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ABSTRACT

Nowadays, safety in food has become critical. The main two types of threats related to

food safety are foodborne pathogens and heavy metals. One of the most common foodborne

pathogens that can be found in our daily food is Escherichia coli O157:H7 (E. coli O157:H7).

Human infections with E. coli O157:H7 poses severe disease in our bodies and even death.

Heavy metals, Mercury (Hg), Arsenic (As), Copper (Cu), and so on can be enriched in

living tissue through food chains and have proven to be harmful to human health at low

concentrations. So, the detection of the contaminants in daily food and drinking water

is crucial for global public health. To date, the widely used pathogen detection methods

and heavy metal detection methods are expensive, involve laborious procedures, and cannot

support on-site detection. In this dissertation, two different novel printing platforms, and

accompanying rapid, microfluidic architecture platforms are proposed for the detection of

E. coli O157:H7, and As and Hg, respectively. These devices can be fully integrated with

a mobile phone and an image analysis pipeline to capture and analyze the sensor images

on-site.

The first system that we develop consists of inkjet printed lateral diffusion strips for the

capture of E. coli O157:H7. This effort includes the characterization of the consistent size

droplets used to develop the print masks, and functional printing of the test and control

lines with the corresponding DNA solutions. Then we propose an image analysis method to

read the responses of the test strips to the presence of targets, and quantitatively correlate

the color intensity of responses to the target concentrations. Finally, the response variation

of the optical properties of the test lines detecting the target at the same concentration is

investigated. To reduce the sample-to-sample variation in response to E. coli O157:H7, and

in an effort to reduce material cost and printing time, we optimize the numbers of print

layers and explore various well-used image segmentation methods to detect the response in

the test lines of test strips. The usefulness of these segmentation methods is evaluated by

comparing the response variance of the corresponding segmentation results.

To move towards multiplexed heavy metals detection of As and Hg, we design a sec-

ond patterned microfluidic paper-based device, capable of instrument-free, portable, and
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multiplexed sensing detection via aptamer recognition. We explore three different printing

technologies for fabricating these devices, and choose screen printing with UV cured inks for

further development. We then conduct empirical studies to optimize the device geometry.

We propose three image analysis methods to obtain a higher prediction accuracy with our

developed paper-based devices for detecting and measuring heavy metal contaminants in

food or liquids. (1) We use ∆E from a white background as our baseline method to correlate

the optical properties with the different concentrations of the target, and optimally quan-

tize these responses into five groups to evaluate the prediction accuracy. (2) We propose

a CNN classifier and explore two kinds of data augmentation techniques to compare their

effectiveness for the classification task. (3) We consider the use of the spectral reflectance of

the sensor pad, then develop two different machine learning approaches: k-nearest-neighbor

with sequential forward feature selection to determine the best number of features, and ran-

dom forest with principal component analysis for feature reduction for classifying the level

of contamination by As3+ into one of five categories. The accuracy of these three models is

compared by implementing them with the same training and test datasets.
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1. INTRODUCTION

Inkjet printing has been around for several decades. The most popular application of this

printing technology has been to print paper documents containing text and graphics. From

the mid-1990s, the field of bio-printing began to grow, with a rapid increase after 2000 be-

cause inkjet printers began to be used for dispensing functional materials. The incorporation

of printing technology with biomaterials has recently gained considerable attention. For in-

stance, printing techniques have been used for the regeneration of bone or ear tissues [ 1 ].

Inkjet printing is an advanced technique enabling the deposition of various kinds of solutions

(biomolecules, polymers, metals) onto different types of substrates (cellulose, polymer, sili-

con.). It enables fast printing of any computer-generated pattern onto substrates by precise

placement of pico-to-nanoliter volumes of inks [ 2 ].

Currently, mobile phones are low-cost, and affordable, so they are widely available across

the globe. For mobile phones, the integration of cameras, light-sensors and microphones has

enabled mobile phones become a popular and accessible platform for diagnostic systems.

For example, pregnacy monitoring can be done on a mobile phone [  3 ][ 4 ], and food dietary

control [ 5 ].

1.1 Inkjet Printing System for Foodborne Pathogen Detection

Recently printing technologies have become very popular in environmental pollution and

food safety testing applications. According to the World Health Organization (WHO), there

are estimated 600 million people falling ill after eating contaminated food and 420 thousand

deaths every year [  6 ]. The most common foodborne pathogens include Salmonella, Campy-

lobacter, and Enterohaemorrhagic Escherichia coli. Among these foodborne pathogens, E.

coli O157:H7 can be easily found in contaminated water and contaminated food, especially

undercooked ground beef, milk and juice, raw fruits and vegetables. It is known that E.

coli O157:H7 can cause bloody diarrhea and sometimes cause kidney failure and even death.

Therefore, an affordable, rapid and simple method for detecting E. coli O157:H7 is more and

more in demand. The manufacturing process of inkjet printing can guarantee rapid, reliable,
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and reproducible mass production of functional biosensors with specific detection properties

at low cost.

The goal of our research is to design printed test strips (PTSs) to be used for the detec-

tion of E. coli O157:H7. Each functional PTS with two printed lines: the test line and the

control lines, is intended to be affordable, portable, sensitive, rapid, and easy-to-use. Natu-

ral cellulose paper (Hi-flow HFC075, EMD Milipore, www.emdmilipore.com) is the substrate

and the printing consists of two types of DNA-based biomaterial (the biomaterial on the test

lines and control lines, respectively: Carboxyl functionalized Aptamer sequence, and Biotin

DNA complementary sequence). To precisely control the amount of the DNA solution and

to design a system for reproducible mass production, a piezoelectric inkjet printer PipeJet

(BioFluidiX, Freiburg, Germany) with deposition of single droplets in the range of 2 - 70

nL is used to print the DNA solution onto the substrates. The focus of the functional print-

ing part is to develop processes for inkjet and roll-to-roll patterning of nano-functionalized

biocompatible and biodegradable cellulose test strips, therefore enabling the efficient man-

ufacture of food pathogen biosensors. To date, we have fabricated and used the PTSs to

successfully detect the presence of foodborne pathogens (E. coli O157:H7), and confirm an

immune detection limit of 102 CFU/ml (CFU is an acronym for Colony Forming Unit).

1.2 Image Analysis Pipeline to Capture and Analyze the Responses in Lateral
Diffusion Strips

In Chapter 2 and 3, we develop the inkjet printing process for producing the pattern

for the capture of E. coli O157:H7, and design an image analysis method to detect the

responses in test lines of test strips. In the following sections of those chapters, we first

characterize the consistent size droplets to design the print mask, and functionally print the

test and control lines with the corresponding solutions. We then detect E. coli O157:H7

with different concentrations to validate our approach by showing the responses in test lines

and control lines of the PTSs. Our image analysis method deploys a quantitative metric

to characterize the responses in the test lines of the images captured by a mobile camera.

We also correlate the color change of the response area with the concentration of the target

and determine the limitation of detection (LOD) of our biosensor using our developed image
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analysis pipeline. Finally, we assess the variation among the responses in test lines of test

strips by correlating the color intensity under a fixed concentration.

So, our approach successfully combines three technologies: aptamer-based detection,

reproducible mass production by inkjet printing, and image analysis with a mobile phone

camera to quantitatively correlate color intensity to pathogen concentration. We will present

the detailed information of the last two technologies in Chapters 2 and 3.

1.3 Printing System and Traditional Image Analysis Model for Heavy Metal
Detection

In Chapters 2 and 3, we discuss the inkjet printing system and the image analysis pipeline

for foodborn pathogen E. coli O157:H7 detection. Beyond the foodborne pathogen E. coli

O157:H7, we notice that the presence of heavy metals in food chains also poses a threat to

public health. Heavy metals, including Mercury (Hg), Arsenic (As), Copper (Cu), and so on

can be enriched in living tissue through food chains and have proven to be harmful to human

health at low concentrations. Currently, heavy metal detection methods used are Mass

spectroscopy, Atomic Emission Spectroscopy, Potentiometric Methods, and so on. These

methods are sensitive but expensive and require expensive equipment, trained personnel

and cannot support on-site detection. Therefore, rapid detection methods for heavy metal

pollutants are more and more in demand.

During the last few decades, a wide variety of microfluidic paper-based biosensors have

been successfully developed, demonstrating powerful tools for detecting food and environ-

mental contamination. Microfluidic paper-based analytic devices (µPADs), developed in

2007 by Whiteside’s team, have the characteristic of controlling a fluid motion via capillary

force through specially designed microfluidic channel patterns on cellulose paper. As the

major component of µPADs, cellulose papers with flexible porous fiber structure can wick

liquids in small volumes without the need for external pumping equipment. The major task

in the fabrication of µPADs is to create well-defined, millimeter-sized dimensional channels,

comprising hydrophilic paper bounded by hydrophobic materials (wax or UV-curable inks)

on cellulose papers. The heavy metals can be detected by gold nanoparticles (AuNPs) usually

preloaded in reaction zones, by providing colorimetric signals in biosensors. The colorimetric
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signals in the detection zones are commonly collected using a professional digital camera or

a high-resolution scanner. Then, the color intensity of the signal in the captured images will

be analyzed by some open source software.

Unsurprisingly, µPADs have gained great attention due to their ease of use, low cost,

amenability to colorimetric detection, and little test sample consumption. To detect multi-

ple targets in one test, which is hard to achieve with traditional lateral flow strips, our group

focuses on developing a novel paper-based biosensor for colorimetric detection of two types

of heavy metals: As and Hg. In Chapter 4, we first present paper-based devices fabricated

by different technologies with different materials used to pattern hydrophobic walls across

chromatography paper. Second, we propose preliminary patterns for multiple and multi-

plexed detection. Then, we detect the heavy metals at different concentrations to validate

our approach. Finally, our optical system and image analysis pipeline are shown to obtain

consistent data acquisition captured by a mobile phone camera, and deliver quantitative

responses to correlate the colorimetric change of the biosensors to the concentration of the

target substance.

1.4 Spectral Imaging to Differentiate Contaminant Levels

In Chapter 4, we show that our image analysis pipeline delivers quantitative responses

to correlate the colorimetric change of the biosensors to the concentration of the target sub-

stance. For this base model, we used the grayscale values as a metric, calculating average

CIE ∆E from the white reference, to characterize the response of the paper-based devices,

and to correlate the response with the concentration of the analytes. Nonetheless, we notice

that the relationship is not monotonic and the CIE ∆E data from the different concen-

trations overlaps a lot. Still, the detection of lower contamination levels using traditional

image analysis remains challenging due to the small number of available data samples and

the insufficient utilization of the spatial information contained in the sensor pad images.

To overcome this challenge, we use the spectra data of the colorimetric response pads and

propose two kinds of classification models for differentiating contaminant levels with high test

accuracy. In the first model, we apply the sequential forward selection algorithm [  7 ] to select
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optimal wavelength features in combination with the k-NN classifier [  8 ] to discriminate five

contaminant levels. The second technique comprises principal component analysis (PCA)

used as a dimensionality reduction technique combined with the random forest (RF) classifier

[ 9 ] to classify five contaminant levels. Our proposed system is trained and evaluated on a

limited dataset of 126 spectral responses of five contamination levels. Our algorithms can

yield 77% and 87% average accuracy, respectively.

In Chapter 5, we present an overview of the base model, the pipelines and the comparison

of our proposed two classification models, and a phone-based narrow-band spectral imaging

system that can obtain the camera spectral response for accurate and precise heavy metals

analyses with the aid of a narrow bandpass filters in front of a cell phone’s camera lens.

1.5 Deep Learning Approach for Classifying Contamination Levels with Limited
Samples

To improve the accuracy of our previously developed paper-based devices for detecting

and measuring heavy metal contaminants (As3+ and Hg2+) in food or liquids, we explore some

deep learning methods because convolutional neural networks (CNN) have gained tremen-

dous popularity in computer vision, especially in the image classification domain for better

performance than popular image processing methods. Deep learning algorithms yield high

classification accuracy by using large, annotated datasets of images. Therefore, to develop

accurate image classifiers for the contamination-levels classification task, we needed a large

dataset of images of colorimetric responses. However, obtaining large-scale datasets of de-

tection images of contamination levels is challenging because of limited test samples.

In Chapter 6, we aim to solve the classification problem posed by a small scale of data

samples and large intra-class variance. To obtain large-scale datasets of detection images of

contamination levels, we explore traditional data augmentation and GAN-based augmenta-

tion techniques for synthesizing realistic colorimetric images; and we propose a CNN classifier

for five-contamination-levels classification. Our proposed system is trained and evaluated on

a limited dataset of 126 phone captured images of five contamination levels, and is com-

pared with our previous work. Our system yields 88.1% classification accuracy and 91.9%

precision, demonstrating the feasibility of this approach. We hope that the proposed meth-
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ods can be a strong candidate for phone-based contamination-levels detection. Because the

user need only take an image of the test response using his or her phone camera and feed

the captured image into the proposed model, the model can automatically classify the test

sample’s contamination level.
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2. PRINTING SYSTEMS AND PRINTING OPTIMIZATION

There are two main technologies in use in drop-on-demand (DOD) inkjet printers: thermal

DOD and piezoelectric DOD. In the thermal inkjet process, the print cartridges consist of

a series of tiny chambers, each containing a heater, all of which are constructed by pho-

tolithography. To eject a droplet from each chamber, a pulse of current is passed through

the heating element causing a rapid vaporization of the ink in the chamber and forming a

bubble, which causes a large pressure increase, propelling a droplet of ink onto the paper.

The ink’s surface tension, as well as the condensation and resultant contraction of the vapor

bubble, pulls a further charge of ink into the chamber through a narrow channel attached to

an ink reservoir. For a piezoelectric printer, the applied voltage can change the piezoelectric

material shape to generate a pressure pulse in the fluid, which forces a droplet of ink from

the nozzle.

2.1 Thermal Inkjet Printing System

There is a thermal inkjet printer: Thermal Inkjet PicoJet System (TIPS, HP brand),

in our Spira Lab. It has replaceable tips which has multiple nozzles per tip and the drop

volumes between 2 pl and 200 pl. Figure 2.1 shows the installation of TIPS. There are two

major printing parameters determining the quality of ejected drops. The detail information

of printing parameter optimization can be found in the Section 2.4. Since the working

temperature of this printing system varies according to the kinds of inks, we were concerned

that the high working temperature of this thermal inkjet printer could affect the activity of

the proteins during printing process.

2.2 Pieozoelectric Inkjet Printing System

We also have a pieozelectric inkjet printer in our Spira lab: PipeJet inkjet (BioFluidiX,

Freiburg, Germany). It has disposable pipes with a single nozzle. The range of ejected

volumes varies from 10 to 60 nL. Figure 2.2 shows the set up of the PipeJet printing system.
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Since ejection of the drops is caused by a pressure pulse, we believe that this printer cannot

affect the activity of proteins.

2.3 Protein Printing

To test the survivability of the protein and the functionality after thermal inkjet depo-

sition, we first did protein printing experiments [  10 ]. The basic idea is to print 4 different

kinds of protein in a substrate. A schematic of the experiment is shown in Figure 2.3. After

final printing, an examination of the glass slide under a fluorescent microscope revealed the

yellow letters, , as illustrated in Figure 2.4. It indicates that the printing did not interfere

significantly with the structures of the proteins, or at least their active sites. These results

suggest that the TIPS thermal inkjet printer can be used for high-throughout colorimetric

biochemical assays.

