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NOMENCLATURE

NV nitrogen vacancy center

VCMA voltage-controlled magnetic anisotropy

SQUIDS superconducting quantum interference devices

SNR signal-to-noise ratio

FMR ferromagnetic resonance

SOC spin-orbit coupling

Li(i = x, y, z) dimension of the ferromagnet

PSD power spectral density

E⃗ applied electric field

hNV height of the NV center

H⃗0 applied magnetic field

t evolution time

tm initialization and readout time for the NV center

m⃗ normalized magnetization

M⃗ magnetization

θ angle between magnetization and z axis

θH angle between external field and z axis

F free energy of the ferromagnet

Ms saturation magnetization

K anisotropy energy corresponding to Hk

Hk anisotropy field along z axis

H⊥ anisotropy field along x axis

H⃗eff effective magnetic field

γ gyromagnetic ratio

Ry(θ) operator for clockwise rotation about y axis by θ

ωFMR ferromagnet resonance frequency

α Gilbert damping coefficent

h⃗ thermally excited noisy magnetic field
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Sij(i, j = x, yz) susceptibility matrix element

Dth correlation function of thermal field h⃗

Cij correlation function of i and j components of magnetization deviation

B⃗ magnetic induction intensity

∇⃗ gradient vector operator

Φ scalar potential for finding stray field

Bi
j stray field matrix element

H⃗ total field at the NV center

NV nitrogen-vacancy center

|0⟩g , |±1⟩g , |0⟩e , |±1⟩e , |s⟩ quantum states of the NV center

ms spin quantum number

H Hamiltonian

Dnvg zero field splitting between |0⟩g and degenerate |±1⟩

S⃗ spin vector operator

ϵz, ϵxy NV’s coupling strength to longitudinal and transverse electric field

P0→−1 transition probability from |0⟩g to |−1⟩g

K̃(ω) a measure of power density spectrum of magnetic field at NV

Γ transition rate related to T1 time

ϵ energy splitting between |0⟩g and |−1⟩g

p0 population of |0⟩g

Ki interfacial anisotropy energy

β VCMA coefficient

ξ conversion coefficient from electric field to magnetic anisotropy

λs saturation magnetostriction

Y Young’s Modulus

deff effective piezomagnetic coefficient

δp population difference

N total measurement counts

σp standard deviation of p
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κ ratio of wrong assignment

σx photon shot noise

C overall readout efficiency
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ABSTRACT

Quantum sensing, a protocol that takes advantage of the extreme sensitivity of quantum

systems to their environment, enables many applications of quantum systems for sensing.

Inspired by direct electric field sensing using the Stark effect of a nitrogen-vacancy(NV)

center, this work implements an NV-magnet hybrid way to explore the possibilities of over-

coming NV’s relatively weak coupling strength to electric fields. The magnetic-noise-induced

population relaxation of the NV center serves as the mechanism for sensing. Within this

scheme, the magnetic noise spectrum is tuned by modulating the magnetic properties via

voltage-controlled magnetic anisotropy (VCMA) or electric-field-induced magnetoelastic ef-

fect. In this way, the noise carrying the information of the electric field is taken as a signal -

the shift of the noise spectrum leads to a population difference of NV energy levels, which is

used for evaluating electric fields. The investigation of the relation between sensitivities and

operation points reveals that lower operation frequency is desirable for better performance.

The comparison between VCMA and electric-field-induced magnetoelastic effect indicates

that the efficiency of converting electric field into magnetic property modulation is a critical

parameter for sensitivity enhancement.
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1. INTRODUCTION

Since Willard Boyle and George E. Smith proposed the charge-coupled device (CCD) as

an image sensor, it has become a major photosensitive element in many digital cameras[ 1 ].

Measuring the temperature of digital devices allows studying the temperature-dependent

performance of electronic devices. Nowadays, people can use the silicon bandgap tempera-

ture sensor to monitor the states of electronic equipment[ 2 ]. In biomedical research, electric

field sensors are employed to investigate activities in a living cell[ 3 ]. Sensors, detecting and

converting physical quantities into signals people can handle, have played an increasingly

important role in our lives. Frequently people employ classical systems for sensing, while in

recent decades, quantum systems have emerged as a promising alternate[ 4 ]. Quantum sys-

tems are notoriously vulnerable to external disturbances. For example, the longitudinal and

transverse noise may result in the loss of population and phase information, characterized

by T1 and T2 time, respectively[ 5 ][ 6 ]. However, if we think another way, does “vulnerable”

also mean “sensitive”? What if the perturbations are exactly or associated with physical

quantities interested? Can we utilize such a property of quantum systems for sensing?

In recent years people are making enormous efforts to develop various quantum sensors:

1. Atomic vapors, spin-polarized by a pumping laser, rely on coherent precession about

the external magnetic field for sensing[ 7 ]. Due to the relaxation and decoherence time up

to second or even minute range[ 8 ], atomic vapors prove to be outstanding magnetic field

sensors, with sensitivities to the order of ∼ 100aT/
√
Hz [ 9 ][ 10 ]; however, as for imaging

applications, the spatial resolution is limited due to their finite volume (down to mm3)[ 11 ].

2. Trapped ions, whose quantized motional levels are strongly coupled to electric fields,

are predicted with sensitivities of 500nV/(cm ·
√
Hz) for electric fields and 1yN/

√
Hz for

force sensing[ 12 ][ 13 ]. Meanwhile, as magnetic field sensors, trapped ions demonstrate the

sensitivity of 4.6pT/
√
Hz[ 14 ]. Due to the tiny size of single-trapped-ion magnetometers,

they have the potential for high-resolution applications such as magnetic microscopy[ 15 ].

However, to “trap” the ions, a delicate magnetic or electric potential and laser cooling are
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required, leading to a complicated lab configuration[ 16 ]. As a result, how to operate trapped

ions in close proximity to sample surfaces remains challenging[ 15 ].

3. Superconducting quantum interference devices (SQUIDs), whose loop phase is ex-

tremely sensitive to the external magnetic flux, are comparable magnetometers to atomic

vapors with a sensitivity of ∼ 10aT/
√
Hz[ 17 ][ 18 ]. SQUIDs miniaturized to submicron size

allow nanoscale magnetic imaging[ 19 ]. However, as probes SQUIDs may be perturbative,

and the low-temperature requirement restricts their application range[  20 ].

Assembling many advantages of existing quantum sensors, the Nitrogen-vacancy color

center in diamond (NV center) has emerged as a competitive candidate for sensing. Specifi-

cally, NV centers are promising for several reasons:

1. Thermal stability enabling operation under temperatures from ∼ 10mK to ∼ 600K -

wider range allows more potential applications and simplified room-temperature lab config-

uration[ 21 ][ 22 ][ 23 ].

2. Nanoscale resolution - the resolution of the NV sensor is governed by how close the NV

can be brought into the target. The NV center can be located in the depth of ∼ 2nm from

the diamond surface, facilitating detection in very close proximity to the sample[ 24 ][ 25 ].

3. Non-perturbative operation - the NV center does not carry significant magnetic mo-

ments or moving charges that may generate a non-negligible stray field at the sample, which

gives more reliable measurements[  20 ].

4. Low cytotoxicity - the NV center is reported to be non-toxic in a living cell, making

the in vivo observation of cell activities possible[ 26 ].

5. Unlimited photostability (> days) - the fluorescence emission spectrum of the NV

center shows no detectable change with time, which is desirable for optical readout and

fluorescence labeling[ 24 ][ 27 ][ 28 ].

6. Moderate sensitivity to magnetic fields - the NV center couples to magnetic fields by

Zeeman effect with strength characterized by the gyromagnetic ratio γ = 2.8MHz/G[ 24 ].

The NV ensemble is reported with the sensitivity of ∼ 1pT/
√
Hz [ 29 ], while the single NV

reaches ∼ 1µT/
√
Hz for dc magnetic fields and ∼ 100nT/

√
Hz for ac fields [ 30 ][ 31 ][ 32 ].

