 have enlarged and enhanced it to yield GPT-3 [9]. GPT-3 is currently the largest

published transformer model. However, neither the code nor pretrained models are publicly

available.

The architecture of GPT-2 and GPT-3 are identical, differing only in the choice of various

architectural hyperparameters. Like ResNet, the GPT architecture is formulated as the

repetition of a variety of blocks; changing the amount of repetition can lead to architectures

of different depths. The paper that introduced GPT-3 evaluated a number of intermediate

architectures with depths between that of GPT-2 and that of GPT-3. GPT-3 is the largest

known neural-network architecture. With 175 billion parameters, it can only be trained on

a large cluster of GPUs.

All models were trained on V100 GPUs on part of a high-bandwidth cluster

provided by Microsoft [9 , p. 9].

It appears that this cluster has 10,000 GPUs.

OpenAI trains all of their AI models on the cuDNN-accelerated PyTorch deep

learning framework. Earlier this month Microsoft and OpenAI announced a

new GPU-accelerated supercomputer built exclusively for the organization. “The

supercomputer developed for OpenAI is a single system with more than 285,000

CPU cores, 10,000 GPUs and 400 gigabits per second of network connectivity for

each GPU server,” the companies stated in a blog. [64], [65]

We have reimplemented the GPT architecture in Scorch. The essence of our imple-

mentation is shown in Figure 6.4 . All of the variants of GPT-3 from the original paper can

be formulated by changing the four hyperparameters d-model, dv, n-heads, and n-decoders.

The training set for GPT-3 is not publicly available. For our experiments, we train all of

the variants of GPT-3 from the original paper for 10 iterations on the WMT’14 English-

German dataset [66]. Run times are presented in Figure 6.5 . All runs use s single GPU,

with divide-and-conquer checkpointing and tensor streaming, for 10 iterations, with a batch

size of 1,000. The larger models do not run with larger base-case durations because the

65

Table 6.9. Tabular version of Figure 6.5 .
number of base-case duration

model name parameters 20,000 15,000 10,000 5,000 1,000 500
GPT-3 Small 125.0M 24.77 25.31 27.76 29.72 35.94 36.07
GPT-3 Medium 356.0M 72.35 74.57 80.98 85.39 107.05 109.29
GPT-3 Large 760.0M 75.59 83.57 85.96 93.79 108.11 114.81
GPT-3 XL 1.3B 126.08 129.11 133.49 150.08 159.13 167.21
GPT-3 2.7B 2.7B 181.20 184.39 191.04 203.65 218.10
GPT-3 6.7B 6.7B 397.82 412.05 446.24 510.59
GPT-3 13B 12.9B 423.59 510.60 592.15
GPT-3 85B 85.0B 2,549.23 2,893.31
GPT-3 175B 174.6B 6,213.83

sizes of the individual layers change in addition to the depth of the model, precluding fitting

the larger models in GPU RAM with larger base-case durations. Here again, Figure 6.5 (a)

shows that our implementation incurs little overhead in the interruption and resumption

mechanism. Figure 6.5 (b) shows that our implementation scales slightly superlinearly with

the number of parameters, which is related to network depth.

66

(define (((masked-self-attention dv index) (list Wq Wk Wv)) x)
(let* ((Q (addmm x Wq))

(K (addmm x Wk))
(V (addmm x Wv))
(QK (addmm Q (transpose K)))
(QK-div (/ QK (sqrt dv)))
(QK-div-masked (mask QK-div index))
(soft-QK-div (softmax QK-div-masked)))

(addmm soft-QK-div V)))

(define (((multi-head-attention dv n-heads index) (list attention-weights Wo)) x)
(let loop ((Z ’()) (n-heads n-heads) (attention-weights attention-weights))

(if (= n-heads 0) (addmm (concat (reverse Z)) Wo)
(loop (cons (((masked-self-attention dv index) (first attention-weights)) x) Z)

(- n-heads 1)
(rest attention-weights)))))

(define (((decoder dv n-heads index)
(list attention-weights fc1-weights fc2-weights bn1-weights bn2-weights)) x)

(let* ((attention-output
(layer-normalization

(+ x (((multi-head-attention dv n-heads index) attention-weights) x))
bn1-weights))

(f1-out (((fc-layer) fc1-weights) attention-output))
(f2-out (((fc-layer) fc2-weights) (((GeLU-layer)) f1-out))))

(layer-normalization (+ attention-output f2-out) bn2-weights)))

(define (((decoder-stack dv n-heads n-decoders index) weights) x)
(let loop ((x x) (weights weights) (n n-decoders))

(if (= n 0)
x
(loop (((decoder dv n-heads index) (first weights)) x)

(rest weights)
(- n 1)))))

(define (((gpt d-model dv n-heads n-decoders n-timesteps)
(list Iembed Oembed decoder-weights)) x)

(let* ((x-embed (addmm x Iembed))
(decoder-output

(let loop ((x x-embed) (n 0))
(if (= n n-timesteps)

x
(loop (((decoder-stack dv n-heads n-decoders n) decoder-weights) x)

(+ n 1))))))
(addmm decoder-output Oembed)))

Figure 6.4. The essence of our Scorch implementation of GPT.

67

(a) (b)

Figure 6.5. Two graphs depicting the run times of the GPT example. The
first graph depicts the run time vs. the base-case duration for GPT with various
numbers of parameters. It shows that varying base-case duration does not hurt
performance that much. The second graph depicts run time vs. number of GPT
parameters, increasing to very large numbers of parameters. It shows that run
time scales linearly with number of parameters.

68

7. RELATED WORK

The major novelty of our framework is having support for both divide-and-conquer check-

pointing and tensor streaming in an integrated fashion. Let us elaborate on why this is

important. The combination allows running applications that are astronomical in size i.e.,

ResNet-250k, DRANet-250k, and GPT-3, on a single GPU. This requires both the above

features and cannot be accomplished with either one of them alone.

There are two components to a deep-learning program that require memory: the weights

and the activations of the intermediate layers, which are collectively called the tape, needed

to run the reverse sweep. The tape is ephemeral; it can be recomputed and is typically much

larger than the weights, which cannot be recomputed. Table 3.1 compares the sizes of the

weights and the tape for ResNets of various depths. Note that for ResNets deeper than 152

layers, the tape will not fit in a 12 GB GPU RAM. For ResNets deeper than 10,000 layers,

even the weights will not fit in a 12 GB GPU RAM. Divide-and-conquer checkpointing and

tensor streaming are complementary. Divide-and-conquer checkpointing reduces the memory

footprint of the tape by recomputing activations instead of keeping them on a tape. Tensor

streaming reduces the memory footprint of the weights by storing them on the CPU and

copying them to the GPU only when required. Scorch affords the user control over which

tensors are streamed by providing two kinds of tensors: GPU tensors that are not copied

back and forth between the CPU and GPU and streaming tensors that are. We use GPU

tensors for storing the tape, thus never copying the tape. We use streaming tensors only for

storing the weights.

Our main objective here is to hide the transport time of the tensors under the GPU

computation so that the GPU doesn’t stall waiting for the data to become available. Since

weights are generally smaller than activations, the copying cost for weights can be hidden

under the computation cost, if performed in parallel; the copying cost for activations most

often cannot. Table 3.3 shows the execution time of a kernel, the time it will take to transport

the activation tensor, and the time it will take to transport the weight tensor for some of the

most frequently used convolutional-layer sizes in the ResNet network. We can see that the

activation transport time is greater than the execution time, but the weight transport time

69

is less than the execution time. From Table 3.1 we can also see that the tape of ResNet-

50k needs 2.8TB of RAM, ResNet-100k needs 5.7TB, and ResNet-1M needs 57TB of RAM.

Even the most modern computers may not be equipped with so much RAM and it won’t

be possible to run these programs if one were to offload the tape to the CPU. But with

divide-and-conquer checkpointing, the need to store the tape is significantly reduced, and

ResNets of such sizes can be run on current computers.

Existing work that tries offloading the tape to the CPU realizes this bottleneck and tries

to offload only a part of the tape to the CPU. This has two problems. First, this puts

a limit on how much of the tape can be offloaded before it starts affecting performance,

inhibiting these approaches from scaling to astronomical sizes. Second, this creates a need

for a scheduling algorithm to determine which parts of the tape should be offloaded when,

for optimal performance.

7.1 Checkpointing

Volin and Ostrovskii [32] presented a method for individual checkpointing (Figure ??b)

at function-call boundaries. Many systems perform individual checkpointing hardwired in

specific neural-network layer types that are recomputed instead of having their outputs

stored on the tape. Bulo, Porzi, and Kontschieder [67] did this for batch-normalization

layers. Individual checkpoints alone do not yield sublinear space penalty. Gruslys, Munos,

Danihelka, et al. [33] presented a method for left-branching checkpointing (Figure ??c).

Chen, Xu, Zhang, et al. [34] and Pudipeddi, Mesmakhosroshahi, Xi, et al. [68] presented

methods for right-branching checkpointing (Figure ??d). Chen, Xu, Zhang, et al. [34] used

this to achieve square-root checkpointing. Griewank [10], Gruslys, Munos, Danihelka, et

al. [33] and Feng and Huang [69] presented methods for divide-and-conquer checkpointing

(Figure ??e,f). This work applied in the abstract to a sequence of program steps or neural

network layers and lacked the ability afforded by our interruption and resumption mechanism

to apply to arbitrary differentiable programs. Griewank [10], Gruslys, Munos, Danihelka, et

al. [33] and Feng and Huang [69] also presented methods for scheduling checkpoint intervals.

This work is orthogonal to our work presented here. Scorch implements all of the scheduling

70

methods of Griewank [10] and could presumably be extended to also implement all of the

scheduling methods of Gruslys, Munos, Danihelka, et al. [33] and Feng and Huang [69].