Figure 2.1. TIPS is mounted in a platform.
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2.4 Printing Optimization

Both electrophotographic (laser) and inkjet technologies can generate artifacts that limit

print quality: banding and dot gain, dot irregularity with creation of satellites. To have

a better print quality with inkjet, consistent droplets without satellites are required [ 11 ],

which can be achieved by tuning printing parameters. They can also influence the fabrication

process. For inkjet, these parameters include the print mode, print mask, and number of

print passes. To design the print masks for the DNA-based solution, the average droplet

volume and the average diameter of the deposited droplets on the substrate need to be

determined.

2.4.1 System

The inkjet systesm used for our current work is shown in Figure 2.5. The system consists

of an XY motorized stage (Anorad WKY-150) with an encoder resolution of 0.5 µm, an op-

Figure 2.2. Set up of the PipeJet printer system.
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Figure 2.3. Views of our protein printing pattern on a glass slide.

Figure 2.4. Fluorescent image of protein printing pattern.

tical system for ink ejection visualization, a stationary PipeJet piezoelectric droplet ejection

system with one nozzle of diameter 200 µm that can eject a single droplet in the range of

2 - 70 nL at an ejection frequency ranging from 1 to 100 Hz, and a stationary TIPS with

multiple nozzles that can eject a single droplet in the range of 2 - 200 pL [  12 ]. We use a visual

C-based printing software package to read an input bitmap image and pixel resolution, then

correlate the controller with dot positions. The controller sends trigger signals of ejection to

the printer at prescribed addresses when the stage moves beneath the printer [ 13 ][ 14 ].
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Figure 2.5. Inkjet system includes: (1) An XY motorized stage, (2) A PipeJet
printer, (3) An optical system.

2.4.2 Consistent droplets and their volume

One of the sources of artifacts in the inkjet process is the creation of satellites, which

occurs due to the separation of ink emerging from the nozzle exit. To view the ejection result,

we set up an optical system, as illustrated in Figure 2.5 [  13 ]. The optical system mainly

consists of a PipeJet Inkjet System or a TIPS Inkjet System, a SPiiPlus Series motion

controller, a stroboscope light, a CCD camera (Point Grey Flea3 USB3.0: FL3-GE-13Y3M-

C), and a three-axis optical table (NRC pneumatic isolation table type XL-A). A PipeJet

with one nozzle is installed on the top of the three-axis table and the nozzle exit is oriented

toward gravity. The controller sends the trigger signals to the printer, and also sends the

delay unit trigger signals to the stroboscope light. After the printer receives the trigger

signal, the images of the ejected droplets can be captured by the CCD camera, displayed on

the monitor screen, and stored in a file. Figure 2.6 shows the schematic view of the optical

system for viewing droplet formation. The detailed components of this optical system are

illustrated in Figure 2.7.
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Thermal Inkjet PicoJet System (TIPS)

The printing system can be tuned to produce droplets without satellites. For the TIPS

system, the key printing parameters are the operating voltage of the heating pulse (V) and

Figure 2.6. A schematic view of the optical system for viewing droplet formation.

Figure 2.7. The components of our optical system.
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the width of heating pulse (W). The print head was installed on the top of the work platform

and the TIP 43 nozzle exit was oriented toward gravity. We use Deionized (DI) water as

ink. The frequency of the heating pulse and the camera are fixed at 100 Hz, the operating

pulse width and pulse voltage are varied in a range from 0.06 to 0.58 µs with an increment

of 0.02 µs, and 15 to 29.25 V with an increment of 0.25 V, respectively.

As we tune the printing parameters during the ejection process, the ejection results can

be recorded, as illustrated in Figure 2.8. By observing the number of satellites from the

captured images, we make a table to record the printing results for different voltage and

pulse width, as illustrated in Figure 2.9. We notice that there are 79 pairs data (green area)

can satisfy no satellite during water ejection. We also observe that low voltage tends to

producing consistent droplets without satellites when printing a low viscosity fluid.

Figure 2.8. Temporal evolution of DI water ejection at V = 18.75 V and W =
0.18 µs. (a) Droplet just ejected from the nozzle exit; (b) Eyedrop-like shape;
(c, d) A round droplet flies away from the ejected water droplet, and one small
satellite droplet appears; (f) Main droplet and satellite merged together.
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Piezoelectric inkjet PicoJet system

For our PipeJet printer, there are two major printing parameters that can affect printing

quality: Stroke and Stroke velocity. The stroke is the ratio of the piston displacement to the

maximum displacement, and the stroke velocity is the velocity of the displacement of the

piston.

To find the relationship between the printing quality and printing parameters, we capture

the images of the ejection results when tuning the printing parameters, as illustrated in Figure

2.10. In our experiment, the ink is Deionized (DI) water, the frequency of the firing is fixed

at 100 Hz, the dispensing nozzle is Pipe 200, and the operating stroke and stroke velocity

Figure 2.9. The printing results at different voltages and pulse widths for the TIPS.

33



are varied in a range from 0 to 100% with an increment of 10%, and 0 to 100 µm/ms with

an increment of 10 µm/ms, respectively. The results are shown in Figure 2.11. We notice

that there are 14 pairs of data (green area) can satisfy no satellite during water ejection. For

low viscosity fluids, the tendency is to produce consistent droplets without satellites through

high stroke injection.

Figure 2.10. (a) The process of DI water drop ejection when the stroke and
the stroke velocity equal 0% and 80 µm/ms, respectively, resulting in only one
droplet. (b) The process of DI water drop ejection when the stroke and the
stroke velocity equal 0% and 90 µm/ms, respectively, resulting in one main
droplet and a satellite.

Figure 2.11. The printing results at different strokes and stroke velocities for
the PipeJet system.
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2.4.3 Dot Analysis

Dot diameter

To measure the average diameter of the drops produced by the PipeJet system after

impacting the substrate, we first design a test pattern which can quantify the measurement

of the dot size, and the presence or absence of satellites.

The test pattern we designed is a 10 × 10 pixel grid of single drops, each separated by a

single pixel. Hence, there are a total of 100 dots in the test pattern, as illustrated in Figure

2.12(a) [ 15 ]. The print mode parameters used to print the test pattern are as follows:

Printing frequency: 100 Hz, Stroke: 100%, Stroke velocity: 100 µm/ms, Unidirectional

printing, Media advance speed: 2 mm/s, Media return speed: 20 mm/s, Nozzle resolution:

200 µm, Ink: black ink (BCH), Substrate: Hi-flow HFC075, Standoff distance between the

print head and the substrate: 1 mm.

Then we scanned the printed test pattern using an EPSON 10000XL (Epson America,

Inc., Long Beach, CA, USA) flatbed scanner with resolution 1000 dpi, and obtained the

grayscale image, as illustrated in Figure 2.12(b). The threshold for the image binarization

is calculated using Otsu’s method to find the threshold that maximizes the between-class

variance [ 16 ]. Figure 2.12(c) shows the corresponding binary image. We then find the bound-

aries delimiting dot regions by vertically and horizontally projecting the data of the binary

image, as illustrated in Figure 2.12(d). With the aid of these boundaries, we can calculate

the total number of nonzero pixels for each dot. The average diameter of the dots can be

calculated using the following equation, assuming that each dot is circular.

D =
√

4 · N · S

π
, (2.1)

where N is the number of pixels of a dot, and S is the area of a pixel. Based on the above

image analysis pipeline, we calculate that the average diameter of droplets printed by TIP

with Nozzle 43 and PipeJet printer with Pipe 200 are about 51.46 µm, and 1004.10 µm,

respectively.
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Figure 2.12. (a) Test pattern for dots characterization, (b) Print result of
test pattern scanned at 1000 dpi with EPSON 10000XL with no satellites, (c)
Corresponding binary image, (d) Boundaries delimiting dot regions shown in
white.

Droplets placement accuracy

In order to control the printing quality, such as the straightness of a printed line, we need

to know how much accuracy of drop placement the printing system can achieve. The ideal

case is that centroids of the following black dots can be connected in a straight line, and

the distance between adjacent black dots is equal, as illustrated in Figure 2.13(a). Figure

2.13(b) shows that in practice, centroids of the black dots do not lie on the same line, and
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the distances between each adjacent black dots are unequal, which can affect the geometry

design of the dot array.

Figure 2.14 shows the schematic of the skew estimation and the misalignment measure-

ment. The total misalignment is estimated by computing the orthogonal distance between

the dot centroid and its row regression line.

Figure 2.13. Schematic of droplets placement accuracy.

To calculate the printed dots misalignment, we use the printed test pattern (10 × 10

dots) to do the following steps:

1. Calculate the centroid of each dot.

2. Find a fitting straight line to each of the rows or columns of dot centroids via linear

regression.

3. Calculate the angle of skew by finding the mean orthogonal regression line, as illus-

trated in Figure 2.14.

4. Calculate the orthogonal distance between centroids of dots and the corresponding

mean fitting line, which is shown in Figure 2.15.

Figures 2.16(a) and (b) show the distribution for the TIPS of computed misalignments

for 100 points in the row and column directions, respectively. The corresponding ranges of

misalignment values are [-50 , 30] and [-30 , 20] µm. Considering that the average diameter

of the ink droplets printed from TIPS is calculated to be 54 µm, the average misalignment

between ink droplets is relatively large. We also explore the drop placement accuracy of

the PipeJet printer. The results are shown in Figure 2.17. We find that the misalignment
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Figure 2.14. Skew estimation and misalignment measurement.

Figure 2.15. The orthogonal regression line of each row.

Figure 2.16. Misalignment results of each row and column (TIPS).

of most of the dots in the row and column directions is controlled in the range of [-50, 50]

µm. The maximum value of misalignment of each column is 218.44 µm. Compared with the

average drop size of 1004.10 µm, we can ignore the misalignment error. Therefore, from this

38



perspective, we believe that the PipeJet printer system is more qualified for our application.

Figure 2.17. Misalignment results of each row and column (PipeJet printer).

Dot compactness

Another printing quality is the shape of printed dots [  17 ]. The authors of the paper [  17 ]

use the compactness measure (δ) to quantitatively compare and assess the print quality of

different stochastic clustered-dot halftoning methods.

The equation of the compactness is

δ = A − 1
πR2 (2.2)

where A is the area of the shape under consideration and R is the radius of the minimum

enclosing circle of the shape.

Each printed dot is composed of many pixels. We treat each pixel as a point, and let the

set P denote all the points in a printed dot.

1. We find the convex hull of all points in the set P, let the set Q denote points in the

convex hull.
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2. We pick three points from Q, and find the minimum enclosing circle S that contains

those three points.

3. We calculate the distance d between every other point and the center of the circle S.

4. If the maximum of d is less than the radius of the circle S, that means every other

point in Q is inside the above circle S, then we are done.

5. If not, pick the point which lies furthest from the center, and find the enclosing circle

of those four points.

We repeat Steps 3 to 5 until no more points lie outside of the current minimum enclosing

circle [ 18 ][ 19 ].

Figure 2.18. The image processing of dots printed with the PipeJet system
(Stroke = 100% and stroke velocity = 50 um/ms).

To explore the compactness of the dots printed by the PipeJet system, we use the printed

test pattern (10×10 dots) with different values of stroke and stroke velocity yielding no

satellite to find enclosing circles of the printed dots. We notice that the circle passes through

center of some pixels, and not all the pixels are enclosed in the circle, as illustrated in Figure

2.18. The reason is that we treat a pixel as a point, but actually the size of a pixel is 1 ×

1. To solve this problem, we use subpixel interpolation to find the radius of the minimum

enclosing circle, as illustrated in Figure 2.19.
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Figure 2.19. The improvement of the enclosing circles of dots printed with
the PipeJet system (Stroke = 100 % and stroke velocity = 50 µm/ms).

We also validate our algorithm by comparing our calculated radius of the minimum

enclosing circle of the given halftone dots in [  17 ] with the radius given in the paper and

conclude that they are very close.

The authors reported in [  17 ] that the maximum compactness of the 24 dot clusters was

0.7. Table 2.1 shows the compactness of the dots printed with different values of stroke

and stroke velocity yielding no satellite. The average compactness of the dots printed with

different values of stroke and stroke velocity is about 0.7. So, we conclude that the PipeJet

printer system produces high quality printed ink drops.

Table 2.1. Compactness of the printed test patterns.
Stroke Velocity (µm/ms) 100 100 100 80 80 80 50 50

Stroke 100 80 5 100 80 10 100 80
Compactness (δ) 0.699 0.696 0.693 0.724 0.715 0.730 0.719 0.720
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2.4.4 Print mask design

According to the requirements of the printed volume and the size of each test or control

line, we can design the print mask and the number of printing cycles for the test and the

control line. The print head of a PipeJet printer consists of one nozzle which enables the

printing patterns to be easily formed.

The number of the droplets in the horizontal (vertical) direction equals the length (width)

of the test line divided by the average diameter of the dots, and the number of the printing

cycles equals the total target printed volume of a test line divided by the total volume of a

printing cycle. The calculation process is similar for a control line, except that the bio-inks

are different.

Figure 2.20 shows the print mask, which consists of two print patterns to be applied to

the test line. The optimized print mask provides better control of the printed DNA pattern.

The numbers in the print mask represent the sequence of the print-head passes over the

substrate. We spread out the drops to increase the time between the printing of adjacent

pixels. Here is how we define a cycle (or a layer): print one pass of pattern A, then print

one pass of pattern B. In our work, we print 15 cycles for the test line and the control line

of each test strip. So, each pixel in the test line and the control line receives a total of 15

drops.

2.4.5 Bio-printing experiment and test results

For each test line and control line, pathogen capture arrays are printed using the printing

system with the corresponding colorless bio-inks and the designed print patterns described

above. To verify that the PTS is functioning, we apply Aptamer-based assay test technology

to the PTSs to detect E. coli O157:H7 with different concentrations.

We describe the Aptamer-based assay test as follows: we add the Au-Ps particles (Gold

decorated Polysterene) in a solution with E. coli O157:H7, then drop the mixed solution on

the absorption pads (the end near to the test lines) of the PTSs [  6 ]. The mixed solution

will be drawn from the test zone to the control zone through capillary phenomena. After 20

minutes, two pink zones appear on each PTS. The test interpretation is described as follows:
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Figure 2.20. Print mask used to control the printing of a 4 mm × 1 mm line
of DNA solution. The printing is done in two passes defined as a cycle, using
pattern (a) and pattern (b), in sequence. Therefore, for a cycle, eight droplets
are ejected in each row and two droplets are ejected in each column.

the pink test line in the test zone is used to confirm the presence of E. coli O157:H7, and the

control lines are designed to confirm the functioning of the PTSs because the pink control

line still appears when the mixed solution without E. coli O157:H7 reaches the control zone.

Figures 2.21(a) and (b) show the test results of the PTSs used to detect the concentration

of E. coli O157:H7 with 0, 103, 104, 105, and 106 CFU/ml, respectively. The visible responses

in the control lines and test lines indicate that the PTS is able to sucessfully capture the

E. coli O157:H7. To determine the detection limit, another ten PTSs are used to detect

the concentration of E. coli O157:H7 with 102 CFU/ml. After doing the Aptamer-based

assay test on these PTSs, the pink lines appeared on the test lines and the control lines, as

illustrated in Figures 2.21(a) and (b). Therefore, we prove that our PTSs can capture E.

coli O157:H7 with limits of detection down to 102 CFU/ml.

2.5 Image Analysis via A Cell Phone Camera

We propose an image analysis method to assess the responses by using a mobile phone

camera. The metric that we used to characterize the responses in the test lines of the test
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Figure 2.21. (a) The test results of the PTSs used to detect the different
concentrations of E. coli O157:H7. The image is captured by a mobile phone
(iPhone 7 Plus). (b) Cropped version of test zones and the local background
of the test strips. (c) The original RGB images of the test zones and the
corresponding grayscale images. (d) The original RGB images of the test
zones and the final version of the corresponding binary images.

strips in this approach is the grayscale values, which is the sum of the CIE ∆E values of

the test line. The image of the test strips was captured in a Macbeth SpectraLight II light

booth (Gregtag Macbeth, New Windsor, NY, USA)) for providing a daylight environment

with a mobile phone camera, as illustrated in Figure 2.21(a). The test zone images and the

corresponding background images were cropped to 60 × 130, and 60 × 40 pixels, respectively,

using Adobe Photoshop and saved in TIFF format without compression, as illustrated in

Figure 2.21(b).