Despite the inferior sensitivity of magnetic fields compared to the atom vapor cell or

SQUIDs, other strengths of NV centers make them versatile and convenient sensors with
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applications in quantum optics, bio labeling, condensed matter physics, and so on. However,

compared to magnetic sensing, the coupling of NV ground states to electric fields is not as

strong[ 33 ]. Since the single NV center was proposed as an electric field sensor with sensitivity

202V/(cm ·
√
Hz) for ac and 891V/(cm ·

√
Hz) for dc electric fields[ 34 ], people have been

making efforts to enhance the sensitivity:

By using a 1ppm NV ensemble, Chen et al.,[ 35 ] investigate the Stark effect on hyper-

fine states of NV centers, demonstrates the sensitivity of ∼ 1V/(cm ·
√
Hz), and pre-

dicts that by using the NV ensemble with higher density, the sensitivity may approach

6 × 10−3V/(cm ·
√
Hz). Instead of using Stark effect of ground triplet, Block et al.,[ 36 ] take

the 3E excited states into account - by on resonance optical pumping and looking at the

gap shift between excited states and ground states, Block et al.,[ 36 ] figure out the electric

field susceptibility of the excited states χe
⊥ = 1.4MHz/(V/m) and χe

∥ = 0.7MHz/(V/m)

with sensitivity 1.3mV/(cm ·
√
Hz). However, the cryogenic temperature < 45K is required

since the temperature-dependant optical transition linewidth should be less than the zero

field splitting[ 36 ].

Another problem of the Stark-effect-based sensing lies in the perturbative effects caused

by the magnetic field since the coupling strength to magnetic fields is relatively stronger

and may overwhelm the Stark effect. In [  34 ] and [ 37 ], the axial magnetic field is suppressed

by applying a transverse magnetic field, while in [ 38 ], an engineered continuous driving

microwave is introduced to construct a new dressed state basis with zero expectation of

the spin operator but maximized expectation value of the dipole operator, leading to a

suppression of the axial magnetic field and the preserved Stark effect.

Overall, it is still challenging to improve electric field sensitivity by directly coupling to

NV centers via the Stark effect. In this work, we present an indirect way (using the Zeeman

effect) to sense electric field: By converting the electric field into the shift of power spectral

density of magnetic noise generated at the NV center, the electric field can be detected

optically, taking advantage of the well-established high sensitivity of NV center to magnetic

noise. Without complicated manipulation pulse sequences and the cryogenic temperature

requirement, the sensing procedure and platform can be very simple. Besides, the absence

of the microwave also results in lower power consumption. The scheme of conversion from
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electric fields to magnetic noise opens a new possibility to enhance the electric field sensitivity

by improving the efficiency of such transformation.

This work is organized as follows: in the theory chapter, we give the configuration of

the sensing platform, the theories for the NV-magnet hybrid sensing, and the sensitivity

evaluation. The methodology chapter will exhibit some details of the simulation and the

parameters involved. Then we will show some simulation results and discuss the possibility

of choosing better operation points and materials with better electric-to-magnetic conversion.

Finally, we conclude our work and give some outlook for future research in this area.
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2. THEORY

In this chapter, the configuration of the sensing platform, the theory of the electric field

sensor, and derivation of the sensitivity will be elaborated.

The setup of the sensor is shown in Figure  2.1 , consisting of 2 blocks: A single-domain

magnet with size (Lx, Ly, Lz) is located on a substrate with thickness of tox, applied a DC

electric field of E along x direction. Above the magnet by hNV lies the single NV center

positioned at (x = hNV , y = Ly/2, z = Lz/2). The system works at room temperature where

T = 300K. For simplicity, the easy axis, external magnetic field and orientation of the NV

center are along the z-axis.

Figure 2.1. Configuration of the sensor

Figure  2.2 shows the pulse sequence, the sensor is manipulated (doing readout and ini-

tialization) for tm, evolves for t and then repeats the manipulation and evolution for time Ttot

in total. In this work, we use tm = 10µs, a typical value for NV initialization and readout.

Equivalently, the number of measurements is N = Ttot

t+tm
and we will take the average of those

measurements as the result.
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Figure 2.2. Pulse sequence of manipulation and evolution

The central idea of this work is illustrated in Figure  2.3 . The sensor comprises two

parts - the magnet part and the NV part. For the magnet part, the electric field modulates

the power spectrum of the magnetic noise, which can be equivalently considered as the

electric-field-induced shift of ferromagnetic resonance (FMR) frequency[ 39 ], corresponding

to the parameter dω
dE

we will discuss later. For the NV part, the NV center experiences the

magnetic noise with shifted power spectrum and exhibits a different transition rate, which

can be considered as the difference of the NV’s transition rate due to the shift of ωFMR,

corresponding to the parameter dΓ
dω

.

Figure 2.3. Central idea of this work - the electric-field-induced magnetic
anisotropy modulation propagates to the population dynamics

In the following sections:

1. We first investigate the magnetization dynamics induced by an effective fluctuating

field due to the finite temperature, introducing the power spectrum of the magnetization.

2. And then by solving the stray field, we can see how such noisy magnetization couples

to the noisy magnetic field at the NV center and results in population relaxation of the NV

center, including the evaluation of the transition rate (probability of transition for a unit

population in unit time) and the corresponding population dynamics.
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3. Finally, we will study how the input of the system (the electric field) yields the output

(the population different) as illustrated in Figure  2.3 : The electric field applied modulates

the magnetic anisotropy (H⊥ and Hk), rendering shifted power spectral density (PSD) of

the magnetization as well as the stray field felt by the NV center. As a result, the NV center

demonstrates different relaxation rates and hence experiences different population dynamics.

By comparing the population difference, one can detect the electric field indirectly.

2.1 Magnetization dynamics

2.1.1 Equilibrium

We start from the system without the electric field. The state of the magnet is described

by the normalized dimensionless magnetization m⃗. To study the dynamics, we shall first

analyze its equilibrium. A ferromagnet with an external field H⃗0 applied is shown in Figure

 2.4 . The angle between the external field and the z-axis is θH while the angle between the

magnetization m⃗ and the z-axis is θ. Typically a system reaches its equilibrium when its

energy is minimal. Determining equilibrium means to obtain the θ that minimizes the free

energy of the magnet given by[ 40 ]:

F = −Msm⃗ · H⃗0 −Km2
z + Ms

2 H⊥m
2
x (2.1)

Here Ms is the saturation magnetization. K is the anisotropy constant associated with

Figure 2.4. The equilibrium magnetization of a ferromagnet in an external field
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the z-axis, describing how much energy we need to pay to rotate the magnetization from

the z-axis by applying a transverse magnetic field at least Hk = 2K
Ms

. H⊥ is the effective

perpendicular anisotropy field defined similarly to Hk except for the direction (the x-axis).

mz and mx denote the correspondent magnetization component in z and x directions.

The effective field considering the external field and anisotropy field can be obtained by

the derivative of F in terms of the magnetization:

H⃗eff = − 1
Ms

dF
dm⃗

= H⃗0 +Hkmz ẑ −H⊥mxx̂ =


H0 sin θH −H⊥mx

0

H0 cos θH +Hkmz

 (2.2)

where ẑ and x̂ are the unit vector along z and x directions. The effective field points out

the orientation for magnetization to reduce free energy in the fastest way. Now with the free

energy and effective field we can evaluate the equilibrium orientation of m⃗ by looking for the

minimum value of the free energy:
dF
dθ

= 0 (2.3)

We obtain:

sin 2θ = 2H0

Hk +H⊥
sin (θH − θ) (2.4)

Substituting the magnitude of the external field H0 and the effective anisotropy field Hk

(along the z-axis) and H⊥ (along the x-axis) we obtain in the following derivation, we can

check that θ = 0, that is, the equilibrium of m⃗ is along the z-axis.