Kukreja, Hückelheim, and Gorman [70] presented a method for offloading checkpoints to the

CPU RAM or another memory bank to allow a larger number of checkpoints. Our results

suggest that the limited PCIe-bus bandwidth should be used to stream the weights so that

the GPU does not stall waiting for data rather than using it to stream checkpoints, which

are activations, are are typically much larger than the weights.

Tapenade [47] provided mechanisms for manual static annotation of individual check-

points in the program text (for function bodies, call sites, and arbitrary code blocks)

both through pragmas and command-line arguments to the preprocessor. It also imple-

mented divide-and-conquer checkpointing, but only when the checkpoint intervals corre-

sponded to individual non-nested manually-annotated Fortran DO loops. adol-c [71] pro-

vided a nested taping mechanism for the special case of time-integration processes [72] that

also implemented divide-and-conquer checkpointing, but only for this special case. Vieira

[73] provided an implementation of Gruslys, Munos, Danihelka, et al. [33] that was lim-

ited to the case of backpropagation through time (BPTT) in recurrent neural networks

(RNNs). PyTorch provides support for manual annotation of individual checkpoints via

torch.utils.checkpoint.checkpoint and manual annotation of right-branch checkpointing

via torch.utils.checkpoint.checkpoint_sequential [74]–[76]. The default parameter set-

tings for the latter do not yield square-root checkpointing and sublinear space penalty. Fur-

ther, the latter only supports networks structured as a linear chain and thus does not apply to

networks that contain residual connections (as do ResNet and DRANet) or other more gen-

eral graphs such as GPT. The official TensorFlow release lacks support for checkpointing.

A third-party enhancement [77] provides support for right-branching checkpointing but only

for TensorFlow 1. It can achieve square-root checkpointing through use of a heuristic in

some cases. Another third-party enhancement [78] provides support for manual annotation

of individual checkpoints around functions in TensorFlow 2. All of the above requires

manual annotation of checkpoint intervals that could only be placed around specific kinds

of constituents in specific kinds of programs or neural networks. This often does not yield

sublinear space penalty. Scorch requires no manual annotation from the user to perform

71

divide-and-conquer checkpointing and does not impose any constraint on program structure.

Just by changing the reverse AD invocation of *j with checkpoint-*j, balanced divide-

and-conquer checkpointing is automatically performed on the entire computation, yielding

sublinear space penalty for any computation.

7.2 Tensor Streaming

Prior work has posed tensor migration scheduling as an optimization problem and has

developed various approaches to solving it. Zhang, Yeung, Shu, et al. [79] presented a

heuristic based on tensor size and the duration of a program interval where that tensor

is not accessed to decide which tensors to offload and when. Wang, Ye, Zhao, et al. [80]

presented a different heuristic, offloading the activations of convolutional layers as they are

computed, but not other layers, to the CPU, to fit the GPU RAM budget specified by the

user. Hildebrand, Khan, Trika, et al. [81] used two different CPU memory pools, each of

which had different characteristics, and used integer linear programming to decide which

parts of the tape to offload to which of the CPU memory pools. Huang, Jin, and Li [82] used

a genetic algorithm to optimally reorder the sequence of operations to get a better alignment

with offloading the tape to the CPU. Rhu, Gimelshein, Clemons, et al. [83], Meng, Sun,

Yang, et al. [84], Jin, Liu, Jiang, et al. [85], Chen, Chen, and Hu [86], Le, Imai, Negishi, et al.

[87], and Peng, Shi, Dai, et al. [88], used the time between reuse of a tensor to decide which

tensors to offload and when. However, the methods of Rhu, Gimelshein, Clemons, et al. [83]

and Chen, Chen, and Hu [86] only applied to a primal that could be expressed as a simple

sequence of layers. Ren, Luo, Wu, et al. [89] presented migration strategies based on the

sizes and access frequencies of tensors. Ren, Rajbhandari, Aminabadi, et al. [90] extended

this work to offload some of the computation to the CPU as well. Guo, Liu, Wang, et al.

[91] posed migration scheduling as a constraint-satisfaction problem (CSP). Solving this CSP

yielded a solution to achieve the desired FLOPs while maintaining a given GPU RAM budget

under the PCIe bandwidth constraints. Jhu, Liu, and Wu [92] used dynamic programming

while Sekiyama, Imamichi, Imai, et al. [93] used mixed integer programming to schedule

migration. All this work is only able to offload a part of the tape, not the entire tape, to the

72

CPU, because offloading the entire tape would degrade performance. Scorch never offloads

the tape to the CPU because divide-and-conquer checkpointing allows it to be recomputed,

which is faster than offloading and refetching it from the CPU. Because Scorch never

offloads the tape to the CPU, it doesn’t need to solve the associated migration scheduling

problem.

Our tensor-streaming mechanism has three benefits. Since Scorch is a functional lan-

guage, we are guaranteed no mutation, which means that, once used, the tensors copied

to the GPU can be evicted and don’t need to be copied back to the CPU, so long as the

original copy is kept on the CPU. This saves us half the communication time incurred by

other duplex streaming systems. Since tensor streaming is implemented at the language-

implementation level, it can do both pre-planned fetching, by using get-streaming-plan to

create a streaming plan in advance, and demand fetching in programs with control flow

where a pre-determined order cannot be obtained without running the computation.

Shirahata, Tomita, and Ike [94] reused the tensors on the tape that store activations

from the forward sweep to store activation gradients during the reverse sweep. Chen, Xu,

Zhang, et al. [34], Wang, Ye, Zhao, et al. [80], Jin, Liu, Jiang, et al. [85], and Zhang, Yeung,

Shu, et al. [79] performed liveness analysis to determine which tensors to free or to reuse.

Scorch does not need to perform liveness analysis since it is a garbage collected (GC)

language. Further, the reuse achieved by Shirahata, Tomita, and Ike [94] comes for free

with GC. Much like Rhu, Gimelshein, Clemons, et al. [83] and Wang, Ye, Zhao, et al. [80],

we implement our own memory-pool manager and do not use cudaMalloc and cudaFree for

allocating individual tensors, because calls to these functions are synchronous and incur non-

negligible overhead. Finally, practically all of the techniques discussed in early work on GPU

memory management [95] are now incorporated into CUDA and most other frameworks.

7.3 Combinations of Checkpointing and Tensor Streaming

Pudipeddi, Mesmakhosroshahi, Xi, et al. [68] combined right-branching checkpointing

with methods for offloading the checkpoints to the CPU, and streaming the weight tensors

to the GPU from the CPU. However, their approach was limited to the highly specific case

73

of BERT models and the checkpoint intervals always begin and end at the end-points of an

encoder or decoder model. Moreover, the PCIe-bus bandwidth was shared between trans-

porting the checkpoints and the weights. The weights were stored on the CPU and the

update step was also performed on the CPU. The Scorch *j-update primitive fuses the

gradient computation with the update step which allows the update step to be to performed

on the GPU as soon as the gradients are calculated. Their system was only able to run

models with 50 billion parameters. We suspect that CPU RAM was the limiting factor,

since it was used for both the weights and checkpointed activations. Scorch on the other

hand can run GPT-3 with 175 billion parameters on a machine with 768TB of CPU RAM,

the limiting factor being the CPU RAM used only by the weights. Tezikov [96] provided an

implementation of Pudipeddi, Mesmakhosroshahi, Xi, et al. [68] that applied more gener-

ally to a simple sequence of neural-network layers, but not to arbitrary neural networks or

arbitrary differentiable programs.

7.4 Various Alternative Training Strategies

The goal of this project was to provide the ability to instantiate and train extremely large

scale neural networks on a single GPU of small size. We made that possible through the

use of divide-and-conquer checkpointing and weight streaming. There are other alternative

training strategies available that would allow training of such large neural networks on a

single GPU without the use of checkpointing.

Jain, Phanishayee, Mars, et al. [97] compressed the taped output of certain neural-

network layers in a lossy fashion during the forward sweep and decompressed them during

the reverse sweep. It is incomparable to our lossless exact method. Gomez, Ren, Urtasun, et

al. [98] presented a reversible variant of ResNet where the input activation could be approx-

imately reconstructed from the output activation during the reverse sweep, eliminating the

need to store a tape. This work only applies to the special case of (approximately) invertible

program steps, unlike our work that applies when this does not hold.

Another line of work [99], [100] shows how to use second order methods (Newton’s

method) to train networks instead of using first order methods. The second order meth-

74

ods are generally expensive as they require the computation of inverse Hessians, however

these works show how to effectively sample the Hessians to approximate the curavature and

carry out optimization that is faster and has better statistical properties than the first order

method. Note that these methods are a bid to reduce the run time of the program, not

the memory foot print. These methods can be used in conjunction with the checkpoint-

ing in Scorch to create much bigger networks and train using second order methods with

divide-and-conquer checkpointing.

Yuan, Wolfe, Dun, et al. [101] inspired by the dropout technique, provide a method in

which a network is split into subnetworks and each network is trained independently and then

combined to yield an aggregated performance similar to that of training the entire network

together. They provide convergence guarantees for their algorithm. This is indeed a rivaling

technique to checkpointing, however we point out some key limitations when compared with

Scorch. Scorch allows training a deep neural network on a single GPU with logarithmic time

overhead incurred due to checkpointing. If we assume a 12GB GPU and assume that the

biggest ResNet trainable on this GPU without checkpointing is 152 layers, then to train a

ResNet with 302 layers with checkpointing will incur log(2) overhead. Using the method of

Yuan, Wolfe, Dun, et al. [101], if one was to split ResNet 302 into two subnetworks, it would

take twice as long since each of those has to be trained independently. Our method scales

logarithmically whereas [101] scales linearly. Secondly, separate training of each subnetwork

and then concatenating the network does not equate to training a combined whole network.

Several splits would need to be made rather than just 2 so that some parts of the model can

be overlapped while training in order to arrive at the desired performance level. Therefore

the scaling is likely worse than linear.