We transform the gamma-corrected sRGB values of these five images to linear RGB

values according to Eq. (2.3) [  20 ].

Ilinear =


IsRGB/255

12.92 , (IsRGB) ≤ 0.03928(
IsRGB/255+0.055

1+0.055

)2.4
, otherwise

(2.3)
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Then, these linear RGB values are converted into CIE XYZ values in the matrix trans-

formation step. 
X

Y

Z

 =


0.4124 0.3576 0.1805

0.2126 0.7151 0.0721

0.0193 0.1192 0.9505




Rl

Gl

Bl

 . (2.4)

We then transform CIE XYZ to the CIE L* a* b* color space, which is a uniform color

space.

L∗ = 116 × f( Y
Yn

) − 16

a∗ = 500 × [f( X
Xn

) − f( Y
Yn

)]

b∗ = 200 × [f( Y
Yn

) − f( Z
Zn

)].

(2.5)

Here, [Xn, Yn, Zn] is the reference white point, and f(t) is given by

f(t) =

 t
1
3 , t >

(
6
29

)3

1
3 ·

(
19
6

)2
t + 4

29 , otherwise
(2.6)

To obtain the corresponding gray scale images, we compute the ∆E value from the

background which is the color difference between the pixel values and the local background.

∆E =
√

(L∗ − Lavg)2 + (a∗ − aavg)2 + (b∗ − bavg)2, (2.7)

where (Lavg, aavg, bavg) are the average values from the local background. Then we nor-

malize the ∆E values of the images to the range [0, 255] [ 21 ][ 22 ].

Figure 2.21(c) shows the original RGB images and the corresponding grayscale images.

We use Otsu’s method to get the initial binary images. To get the final version of the binary

images, we use the 4-point connected component method to remove noise by calculating the

area of each component and making sure that the pixel values of the largest area are 1,

while the rest is 0. Figure 2.21(d) shows the original RGB images and the final version of

the binary images. With the aid of the binary images, the location of the responses in the

test lines can be defined. We use grayscale values as a metric, calculating the sum of ∆E
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values of the test lines, to characterize the responses in the test lines. Figure 2.22 shows the

relationship between the grayscale values and the concentration of E. coli O157:H7.

Figure 2.22. The plot of the cubic relationship between the grayscale values
and the concentration of E. coli O157:H7 was found by applying the least-
squares fitting method.

To assess the variation among the responses in test lines of test strips by correlating the

color intensity under a fixed concentration of 102 CFU/ml, we do the same image analysis

on the 10 test strips to obtain the grayscale images and the corresponding binary images, as

illustrated in Figures 2.23(c) and 2.23(d). The color intensity on the test lines on different

strips appears differently because of the variations in the mesh structure, the flow path, and

the shape of the test strips. Figure 2.24 shows a plot of the variation among the responses

of the test lines at the same concentration.

2.6 Conclusion

In this chapter, we propose a system for printing test strips to detect foodborne pathogens,

and image processing algorithms to analyze images of the exposed test strip that have been

captured with a mobile phone camera. The image processing algorithms are designed to

detect the presence a pathogen, and to estimate its concentration. The overall goal of the
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Figure 2.23. (a) Test results of PTSs used to detect E. coli O157:H7 with
the concentration 102 CFU/ml. The image is captured by a mobile phone
(iPhone 6 Plus). (b) Cropped version of test zones and two types of local
background of the test strips. (c) The original RGB images of the test zones
and the corresponding grayscale images. (d) The original RGB images of the
test zones and the final version of the corresponding binary images.

Figure 2.24. The plot of the variation of the grayscale values as a function of
test strip number. The mean and standard deviation of the sum of ∆E values
across the 10 test strips are 1.59 × 105 and 1.59 × 105, respectively.
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project is to develop a test system that is low-cost, and simple enough to implement in

the field. We believe that printing offers a manufacturing method that is low-cost, reliable,

and scalable. To date we have worked only with E. coli O157:H7. But we believe that our

framework could be applied to other food-borne pathogens, as well.

We show that the functioning PTS can detect the presence of foodborne pathogens; and

we confirm an Aptamer-based assay detection limit of 102 CFU/ml. The relationship between

the optical properties of the test lines and the different concentrations of the pathogen is also

investigated. Further research can include the optimization of printing layers that can reduce

material (bio-inks) cost and printing time, as well as an effort to reduce the sample-to-sample

variation in the response to low concentrations of E. coli O157:H7.
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3. DETECTION, IMAGING, AND QUANTIFICATION OF

DNA-BASED PATHOGEN BASED ON INKJET-PRINTED

TEST STRIPS

3.1 Introduction

The foodborne pathogen E. coli O157:H7 that produces toxins that damage the lining of

the intestine, is a worldwide threat to public health. E. coli O157:H7 can be easily found in

contaminated water and contaminated food, especially undercooked ground beef, milk and

juice, raw fruits and vegetables. And, E. coli O157:H7 infections from contaminated food

continue to occur regularly, and result in severe disease and even loss of life. Therefore,

a fast, reliable, and affordable biosensor is more and more in demand. Many traditional

lateral flow biosensors have been developed for foodborne pathogen detection. However,

most of these are laboratory-based and cannot be manufactured economically. To address

this problem, we incorporate printing and biomaterials technologies to design inkjet-printed

test strips (PTSs) that guarantee rapid, affordable, reliable, and reproducible detection of

the pathogens.

The detection result of biosensors can be determined by visual inspection or by a color

measuring device. To have a quantitative and objective color analysis, color measuring in-

struments are more favored. As digital technologies continue to develop, cheap and compact

image sensors are widely used in common electronics, like cell phones. The phone-based

imaging system is promising for signal detection due to the above features, and also is

emerging in different fields, such as high-resolution microscopy [  23 ] and fluorescence imaging

[ 24 ]. In our work, we propose a phone-based image processing algorithm to analyze images

of the exposed test strip that have been captured with a mobile phone camera.

Overall, we develop the inkjet printing process for producing the pattern for the capture

of E. coli O157:H7. The readouts of test results can be interpreted either by our image

analysis system or by the naked human eye. We prove that our PTSs can successfully detect

the presence of E. coli O157:H7 down to 102 CFU/ml [ 25 ].
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One of the conditions that a successful biosensor must be meet is that the detection

results show a low variation between assays. To measure response variations of our PTSs,

ten independent experiments were performed for the same concentrations of E. coli O157:H7

test solution to obtain statistically reliable data by dropping the same amount of test solution

onto the PTSs using a pipette. Figure 3.1 shows the color change in test zones for E. coli

O157:H7 with the concentration 102 CFU/ml. The visible responses in the test zone and

control zone indicate that the PTSs are able to successfully capture E. coli O157:H7 with

a low concentration. Visually, we notice that the response of the test zones varies. The

reasons are the following: (i) the random flow path of the reagents in the porous substrate

(natural cellulose paper: Hi-flow HFC075, EMD Millipore); (ii) the extra amount of the

bio-inks on the test zones increases the diffusion area; and (iii) the response intensity can be

varied by using different segmentation methods. We optimize this problem in two aspects:

the comparison of various image segmentation methods, and the optimization of the printing

process in print layers that can reduce the sample-to-sample variation.

In this work, we propose two methods that reduce the response variation between as-

says. First, we review the various well-used image segmentation methods and apply them

to detect the responses in the test lines of test strips. The usefulness of these segmentation

methods is evaluated by comparing the response variance of the corresponding segmenta-

tion results. Second, we propose the optimization of the printing process, and obtain less

response variation.

3.2 Image Segmentation Techniques

In order to quantify the response of detection results, a given phone-captured image needs

to be appropriately segmented, so that the test zone can be separated from the background in

the image. An example of phone-captured images is shown in Figure 3.1. The target region

will consist of a contiguous region of pixel locations indicating low brightness. And the back-

ground consists of pixels that correspond to brighter or higher intensity pixels surrounding

the target. However, there are some noisy black areas, such as scratches or black dots in the

background, which increases the difficulty of segmentation. Preprocessing is required before
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segmenting the test zones from the background. Based on the printing location of biomate-

rials, we crop the test zone containing detection information and background images, scale

them to 60 × 130 and 60 × 50 pixels, respectively, using Adobe Photoshop, and save them

in TIFF format without compression, as illustrated in Figure 3.2. Then, we transform the

gamma-corrected sRGB values of the digital images to the CIE L∗a∗b∗ color space, which

has a visually uniform distribution of colors and is closer to the human perception of color

differences than is sRGB. After transformation, an image difference matrix ∆E of each test

image is obtained by subtracting the test zone images from the corresponding background

image matrix using Equation (3.1).

∆E =
√

(L∗ − Lavg)2 + (a∗ − aavg)2 + (b∗ − bavg)2 (3.1)

where (Lavg, aavg, bavg) are the average values from the local background. Then, we normalize

the ∆E values of the images to the range [0, 255].

Figure 3.1. An image of test strips detecting the target at the concentration
of 102 CFU/ml.

Figure 3.2. The crop of just the test region for each test strip.
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Image segmentation is one of the most important steps of image processing, in which

an image is subdivided into several regions with the aid of pixel information, such as color,

intensity, and texture. A number of automatic segmentation methods have been developed

[ 26 ][ 27 ][ 28 ]. It is observed that the segmentation result can directly affect the subsequent

analysis, and there is not a best image segmentation method because different images have

different characteristics. Here, we evaluate how well several existing segmentation techniques

can determine the response signal in our PTSs when the boundary between the test zone

and the background region is unclear. In particular, we use Otsu’s method [  16 ], the valley-

emphasis method [  29 ], the twice Otsu method, the histogram thresholding using hierarchical

cluster analysis [  30 ], multi-level thresholding [  31 ][ 32 ], and a Support Vector Machine (SVM)

method [  33 ]. The usefulness of these segmentation methods is also evaluated in this chapter.

3.2.1 Otsu’s method

Otsu’s thresholding method is one of the best-known methods for automatic image seg-

mentation [  16 ]. Based on the histogram of a grayscale image, Otsu’s method finds the opti-

mal threshold t∗ that maximizes the between-class variance σ2
B(t). The optimal threshold is

expressed as follows:

t∗ = ArgMax0≤t<L{ω1(t)µ2
1(t) + ω2(t)µ2

2(t)} (3.2)

where L is the number of distinct gray values ranging from 0 to L - 1, ω1(t) and ω2(t) are the

probabilities of the two classes, and µ1(t) µ2(t) are the average gray values of the two classes.

This method works well when the histogram has a strongly bimodal distribution. However,

the segmentation result is poor when the histogram is close to an unimodal distribution, or

when the background variance is large.

3.2.2 The valley-emphasis method

The valley-emphasis segmentation is a weighted Otsu’s method. The idea of this method

is to select the optimal threshold value corresponding to a grayscale value that has a small
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probability of occurrence and also maximizes the between-class variance, as in Otsu’s method

[ 16 ]. The objective function of this method is expressed as:

t∗ = ArgMax0≤t<L{(1 − pt)(ω1(t)µ2
1(t) + ω2(t)µ2

2(t))} (3.3)

where pt is probability of occurrence of the grayscale value corresponding to the threshold t

[ 34 ].

3.2.3 The twice Otsu method

We can observe that the background variance is large for each image, so it is hard

for a single threshold segmentation algorithm to effectively segment the target test zones

from such kinds of background, as illustrated in Figure 3.3 O-7. It causes some of the

background pixels to be classified as foreground pixels. To address this problem, we apply

Otsu’s method again to the segmented image after the first application of the single Otsu’s

threshold method. One of the examples that the segmented image after second application

of single Otsu segmentation is shown in Figure 3.3 T-7, which is expected to remove extra

background regions. This method is referred to as the twice Otsu method [ 31 ]. In our

application, the criterion for an image to be treated with the twice Otsu method is that

the ratio between the height and the width of the foreground should be higher than an

empirically chosen threshold. We use 0.4 as the threshold in our application.

3.2.4 The histogram thresholding method

The histogram thresholding method using cluster analysis is adopted to segment images

with overlapping intensity distributions. Initially, every non-empty gray level is regarded as

a separate mode contained in a cluster. Then, the smallest distance pair is merged based on

the computation of distance between adjacent clusters. The distance between the clusters

Ck1 and Ck2 is defined as

Dist(Ck1, Ck2) = σ2
I (Ck1 ∪ Ck2)σ2

A(Ck1 ∪ Ck2) (3.4)
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where σ2
I (Ck1 ∪ Ck2) and σ2

A(Ck1 ∪ Ck2) are inter-class variance and intra-class variance,

respectively. σ2
I (Ck1 ∪Ck2) is the sum of the squared distances between the means of the two

clusters and the total mean of both clusters. And σ2
A(Ck1 ∪ Ck2) is the variance of all pixel

values in the merged cluster [ 29 ].

The optimal threshold for the m-level thresholding is obtained by iterating the previous

process until m groups of gray levels are obtained. For the two-level thresholding, we obtain

two clusters, C1 and C2, and the estimated threshold T1, which is the highest gray level of

the background.

3.2.5 The multilevel thresholding method

There is another multilevel segmentation method that is an extension of Otsu’s method,

called the multilevel thresholding method [  32 ]. Assume there are m thresholds, (t1,…,tm)

dividing the image into m classes. Then, the optimal thresholds can be determined by the

following equations:

Maximize J(t) = σ0 + σ1 + σ2 + . . . + σm

where σ0 = ω0(µ0 − µT )2

σ1 = ω1(µ1 − µT )2

σ2 = ω2(µ2 − µT )2 . . .

σm = ωm(µm − µT )2

(3.5)

where σ0, ..., σm, ω0, ..., ωm, and µ0, ..., µm, µT are the variance, the probability, the mean

intensity of each class, and the mean intensity for the whole image, respectively. Each of the

grayscale images in Figure 3.3 is divided into three classes with three optimal thresholds t1,

t2, and t3.

3.2.6 Support vector machine classifier

The support vector machine method [ 33 ] is a supervised machine learning algorithm that

has been applied to numerous classification problems. The key idea is to find the optimal
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hyperplane to separate two classes. The optimal hyperplane has a maximum margin between

it and the nearest data points of both classes, termed Support Vectors. From our image data,

we can observe that the grayscale values of the brightest pixels from the target are much

closer to or a little larger than the grayscale values of the darkest pixels from the background.

