
MULTIPLE LEARNING FOR GENERALIZED LINEAR MODELS

IN BIG DATA
by

Xiang Liu

A Dissertation

Submitted to the Faculty of Purdue University

In Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy

Department of Computer and Information Technology

West Lafayette, Indiana

December 2021

THE PURDUE UNIVERSITY GRADUATE SCHOOL

STATEMENT OF COMMITTEE APPROVAL

Dr. Baijian Yang, Co-Chair

Department of Computer and Information Technology

Dr. Tonglin Zhang, Co-Chair

Department of Statistics

Dr. Jin Wei-Kocsis

Department of Computer and Information Technology

Dr. Abdul Salam

Department of Computer and Information Technology

Approved by:

Dr. Kathryne A Newton

Chair of the Graduate Education Committee

2

To my beloved family for their supports

3

ACKNOWLEDGMENTS

I want to sincerely acknowledge my dissertation committee members for their guide. My

committee co-charis, Dr. Yang and Dr. Zhang are very talented. They helped me to find many

innovative ideas. All I need to do was to implement the ideas with a few of modifications. They

also helped me modify every paper published. Dr. Yang and Dr. Zhang are proficient in English,

they corrected hundreds of grammatical mistakes I made. They also taught me how to word and

how to achieve elegance in writing. Everything they imparted will benefit my entire life. For Dr.

Jin Wei-Kocsis and Dr. Abdul Salam, they are very professional in their research area and they

gave many pieces of inspirational advice to my researches. They are also very kind and patient

professors. Thank for again for the help and guide from the professors. I could not finish my

researches and dissertation without them.

And thanks for the support from my parents. When I received the offer from Purdue

University. It is only an admission letter. No funding is included to support my doctoral study. It

is a huge amount of money. But my parents are still very supportive to me. They said they would

support my decision to achieve the PhD degree regardless of assistantship or scholarship

(Speaking of funding, I would like to appreciate Dr. Yang again for his 5-years funding support).

Without their understanding, I probably will just give up studying as PhD student, and I could not

achieve my PhD degree. Though the Covid apart us, our love makes us always together as a

family.

Also, thank for the help from my friends, Huyunting Huang, Ziyang Tang, Guangyu Shen,

Weitao Tang, Wanzi Jiangand, Zhenzhi Xu and Junhan Zhao. Huyunting Huang is a vert smart

PhD student, he helped me solve a lot of mathematical problems. I hope he could get to a higher

level in the future. Ziyang Tang and I collaborate a lot. We published many papers together. I will

not forget PNET, which is a great paper he came up with. PNET received many citations from the

public. He also warms me a lot. He is a gentleman. I hope we can collaborate more in the future.

Guangyu Shen is a hard-working PhD student, He asked me many questions regarding adversarial

attacks. However, I do not know the answers (I feel sad for myself). He is also very talented in

playing games. I hope he can publish more papers on top conference and graduate sooner. Weitao

Tang is another hard-working PhD student. But he took things too serious. I hope he would live

4

happier. Also, thank for the encouragement from Wanzhi Jiang and Zhenzhi Xu. They are my

”shi jie“. Shi jie is a Chinese word for fellow apprentices. Although they graduate in a year after I

came to DAO2 lab. They keep encouraging me and guide me on my career planning. At last, I

would like to especially appreciate JunHan Zhao for him keeping push me to pursuit my goal. I

am a lazy person, without his pushing and encouragement, I could not imagine what I would

become.

I would also like to thank Purdue University. It is a beautiful university. I like the campus

and the spirits the university conveys.

5

TABLE OF CONTENTS

LIST OF TABLES . 8

LIST OF FIGURES . 9

LIST OF ABBREVIATIONS . 10

ABSTRACT . 11

CHAPTER 1. INTRODUCTION . 12

1.1 Scope . 12

1.2 Significance . 14

1.3 Research Question . 14

1.4 Assumptions . 15

1.5 Limitations . 16

1.6 Delimitations . 16

1.7 Definitions . 17

1.8 Summary . 18

CHAPTER 2. REVIEW OF LITERATURE . 19

2.1 Regression . 19

2.1.1 Linear Model . 20

2.1.2 Weighted Linear Model . 21

2.1.3 Box-Cox Regression . 22

2.1.4 Ridge Regression . 23

2.1.5 Linear Regression with Categorical Independent Variables 24

2.1.6 Lasso Regression . 26

2.1.7 Generalized Linear Models . 27

2.2 Optimization . 29

2.2.1 First Order Optimization . 30

2.2.2 Higher Order Optimization . 35

2.3 Summary . 38

CHAPTER 3. METHODOLOGY . 39

3.1 Sufficient Statistics Arrays and Multiple Learning 39

6

3.2 Linear Model . 42

3.3 Weighted Linear Model . 45

3.4 Box-Cox Regression . 47

3.5 Ridge Regression . 50

3.6 Sparse Block Regression (SBR) . 51

3.7 Lasso regression . 58

3.8 Generalized linear regression . 59

3.9 Summary . 62

CHAPTER 4. RESULTS FOR REGRESSION MODELS WITH EXACT SOLUTIONS . 63

4.1 Experiment Design . 63

4.2 Regression models with exact solutions . 65

4.3 Spark Block Regression . 68

4.4 Summary . 69

CHAPTER 5. RESULTS FOR REGRESSION MODELS WITHOUT EXACT SOLUTIONS 71

5.1 Experiment Design . 71

5.2 Lasso regression . 71

5.3 Generalized linear models . 73

5.4 Summary . 75

CHAPTER 6. CONCLUSION AND FUTURE PLAN 76

6.1 Conclusion . 76

6.2 Future Works . 76

REFERENCES . 79

7

LIST OF TABLES

3.1 An example of converting multiple categorical variables into a single categorical variable. 58

4.1 Configurations of Clusters . 63

4.2 Details of Datasets for SBR . 64

4.3 Training time cost for the built-in Apache Spark approaches and the corresponding

multiple learning approaches . 67

4.4 MSE comparison of the built-in Apache Spark approaches and the corresponding

multiple learning approaches . 68

4.5 Training time cost for the built-in Apache Spark method and SBR 69

4.6 MSE comparison for the built-in Apache Spark method and SBR 70

5.1 Training time evaluation of Spark built-in lasso regression and multiple learning lasso

regression . 72

5.2 MSE evaluation of Spark built-in lasso regression and multiple learning lasso regression 73

5.3 Training time evaluation for traditional approach implement in Spark and the multiple

learning generalized linear models . 74

5.4 MSE evaluation for traditional approach implement in Spark and the multiple learning

generalized linear models . 74

8

LIST OF FIGURES

4.2 Training time comparison for ridge regression . 67

5.2 Training time evaluation for lasso regression . 73

5.3 Training time evaluation for generalized linear models 75

9

LIST OF ABBREVIATIONS

I/O Inputs/Outputs

RAM Random Access Memory

SSD Solid State Drive

HDD Hard Disk Drive

IoT Internet of Things

GLM Generalized Linear Models

SBR Sparse Block Regression

SBM Sparse Block Matrix

SS Sufficient Statistics

SSE Sum of Square Error

MSE Mean Square Error

ANOVCA Analysis of Covariance

IRWLS iteratively re-weighted least squares

SGD Stochastic Gradient Descent

Adam Adaptive Moment Estimation

RMS Root Mean Square Error

OLS Ordinary Least Squares

Box-Cox Regression Linear Regression with Box-Cox Transformation

MAE Mean Absolute Error

RSE Residual Standard Error

AIC Akaike’s Information Criteria

BIC Bayesian information criteria

R2 R square

adjusted R2 adjusted R square

10

ABSTRACT

Big data is an enabling technology in digital transformation. It perfectly complements

ordinary linear models and generalized linear models, as training well-performed ordinary linear

models and generalized linear models require huge amounts of data. With the help of big data,

ordinary and generalized linear models can be well-trained and thus offer better services to

human beings. However, there are still many challenges to address for training ordinary linear

models and generalized linear models in big data. One of the most prominent challenges is the

computational challenges. Computational challenges refer to the memory inflation and training

inefficiency issues occurred when processing data and training models. Hundreds of algorithms

were proposed by the experts to alleviate/overcome the memory inflation issues. However, the

solutions obtained are locally optimal solutions. Additionally, most of the proposed algorithms

require loading the dataset to RAM many times when updating the model parameters. If multiple

model hyper-parameters needed to be computed and compared, e.g. ridge regression, parallel

computing techniques are applied in practice. Thus, multiple learning with sufficient statistics

arrays are proposed to tackle the memory inflation and training inefficiency issues.

11

CHAPTER 1. INTRODUCTION

In Introduction chapter, we will introduce the big data research problems that have been

studied in the dissertation. We will define the research scope, significance, and research questions.

The assumptions, limitation and delimitation of the research problem are also discussed.

1.1 Scope

Big data research problems arise due to recent advances in computer technologies. As

data are collected everyday either online or offline, the size of big data increases, which causes it

is impossible to use traditional machine learning approaches. To overcome these challenges, new

machine learning approaches are needed. In big data research, the two most important challenges

are memory barriers and computational efficiency barriers (Meeker & Hong, 2014). A memory

barriers appear if a large scale dataset cannot be fit into hard disk drive (HDD) or solid state drive

(SSD) of a computer. Therefore, a large scale dataset is usually kept in the cloud, leading to the

need of cloud computing. A computational efficiency barrier appears if one wants to derive the

results of machine learning models in a short time. Because a collection of parameters for the

datasets are usually evaluated for the models, it is important to have an efficient machine learning

method which can provide the results for a number of machine learning models together. This

motivates the research problems that have been studied by the dissertation.

Big data is one of the four enabling technologies of the digital transformation (Matt, Hess,

& Benlian, 2015). It is rapidly expanding in many fields, e.g. Internet of Things (IoT) and

computer vision (Forsyth & Ponce, 2011; Xia, Yang, Wang, & Vinel, 2012). Big data research

has great potentials to reveal the patterns and trends of the systems around us. It has impacts in

wide applied fields, which can significantly affects our life.

Big data is often characterized by the 5V’s (Demchenko, De Laat, & Membrey, 2014).

The 5V’s characteristics encompass volume, velocity, variety, veracity, and value. Volume stands

for the huge amounts of data produced in a daily basis. Velocity stands for the ever-increasing rate

of new data. Variety represents various types of data generated everyday. Veracity represents the

trustworthiness of data. Value in big data represents the high value of the content of the data. Big

12

data has brought many extraordinary opportunities for human beings to learn the systems around

us.

Big data can be efficiently implemented to ordinary linear models and generalized linear

models. Training well-performed ordinary and generalized linear models requires a massive

amount of data. Embedded in computing devices, for example smart home and smart

phones (Abdulla et al., 2020; Xia et al., 2012), ordinary and generalized linear models can

provide excellent services for the improvement of the quality of lives for human beings. A variety

of applications have been developed for big data with generalized linear models, e.g. predicting

stock prices and house prices (Ponnam, Rao, Srinivas, & Raavi, 2016).

Big data issues are new and innovative. The corresponding research problems for small

and moderate data have been studied for decades. These problems are hard if the goal is to train

high-performance ordinary or generalized linear models for big data. Various difficulties need to

address. In this dissertation, we target to solve the computational challenges with the result to be

optimal theoretically.

Computational challenges refer to those in processing and analyzing the data for model

training. They arise from extremely large data scales with high increasing rates of new data

generation (Oussous, Benjelloun, Lahcen, & Belfkih, 2018). In this case, traditional computing

techniques are not appropriate. To overcome the difficulties, parallelization is used.

Parallelization stores and process data in many machines individually. The updates of modeling

results are aggregated from the machines, such that optimal solutions to the ordinary linear

models and generalized linear models models are identified. The goal of parallelization is to make

the traditional methods applicable. They do not change the algorithms. Because of this, the

training of ordinary linear models and generalized linear models are still inefficient. New training

algorithms are needed.

In the dissertation, we focus on designing new algorithms for the ordinary linear models

and generalized linear models to be computationally more efficient in the big data settings. We

would like the new algorithms to overcome the memory inflation and training time inefficiency

issues.

13

1.2 Significance

Because of the 5V’s, the datasets collected for generalized linear models are measured in

gigabytes or terabytes. The scale of the datasets leads to high throughput and I/O during data

processing and model training. Although distributed systems and cloud computing enable the

data processing and model training, the inefficiency of training is still critical (Zaharia,

Chowdhury, Franklin, Shenker, & Stoica, 2010). For example, the iterative methods, e.g.

gradient descent to solve the linear regression require multiple passes over the datasets.

Modification is required to make the methods more efficient.

1.3 Research Question

For some ordinary and generalized linear models, such as linear weighted linear model, it

is possible to obtain the exact solutions. However, the exact solutions are usually not applicable in

big data as obtaining exact solutions requires loading entire dataset in memory (memory inflation

issue). In big data, iterative methods, e.g. gradient descent, are commonly used to solve ordinary

linear models and generalized linear models. Iterative methods require many iterations until

convergence to solve the ordinary linear models and generalized linear models, and thus are time

inefficient. Besides, the selection of hyper-parameters is inevitable under many conditions. For

big data projects, it may take several days or even several weeks to fine tune the models for

desired performance. In order to integrate the advantages and disadvantages of the exact solutions

and the iterative methods, we target to address the following research questions.

The first is the possibility to keep the performance of the original algorithms while

reducing the training time. Given dataset of moderately large size, it is efficient to implement the

original algorithm to the data individually, as the computation for each of those is fast. As optimal

strategies are always a concern in real applications, a number of methods are usually considered

in the analysis of the data. Therefore, it is inefficient to implement those methods individually as

the computation is time-consuming. This problem can be overcome by multiple learning that has

been proposed in the dissertation.