7.5 Benchmarking Against Related Work

Of all of the prior work on checkpointing and tensor migration discussed in Section 7 , in

addition to the implementations of checkpointing included in PyTorch, we were only able

to find public code for Superneurons [80], DeepSpeed [90] (an updated version of Sen-

tinel [89]), the implementation of l2l [68] provided by Tezikov [96], moDNN [86], vDNN

75

[83], the implementation of Gruslys, Munos, Danihelka, et al. [33] provided by Vieira [73],

and the two third-party implementations of checkpointing for TensorFlow [77], [78]. For

PyTorch, we only considered the implementation of right-branching checkpointing pro-

vided by torch.utils.checkpoint.checkpoint_sequential as limited to simple sequences of

neural-network layers. Superneurons, moDNN, and vDNN are particular to neural net-

works and are not capable of running arbitrary differentiable programs. We were not able

to compile Superneurons. We were not able to run moDNN and vDNN on any of our

examples because they lack implementation of batch normalization that is needed for ResNet

and DRANet, and layer normalization and GeLU that are needed for GPT. DeepSpeed

and L2L only apply to simple sequences of neural-network layers, not arbitrary differentiable

programs. We did not consider Vieira [73] as it only applies to backpropagation through

time, not general neural networks, let alone arbitrary differentiable programs. We also did

not consider AI [77] as TensorFlow 1 is deprecated. We thus compared Scorch with

DeepSpeed, which provides tensor migration, but not checkpointing, l2l, which provides

tensor migration and right-branching checkpointing, but not divide-and-conquer checkpoint-

ing, PyTorch, which does not provide tensor migration but does provide right-branching

checkpointing for simple sequences of neural-network layers, and TensorFlow, which does

not provide tensor migration, but does provide individual checkpointing.

We ran variants of our ResNet and GPT examples in TensorFlow, PyTorch, Deep-

Speed, l2l, and Scorch. For each, we determined the largest variant that can run on a

single Titan V GPU (12 GB RAM) connected to a CPU with 768 GB RAM. For ResNet and

GPT, we measured the depth, in number of layers, of the largest network that can be trained,

i.e., the largest network whose gradient can be computed with reverse AD. The Scorch

results employ divide-and-conquer checkpointing on all examples and tensor streaming on

the ResNet and GPT examples. The results are shown in Table 7.1 . Scorch is able to

handle examples at least an order of magnitude larger than these other systems, often far

larger than that.

76

Table 7.1. The maximum network depth, for ResNet and GPT, trainable
with Scorch and various other frameworks, on a single Titan V GPU (12 GB
RAM) connected to a CPU with 768 GB RAM.

ResNet GPT
TensorFlow (individual checkpointing) 608 4
PyTorch (right-branching checkpointing) 760 48
DeepSpeed 760 48
l2l 38,000 3,000
Scorch 250,000 14,000

77

8. OBJECT CLASSIFICATION FROM RANDOMIZED EEG

TRIALS

The processing of visual stimuli in the human brain has been a topic of interest among

neuroscientists and machine learning researchers alike. For machine learning researchers,

decoding this process could provide vital cues for design and operation of computational

models, specifically neural networks. While the overall objective might be beyond the ca-

pability of current available technology, smaller efforts to scratch the surface of this subject

have been commenced since deep learning came into the main stream almost a decade ago.

The electroencephalography or EEG cap measures the electrical activity on the scalp

resultant from underlying brain activity. The cap consists of various electrodes covering

different regions of the head and measure the electrical signal on the surface of the head at

a high frequency.

The idea of this project is to present a subject wearing an EEG cap with visual stimuli

and measure the EEG signal, and then to try to determine what visual stimuli was being

presented to the subject from the EEG signal. Consider a computational model that could

attain 100% accuracy on this task. We would be able to claim that the computational model

is equivalent to the brain’s visual stem. For this specific project, the problem was posed as

an image classification problem. The subject was shown images belonging to various object

categories and instead of trying to determine the actual image, just the image category was

tried to be decoded.

In this project, we collected the largest ever single subject EEG data for visual object

classification. This dataset was at the bounds of feasibility and has been publically released

alongwith the evaluation results of the current state of the art models on it. The results

show that the problem is hard and far from unsolved and requires extensive research to make

progressive strides.

This project was a combined effort with other students of the lab. The author’s contribu-

tions to this was the entire data collection as well as implementation of the neural network

architectures used to conduct the baseline study on this dataset.

78

8.1 Motivation

The motivation for this data collection effort came from earlier work in our lab[102]

that I will briefly summarize here. A recent CVPR paper[103] claimed to have solved this

problem. They collected a data set from 6 subjects. Each subject was shown 50 images each

from 40 Imagenet classes. Each image was shown for 0.5 seconds. Images from one class

were shown together with no blanking in between images. A 10 seconds blank was inserted

between classes. They constructed training and test sets in which samples from all blocks

were considered equally for the training and test sets. They achieved 84% classification

accuracy on this task using an LSTM based classification network.

We hypothesized that their high accuracy was due to the fact that they showed images

from a single class together, thus confounding the clock with the class label. Thus their

classifier was classifying the block number instead of the actual class. To test this hypothesis,

we constructed our own splits of their data in which we held back data from one subject for

testing and trained on just the other five. The classification accuracy fell to almost chance

levels. Since this added the additional difficulty of cross subject decoding and could not

be used as an evidence to refute the original authors’ work, we decided to collect our own

dataset.

We used the exact same stimuli and the presentation pattern as used by the original

authors but we used both block design and rapid event design. In block design, we showed

all images of a class together with blanking in between. For rapid event design, we mixed

the images of different classes together. When we trained the classification networks on this

dataset, the block design method gave near the reported accuracy from the original paper

but the rapid event dataset gave almost chance accuracy.

This conclusively showed us that this problem is hard and unsolved. The data collection

protocol of the original authors was not conducive to generating a decent enough dataset to

allow solving this problem. We hypothesized that more data might be able to help. Hence

we decided to collect our own dataset for the problem.

79

8.2 Data collection protocol

We selected the same 40 image classes from Imagenet as used by [103]. We selected 1000

images per class instead of 50 images in [103]. Each image was resized to be 1920 × 1080.

The images were divided into 100 blocks. Each block contained 400 images and exactly 10

of each class. There were a total of 40000 images.

A single male subject viewed the stimuli over 10 sessions. In each session, 10 blocks were

shown. Each image was shown for 2s with 1s of blanking in between. Each block run started

with 10s of blanking and ended with 10s of blanking so a block in total took 20 minutes and

20. Each session lasted nominally 6 hours or so and thus the entire data collection effort

took almost 60 hours.

The EEG cap had 96 electrodes collecting measurements at 4096 Hz. This data was

downsampled to 1024 Hz and only the first 500ms of data was used even though 2 seconds

were recorded. Unlike fMRI data where an anatomical brain scan is used to align data from

different subjects and across different sessions with the same subject, no such alignment

method exists for EEG so best efforts were made to mitigate such misalignments. A single

capping was used within a session. The same cap with a pre-cut holes was used across

sessions and some of the electrodes were visually made sure to be in the same spot at every

capping.

The data was band pass filtered from 1-40 Hz range to remove the DC component as

well as high frequency noise. The data was then partitioned into five equal sized splits, each

split containing the same number of samples from each class.

As a result of this effort, we collected the largest ever single subject EEG visual stimuli

dataset for classification. This effort took about 6 hours per session and 10 sessions in total

which is almost two business weeks. Fewer labs or subjects would be willing to go through

the hardship of collecting such a dataset.

8.3 Analysis

We conducted some preliminary analysis on this dataset to determine how well the current

state of the art methods can solve the problem of classification from EEG data. We used

80

Figure 8.1. Classification accuracies of various classifiers on the collected dataset

8 classifiers: LSTM, k-NN, SVM, a two layer fully connected network (MLP), a 1D CNN,

EEGNet[104], SyncNet[105] and EEGChannelNet[106].

8.3.1 Maximum achievable accuracy

We first investigated whether the task is possible with the current state of the art meth-

ods. We trained all the 8 classifiers on the data. The classification accuracies are shown in

Fig. 8.1 . Only three classifiers, SVM, 1D-CNN and EEGNet were able to get statistically

significant above chance accuracies. This indicates that a lot of algorithm improvements

need to be made to make progress on this task.

8.3.2 Amount of data required

We investigated how much data is required to be able to train the classifiers to the

accuracy that we report in the above section. We trained on increments of 10% of data. The

results are shown in Fig. 8.2 . We concluded that about 60% of the total data collected is

sufficient to train the classifiers to the maximum accuracy.

81

Figure 8.2. Classification accuracies as a function of the fraction of dataset

82

Figure 8.3. Classification accuracies as a function of classes

8.3.3 Maximum number of decodable classes

We investigated how many classes are decodable with the current state of the art classi-

fiers. To do this, we conducted a greedy analysis by training on sets of 2, 3, 4 all the way to

40 classes. The results are shown in Fig. ??. We see that the accuracies start to taper off

as we get to 40 classes, indicating that more classes would not be decodable and will yield

chance performance.

8.4 Summary

In this work, we collected the largest single subject EEG dataset for object classification

and reported the performance of state of the art methods on this dataset. The results

indicate that the problem is hard and unsolved and requires significant research efforts to

make progress.

83

9. SPATIO-TEMPORAL ACTIVITY LOCALIZATION IN

UNTRIMMED UNCROPPED VIDEOS

Much of the previous work on activity recognition in video has focused primarily on the

following tasks:

• Activity classification: Given a temporally trimmed and spatially cropped video clip,

classify the activity occurring in it. Kinetics[107] and UCF101[108] are examples of

such action classification datasets.

• Temporal activity localization: Given a temporally untrimmed but spatially cropped

clip, detect the temporal bounds of an activity within the clip as well as classify the

activity [109], [110].

• Spatial activity localization: Given a temporally trimmed but spatially uncropped clip,

detect the spatial region of an activity within the clip as well as classify the activity

[111].