2.1.2 Dynamics

Having solved the steady-state, we may wonder if we deviate m⃗ from its equilibrium by

δm⃗, what would be its dynamics. The Landau-Lifshitz equation (LL) dominates the motion

of the magnetization without damping[ 40 ]:

dm⃗

dt
= −γm⃗× H⃗eff (2.5)

21



Figure 2.5. Illustration of the LLG equation, considering the dissipation and
temperature-induced fluctuating field

where γ is the gyromagnetic ratio. By looking at equation  2.5 and Figure  2.5 , we find that

the time derivative of m⃗ is always perpendicular to the effective field H⃗eff and m⃗ itself. So

we can expect that m⃗ is precessing about H⃗eff and the rotation frequency (ferromagnetic

resonance frequency, FMR), related to γ and H⃗eff , is what we are interested.

To simplify the solving procedure, we: 1. linearize the LL equation; 2. use the magnet

frame.

Linearization of LL equation means that we decompose m⃗ into its equilibrium m⃗eq and

deviation δm⃗, H⃗eff into H⃗eff,eq and δm⃗-induced δH⃗eff :

dm⃗eq

dt
+ dδm⃗

dt
= −γ(m⃗eq + δm⃗) × (H⃗eff,eq + δH⃗eff ) (2.6)

We are only interested in the dynamics of δm⃗ since the dynamics of the equilibrium dm⃗eq

dt

is literally zero and the cross product m⃗eq × H⃗eff,eq is also zero because m⃗eq and H⃗eff,eq are

parallel to minimize the free energy. One can check this by letting:

tan θ = sin θ
cos θ = Heff,eq,x

Heff,eq,z

(2.7)
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and will end up with equation  2.4 . In addition, the higher order term δm⃗× δH⃗eff is omitted

assuming that δm⃗ is very small and the δm⃗-induced δH⃗eff is tiny (refer to equation  2.13 ),

too. So the linearized LL equation reads:

dδm⃗

dt
= −γm⃗eq × δH⃗eff − γδm⃗× H⃗eff,eq (2.8)

The magnet frame, obtained by rotating the lab coordinate system about the y-axis by

θ, aligns the z-axis to the equilibrium magnetization to simplify the representation of m⃗eq.

Here we denote all the variables in the magnet frame by adding a prime (′) to its notation

in the lab frame. The clockwise rotation about the y-axis by θ can be represented by the

operator:

Ry(θ) =


cos θ 0 sin θ

0 1 0

− sin θ 0 cos θ

 (2.9)

Now we need four ingredients for the linearized LL equation: m⃗′
eq, H⃗ ′

eff,eq, δm⃗′ and the

deviation of effective filed δH⃗ ′
eff due to δm⃗′. Here m⃗′

eq is already known and δm⃗′ is the

unknown variable to be solved:

m⃗′
eq =


0

0

1

 δm⃗′ =


δm′

x

δm′
y

0

 (2.10)

Here we assume that the deviation of the magnetization and effective field is tiny, so there

are no dynamics in the z component of the magnetization. Notice that it is the lab frame

magnetization components mx and mz that enter equation  2.2 while we only need those in

the magnet frame:

m⃗ = Ry(θ)m⃗′ =


m′

x cos θ +m′
z sin θ

m′
y

−m′
x sin θ +m′

z cos θ

 (2.11)
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Now we have the full expression for the effective field in the magnet frame:

H⃗ ′
eff = RT

y (θ)H⃗eff

=


H0 sin (θH − θ) +m′

x(Hk sin2 θ −H⊥ cos2 θ) −m′
z(Hk +H⊥) sin θ cos θ

0

H0 cos (θH − θ) −m′
x(Hk +H⊥) sin θ cos θ +m′

z(Hk cos2 θ −H⊥ sin2 θ)


(2.12)

Since the dynamics of m⃗′ only exist in x and y component, we can extract terms associated

with m′
x and m′

y to obtain δH⃗ ′
eff :

δH⃗ ′
eff =


δm′

x(Hk sin2 θ −H⊥ cos2 θ)

0

−δm′
x(Hk +H⊥) sin θ cos θ

 (2.13)

and the remained terms are the equilibrium effective field:

H⃗ ′
eff,eq =


H0 sin (θH − θ) − (Hk +H⊥) sin θ cos θ

0

H0 cos (θH − θ) +Hk cos2 θ −H⊥ sin2 θ

 (2.14)

By substituting equation  2.10 ,  2.2 , and  2.13 into  2.8 , we have the eigenvalue equation:

d

dt

δm′
x

δm′
y

 =

 0 −γH ′
eff,eq,z

γ[H ′
eff,eq,z +H⊥ cos2 θ −Hk sin2 θ] 0


δm′

x

δm′
y

 (2.15)

The eigenvalue of the equation  2.15 gives the FMR frequency:

ωFMR = γ
√

[H0 cos (θH − θ) +Hk cos2 θ −H⊥ sin2 θ][H0 cos (θH − θ) + (Hk +H⊥) cos (2θ)]

(2.16)

As is mentioned previously, in the configuration in this work, θ = θH = 0. So the FMR

frequency has a simpler form:

ωFMR = γ
√

[H0 +Hk][H0 +Hk +H⊥] (2.17)

24



FMR frequency is the natural oscillating rate of the magnet, that is, without external driving

force and dissipation, how fast the magnetization oscillates. It is an inherent property of the

magnet and can be modulated by Hk and H⊥.

To understand the more practical magnetization dynamics, we take the dissipation into

account and apply an effective oscillatory field h⃗′ due to finite temperature T (illustrated in

Figure  2.5 ), yielding the Landau-Lifshitz-Gilbert (LLG) equation[ 40 ]:

dm⃗

dt
= −γm⃗× H⃗eff + αm⃗× dm⃗

dt
(2.18)

The term αm⃗ × dm⃗
dt

corresponds to the dissipation which tends to rotate the magnetization

back to its equilibrium. By linearization and in the magnet frame:

dδm⃗′

dt
= −γm⃗′

eq × δH⃗ ′
eff − γδm⃗′ × H⃗ ′

eff,eq − γm⃗′
eq × δh⃗′ + αm⃗′

eq × dδm⃗′

dt
(2.19)

where α is the damping coefficient depending on the material. Since this is a stochastic

equation, we would like to analyse the correlation functions of δm⃗′.

Here we define 2 frequency components:

ωH = γ[H0 cos(θH − θ) +Hk cos2 θ −H⊥ sin2 θ]

ω⊥ = γ[H0 cos(θH − θ) + (Hk +H⊥) cos 2θ]
(2.20)

and assume that the thermal field and magnetization deviation are harmonic: h⃗′ ∼ e−iωt and

δm⃗′ ∼ e−iωt. By solving the LLG equation, we can obtain how the thermal field affects the

dynamics of magnetization:

δm′
x

δm′
y

 =

Sxx Sxy

Syx Syy


h′

x

h′
y

 (2.21)
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The susceptibility Sij(i, j = x, y) couples the j component of h⃗′ to the i component of δm⃗′

and can be expressed by:

Sxx = −γ[ωH − iαω]
ω2 − [ωH − iαω][ω⊥ − iαω]

Sxy = iγω
ω2 − [ωH − iαω][ω⊥ − iαω]

Syx = −iγω
ω2 − [ωH − iαω][ω⊥ − iαω]

Syy = −γ[ω⊥ − iαω]
ω2 − [ωH − iαω][ω⊥ − iαω]

(2.22)

Since h⃗′ arises from the thermal fluctuation with zero mean and local, instantaneous

correlation[ 41 ][ 42 ][ 43 ]:

⟨h′
i(t)h′

j(t′)⟩ = 2Dthδijδ(t− t′) ⇒ ⟨h′
i(ω)h′

j(ω)⟩ = 2π2Dthδijδ(ω + ω) (2.23)

where Dth = αkBT
γMsV

and V refers to the volume of the magnet, with the correlation functions

of the thermal field and susceptibilities, we can evaluate the correlation functions of the

magnetization:

Cij(t) = ⟨δm′
i(t)δm′

j(0)⟩ =
∫ dω

2π

∫ dω

2π
e−iωt⟨δm′

i(ω)δm′
j(ω)⟩

=
∫ dω

2π

∫ dω

2π
e−iωt2π2Dthδ(ω + ω)[Six(ω)Sjx(−ω) + Siy(ω)Sjy(−ω)]