14

The second is the derivation of the solutions of a number of ordinary linear models or

generalized linear models by only a single-pass through the data set. In traditional statistical/ML

approach, the fitting of ordinary linear models or generalized linear models usually starts from the

reading of the data, which makes it impossible to consider a number of models simultaneously

when the data set is accessed. To overcome the difficulty, we propose a method to consider

reading data and fitting models procedures.

The third is the derivation of a precise solution for big data, such that it is close or

identical to the theoretical result. For traditional regression models, the solutions are obtained via

optimization methods given large scale datasets. In this situation, the solutions obtained are not

optimal. To obtain exact solutions, the dataset size required could not be too huge, otherwise, it is

impossible to get exact solutions. To overcome the difficulty, we propose a method to process the

data at per-row level with exact solutions.

In conclusion, there are three research questions:

1. Is it possible to keep the performance of the original algorithms while reducing the training

time?

2. Is it possible to obtain the solutions of regression models with only a single-pass through

the datasets?

3. Is it possible to obtain the exact solution while the memory inflation issue is overcome?

1.4 Assumptions

The research study assumes the relationship of the expected values and the standard

deviations between the samples and the population data. This study also makes an assumption on

the dataset distribution.

Below is the assumptions for this study:

1. the expected values of the samples from datasets is assumed to be the same as the

population mean.

15

2. the standard deviation of the samples from datasets is assumed to be the same as the

population standard deviation.

3. the datasets used in this dissertation, by default, follow normal distribution if not

specifically mentioned.

1.5 Limitations

The limitations of the study contains memory size limitation and dataset source limitation.

Because of the budget, the computer cluster we built is relatively small and cannot be compared

with the computer clusters used by the top conference authors. Thus, the memory size of the

computer cluster is small. And considering the budget, the configuration of the cluster cannot be

upgraded any more. For dataset source, as the public datasets are usually not large enough, the

datasets we used for experiments are synthesized.

The limitations can be concluded as two points:

1. the memory used for the computer cluster is relatively small as opposed to the

highly-configured computer clusters from the papers published in the top conferences or

top journals.

2. it is difficult to find a pubic big data level dataset in reality, thus, datasets used in the

experiments are synthesized.

1.6 Delimitations

In this dissertation, we mainly focused on the ordinary linear models, including linear

model, weighted linear model, linear model with Box-Cox transformation, linear model with

categorical independent variable, ridge regression, lasso regression and generalized linear models.

Thus, in the experiments, we only compared the performance of our proposed approaches with

the traditional (or usual) models. The performance of other machine learning techniques, e.g.,

decision tree (Fürnkranz, 2010), and deep learning techniques, e.g., resnet (He, Zhang, Ren, &

Sun, 2015), are not evaluated and compared.

16

1.7 Definitions

We have the following terms:

Linear model (or regression) - It is a statistic model that linearly model the relationship between

the dependent variable and a set of independent variables.

Weighted linear model (or regression) - It is similar to linear model, however, it puts different

weights on different samples.

Box-Cox regression - It is similar to linear model, however, but the linear relationship is assumed

for the dependent variable with power transformation and the set of independent variables.

Linear model with categorical independent variable - It is linear model. One or more of the

independent variables are categorical. For example, assume one of the independent

variables from the dataset is ”education level for Purdue university students”. The

education level variable for Purdue university students is categorical, as it can only be a

value from bachelor, master, doctoral.

Lasso regression - It is linear model with ℓ1 penalty.

Ridge regression - It is linear model with ℓ2 penalty.

Generalized linear model (or regression) - It is a generalized version of linear model that model

relationship between the expectation of the dependent variable and a set of independent

variables. For linear model, it assumes the error between the expectation of the dependent

variable and the independent variables follows normal distribution. But for generalized

linear model, it assumes the error between them follows a exponential family distribution.

Sufficient statistics arrays - It is arrays/matrices used to estimate the model parameters. We can

re-write the loglikelihood or SSE as a function of sufficient statistics arrays. With sufficient

statistics arrays, we do not need to visit the dataset twice.

Sum Square Error - It is the summation of the squares of the errors between the original values

and the predictions.

17

Mean Square Error - It is the average of the squares of the errors between the original values and

the predictions.

Likelihood - It is a function of the joint probability of the samples from the dataset.

Log-likelihood - It is a logarithmic function of the likelihood function.

1.8 Summary

The first chapter introduced the research problem, presenting the research scope,

questions, as well as the significance, assumptions, limitations, delimitations. At the end, this

chapter also explained the terminologies/definitions used in this dissertation.

18

CHAPTER 2. REVIEW OF LITERATURE

Fully understanding of big data needs new ways of thinking and novel ideas to address

various challenges. In this dissertation, we would like to address two of the most prominent

computational challenges, including memory inflation issue and training time inefficiency issue.

In this chapter, we will present the literature review of relevant techniques that are in demand of

being addressed in big data. The main issues consist of the memory inflation issue and training

time inefficiency issue.

For computational challenges, we start from the ordinary linear models that exact

solutions can be derived. In the literature review chapter, we first introduce our approach to the

ordinary linear models with exact solutions. This include linear and weighted linear model, linear

model with Box-Cox transformation, linear model with categorical independent variables, ridge

regression model. Then we introduce our optimization techniques based on sufficient statistics

arrays that can be used to address the computational and memory challenges for these methods in

big data. Then, we will introduce lasso regression and generalize linear models that have no exact

solution in general.

2.1 Regression

Regression represents a class of statistical and machine learning methods. It models the

dependent variable based on a collection of independent variables. The relationship can be

complicated. Therefore, many methods developed under the framework have been proposed.

Regression can be used to a continuous or a count response. If the dependent variable is

continuous, then normal distribution is often used to model the distribution of the dependent

variable; otherwise generalized linear models can be used. Therefore, regression can be

implemented to both continuous and count data. Regression methods for continuous data are

more straightforward than those for count data. Therefore, we review the methods for continuous

data first.

19

2.1.1 Linear Model

Linear model (Neter, Kutner, Nachtsheim, Wasserman, et al., 1996) is a traditional

statistical model to connect a normal distributed dependent variable with a collection of

independent variables. It assumes that the dependent variable is a linear function of the

independent variables.

Assume there is a large scale dataset. The dataset contains n rows and p−1 columns. In

other words, the dataset has n samples (or observations), and each of the samples in the dataset

has p−1 features.

A linear model can be generally expressed in (2.1).

yyy = Xβββ + εεε, (2.1)

where yyy = (y1,y2, . . . ,yn)
⊤, yyy ∈ Rn is a vector of the dependent variable; X = (xxx⊤1 ,xxx

⊤
2 , . . . ,xxx

⊤
n)

⊤

with xxxi = (1,xi1, . . . ,xi(p−1))
⊤, X ∈ Rn×n is a matrix of the independent variables;

βββ = (β0,β1, . . . ,βp−1)
⊤, βββ ∈Rp is a vector of parameters; εεε = (ε1, . . . ,εn)

⊤, εεε ∈Rn is a vector of

errors. εεε is, in general, assumed to be composed by independent normal errors, such that there is

εεε ∼ N (0,σ2I).

The loglikelihood function of (2.1) is

Llr(βββ ,σ
2) =−n

2
log(2π)− n

2
log(σ2)− 1

2σ2 ∥y−Xβββ∥2
2 (2.2)

where ∥·∥2 is an ℓ2 norm. By maximizing loglikelihood function given by (2.2) for βββ and σ2, we

can get the model parameters. By ordinary least square or gradient decent, we can solve the

estimates of βββ , σ2, and the variance-covariance matrix of βββ analytically. The results are

β̂ββ = (X⊤X)−1X⊤y,

σ̂
2 =

1
n− p

(y−Xβ̂ββ)⊤(y−Xβ̂ββ) =
1

n− p
[y⊤y−y⊤X⊤(X⊤X)−1X⊤y],

V̂(β̂ββ) = σ̂
2(X⊤X)−1.

(2.3)

20

In (2.3), β̂ββ is called the estimate of the model coefficients and σ̂2 is called the mean square errors

(MSE) of the model. In addition, we need V̂(β̂ββ) for the importance of individual explanatory

variables. They are also needed in the development of big data algorithms for linear models.

2.1.2 Weighted Linear Model

Weighted linear model is an variation of linear model. Rather than a linear model, a

weighted linear regression model assumes the variances of the error terms vary. Therefore, it

contains a weight matrix for the observations. As independence is also assumed, the weight

matrix is diagonal. This indicates that all the off-diagonal elements are 0.

Let W be the weighted matrix. wi is the weight for each observation. A weighted linear

model is generally expressed as in (2.4).

y = Xβββ + εεε, εεε ∼ N (0,σ2W−1), (2.4)

where W = diag(w1, . . . ,wn) is a known weight matrix.

The loglikelihood function of (2.4) is

ℓ(βββ ,σ2) =−n
2

log(σ2)− n
2

log(2π)+
1
2

log |det(W)|− 1
2σ2∥W1/2(W−Xβββ)∥2

2. (2.5)

The SSE cost function of the model is specified by the last term of (2.5) as

SSEwlr(βββ w) =
∥∥∥W1/2(y−Xβββ w)

∥∥∥2

2
. (2.6)

By maximizing SSE of weighted linear model in (2.6), the estimates of the model parameters β̂ββ ,

σ̂2 and variance-covariance matrix of β̂ββ can be solved analytically.

21

The results are

β̂ββ w = (X⊤WX)−1X⊤Wy

σ̂
2
w =

1
n
(y−Xβ̂ββ w)

⊤W(y−Xβ̂ββ w) =
1

n− p
[y⊤Wy−y⊤X⊤W(X⊤WX)−1X⊤Wy]

V̂(β̂ββ w) = σ̂
2
w(X

⊤WX)−1.

(2.7)

In (2.7), β̂ββ w is the estimator of the model coefficients and σ̂2
w is the MSE of the model. Likewise,

V̂(β̂ββ w) is also used to evaluate the importance of explanatory variables.

2.1.3 Box-Cox Regression

Box-Cox transformation (Box & Cox, 1964; Sakia, 1992) is a class of power

transformations for the response of linear regression models. The goal is to stabilize the variances

of the linear regression models. It is modified from weighted linear regression for the case when

the weight matrix is unknown. The power transformation on dependent variable can be found in

(2.8).

y(c) = Xβββ c + εεε (2.8)

where y(c) is the dependent variable with power transformation. The equation can be found in

(2.9), the operation is element-wise.

y(c) =

logy (if c equals to 0)

(yc −1)/c (if c not equals to 0)
(2.9)

In the Box-Cox transformation given by (2.9), c is usually selected from a candidate collection C,

such that each c ∈C represents a power transformation. If c is selected, then (2.8) becomes a

standard regression model.

In general, a collection C for power transform parameters are applied to the response

variable to check which power transform parameters c is the best parameter. For every c ∈C, it

provides a power transformation. Because the optimal c is unknown, it is recommended to

22

estimate the best parameter by the profile maximum likelihood approach. Based on the profile

loglikelihood given by

Lbc(c,βββ c,σ
2
c) =−n

2
log(2π)− n

2
logσ

2
c − (c−1)⊤ logy

− 1
2σ2

c
(y(c)−Xβββ c)

⊤(y(c)−Xβββ c)
(2.10)

The profile maximum likelihood algorithm find the best c from a collection of c by maximizing

the likelihood. The c that gives the maximal likelihood value is the best c’s. The profile maximum

likelihood is given by (2.10). Because the maximizer cannot be analytically solved, numerical

methods are needed.

After ĉ, the estimator of c is obtained, the estimator of βββ and σ2 by exact solutions is also

accessible. In particular, for any c ∈C, we have

β̂ββ c = (X⊤X)−1X⊤y(c)

σ̂
2
c =

1
n
(y(c)−Xβ̂ββ c)

⊤(y(c)−Xβ̂ββ c)

V̂(β̂ββ c) = σ̂
2
c (X

⊤X)−1.

(2.11)

Replace c by ĉ, we obtain the model parameters of βββ , σ2, and the variance-covariance

estimator of βββ . Therefore, the major issue in Box-Cox transformation is the derivation of the

parameter ĉ.

2.1.4 Ridge Regression

Ridge regression (Hoerl & Kennard, 1970) is a linear model technique with an ℓ2 penalty

term in its estimation equation. The corresponding SSE cost function of ridge regression model is

as follows.

SSEridge(λ ,βββ λ) = ∥y−Xβββ λ∥
2
2 +nλ ∥βββ λ∥

2
2 (2.12)

where λ is the ridge parameter with the constraint λ ≥ 0. When λ = 0, ridge regression is

degenerated to linear regression.

23

Ridge regression can be analytically minimized. For any λ ≥ 0, there are exact solutions

for (2.12), yielding the estimators of model parameters β̂ββ , variance σ̂2 and variance-covariance

matrix of β̂ββ as

β̂ββ λ = (X⊤X+λ I)−1X⊤y

σ̂
2
λ
=

1
n
(y−Xβ̂ββ λ)

⊤(y−Xβ̂ββ λ) (2.13)

V̂(β̂ββ λ) = σ̂
2
λ
(X⊤X+λ I)−1X⊤X(X⊤X+λ I)−1

Ridge regression is a powerful tool for linear models when independent variables are

highly correlated. In this case, X⊤X is almost singular, leading to a phenomenon called

multicollinearity in linear regression models. Ridge regression can stabilize the computation of

the variance-covariance estimator of model coefficients. It increases the power for the detection of

important explanatory variables.

In general, a collection of ridge parameters λ are needed, which is similar to Box-Cox

regression, to calculate a best ridge parameter λ for ridge regression. Instead of using the ridge

parameter λ that maximizes SSE, ridge trace is used to determine the best ridge parameter λ .

Choosing a better ridge parameter λ is beneficial to alleviate the multicollinearity issue in the

dataset.