A combined problem in which the activity is neither spatially, nor temporally cropped

around the action is harder especially when applied to surveillance videos because the incom-

ing video stream is continuous and actions seem to take place in small regions and for short

duration. Applying this to surveillance cameras also imposes constraints on compute power

since there could be many surveillance cameras in a given space and only a few compute

nodes equipped with sufficient compute power available to handle them.

In this chapter, I present our work on spatio-temporal activity localization in videos

that were both untrimmed in the temporal domain and uncropped in the spatial domain.

We created an extremely fast yet accurate method that achieved localization as well as

classification of 37 activities on the MEVA (Multiview Extended Video with Activities)

dataset while running about 3x real time. We achieved state of the art performance on the

MEVA dataset using this method.

Our method consists of three main stages:

84

1. Temporally splitting a video into clips and then spatially localizing candidates of in-

terest (proposals) within such clips.

2. Filtering proposals and classifying activities.

3. Filtering heuristics tailored to the dataset and evaluation metrics to improve results.

Details of the dataset, the evaluation metrics, the system design and the results is de-

tailed below. The entire project had contributions from other members of the lab as well.

The author’s contributions were designing and coding the entire pipeline, motion filtering

of proposals, training and implementing activity classifiers and implementing the filtering

heuristics.

9.1 Dataset

This project was carried out under the IARPA DIVA grant who provided the MEVA

dataset for us to devlop and test on. The MEVA dataset was filmed using actors performing

pre-defined activities. It contains more than 3,000 five-minute-long videos, captured from

surveillance cameras positioned in various indoor and outdoor locations. There were a fixed

number of such cameras and each video file comes with the ID of the camera that was used

to film it.

The dataset contains 37 activities classes. Each video can contain multiple instances of

multiple activities. Activities can also potentially occur simultaneously in multiple regions

of the video at the same time. The MEVA dataset was annotated by a collaborative effort

among various participants of the IARPA DIVA program as well as Kitware, one of the DIVA

system evaluators. These annotations denoted the spatial location of activity instances with

bounding boxes and the temporal location of activity instances with start and end times.

We used the MEVA videos together with the annotation provided by DIVA participants to

develop and train our system. We used the MEVA videos annotated by Kitware to validate

our system in-house since the sequestered set used to evaluate the submitted systems was

also annotated by Kitware.

85

9.2 Evaluation Metrics

Since the task is of spatio-temporal localization, the evaluation metrics specified by the

IARPA DIVA program were:

• probability of missed detection (Pmiss),

• time-based false alarm (Tfa),

• detection error tradeoff (DET curve), and

• mean, normalized, partial area under the DET curve (mean-nAUDC).

For a ground truth activity to be considered detected, the system must produce a de-

tection that overlaps with it by atleast 1 second. Spatial localization was not a part of

these metrics to ease the difficulty for the participants. Pmiss is the fraction of ground-truth

activity instances that were not detected by the system. It ranges from zero to one, with

lower being better, and is analogous to one minus recall. Tfa represents the fraction of time

that the system produced false-positive activity detections. It also ranges from zero to one,

with lower being better, and is analogous to one minus precision. For a ground-truth ac-

tivity instance to be considered detected, a detection of the same class must overlap the

ground-truth activity instance temporally by at least 1 s and have a higher confidence score

than a specified threshold. This threshold is varied to produce different pairs of Pmiss and

Tfa values. This produces a DET curve, which is analogous to a precision-recall curve, and

allows for the computation of a mean-nAUDC score for the range of Tfa values between zero

and a specified upper Tfa bound. Mean-nAUDC is analogous to mean average recall. We

evaluate our system with the same two metrics that the SDL test server uses to evaluate all

submissions: mean-nAUDC in the Tfa range [0, 0.2] (nAUDC@0.2Tfa) and Pmiss at a Tfa of

0.04 (Pmiss@0.04Tfa). For both metrics, lower scores indicate better performance. Hereafter,

we use nAUDC to refer to mean-nAUDC@0.2Tfa and Pmiss to refer to Pmiss@0.04Tfa.

9.3 System Design

The complete design of our system pipeline is shown in Fig. 9.1 .

86

Figure 9.1. System architecture.

87

9.3.1 Temporal splitting

Given an input video of 5 minutes, we split it into chunks of 3 seconds each and process

each chunk as a separate sample. Splitting into smaller chunks works well because the length

of an activity is tied to the nature of the activity. For example, door open or door close

normally do not take more than a few seconds. Most activities in the DIVA dataset were of

the nature that their lengths were smaller than 3 seconds. There were some longer activities

like using laptop computer but such activities are stationary for the most part and can be

detected across multiple 3 second chunks.

The 3 second split was an overlapping split i.e. we split every second for the next 3

seconds to be able to efficiently capture the start and end times of activities. A temporal

non-maximal suppression will be applied at the end to deal with multiple detections of

the same activity coming from such overlapping intervals. We did not localize an activity

instance within the 3 second interval i.e. 3 second is just about the length we would assign

to each activity detection, no more and no less. This did not hurt on the DIVA dataset given

their metrics because they allowed for sufficient overhang of detections over ground truth

activity instances.

9.3.2 Spatial proposal generation

Once we temporally split the video into smaller 3 second chunks, the next step is to

spatially crop out regions of interest that could serve as candidates for activities. We tested

several methods in an effort to find out the optimal proposal generation mechanism.

• Since we know the camera id for each video, and given a certain surveillance camera

installed in a certain space, activities are likely to occur in more or less the same region.

We accumulated ground truth activities from the dataset per camera and constructed

heat maps to detect such regions of high interest. We used connected components to

create cuboids from such heatmaps and used them to serve as the candidate proposals.

• We tried a brute force overlapping cuboids over the entire field of view.

88

Table 9.1. Proposal-generation mechanisms, their recall, and average number
of proposals per 3 s interval. For Object-Detector Cuboids, the number refers
to the expansion factor.

Average number
Proposal-generation of proposals per
mechanism Recall 3 s interval
Nonoverlapping Tiled Cuboids 41% 201.0
Overlapping Tiled Cuboids 79% 707.0
Heatmap Cuboids 21% 4.6
Object-Detector Cuboids 20% 63% 20.0
Object-Detector Cuboids 30% 67% 20.0

• We used a trained off the shelf YOLO [17] object detector to detect objects. We knew

that most of the 37 activities of interest in the MEVA dataset are performed by humans

of occur around vehicles such as car, truck, bicycle etc. We applied the YOLO detector

to the first frame of the 3 second chunk, expanded them by either 20 or 30% to generate

such regions and used them as our candidate proposals.

Experiments showed that the best results were obtained by using the YOLO detector

expanded by 30%. Results are shown in Table 9.1 .

9.4 Motion Filtering

Nominally, one would compute a confidence score for each cuboid produced by our

proposal-generation mechanism to output as an activity detection. However, many cuboids

do not exhibit any motion and thus likely don’t contain any activity instances and will likely

be assigned a low confidence score, or even eliminated using heuristics to be described later.

Thus, we can filter out these cuboids using motion detection and eliminate the need for

assigning them a confidence score. This can speed up overall processing and improve overall

evaluation metrics because motion detection can be much faster and much more reliable than

using our repurposed activity classifier to produce confidence scores.

89

Table 9.2. Comparison of different motion thresholds
t2 nAUDC Pmiss

0.00 0.34825 0.49548
0.10 0.34304 0.49252
0.15 0.34865 0.49276
0.20 0.35795 0.49709

We gauge the total amount of motion in a cuboid and discard cuboids with very low or

no motion. We use image differencing to detect motion. Given two successive frames, f1 and

f2, we create a binary, single-channel, difference image

fd =

√√√√∑

c

(
f2 − f1

255.0

)2

> t1

 (9.1)

where ∑
c

sums over the channel dimension of the frame, t1 is a per-pixel motion threshold,

and [·] is 1 if · is true and 0 otherwise. To compute the motion score p of a proposal whose

spatial extent is (x1, y1, x2, y2), we sum the values inside the proposal box in the difference

image, normalized by the area of the proposal.

p =

x2∑
x=x1

y2∑
y=y1

f
(x,y)
d

(x2 − x1)× (y2 − y1) (9.2)

We discard proposals with p < t2, where t2 is a total motion threshold. We use integral

images to speed up the computation of (9.2). We set t1 to 0.1 and evaluated various values

of t2 (Table 9.2 , determining that a t2 of 0.1 worked best.

9.5 Activity Classifier

We used an off the shelf TSM activity classifier for this stage. To generate the training

data, we first augment our activity-class set with a background class to account for proposals

where none of the target activity classes are occurring. We first generated a training set

of cuboids, using the methods described above, on MEVA videos. In order to label each

cuboid in this training set with an activity class or background, we matched the cuboids

90

to ground-truth annotations based on spatial Intersection-over-Union (IoU) and temporal

overlap. For each cuboid, we found all ground-truth activity instances that overlapped the

cuboid by ≥45 frames. For each of the ground-truth activity instances, we only considered

the temporal interval that overlapped the cuboid. Each ground-truth activity instance has

bounding boxes for each participant in each frame. We computed a superbox from all of

these bounding boxes from all frames that overlapped the cuboid. We then computed the

spatial IoU between this superbox and the cuboid box. If this IoU exceeded 0.5, we added the

activity label from the ground-truth instance as an activity label for this cuboid. Although

rare, it was possible for a cuboid to end up with multiple distinct activity labels. In this

case, one training sample was created for each distinct label. If a cuboid was not matched

with any annotations, we labeled it as the background class. An overwhelming majority of

our cuboids were labeled as background; in an effort to balance our dataset during training,

we randomly chose a small subset of these cuboids to be part of our training set. The model

was initialized with available pretrained weights [112] on the Kinetics dataset. We then

fine-tuned it with weighted cross-entropy loss where the weights corresponded to the inverse

of the frequency of the activity class in our training set of cuboids.