=
∫ dω

2π
e−iωt2Dth[Six(ω)Sjx(−ω) + Siy(ω)Sjy(−ω)]

(2.24)

In frequency domain:

Cij(ω) = 2Dth[Six(ω)Sjx(−ω) + Siy(ω)Sjy(−ω)] (2.25)
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And each component:

Cxx = 2Dthγ
2 ω2

H + ω2(1 + α2)
[ω2(1 + α2) − ωHω⊥]2 + α2ω2(ωH + ω⊥)2

Cxy = 2Dthγ
2 −iω(ωH + ω⊥)
[ω2(1 + α2) − ωHω⊥]2 + α2ω2(ωH + ω⊥)2

Cyx = 2Dthγ
2 iω(ωH + ω⊥)
[ω2(1 + α2) − ωHω⊥]2 + α2ω2(ωH + ω⊥)2

Cyy = 2Dthγ
2 ω2

⊥ + ω2(1 + α2)
[ω2(1 + α2) − ωHω⊥]2 + α2ω2(ωH + ω⊥)2

(2.26)

The correlation functions in frequency domain Cij(ω) cover the information of the mag-

netization dynamics and composite the power spectrum of the fluctuating magnetic field felt

by the NV center (stray field). Before talking about the NV center, we need to investigate

how the magnetization is related to the stray field.

2.2 Stray field

In this work, the magnet is a uniformly magnetized cuboid with size (Lx, Ly, Lz). We

want to study how each component of the magnetization contributes to the magnetic field

at the point r⃗ = (x, y, z). We can first consider the z component, and the contribution from

other components can be obtained by a cyclical shift in {x, y, z} and {Lx, Ly, Lz}. In this

section, we use the lab frame, and the prime (′) denotes the internal region of the cuboid.

Each instance the magnetization deviation δm⃗ reaches its new state, there will be a

transient response of the electromagnetic (EM) filed[  40 ]. If the establishment of the new

steady EM field is much faster than the magnetization dynamics, the EM field can be

considered instantaneously evolving with the magnetization[  40 ]. In this work, the time scale

of EM transient response ( Ly/c ∼ 10−15s) is much less than that of magnetization dynamics

(1/ω ∼ 10−9s), so the magnetostatics approximation is valid and takes the form[  44 ][ 45 ]:

∇⃗ · B⃗ = 0 ∇⃗ × H⃗ = 0 (2.27)
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The material equation tells us:

B⃗ = H⃗ + 4πM⃗ (2.28)

By defining a scalar potential Φ, we can obtain the magnetic field by:

H⃗ = −∇⃗Φ (2.29)

Equation  2.27 ,  2.28 and  2.29 imply the Poisson equation:

∇⃗2Φ = 4π∇⃗ · M⃗ (2.30)

and we already know the Green’s function solution to the Poisson function:

∇⃗2G(r⃗ − r⃗′) = δ(r⃗ − r⃗′) ⇒ G(r⃗ − r⃗′) = − 1
4π

∣∣∣r⃗ − r⃗′
∣∣∣ (2.31)

Here r⃗′ is the point inside the magnet. Green’s function can be considered as the unit impulse

response of the Poisson equation. Hence, the scalar potential can be evaluated by:

Φ(r⃗) =
∫

V
dr⃗′G(r⃗ − r⃗′)4π∇⃗′ · M⃗(r⃗′) =

∫
V
dr⃗′ ∇⃗′ · M⃗(r⃗′)∣∣∣r⃗ − r⃗′

∣∣∣ (2.32)

where V denotes the entire space inside the magnet. In our case, the magnetization is

uniformly along the z-axis, so the divergence of the magnetization is zero except for the top

and bottom surfaces of z direction, where ∇⃗′ · M⃗(r⃗′) can be evaluated by:

∇⃗′ · M⃗(r⃗′) = Ms(δ(z′ − Lz) − δ(z′ − 0)) (2.33)

As is shown in Figure  2.6 , we can consider this as the magnetic “charges” with density Ms

distributed on the top and bottom of the magnet. So the scalar potential can be reduced to:

Φ(r⃗) = −Ms

∫ Lx

0
dx′

∫ Ly

0
dy′

(
1

|r⃗ − (x′, y′, Lz)| − 1
|r⃗ − (x′, y′, 0)|

)
(2.34)
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Figure 2.6. Geometry of the magnet and the effective “charges”

By taking the gradient of the scalar potential we have the stray field generated by the z

component of the magnetization[ 44 ][ 45 ]:

H⃗z(r⃗) = Ms

∫ Lx

0
dx′

∫ Ly

0
dy′

(
r⃗ − (x′, y′, Lz)

|r⃗ − (x′, y′, Lz)|3
− r⃗ − (x′, y′, 0)

|r⃗ − (x′, y′, 0)|3

)
(2.35)

Equation  2.35 can by analytically integrated and each component of the stray field is[ 46 ]:

Bz
x(x, y, z, Lx, Ly, Lz) = Ms{f(x, y, z) − f(x, y − Ly, z)

− f(x− Lx, y, z) + f(x− Lx, y − Ly, z)}

Bz
y(x, y, z, Lx, Ly, Lz) = Ms{f(y, x, z) − f(y − Ly, x, z)

− f(y, x− Lx, z) + f(y − Ly, x− Lx, z)}

Bz
z (x, y, z, Lx, Ly, Lz) = Ms{g(x, y, Lz, z) − g(x, y − Ly, Lz, z)

− g(x− Lx, y, Lz, z) + g(x− Lx, y − Ly, Lz, z)

− g(x, y, 0, z) + g(x, y − Ly, 0, z)

+ g(x− Lx, y, 0, z) − g(x− Lx, y − Ly, 0, z)}

(2.36)
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where:

f(a, b, c) = log

√
a2 + (c− Lc)2(b+

√
a2 + b2 + c2)

√
a2 + c2(b+

√
a2 + b2 + (c− Lc)2)


g(a, b, c, d) = arctan

 ab

(d− c)
√
a2 + b2 + (d− c)2

 (2.37)

Other Bj
i can be obtained by cyclically shifting x, y, z and Lx, Ly, Lz. For example:

By
z (x, y, z, Lx, Ly, Lz) = Bz

x(z, x, y, Lz, Lx, Ly)

Bj
i describes how the j component of the magnetization contributes to the i component of

magnetic field at the position r⃗. We can express this in matrix form:


Hstray,x

Hstray,y

Hstray,z

 =


Bx

x By
x Bz

x

Bx
y By

y Bz
y

Bx
z By

z Bz
z




δmx

δmy

δmz

 (2.38)

where Hstray,i denotes the i component of the stray field at the NV center in the lab frame.

To apply equation  2.38 to other frame, some rotation operators may need to act on the B

matrix. For example, to obtain the relation between the stray field in the lab frame H⃗stray

and the magnetization deviation in the magnet frame δm⃗′, the transformation B̄ = BRy(θ)

enables the use of  2.38 by H⃗stray = B̄δm⃗′ = BRy(θ)δm⃗′ = Bδm⃗. Notice that the equilibrium

of the magnetization is along the z-axis. When the NV center is placed above the center

of the zy surface of the magnet r⃗ = (hNV , Ly/2, Lz/2), the equilibrium of the stray field at

the NV center is also along the z-axis. Meanwhile the deviation of the magnetization δm⃗

generates the fluctuating x and y components of the stray field. Given the external field H⃗0

along the z-axis, the net stray field is:

Hx = Hstray,x Hy = Hstray,y Hz = H0 +Hstray,z (2.39)
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Now we have the information of the magnetization dynamics and how they couple to the

magnetic field at the NV center. In the following section, we shall discuss the NV center

itself and how such a stray field affects its dynamics.

2.3 The NV center

The NV center is a point defect in diamond - a nitrogen atom replaces a carbon atom, and

a vacancy substitutes the carbon atom adjacent to the nitrogen. The crystalline structure is

shown in Figure  2.7 .