Therefore, due to overlapping intensity distributions and unclear boundaries, we choose the

soft margin SVM algorithm [  35 ] to apply to non-separable data. The training dataset is

defined as (xi, yi), i = 1, …, n where xi is the training sample and yi ∈ {−1, +1} is the class

label. The objective function is the dual representation of the maximum margin problem:

LD(α) = −
∑

ij
αiαjtitjxixj

subject to 0 ≤ αi ≤ C∑
i

αiti = 0

(3.6)

where the parameter C controls the trade-off between the training error and the margin, and

the αi’s are the Lagrange multipliers. The optimal hyperplane is given by:

f(x) = wT x + b

where w =
∑

i
αitixi

(3.7)

Here, w is the surface normal to the hyperplane, and ‖b‖/‖w‖ represents the perpendicular

distance between the hyperplane and the origin. The features adopted for classification in

this work consist of normalized values of the grayscale images, and the CIE L∗a∗b∗ values at

each pixel position. Drawing on the training experience of medical image processing [ 35 ][ 36 ],

we employ a subject-specific training scenario. The golden standard segmentation results

of the training images are obtained by manual segmentation based on the results from the

multilevel thresholding method and morphological operations. The ten images used as the

training set consist of 10,000 test zones data samples and 20,000 background data samples.
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3.2.7 Data analysis

Figure 3.3 shows the final versions of binary results using the above six segmentation

methods combined with a 4-point connected component method. It can be seen that the

segmentation results of Otsu’s and the valley-emphasis methods are very close, and they can

detect the presence of test zones. However, when the images have poor signal-to-noise ratio,

neither method can precisely segment the test zone, as illustrated in Figures 3.3 O-7 and

V-7. The twice Otsu method can extract the refined test zone from the background. For

most images, the histogram thresholding method mainly segments a significant part of the

test zone with larger grayscale values, but this can cause information loss, as illustrated in

Figure 3.3 H-5. Compared with the SVM method, the detection results of the multilevel

Figure 3.3. The original images, grayscale images, and segmentation results
for test images by the selected methods. (G, O, V, T, H, M, and S represent the
abbreviation of the ground truth segmentation result, Otsu’s method, valley-
emphasis method, twice-Otsu method, histogram thresholding method, multi
threshholding, and SVM, respectively.)
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thresholding method are more refined. The segmentation results of the SVM method are

mostly determined by the training data. For example, a training set with a low brightness

contrast between the target origin and the background leads to a classifier that has a greater

probability of confusing overlapping intensities of foregrounds and backgrounds, as illustrated

in Figure 3.3 S-10. The segmentation results indicate that the multilevel thresholding method

will extract the relatively bright region in the grayscale image.

To assess the variation among the responses in the test lines, we use the sum of ∆E from

the detected region as the metric to quantify the visual response. Figure 3.4 shows graphs of

the variations of the grayscale values for each test strip based on the metric and the selected

segmentation methods. When analyzing the variation in the response results of the Otsu’s

method, the valley-emphasis method, and the multilevel thresholding method, we observe

that the data of these three plots follow the same trend since they are all related to Otsu’s

method. For the first two methods, 70% of the data is located in the area comprising the

mean ± 1 SD (Standard Deviation), while the response of the multilevel thresholding result

varies greatly. 70% of the data values from the twice Otsu method are also located in the

area comprising the mean ± 1 SD, while they are more concentrated more closely near the

mean. The variation result of the histogram thresholding method shows that 60% of the

data is distributed in the mean ± 1 SD. More data values spread out from the mean in the

histogram thresholding method because of the incomplete extracted pattern. Although the

binary results of the multilevel threshold method are better, its response variation is large.

The plot of the SVM method shows that 80% of the data is located in the mean ± 1 SD.

We measure the variation among the responses as the percentage of total data distributed in

the interval of the mean ± 1 SD. We can then note that the SVM method yields the highest

percentage of total data distributed in the mean ± 1 SD interval. Overall, we conclude that

the SVM method can segment test zones quite accurately and presents less variation of color

response in the test zones.
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Figure 3.4. The plots of the variation of the grayscale values as a function
of the index of test strips for the different segmentation methods.
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3.3 The Optimization of the Printing Process

The extra amounts of bio-inks printed on substrates increases the diffusion areas of the

test lines. To address this problem, we optimize the print layers for test lines and control

lines in the test strips. To find the optimal print number of layers of drop deposition, it is

advantageous to observe the color change in test strips based on the different numbers of

print layers. Here we use the checkerboard print mask [  25 ] which has been previously shown

to provide better control of the printed DNA pattern.

Figure 3.5 shows the image of the response signal in the test strips with varying numbers

of print layers (from 4 to 9 layers) captured by a mobile phone camera. For the target

concentration at 103 CFU/ml, we notice that we could observe a visible color change on the

test strips printed with 9 layers compared with other numbers of print layers. Since we wish

to minimize the number of print layers, we chose 9 layers as the optimal minimum number

of layers to print the solution on the test strip.

Figure 3.5. An image of the response signal in the test strips with varying
numbers of print layers captured by a mobile phone camera.

3.4 Conclusion

The response variation of the optical properties of the test lines detecting the target at the

same concentration is investigated. To reduce the sample-to-sample variation in response to

E. coli O157:H7, as well as an effort to reduce material cost and printing time, we optimize

the numbers of print layers. An analysis of the response variation using various image

segmentation methods has also been given. We evaluate selected thresholding methods for

test zone images with the extracted patterns. And one example with ten samples has been

provided to show the comparison of the response variations using these methods. We observe
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that the proposed SVM method has the least response variance. Also, we show that there is

a less sample-to-sample variation of response signals in the test strips with the optimal set

of printing layers.
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4. PRINTING SYSTEM AND TRADITIONAL IMAGE

ANALYSIS MODEL FOR HEAVY METAL DETECTION

4.1 Introduction

Nowadays, safety in food becomes critical. The main two types of threats related to

food safety are foodborne pathogens and heavy metals [  37 ][ 38 ]. One of the most common

foodborne pathogens that can be found in our daily food is E. coli O157:H7. It can produce

toxins that damage the lining of the intestine, cause bloody diarrhea, and sometimes result

in kidney failure and even death. Human infections with E. coli O157:H7 are associated

with the consumption of contaminated water and contaminated food, especially undercooked

ground beef, milk and juice, raw fruits and vegetables. Moreover, such infections continue

to occur regularly and result in severe disease and even loss of life. Therefore, it is crucial

to develop an affordable, rapid, and simple method for detecting E. coli O157:H7.

To date, the widely used pathogen detections methods include culture-based counting,

polymerase chain reaction (PCR), and enzyme-linked immunosorbent assay (ELISA). Among

these methods, a plate culture takes 2-3 days to identify the suspected pathogens, and

PCR involves laborious procedures. ELISA, which offers rapid detection, precision, high

throughput, and low cost has attracted considerable interest; and it has a low detection

limit of 104 CFU/mL [  39 ]. To further push the limit of detection, our group incorporated

printing and biomaterials technologies to develop inkjet printing lateral flow test strips for

aptamer-based pathogen detection, and designed an image analysis method to characterize

and quantify the response in the biosensors to statistically prove that the detection limit of

our biosensor is 102CFU/mL [ 40 ][ 25 ].

Beyond the foodborne pathogen E. coli O157:H7, we notice that the presence of heavy

metals in food chains also poses a threat to public health. Heavy metals, including Mercury

(Hg), Arsenic (As), Copper (Cu), and so on can be enriched in living tissue through food

chains and have been proven harmful to human health at low concentrations. Currently,

heavy metal detection methods used are Mass spectroscopy, Atomic Emission Spectroscopy,

Potentiometric Methods, and so on [  41 ][ 42 ][ 43 ][ 44 ]. These methods are sensitive but expen-

sive and require expensive equipment, trained personnel and cannot support on-site detec-
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tion. Therefore, rapid detection methods for heavy metal pollutants are more and more in

demand.

During the last few decades, a wide variety of microfluidic paper-based biosensors have

been successfully developed, demonstrating powerful tools for detecting food and environ-

mental contamination [  45 ][ 46 ]. Microfluidic paper-based analytic devices (µPADs), devel-

oped in 2007 by Whiteside’s team, have the characteristic of controlling a fluid motion via

capillary force through specially designed microfluidic channel patterns on cellulose paper.

As the major component of µPADs, cellulose papers with flexible porous fiber structure can

wick liquids in small volumes without the need for external pumping equipment. The major

task in the fabrication of µPADs is to create well-defined, millimeter-sized dimensional chan-

nels, comprising hydrophilic paper bounded by hydrophobic materials (wax or UV-curable

inks) on cellulose papers. The heavy metals can be detected by gold nanoparticles (AuNPs)

usually preloaded in reaction zones by providing colorimetric signals in biosensors. The col-

orimetric signals in the detection zones are commonly collected using a professional digital

camera or a high-resolution scanner. Then, the color intensity of the signal in the captured

images will be analyzed by some open source software. Unsurprisingly, µPADs have gained

great attention due to their ease of use, low cost, amenability to colorimetric detection, and

little test sample consumption.

To detect multiple targets in one test, which is hard to achieve with traditional lateral

flow strips, our group focuses on developing a novel paper-based biosensor for colorimetric

detection of two types of heavy metals: As and Hg. In this work, we first present paper-based

devices fabricated by different technologies –different materials used to pattern hydrophobic

walls across chromatography paper. Second, we propose preliminary patterns for multiple

and multiplexed detection. Then, we detect the heavy metals at different concentrations to

validate our approach. Finally, our optical system and image analysis pipeline guarantee to

obtain consistent data acquisition captured by a mobile phone camera, and deliver quanti-

tative responses to correlate the colorimetric change of the biosensors to the concentration

of the target substance.
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4.2 Experimental Details

The major task in fabrication of µPADs is to create well-defined microfluidic channels,

comprising hydrophilic paper bounded by hydrophobic materials. Among the available man-

ufacturing technologies in the market, three techniques that are mainly employed are inkjet

printing, wax screen printing, and UV-curable ink screen printing [ 47 ][ 48 ][ 49 ].

4.2.1 Manufacturing methods

To compare the different manufacturing methods, we pattern the paper with some mate-

rials (like wax, or UV-curable inks) to form the hydrophobic boundaries on hydrophilic paper

in three different ways: (i) inkjet printing with UV-curable ink, (ii) wax screen printing, (iii)

UV-curable ink screen printing.

4.2.2 Inkjet printing with UV-curable ink

To precisely control the amount of UV-curable inks, a piezoelectric inkjet printer PipeJet

(BioFluidiX, Freiburg, Germany) with deposition of single droplets in the range of 2 - 70 nL

is used to print UV-curable inks onto the substrates, as is illustrated in Figure 4.1.

The hydrophobic wall is then generated by a UV lamp illuminating the printed UV-

curable ink on the filter paper. Meanwhile, the unprinted regions retain their hydrophilic

properties. We notice that the actual channel width is much smaller than the nominal

width after the printing due to the long printing time; and the fact that the solvent of the

UV-curable ink spreads faster than the pigment, as illustrated in Figure 4.5(a). Here, the

pigment defines a channel of width 4.5 mm, whereas the channel defined by the spread of

the solvent is only 1.5 mm wide.

4.2.3 Wax screen printing

Screen printing is a well-known, simple, low-cost, and reproducible technique used for

printing designed patterns on clothing and other materials. For screen printing, the ink

is rubbed through the screen stencil to the substrate to form hydrophobic barriers. The
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Figure 4.1. Inkjet system includes: (1) An XY motorized stage, (2) A PipeJet
printer, (3) An optical system.

fabrication steps of the screen stencil for screen printing are shown in Figure 4.2. To make

a stencil, we first apply specific emulsion coatings into the screen and put the mask above it

under a UV light to be cured, thereby the meshes under the transparent area of the mask

will be filled by the cured emulsion coatings. In contrast, the emulsion coatings under the

black area of the mask will be rinsed off, as shown in Figures 4.2(c), 4.2(d), and 4.2(e).

Therefore, black areas of the mask can generate a hydrophobic area on the substrate.

For wax screen printing, the wax is rubbed through the screen stencil with a squeegee to

the filter paper. The printed paper is then heat-treated at 100 ◦C for 45 seconds; so that the

wax can melt and spread vertically and laterally into the paper to form hydrophobic wax

barriers. Finally, the printed paper is cooled to room temperature.

Since the melted wax also laterally spreads, which can impact the final pattern dimen-

sions, we study the relationship between the printing and the resulting width after melting

the wax. To evaluate this and the smallest hydrophobic barrier width, we generate patterns

with constant whole length and widths but varying the middle edges from 1 mm to 2 mm

with an increment of 0.2 mm, as illustrated in Figures 4.2(a) and 4.2(b). Here, a 110 mesh

nylon is considered. We drop the red food dye onto the hydrophilic substrate to increase the

color difference between the background and the white wax, so that the white wax can be

easily separated from the background in the image by applying Otsu’s method. We capture
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Figure 4.2. Fabrication steps of making a stencil for screen printing method:
(a) a digital pattern, (b) the digital design is printed in a transparent film with
a laser printer, (c) a screen is coated with an orange emulsion which is light
sensitive, (d) the printed pattern is pressed against the screen and exposed
to UV-light to harden the emulsion, (e) after washing the screen, a stencil of
the digital design is created, (f) a substrate is placed under the screen, which
is fixed with two G clamps, and inks can be rubbed through the mesh of the
white areas onto the substrate by a squeegee.

the images of the samples using a QEA PIAS-II (QEA, Inc., Billerica, MA, USA) camera

with resolution 1080.5 dpi and a field of view of 24.07 mm × 18.05 mm. An example of the

image is shown in Figure 4.3(b).

Given an image containing a rotated pattern at an unknown angle, we can correct its skew

in the following steps: (i) find the edge using the Canny method, (ii) calculate its convex hull

and the minimum bounding rectangle (the red box in Figure 4.3(d)), (iii) rotate the image

based on the slope of one side of the rectangle to correct for the skew. After correcting

for the skew, we extract the edge of the middle barrier and calculate the average width by

performing a vertical projection to record the distance between the left and the right position

of each row. Then the average values of these distances are calculated as the average width

of the middle barrier. To measure the width variations, three independent experiments are
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performed to obtain statistically reliable data. Figure 4.3(e) shows the relationship between

the printing and the resulting width after melting the wax.

Figure 4.3. The relationship between the resulting width after melting the
wax and the wax’s printed width in front of the substrates: (a) digital patterns,
(b) sRGB image captured by a QEA PIAS camera, (c) binary image, (d)
correction for the skew, (e) result of statistical fit between the resulting width
and the printing width.

As seen from Figure 4.3(e), the relationship between the printing width and the resulting

width can be fitted as y = 0.47x +1.46, with a coefficient of determination (R2) 0.8373, thus

showing a reasonably linear relationship. Each error bar represents the standard deviation of

the corresponding three independent experiments. In addition, the resulting width may be

affected by the different materials of the solid wax, the different mesh sizes, and the varying

force pushing the ink through the screen. Therefore, it is anticipated that the fitting line

will vary for the different printing parameters. To explore the hydrophobicity of the printed

middle barrier, we print the digital patterns in Figure 4.3(a) and place them in the food dye

solution to find the minimum barrier width that could be hydrophobic. We determine that
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the minimum hydrophobic barrier that can prevent the food dye solution penetration is 1.5

mm. Figure 4.4(a) shows an example of the hydrophobic barriers printed with wax.

Figure 4.4. (a) An example of the hydrophobic property of the barriers
patterned with wax screen printing. (b) Hydrophobic testing of the barrier
patterned with UV-curable ink screen printing.

Figure 4.3(b) and Figure 4.5(b) show that the wax spreads unevenly after heating on a

hot plate, therefore causing low-resolution printing. Based on this observation, we did not

further explore how the mesh size and the different materials of the wax affect the resulting

width after melting the wax.

Figure 4.5. Results of three fabrication methods: (a) inkjet printing, (b) wax
screen printing, (c) UV-curable ink screen printing.

4.2.4 UV-curable ink screen printing

For UV-curable ink screen printing, the UV-curable inks are rubbed using a squeegee,

and then the screened paper is cured under a UV light to create the hydrophobic barriers

on the filter paper.
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The mesh size of the screen can affect the ink volumes, which further affects the printed

result. To determine the resolution of our UV-curable screen printing method, we study

the final width of the hydrophobic wall in the different screen mesh sizes. Here, screen

frames with 110, 230, and 330 mesh nylons (Victory Factory, NY, USA) are considered. The

numbers 110, 230 and 330 refer to the mesh count per cm.