2.1.5 Linear Regression with Categorical Independent Variables

Linear model with categorical independent variables is linear model with one or more

independent variables being categorical. For example, surveys usually require the information of

biological gender from the survey takers. The biological gender is the gender at birth, including

male and female. Categorical independent variables are also called factor variables.

When categorical variables are in the model expression, the classical method to solve this

problem is different depending on the scale of the dataset. To tackle the categorical variable in the

dataset, one hot encoding (OHE) is used (Yu, Zhou, Chen, & Lai, 2020). For example, biological

gender is commonly prepossessed as [0,1] for male or [1,0] for female, or [0,1] for female or

24

[1,0] for male. For small or medium scale dataset, OHE is appropriate. However, for large scale

dataset, the model matrix generated after OHE could hardly be fit into the RAM.

Consider a linear regression model with q+1 variables. q of them are continuous and one

of them is categorical. Assume the categorical independent variable is A with I levels (or

categories). ni is the number of samples (or observations) for categorical independent variable

level I. Then the linear model with categorical independent variable can be expressed in the form

of (2.14).

D = {yi j,xxxT
i j,Ai) : i = 1, . . . , I, j = 1, . . . ,ni}, (2.14)

where xxxi j = (1,xi1, ...xi(q−1))
T . It stands for the (i, j)th vector of the independent variables.

To handle this, the interaction effects between the categorical independent variables and

the independent variables are generally taken into account. Assume the the categorical

independent variables interacted with the first q0 independent variables. Meanwhile the next

q−q0 independent variables are not interacted with the categorical variables. ANOCVA model is

proposed to tackle this issue based on the dummy variable approach (Fujita, Takahashi, Patriota,

& Sato, 2014). The ANOCVA model is shown in (3.19).

yi j = www⊤
i jααα +www⊤

i jωωω i + zzz⊤i jδδδ + εi j, (2.15)

where εi j ∽iid N (0,σ2), wwwi j = (1,xi j1, . . . ,xi j(q0−1))
⊤ are the independent variables that are

interacted with the categorical variables. zzzi j = (1,xi jq0, . . . ,xi j(q−1))
⊤ are the independent

variables that are not interacted with the categorical variables.

Let ααα = (1,α0, . . . ,αq−1)
⊤, ωωω1 = 000, ωi = (1,ωi0, . . . ,ωi(q0−1))

⊤, i ̸= 1, and

δδδ = (δq0 , . . . ,δq−1)
T , the matrix can be expressed as in (3.20):

yyyi = Wiααα +Wiωωω i +Z⊤
i δδδ + εεε i, (2.16)

where εεε i ∽iid N (0,σ2Ini), yi = (yi1, . . . ,yini)
⊤, Wi = (www⊤

i1, . . . ,www
⊤
ini
)⊤ and Zi = (zzz⊤i1, ...zzz

⊤
ini
)⊤.

25

The corresponding model matrix X is

X =

W1 0 · · · 0 Z1

W2 W2 · · · 0 Z2
...

...
...

WI 0 ... WI ZI

 (2.17)

With βββ = (((ααα⊤,ωωωT
2 , . . . ,ωωω

⊤
I ,δδδ

⊤)T . If ωωω1 = 000, X is in full rank, we can apply least square

approach to solve it.

This least square approach to solve linear model with categorical independent variables

performs well in data of moderately large size. Similar to least square approach for linear model

without categorical independent variables, it can hardly be used in big data due to the large scale

of model matrix. The size of X depends on n(q0I +q−q0). It could be much more huge than the

size of dataset itself if the number of the levels of the categorical independent variables are large.

Even if the number of levels I is only moderately large, the matrix size can explode for big data

problems. The generated model matrix size could be more than 1TB for n ≥ 107 after OHE

preprocessing.

2.1.6 Lasso Regression

Lasso regression (Tibshirani, 1996) is motivated from ridge regression, but it uses a

different penalty term. It is linear regression technique using an ℓ1 penalty to replace the ℓ2

penalty. The SSE cost function of lasso regression can be found in (3.35).

SSElasso(λ ,βββ λ) = ∥y−Xβββ λ∥
2
2 +nλ ∥βββ λ∥1 (2.18)

where λ is the lasso parameter used with λ ≥ 0. In general, lasso regression has no exact

solutions. It is usually solved by optimization methods, e.g. coordinate descent (Fu, 1998; Wu &

Lange, 2008). However, if the model matrix X is orthonormal, lasso regression has exact

solutions.

26

The advantage of the lasso regression is that it automatically sets estimators of some

independent variables to be 0, leading to an automatic variable selection procedure for linear

models. This task cannot be accomplished by the ridge regression model because it provides

non-zero estimates for all regression coefficients. Unlike ridge regression, the lasso estimators

cannot be solved analytically. Therefore, numerical computations are needed. Many λ values are

usually needed in the implementation of lasso regression. Multiple learning has great advantages

comparing to individual learning, because it can provide exact solutions for all of the candidates

of λ together.

2.1.7 Generalized Linear Models

Generalized linear models (Agresti, 2003) are extended from ordinary linear models. In

ordinary linear models, the dependent variable is assumed to be normal. In generalized linear

models, the dependent variable can be not normal. For example, linear model with binomial

distribution and linear model with Poisson distribution are members of generalized linear models.

In generalized linear models, the errors of the dependent variables and independent variables are

assumed to follow specific distributions from the exponential family. For example, the linear

model with Poisson distribution is assumed to follow the normal distribution, and the linear

model with binomial distribution is assumed to follow the binomial distribution.

An exponential family distribution can be written as a probability mass (or density)

function, which is shown in (2.19).

f (yi) = exp
[

yiωi −b(ωi)

a(φ)
+ c(yi,φ)

]
(2.19)

where ωi is a canonical parameter; φ is a dispersion parameter. In 2.19, we have µiE(yi) = b′(ωi)

and V(yi) = a(φ)b′′(ωi). The goal of generalized linear models is to use a set of independent

variables to model µi. To define a generalized linear model, we need to provide a random

component, a linear component, and a link function.

27

Let ηηη = (η1,η2, . . . ,ηn) be the vector of linear component. Then, for each ηi, it is

modeled by a linear function of independent variable as

ηi = xxx⊤i βββ , (2.20)

where βββ is the coefficients. By a link function g(·), the generalized linear model connects the

linear component and µi as

ηi = g(µi) = g[b′(ωi)] = xxx⊤i βββ , i = 1, . . . ,n. (2.21)

If g(·) is the canonical link functions, then there is

ηi = ωi = g(µi) = xxx⊤i βββ (2.22)

Equivalently, the generalized linear model can be expressed as

g(µµµ) = Xβββ (2.23)

with µµµ = E(y).

The variance of the response variable is

V̂ (yi) = a(φ)v(µi) (2.24)

with

v(µi) = b′′{h−1[g(µ)]} (2.25)

where ωi = h(xxx⊤i βββ) is the inverse function.

To tackle all the distributions from the exponential family, an iteratively re-weighted least

squares (IRWLS) method is proposed to solve generalized linear models. IRWLS is derived from

Fisher scoring method (Schworer & Hovey, 2004).

28

Let µµµ(r) = (µ
(r)
1 ,µ

(r)
2 , · · · ,µ(r)

n)⊤ and βββ
(r) are the rth iterative values, where

µ
(r)
i = g−1(η

(r)
i), η

(r)
i = xxx⊤i βββ

(r). And let

w(η) =
(∂ µ/∂η)2

b′′[h(η)]
(2.26)

and

µ(η) = η +(y−µ)(∂η/∂ µ) (2.27)

Let

W(r) = diag(w(r)
1 ,w(r)

2 , · · · ,w(r)
n) (2.28)

where w(r)
i = w(η(r)

i) is the working weight matrix, meanwhile we assume µ
(r)
i = µ(η

(r)
i) as the

working response vector. The estimated model coefficients β̂ββ is updated by

(X⊤W(r)X)βββ (r+1) = X⊤W(r)µµµ(r) via Fisher-scoring. After β̂ββ is derived, a(φ) is estimated by

moment method (McCullagh, 1983) as

a(φ̂) =
1
n

n

∑
i=1

(yi − µ̂i)
2

b′′[h(xxx⊤i β̂ββ)]
. (2.29)

Except for the normal case, the estimate of βββ cannot be solved analytically. Therefore, it

is important to investigate the IRWLS that we have reviewed above in generalized linear models

for big data. As updates of the working weights and the working responses are involved in

iterations of IRWLS when the responses is not normal, it is important to specify those for normal

and non-normal responses separately.

2.2 Optimization

First-order and higher-order optimization approaches have been progressing and evolving

for decades. In this section, we present first-order, higher-order optimization methods that are

29

proposed by other researchers which have the potential to solve the memory inflation and training

inefficiency issues.

2.2.1 First Order Optimization

Gradient descent is a universal method to solve regression models. It targets to find the

minimal point of the loss function (objective function) L .

min
θθθ

L (θθθ) = min
θθθ

1
n

n

∑
i

L(fθθθ (xxxi),yi) (2.30)

where fθθθ (xxxi) is the output of datapoint i.

Gradient descent optimizes along the gradient direction of L (θθθ). It is able to approach

the minimum point. In general, the direction is the negative gradient direction. And the amount

taken is proportional to the gradient η . Thus, it can also be called steepest descent. This

proportion is called learning rate. Taking linear regression as an example, and the loss used is

mean square error (MSE). We have

L(θθθ) =
1

2n

n

∑
i
(yi − fθθθ (xxxi))

2 (2.31)

and,

ggg =
∂L
∂θθθ

=−1
n

n

∑
i
(yi − fθθθ (xxxi))xxxi (2.32)

For clarity of presentation, we let θθθ t and gggt denote the parameters θθθ and ggg at timestep t

respectively. Then the parameter is updated via

θθθ t+1 = θθθ t −ηgggt (2.33)

Gradient descent is easy to implement, but its convergence rate is inferior to many other

first-order and higher-order iterative methods. Another problem of gradient descent is that the

parameter updating requires all training samples in one iteration, which indicates gradient descent

30

also suffers from memory inflation. To overcome this difficulty, gradient descent has

parallelizable variants (Dean et al., 2012; Nocedal & Wright, 2006; Recht, Re, Wright, & Niu,

2011). However, it is still infeasible to adopt gradient descent for big data. Then, a gradient

descent method with mini-batch emerges.

The gradient descent with mini-batch overcomes the memory inflation by splitting an

iteration over dataset into many small batches and performing calculation in small batches. The

gradient for mini-batch gradient descent method is:

gggt =− 1
|B| ∑

i∈B

(yi − fθθθ t (xxxi))xxxi (2.34)

where B is a mini-batch with size |B|. When |B|= 1, min-batch downgrades to stochastic

gradient descent (SGD). The computation complexity for one iteration for gradient descent is

O(np). For gradient descent with mini-batch, the computation complexity of one iteration is

reduced to O(bp) , and O(p) when it comes to SGD. By gradient descent with mini-batch,

parallelization is easier and more feasible than gradient descent. Meanwhile, mini-batch can be

used for online learning.

One issue in mini-batch descent is that it introduces additional noises for gradient

calculation during training stage. Because of this issue, the algorithm can hardly escape the

minimal area when it is near the minimal point. And gradient descent with mini-batch can be

trapped in the local minimal point. To escape local minimum, gradient descent with momentum is

proposed (Qian, 1999).

The main idea of gradient descent with momentum comes from the mechanics of physics.

It takes the previous update direction into consideration when calculating new gradient. The

momentum method is able to accelerate the convergence speed. It introduces an updating vector

vvvt and updates θθθ t via minus the updating vector. vvvt is determined by its previous updating vector

vvvt−1. The updating rule is shown in (2.35).

vvvt+1 = γvvvt −ηgggt (2.35)

31

where γ is the momentum factor. γ is often set to 0.9. Then

θθθ t+1 = θθθ t + vvvt+1 (2.36)

Gradient descent with momentum (Qian, 1999) is able to escape from the local minimum

and converges faster, however, it is not very smart in picking the direction. And if momentum

factor is not appropriately selected, this method may jump out of the optimal point Ruder (2016).

Nesterov accelerated gradient is then proposed to improve the traditional momentum

method Nesterov (1983). It calculates gradient of θθθ t+1 based on L(θθθ t +µvvvt) instead of L(θθθ t).

vvvt+1 = γvvvt −η
∂L(θθθ t +µvvvt)

∂θθθ
(2.37)

where µ ∈ [0,1].

From the update rule, we can find that nesterov accelerated gradient provides more

gradient information for computation. For better performance of nesterov accelerated gradient,

the learning rate decay factor is, in general, used to decrease the learning rate with the number of

iteration.

Adagrad is another algorithm that adapt learning rate to the parameters (Duchi, Hazan, &

Singer, 2011). That is also the main difference between Adagrad and gradient descent. Adagrad

calculates the learning rate dynamically using all the historical gradients information. Assume gggssst

is the accumulated gradients at timestep t, we have

gggssst = (
t

∑
i=1

ggg2
t + ε)

1
2

θθθ t+1 = θθθ t −ηgggt ⊘gggssst

(2.38)

where gggssst is the element-wise squared gradients, ε is a smoothing term used to avoid the issue of

dividing by zero. and ⊘ is element-wise division operator.

Adagrad are faster to converge compared to gradient descent methods without dynamic

learning rate. However, the historical gradient information may result in zero learning rate when

the accumulated gradient increases.

32

Adadelta and RMSprop are then proposed to solve this issue (Tieleman & Hinton, 2012;

Zeiler, 2012). Instead of accumulating all historical gradients, Adadelta and RMSprop restrict

the accumulation window of gradients to w. Adadelta stores w gradients via (2.39).

E[ggg2]t = ρE[ggg2]t−1 +(1−ρ)ggg2
t (2.39)

where ρ is a decay constant, E[ggg2]t represents the expected value of ggg2
t . Meanwhile, Adadelta

also stores another exponentially decaying average for squared parameter updates.