Figure 2.7. Crystalline structure of an NV center in diamond

The NV axis is along [111] direction (for simplicity, hereafter we will align the NV axis

to the z-axis) and has C3v symmetry (After rotation about the NV axis for 2π/3, the atoms

overlap with the previous structure). Depending on the number of electrons involved in

the NV defect, there are three kinds of NV centers: positively charged NV +, neutral NV 0,

and negatively charged NV −. Since only NV − is magneto-optically active, in this work, we

will focus on the NV −, and all the NV refers to NV − [ 24 ]. As is shown in Figure  2.9 , six

electrons are involved in the electronic state of the NV center - each carbon near the vacancy
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provides one electron and the nitrogen gives two electrons (these five electrons are also called

dangling bonds), the sixth electron is captured from the lattice[ 24 ][ 47 ].

Figure 2.8. Flat structure of the NV center

The configuration of the six electrons can be described by 4 orbital states (a linear

combination of the atom orbital states) a′
1, a1, ex, ey whose view along [111] direction is

shown as below (adapted from [ 48 ]): The most symmetry orbitals a′
1 and a1 have the lowest

Figure 2.9. The orbital states of the NV center. The colors represent the
sign of each orbital.

energy and are fulfilled in the ground state. The rest two electrons can be distributed on ex

and ey orbitals. By Hund’s first rule, the ground state configuration prefers to maximize the

total spin quantum number S, which is consistent with the Pauli exclusion principle[ 49 ]. The

antisymmetric scheme of orbital combination minimizes the Coulomb energy, so each electron

occupies either ex or ey orbital, leading to a ground state triplet[ 48 ]. The configuration of

electrons in the ground state is shown in Figure  2.10 , where the dashed arrows indicate

that we can view this six-electron system as two holes with S = 1. Now we have the

orbital configuration of the electrons, and following we are going to discuss the spin-related

properties of the NV center.
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Figure 2.10. Configuration of electrons in ground state

2.3.1 Energy levels, optical readout and initialization of the NV center

The energy levels of the NV center is shown in Figure  2.11 :

Figure 2.11. Energy level diagram of the NV center, Zeeman effect taken into account

The ground state triplet is denoted by |0⟩g, |+1⟩g and |−1⟩g with ms = 0, ms = +1

and ms = −1. Similarly the excited state triplet is represented by |0⟩e, |+1⟩e and |−1⟩e.

Coulomb interaction introduced the gap of 1.945eV between the ground state triplet and

the excited state triplet[ 48 ]. For the ground state the spin-spin interaction leads to the zero-

field-splitting (ZFS) Dnvg = 2.87GHz[ 48 ]. Due to the axial symmetry of the NV center, the

|±1⟩ states are degenerate[ 24 ]. The magnetic field along z-axis splits the ground states |+1⟩g
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and |−1⟩g. The metastable singlet state is denoted by |s⟩. Since we are not going through

its properties in detail, in this work we simplify the metastable singlet manifold into a single

level.

One advantage of the NV center is the convenient room-temperature optical initialization

and readout[ 15 ]. Typically the ground-state spins of the NV center are pumped by a 532nm

green laser while the spins in excited states can undergo radiative and irradiative ways back

to the ground states[ 50 ]. Notice that the radiative pumping and decaying are strongly spin

preserving. For example, if the ms = 0 state is pumped to its excited state or decays with

photoluminescence, it is still ms = 0[ 24 ]. The non-optical decaying is via the metastable

state and the irradiative rate of ms = ±1 is about 10 times of ms = 0[ 51 ][ 52 ][ 53 ]. As is

shown in Figure  2.12 , within finite cycles, there will be a difference in the photoluminescence

intensity of ms = 0 and ms = ±1. Such spin-dependent transient contrast facilitates the

optical readout of the NV center. Meanwhile, the |s⟩ state finally decays to the |0⟩g state.

After sufficiently long time, about 80% of population is in ms = 0 state and we can consider

the system is initialized to |0⟩g.

Figure 2.12. Transient response of fluorescence intensity of ms = 0 and m = 1
state, the integration of the difference between two curves gives the practical
readout results. [Reprinted/Adapted] with permission from [  54 ] © The Optical
Society.

Now we have the spin and optical properties of the NV center. Following, we will go

through the Hamiltonian describing the interaction with magnetic and electric fields. Then

we will try to extract the effective two-level system for further calculation.
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2.3.2 Hamiltonian of the NV center and the effective two-level system

To investigate how the NV center states evolve under external perturbation, we may need

the Hamiltonian of the ground state NV center[ 55 ][ 56 ][ 34 ]:

H = (Dnvg +χ∥Ez)(S2
z − 1

3S(S + 1)) + γH⃗ · S⃗ −χ⊥[Ex(SxSy +SySx) +Ey(S2
x −S2

y)] (2.40)

Here the NV center crystalline axis is aligned to the z-axis and the Hamiltonian is defined

by letting h̄ = 1. The Dnvg features the zero field splitting, with eigenstates |0⟩g, |+1⟩g and

|−1⟩g. The second term γH⃗ · S⃗ describes the interaction with the magnetic field, where

S⃗ = [Sx, Sy, Sz] is a vector spin operator consisting of corresponding Pauli matrices Si, i =

{x, y, z}. Figure  2.13 illustrates such interaction (Zeeman effect): When a magnetic field

is applied, the z component Hz splits the energy levels |+1⟩g and the |−1⟩g by γHz[ 24 ];

Meanwhile, the transverse component Hx,y causes the transition between |0⟩g and |±1⟩g. If

the transverse magnetic field is noisy, such incoherent transition will result in the population

relaxation whose transition rate is related to the power spectrum of the the magnetic noise.

(a) Energy splitting of the NV ground triplet
due to the z component of the magnetic field

(b) State transition between |0⟩g and |±1⟩g

due to the transverse (x,y) component of the
magnetic field

Figure 2.13. Zeeman effect on the NV ground state triplet
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(a) Energy lifting of the |±1⟩g due to the z
component of the electric field

(b) Splitting between |−1⟩g and |+1⟩g and
their mutual transition due to the transverse
(x,y) component of the electric field

Figure 2.14. Stark effect on the NV ground state triplet

As is shown in Figure  2.14 , the z component of the electric field induces further splitting

between |0⟩g and |±1⟩g by χ∥Ez while the transverse component Ex,y splits between |+1⟩g

and |−1⟩g and may cause the transition between them. In this Hamiltonian, we would

like to point out that the coupling strengths to the electric field χ∥ = 0.35Hz/(V/cm),

χ⊥ = 17Hz/(V/cm) are much lower than the magnetic field γ = 2.8MHz/G. Such facts

constitute the motivation of this work to convert the electric field into magnetic noise to take

advantage of the stronger magnetic coupling for sensitivity enhancement. In this work, we

will not couple the NV center directly to the electric field, so we can simplify the Hamiltonian

by omitting the electric field terms and choosing another energy reference:

H = DnvgS
2
z + γH⃗ · S⃗ =


Dnvg + γHz

γ√
2 [Hx − iHy] 0

γ√
2 [Hx + iHy] 0 γ√

2 [Hx − iHy]

0 γ√
2 [Hx + iHy] Dnvg − γHz

 (2.41)

With appropriate magnetic field applied, the transition between |0⟩g and |−1⟩g state domi-

nates (In [ 57 ], when H = 200G, the transition almost only exists between |0⟩g and |−1⟩g).

In that case, we can only consider |0⟩g and |−1⟩g states, extracting them as the effective two-
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level system. Correspondingly the lower right four terms in the full Hamiltonian constitute

the Hamiltonian of the effective two-level system:

H(t) =

 0 γ√
2 [Hx − iHy]

γ√
2 [Hx + iHy] Dnvg − γHz

 (2.42)

In section  2.2 , we find that there is no dynamics in Hz while the fluctuation exists in Hx and

Hy. Hence the effective Hamiltonian can be divided into a time-invariant Hamiltonian and

the perturbation Hamiltonian:

H(t) = H0 + V (t) =

0 0

0 Dnvg − γHz

+

 0 γ√
2 [Hx − iHy]

γ√
2 [Hx + iHy] 0

 (2.43)

Now we have the effective two-level system model for the NV ground states. With the

effective Hamiltonian, we can study the dynamics of the NV ground states.