Once such a classifier is trained, we can use the softmax score produced by it as actual

confidence scores for the activity classes. We trained two models with different proposal

generation mechanisms. The first was trained using the method described above. The

second was trained by a different temporal splitting strategy. Instead of splitting the videos

into 3s chunks, the proposals actually came from temporal ground truth annotations and

were resampled to fit the 3s length criteria. We then explored two different approaches for

combining or ensembling the output of these two models. The first approach was to simply

sums the output scores of each model. The second approach selectively outputs from each

model on a per-class basis. For this, we ran our system with two models individually and

determined which model performed better on a per-class basis, using the per-class nAUDC

and Pmiss. Then, in the ensemble, the final output vector was formed by using the class

scores from the model that had higher performance on that class. The results showed that

both methods of ensembling increased performance, with the score-summing approach being

91

slightly better. We use the score-summing ensemble approach in our system based on this

analysis.

9.6 Filtering Heuristics

To convert the above activity classifier from a classifier to an activity scorer, we output all

the activity detections produced by the classifier instead of just the one with the maximum

score. This naturally ends up with tons of detections so we tested various strategies to

mitigate this. Our filtering heuristics were designed to encode prior knowledge of which

kinds of activities can occur where. We refer to these as possible activity classes. We

evaluated four different strategies for filtering the set of detections produced:

1. Do not output detections for a cuboid with lower confidence score than the confidence

score of the background class for that cuboid.

2. Do not output detections for a cuboid with lower confidence score than the confidence

score for any impossible activity class for that cuboid.

3. If the top-scoring activity class for a cuboid is the background class, do not output any

detections for that cuboid.

4. If the top-scoring activity class for a cuboid is impossible, do not output any detections

for that cuboid.

This is done for every cuboid in each 3 s interval. The total set of detections for a given

video is the combination of detections of all non-overlapping 3 s intervals in the video. A

consequence of each of the above filtering strategies is that we only output detections for

possible activity classes. We ran our system on our validation set with each strategy and

measured nAUDC and Pmissand found the third and fourth strategies practically equivalent

and employed the fourth strategy in our system.

9.7 Possible Activity Classes

To construct the sets of possible acitivity classes, as part of training, we determined which

activity classes occur in each camera ID in the training set to produced a sets of camera-based

possible activity classes for each camera ID. Alternatively, we manually specify a set of object-

92

based possible activity classes for each object class to indicate which activity classes can occur

in the vicinity of each object class. For example, an instance of the vehicle turns left

activity class is likely to occur in the vicinity of a car detection but not a person detection

while an instance of the person embraces person activity class is likely to occur in the

vicinity of a person detection but not a car detection.

We performed an analysis to assess the effectiveness of these two priors for specifying

possible activity classes. One basis used the camera-based possible activity classes when the

camera ID was known, and the object-based possible activity classes otherwise. The second

basis used object-based possible activity classes for every cuboid regardless of whether the

camera ID was known. The results showed that the first approach yields the best results,

and, as such, we used it in our system.

9.8 Additional Filtering

Our proposal generation mechanism allows for multiple cuboids in a 3 s interval, which

can result in multiple detections of the same class for each 3 s interval. We need to handle

these proposals carefully to reduce the false alarm rate of the system. We conducted an

analysis on the MEVA dataset and noted that very few intervals contained more than one

ground-truth activity instance and fleetingly few contained more than two. This motivated

employing an additional heuristic that limited the output to only contain the highest scoring

detection for each class for each 3 s interval. We ran our system with this heuristic, resulting

in an nAUDC and Pmiss of 0.43871 and 0.61407, respectively, and without, resulting in an

nAUDC and Pmiss of 0.45612 and 0.62427, respectively. These results show that the heuristic

yielded more accurate results, and, as such, we incorporated it into our system.

9.9 Results

Table 9.3 compares our results with the leaderboard for the 2020 ActEV challenge. The

ActEV challenge requires that systems operate in real time and penalizes systems that

operate slower than real time by computing time-limited nAUDC and Pmiss values based

on detections produced before the elapsed time limit. Table 9.3 reports the time-limited

93

Table 9.3. Our results compared to the 2020 ActEV challenge leaderboard as
of July 19, 2020, ranked by penalized nAUDC. Starred entries report penalized
nAUDC and Pmiss values based on detections produced prior to the expiration
of the real-time time limit.

Relative
Rank System Processing Time nAUDC Pmiss
1 Ours 0.164 0.35903 0.46970
2 UCF 0.722 0.36126 0.42337
3 CMU 0.498 0.38699 0.46352
4 UMD∗ 1.486 0.49867 0.53357
5 vireoJD-MM 0.149 0.53876 0.67389
6 UMCMU∗ 2.779 0.64138 0.68352
7 BUPT-MCPRL 0.969 0.61532 0.63203
8 CIS-JHU∗ 4.520 0.77784 0.79736
9 VUS∗ 1.344 1.00000 1.00000

results for the four starred entries that exceed the time limit. The table has been reranked

accordingly. Our system outperforms the other systems in terms of nAUDC. It runs 4.4× and

3× faster than the UCF and CMU systems, respectively, which have comparable nAUDC

scores. The only system to run faster than our system, vireoJD-MM, has considerably worse

nAUDC and Pmiss scores.

94

10. SUMMARY

10.1 Scorch

In this thesis research, I have presented a new framework for differentiable program-

ming called Scorch. Scorch has native support for divide-and-conquer checkpointing and

tensor streaming and is capable of using the GPU for computation. It can perform point-

wise operations on tensors as well as most of the commonly used deep-learning primitives.

Divide-and-conquer checkpointing coupled with tensor streaming lifts the memory bound on

differentiable programs and allows users to train orders-of-magnitude deeper models or run

extremely long-running gradient computations in differentiable programs, the likes of which

are not possible using any existing deep-learning or differentiable-programming framework.

We have presented several examples to show that Scorch can indeed seriously push the

bounds of deep learning and differentiable programming using the GPU. We have run gra-

dient descent on ResNet with 250,000 layers, DRANet with 250,000 layers and GPT-3 on a

single GPU, something that no other prior work can do. I summarize the research contribu-

tions of this thesis document below.

10.2 Checkpointing

All known classical AD implementations that provide checkpointing only provide sublin-

ear space penalty in special cases, like individual non-nested manually-annotated Fortran

DO loops [47] and time-integration processes [72]. All known recent implementations of check-

pointing in neural-network frameworks, including PyTorch, Superneurons, l2l, the two

third-party enhancements to TensorFlow, and the method of Vieira [73], do not provide

guaranteed sublinear space penalty and only apply to restricted forms of neural networks.

Considerable prior work on training large neural networks attempts to migrate the tape to

the CPU instead of performing a suitable form of checkpointing with sublinear space penalty.

But this only makes it possible to store a larger tape and delays the inevitable memory ex-

haustion from the GPU to the CPU, allowing networks that are larger only by a constant

factor; it does not yield sublinear space penalty for storing the tape. checkpointVLAD is

95

the only known prior implementation of checkpointing to provide guaranteed sublinear space

penalty and do so for arbitrary differentiable programs. However, it did not support tensors

or GPU computation. Scorch is the first and only implementation of checkpointing that

provides guaranteed sublinear space penalty for arbitrary differentiable programs that use

tensors or perform GPU computation.

10.3 Tensor Migration

The central contribution of our approach to tensor migration is its integration with divide-

and-conquer checkpointing. Since divide-and-conquer checkpointing removes the bottleneck

of GPU memory usage due to the tape, unlike all prior approaches to tensor migration in

neural networks, we only stream the weights, not the tape. The weights have significantly

different characteristics from the tape: they are more than an order of magnitude smaller

and are read-only. The latter means that migration need only be unidirectional. Crucially,

the former means that the time needed to migrate is less than the time needed to perform

computation on the migrated values. This alleviates the need to solve an optimization

problem to schedule the migration; simple profile-based scheduling suffices to achieve zero-

overhead prefetching without stalling the computation. No other system makes the precise

set of design tradeoffs to achieve this.

10.4 Object Classification from EEG Data

We have collected and released the largest single subject EEG dataset for visual object

classification for a 1 out of 40 task. The dataset consists of 40,000 samples and is far from

unsolved using the current state of the art methods. We have also released the analysis of

using current state of the art methods on this dataset.

10.5 Spatio-temporal activity localization

We have shown a novel pipeline for tackling the problem of both spatially and temporally

detecting, localizing and classifying an activity instance in an untrimmed, uncropped video,

while being significantly faster than real time i.e. using very few compute resources. This

96

makes this technique suitable for deployment on small scale devices with limited compute

budget.

97

REFERENCES

[1] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classification with deep
convolutional neural networks,” in Advances in Neural Information Processing Sys-
tems, San Diego, CA: NeurIPS, 2012, pp. 1097–1105.

[2] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,”
in Computer Vision and Pattern Recognition, Piscataway, NJ: IEEE, 2016, pp. 770–
778.

[3] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale im-
age recognition,” in International Conference on Learning Representations, La Jolla,
CA: ICLR, 2015.

[4] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, “Densely connected
convolutional networks,” in Computer Vision and Pattern Recognition, Piscataway,
NJ: IEEE, 2017, pp. 4700–4708.

[5] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Van-
houcke, and A. Rabinovich, “Going deeper with convolutions,” in Computer Vision
and Pattern Recognition, Piscataway, NJ: IEEE, 2015, pp. 1–9.

[6] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Rethinking the Incep-
tion architecture for computer vision,” in Computer Vision and Pattern Recognition,
Piscataway, NJ: IEEE, 2016, pp. 2818–2826.

[7] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-training of deep
bidirectional transformers for language understanding,” in Conference of the North
American Chapter of the Association for Computational Linguistics: Human Language
Technologies, Stroudsburg, PA: ACL, 2019, pp. 4171–4186.

[8] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, and I. Sutskever, “Language
models are unsupervised multitask learners,” OpenAI blog, vol. 1, no. 8, p. 9, 2019.