E[∆θθθ
2]t = ρE[∆θθθ

2]t−1 +(1−ρ)∆θθθ
2
t (2.40)

Notably, the inistial exponentially decaying averages E[ggg]0 and E[θθθ]0 are both 000. And E[∆θθθ
2] is

unknown before calculation θθθ , Adadelta uses E[∆θθθ
2]t−1 instead. The resulting parameter update

rule is

RMS[ggg]t = (E[ggg2]t + ε)
1
2

RMS[∆θθθ]t−1 = (E[∆θθθ
2]t−1 + ε)

1
2

∆θθθ t =−RMS[∆θθθ]t−1 ⊘RMS[ggg]t ⊙gggt

θθθ t+1 = θθθ t +∆θθθ t

(2.41)

where RMS is the squared root of mean square error (MSE). For Adadelta, the default learning

rate is removed from the updating rules. The strategy used by RMSprop is similar to Adadelta

and thus is skipped.

Except Adadelta and RMSprop, Adam (adaptive moment estimation) is the second

gradient descent approach, which adapts dynamic rate of learning and momentum (Kingma & Ba,

2015). Adam has two parameters for exponentially decaying averages, one for previous gradients

mmmt and the other for previous squared gradients uuut as is shown in (2.42).

mmmt = β1mmmt−1 +(1−β1)gggt

uuut = β1uuut−1 +(1−β1)ggg2
t

(2.42)

33

mmmt and uuut with mmm0 = 000,uuu0 = 000 are considered the estimates of mean and variance, of the gradients

respectively. However, these two estimates are biased. To compute the unbiased estimates, Adam

uses (2.43) to update the parameters.

m̂mmt =
mmmt

1−β t
1

ûuut =
uuut

1−β t
2

θθθ t+1 = θθθ t −ηm̂mmt ⊘
√

ûuut + ε

(2.43)

The authors experimentally show that Adam works well in practice. The experiments also support

that Adam can outperform other adaptive learning-methods. The authors extend Adam to

Adamax based on the infinity norm. The infinity norm makes Adamax more stable than Adam.

Adam is a rapidly popularized optimization method in deep learning. However, it is

shown that the regular momentum can be conceptually and empirically inferior to Nesterov’s

accelerated gradient. Nadam is then proposed to incorporate the advantages of Nesterov

accelerated gradient and Adam. They experimentally show that the convergence speed and the

performance of the learned models are improved via Nadam.

It’s also proven that the learning rate may become infinitesimally small as training

progresses. AMSGrad is then proposed to address this issue (Reddi, Kale, & Kumar, 2019).

AMSGrad would borrow uuut−1 from the past if uuut−1 > uuut to avoid infinitesimally small learning

rate.

uuut = max(uuut ,uuut−1) (2.44)

Besides, AMSGrad changes their learning rate dynamically by timestep t.

ηt =
η√

t
(2.45)

The authors provide a theoretical guarantee of convergence. But, the generalization ability

is on unseen data is still similar to that of Adam. This means there is still considerable

performance gap between AMSGrad and SGD.

34

New variant of Adam is proposed called AdaBound (Luo, Xiong, Liu, & Sun, 2019).

Inspired by gradient clipping, AdaBound clips the learning rate within a range [ηl,ηu] to

accomplish SGD base on a smooth transition from adaptive approaches. In addition, it provides

theoretical proofs of convergence. The experiments show that AdaBound could eliminate the

generalization gap.

Coordinate descent (Nesterov, 2012; Wright, 2015) is an optimization technique to

hanle cases when gradient descent methods cannot be applied. It is similar to gradient descent,

except that it optimizes the coefficients along the coordinate directions one by one.

2.2.2 Higher Order Optimization

Although gradient descent has popularized the first-order optimization, the second-order

optimization is better than the first-order optimization w.r.t convergence and stability.

Ordinary least squares (OLS) is a classical and traditional higher-order optimization

method. It is widely applied to obtain exact solution for linear regression models by taking

advantage of the second-order derivative. The OLS method calculates the exact solutions by

solving the normal equation (Kenney & Keeping, 1962). The estimator of coefficients θ̂θθ is then

obtained by (2.46).

θ̂θθ = (X⊤X)−1X⊤yyy (2.46)

where X = (xxx⊤1 ,xxx
⊤
2 , . . . ,xxx

⊤
n)

⊤. It is the model matrix, and yyy = (y1,y2, . . . ,yn)
⊤. It stands for the

dependent variable. For the ith datapoint, xxxi = (1,xi1,xi2, . . . ,xi(p−1))
⊤ and p−1 is the number of

features. If X⊤X is not invertible, the normal equation becomes unsolvable. Usually, the

generalized inverse Barata and Hussein (2012); Ben-Israel and Greville (2003) can be used in

this case. Although OLS is very efficient in obtaining the exact solutions, it also occurs the

memory inflation issue. For big data problem, the RAM needed to adopt OLS makes the

computation impossible. To overcome the memory inflation and keep the closed-form solutions,

the distributed matrix could be applied as a remedy (Moler, 1986). But the training time needed

35

makes this approach inappropriate. Due to this, the implementation is limited. Another strategy is

to maintain an array of sufficient statistics during training as is shown in (2.47).

S = (syy,sssxy,Sxx) = (
n

∑
i=1

syy,i,
n

∑
i=1

sssxy,i,Sxx,i) (2.47)

where syy,i = y2
i . Similarly, sssxy,i = yixxxi is a p-dimensional vector for the ith datapoint. Sxx,i = xxxixxx⊤i

is a p× p matrix. After a single-pass through the dataset, the closed-form solutions could be

obtained via sufficient statistics (X. Liu, Tang, Huang, Zhang, & Yang, to appear in 2019; Zhang

& Yang, 2017a).

θ̂θθ = S−1
xx sssxy (2.48)

But this strategy can only be applied to regression problems currently.

Newton’s approach is another well-known higher-order optimization . It is originally

proposed as a root-finding algorithm by taking advantages of the Taylor series. To find a

minimal/maximal point, the second derivative is used. Second derivatives makes Newton’s

approach to find the optimal points more convenient than gradient descent. Besides, Newton’s

approach has been proven that it has superior convergence rate. The update formula of Newton’s

approach is shown in (2.49).

θθθ t+1 = θθθ t −ηt∇
2 f (θθθ)−1

∇ f (θθθ) (2.49)

where ∇2 f is the Hessian of f , ηt is rate of learning, can be chosen by the Wolfe

conditions (Raydan, 1997; Thacker, 1989).

Newton’s approach converges fast. If the Hessian is not challenging to

obtain (Wedderburn, 1974), Newton’s approach would become more efficient as opposed to

gradient descent. But if the Hessian is hard to obtain, getting the second derivatives are often

expensive and sometimes intractable in big data optimization problem.

Quasi-newton approaches were proposed in order to tackle the cases when the Hessian is

hard to obtain (Avriel, 2003). Instead of obtaining the inverse of the Hessian, quasi-newton

approaches calculate an estimated matrix for the inverse of the Hessian which significantly

36

reduces the computational load. Because of the approximation of the inverse matrix, quasi-newton

approaches are much efficient than Newton’s approach, especially for big data (Cichocki, 2014).

DFP is a quasi-newton approach proposed in 1950s (Davidon, 1991; Fletcher & Powell,

1963). Assume Bt is an approximation of the Hessian at timestep t, and Ht = B−1
t . Let

ssst = θθθ t+1 −θθθ t , Denote uuut = ∇ f (θθθ t+1)−∇ f (θθθ t). Then

uuut = Bt+1ssst (2.50)

In this way, the approximate matrix can be calculated via

Bt+1 = (I− uuutsss⊤t
uuu⊤t ssst

)Bt(I−
ssstuuu⊤t
uuu⊤t ssst

)+
uuutuuu⊤t
uuu⊤t ssst

(2.51)

Ht+1 can be updated by

Ht+1 = Ht −
Htuuutuuu⊤t Ht

uuu⊤t Htuuut
+

ssstsss⊤t
uuu⊤t ssst

(2.52)

BFGS is another quasi-newton approaches similar to DEP (Avriel, 2003). In BFGS, the

updates of Ht is obtained by taking the complimentary formula of DFP, thus

Ht+1 = (I− ssstuuu⊤t
uuu⊤t ssst

)Ht(I−
uuutsss⊤t
uuu⊤t ssst

)+
ssstsss⊤t
uuu⊤t ssst

(2.53)

For high dimensional data, both DEP and BFGS canot solve data optimization problem if

data scale is large. This is because the methods store too many matrices to approximate the

Hessian matrix which are resource-consuming. L-BFGS is then proposed to address this

issue (D. C. Liu & Nocedal, 1989). L-BFGS stores only the ssst and uuut within a time window

instead of the approxiamte matrices. It is one of the most commonly used quasi-newton methods

in big data (Zaharia et al., 2010). Some researchers incorporate stochastic method with L-BFGS

to proposed online-LBFGS to address large scale optimization problem Schraudolph, Yu, and

Günter (2007).

37

2.3 Summary

In this chapter, we discussed the computational challenges. We reviewed the regression

models and the optimization methods that were proposed to address the computational challenges.

38

CHAPTER 3. METHODOLOGY

In chapter 3, we will present how we address the memory inflation issue and training time

inefficiency issue aforementioned in the last chapter. How to optimize the ordinary linear models,

including linear and weighted linear model, Box-Cox regression, as well as ridge regression,

linear model with categorical independent variable, lasso regression and generalized linear

models for big data problem will be discussed. Linear and weighted linear model, Box-Cox

regression, ridge regression and linear model with categorical variable all have exact solutions.

But it is infeasible to load the entire dataset into RAM to obtain the exact solutions for big data.

By constructing sufficient statistics arrays, we find that the exact solutions of the models can be

accessed with only a single-pass through the datasets. However, for lasso regression and

generalized linear models, there are no exact solutions. The methods to solve these two models

will also be proposed. Based on the sufficient statistics arrays, multiple learning will also be

introduced for the regression models (Joyce & Marjoram, 2008).

3.1 Sufficient Statistics Arrays and Multiple Learning

Regression models, including linear model, ridge regression, that have exact solutions are

well studied. The methods to obtain the exact solution for those models can be easily

implemented for small datasets as small datasets can be entirely loaded into the RAM at once.

Generally, the size of RAM of a personal computer ranges approximately from 8 GBs to 32 GBs.

Challenges arise when data are larger than 32 GBs. For linear model, the model matrix would be

too large to be fit into the RAM for the computers to compute the exact solutions, let alone the

linear model with categorical independent variables. With the preprocessing of OHE, we could

not even put a single row of the data into RAM. In this case, calculating the exact solutions is pie

in the sky (Jie, Jiahao, Xueqin, Yue, & Jiajun, 2019; Rodrı́guez, Bautista, Gonzalez, & Escalera,

2018).

We propose multiple learning for ordinary linear models and generalized linear regression

models that are designed to handle the memory inflation issue and training time inefficiency issue

of calculating the exact solutions. The ultimate goal for us is to make multiple learning as broadly

39

applicable as other optimization methods in the area of big data. To achieve this target, we

proposed multiple learning which are inspired by sufficient statistics arrays from statistics. The

idea can be found in the calculation of Monte Carlo (Lindqvist & Taraldsen, 2001). The

researchers use sufficient statistics to calculate the estimators of the expectations without visit the

dataset twice.

Sufficient statistics array can also be used to calculate the parameters of the models. These

include coefficients and variance-covariance matrix. It is derived from the loglikelihood function

or SSE cost function. Sufficient statistics array requires only a single visit to the dataset. All the

estimators of the models can be obtained without a second visit (Zhang & Yang, 2017a, 2017b).

Our basic idea is to simplify the loglikelihood function of (2.1):

L (βββ ,σ2) = −n
2 log(2πσ2)− 1

2σ2 ∑
n
i=1(yi − xxxiβββ)

2

= −n
2 log(2πσ2)− 1

2σ2 (syy −2s′xyβββ +βββ
′Sxxβββ),

(3.1)

where syy = ∑
n
i=1 y2

i , sssxy = ∑
n
i=1 xxxiyi, and SSSxx = ∑

n
i=1 xxxixxx′i. Note that L (βββ ,σ2) is only dependent

of syy, sssxy, and Sxx. They are a scalar, a vector in Rp, and a matrix in Rp×p, respectively.

According to the factorization theorem, we conclude that {syy,sssxy,Sxx} is a set of sufficient

statistics arrays of (2.1). According to the properties of sufficient statistics arrays, the estimates of

βββ and σ2 are exactly obtained from syy, sssxy, and Sxx are available. This is obvious as β̂ββ = S−1
xx sssxy,

σ̂2 = (syy − sss′xyS−1
xx sssxy)/(n− p), σ̃2 = (syy − sss′xyS−1

xx sssxy)/n, and V̂(β̂ββ) = σ̂2S−1
xx . As the sizes of

syy, sssxy, and Sxx are irrelevant to n, it is possible to propose a method which only uses syy, sssxy, and

Sxx for estimates of model parameters. In order to have the method, we need to have a way to

compute the values of syy, sssxy, and Sxx.

Taking linear regression as an example, the sufficient statistics arrays to calculate the

estimator of the model coefficients (2.3) of comes from the row-independent calculation of

∑
n
i=1 xxx⊤i xxxi.For any two observations xxxi1 and xxxi2 , calculating the summation of xxx⊤i1xxxi1 doesn’t

depend on xxxi2. As long as xxxi1 can be fit into the RAM, we can calculate xxx⊤i1xxxi1 and the summation

40

of xxx⊤i1xxxi1. After that, we can calculate the summation of xxx⊤i2xxxi2, xxx⊤i3xxxi3, . . . , xxx⊤i jxxxi j, . . . , xxx⊤i jxxxi j. The

estimator of the model coefficients in (2.3) can be written as in (3.2).