2.3.3 Dynamics of the NV center - population relaxation

As is shown in equation  2.43 , appearing at the off-diagonal elements in perturbation

Hamiltonian V (t), the noisy transverse magnetic field can cause the random transition be-

tween |0⟩g and |−1⟩g, leading to the population relaxation. To estimate the transition rate Γ,

we begin with the time evolution of the ground states, which is described by the Schrodinger

equation[ 58 ]:

i d
dt

|ψ(t)⟩ = [H0 + V (t)] |ψ(t)⟩ (2.44)

Since the evolution due to time-independent Hamiltonian H0 is easy to solve (UH0(t) =

e−iH0t), we can remove the time dependence of the state vector due to H0 by applying the

conjugate time evolution operator related to it:

|ψ(t)⟩I = eiH0t |ψ(t)⟩ (2.45)
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When writing the Schrodinger equation for |ψ(t)⟩I , we find that the Hamiltonian H0 is

canceled while the Heisenberg version of the perturbation V (t) remains:

V (t)I = eiH0tV (t)e−iH0t (2.46)

Such version of state vector and perturbation Hamiltonian constitute the interaction picture,

where the Schrodinger equation reads:

i d
dt

|ψ(t)⟩I = VI(t) |ψ(t)⟩I (2.47)

In the interaction picture, we can focus on the perturbation Hamiltonian because we already

take the time-independent Hamiltonian into account by the transformation in equation  2.45 

and  2.46 . The first order solution to  2.47 equation is:

|ψ(t)⟩I = |ψ(0)⟩I − i
∫ t

0
dtVI(t) |ψ(t)⟩I (2.48)

When the perturbation is very weak, we can ignore the higher order integration and hence:

|ψ(t)⟩I ≈ |ψ(0)⟩I − i
∫ t

0
dtVI(t) |ψ(0)⟩I (2.49)

Since the NV center is initialized to |0⟩g, |ψ(0)⟩I = |0⟩g. The probability of the state |ψ(t)⟩I

in |−1⟩g indicates the transition probability for a unit population and is given by the absolute

square of its projection on |−1⟩g:

P0→−1 = ⟨|g⟨−1| − i
∫ t

0
dtVI(t)|0⟩g|2⟩f (2.50)

where ⟨⟩f denotes averaging over many realizations of the noise. By substitution of the

perturbation Hamiltonian we have:

P0→−1 = ⟨|
∫ t

0
dt

γ√
2

(Hx(t) + iHy(t))eiϵt|2⟩f

= γ2

2

∫ t

0
dt1

∫ t

0
dt2eiϵ(t1−t2)⟨(Hx(t1) + iHy(t1))(Hx(t2) − iHy(t2))⟩f

(2.51)
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where ϵ = Dnvg − γHz is the energy gap between |0⟩g and |−1⟩g. This equation implies

the need for evaluation of the correlation functions of magnetic field at the NV center.

Fortunately, equation  2.38 gives the relation between the stray field Hi and the magnetization

deviation δm′
i and we already know the correlation functions of δm′

i by equation  2.24 and

 2.26 . By substitution, we have:

P0→−1 = γ2

2

∫ t

0
dt1

∫ t

0
dt2eiϵ(t1−t2)[(B̄x

x
2 + B̄x

y
2)⟨δm′

x(t1)δm′
x(t2)⟩f

+ i(B̄y
y B̄

x
x − B̄y

xB̄
x
y )⟨δm′

y(t1)δm′
x(t2)⟩f

− i(B̄y
y B̄

x
x − B̄y

xB̄
x
y )⟨m′

x(t1)δm′
y(t2)⟩f + (B̄y

x
2 + B̄y

y
2)⟨m′

y(t1)δm′
y(t2)⟩f ]

=
∫ ∞

−∞

dω

2π
K̃(ω)

sin
(

ω−ϵ
2 t
)

ω−ϵ
2

2

(2.52)

where K̃(ω) denotes the power spectral density of the perturbation field γ
2 [Hx + iHy] and is

evaluated by:

K̃(ω) = γ2

2 [(B̄x
x

2 + B̄x
y

2)Cxx + i(B̄y
y B̄

x
x − B̄y

xB̄
x
y )Cyx

− i(B̄y
y B̄

x
x − B̄y

xB̄
x
y )Cxy + (B̄y

x
2 + B̄y

y
2)Cyy]

(2.53)

The sinc-like function
(

sin(ω−ϵ
2 t)

ω−ϵ
2

)2
has a peak at ω = ϵ and the first lobe is in I = [ϵ−π/t, ϵ+

π/t], which contributes most of the integration. When the interrogation time t is long enough,

the interval I is narrow enough such that the sinc-like function can be approximated by a δ

function, which is illustrated by Figure  2.15 using the typical parameters of simulations in

this work (ϵ = 1GHz, t = 10µs). In this case, the transition probability can be evaluated

by:

P0→−1 = K̃(ω = ϵ)t (2.54)

The transition rate is defined by the time derivative of the transition probability, therefore:

Γ = K̃(ω = ϵ) (2.55)
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Figure 2.15. Sinc-like function with the typical parameters used in this work,
the first lobe is narrow enough to approximate it by a δ function

One can also try to figure out the transition rate for |−1⟩g → |0⟩g transition and will find

it the same as  2.55 . Transition rate tells us the transition probability in unit time for unit

population. For practical population dynamics illustrated in Figure  2.16 , we need to solve:

d

dt
p0 = −Γ(p0 − p−1)
d

dt
p−1 = Γ(p0 − p−1)

(2.56)
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Figure 2.16. Population transition between |0⟩g and |−1⟩g, with the same
mutual transition rate, more population means more transition in unit time

where p0 and p−1 denote the population of |0⟩g and |−1⟩g. Since we initialize the NV cneter

in |0⟩g:

p0(t = 0) = 1

p−1(t = 0) = 0
(2.57)

We can find that the population relaxation is exponential:

p0(t) = 1
2(1 + e−2Γt)

p−1(t) = 1
2(1 − e−2Γt)

(2.58)

Now we have the full story of how the magnetization dynamics arising from the finite

temperature result in the population relaxation of the NV center. As for electric field sensing,

we need to figure out how the electric field applied modulates the parameters and finally

give rise to the quantity we measure - the population difference δp.

2.4 Electric-field-induced population difference

The first parameter modulated by the electric field is the magnetic anisotropy (Hk or

H⊥) of the sample. This work will focus on VCMA and compare the results with another
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way of modulation - electric-field-induced magnetoelastic effect using PMN-PT (Hereafter,

we will call it PMN-PT for simplification).

VCMA (voltage-controlled magnetic anisotropy) effect exists at the interface between

a ferromagnetic metal and a dielectric material [ 59 ]. Many mechanisms of VCMA can be

explained by the second-order correction energy by spin-orbit coupling (SOC)[ 60 ]:

Eani = ESOC(z) − ESOC(x) = υ2∑
o,u

|⟨o|Lz|u⟩|2 − |⟨o|Lx|u⟩|2

Eu − Eo

(2.59)

where υ is the SOC strength, |o⟩ and |u⟩ denote the occupied and unoccupied orbital states,

Eo and Eu are the eigen energy of the corresponding occupied and unoccupied states. Such

expression depicts the SOC-induced energy difference between the two magnetization orien-

tations, i.e., magnetic anisotropy energy.

When exposed to an electric field, the conduction electrons are redistributed on the

surface of the metal to cancel the electric field in bulk. However, such charge accumula-

tion/depletion is highly spin-selective in ferromagnetic materials due to exchange interac-

tion, causing surface magnetization [ 61 ]. In [ 62 ], the electric-field-induced magnetocrystalline

anisotropy is discussed with experiment results, where the change of charge density at dif-

ferent d orbitals shifts the coupling between the occupied and unoccupied orbital states via

the Lx and Lz operators, which relates to the numerator in equation  2.59 . The change in the

band structure can also account for the VCMA - the band lowering or lifting may directly

modify the denominator of equation  2.59 and in turn affect the filling level of the orbital,

rendering the variation of the numerator in equation  2.59 . In [  63 ], the coupling between the

p orbital and the d orbital leads to the splitting of the two bands. In [  64 ] the strain also

introduces the band structure shifting.