[9] T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal, A. Neelakan-
tan, P. Shyam, G. Sastry, A. Askell, S. Agarwal, A. Herbert-Voss, G. Krueger, T.
Henighan, R. Child, A. Ramesh, D. M. Ziegler, J. Wu, C. Winter, C. Hesse, M. Chen,
E. Sigler, M. Litwin, S. Gray, B. Chess, J. Clark, C. Berner, S. McCandlish, A. Rad-
ford, I. Sutskever, and D. Amodei, “Language models are few-shot learners,” arXiv,
vol. 2005.14165, 2020.

[10] A. Griewank, “Achieving logarithmic growth of temporal and spatial complexity in
reverse automatic differentiation,” Optimization Methods & Software, vol. 1, no. 1,
pp. 35–54, 1992.

98

[11] R. Collobert, S. Bengio, and J. Mariéthoz, “Torch: A modular machine learning soft-
ware library,” IDIAP, Research Report 02-46, 2002.

[12] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S. Guadarrama,
and T. Darrell, “Caffe: Convolutional architecture for fast feature embedding,” in
International Conference on Multimedia, New York, NY: ACM, 2014, pp. 675–678.

[13] T. Chen, M. Li, Y. Li, M. Lin, N. Wang, M. Wang, T. Xiao, B. Xu, C. Zhang, and Z.
Zhang, “MXNet: A flexible and efficient machine learning library for heterogeneous
distributed systems,” arXiv, vol. 1512.01274, 2015.

[14] S. Tokui, K. Oono, S. Hido, and J. Clayton, “Chainer: A next-generation open source
framework for deep learning,” in NIPS Workshop on machine learning systems, San
Diego, CA: NeurIPS, 2015, pp. 1–6.

[15] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado,
A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M.
Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mane, R. Monga,
S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K.
Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viegas, O. Vinyals, P. Warden,
M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng, “TensorFlow: Large-scale machine
learning on heterogeneous distributed systems,” arXiv, vol. 1603.04467, 2016.

[16] R. Al-Rfou, G. Alain, A. Almahairi, C. Angermueller, D. Bahdanau, N. Ballas, F.
Bastien, J. Bayer, A. Belikov, A. Belopolsky, Y. Bengio, A. Bergeron, J. Bergstra,
V. Bisson, J. B. Snyder, N. Bouchard, N. Boulanger-Lewandowski, X. Bouthillier,
A. de Brébisson, O. Breuleux, P.-L. Carrier, K. Cho, J. Chorowski, P. Christiano, T.
Cooijmans, M.-A. Côté, M. Côté, A. Courville, Y. N. Dauphin, O. Delalleau, J. De-
mouth, G. Desjardins, S. Dieleman, L. Dinh, M. Ducoffe, V. Dumoulin, S. E. Kahou,
D. Erhan, Z. Fan, O. Firat, M. Germain, X. Glorot, I. Goodfellow, M. Graham, C.
Gulcehre, P. Hamel, I. Harlouchet, J.-P. Heng, B. Hidasi, S. Honari, A. Jain, S. Jean,
K. Jia, M. Korobov, V. Kulkarni, A. Lamb, P. Lamblin, E. Larsen, C. Laurent, S. Lee,
S. Lefrancois, S. Lemieux, N. Léonard, Z. Lin, J. A. Livezey, C. Lorenz, J. Lowin,
Q. Ma, P.-A. Manzagol, O. Mastropietro, R. T. McGibbon, R. Memisevic, B. van
Merriënboer, V. Michalski, M. Mirza, A. Orlandi, C. Pal, R. Pascanu, M. Pezeshki,
C. Raffel, D. Renshaw, M. Rocklin, A. Romero, M. Roth, P. Sadowski, J. Salvatier,
F. Savard, J. Schlüter, J. Schulman, G. Schwartz, I. V. Serban, D. Serdyuk, S. Sha-
banian, É. Simon, S. Spieckermann, S. R. Subramanyam, J. Sygnowski, J. Tanguay,
G. van Tulder, J. Turian, S. Urban, P. Vincent, F. Visin, H. de Vries, D. Warde-
Farley, D. J. Webb, M. Willson, K. Xu, L. Xue, L. Yao, S. Zhang, and Y. Zhang,
“Theano: A Python framework for fast computation of mathematical expressions,”
arXiv, vol. 1605.02688, 2016.

99

[17] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look once: Unified,
real-time object detection,” in Computer Vision and Pattern Recognition, Piscataway,
NJ: IEEE, 2016, pp. 779–788.

[18] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin,
N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison,
A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and S. Chintala, “PyTorch:
An imperative style, high-performance deep learning library,” in Advances in Neural
Information Processing Systems, San Diego, CA: NeurIPS, 2019, pp. 8026–8037.

[19] C. Mak and L. Ong, “A differential-form pullback programming language for higher-
order reverse-mode automatic differentiation,” in POPL Workshop on Languages for
Inference 2020, New York, NY: ACM, 2020.

[20] A. Brunel, D. Mazza, and M. Pagani, “Backpropagation in the simply typed lambda-
calculus with linear negation,” Proceedings of the ACM on Programming Languages,
vol. 4, no. POPL, 2019.

[21] M. Abadi and G. D. Plotkin, “A simple differentiable programming language,” Pro-
ceedings of the ACM on Programming Languages, vol. 4, no. POPL, 2019.

[22] F. Wang, D. Zheng, J. Decker, X. Wu, G. M. Essertel, and T. Rompf, “Demystifying
differentiable programming: Shift/reset the penultimate backpropagator,” Proceedings
of the ACM on Programming Languages, vol. 3, no. ICFP, 2018.

[23] A. Shaikhha, A. Fitzgibbon, D. Vytiniotis, and S. P. Jones, “Efficient differentiable
programming in a functional array-processing language,” Proceedings of the ACM on
Programming Languages, vol. 3, no. ICFP, 2019.

[24] M. Huot, S. Staton, and M. Vákár, “Correctness of automatic differentiation via
diffeologies and categorical gluing,” in International Conference on Foundations of
Software Science and Computation Structures, 2020, pp. 319–338.

[25] C. Elliott, “The simple essence of automatic differentiation,” Proceedings of the ACM
on Programming Languages, vol. 2, no. ICFP, 2018.

[26] D. Vytiniotis, D. Belov, R. Wei, G. Plotkin, and M. Abadi, “The differentiable curry,”
in NIPS Workshop on Program Transformations, San Diego, CA: NeurIPS, 2019.

[27] M. J. Innes, “Sense & sensitivities: The path to general-purpose algorithmic differen-
tiation,” in Proceedings of Machine Learning and Systems, 2020, pp. 58–69.

100

[28] G. Cruttwell, J. Gallagher, and D. Pronk, “Categorical semantics of a simple differ-
ential programming language,” in International Applied Category Theory Conference,
Electronic Proceedings in Theoretical Computer Science 328, 2020.

[29] R. E. Wengert, “A simple automatic derivative evaluation program,” Communications
of the ACM), vol. 7, no. 8, pp. 463–464, 1964.

[30] B. Speelpenning, “Compiling fast partial derivatives of functions given by algorithms,”
Ph.D. dissertation, Department of Computer Science, University of Illinois at Urbana-
Champaign, 1980.

[31] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning representations by
back-propagating errors,” nature, vol. 323, no. 6088, pp. 533–536, 1986.

[32] Y. M. Volin and G. M. Ostrovskii, “Automatic computation of derivatives with the
use of the multilevel differentiating technique — I: Algorithmic basis,” Computers
and Mathematics with Applications, vol. 11, pp. 1099–1114, 1985.

[33] A. Gruslys, R. Munos, I. Danihelka, M. Lanctot, and A. Graves, “Memory-efficient
backpropagation through time,” arXiv, vol. 1606.03401, 2016.

[34] T. Chen, B. Xu, C. Zhang, and C. Guestrin, “Training deep nets with sublinear
memory cost,” arXiv, vol. 1604.06174, 2016.

[35] J. M. Siskind and B. A. Pearlmutter, “Divide-and-conquer checkpointing for arbitrary
programs with no user annotation,” Optimization Methods & Software, vol. 33, no. 03–
04, pp. 1288–1330, 2018.

[36] C. T. Haynes and D. P. Friedman, “Engines build process abstractions,” in Symposium
on LISP and Functional Programming, New York, NY: ACM, 1984, pp. 18–24.

[37] C. T. Haynes and D. P. Friedman, “Abstracting timed preemption with engines,”
Computer Languages, vol. 12, no. 2, pp. 109–121, 1987.

[38] R. K. Dybvig and R. Hieb, “Engines from continuations,” Computer Languages,
vol. 14, no. 2, pp. 109–123, 1989.

[39] J. C. Reynolds, “Definitional interpreters for higher-order programming languages,”
in Proceedings of the 25th ACM National Conference, Reprinted in Higher Order and
Symbolic Computation, 11(4):363–397, 1998, New York, NY: ACM, 1972.

[40] G. L. Steele Jr. and G. J. Sussman, “Lambda, the ultimate imperative,” MIT Artificial
Intelligence Laboratory, A. I. Memo 353, 1976.

101

[41] J. C. Reynolds, “The discoveries of continuations,” Lisp and Symbolic Computation,
vol. 6, pp. 233–247, 1993.

[42] A. W. Appel, Compiling with continuations. Cambridge, UK: Cambridge University
Press, 2006.

[43] J. Kiefer and J. Wolfowitz, “Stochastic estimation of the maximum of a regression
function,” The Annals of Mathematical Statistics, pp. 462–466, 1952.

[44] J. Duchi, E. Hazan, and Y. Singer, “Adaptive subgradient methods for online learning
and stochastic optimization.,” Journal of machine learning research, vol. 12, no. 7,
2011.

[45] G. Hinton, N. Srivastava, and K. Swersky, “Neural networks for machine learning
lecture 6a overview of mini-batch gradient descent,” Coursera, vol. 14, no. 8, p. 2,
2012.

[46] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” in Interna-
tional Conference on Learning Representations, La Jolla, CA: ICLR, 2015.