β̂ββ =

(
n

∑
i=1

xxx⊤i xxxi

)−1(n

∑
i=1

xxxiyi

)
(3.2)

The variance-covariance matrix is also accessible based on this idea.

Following this strategy, The sufficient statistics array can be defined as:

Definition 3.1.1 Sufficient statistics array is employed to obtain the model parameters, including

coefficients, variance, variance-covariance matrix, and the loglikelihood function (or SSE) with

only visiting the dataset once. It is computed row-by-row or batch-by-batch so that the memory

inflation issue could be addressed.

Based on sufficient statistics, the exact solutions can be obtained with only a single visit

through the dataset. For regression models, such as ridge regression and Box-Cox regression, a

collection of the models given different ridge parameters or power transform parameters can also

be solved at once. Obtaining the solutions of models given different hyper-parameters at once is

called multiple learning.

In this section, sufficient statistics arrays based multiple learning to obtain the exact

solutions for linear and weighted linear model, Box-Cox regression, ridge regression and linear

model for categorical independent variables.

41

3.2 Linear Model

Based on the strategy used to derive (2.3), the model parameters β̂ββ , the variance σ̂2 and

the variance-covariance matrix of β̂ββ can all be obtained.

β̂ββ =

(
n

∑
i=1

x⊤i xi

)−1(n

∑
i=1

xiyi

)

σ̂
2 =

1
n− p

n

∑
i=1

y2
i −

1
n− p

(n

∑
i=1

xiyi

)⊤(n

∑
i=1

x⊤i xi

)(
n

∑
i=1

xiyi

)
V̂(β̂ββ) = σ̂

2

(
n

∑
i=1

x⊤i xi

)−1

(3.3)

Thus, Slr can be written in the form of sufficient statistics array for linear regression.

Slr = (syy,sxy,Sxx) = (
n

∑
i=1

syy,i,
n

∑
i=1

sxy,i,Sxx,i) (3.4)

where syy,i = y2
i , syy,i is a scalar; sssxy,i = xxxiyi, sxy,i ∈ Rp is a vector; and Sxx,i = xix⊤i , Sxx,i ∈ Rp×p is

a matrix.

Based on (3.4), we can obtain the model parameters of β̂ββ , σ̂2 and the variance-covariance

matrix of β̂ββ as is shown in (3.5).

β̂ββ = S−1
xx sxy

σ̂
2 =

1
n− p

(syy − s⊤xyS−1
xx sxy)

V̂(β̂ββ) = σ̂
2S−1

xx

(3.5)

Obvious, the computation of the three quantities only need the sufficient statistics array Slr. Once

it is available, we do not need to visit the dataset for a second time. Therefore, the loaded dataset

can be discarded.

Theorem 3.2.1 Slr is the sufficient statistics array for linear model to derive the models

parameters β̂ββ , σ̂2, the variance-covariance matrix of β̂ββ and the loglikelihood function

Llr(βββ ,σ
2).

42

Proof Based on (3.4), the loglikelihood can be written as a function of Slr.

Llr(βββ ,σ
2) =−n

2
log(2πσ

2)

− 1
2σ2 (syy −2s⊤xyβββ +βββ

⊤Sxxβββ)
(3.6)

which only depends on the sufficient statistics array for linear regression.

The pseudo code of the multiple learning method based linear model can be found in

Algorithm 3.1. In Algorithm 3.1, the sufficient statistics arrays are calculated based on (3.4). If

Sxx is invertible, the generalized inverse of Sxx is used. Otherwise, the regular inverse is used.

Once Sxx is obtained, the model parameters β̂ββ , σ̂2 and the variance-covariance matrix of β̂ββ based

on (3.5).

Approximately 99% memory is reduce compared to the traditional algorithm.

43

To make the computation of the summation of the sufficient statistics array faster,

row-by-row computation could be optimized to batch-by-batch computation, i.e. ∑
n
i=1 y2

i ,

∑
n
i=1 xiyi and ∑

n
i=1 x⊤i xi could be re-organized into (3.7).

syy =
m

∑
k=1

s(k)yy =
m

∑
k=1

y⊤k yk

sxy =
m

∑
k=1

s(k)xy =
m

∑
k=1

X⊤
k yk

Sxx =
m

∑
k=1

S(k)
xx =

m

∑
k=1

X⊤
k Xk

(3.7)

where m is the batch size number, s(k)yy , sss(k)xy and S(k)
xx represents the sufficient statistics array in

terms of batch k. yk is a mk-dimensional vector, Xk is a mk ×mk matrix and mk is the batch size.

The pseudo code of the batch-by-batch multiple learning method based linear model can be found

in Algorithm 3.2. In Algorithm 3.2, the sufficient statistics arrays are calculated based on (3.7).

Instead of calculating the sufficient statistics arrays row-by-row, the sufficient statistics arrays are

calculated batch-by-batch.

44

3.3 Weighted Linear Model

Weighted linear model uses weights to represent the importance of each sample. The

sufficient statistics arrays Swls for weighted linear model is slightly different compared with linear

model aforementioned. The sufficient statistics array is shown in (3.8).

Swlr = (swyy,swxy,Swxx)

= (
n

∑
i=1

swyy,i,
n

∑
i=1

swxy,i,Swxx,i)
(3.8)

where swyy,i = wiy2
i , swyy,i is scalar; ssswxy,i = xxxiwiyi, ssswxy,i ∈ Rp is a vector; and Swxx,i = wixix⊤i ,

Swxx,iRp×[is a matrix.

The the model parameters β̂ββ w, the variance σ̂2
w and the variance-covariance matrix of β̂ββ w

can be re-expressed as in (3.9).

β̂ββ w = S−1
wxxswxy

σ̂
2
w =

1
n
(swyy − s⊤wxyS−1

wxxswxy)

V̂(β̂ββ w) = σ̂
2
wS−1

wxx

(3.9)

Theorem 3.3.1 Swlr is the sufficient statistics array for weighted linear model to derive the

estimators of the model coefficients β̂ββ w, the variance σ̂2
w and the variance-covariance matrix

V̂(β̂ββ w).

Proof From (3.8), (2.6) can be expressed as a function of the sufficient statistics array

SSEwls(βββ w) = swyy −2s⊤wxyβββ w +βββ
⊤
w Swxxβββ w (3.10)

It can be easily told that (3.10) is only dependent of the sufficient statistics array for weighted

linear model.

The pseudo code of the multiple learning based weighted linear regression is shown in

(3.8). In Algorithm 3.3, the sufficient statistics arrays are calculated based on (3.8). If Swxx is

invertible, the generalized inverse of Swxx is used. Otherwise, the regular inverse is used. Once

45

Swxx is obtained, the model coefficients β̂ββ w, the variance σ̂2
w and the variance-covariance matrix

V̂(β̂ββ w) based on (3.9).

Approximately 99% memory is reduce compared to the traditional algorithm.

Similar to multiple learning for linear model, calculating the sufficient statistics arrays

batch-by-batch is also obtainable for weighted linear model.

swyy =
m

∑
k=1

s(k)wyy =
m

∑
k=1

y⊤k Wkyk

swxy =
m

∑
k=1

s(k)wxy =
m

∑
k=1

X⊤
k Wkyk

Swxx =
m

∑
k=1

S(k)
wxx =

m

∑
k=1

X⊤
k WkXk

(3.11)

where Wk is a mk ×mk weight matrix for the kth batch.

The multiple learning method based weighted linear model can be found in Algorithm

3.4. In Algorithm 3.4, the sufficient statistics arrays are calculated based on (3.11). If Swxx is

invertible, the generalized inverse of Swxx is used. Otherwise, the regular inverse is used. Once

46

Swxx is obtained, the model coefficients β̂ββ w, the variance σ̂2
w and the variance-covariance matrix

V̂(β̂ββ w) based on (3.9)

In both Algorithms, the data set is accessed from Step 2 to Step 5. The goal is the

derivation of the sufficient statistics array. It is used for all of the models in our interest. If the

model is changed, we do not need to re-compute the sufficient statistics array. Therefore, the

fitting of ML/statistical model given by Step 6 to Step 11 is implemented multiple times, but the

access of the data (given by Step 2 to Step 5) is only implemented once. The two algorithms can

provide exact solutions to all of the models in our interests simultaneously.

3.4 Box-Cox Regression

Box-Cox regression is linear model with a power transformation on the dependent

variable. In general, a collection C of power transformation parameters are used. And the c from a

collection of c that has the highest loglikelihood value (2.10) is chosen as the best power

transformation parameter. Unlike linear and weighted linear model, the calculation of profile

47

loglikelihood is required for choosing the best power transformation parameter, (c−1)⊤ logy is

required for sufficient statistics arrays.

The sufficient statistics arrays for Box-Cox regression can be found in (3.12). For each

c ∈C,

Sc,bc = (sc,yy,slogy,sc,xy,Sxx)

= (
n

∑
i=1

sc,yy,i,
n

∑
i=1

slogy,i,
n

∑
i=1

sc,xy,i,Sxx,i)
(3.12)

where sc,yy,i =
(

y(c)i

)2
, slogy,i = logyi. Those two statistics are scalars; sssc,xy,i = xxxiy

(c)
i , sssc,xy,i ∈ Rp

is a vector; and Sxx,i = xix⊤i , Sxx,i ∈ Rp×p is a matrix. As Sxx does not contain the power

transformation parameter c, it can be used by all the models.

For each c ∈C,

β̂ββ c = S−1
xx sc,xy

σ̂
2
c =

1
n
(sc,yy − s⊤c,xyS−1

xx sc,xy)

V̂(β̂ββ c) = σ̂
2
c S−1

xx

(3.13)

Theorem 3.4.1 For any c ∈C, Sc,bc is sufficient statistics arrays for Box-Cox regressoin. It

could be employed to calculate the model parameters β̂ββ c, the variance σ̂2
c , the

variance-covariance matrix of β̂ββ c and loglikelihood function Lbc(c,βββ c,σ
2
c).

Proof Based on (3.13), (2.10) becomes

Lbc(βββ c,σ
2
c) =−n

2
log(2πσ

2
c)

− 1
2σ2

c
(sc,yy −2s⊤c,xyβββ c +βββ

⊤
c Sc,xxβββ c)+(c−1)slogy

(3.14)

which only depends on the sufficient statistics arrays for Box-Cox linear regression.

The multiple learning algorithm for Box-Cox regression is presented in Algorithm 3.5. In

Algorithm 3.5, the sufficient statistics arrays are calculated based on (3.12). If Sxx is invertible,

the generalized inverse of Sxx is used. Otherwise, the regular inverse is used. Once Sxx is

48

obtained, the model parameters β̂ββ , the variance σ̂2 and the variance-covariance matrix of β̂ββ based

on (3.5). Approximately 99% memory is reduce compared to the traditional algorithm.

Batched version of sufficient statistics arrays for any c ∈C is shown in (3.15).

sc,yy =
m

∑
k=1

s(k)c,yy =
m

∑
k=1

(y(c)k)⊤yk

sc,xy =
m

∑
k=1

s(k)c,xy =
m

∑
k=1

X⊤
k y(c)k

Sxx =
m

∑
k=1

S(k)
xx =

m

∑
k=1

X⊤
k Xk

(3.15)

49

where y(c)k is a mk-dimensional vector in batch k.

The pseudo code of the batch-by-batch multiple learning based Box-Cox regression can

be found in Algorithm 3.6.

3.5 Ridge Regression

Ridge regression is linear model with an ℓ2 penalty term. Although ridge regression has

ridge parameters, it is easy to analytically solve ridge regression model, i.e., it is easy to obtain

the exact solutions. And for a collection D of ridge parameters, the sufficient statistics arrays can

50

be directly used for all ridge parameters. Meanwhile, the sufficient statistics arrays is identical to

the sufficient statistics arrays of linear regression.

Let Sridge = Slr, for each λ ∈ D, the model parameters β̂ββ λ , the variance σ̂2
λ

, the

variance-covariance matrix of β̂ββ λ and the SSE are shown (3.16).

β̂ββ λ = (Sxx +λ I)−1sxy

σ̂
2
λ
=

1
n
(syy − s⊤xy(Sxx +λ I)−1sxy)

V̂(β̂ββ λ) = σ̂
2
λ
(Sxx +λ I)−1Sxx(Sxx +λ I)

(3.16)

SSEridge(λ ,βββ λ) = ∥y−Xβββ λ∥
2
2 +nλ ∥βββ λ∥

2
2 (3.17)

The best ridge parameter λ can be chosen by ridge trace (Hoerl & Kennard, 1970).

Theorem 3.5.1 Sridge is the sufficient statistics arrays for ridge regression.

Proof Based on (3.16), (2.12) could be written as

SSEridge(λ ,βββ λ) =

syy −2s⊤xyβββ λ +βββ
⊤
λ Sxxβββ λ +nλβββ

⊤
λ βββ λ

(3.18)

It is evident that Sridge is only dependent of the sufficient statistics arrays of ridge regression.

The row-by-row and batch-by-batch multiple learning algorithm for ridge regression is the

same as the algorithm of linear model. The pseudo code are shown in Algorithm 3.7 and

Algorithm 3.8. Approximately 99% memory is reduce compared to the traditional algorithm.

3.6 Sparse Block Regression (SBR)

To address the hundred of thousands of levels of the categorical independent variables (or

factor variables) in linear model, the general way is to use one hot encoding prepossessing before

linear model training. However, for hundred of thousands of levels, the obtained model matrix X

51

could be too large to be loaded RAM. Thus, it would be very challenging to calculate the exact

solutions. SBR is proposed to exactly solve linear model with hundred of thousands levels of

factor variables.