Commercial screen-printing UV-curable inks are not suitable for patterning hydrophobic

barriers on filter paper because their viscosity is too high to fully penetrate the substrates. To

find the UV-curable inks’ optimal penetrating ability, we prepare different proportions of pure

UV-curable inks (Ultra Switch UVSW180, Maribu, Barcelona, Spain) and Thinner (UVV6

Thinner, Maribu, Barcelona, Spain) used to lower the ink viscosity for the experiments. Here,

a pure UV-curable ink, one portion of UVSW 180 mixed with one portion of UVV6 Thinner

(1:1), two portions of UVSW 180 mixed with one portion of UVV6 Thinner (2:1), and three

portions of UVSW 180 mixed with one portion of UVV6 Thinner (3:1) are considered.

For each mesh size, we study the relationship between the resulting width and the nominal

printing width of four types of inks. To evaluate this and the smallest hydrophobic barrier

width, we design the patterns with varying widths from 1 pixel to 12 pixels (1 pixel =

0.353 mm), as shown in Figure 4.6(a). Figures 4.6(b) and 4.6(c) show the front and the

back of the printing using the pure UV-curable inks. To measure the width variations,

three independent experiments are performed. We use the same image analysis pipeline as

the wax-screen printing to calculate the average widths of the middle barries of the UV-

curable inks. Figures 4.7(a), 4.7(b), and 4.7(c) show the plots of the resulting widths in

front versus the nominal printing widths of four kinds of inks. For each type of screen, the

resulting widths are linearly fitted with the nominal printing width, with R2 ranging from

0.9934 to 0.9995, thus showing an excellent linear relationship for each type of ink. The

error bars represent the standard deviation of each three independent experiments. The

relative standard deviations of the barrier printed by 3:1 inks are less than 13%, which

shows evidence of the controlled widths and acceptable reproducibility. Besides, the printed

middle barriers of 3:1 inks maintain better penetrability to yield a good hydrophobic ability.

Thus, we conclude that the 3:1 inks are the optimal ink mixture for our UV-curable ink

screen printing. To explore the hydrophobicity of the printed barrier, we place the printed
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patterns in a red dye solution to find the minimum barrier width that could be hydrophobic.

As seen in Figure 4.4(b), starting from the 9th sample, no pink solution passes through

the intermediate barrier near the top of the test strip. The nominal width of the middle

barrier for the 9th sample is 9 pixels (1 pixel = 0.353 mm), which corresponds to 3.17 mm.

Therefore, we conclude that the smallest nominal hydrophobic barrier of 3:1 inks is 9 pixels.

Figure 4.6. Result of UV-curable ink screen printing: (a) digital patterns,
(b) photograph of the front of the patterning using UV-curable ink screen
printing, (c) photograph of the back of the patterning using UV-curable ink
screen printing.

Figure 4.5 shows the comparison between the above three fabrication methods of the

hydrophobic barriers. The result of the UV-curable ink screen printing shows that the

diffusion of UV-curable ink is more uniform, and the variation of the boundary width is

smaller, as illustrated in Figure 4.5(c). Considering the requirements of cost and resolution,

69



Figure 4.7. Plots of linear fit between the resulting width and the nominal
printing width: (a) the linearly fitting lines for mesh 110 are: y = 0.9881x +
0.5699, y = 1.0784x + 0.5779, y = 1.0425x + 0.6412, and y = 1.0342x + 0.6691,
(b) the linearly fitting lines for mesh 230 are: y = 0.9874x + 0.4854, y =
1.0683x + 0.2963, y = 0.8942x + 0.7585, and y = 1.0285x + 0.3675, (c) the
linearly fitting lines for mesh 350 are: y = 0.9849x + 0.4364, y = 1.0518x +
0.2582, y = 0.9917x + 0.3345, and y = 0.9442x + 0.5620.
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we choose UV-curable ink screen printing as the fabrication method for our fluidics paper-

based biosensors.

4.2.5 Materials

Paper-based devices are made from Whatman chromatography filter paper (Grade No.1,

20 cm width × 20 cm length). Screen stencils on aluminum frames with 230 polyester

meshes (mesh opening 55 µm, Victory Factory, NY, USA), and UV curable inks (Ultra

Switch UVSW180 and UVV6 Thinner, Maribu, Barcelona, Spain) are used to pattern the

hydrophobic walls on the filter paper.

4.2.6 Fabrication of fluidic paper-based device

We design the digital pattern (mask) on a computer using graphics software (Adobe

Illustrator CC 2019), and print it on a transparent film (Lexmark, 12A8240, KY, USA))

with a laser printer (HP LaserJet 500 color MFP, USA).

To improve the penetrating ability of the UV-curable ink, one portion of UVSW 180 and

three portions of UVV6 Thinner are mixed and stirred manually. The ink mixture is rubbed

through the screen stencil with a squeegee to the filter paper. Owing to the porous structure

of the filter paper, the low viscosity UV-curable inks can penetrate into the paper to form

well-defined channels on the paper. Finally, the patterned papers are placed under a UV

light (120 w/cm, 3 min) to be cured to form the hydrophobic walls.

4.3 Preliminary Pattern Design

To simplify our model, we start with a single target detection with two replicates. As

shown in Figure 4.8, the fluidics paper-based device consists of two circular detection zones

(diameter D), one central inlet for depositing the sample solution, and two fluidics channels

(whole length L, channel width d). Therefore, there are three parameters to be determined:

d, L, and D.

For channel width d, we have two main requirements: yield fast flow velocity and less

solution loss in the path. We vary the values of d from 1 to 6 mm with an increment of 1
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mm to observe the flow velocity and solution loss. Figure 4.9 shows the relationship between

d and the flow distance of 100 µl DI water, which flows fastest when the channel width d

equals 4 mm.

Moreover, we choose the value of L, the channel length, by pipetting 20 µl aptamer-labels

on two test zones to measure the smallest channel length that prevents overlap after the label

diffusion. For the optimal value of D (circle diameter), we vary the diameter values from 8

mm to 12 mm with an increment of 2 mm, to choose the one that has the most visible color

change by dropping the same amount of aptamer-labels on test areas.

To detect multiple pathogens in one test, we add two more test areas to the paper-based

device. The details of the size and shape of our fluidics paper-based device are shown in

Figure 4.10(a). The diameter of all the circular pads is 8 mm, and the length of the entire

fluidic channel is 20 mm, whereas the width is 4 mm.

4.4 Signal Quantification

The common way to quantity the colorimetric detection of biosensors is to take pictures

of the device with an expensive, high resolution and professional digital camera or micro-

scope, then analyze the images to obtain the color values using ImageJ software or Adobe

Figure 4.8. Digital pattern with 2 test areas (the black area is the hydropho-
bic part generated by the UV-curable inks, the white area is paper).
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software. Currently, mobile phones have become a popular and accessible platform for diag-

nostic systems due to the integration of cameras and light-sensors [  50 ]. Motivated by these

findings, we set up an optical system to capture images using a mobile phone camera of dif-

ferent batches of biosensors by an optical system in a consistent and controlled illumination

environment. Furthermore, the image analysis pipeline designed by our group is enabled

to provide on-site recognition of the biosensors, characterization, and quantification of the

colorimetric signals from the biosensors with minimal delay.

Figure 4.9. The optimization of channel width d: (a) Digital patterns with
different channel widths, (b) Flow distance of DI water on the channels with
different widths. (Droplet volume = 100 µl).
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4.4.1 Colorimetric detection

For the fabrication of the biosensor, 5 µl of the aptamer-functionalized particles (ssDNA-

PEI-Au-Ps) binding to Hg2+ (the number corresponds to the ion charge) is added to each of

the upper two circular pads, and 5 µl of apatamer-functionalized particles specific to As3+

is preloaded on each of the lower two circular pads, as shown in Figure 4.10(b). These four

pads serve as the colorimetric labels. The biosensor is dried at room temperature for around

10 minutes. To detect the analytes in the test samples, 100 µl of test samples with nine

different concentrations of As3+, or Hg2+ were dropped in the inlet of the biosensors, from

which the solution flowed evenly until reaching the testing areas. There is a colorimetric

response in the presence of the target after the test solution interacts with the colorimetric

label deposited on each of the testing areas. The color of the target testing areas gradually

changes from light pink to deep purple as the concentration increases from 0 ppm to 30 ppm.

Then, there is a dramatic color change from deep gray to light gray for a higher concentration

test, from 50 ppm to 100 ppm.

Figure 4.10. The digital patterns: (a) Preliminary pattern design for flu-
idics paper-based devices with 4 test areas (detail of the size and shape), (b)
The preloaded location of the two types of aptamer-functionalized particles
(ssDNA-PEI-Au-Ps).
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4.4.2 Data acquisition

The colorimetric signals in the detection zones are captured by our optical system, as

illustrated in Figure 4.11(a). The optical system mainly consists of a photo studio booth

(Amzdeal, 16 ×16, 6500K, purchased from Amazon.com) for providing the controlled D65

illumination environment, a mobile phone camera (iPhone 11 Pro Max, CA, USA), and

a fixture to hold the mobile phone. One of the most significant reasons for poor quality

images taken is shadows or uneven illumination. To verify the illumination stability of our

optical system, ten images of a sheet of paper are taken under the same optical setting in

the morning, and afternoon of the day, respectively. The photos are then converted to CIE

L∗a∗b∗ color space, which is used to analyze the variance of the L∗ values. As an example,

Figure 4.11(b) shows the L∗ value map for an image of the sheet of paper. From this example,

it can be concluded that the illumination variation of the captured image is pretty low. Also,

the standard deviation of the L∗ values averaged over each page, and then averaged over the

10 pages is 0.19, which again, suggests that the illumination variation of the captured image

is low.

Figure 4.11. (a) The schematic view of the optical system for capturing
images, (b) The distribution of L∗ values of the image of a sheet of white
paper.
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4.4.3 Template matching

For our experiment, we captured images of eight biosensors with each photograph. The

approximate resolution of each biosensor is 400 × 400 pixels. Figure 4.12(a) shows one of

the images captured using our optical system.

The first step in our image analysis pipeline is to identify the region of the captured image

corresponding to each of the 8 biosensors. To accomplish this task, we perform template

matching [  51 ]. One template image (400 × 400 pixels), including a fabricated biosensor, is

chosen to recognize the positions of all biosensors in the source image by labeling all the

detected positions of each biosensor using red squares (Figure 4.12(a)) and recording the

centroid coordinates of each red square as shown in Figure 4.12(b). Unfortunately, after

application of the template matching method to the captured images, the position of each

biosensor is detected multiple times, as shown by the thick borders of the red squares in

Figure 4.12(a) and by each red pixel cluster in Figure 4.12(b), corresponding to one of the

eight biosensors. We will refine our estimates of the biosensor locations using the K-means

algorithm, as discussed next.

4.4.4 K-means clustering method

We generate a distribution of the centroids of the red squares, where the two dimensions

are the pixel indices in the x and y direction, as shown in Figure 4.12(b). Each red cluster

composed of some red dots in Figure 4.12(b) corresponds to all centroid positions of a

biosensor detected by the template matching method. To refine our estimates of the biosensor

locations, we then apply the K-means algorithm [  52 ] to compute a centroid for each cluster,

as shown by the blue dots in Figure 4.12(b). Finally, the individual biosensor images are

cropped based on the blue squares determined by the blue dots and saved in TIFF format

without compression, as illustrated in Figure 4.12(c).
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4.4.5 Image analysis pipeline

After a region of interest is identified, the region of interest is further processed to obtain

a quantified measurement of the results. We use image analysis methods to characterize the

response of our fluidics paper-based devices to the heavy metals, due to colorimetric changes

in the region of interest. We propose an image analysis method to assess the responses by

using a mobile phone camera. In this approach, the metric that we use to characterize the

responses in each circular detection zone is based on the average grayscale value, which is

the average CIE ∆E value in the detection zone. Here, the ∆E value is calculated as the

difference between the average L∗ value of test area and the average L∗ value of a region

located in the central inlet. Our image analysis process involves two steps: segmentation of

the detection zone or test area and colorimetric signal quantification.

Figure 4.12. The process of extracting the region of interest: (a) The tem-
plate matching result (the thick borders of red squares show that each ROI
has been recognized many times), (b) The distribution of the centroid coordi-
nates (red dots) of the red squares, and the centroid coordinate (blue dot) for
each red cluster, (c) The classification results after using K-means algorithm
to partition the coordinates of the red squares into 8 regions.
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4.4.6 Image segmentation

Image segmentation is one of the essential operations in image processing, in which an

image is subdivided into several regions with the aid of pixel information, such as color,

lightness, and texture. A number of automatic segmentation methods and unsupervised

methods have been developed [  16 ][ 28 ]. It is observed that the segmentation result can directly

affect the subsequent analysis, and there is no universal or best image segmentation method

because different images have different characteristics.

In this section, we focus on a hybrid segmentation approach based on Otsu’s method and

the K-means clustering method. The first step is to detect the whole channel of each biosensor

using Otsu’s method. Then, we apply the K-means clustering method to the channels

obtained by the boundary detection to segment the test area from the white background.

Finally, a morphological operation is applied to remove the noise and boundaries of the

channels. The flow chart of the proposed segmentation method is illustrated in Figure 4.13.

Figure 4.13. Flow chart of the proposed segmentation method.
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4.4.7 Otsu’s method

Otsu’s thresholding method [  16 ] is one of the best-known methods for automatic image

segmentation. Based on the histogram of a grayscale image, Otsu’s method finds the optimal

threshold t∗ that maximizes the between-class variance.

To obtain the grayscale images, we transform the gamma-corrected sRGB values of each

digital image (Figure 4.14(a)) to CIE L∗a∗b∗ color space, which has a visually uniform

distribution of colors and is closer to human perception of color differences than is sRGB.

After transformation, an image difference matrix ∆E of each test image is obtained by

subtracting the average L∗a∗b∗ value in the central inlet of the biosensor from the test zone

images using Equation (4.1),

∆E(i, j) =√
(L∗(i, j) − L∗

avg)2 + (a∗(i, j) − a∗
avg)2 + (b∗(i, j) − b∗

avg)2
(4.1)

where (i, j) denotes the pixel indices and
(
L∗

avg, a∗
avg, b∗

avg

)
is the average value in the central

inlet. Then, we normalize the ∆E values of the images to the range [0, 255] to obtain our

grayscale image for each biosensor, as shown in Figure 4.14(b).

Figure 4.14. Results of the proposed hybrid segmentation approach based
on Otsu’s method and the K-means clustering method: (a) Original sRGB
images, (b) Grayscale images, (c) Channel detection results, (d) Testing areas
detection results, (e) Final segmentation results after applying a morphological
closing operation.
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Otsu’s thresholding method works well in segmenting the channels from the black hy-

drophobic area because the histogram of each image, including the channels, has a strongly

bimodal distribution. Figure 4.14(c) shows the channel segmentation results.

4.4.8 Feature selection and K-means clustering method

The following step is used to recognize the testing areas inside the channels. The color dif-

ference between the pads and the central inlet region increases as the detected concentration

of the analyte increases.

The following features are selected as the input to K-means clustering method: [L∗(i, j),

a∗(i, j), b∗(i, j), ∆E(i, j), w · i, w · j], where L∗(i, j), a∗(i, j), b∗(i, j) are the pixel values in the

CIE L∗, a∗, b∗ channels. ∆E(i, j) is the grayscale values of each pixel. i, j are the pixel

coordinates, and w is a weighting factor applied to these coordinates. In this case, w is

chosen empirically to be 0.05. The number of clusters K equals 5 because there are four

testing areas and a white background (filter paper).

After applying the K-means clustering method, we distinguish the four testing pads from

the white background, as illustrated in Figure 4.14(d).