[47] L. Hascoët and V. Pascual, “TAPENADE 2.1 user’s guide,” INRIA, Rapport tech-
nique 300, 2004.

[48] W. Clinger and J. Rees, Revised4 report on the algorithmic language scheme, Avail-
able as MIT Artificial Intelligence Laboratory Memo 848b, Nov. 1991.

[49] B. A. Pearlmutter and J. M. Siskind, “Reverse-mode AD in a functional framework:
Lambda the ultimate backpropagator,” Transactions on Programming Languages and
Systems, vol. 30, no. 2, pp. 1–36, 2008.

[50] S. Chetlur, C. Woolley, P. Vandermersch, J. Cohen, J. Tran, B. Catanzaro, and E.
Shelhamer, “cuDNN: Efficient primitives for deep learning,” arXiv, vol. 1410.0759,
2014.

[51] P. Vingelmann and F. H. Fitzek, Cuda, release: 10.2.89, 2020. [Online]. Available:
 https://developer.nvidia.com/cuda-toolkit .

[52] H.-J. Boehm, “Space efficient conservative garbage collection,” ACM SIGPLAN No-
tices, vol. 28, no. 6, pp. 197–206, 1993.

[53] R. L. Graham, T. S. Woodall, and J. M. Squyres, “Open mpi: A flexible high per-
formance mpi,” in Parallel Processing and Applied Mathematics, Berlin, Heidelberg:
Springer, 2006, pp. 228–239.

102

https://developer.nvidia.com/cuda-toolkit

[54] S. Jeaugey, “Nccl 2.0,” in GPU Technology Conference (GTC), 2017.

[55] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpa-
thy, A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-Fei, “ImageNet large scale visual
recognition challenge,” International Journal of Computer Vision, vol. 115, no. 3,
pp. 211–252, 2015.

[56] F. Massa, S. Gross, S. Zagoruyko, S. Chintala, L. Yeager, eellison, E. Ranjan, A. A.
Soltani, C. Pao, vfdev-5, G. Ren, R. Wightman, Y. Wu, R. Hataya, L. Roeder, P.
Meier, F.-G. Fernandez, E. Gaasedelen, C. Beckham, bddppq, apache2046, A. Tejani,
A. Mora-Fallas, driazati, B. Zhang, raghuramank100, and M. Kondela, PYTORCH
torchvision implementation of ResNet. [Online]. Available: https://github.com/
pytorch/vision/blob/master/torchvision/models/resnet.py .

[57] R. Stojnic, R. Taylor, M. Kardas, V. Kerkez, and L. Viaud, Papers with code. [Online].
Available: https://paperswithcode.com/sota/semantic- segmentation- on-
coco-stuff-test .

[58] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár, and
C. L. Zitnick, “Microsoft COCO: Common objects in context,” in Europen Conference
on Computer Vision, Heidelberg, Germay: Springer, 2014, pp. 740–755.

[59] J. Fu, J. Liu, J. Jiang, Y. Li, Y. Bao, and H. Lu, “Scene segmentation with dual
relation-aware attention network,” Transactions on Neural Networks and Learning
Systems, 2020.

[60] M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler, R. Benenson, U. Franke,
S. Roth, and B. Schiele, “The cityscapes dataset for semantic urban scene under-
standing,” in Computer Vision and Pattern Recognition, Piscataway, NJ: IEEE, 2016,
pp. 3213–3223.

[61] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser,
and I. Polosukhin, “Attention is all you need,” in Advances in Neural Information
Processing Systems, San Diego, CA: NeurIPS, 2017, pp. 5998–6008.

[62] OpenAI, Openai tensorflow implementation of gpt-2. [Online]. Available: https:
//github.com/openai/gpt-2 .

[63] N. Applied Deep Learning Research team, Nvidia pytorch implementation of gpt-2.
[Online]. Available: https://github.com/NVIDIA/Megatron-LM .

[64] NVIDIA. (2020). “Openai presents gpt-3, a 175 billion parameters language model,”
[Online]. Available: https://news.developer.nvidia.com/openai- presents-
gpt-3-a-175-billion-parameters-language-model/ .

103

https://github.com/pytorch/vision/blob/master/torchvision/models/resnet.py
https://github.com/pytorch/vision/blob/master/torchvision/models/resnet.py
https://paperswithcode.com/sota/semantic-segmentation-on-coco-stuff-test
https://paperswithcode.com/sota/semantic-segmentation-on-coco-stuff-test
https://github.com/openai/gpt-2
https://github.com/openai/gpt-2
https://github.com/NVIDIA/Megatron-LM
https://news.developer.nvidia.com/openai-presents-gpt-3-a-175-billion-parameters-language-model/
https://news.developer.nvidia.com/openai-presents-gpt-3-a-175-billion-parameters-language-model/

[65] J. Langston. (2020). “Microsoft announces new supercomputer, lays out vision for
future ai work,” [Online]. Available: https://blogs.microsoft.com/ai/openai-
azure-supercomputer/ .

[66] M.-T. Luong, H. Pham, and C. D. Manning, “Effective approaches to attention-based
neural machine translation,” in Empirical Methods in Natural Language Processing,
Stroudsburg, PA: ACL, 2015, pp. 1412–1421.

[67] S. R. Bulo, L. Porzi, and P. Kontschieder, “In-place activated batchnorm for memory-
optimized training of DNNs,” in Computer Vision and Pattern Recognition, Piscat-
away, NJ: IEEE, 2018, pp. 5639–5647.

[68] B. Pudipeddi, M. Mesmakhosroshahi, J. Xi, and S. Bharadwaj, “Training large neural
networks with constant memory using a new execution algorithm,” arXiv, vol. 2002.05645,
2020.

[69] J. Feng and D. Huang, “Cutting down training memory by re-fowarding,” 2018.

[70] N. Kukreja, J. Hückelheim, and G. J. Gorman, “Backpropagation for long sequences:
Beyond memory constraints with constant overheads,” arXiv, vol. 1806.01117, 2018.

[71] A. Griewank, D. Juedes, and J. Utke, “A package for the automatic differentiation
of algorithms written in C/C++. User manual,” Institute of Scientific Computing,
Technical University of Dresden, Tech. Rep., 1996.

[72] A. Kowarz and A. Walther, “Optimal checkpointing for time-stepping procedures
in ADOL-C,” in Computational Science, ser. Lecture Notes in Computer Science,
vol. 3994, Heidelberg, Germay: Springer, 2006, pp. 566–573.

[73] T. Vieira, Memory efficient backpropagation thru time in a recurrent neural network,
2016. [Online]. Available: https://gist.github.com/timvieira/b626e43496b87f84ec60e480cc93d666 .

[74] Torch.utils.checkpoint. [Online]. Available: https://pytorch.org/docs/stable/
checkpoint.html .

[75] P. Goyal, Trading compute for memory in pytorch models using checkpointing. [On-
line]. Available: https://github.com/prigoyal/pytorch_memonger/blob/master/
tutorial/Checkpointing_for_PyTorch_models.ipynb .

[76] T. Wang, P. Goyal, definitelynotmcarilli, H. Lee, B. Wignall, vfdev-5, T. Viehmann,
X. Gao, pritamdamania, N. Shulga, mcarilli, soulitzer, Y. Jia, and C. Han. [Online].
Available: https://github.com/pytorch/pytorch/blob/master/torch/utils/
checkpoint.py .

104

https://blogs.microsoft.com/ai/openai-azure-supercomputer/
https://blogs.microsoft.com/ai/openai-azure-supercomputer/
https://gist.github.com/timvieira/b626e43496b87f84ec60e480cc93d666
https://pytorch.org/docs/stable/checkpoint.html
https://pytorch.org/docs/stable/checkpoint.html
https://github.com/prigoyal/pytorch_memonger/blob/master/tutorial/Checkpointing_for_PyTorch_models.ipynb
https://github.com/prigoyal/pytorch_memonger/blob/master/tutorial/Checkpointing_for_PyTorch_models.ipynb
https://github.com/pytorch/pytorch/blob/master/torch/utils/checkpoint.py
https://github.com/pytorch/pytorch/blob/master/torch/utils/checkpoint.py

[77] C. AI, Saving memory using gradient-checkpointing. [Online]. Available: https://
github.com/cybertronai/gradient-checkpointing .

[78] davisyoshida, Tensorflow 2 gradient checkpointing. [Online]. Available: https : / /
github.com/davisyoshida/tf2-gradient-checkpointing .

[79] J. Zhang, S. H. Yeung, Y. Shu, B. He, and W. Wang, “Efficient memory management
for GPU-based deep learning systems,” arXiv, vol. 1903.06631, 2019.

[80] L. Wang, J. Ye, Y. Zhao, W. Wu, A. Li, S. L. Song, Z. Xu, and T. Kraska, “Su-
perneurons: Dynamic GPU memory management for training deep neural networks,”
in Principles and Practice of Parallel Programming, New York, NY: ACM, 2018,
pp. 41–53.

[81] M. Hildebrand, J. Khan, S. Trika, J. Lowe-Power, and V. Akella, “AutoTM: Auto-
matic tensor movement in heterogeneous memory systems using integer linear pro-
gramming,” in Architectural Support for Programming Languages and Operating Sys-
tems, New York, NY: ACM, 2020, pp. 875–890.

[82] C.-C. Huang, G. Jin, and J. Li, “SwapAdvisor: Pushing deep learning beyond the
GPU memory limit via smart swapping,” in Architectural Support for Programming
Languages and Operating Systems, New York, NY: ACM, 2020, pp. 1341–1355.

[83] M. Rhu, N. Gimelshein, J. Clemons, A. Zulfiqar, and S. W. Keckler, “vDNN: Virtu-
alized deep neural networks for scalable, memory-efficient neural network design,” in
International Symposium on Microarchitecture, Piscataway, NJ: IEEE, 2016, pp. 1–
13.

[84] C. Meng, M. Sun, J. Yang, M. Qiu, and Y. Gu, “Training deeper models by GPU
memory optimization on TensorFlow,” in NIPS ML Systems Workshop, vol. 7, San
Diego, CA: NeurIPS, 2017.