52

The fundamental of SBR is to build up a sparse block matrix (SBM) for the categorical

variables. SBM is actually a matrix of blocks of sufficient statistics arrays for each level of the

categorical variables derived similar to the derivation of sufficient statistics arrays of linear model.

Once the SBM is obtained, the estimators of the model parameters of linear model with

categorical independent variables can be solved by simple matrix operations. We defined the

SBM as follows.

To solve the linear model with categorical independent variables, a general model,

ANOCVA model is proposed by Bentler and Bonett (1980) in (3.19) or (3.20):

yi j = www⊤
i jααα +www⊤

i jωωω i + zzz⊤i jδδδ + εεε i j

εεε i j ∽
iid N (0,σ2), i = 1, . . . , I, j = 1, . . . ,ni

(3.19)

yyyi = Wiααα +Wiωωω i +Z⊤
i δδδ + εεε i

εεε iii ∽
iid N (0,σ2Ini), i = 1, . . . , I, j = 1, . . . ,ni

(3.20)

To define SBM, we first need re-write (3.19) into (3.21).

yi j = www⊤
i jγγγ i + zzz⊤i jδδδ + εεε i j (3.21)

where εεε i j
iid∼ N (0,σ2), γγγ1 = ααα and γγγ i = ααα +ωωω i for i ̸= 1.

Then, for (3.20), we have

yyyi = Wiγγγ i +Ziδδδ + εεε i, (3.22)

where εεε iii
iid∼ N (000,σ2Ini). The model matrix X can be written as

X =

W1 0 · · · 0 Z1

0 W2 · · · 0 Z2
...

...
...

0 0 ... WI ZI

 (3.23)

53

with βββ = (γγγ⊤1 , . . . ,γγγ
⊤
I ,δδδ

⊤)⊤.

Given (3.23), we assume δδδ is a constant for all levels of the categorical variable. In other

words, only the main effects of Zi are included in this linear model, and the interaction effects of

Zi are not included. Because of the absence of the interaction effects, their significance needs

testing.

Consider a interaction effects model,

yi j = www⊤
i jγγγ i + zzz⊤i jδδδ i + εεε i j (3.24)

The interaction effects model from (3.24) assumes that δδδ i varies with i. To test if (3.24)

can be reduced to (3.21), we have the a hypothesis test as is shown in (3.25).

H0 : δδδ 1 = δδδ 2 = · · ·= δδδ I (3.25)

.

(3.24) is treated as a full model and (3.21) is treated as a reduced model. F-statistic is

used to examine H0. Thanks to SBM, F-statistic can be directly calculated. Once F-statistic is

computed, the significance of the interaction effects can be tested.

For the next step, we first need derive the the mathematical formulas of the SBM. For each

level i = 1, . . . , I of the categorical variable, we have

syy =
I

∑
i=1

ni

∑
j=1

y2
i j, sssi,wy =

ni

∑
j=1

yi jwwwi j,

sssi,zy =
ni

∑
j=1

yi jzzzi j, Si,wz =
ni

∑
j=1

wwwi jzzz⊤i j ,

Si,zz =
ni

∑
j=1

zzzi jzzz⊤i j , Si,ww =
ni

∑
j=1

wwwi jwww⊤
i j .

(3.26)

In (3.26), syy is a scalar, sssi,wy is a q0-dimensional vector, sssi,zy is a (q−q0)dimensional vector. Si,wz

is a q0 × (q−q0) matrix, Si,zz is a (q−q0)× (q−q0) matrix, and Si,ww is a q0 ×q0 matrix. The

number of blocks of the SBM is less than (qI)2 +qI +1. Thus, the memory needed for loading

the data and computing (3.21) and (3.24) are significantly reduced.

54

For each block of sufficient statistics arrays in the SBM, the sufficient statistic arrays are

shown in (3.27).

Si = (syy,sssi,wy,sssi,zy,Si,wz,Si,zz,Si,ww) (3.27)

It offers a collection of blocks of sufficient statistics as {Si : i = 1, . . . , I}.

SBM can be defined as follows.

Definition 3.6.1 A sparse block matrix (SBM) is a matrix of blocks, each block is sufficient

statistics arrays for each level of the categorical independent variable.

Theorem 3.6.1 SBM can then be written as

S = diag(S1,S2, . . . ,Si, . . .SI). (3.28)

It is equivalent to S = (S1,S2, . . . ,Si, . . .SI). Both of them can be applied to calculate the

estimators of the model.

Proof According to the sufficient statistics arrays, SBM can be expressed as in (3.28). For

i = 1, . . . , I, the model coefficients δδδ and γ̂γγ i, the variance-covariance matrix of δδδ V̂(δ̂δδ) and the

loglikelihood can be directly calculated based on the SBM with only a single visit to the dataset.

The loglikelihood is shown in (3.29).

L (γγγ1, . . . ,γγγ I,δδδ 1, . . . ,δδδ I,σ
2) =−n

2
log(2π)− n

2
σ

2

− 1
2σ2

[
I

∑
i=1

(γγγ⊤i Si,wwγγγ i +2γγγ iSi,wzδδδ i +δδδ
⊤
i Si,zzδδδ i)

]

− 1
2σ2

[
syy −2

I

∑
i=1

(sss⊤i,wyγγγ i + sss⊤i,zyδδδ i)

]
.

(3.29)

It is evident that L (γγγ1, . . . ,γγγ I,δδδ 1, . . . ,δδδ I,σ
2) is only dependent of S . In other wirds, S

is a collection of blocks of sufficient statistics arrays. The model parameters δδδ , γ̂γγ i, the

variance-covariance matrix δδδ V̂(δ̂δδ) are also accessible by calculating S . Based on this, we have

S as a SBM.

55

F-statistic can also be computed via SBM for hypothesis test. We can then obtain the

corresponding p-value from the F-distributions.

By maximizing (3.29) regarding γγγ i, we can get the estimator of model coefficients γγγ i. For

i = 1, . . . , I,

γ̂γγ i = S−1
i,ww(sssi,wy −Si,wzδ̂δδ). (3.30)

Let Szz = ∑
I
i=1(Si,zz −Si,zwS−1

i,wwSi,wz), Swz = ∑
I
i=1(sssi,zy −Si,zwS−1

i,wwsssi,wy), and Si,zw = S⊤
i,wz. By

maximizing (3.29) regarding δδδ , we have

δ̂δδ = S−1
zz Swz. (3.31)

Meanwhile, we get

V̂(δ̂δδ) = σ̂
2S−1

zz (3.32)

where σ̂2 = SSE/[n−q−q0(I −1)]. Meanwhile SSE = syy −∑
I
i=1 sss⊤i,wyS−1

i,wysssi,wy −S⊤
wzS−1

zz Swz.

We are able to solve the model parameters the variance-covariance matrices of γ̂γγ i. For

i = 1, . . . , I.

V̂(γ̂γγ i) = σ̂
2(S−1

i,ww +S−1
i,wwSi,wzS−1

zz Si,zwS−1
i,ww). (3.33)

The pseudo code of SBR is shown in Algorithm 3.9. In Algorithm 3.9, the sufficient

statistics arrays is calculated for each level of the categorical independent variable.

Approximately 99% memory is reduce compared to the traditional algorithm.

Batched version of sufficient statistics arrays for any c ∈C is shown in (3.34).

56

syy =
I

∑
i=1

mi

∑
k=1

s(k)yy =
I

∑
i=1

mi

∑
k=1

y⊤ikyik, sssi,wy =
mi

∑
k=1

W⊤
ikyyyik,

sssi,zy =
mi

∑
k=1

Zikyyyik, Si,wz =
mi

∑
k=1

Z⊤
ikWWW ik,

Si,zz =
mi

∑
k=1

Z⊤
ikZik, Si,ww =

mi

∑
k=1

W⊤
ikWik.

(3.34)

In (3.34), mi is the total number of batches for level i.

57

Table 3.1. An example of converting multiple categorical variables into a single
categorical variable.

State Major Converted categorical variable
IN Math Category 1
NY Computer Science Category 2
IN Computer Science Category 3
FL Physics Category 4
FL Physics Category 4
IN Math Category 1

Sparse block regression with multiple categorical variables The proposed SBR

algorithm is designed only for datasets with a single categorical independent variables. SBR

cannot handle multiple categorical independent variable. Thus, we intend to extend the SBR so

that multiple categorical independent variables can be addressed.

The basic idea to handle multiple categorical independent variables is to add a

prepossessing step before SBR. In prepossessing step, we convert all categorical independent

variables into one categorical independent variable. An example is shown in Table 3.1. The

categorical independent variable ”State” and categorical independent variable ”Major” are

converted into a new categorical independent variable with 4 categories.

3.7 Lasso regression

Lasso regression is linear model with an ℓ1 penalty. The cost function of lasso regression

model w.r.t. SSE is shown in (3.35).

SSElasso(λ ,βββ λ) = ∥y−Xβββ λ∥
2
2 +nλ ∥βββ λ∥1 (3.35)

where λ is the lasso parameter with λ ≥ 0. In general, lasso regression has no exact solutions.

Let ∥βββ λ∥1 = ∑
p
i |βββ λ ,i|, coordinate descent minimizes over βββ λ ,i with βββ λ , j, j ̸= i fixed:

X⊤
i Xiβββ λ ,i +X⊤

i (X−iβββ λ ,−i − yyy)+λ si = 0 (3.36)

58

where Xi ∈ n×1 is the ith column of X ∈ n× p. And X−i ∈ n× p−1 represents the the dataset X

without the ith column. Similarly, βββ λ ,i refers to the ith element of βββ λ , and βββ λ ,−i refers to the βββ λ

without the ith element. si is the subgradient of |βββ λ ,i| with respect to βββ λ ,i.

si =

1 if βββ λ ,i > 0

0 if βββ λ ,i = 0

−1 if βββ λ ,i < 0

(3.37)

The corresponding solution is:

βββ λ ,i =
X⊤

i (yyy−X−iβββ λ ,−i)−λ si

X⊤
i Xi

(3.38)

We then have

βββ λ ,i =

X⊤
i (yyy−X−iβββ λ ,−i)+λ

X⊤
i Xi

if X⊤
i (yyy−X−iβββ λ ,−i)<−λ

X⊤
i (yyy−X−iβββ λ ,−i)−λ

X⊤
i Xi

if X⊤
i (yyy−X−iβββ λ ,−i)> λ

0 Otherwise

(3.39)

Notably, X⊤
i Xi, X⊤

i yyy and X⊤
i X−i can be expressed via the sufficient statistics similar to

X⊤X and X⊤yyy in Chapter 4. Thus, we could calculate the coefficients βββ λ with only a single visit

through the dataset. However, due to the limitation of coordinate descent, we need to loop over

the computation of βββ λ until the convergence requirements are met. Based on experiments, we

found approximately 99% memory is reduce compared to the traditional algorithm.

3.8 Generalized linear regression

Generalized liner models are models extended from linear regression models. Linear

regression models assume that the data follow normal distributions, but for the generalized liner

models, the data distribution could be different, e.g. Poison distribution. Formally speaking, the

59

generalized liner models are defined on exponential family distributions, including Bernoulli,

binomial, Poisson distributions and etc. Each target yi for i ∈ [1, . . . ,n] is from an exponential

family. The loglikelihood of the generalized linear models is:

Lglm(βββ ,φ) =
n

∑
i

c(yi,φ)+
1

a(φ)

n

∑
i
{yih(xxx⊤i βββ)−b[h(xxx⊤i βββ)]} (3.40)

The model coefficients βββ is accessible via Newton-Raphson algorithm

βββ
(t+1) = βββ

(t)−L ′′−1
glm (βββ (t))L ′−1

glm (βββ (t)) (3.41)

where βββ
(t) is the estimation of βββ at tth iteration. The Hessian matrix in the equation is very

expensive to calculate and can be estimated via the Fisher information matrix, which is

I(βββ ,φ) =−E(L ′′
glm(βββ ,φ)), thus we have

βββ
(t+1) = βββ

(t)− I(βββ (t))L ′−1
glm (βββ (t)) (3.42)

60

However, Fisher information matrix is still expensive to obtain. In IRWLS algorithm, the

Fisher information matrix is estimated via a weighted least square estimation equation

I(βββ (t)) = X⊤W(t)
F X, where W(t)

F = diag(w(t)
F,1,w

(t)
F,2, . . . ,w

(t)
F,n).

As w(t)
F,i =

(∂ µ
(t)
i /∂η

(t)
i)2

b′′[h(xxx
⊤
i βββ

(t))]
.

Based on this, we get

(X⊤W(t)
F X)βββ (t+1) = X⊤W(t)

F βββ
(t)+L ′−1

glm (βββ (t)) (3.43)

By setting L ′−1
glm (βββ (t)) = X⊤W(t)

F (yyy−uuu(t)), and zzz(t)F = (z(t)F,1, . . . ,z
(t)
F,n)

⊤, we have

(X⊤W(t)
F X)βββ (t+1) = X⊤W(t)

F zzz(t)F (3.44)

Therefore, βββ
(t+1) is the weighted least squares solution to βββ with

zzz(t)F = Xβββ + ε (3.45)

where ε follows N(0,σ2(W(t)
F)−1). We can then construct sufficient statistics arrays to obtain βββ .

The sufficient statistics arrays under βββ
(t) is

S
(t)

glm,F = (s(t)zz,F ,sss
(t)
xz,F ,S

(t)
xx,F) (3.46)

where s(t)zz,F = ∑
n
i w(t)

F,i{z(t)F,i}2 is a scalar, sss(t)xz,F = ∑
n
i w(t)

F,iz
(t)
F,ixxxi is a p-dimensional vector,

S(t)
xx,F = ∑

n
i wF,ixxxixxx⊤i is a p× p matrix.