Experimentally, VCMA tunes the interfacial anisotropy by [ 59 ]:

Ki(E)
Lx

= Ki(0) − βE

Lx

(2.60)

where Ki(0) and Ki(E) are the interfacial anisotropy without and with the electric field, re-

spectively, β is the VCMA coefficient, and Lx denotes the effective thickness of the ferromag-
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net. In [ 59 ], the effective magnetic anisotropy energy has the phenomenological expression:

Keff =
(
KV − 2πM2

s

)
+ Ki

Lx

(2.61)

where KV is the volume anisotropy, and Ms is the saturation magnetization. Notice that

here Keff is the anisotropy energy in the out-of-plane direction (the x-axis), so it corresponds

to the term H⊥ term in equation  2.1 . Hence, according to  2.2 , we can have the effective H⊥:

H⊥ = 4πMs − 2KV

Ms

− 2Ki(0)
MsLx

+ 2β
MsLx

E (2.62)

For simplicity, we define:

ξV CMA = dH⊥

dE
= 2β
MsLx

(2.63)

to denote how much the H⊥ changes with the electric field.

The electric-field-induced magnetoelastic effect using PMN-PT utilizes the inverse ver-

sion of the strain/stress-mediated magnetoelectric (ME) effect - the piezoelectric material

converts the electric field into the strain, which is applied to the magnetic material and

changes its magnetic anisotropy[  65 ]:

Hk = 3λsY deff

Ms

E (2.64)

where λs is the saturation magnetostriction, deff is the effective piezomagnetic coefficient, Y

is the Young’s Modulus of the magnet. Similarly, we define:

ξP MN−P T = dHk

dE
= 3λsY deff

Ms

(2.65)

to denote the rate of Hk change due to the electric field. The free energy of the PMN-PT

has the form[ 66 ]:

F = −Msm⃗ · H⃗0 −H ′
k

Ms

2 (m2
z −m2

y) + Ms

2 H ′
⊥m

2
x (2.66)
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Since m2
x + m2

y + m2
z = 1, by transformation: Hk = 2H ′

k and H⊥ = H ′
⊥ − H ′

k, we can still

obtain the previous effective field equation  2.2 and hence the FMR frequency equation  2.1.2 

applies to PMN-PT case.

Now we know that how the electric field tunes the magnetic anisotropy, then by equation

 2.24 , the correlation functions of δmi are modulated by the anisotropy and enter the K̃(ω)

by equation  2.53 so that the transition rate Γ in equation  2.55 is changed. However, another

way of propagation would be simpler under some assumption: if the electric field is tiny such

that the shape of K̃(ω) is almost not changed but only shifted by ∆ωFMR, then we can think

that the electric field effectively modulates the FMR frequency, shifts the K̃(ω), and finally

results in the ∆Γ, which is qualitatively shown in Figure  2.17 

Figure 2.17. Shift of K̃(ω) and the induced ∆Γ

The overall modulation of Γ can be denoted by a function of E and we take the first

order Taylor expansion:

Γ(E) = Γ(E0) + dΓ
dE

|E=E0∆E = Γ0 + η∆E (2.67)
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Substitute equation  2.67 into equation  2.58 and calculate the difference and take the first

order Taylor expansion again

δp = |p0(E) − p0(E0)| = 1
2e−2Γ0t

∣∣∣e−2η∆Et − 1
∣∣∣ ≈ e−2Γ0tη∆Et (2.68)

Figure  2.18 qualitatively shows the population difference due to the change ∆Γ:

Figure 2.18. Population difference due to ∆Γ

Here δp would be our measurement. To evaluate the sensitivity, we need to estimate the

error and compare the signal to it, which is the signal-to-noise ratio (SNR).

2.5 Error estimation

The experimental measurement of population p0 or p−1 comes with a non-zero error

σp. Four sources of the error will be discussed in this section, and we will give an overall

estimation of the error afterward.
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2.5.1 Quantum projection noise

Quantum projection noise arises from the inherent uncertainty of the quantum sensor.

Since the output of the quantum system is probabilistic, we estimate the true probability by

the portion of the desired state’s occurrence number out of N times of the measurements.

For example, the probability of the NV center in |0⟩g state is approximated by:

p0 = N0

N
(2.69)

where N0 is the count number of the quantum system (in this work, the state of the effective

two level system of the NV center) measured to be in |0⟩g state. Such estimation is not

accurate until we take infinite times of measurements and the error is given by the variance

of the binomial distribution[ 67 ] [  15 ]:

σ2
p,quantum = 1

N
p(1 − p) (2.70)

Here we underestimate our accuracy and take the upper bond of the error when p = 0.5:

σ2
p,quantum = 1

4N (2.71)

2.5.2 Classical readout noise

The readout procedure also introduces noise - the readout results may not be accurately

assigned to |0⟩g or |−1⟩g. Depending on the magnitude of the readout error compared to

the quantum projection error, we have the single-shot readout noise and averaged readout

noise.

When the classical readout noise is relatively small, the histogram of the readout results

is broadened but still with two peaks, which is qualitatively shown in Figure  2.19 , where

x0 and x−1 denote the measurement results corresponding to the quantum state is in |0⟩g

and |−1⟩g while xT refers to the threshold determining which state a measurement result

is to be assigned and is defined as the intersection of the two histogram envelopes. Due
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Figure 2.19. Histogram envelope for single-shot readout

to the overlap of the two histograms assumed with Gaussian distribution, there is a finite

probability that we assign a result to a wrong state[  15 ]:

κ0 ≈ 1
2

[
1 + erf

(
|x0 − xT |

σx

)]
(2.72)

where erf(x) is the Gauss error function and κ0 denotes the ratio of the measurements

mistakenly assigned to |0⟩g state. Then the error due to wrong assignment[ 15 ]:

σ2
p,readout = 1

N
[κ0(1 − κ0)(1 − p0) + κ−1(1 − κ−1)p0] (2.73)

If κ ≡ κ0 ≈ κ−1:

σ2
p,readout ≈ κ

N
(2.74)

47



When the readout noise is large, the histogram shows only one peak so that we cannot

assign a measurement to a state. The envelope of the histogram is quanlitatively shown in

Figure  2.20 . In this case we define the threshold xT as the average value of all measurements,

so the p0 is evaluated by[ 15 ]:

Figure 2.20. Histogram envelope for averaged readout

p0 = x−1 − x̄

x−1 − x0
(2.75)

where x̄ is the average value of all measurements. The error of such readout is[  15 ]:

σ2
p,readout = σ2

x

|x−1 − x0|2
= R2

4N (2.76)
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where |x−1 − x0| is the contrast of measurement andR is defined as the ratio between classical

readout noise and quantum projection noise:

R ≡ σp,readout

σp,quantum

= 2
√
Nσx

|x−1 − x0|
(2.77)

2.5.3 Decoherence

The quantum system suffering from the perturbation in the environment may lose its

phase (decoherence) and population (relaxation) information. Typically the signal decays

exponentially[ 15 ]:

δpobs = δp(t)e−χ(t) (2.78)

In this work, the population relaxation is exactly utilized for sensing, and we already take

this process into account during our derivation of the signal (population difference). So this

term will not appear in the overall error estimation.

2.5.4 Error due to initialization and manipulation

The initialization and manipulation of the quantum system may not be perfect and

introduce a weakened measurement[ 15 ]:

δpobs = βmδp (2.79)

where the factor of the signal reduction βm < 0 is constant to evolution time t, in this work

we will assume βm = 1 for simplicity.

2.5.5 Overall error estimation

In this work, we will mainly take the quantum projection noise and classical readout noise

into account. For readout noise, we take the worse case - averaged readout for the overall
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error estimation. Recall equation  2.77 , the quantum projection noise and classical readout

noise can be combined as[  15 ]:

σ2
p = σ2

p,quantum + σ2
p,readout ≈ (1 +R2)σ2

p,quantum =
σ2

p,quantum

C2 = 1
4C2N

(2.80)

where C = 1/
√

1 +R2 is a parameter describing the optical readout efficiency[ 32 ]. C is

related to the photon collection and detection techniques and can be enhanced to C ≈ 0.3

in [  32 ] and in this work we will take this value.