4.4.9 Morphological operation

The biosensors in Figure 4.14(d) show the presence of the boundaries of the channels and

some noise. Morphological operations are widely applied to remove unnecessary features

from images [  53 ]. The basic morphological operations widely used in image processing are

erosion and dilation, which are performed over a neighborhood specified by a structuring

element or a kernel [ 54 ]. To remove the boundaries of the channels and unwanted noise, a

window size of 5 × 5 is chosen to do erosion followed by dilation, which is also called an

opening operation. The result in Figure 4.14(e) shows that the opening operation effectively

removes the undesired features in Figure 4.14(d).

The final segmentation results prove that our proposed hybrid segmentation combining

Otsu’s method, the K-means clustering method, and morphological opening enables us to

locate the testing areas accurately.
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4.4.10 Qantification results

With the aid of the binary images, the position of the colorimetric responses in the testing

areas can be defined. We use grayscale values as a metric, calculating average ∆E from the

white reference ([L∗, a∗, b∗] = [93.1927, −2.3147, −0.7811]) of the response areas of all the

devices, to characterize the response of the paper-based devices.

Various concentrations of Hg2+ and As3+ are tested on the proposed fluidics paper-based

biosensors. The detection of each concentration is repeated in at least six replicates, and

the data is averaged. The analytical response ∆E is calculated after image processing and

analysis. Figure 4.15(a) shows the colorimetric signal evolution versus various concentrations

of As3+ from 0 ppm to 100 ppm. As illustrated in Figure 4.15(b), correlations can be seen

between the ∆E values and the increasing concentrations of the analytes. According to

the data collected, the variable ∆E and the As3+ concentration is found to be strongly

correlated from 0 to 30 ppm, which can be fitted as y = 0.5218x + 17.1160, with R2 of

0.9238. Furthermore, the results in Figure 4.15(b) show evidence that the limit of detection

of our proposed biosensor is 2 ppm of As3+. Figure 4.15(c) shows the color evolution of the

response for Hg2+ under increasing concentrations. The analytical response in Figure 4.15(d)

shows the evidence of a linear correlation from 0 ppm to 30 ppm (y = 0.4562x + 16.8415, R2

is 0.8801) with a limit of detection of 1 ppm.

At the higher concentration of 100 ppm, there is a dramatic color change from deep gray

to light gray due to an aggregation effect of the aptamer-based particles (ssDNA-PEI-Au-Ps).

The mechanism for forming these particles is induced-aggregation. So a higher concentration

of the analytes can increase the particle aggregation effect, and grow the particle size. Then,

they might start absorbing light at longer wavelengths (IR spectrum). Therefore, the visible

wavelengths reflected from the aggregated particles will show a more neutral color.

Figure 4.15(a) shows that there is a non-uniform color response to 20, 30 and 50 ppm on

the lower circular pads. To account for spatial nonuniformity of the sensor pad responses,

we apply the alpha-trimmed mean filter to calculate the mean response of the pads [ 55 ]. The

basic idea of the alpha-trimmed mean filter is to eliminate the α/2 lowest and the α/2 largest

grayscale values of each response pad and then compute the average value of the remaining
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Figure 4.15. (a) The colorimetric signal response to As3+, (b) The correla-
tion between ∆E values and the increasing concentrations of As3+, (c) The
colorimetric signal response to Hg2+, (d) The correlation between ∆E values
and the increasing concentrations of Hg2+.

values. The selection of the value for α is crucial for a given data set. In this work, we observe

the experimental results by tuning the value of α at 10%, 20% and 30%. The experimental

results of a response pad is illustrated in Figure 4.16. We note that alpha-trimmed mean

estimator is used to remove some outliers from the grayscale distribution, thus concentrating

the distribution of grayscale values. We also notice that the difference between the average

grayscale value at α of 0% and the value at α of 30% is 0.09, which is negligible.

Figure 4.17 shows the correlation between ∆E values and the increasing concentrations

of As3+ for 3 different values of α. With these three sets of results, we observe that the

∆E values corresponding to the black dots are very slightly different, and their correlation

relationship is very close. Considering that the alpha-trimmed mean filter does not change

the distribution of the average grayscale values too much, we will keep using the average ∆E

values of the response areas to characterize the response of the paper-based devices.

Our proposed biosensor has been shown to be able to effectively detect heavy metals Hg2+

and As3+ at a low concentration. To predict the biosensing performance of the proposed
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Figure 4.16. (Left) The colorimetric signal response to As3+ at 20 ppm,
(Middle) The segmentation masks of the lower left pad for three different α
values, (Right) The corresponding histograms for three different α values.

paper-based biosensor in complex water, a real sample test of the local river water spiked with

Hg2+ and As3+, is performed. The detection of each heavy metal with the same concentration

is repeated in 3 replicates, and the data is averaged. The analytical response ∆E is calculated

after image processing and analysis. Figure 4.18(a) shows the colorimetric signal evolution

versus various concentrations of As3+ from 0 ppm to 100 ppm in the local river water, and

there is a drastic color change from deep gray to light gray at the concentration of 50 ppm (the

saturation point of the pure sample is 100 ppm) due to the complexity of the real samples.

As illustrated in Figure 4.18(b), correlations can be seen between the ∆E values and the
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Figure 4.17. The correlation between ∆E values and the increasing concen-
trations of As3+ for three different values of α: 10%, 20%, 30%

increasing concentrations of the analytes. According to the data collected, the variable ∆E

and the As3+ concentration is found to be correlated from 0 to 30 ppm, which can be fitted

as y = 0.4719x + 17.9294, with R2 of 0.7734. Furthermore, the results in Figure 4.18(b)

show evidence that the limit of detection of our proposed biosensor is 2 ppm. Figure 4.18(c)

shows the color evolution of the response for Hg2+ under increasing concentrations in the

local river water. The analytical response in Figure 4.18(d) shows the evidence of a strongly

linear correlation from 0 ppm to 30 ppm (y = 0.6306x + 16.1917, R2 is 0.9209) with a limit

of detection of 2 ppm.

To predict the biosensing performance of the proposed paper-based biosensor in complex

solution with various kinds of heavy metals, a specificity test focused on the most com-

mon heavy metals Cadmium (Cd), Iron (Fe), Magnesium (Mg), and Lead (Pb) with the

concentrations of 50 ppm, is performed. The detection of each heavy metal with the same

concentration is independently repeated in 6 replicates; and the data is averaged. The signal

of the blank solution is used as a negative reference for comparing the colorimetric signal.

The results in Figure 4.19(a) show there is a visually large color difference in the testing

areas between the targets and the non-targeted heavy metals. Also, Figure 4.19(b) demon-

strates that Hg2+ and As3+ have the highest positive signal in the test groups after image

processing and analysis. Therefore, the test results confirm that our proposed biosensor is

highly specific to Hg2+ and As3+.
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Figure 4.18. (a) The colorimetric signal response to As3+ in the local river
water, (b) The correlation between ∆E values and the increasing concentra-
tions of As3+, (c) The colorimetric signal response to Hg2+ in the local river
water, (d) The correlation between ∆E values and the increasing concentra-
tions of Hg2+.

Figure 4.19. The specificity test results of the proposed paper-based devices:
(a) Images of the test results, (b) Box plot of the colorimetric signal of the
test samples.

To further evaluate the reliability and long-term stability of the response of the proposed

biosensor to the analyte, we perform two sets of experiments to observe the colorimetric
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signal of the paper-based devices stored at room temperature for several weeks. The paper-

based devices are prepared in different weeks, and one batch is used to evaluate the stability

of the reagent by testing with the blank solution, the rest of the biosensors are used to test

with Hg2+ at the concentration of 10 ppm. The difference between the signal for samples

with blank solution and Hg2+ at 10 ppm is visually apparent and analytically significant

at the end of the study period, as illustrated in Figures 4.20(a) and 4.20(b). These results

demonstrate that the proposed paper-based biosensor is able to provide temporally robust

detection results for the analytes.

Figure 4.20. The stability test results: (a) Test Images for the samples with
blank solution and Hg2+ at 10 ppm (3 replicates per each test: upper right,
lower left, and lower right), respectively, (b) Analytical results (No data was
acquired with the blank solution at the end of Week 5.)

4.5 Conclusion

In this chapter, we have developed a novel biosensor using a paper-based, microfluidic

architecture. We explored three different printing technologies for fabricating these devices,

and chose screen printing with UV cured inks for further development. We then conducted

empirical studies to optimize the device geometry. Finally, we developed a complete image

processing pipeline to enable detection of the presence of contaminants in the designed test

areas.
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Then, we showed that our biosensor can detect the presence of heavy metals (Mercury

and Arsenic), and confirmed an Aptamer-based assay detection limit of 1 ppm, and 2 ppm,

respectively, for these two contaminants in the pure samples. The relationship between the

optical properties and the different concentrations of the target was also investigated. The

real sample test, specificity test, and stability results prove that our proposed biosensor is

highly specific and robust to the analytes.
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5. SPECTRAL IMAGING TO DIFFERENTIATE

CONTAMINANT LEVELS

5.1 Introduction

Nowadays, the safety of food has become crucial. One of the main types of threats

related to food safety is heavy metals [ 38 ]. Heavy metals, including Mercury (Hg), Arsenic

(As), Copper (Cu), and so on, can be enriched in living tissue through food chains and have

been reported to be harmful to human health at low concentrations. The commonly used

methods for detecting heavy metals are mass spectroscopy, atomic emission spectroscopy,

potentiometric methods, and so on [ 44 ]. These methods are sensitive, but require expensive

equipment, trained personnel, and cannot support on-site detection. Therefore, rapid and

low-cost detection methods for contaminants are more and more in demand.

To detect multiple targets in one test, our group focuses on developing a novel paper-

based, microfluidic biosensor for colorimetric detection of two types of heavy metals: As

and Hg [ 56 ][ 57 ]. Figure 5.1 shows the proposed detection mechanism of our biosensors

and the test interpretation. A cell-phone integrated image analysis pipeline can determine

the detection result of our biosensors. Two kinds of the aptamer-functionalized particles

(ssDNA-PEI-Au-Ps) specific to Hg2+ and As3+ are preloaded on each of the upper, and

lower two circular pads, respectively. These four pads serve as the colorimetric labels. To

detect the analytes in the test samples, test samples with different concentrations of Hg2+

or As3+ were dropped in the inlet of the biosensors. There is a colorimetric response in the

presence of the target after the test solution interacts with the colorimetric label deposited

on each of the testing areas. Figure 5.2 shows the colorimetric signal evolution versus various

concentrations of As3+ and Hg2+ from 0 ppm to 100 ppm. The color of the target testing

areas gradually changes from light pink to deep purple as the concentration increases from

0 ppm to 30 ppm. Then, there is a drastic color change from deep gray to light gray for a

higher concentration test, from 50 ppm to 100 ppm.

To yield a quantitative and objective color analysis, color measuring instruments are

favored. As digital technologies continue to develop, cheap, and compact image sensors
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Figure 5.1. The detection mechanism of our biosensors and test interpreta-
tion. (To illustrate the different particles specific for Hg and As, the particles
specific for Hg are labeled blue in the figure; but the actual particles are col-
ored light pink.)

are widely used in everyday electronics, like cell phones. A phone-based imaging system is

promising for signal detection due to the above features emerging in different fields.

Figure 5.2. (a) The colorimetric signal response to As3+, (b) The colorimetric
signal response to Hg2+.

In our previous work, our proposed optical system and image analysis pipeline provides

consistent data acquisition captured by a mobile phone camera, and delivers quantitative

responses to correlate the colorimetric change of the biosensors to the concentration of the

target substance [ 57 ]. We used the grayscale values as a metric, calculating average CIE ∆E

[ 25 ][ 58 ] from the white reference, to characterize the response of the paper-based devices,
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and to correlate the response with the concentration of the analytes. As an example, Figure

5.3 shows the correlations between the ∆E values and the increasing concentrations of As3+.

According to the data collected, the variable ∆E and the As3+ concentration is found to be

strongly correlated from 0 to 30 ppm, which can be fitted as y = 0.52x + 17.12, with R2

of 0.9238. Nonetheless, the relationship is not monotonic. In particular, the repsonses to 0

ppm and 4 ppm are too high.

Figure 5.3. The correlation between ∆E values and the increasing concen-
trations of As3+ for a non-spectral imaging method.

Thus, we aim to find a prediction model with higher accuracy for our limited data set.

In this study, the colorimetric responses of 5 contamination levels (As3+) are used as the

experimental data. Considering the limited number of samples for each concentration, we

first rearrange the 126 phone captured images of the samples into five classes: 35 in Class

1 (0, 1, 2 ppm), 32 in Class 2 (4, 5 ppm), 22 in Class 3 (10 ppm), 15 in Class 4 (20, 30

ppm), and 22 in Class 5 (50 ppm). Then, we divide the original dataset into a training set,

a validation set, and a test set according to the ratio 5: 2: 3, as shown in Table 5.1.

In the following sections, we first present an overview of the base model using grayscale

values and its prediction accuracy. Second, we propose two classification models for dis-

criminating the spectral responses for the different classes; then, we compare the prediction

accuracy. Finally, we present our phone-based narrow-band spectral imaging system that
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Table 5.1. Overview of the small-scale dataset showing the division, respec-
tively, into training, validation, and test sets.

Class Training set Validation set Test set Total
Class 1 17 7 11 35
Class 2 16 6 10 32
Class 3 11 4 7 22
Class 4 7 3 5 15
Class 5 11 4 7 22

can obtain the camera spectral response for accurate and precise heavy metals analyses with

the aid of a narrow bandpass filter in front of the cell phone’s camera lens.

5.2 Base Model

For our base model, we use grayscale as a metric to characterize the responses for the

different classes. In this section, we present two methods to evaluate the prediction accuracy

of our base model. In the first model, we apply the Lloyd-Max scalar quantizer method

to find the optimal threshold boundaries, i.e. average ∆E values, for the training data of

five classes [  59 ][ 60 ]. Figure 5.4 shows the optimal threshold boundaries for the five classes.

The prediction accuracy for the test dataset is shown in Table 5.2. The base model shows

a relatively high prediction accuracy for Classes 1 and 5, but a relatively low accuracy for

Classes 2 - 4, with an average prediction performance of 41%.

Table 5.2. Performance of the quantizer method based on ∆E from the global
background.

Class C 1 C 2 C 3 C 4 C 5
Accuracy 91% 60% 43% 20% 86%

In the second model, we propose a DAGSVM model for differentiating contaminant

levels [  61 ][ 62 ]. Figure 5.5 shows the structure of the DAGSVM for predicting the class of

our five-class. The DAGSVM model comprises 10 SVM classifiers. This proposed system is

trained and evaluated on 126 responses of five contamination levels, as shown in Table 5.1.
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Figure 5.4. The optimal threshold boundaries for 5 classes detecting As3+

for the base non-spectral imaging method. (Dark points represent the training
data, and red points show the test data.)

Considering the limited datasets, we evaluate the performance of the five-class classification

model by processing the leave-one-out cross-validation [  63 ]. One data point per training

procedure will be used as the validation set and the rest of the data points are used as the

training set. Table 5.3 shows the confusion matrix for the test data set. The DAGSVM

model yields 69% average accuracy, which is higher than the result of the first model, and

shows a relatively higher predication accuracy for Class 3 than the first model. However, we

also observe that the DAGSVM model shows the same low accuracy for Class 4.

Table 5.3. Performance of the DAGSVM model based on ∆E from the global
background.

Class C 1 C 2 C 3 C 4 C 5
Accuracy 73% 70% 71% 20% 86%
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Figure 5.5. The tree structure of the DAGSVM for predicting the class of
our five-class framework.