[85] H. Jin, B. Liu, W. Jiang, Y. Ma, X. Shi, B. He, and S. Zhao, “Layer-centric memory
reuse and data migration for extreme-scale deep learning on many-core architectures,”
Transactions on Architecture and Code Optimization, vol. 15, no. 3, pp. 1–26, 2018.

[86] X. Chen, D. Z. Chen, and X. S. Hu, “moDNN: Memory optimal DNN training on
GPUs,” in Design, Automation & Test in Europe Conference & Exhibition, Piscat-
away, NJ: IEEE, 2018, pp. 13–18.

[87] T. D. Le, H. Imai, Y. Negishi, and K. Kawachiya, “Automatic GPU memory manage-
ment for large neural models in TensorFlow,” in International Symposium on Memory
Management, New York, NY: ACM, 2019, pp. 1–13.

105

https://github.com/cybertronai/gradient-checkpointing
https://github.com/cybertronai/gradient-checkpointing
https://github.com/davisyoshida/tf2-gradient-checkpointing
https://github.com/davisyoshida/tf2-gradient-checkpointing

[88] X. Peng, X. Shi, H. Dai, H. Jin, W. Ma, Q. Xiong, F. Yang, and X. Qian, “Capuchin:
Tensor-based GPU memory management for deep learning,” in Architectural Support
for Programming Languages and Operating Systems, New York, NY: ACM, 2020,
pp. 891–905.

[89] J. Ren, J. Luo, K. Wu, M. Zhang, and D. Li, “Sentinel: Runtime data management
on heterogeneous main memory systems for deep learning,” arXiv, vol. 1909.05182,
2019.

[90] J. Ren, S. Rajbhandari, R. Y. Aminabadi, O. Ruwase, S. Yang, M. Zhang, D. Li, and
Y. He, “ZeRO-Offload: Democratizing billion-scale model training,” arXiv, vol. 2101.06840,
2021.

[91] J. Guo, W. Liu, W. Wang, C. Yao, J. Han, R. Li, Y. Lu, and S. Hu, “AccUDNN:
A GPU memory efficient accelerator for training ultra-deep neural networks,” in In-
ternational Conference on Computer Design, Piscataway, NJ: IEEE, 2019, pp. 65–
72.

[92] C.-F. Jhu, P. Liu, and J.-J. Wu, “Data pinning and back propagation memory opti-
mization for deep learning on GPU,” in International Symposium on Computing and
Networking, 2018, pp. 19–28.

[93] T. Sekiyama, T. Imamichi, H. Imai, and R. Raymond, “Profile-guided memory opti-
mization for deep neural networks,” arXiv, vol. 1804.10001, 2018.

[94] K. Shirahata, Y. Tomita, and A. Ike, “Memory reduction method for deep neural
network training,” in International Workshop on Machine Learning for Signal Pro-
cessing, Piscataway, NJ: IEEE, 2016, pp. 1–6.

[95] T. B. Jablin, P. Prabhu, J. A. Jablin, N. P. Johnson, S. R. Beard, and D. I. August,
“Automatic CPU-GPU communication management and optimization,” in Program-
ming Language Design and Implementation, New York, NY: ACM, 2011, pp. 142–
151.

[96] R. Tezikov, PyTorch implementation of L2L execution algorithm, 2020. [Online]. Avail-
able: https://github.com/TezRomacH/layer-to-layer-pytorch .

[97] A. Jain, A. Phanishayee, J. Mars, L. Tang, and G. Pekhimenko, “Gist: Efficient data
encoding for deep neural network training,” in International Symposium on Computer
Architecture (ISCA), New York, NY: ACM, 2018, pp. 776–789.

[98] A. N. Gomez, M. Ren, R. Urtasun, and R. B. Grosse, “The reversible residual network:
Backpropagation without storing activations,” arXiv, vol. 1707.04585, 2017.

106

https://github.com/TezRomacH/layer-to-layer-pytorch

[99] S. Kylasa, F. Roosta, M. W. Mahoney, and A. Grama, “Gpu accelerated sub-sampled
newton’s method for convex classification problems,” in Proceedings of the 2019 SIAM
International Conference on Data Mining, SIAM, 2019, pp. 702–710.

[100] A. S. Berahas, M. Jahani, P. Richtárik, and M. Takáč, “Quasi-newton methods for
deep learning: Forget the past, just sample,” 2020.

[101] B. Yuan, C. R. Wolfe, C. Dun, Y. Tang, A. Kyrillidis, and C. M. Jermaine, “Dis-
tributed learning of deep neural networks using independent subnet training,” arXiv
preprint arXiv:1910.02120, 2019.

[102] R. Li, J. S. Johansen, H. Ahmed, T. V. Ilyevsky, R. B. Wilbur, H. M. Bharadwaj,
and J. M. Siskind, “The perils and pitfalls of block design for eeg classification exper-
iments,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 43,
no. 1, pp. 316–333, 2020.

[103] C. Spampinato, S. Palazzo, I. Kavasidis, D. Giordano, N. Souly, and M. Shah, “Deep
learning human mind for automated visual classification,” in Proceedings of the IEEE
conference on computer vision and pattern recognition, 2017, pp. 6809–6817.

[104] V. J. Lawhern, A. J. Solon, N. R. Waytowich, S. M. Gordon, C. P. Hung, and
B. J. Lance, “Eegnet: A compact convolutional neural network for eeg-based brain–
computer interfaces,” Journal of neural engineering, vol. 15, no. 5, p. 056 013, 2018.

[105] Y. Li, M. Murias, S. Major, G. Dawson, K. Dzirasa, L. Carin, and D. E. Carlson,
“Targeting eeg/lfp synchrony with neural nets.,” in NIPS, 2017, pp. 4620–4630.

[106] S. Palazzo, C. Spampinato, I. Kavasidis, D. Giordano, J. Schmidt, and M. Shah,
“Decoding brain representations by multimodal learning of neural activity and visual
features,” IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020.

[107] W. Kay, J. Carreira, K. Simonyan, B. Zhang, C. Hillier, S. Vijayanarasimhan, F.
Viola, T. Green, T. Back, P. Natsev, et al., “The kinetics human action video dataset,”
arXiv preprint arXiv:1705.06950, 2017.

[108] K. Soomro, A. R. Zamir, and M. Shah, “Ucf101: A dataset of 101 human actions
classes from videos in the wild,” arXiv preprint arXiv:1212.0402, 2012.

[109] A. Piergiovanni and M. Ryoo, “Temporal gaussian mixture layer for videos,” in In-
ternational Conference on Machine learning, PMLR, 2019, pp. 5152–5161.

[110] S. Yeung, O. Russakovsky, N. Jin, M. Andriluka, G. Mori, and L. Fei-Fei, “Every
moment counts: Dense detailed labeling of actions in complex videos,” International
Journal of Computer Vision, vol. 126, no. 2, pp. 375–389, 2018.

107

[111] H. Idrees, A. R. Zamir, Y. Jiang, A. Gorban, I. Laptev, R. Sukthankar, and M. Shah,
“The thumos challenge on action recognition for videos “in the wild”,” Computer
Vision and Image Understanding, vol. 155, pp. 1–23, 2017.

[112] J. Lin, Y. Ding, W. Price, S. Han, and M. Li, TSM: Temporal shift module for efficient
video understanding, Retrieved July 24, 2019 from https://github.com/mit-han-
lab/temporal-shift-module , 2019.

108

https://github.com/mit-han-lab/temporal-shift-module
https://github.com/mit-han-lab/temporal-shift-module

VITA

Hamad Ahmed received his B.S. in Electrical Engineering from University of Engineering

& Technology, Lahore, Pakistan in 2015. He is currently pursuing a Ph.D. in Electrical and

Computer Engineering at Purdue University. His research primarily focuses on artificial

intelligence, deep learning and computer vision.

109

	TITLE PAGE
	COMMITTEE APPROVAL
	DEDICATION
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF SYMBOLS
	ABBREVIATIONS
	ABSTRACT
	INTRODUCTION
	PRELIMINARIES
	Overview of Automatic Differentiation
	Overview of Checkpointing

	TENSOR STREAMING
	Motivation
	Parameterized programs of a high order
	Extremely Large Intermediate Outputs
	Criss-cross or inter-connected networks
	Need for Streaming

	Streaming Methodology
	Demand fetch
	Streaming plan

	Activation Streaming
	Tensor Streaming vs. CUDA Unified Memory

	MODIFICATIONS TO CHECKPOINTING
	THE SCORCH LANGUAGE
	Types
	Tensor Support
	Basic Primitives
	Deep Learning Primitives
	Garbage Collection
	Asynchronicity on the GPU
	Multi-GPU and Multi-Node capability
	CUDA Streams
	Tensor Cache Allocator
	Dynamic execution
	Further Synergies

	EXAMPLES
	Image Classification
	Semantic Segmentation
	GPT-3

	RELATED WORK
	Checkpointing
	Tensor Streaming
	Combinations of Checkpointing and Tensor Streaming
	Various Alternative Training Strategies
	Benchmarking Against Related Work

	OBJECT CLASSIFICATION FROM RANDOMIZED EEG TRIALS
	Motivation
	Data collection protocol
	Analysis
	Maximum achievable accuracy
	Amount of data required
	Maximum number of decodable classes

	Summary

	SPATIO-TEMPORAL ACTIVITY LOCALIZATION IN UNTRIMMED UNCROPPED VIDEOS
	Dataset
	Evaluation Metrics
	System Design
	Temporal splitting
	Spatial proposal generation

	Motion Filtering
	Activity Classifier
	Filtering Heuristics
	Possible Activity Classes
	Additional Filtering
	Results

	SUMMARY
	Scorch
	Checkpointing
	Tensor Migration
	Object Classification from EEG Data
	Spatio-temporal activity localization

	REFERENCES
	VITA