Based on S
(t)

glm,F , we have

βββ
(t+1) = {Sxx,F}−1sss(t)xz,F

{σ
2
F}(t+1) =

1
n
{s(t)zz,F −{sss(t)xz,F}

⊤S(t)
xx,F}

−1sss(t)xz,F}
(3.47)

61

The estimation of variance-covariance matrix V̂ (β̂ββ) depends on the presence of φ . If φ is

present, V̂ (β̂ββ) = I(−1)(β̂ββ , φ̂). For t +1th iteration,

V̂ (β̂ββ)(t+1) = {σ
2
F}(t)(X⊤W(t)

F X)−1 (3.48)

Otherwise, V̂ (β̂ββ) = I(−1)(β̂ββ). For t +1th iteration,

V̂ (β̂ββ)(t+1) = (X⊤W(t)
F X)−1 (3.49)

The row-by-row multiple learning method based generalized linear models can be found

in Algorithm 3.10 (as introducing new notations for the batch-by-batch version algorithm could

be too complicated for the pseudo code, we used pseudo code for row-by-row multiple learning

approach here). Approximately 99% memory is reduce compared to the traditional algorithm.

3.9 Summary

In this chapter, we proposed the multiple learning models for linear model, weighted linear

model, Box-Cox regression and ridge regression, lasso regression and generalized linear models.

62

CHAPTER 4. RESULTS FOR REGRESSION MODELS WITH EXACT

SOLUTIONS

This chapter illustrates the results of regression models with exact solutions, including

linear and weighted linear model, Box-Cox regression and ridge regression. To measure the

performance of the four multiple learning method based ordinary linear models and generalized

linear models, two set of experiments were conducted.

4.1 Experiment Design

All the multiple learning methods were implemented on Spark and run on a Spark cluster

with four nodes. To carry out the experiments on the Spark cluster, a computer cluster with 1

master and 3 workers are built. The hardware specifications of four nodes are shown in Table 4.1.

We mainly designed two set of experiments to evaluate the performance of the traditional

regression models and the proposed multiple learning models on Spark for each regression model.

The first experiment is to compare the training time cost and the other is to compare accuracy. In

the two sets of experiments, we used three datasets with different scales as the train sets. The train

sets are 1GB, 10GB, and 100GB datasets. We used 0.2GB data as test set for 1GB train set, 2GB

data as test set for 10GB train set, and 20GB data as test set for 100GB train set (the train sets and

test sets are generated under the same distribution). The algorithm to generate the train and test

sets is shown in Algorithm 4.1.

However, for SBR, the algorithm to generate the dataset is slightly different. In order to

understand how categorical variables impacts computing, we generated 12 datasets for the

experiments. The samples in the datasets contains F independent variables . One of the F features

Table 4.1. Configurations of Clusters

63

Table 4.2. Details of Datasets for SBR

is a categorical independent variable with I levels. For each level, there are ni observations. The

datsets are listed in Table 4.2. Each sample contains 7 features. 6 of the 7 features are continuous

independent variables, and 1 of the 7 features is categorical independent variable. 3 of the 7

continuous features are interacted with the categorical feature. For each pair of xxx and y, the error

follows a normal distribution N (0,0.625).

64

Experiment I: Training Time Evaluation

The first experiment is called training time evaluation. It is to measure the time cost for

training the multiple learning models. We compared the model training time consumed for each

of the traditional models with the multiple learning models. For the multiple learning models, we

measured the training time took regarding two different batch sizes 1 and 128.

Experiment II: Accuracy Evaluation

The second experiment is called accuracy evaluation. This experiment is to examine if the

results of our multiple learning models are as accurate as the traditional models with a single visit

to the datasets. To compare the accuracy, mean squared error (MSE), is used as the metric. The

definition of MSE can be found in (4.1).

MSE =
∑

n
i (yi − ŷi)

2

n
(4.1)

where yi is a scalar, it is the ground truth for sample i. ŷi is also a scalar, it is the prediction. n

represents the total number of samples.

4.2 Regression models with exact solutions

Table 4.3 and Table 4.4 showed the results of the two sets of experiments measured on the

generated datasets.

Experiment I: Training Time Evaluation

Table 4.3 compared time cost for model training. In Table 4.3, (i) Spark represents Spark

built-in implementation of traditional models. Note that Box-Cox regression has no official

implementation on Spark, thus we provided an alternative version; (ii) SS1 and SS128 refer to the

multiple learning models are trained with batch size set to 1 and 128 respectively; (iii) W = I

refers to the weights of the samples; (iv) As Box-Cox regression accepts multiple power

parameters, a collection C = [−1.5 to 1.5] by an interval of 0.1 is selected as the

hyper-parameters. For ridge regression, a collection of D = [0 to 0.9] is used. A bar chart of

training time comparison of ridge regression is also drawn as a figurative illustration example to

demonstrate the efficiency of multiple learning models. The figure is shown in Fig. 4.2. The time

65

cost is in logarithmic scale. The blue bar and purple bar stand for Spark built-in implementation

with D = [0.1] and Spark built-in implementation with D = [0 to 0.9] respectively. The red bar

and green bar stand for multiple learning with D = [0.1] and D = [0 to 0.9]. The light green bar

and green bar stand for multiple learning with D = [0.1] and D = [0 to 0.9] and batch size 128.

Based on Table 4.3 and Fig. 4.2, multiple learning models were at least twice efficient

than the traditional models. For models with hyper-parameters selected from a collection of

models, e.g. ridge regression, multiple learning methods had a great advantage. From Table 4.3,

the training time consumed to obtain the desired ridge regression were dependent of the number

of ridge parameters. More hyper-parameters we had, longer training need was required. In

contrast, the training time of multiple learning models was only increased to a small extent as the

number of hyper-parameters increased. According to Table 4.3, multiple learning models for

Box-Cox regression and ridge regression with batch size set to 1 were 20x efficient than the

traditional models on Spark for 10 hyper-parameters.

Larger batch size also reduced the time for training multiple learning models. For batch

size set to 128, it could be approximately 27x efficient. Comparing the training time of 128 batch

size against 1 batch size, the time cost for 1GB, 10GB and 100GB datasets were decreased by

approximately 15%, 21%, and 31%, respectively. It could be inferred that larger batch size leads

to less training time.

From experiment I, if training models with a collection of hyper-parameters was required

for big data, multiple learning models could beat the usual models by only visiting the dataset

once, i.e., reducing the disk Inputs/Outputs. This is very useful for training model with a

collection of hyper-parameters.

Experiment II: Accuracy Evaluation

Table 4.4 showed the accuracy evaluation, using MSE, for the multiple learning models

and the traditional models for 1, 10, and 100 GBs datasets. The MSE of our models was identical

to the traditional models. Given the identical MSE, multiple learning models outperformed the

traditional models because of faster training time. And the larger the datasets were given, the

more advantageous multiple learning methods were.

66

Table 4.3. Training time cost for the built-in Apache Spark approaches and the
corresponding multiple learning approaches

Fig. 4.2. Training time comparison for ridge regression

67

Table 4.4. MSE comparison of the built-in Apache Spark approaches and the
corresponding multiple learning approaches

4.3 Spark Block Regression

In Experiment I and II for SBR, the model we employed was evaluated based on the a

dataset with only 3 continuous independent variables interacted with the categorical one. Table

4.5 evaluated the training time, while Table 4.6 evaluated MSE.

Experiment I: Training Time Evaluation

Table 4.5 compared training time for SBR and the usual linear model with categorical

independent variable given different datasets. In Table 4.5, (i) SBR refers to sparse block

regression algorithm (ii) Spark stands for Spark built-in usual linear model for factor variable;

(iii) The symbol ”-” indicates the model crashed during training without results.

According to Table 4.5, SBR was more efficient than the Spark built-in traditional linear

model with categorical variable. For ni = 1 and ni = 100, the training time consumed for SBR

increased marginally when I grows from I = 104 to 105. As I grew, the training time consumed

was less than 100 seconds even for the factor variable with 5×106 level. As for the traditional

linear model with categorical variable, the training time cost grew dramatically while I grew. The

time consumed for model training grew by over 5 times as I grew from 104 to 105. For ni = 100,

the training time grew by higher than 10 times for I from 104 to 5×104.

Meanwhile, for categorical independent variable with ≥ 5×105 levels, the Spark built-in

traditional linear model with categorical variable crashed without returning the results which was

68

Table 4.5. Training time cost for the built-in Apache Spark method and SBR

caused by memory inflation. The model matrix X after OHE beat the largest memory size even if

the matrix was sparse, where OHE means one hot encoding.

Based on Experiment I, we made a couple of conclusions. The first conclusion was that

SBR outperformed the traditional linear model for categorical in terms of training time. The

second conclusion was that SBR could obtain the results while the traditional linear model for

factor crashed for a dataset with a factor variable contains hundreds of thousands of levels.

Experiment II: Accuracy Evaluation

Table 4.6 compared the MSE with usual linear model for categorical variable on spark.

The experiment was conducted on the 12 dataset. As was shown, the MSE was close to the MSE

of traditional model on Spark. For some cases, the MSE was slightly better. For ni = 1, SBR

slightly outperformed the traditional linear model for categorical variable on spark. As the number

of levels grew, the MSE slightly grew. It is because higher dimensional data were more difficult to

fit. For ni = 100, the MSE and the traditional model was equivalent with values are equal to 0.07.

Both training time and MSE experiments provided experimental supports to the proof

presented in (3.28) that there are exact solutions for SBR. Meanwhile, the training time cost for

SBR was much less than Spark built-in traditional models. Moreover, the higher dimensions the

datasets had, the more superior the multiple learning approaches were.

4.4 Summary

We conducted the experiments for all the multiple learning models with exact solutions in

this dissertation. We compared the performance regarding time and precision (MSE). The results

69

Table 4.6. MSE comparison for the built-in Apache Spark method and SBR

demonstrated that our proposed multiple learning models were at least twice time-efficient than

the traditional approaches. And we can achieve the same precision (same MSE) compared with

the traditional approaches.

70

CHAPTER 5. RESULTS FOR REGRESSION MODELS WITHOUT

EXACT SOLUTIONS

In this chapter, the results of regression models without exact solutions, including lasso

regression and generalized linear models are demonstrated.

5.1 Experiment Design

All the algorithms were implemented on the same platform as is shown in the last chapter.

The configurations of the platform can be found in Table 4.1.

The algorithm to generate data for lasso regression can be found in Algorithm 4.1. The

strategy for data generation for generalized linear models is similar to the simulation of data for

ordinary linear models, however, the error can be specified to follow a different distribution

besides normal distribution as long as the distribution is a member of exponential family. The

pesudo code for data generation for generalized linear models is in Algorithm 5.1

5.2 Lasso regression

The results of lasso regression for experiment I and II were shown in Table 5.1 and Table

5.2.

Experiment I: Training Time Evaluation

Table 5.1 and Fig. 5.2 compared the training time consumed for lasso regression model.

In Table 5.1, (i) Spark represents the built-in lasso regression of Apache Spark; (ii) SS refers to

the multiple learning lasso regression; (iii) D = [0 to 0.9] by an interval of 0.1 is used for lasso

regression.

Based on Table 5.1, the training time consumed of multiple learning lasso regression was

twice to three times less than that of the traditional lasso regression on Spark. And for multiple

parameters of lasso regression, i.e., D = [0 to 0.9] in the table, the computation time needed for

multiple learning lasso regression was far less than that of traditional lasso regression. It was

because the traditional lasso regression needs to train a different model for a different parameter.

71

Table 5.1. Training time evaluation of Spark built-in lasso regression and multiple
learning lasso regression

Model Time Used (s)
1GB 10GB 100GB

Lasso Spark 120.32 912.16 10025.10
D = [0.1] SS 60.11 320.88 3253.47

Lasso Spark 1614.35 11025.83 71817.28
D = [0 to 1.9] SS 63.53 377.44 3451.28

However, for multiple learning lasso regression, the solution for 10 parameters could be obtained

at once. Fig. 5.2 visualized the time cost for lasso regression Table 5.3. The time cost is in

logarithmic scale. The blue bar and green bar stand for Spark built-in implementation with

D = [0.1] and Spark built-in implementation with D = [0 to 0.9] respectively. The red bar and

purple bar stand for multiple learning with D = [0.1] and D = [0 to 0.9]. As was shown in Table

5.1 and Fig. 5.2, the multiple learning approach was more time-efficient than the traditional

approach.

72

Table 5.2. MSE evaluation of Spark built-in lasso regression and multiple learning
lasso regression

Fig. 5.2. Training time evaluation for lasso regression

Experiment II: Accuracy Evaluation Table 5.2 showed the MSE for the multiple

learning lasso regression and the usual approach for 1, 10, and 100 GB datasets. Our approach

was slightly better than the built-in spark algorithms as the MSE of our approach was smaller.

5.3 Generalized linear models

The results of the generalized linear models for experiment I and II were shown in Table

5.3 and Table 5.4.

Experiment I: Training time evaluation for traditional approach implement in Spark

and the multiple learning approach

Table 5.3 compared training time consumed for the generalized linear models. In Table

5.3, (i) Spark stands for the usual approach in Spark; (ii) SS 1 and SS 128 refer to the multiple

73

Table 5.3. Training time evaluation for traditional approach implement in Spark and
the multiple learning generalized linear models

Model Time Used (s)
1GB 10GB 100GB

Poisson Spark 183.45 1328.46 13354.32
SS 1 80.36 611.58 6024.38

SS 128 68.42 599.83 5874.87
Normal Spark 184.64 1341.26 13387.43

SS 1 81.62 624.11 6101.37
SS 128 74.5 601.13 5924.74

Table 5.4. MSE evaluation for traditional approach implement in Spark and the
multiple learning generalized linear models

learning generalized linear models with batch size 1 and 128 respectively. We could find that the

multiple learning generalized linear models were time-efficient than the built-in Spark

implementation for both both distributions. And if a larger batch size was set, the training time

was also slightly reduced. Fig. 5.3 visualized the time cost for generalized linear models with

Poisson distribution in Table 5.3. The time cost is in logarithmic scale. The blue bar stands for

Spark built-in implementation. The red bar stands for multiple learning generalized linear models

with batch size 1. The green bar stands for multiple learning generalized linear models with batch

size 128. As was shown in Table 5.3 and Fig. 5.3, the multiple learning approach was more

time-efficient than the traditional approach. For multiple learning with batch size 1 and batch size

128, the time consumed for training was similar.