The ∆E from the global background method calculates the Euclidean distance between

the white reference and the response area. As can be seen in Figure 5.4, there exist situ-

ations where the ∆E values calculated from two different reaction colors are out of order,

which causes low accuracy. The limited dataset and the insufficient utilization of the spatial

information contained in the sensor pad images also restrict the effectiveness of the base

model.

5.3 Spectral Imaging Classification Models

The main challenges of our project are the insufficient feature information, the limited

number of samples, and the large intra-class variance of the sensor pad images. To overcome

these challenges, we use the spectra data of the colorimetric response pads and propose two

kinds of classification models for differentiating contaminant levels with higher test accuracy.

5.3.1 Non-contact optical measurement system

The spectral radiance in the detection zones is acquired by our non-contact optical mea-

suring system, illustrated in Figure 5.6. The optical system mainly consists of a photo

studio booth (FotodioX LED440-16×16, purchased from bhphotovideo.com) for providing

the controlled illumination environment, and for measuring the visible wavelength range,

a spectroradiometer (PR 705, Photo Research Inc., CA, USA), and a tripod to provide a

45◦ configuration of the spectroradiometer. The spectral radiance of the samples and of a
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white reflectance standard (Spectralon white diffuse reflectance standard, model #54-302,

Edmund Optics) are obtained from 380 nm to 780 nm with an interval of 2 nm. To evaluate

the stability of the illumination light intensity, the measurements of the spectral irradiance

of the white reflectance standard are taken every 30 minutes for 3 hours. Then the spectral

reflectance of the colorimetric response is calculated by dividing the spectral radiance of the

object by the average reflectance radiance of the perfect reflecting standard under the same

spectral conditions of measurement [ 64 ][ 65 ].

Figure 5.6. The optical setup for spectral data acquisition.

The light sources used are an LED light (FotodioX LED440-16×16, purchased from

bhphotovideo.com), fluorescent light (mounted on the ceiling of the laboratory), and halo-

gen light (Sunlite 100T10 frosted Halogen double envelope lamp, purchased from bhpho-

tovideo.com). Figure 5.7 shows the relative luminous power comparison of these three kinds

of illumination used in our project. Our goal is to find the optimal illumination source for

which the spectral data of the entire set of objects (responses of As3+ and of Hg2+) are most

separated for each different concentration. The spectral radiance of each object under the

three illuminations is taken and averaged with respect to wavelength. At each illumination

level, we measure the spectral emissivity of all test responses and calculate the average spec-
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tral radiance for each level. Figure 5.8 shows an example of the average spectral radiance

curves for As3+ for all five contamination levels. We can note that there is a correct order

between the average spectral radiance and the contamination levels in the wavelength range

above 620 nm. Table 5.4 records the relationship between the averaged spectral reflectance

and the contamination levels under the three different illuminations. From the table, we

note that for both As3+ and Hg2+, there is a correct order between their mean spectral ra-

diance and the contamination levels. So we can conclude that the LED source is optimal to

distinguish the different concentrations of the colorimetric response of both As3+ and Hg2+.

LED illumination is thus used as an optimal light source for spectral acquisition.

Figure 5.7. The relative luminous power comparison of the three kinds of
illumination sources.

5.3.2 Data description

The spectral radiances of the colorimetric responses to As3+ are used as the experimental

data. The curve in Figure 5.8 represents the mean of all spectral radiance measurements of

the training samples for each contamination levels. Although there are visible differences at

approximately 460 nm and from 480 nm to 600 nm, the spectral radiance curves have quite

similar shapes within the visible wavelength range.
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Table 5.4. The relationship between the averaged spectral radiance and the
contamination levels under the three different illuminations.Here “Cmm →
Cnn” means that Cmm has a higher averaged spectral radiance than Cnn.
Note that we only observe the correct ordering across all five concentrations
with both contaminants for the 5500K LED illumination.
Illumination As3+ Hg2+

Fluorescent Light C1 → C2 → C3 → C4 → C5 C2 → C1 → C3 → C4 → C5
5500K LED Light C1 → C2 → C3 → C4 → C5 C1 → C2 → C3 → C4 → C5
Halogen Light C1 → C2 → C3 → C4 → C5 C2 → C1 → C3 → C4 → C5

Figure 5.8. The mean spectral radiance measurements of the training samples
for five contamination levels of As3+. The measurements were made under
the LED illumination. Note that spectral radiances decrease according to
increasing class number at each fixed wavelength above 620 nm.

The data set comprising 126 spectral radiances at 5 contamination levels, are randomly

divided into training, validation, and test data sets, as shown in Table 5.1. For each sample,

the measured spectral band varies from 380 nm to 780 nm with a sampling interval of 2 nm;

this leads to an original vector space of dimension 200. The number of components of the

feature vector is much larger than the small number (less than 40) of samples for each class

in our application. The number of training samples required for typical machine learning

problems increases dramatically with the dimensionality for such high dimensionality [ 66 ].
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Therefore, the first step in preprocessing is to obtain smaller feature dimensions by dividing

the spectral range of the wavelengths into 20 equal parts, then calculating the corresponding

averages within each wavelength range. The corresponding feature names are ‘390 nm’,

‘410nm’, … , ‘770 nm’, which are the center wavelengths of each interval.

5.4 Machine Learning Algorithm

The next goal is to develop classification models for differentiating contaminant levels

with high test accuracy. The majority of the existing works prove that k-nearest-neighbor and

random forest classifiers have powerful classification capabilities [  67 ][ 68 ]. Further, sequential

selection and PCA are widely used to extract a subset of features in higher dimensions to

improve computational efficiency and reduce the generalization error of classification [ 7 ][ 69 ].

Based on this, we use the spectral data of the colorimetric response pads and propose two

kinds of classification models for differentiating contaminant levels with high test accuracy.

The flow chart of the general machine learning pipeline for these two models is shown in

Figure 5.9.

Here, two kinds of classification models are investigated in our work to evaluate their

classification accuracy and generalizability to the test data.

5.4.1 Multiclass classification model I

In the first model, we apply the sequential forward feature selection (SFS) algorithm [  7 ] to

select or extract a subset of wavelength features in combination with the k-nearest-neighbor

(k-NN) classifier to discriminate five contaminant levels.

5.4.2 Sequential forward feature selection

After the first step of preprocessing, we have 20 wavelength features for each set of

spectral radiance data. To improve the classification performance and simplicity, we can

further reduce the dimensionality. Sequential feature selection has been recognized as a

crucial feature selection technique. It is an iterative procedure. The SFS method performs

the following steps: (1) starts with an empty feature set, (2) generate all possible feature
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Figure 5.9. The flow chart of the general machine learning pipeline for the
two proposed classification models.

subsets of size 1, then choose the feature subset that leads to the best classification accuracy,

(3) add another feature from the remaining available features to generate all possible feature

subsets of size 2, (4) gradually add features until the size of the subsets is equal to the

number of desired features, or until the classification accuracy starts to decrease or no longer

increases. In this work, we apply the SFS based on the k-NN classifier to choose a subset of

wavelength features that yields the minimum classification error.

5.4.3 k-NN classifier

The k-NN classifier is one of the most widely used classification methods. It is based

on the majority vote of the neighbors of the test sample. The k-NN method calculates a

distance between the test sample and all training samples to obtain its nearest neighbors,

and then assigns the test sample a label according to the majority vote of the k nearest

neighbors [ 70 ].
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We calculate the standard Euclidean distance in the feature space to measure the simi-

larity between the test sample and the training samples. As is well known, the selection of

the value for k is crucial for good classification performance. In this work, we obtain the

appropriate value for k experimentally. With the validation data set, we evaluate the k-NN

classifier with different k values from 1 to 6. This procedure can be repeated each time by

increasing k to include one more neighbor. Two examples are illustrated in Figure 5.10. We

note that almost all of these 6 models yield 80% validation accuracy when 4 wavelengths

are selected, so the feature subset’s size is taken as 4. The k value is chosen to be 5 because

the validation accuracy stabilizes after a certain point as the number of feature selections

increases. The optimal wavelength features include 670 nm, 490 nm, 410 nm, and 430 nm.

Figure 5.10. Validation accuracy of the k-NN classifier models with k = 3
and k = 5, respectively.

5.4.4 Classification result of model I

We perform 4-fold cross-validation to evaluate the performance of the k-NN classifier (k

= 5) with the SFS algorithm. The confusion matrix for the test data is reported in Table

5.5. The classification performance yields 84.4% average precision, 76.7% average recall, and

80.4% average F-1 score. We note that the low classification accuracy for Class 3 might be

due to the fact that a fixed k-NN classifier is applied to all test samples. This leads to a low
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prediction rate in real applications in many existing works because the fixed classifier for all

test data does not consider the distribution of the data [ 71 ].

Table 5.5. Confusion matrix for the multiclass classification model I (k-NN classifier).
Class C 1 C 2 C 3 C 4 C 5 Precision Recall
C 1 10 1 0 0 0 84.6% 90.9%
C 2 4 5 1 0 0 62.5% 50%
C 3 2 2 3 0 0 75 % 42.9%
C 4 0 0 0 5 0 100% 100%
C 5 0 0 0 0 7 100% 100%

5.4.5 Multiclass classification model II

The second classification model comprises principal component analysis (PCA) used as

a dimensionality reduction technique in combination with a random forest (RF) classifier to

classify five contaminant levels.

5.4.6 PCA

Principle component analysis (PCA) is one of the most widely used algorithms for re-

ducing redundant and irrelevant features. PCA uses singular value decomposition to project

the high feature dimensions into an orthogonal basis set called the principal components,

while preserving as much of the data’s variation as possible [ 69 ][ 72 ]. In our work, PCA is

applied to the training data set to select the principal components that explain the data’s

maximum variance. Figure 5.11 shows that the first three principal components can cover

99% of the variance of the training data set. Then, we reduce the original feature vectors of

the testing data to the same lower dimensional subspace as the training data set.

5.4.7 Random forest

Random forest (RF) has been successfully applied to multiclass classification problems

[ 9 ]. The RF algorithm is an ensemble method of classification based on generating multiple
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Figure 5.11. Variance of the first 20 principal components for the training data set.

decision trees. The RF algorithm independently constructs each tree using bootstrap sample

data. Each node in the standard tree is split using the best decision based on a randomly

chosen subset of the input variables. Each tree in RF predicts its output; then, the RF

makes a final prediction based on the majority vote of all the trees.

5.4.8 Classification result of model II

The RF models involve several parameters: depth of trees, number of features randomly

selected, and number of trees in the forest. We perform 4-fold cross-validation to select the

optimal parameters which yield the lowest classification errors on the validation data set.

After selecting the optimal parameter values, the classification model is evaluated on the

test data with the lower dimensional subspace. Table 5.6 shows the confusion matrix for

the test data. The classification performance yields 86.8% average precision, 86.6% average

recall, and 86.7% average F-1 score. It turns out that the RF model with PCA feature

selection performs well in terms of accuracy compared to the k-NN classifier.
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Table 5.6. Confusion matrix for the multiclass classification model II (RF classifier).
Class C 1 C 2 C 3 C 4 C 5 Precision Recall
C 1 9 1 1 0 0 90% 81.8%
C 2 1 8 1 0 0 72.7% 80%
C 3 0 2 5 0 0 71.4 % 71.4%
C 4 0 0 0 5 0 100% 100%
C 5 0 0 0 0 7 100% 100%

5.5 Phone-based Narrow Band Spectral Imaging

In the previous sections, we prove that the spectral data of the colorimetric response pads

can improve classification performance. The challenging part is that the spectral data must

be obtained using an expensive and professional optical component, like a spectroradiometer.

As digital technologies continue to develop, cell phones are cheap and widely used globally, so

a phone-based spectral imaging system is promising for differentiating different contaminant

levels.

We propose a smartphone-based narrow-band spectral imaging system that incorporates

a hardware plug-in module that fixes a bandpass filter in front of the smartphone’s camera

lens, as illustrated in Figure 5.12. In the optical setup, the cell phone (iPhone 8, CA, USA)

with a bandpass filter (center wavelength is 620 nm, and full width at half maximum is 10

nm, Edmund Optics Inc., Barrington, NJ) replaced the spectroradiometer on the tripod, as

shown in Figure 5.6. We also conduct a preliminary evaluation of the proposed phone-based

narrow-band spectral imaging system regarding its performance and capability to replace

the spectroradiometer.

We use the average red channel value of the colorimetric response under the bandpass

filter to represent the camera response. Figure 5.13 shows the camera response for various

concentrations of As3+ from 0 ppm to 50 ppm. According to the data collected, it is found

that the variable camera response had a very similar trend to the spectral radiance at As3+

concentrations from 0 to 50 ppm. Our preliminary result suggests that the phone-based

narrow-band spectral imaging system can replace the spectroradiometer for differentiating

different contaminant levels.
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Figure 5.12. (Left) 3D model of add-on for iPhone 8. (Right) The image
captured with the 620 nm bandpass filter.

Figure 5.13. (Top) Bandpass-filter-equipped camera captured images of a
sensor pad with different concentrations of As3+. (Left) Box plot of the camera
responses with a bandpass filter (620nm) for different As3+ concentrations.
(Right) Box plot of the corresponding spectral radiances measured by using
the PR 705.

To evaluate whether the camera responses can be used for classification, we collect the

camera responses (the average red, and green channel value) of all samples and use ran-
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dom forest classifier to classify five contaminant levels. Table 5.7 shows the corresponding

confusion matrix for differentiating camera response of the test data. The classification per-

formance yields 73% average accuracy, which is higher than the classification accuracy of

our base model, as shown in Table 5.2.

Table 5.7. Confusion matrix for differentiating camera response of the test data).
Class C 1 C 2 C 3 C 4 C 5 Precision
C 1 9 2 0 0 0 82%
C 2 1 4 2 1 0 50%
C 3 0 2 5 0 0 71%
C 4 0 1 0 4 1 80%
C 5 0 0 0 1 4 80%

5.6 Conclusion

In this chapter, we investigated how to improve the accuracy of our previously developed

paper-based devices for detecting and measuring heavy metal contaminants (As3+ and Hg2+)

in food or liquids. Specifically, we considered the use of the spectral reflectance of the sensor

pad, as opposed to our baseline method which simply conputes ∆E from a white background,

and optimally quantizes these responses into five groups. We described a laboratory set-up

for capturing the spectral reflectances of the detection devices, including an investigation

of three possible types of illumination. Having chosen an LED as the best source of illu-

minantion, we then developed two different machine learning approaches for classifying the

level of contamination by As3+ into one of five categories: k-nearest-neighbor with sequential

forward feature selection to determine the best subset of features, and random forest with

principal component analysis for feature reduction. We found that the latter yields the best

performance. Finally, we compared the spectral responses, as a function of contaminant

level, of the sensor pads within the band 610-630 nm measured with our spectroradiome-

ter to the spectral responses captured by a mobile phone with an inexpensive narrowband

filter attached to the front of the camera lens. Based on the similarity of the responses

between these two capture modalities, we conclude that the mobile phone narrowband filter
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combination could be used as an inexpensive means of accurately measuring heavy metal

contaminant levels, as indicated by the color change in our paper-based sensor device.
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6. DEEP LEARNING APPROACH FOR CLASSIFYING

CONTAMINATION LEVELS WITH LIMITED SAMPLES

6.1 Introduction

Nowadays, convolutional neural networks (CNN) have gained tremendous popularity in

computer vision, especially in the image classification domain for better performance than

popular image processing methods [  73 ][ 74 ]. Deep learning algorithms yield high classification

accuracy by using large, annotated datasets of images. Therefore, to develop accurate image

classifiers for the contamination-levels classification task, we need a large dataset of images

of colorimetric responses. However, obtaining large-scale datasets of detection images of

contamination levels is challenging because of limited test samples.

One approach to overcome this challenge is to use data augmentation, a standard proce-

dure to obtain good performance by deploying rotation, flip, translation, and scaling tech-

niques. Another emerging deep learning generative model inspired by game theory to syn-

thesize images is the Generative Adversarial Network (GAN) [  75 ]. The GAN model consists

of a generator to create fake images and a discriminator to distinguish between the real and

fake images. These two parts are trained in an adversarial process. Different variations of

the classic GAN models have been proposed. As a representative example, pix2pix is a GAN

model addressing image-to-image translation problems [  76 ]. Recent medical and biological

imaging applications have shown that the GAN framework can successfully generate images

and obtain reasonable performance [ 77 ][ 78 ][ 79 ]. Therefore, it is appropriate to apply a GAN

model to generate synthetic images for our training purposes.

We aim to solve the classification problem posed by a small scale of data samples and

large intra-class variance. In this chapter, we propose an approach to generate high-quality

colorimetric responses from our detection images captured by a phone camera and apply

a CNN based on EfficientNet-B0 [ 80 ] for the contamination-levels multi-classification. The

proposed method is evaluated on five contamination levels, and is compared with our previous

work. We hope that the proposed methods can be a strong candidate for phone-based

contamination-levels detection. Because the user need only take an image of the test response
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using their phone camera and feed the captured image into the proposed model, the model

can automatically classify the test sample’s contamination level.

The rest of this chapter is organized as follows. In Section 6.2, we present the dataset,

explore two methods for generating realistic synthetic images, and evaluate the classification

results achieved by the proposed CNN classifier. Section 6.3 reports the experimental results

for classifying contamination levels. In Section 6.4, the conclusions and the plans for future

work are given.

6.2 Methodology

The main challenges of our project are the small scale of available data samples and

the large intra-class variance. To overcome these challenges, we first use traditional data

augmentation techniques to enlarge the training dataset of the colorimetric signals (AUG

data), then train the proposed CNN model with these training sets, and test with the real

test dataset. Finally, we synthesize realistic images using pix2pix (GAN data), and observe

the classification accuracy after adding the GAN data to the AUG training set.

6.2.1 Dataset description

In this study, the colorimetric responses of 5 contamination levels (As3+) are used as

the experimental data. Our optical system first acquires the colorimetric signals of the

biosensors. The optical system mainly consists of a photo studio booth (Amzdeal, purchased

from Amazon.com) for providing the controlled D65 illumination environment, a mobile

phone camera (iPhone 11 Pro Max, CA, USA), and a fixture to hold the mobile phone.

Next, we extract the regions of interest and obtain the corresponding segmentation masks,

as illustrated in Figure 6.1. Through the above-mentioned steps, our dataset consists of 126

phone captured images: 35 in Class 1 (0, 1, 2 ppm), 32 in Class 2 (4, 5 ppm), 22 in Class 3

(10 ppm), 15 in Class 4 (20, 30 ppm), and 22 in Class 5 (50 ppm). All the ROIs are resized

to a uniform dimension of 200 × 200 pixels. Finally, we divide the original dataset into a

training set, a validation set, and a test set according to the ratio 5: 2: 3, as shown in Table

6.1.
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Figure 6.1. Dataset examples of 5 contamination levels: the ROI images
of the colorimetric signal and the corresponding segmentation masks (The
numbers in blue are the grayscale values. To distinguish different classes, we
use different grayscale values to label different classes’ response areas).

Table 6.1. Partitioning of the dataset for use with our CNN classifier.
Class Training set Validation set Test set Total
Class 1 17 7 11 35
Class 2 16 6 10 32
Class 3 11 4 7 22
Class 4 7 3 5 15
Class 5 11 4 7 22

6.2.2 Traditional data augmentation

Deep learning algorithms yield high classification accuracy by using large, annotated

datasets of images to train a network. This can cause a danger of overfitting when a deep

network deals with a limited numbers of training images. One standard method to address

this problem uses traditional data augmentation methods. Classic data augmentation tech-

niques include scaling, cropping, flipping, rotation, translation, and other deformations. The

color of the image is important to our application, and we aim to train a classifier to pre-

dict the unknown test image’s contaminant level based on its colorimetric signal. Therefore,

we choose the rotation, flipping, and shifting data augmentation methods, and avoid color

deformation.
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6.2.3 Generative adversarial network

Another promising tool to generate synthetic images is the Generative Adversarial Net

(GAN). The GAN model consists of a discriminator D to discriminate between the real and

fake images, and a generator G generating fake images to fool the discriminator. These

two parts are trained in an adversarial process. Recent studies have shown that the GAN

framework can successfully generate images and obtain good performance [  81 ]. Inspired by

[ 78 ], we explore pix2pix, a variant of conditional GANs for learning the translation from the

binary segmentation images to the colorimetric signal images. The loss function is shown in

(6.1).

G∗ = arg min
G

max
D

LcGAN(G, D) + λLL1(G) (6.1)

Here the generator G tries to minimize this loss function, whereas the discriminator D tries

to maximize it, λ is the hyperparameter that balances the L1 loss term, which is used to

obtain sharp images. One of the limitations of pix2pix is that it requires paired images to

train the network. For our application, the input paired images to train the network are

the ROI images of the colorimetric signal and the corresponding segmentation masks, as

illustrated in Figure 6.1. Then, we only feed the segmentation masks to the trained pix2pix

network to generate realistic colorimetric signals.

6.2.4 Proposed CNN architecture

EfficientNet models are based on uniformly scaling the network width, depth, and resolu-

tion to yield higher test accuracy and better efficiency with a smaller number of parameters

than previous ConvNets, like RestNet-50, and Inception-v2 [  82 ][ 83 ]. EfficientNet consists of

a series of models from B0 to B7, and the number of parameters varies from 5 × 106 to 66 ×

106 [ 80 ]. Considering that we focus on a phone-based contamination detection application,

we use EfficentNet-B0 with the least number of parameters for transfer learning and to ex-

tract features of the generated detection images. To perform the five-contamination-levels

classification task, we add a sequence of two fully connected layers with batch normalization,

RELU activation functions, and a dropout layer. Finally, the classification layer contains
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five output units for 5-class classification based on using the softmax activation function.

To test the performance of our proposed CNN classifier, we use accuracy, precision, and F-1

score as the evaluation metrics.

6.3 Experiments and Results

To solve the multi-class classification problem posed by the small scale of our dataset

and its large intra-class variance, we explore two kinds of data augmentation techniques, and

compare their effectiveness for classifying the five contamination levels. The experiments are

set up as follows:

(1) We enlarge our training dataset (AUG training data) by using traditional data aug-

mentation, then calculate the test accuracy of our proposed CNN model trained with the

different numbers of the AUG data. Figure 6.2 shows the workflow for evaluating the effects

of traditional data augmentation in the task of classifying different contamination levels.

Figure 6.2. Workflow for evaluating traditional data augmentation in the
task of classifying different contamination levels.

(2) To compare the classification effects between the traditional data augmentation

method and pix2pix, we use the AUG training dataset that yields the highest test accu-

racy to train pix2pix. Then, we input the segmentation mask of the image in DT rain8 into

pix2pix to generate the corresponding realistic chromaticity signal image. The detailed ex-
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perimental procedure is explained in Section 6.3.2. Figure 6.3 shows the block diagram for

synthesizing high-quality colorimetric images.

Figure 6.3. Block diagram for synthesizing high-quality colorimetric images.

6.3.1 Traditional data augmentation evaluation

According to the proposed approach, we first apply rotation, flipping, and shifting to

produce a large number of images for the training and validation datasets. Here, Nrotation =

70, Nflip = 2, and Ntrans = 24. Inspired by [  84 ], we randomly sample the augmented images

to additively form the different training dataset groups DT rain1 ⊂ DT rain2 ⊂ ... ⊂ DT rain8

such that DT rain1 only consists of the original training dataset, each class of DT rain2 includes

1,000 samples, ..., and each class of DT rain8 includes 7,000 images. Then, we randomly select

1,000 images per class for the validation dataset.

We train the proposed CNN classifier separately for each set of the training groups and

evaluate the test results on the same original test dataset. Figure 6.2 shows the workflow

of this step. The accuracy results for five contamination levels with the increasing training

datasets are illustrated in Figure 6.4. It shows that the classification results improve from

61.9% with no AUG data to 88.1% (DT rain4, the optimal AUG data group). We also notice

that after DT rain4, the classification results drop down slightly and continue to fluctuate

around 80%. Table 6.2 presents the confusion matrix for the optimal AUG training data

group DT rain4. The classification performance using only classic data augmentation (DT rain4)

yields 91.9% average precision, 86.6% average recall, and 86.7% average F-1 score.
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Figure 6.4. Classification results for the five-classes test data as a function
of the training set size.

Table 6.2. Confusion matrix for the CNN model trained with the DT rain4 group.
Class C 1 C 2 C 3 C 4 C 5 Precision Recall
C 1 11 0 0 0 0 84.6% 100%
C 2 1 9 0 0 0 75% 90%
C 3 1 3 3 0 0 100 % 42.9%
C 4 0 0 0 5 0 100% 100%
C 5 0 0 0 0 7 100% 100%

6.3.2 Pix2pix data augmentation evaluation

Researchers have reported that the augmented images produced by the traditional data

augmentation approach are highly correlated; and GANs are a promising approach to gen-

erate a large, diversified dataset of images for training purposes [  78 ][ 84 ]. So, we use the

optimal AUG data group DT rain4 to train pix2pix and input the segmentation masks of the

well-trained pix2pix to generate a realistic colorimetric images dataset. Here, we also addi-

tively form the synthetic training group datasets (GAN data) DT rain4 ⊂ GT rain5 ⊂ GT rain6

⊂ GT rain7 ⊂ GT rain8. To avoid the influence of the edges in the training group on the classi-

fication, the segmentation masks of GT rain5 and DT rain5 are the same, and this requirement

applies to the rest of the training groups.
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Figure 6.3 and Figure 6.5 show the block diagram for synthesizing high-quality colori-

metric images and the synthesized high-quality colorimetric images of five-classes with the

well-trained pix2pix. Figure 6.6 and Figure 6.4 show the flowchart for evaluating synthetic

Figure 6.5. Synthesized examples of five-classes with pix2pix. For each
class, the figures from left to right are a segmentation mask, a synthesized
image generated by a well-trained pix2pix, and the colorimetric signal’s original
image.

data augmentation in the task of classifying five contamination levels and the test accuracy

of the GAN-based synthetic augmentation experiments. Figure 6.4 shows the classification

accuracy that is achieved by training with the GAN-based synthetic augmentation images.

Even though the highest classification result is still obtained with DT rain4, adding the syn-

thetic training data does improve the accuracy for the training sets GT rain6, GT rain7, and

GT rain8, compared with the same training set number in the AUG training group. It also

reduces the fluctuation in accuracy.
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Figure 6.6. Flowchart for evaluating synthetic data augmentation in the task
of classifying 5 contamination levels.

6.4 Conclusion

In this chapter, we focused on solving the multi-class classification problem posed by a

small scale dataset and large intra-class variance. We proposed a CNN classifier and explored

two kinds of data augmentation techniques to compare their effectiveness for a classification

task. Moreover, we conclude that this proposed approach demonstrates promising results

for a contamination-levels classification task with limited data.

In the future, we plan to extend our work to colorimetric images captured in differ-

ent ambient illumination environments to provide a more convenient phone-based detection

method.
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7. SUMMARY AND CONCLUSION

This dissertation mainly discusses two systems for the detection of E.coli O157:H7, and As

and Hg, respectively.

In Chapter 2, we proposed a system for printing test strips to detect foodborne pathogens,

and imaging processing algorithms to analyze images of the exposed test strip that have been

captured with a mobile phone camera. The image processing algorithms were designed to

detect the presence a pathogen, and to estimate its concentration. The overall goal of the

project is to develop a test system that is low-cost, and simple enough to implement in the

field. We believe that printing offers a manufacturing method that is low-cost, reliable, and

scalable. In Chapter 3, we worked on the response variation of the optical properties of the

test lines detecting the target at the same concentration. To reduce the sample-to-sample

variation in response to E.coli O157:H7, as well as an effort to reduce material cost and

printing time, we optimized the numbers of print layers. The analysis data of response

variation using the various image segmentation methods has also been given. We evaluated

selected thresholding methods for test zone images with the extracted pattern.

Major contributions of Chapter 2 and Chapter 3:

• Developed the printing optimization methods for a higher printing quality with the

aid of image processing.

• Developed processes for inkjet printing patterns of aptamer bio-inks with capture

biomolecules highly specific for E. coli O157:H7 detection. (To best of our knowl-

edge, this is the first report describing nanopatterning of aptamer-based inks for inkjet

printed platforms.)

• Created an image analysis system to locate the test (control) lines and efficiently

quantify the responses of the test strips to the foodborne pathogen.

• Optimized the ink print layers to reduce the sample-to-sample variation material cost

and printing time.
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In Chapter 4, we present a novel biosensor using a paper-based, microfluidic architecture.

We explored three different printing technologies for fabricating these devices. We then con-

ducted empirical studies to optimize the device geometry. Finally, we developed a complete

image processing pipeline to enable detection of the presence of contaminants in the designed

test areas. The relationship between the optical properties and the different concentrations

of the target was also investigated. The real sample test, specificity test, and stability results

prove that our proposed biosensor is highly specific and robust to the analytes.

Major contributions of Chapter 4:

• Developed fabrication methods for fluidics paper-based devices that capture biomolecules

highly specific for Hg and As detection.

• Created an image analysis system to locate the response pads and measure the level

of response for each pad.

• Quantified and correlated the colorimetric responses of test pads to the different con-

centrations of heavy metals Hg and As.

In Chapter 5, we worked on improving the accuracy of our previously developed paper-

based devices for detecting and measuring heavy metal contaminants in liquids by using

the spectral reflectance of the sensor pad. We described a laboratory set-up for capturing

the spectral reflectances of the detection devices, including an investigation of three possible

types of illumination. We then developed two different machine learning approaches for clas-

sifying the level of contamination by As3+ into one of five categories. Finally, we compared

the spectral responses, as a function of contaminant level, of the sensor pads within the band

610-630 nm measured with our spectroradiometer to the spectral responses captured by a

mobile phone with an inexpensive narrowband filter attached to the front of the camera lens.

Based on the similarity of the responses between these two capture modalities, we conclude

that the mobile phone narrowband filter combination could be used as an inexpensive means

of accurately measuring heavy metal contaminant levels, as indicated by the color change in

our paper-based sensor device.

Major contributions of Chapter 5:
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• Proposed a multispectral classification method to prove that optical spectroscopy can

improve the prediction accuracy of heavy metals using the bulky optical component

(spectroradiometer).

• Proposed a smartphone-based narrow band spectral imaging system that can obtain

the camera spectral response for accurate and precise heavy metals analyses. Our

system is incorporated with a hardware plug-in module that fixes the bandpass filter

in front of the smartphone’s camera.

• Conducted a preliminary evaluation of proposed phone-based narrow band spectral

imaging system regarding its performance and capability to replace the spectrora-

diometer.

In Chapter 6, we focused on solving the multi-class classification problem posed by a small

scale dataset and large intra-class variance. We proposed a CNN classifier and explored two

kinds of data augmentation techniques to compare their effectiveness for a classification task.

Moreover, we concluded that this proposed approach demonstrates promising results for a

contamination-levels classification task with limited data.

Major contributions of Chapter 6:

• Explored two kinds of data augmentation techniques (traditional data augmentation

and the pix2pix which is a GAN-based augmentation technique) to obtain largescale

datasets of detection images of contamination levels and to compare their effectiveness

for a classification task.

• Proposed a CNN classifier for five-contamination-levels classification with higher pred-

ication accuracy.
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