Experiment II: Accuracy Evaluation Table 5.4 showed the MSE for the multiple

learning GLMs and the traditional approaches given 1GB, 10GB, and 100GB datasets. Our

approach was slightly better than the built-in spark algorithms for both distributions including

Poisson and Normal distributions.

74

Fig. 5.3. Training time evaluation for generalized linear models

5.4 Summary

In this chapter, we conducted the experiments for all the multiple learning models without

exact solutions, including lasso regression and generalized linear models. We compared the

performance in terms of time and precision (MSE). The results demonstrated that our proposed

multiple learning models were at least three times time-efficient than the traditional lasso

regression and generalized linear regression. Meanwhile, the MSE of multiple learning

approaches and the traditional approaches was similar.

75

CHAPTER 6. CONCLUSION AND FUTURE PLAN

6.1 Conclusion

We introduced computational challenges, including memory inflation issue and training

time inefficiency issue from training ordinary linear models and generalized linear models for big

data and proposed big data optimized algorithms for regression models, including linear and

weighted linear model, Box-Cox regression, sparse block regression and generalized linear

models. Based on sufficient statistics, we proposed multiple learning for regression models.

Multiple learning allows the regression models to obtain the solutions of the models at once.

Experiments regarding training time comparison and precision (MSE) comparison for all the

multiple learning models are conducted. The results demonstrated that our proposed multiple

learning models are at least twice time-efficient than the traditional approaches. And we can

achieve the same precision (same MSE) compared with the traditional approaches.

We believe that the multiple learning based ordinary linear models and generalized linear

models have huge potentials to be applied in big data to solve related problems. Meanwhile, we

think the multiple learning based algorithms can be broadly applicable to not only ordinary linear

models and generalized linear models, but also Bayesian model.

6.2 Future Works

Currently, the multiple learning algorithms, including sparse block regression, lasso

regression and generalized linear models still require multiple iterations through the dataset to

obtain the solutions. Besides, the solutions are not analytical. If we can find methods for sparse

block regression, lasso regression and generalized linear models that require only a single-pass

through the dataset similar to the other regression models with exact solutions, the training time

could be significantly reduced.

76

For all multiple learning algorithms, those algorithms are limited on the regression

models. In the future, we would like to extend the multiple learning algorithms to other models,

for example, decision tree and support vector machines.

For the experiments section, it can be improved from the following perspectives.

1. all the experiments can be conducted on computer cluster with high configurations. Due to

budget, the computer cluster is in low configuration. In this case, it is hard to compare the

performance of multiple learning models with the state-of-art algorithms published in the

top conference and journals.

2. the datasets simulated can be more than three types. The datasets we used are 1GB, 10GB

abd 100GB. The biggest dataset we used is the 100GB dataset. However, it is still relatively

small for big data. In the future, we would like to generate dataset with 1TB, 10TB and

100TB for experiments.

3. there are only two sets of experiments to compare the accuracy and the training time of

multiple learning methods and the traditional methods. For each set of the experiment, we

only used MSE to evaluate the accuracy and training time to evaluate the efficiency. In the

future, we would like to employ more metrics, such as MAE (Mean Absolute Error), RSE

(Residual Standard Error), R2 (R square), adjusted R2, AIC (Akaike’s Information

Criteria), BIC (Bayesian information criteria), Mallows Cp. R square, AIC, BIC and

Mallows Cp are metrics generally used in statistics to test the accuracy of regression

models. We would like to investigate the disk inputs/outputs as a metric to evaluate the

efficiency of the models.

4. For generalized linear models, we only generated datasets from Poisson distribution and

normal distribution. However, another important distribution from exponential family is

binomial distribution. In the future, we would like to generate datasets from binomial

distribution. Accuracy, sensitivity and specificity from classification models will be

employed as the metric to measure the performance of generalized linear models with

binomial distribution.

77

5. For lasso regression and ridge regression, we only tested the performance with a collection

of 10 hyper-parameters. In the future, we would like to test the performance for 20 or 100

hyper-parameters.

78

REFERENCES

Abdulla, A. I., Abdulraheem, A. S., Salih, A. A., Sadeeq, M., Ahmed, A. J., Ferzor, B. M., . . .
Mohammed, S. I. (2020). Internet of things and smart home security. Technol. Rep.
Kansai Univ, 62(5), 2465–2476.

Agresti, A. (2003). Categorical data analysis (Vol. 482). John Wiley & Sons.

Avriel, M. (2003). Nonlinear programming: analysis and methods. Courier Corporation.

Barata, J. C. A., & Hussein, M. S. (2012). The moore–penrose pseudoinverse: A tutorial review
of the theory. Brazilian Journal of Physics, 42(1-2), 146–165.

Ben-Israel, A., & Greville, T. N. (2003). Generalized inverses: theory and applications (Vol. 15).
Springer Science & Business Media.

Bentler, P. M., & Bonett, D. G. (1980). Significance tests and goodness of fit in the analysis of
covariance structures. Psychological bulletin, 88(3), 588.

Box, G. E., & Cox, D. R. (1964). An analysis of transformations. Journal of the Royal Statistical
Society: Series B (Methodological), 26(2), 211–243.

Cichocki, A. (2014). Tensor networks for big data analytics and large-scale optimization
problems. arXiv preprint arXiv:1407.3124.

Davidon, W. C. (1991). Variable metric method for minimization. SIAM Journal on
Optimization, 1(1), 1–17.

Dean, J., Corrado, G., Monga, R., Chen, K., Devin, M., Mao, M., . . . others (2012). Large scale
distributed deep networks. In Advances in neural information processing systems (pp.
1223–1231).

Demchenko, Y., De Laat, C., & Membrey, P. (2014). Defining architecture components of the big
data ecosystem. In 2014 international conference on collaboration technologies and
systems (cts) (pp. 104–112).

Duchi, J., Hazan, E., & Singer, Y. (2011). Adaptive subgradient methods for online learning and
stochastic optimization. Journal of Machine Learning Research, 12(Jul), 2121–2159.

Fletcher, R., & Powell, M. J. (1963). A rapidly convergent descent method for minimization. The
computer journal, 6(2), 163–168.

79

Forsyth, D., & Ponce, J. (2011). Computer vision: A modern approach. Prentice hall.

Fu, W. J. (1998). Penalized regressions: the bridge versus the lasso. Journal of computational
and graphical statistics, 7(3), 397–416.

Fujita, A., Takahashi, D. Y., Patriota, A. G., & Sato, J. R. (2014). A non-parametric statistical test
to compare clusters with applications in functional magnetic resonance imaging data.
Statistics in medicine, 33(28), 4949–4962.

Fürnkranz, J. (2010). Decision tree. In C. Sammut & G. I. Webb (Eds.), Encyclopedia of machine
learning (pp. 263–267). Boston, MA: Springer US. Retrieved from
https://doi.org/10.1007/978-0-387-30164-8 204 doi:
10.1007/978-0-387-30164-8 204

He, K., Zhang, X., Ren, S., & Sun, J. (2015). Deep residual learning for image recognition. arXiv
preprint arXiv:1512.03385.

Hoerl, A. E., & Kennard, R. W. (1970). Ridge regression: Biased estimation for nonorthogonal
problems. Technometrics, 12(1), 55–67.

Jie, L., Jiahao, C., Xueqin, Z., Yue, Z., & Jiajun, L. (2019). One-hot encoding and convolutional
neural network based anomaly detection. Journal of Tsinghua University (Science and
Technology), 59(7), 523–529.

Joyce, P., & Marjoram, P. (2008). Approximately sufficient statistics and bayesian computation.
Statistical applications in genetics and molecular biology, 7(1).

Kenney, J. F., & Keeping, E. (1962). Linear regression and correlation. Mathematics of statistics,
1, 252–285.

Kingma, D. P., & Ba, J. L. (2015). Adam: A method for stochastic optimization. international
conference on learning representations (2015).

Lindqvist, B., & Taraldsen, G. (2001, 09). Monte carlo conditioning on a sufficient statistic.

doi: 10.13140/RG.2.2.19200.58885

Liu, D. C., & Nocedal, J. (1989). On the limited memory bfgs method for large scale
optimization. Mathematical programming, 45(1-3), 503–528.

Liu, X., Tang, Z., Huang, H., Zhang, T., & Yang, B. (to appear in 2019). Multiple learning for
regression in big data. 18th IEEE International Conference on Machine Learning and
Applications (ICMLA).

80

Luo, L., Xiong, Y., Liu, Y., & Sun, X. (2019). Adaptive gradient methods with dynamic bound of
learning rate. arXiv preprint arXiv:1902.09843.

Matt, C., Hess, T., & Benlian, A. (2015). Digital transformation strategies. Business &
Information Systems Engineering, 57(5), 339–343.

McCullagh, P. (1983). Quasi-likelihood functions. The Annals of Statistics, 11(1), 59–67.

Meeker, W. Q., & Hong, Y. (2014). Reliability meets big data: opportunities and challenges.
Quality Engineering, 26(1), 102–116.

Moler, C. (1986). Matrix computation on distributed memory multiprocessors. Hypercube
Multiprocessors, 86(181-195), 31.

Nesterov, Y. (1983). A method for unconstrained convex minimization problem with the rate of
convergence o (1/kˆ 2). In Doklady an ussr (Vol. 269, pp. 543–547).

Nesterov, Y. (2012). Efficiency of coordinate descent methods on huge-scale optimization
problems. SIAM Journal on Optimization, 22(2), 341–362.

Neter, J., Kutner, M. H., Nachtsheim, C. J., Wasserman, W., et al. (1996). Applied linear
statistical models.

Nocedal, J., & Wright, S. J. (2006). Numerical optimization (second ed.). New York, NY, USA:
Springer.

Oussous, A., Benjelloun, F.-Z., Lahcen, A. A., & Belfkih, S. (2018). Big data technologies: A
survey. Journal of King Saud University-Computer and Information Sciences, 30(4),
431–448.

Ponnam, L. T., Rao, V. S., Srinivas, K., & Raavi, V. (2016). A comparative study on techniques
used for prediction of stock market. In 2016 international conference on automatic
control and dynamic optimization techniques (icacdot) (pp. 1–6).

Qian, N. (1999). On the momentum term in gradient descent learning algorithms. Neural
networks, 12(1), 145–151.

Raydan, M. (1997). The barzilai and borwein gradient method for the large scale unconstrained
minimization problem. SIAM Journal on Optimization, 7(1), 26–33.

Recht, B., Re, C., Wright, S., & Niu, F. (2011). Hogwild: A lock-free approach to parallelizing
stochastic gradient descent. In Advances in neural information processing systems (pp.
693–701).

81

Reddi, S. J., Kale, S., & Kumar, S. (2019). On the convergence of adam and beyond. arXiv
preprint arXiv:1904.09237.

Rodrı́guez, P., Bautista, M. A., Gonzalez, J., & Escalera, S. (2018). Beyond one-hot encoding:
Lower dimensional target embedding. Image and Vision Computing, 75, 21–31.

Ruder, S. (2016). An overview of gradient descent optimization algorithms. arXiv preprint
arXiv:1609.04747.

Sakia, R. M. (1992). The box-cox transformation technique: a review. Journal of the Royal
Statistical Society: Series D (The Statistician), 41(2), 169–178.

Schraudolph, N. N., Yu, J., & Günter, S. (2007). A stochastic quasi-newton method for online
convex optimization. In Artificial intelligence and statistics (pp. 436–443).

Schworer, A., & Hovey, P. (2004). Newton-raphson versus fisher scoring algorithms in
calculating maximum likelihood estimates.

Thacker, W. C. (1989). The role of the hessian matrix in fitting models to measurements. Journal
of Geophysical Research: Oceans, 94(C5), 6177–6196.

Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the Royal
Statistical Society: Series B (Methodological), 58(1), 267–288.

Tieleman, T., & Hinton, G. (2012). Lecture 6.5-rmsprop: Divide the gradient by a running
average of its recent magnitude. COURSERA: Neural networks for machine learning,
4(2), 26–31.

Wedderburn, R. W. (1974). Quasi-likelihood functions, generalized linear models, and the
gauss—newton method. Biometrika, 61(3), 439–447.

Wright, S. J. (2015). Coordinate descent algorithms. Mathematical Programming, 151(1), 3–34.

Wu, T. T., & Lange, K. (2008). Coordinate descent algorithms for lasso penalized regression.
The Annals of Applied Statistics, 2(1), 224–244.

Xia, F., Yang, L. T., Wang, L., & Vinel, A. (2012). Internet of things. International journal of
communication systems, 25(9), 1101.

Yu, L., Zhou, R., Chen, R., & Lai, K. K. (2020). Missing data preprocessing in credit
classification: One-hot encoding or imputation? Emerging Markets Finance and Trade,
1–11.

82

Zaharia, M., Chowdhury, M., Franklin, M. J., Shenker, S., & Stoica, I. (2010). Spark: Cluster
computing with working sets. HotCloud, 10(10-10), 95.

Zeiler, M. D. (2012). Adadelta: an adaptive learning rate method. arXiv preprint
arXiv:1212.5701.

Zhang, T., & Yang, B. (2017a). Box–cox transformation in big data. Technometrics, 59(2),
189–201.

Zhang, T., & Yang, B. (2017b). An exact approach to ridge regression for big data.
Computational Statistics, 32(3), 909–928.

83