Now we have the error and the signal, the whole ingredients for signal-to-noise ratio

(SNR), facilitating the sensitivity evaluation.

2.6 SNR and sensitivity

The SNR is defined by the ratio between the signal and the noise:

SNR = δp

σp

= e−2Γ0tη∆Et2C
√
N (2.81)

Notice that in this work N is how many cycles of the pulse sequences we undergo. If the

total time is Ttot, the evolution time is t while the initialization and readout time is tm, then:

N = Ttot

t+ tm
(2.82)

The sensitivity is defined as the minimum signal detectable under a noise (SNR = 1) within

unit time (Ttot = 1s):

∆Emin = e2Γ0t
√
t+ tm

2Cηt (2.83)

where η = dΓ
dE

. The evaluation of η will be discussed in the methodology and simulation

chapter.

Notice that the sensitivity is a function of evolution time and we can optimize it with

respect to t by taking the derivative in term of t and extracting the extreme point:

tmin =
1 − 4Γ0tm +

√
1 + 24Γ0tm + 16Γ2

0t
2
m

8Γ0
(2.84)
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By substituting equation  2.84 back to  2.83 , we can obtain the sensitivity of the proposed

electric field sensor. Since tmin is a function of Γ0, we can further discuss Γ0 itself in the

methodology chapter.

Now we have the full picture of the theory of the sensor and finally derive the expression

for the critical figure of merit - sensitivity. The following chapter will discuss the simulation

details and exhibit some simulation results.
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3. METHODOLOGY

To facilitate the theoretical calculation and numerical simulation in the following chapter,

we will discuss the material-related parameters and several details of the calculation and

simulation first.

3.1 Material parameters

For the sample using the VCMA effect, we adopt the materials proposed in [ 59 ]: The

iridium (Ir) doped iron (Fe(001)) is used as the ferromagnet while the MgO(001) layer

works as the dielectric material. For magnetoelastic effect, the structure is similar: the

amorphous CoFeB film (Hk = 0 when there is no strain) is located on the (011) cut PMN-

PT substrate[ 66 ]. Figure  3.1 shows the dimensions of the system. The NV center is located

at (hNV , Ly/2, Lz/2).

(a) Dimension for VCMA case (b) Dimension for magnetoelastic case

Figure 3.1. Dimension of the sample

The material-related parameters are listed in table  3.1 . The thickness for the VCMA

effect will be tuned for further investigation of sensitivity - FMR frequency relation, so we

will only give the approximate value for Lx and the corresponding conversion coefficient from

the electric field to magnetic anisotropy ξV CMA = dH⊥
dE

.
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Table 3.1. Material parameters
VCMA PMN-PT

Ms[emu/cc] 1600 1030
Ly = Lz[nm] 400 100
Lx[nm] ∼ 1 2
α 0.01 0.01

tox[nm] 2 2
KV [erg/cc] −2 × 107 N.A.

Ki(0)[erg/cm2] 3.7 N.A.
β[erg/(V · cm)] 320 × 10−10 N.A.

ξV CMA = dH⊥
dE

[Oe/(V/cm)] ∼ 4 × 10−4 N.A.
ξP MN−P T = dHk

dE
[Oe/(V/cm)] N.A. 0.027

Hk[Oe] 0 0

3.2 Evaluation of η

From the discussion of the propagation of electric field into the change of Γ in section

 2.4 , we can decompose η by:
dΓ
dE

= dΓ
dω

dω

dE
(3.1)

The former term reflects how much the transition rate is modulated by the shift of FMR

frequency, while the latter shows the FMR frequency shifting due to an electric field. Since

we already have the expression of ωFMR as a function of E, dω
dE

can be analytically obtained

from equation  2.17 . For VCMA (equation  2.63 ) and PMN-PT (equation  2.65 ) the forms are

different:

dω

dE V CMA
= dH⊥

dE

dω

dH⊥
= γξV CMA

H0 +Hk

2
√

(H0 +Hk)(H0 +Hk +H⊥)
dω

dE P MN−P T
= dHk

dE

dω

dHk

= γξP MN−P T
2(H0 +Hk) +H⊥

2
√

(H0 +Hk)(H0 +Hk +H⊥)

(3.2)

Then the issue lies in the evaluation of dΓ
dω

. Recall Figure  2.17 . Assuming that the applied

electric field is very small such that the shape of K̃(ω) is almost not changed, but the whole
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curve is shifted by ∆ω (We confirmed the validation of such assumption by Figure  3.2 ,

where we add an extra 10−3H⊥ = −0.6Oe, which is one order higher than the signal-induced

anisotropy change), that is, K̃ ′(ω) = K̃(ω+∆ω), then the transition rate difference evaluated

at ω = ϵ is:

Figure 3.2. Illustration of the validation of the non-reshaped K̃(ω)

∆Γ = [K̃(ω + ∆ω) − K̃(ω)]|ω=ϵ ≈ dK̃(ω)
dω

|ω=ϵ∆ω (3.3)

Hence dΓ
dω

can be evaluated by dK̃(ω)
dω

|ω=ϵ. For theoretical calculation we can analytically

obtain dΓ
dω

while for simulation we need to plot the K̃(ω) and evaluate dΓ
dω

by the slope of the

curve. Combined with equation  3.2 we can evaluate η and in turn estimate the sensitivity.
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3.3 Determine Γ0

By recalling the expression for the optimum evolution time tmin in equation  2.84 , we

notice that tmin is a function of Γ0. By plotting tmin − 1
Γ0

relation in Figure  3.3 we can

check that tmin ≈ 1
4Γ0

. To determine tmin, we can determine the desired Γ0 by discussing its

relation to the initialization and readout time tm.

Figure 3.3. tmin - 1
Γ0

relation

Recall the expression of the sensitivity (equation  2.83 ). Here the slope of the K̃(ω) plot,

which is a measure of the dΓ
dω

, is approximately proportional to Γ0
αω

, where Γ0 is a measure of

the height and 1
αω

is a measure of the width. In this case the sensitivity ∆E ∼
√
t+ tm. We

consider 2 extreme cases:

a. When 1
Γ0

≫ tm, tmin ≫ tm, so ∆E ∼
√
t ≈ 1√

Γ0
, meaning that when Γ0 is very small,

the sensitivity improves with higher transition rate.

b. When 1
Γ0

≪ tm, tmin ≪ tm, so ∆E ∼
√
tm, which seems to be a constant when Γ0 is

very large. Nevertheless, when taking C into account, too large Γ0 may introduce significant

relaxation before the NV is initialized, rendering a deteriorated C and will still undermine

the sensitivity. In this case, the lower transition rate is preferable.
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Combining the 2 cases above, we find that a transition rate far from 1/tm is not desired.

So in this work, we let Γ0 = 1/tm, where tm = 10µs. Practically, we meet such a condition

by adjusting the height of NV hNV . We qualitatively illustrate this by Figure  3.4 :

Figure 3.4. The relation between sensitivity and transition rate

3.4 Investigate the sensitivity at different operating frequency

The idea of investigating the relation between ωFMR and the sensitivity arises from dω
dE

.

Since we already have ωFMR as a function of E explicitly, we find that with lower ωFMR, dω
dE

is

increasing - this is desirable because it partially enlarges η. But what about the other part
dΓ
dω

? What is its behavior with lower ωFMR? So we try to let the system work at different

ωFMR and see how dΓ
dω

changes accordingly. To vary ωFMR means tuning H⊥ for VCMA

case. Considering the thickness-dependent magnetic anisotropy, we can vary the operation

frequency by modulating the thickness of the magnet instead of applying a biasing electric

field to save energy.

For theoretical calculation in the VCMA case:

1. We first aim at a frequency ωFMR and determine the external field H0 by the energy

splitting of the NV center ωFMR = Dnvg − γH0, which is also the point where we sample the

K̃(ω) to obtain transition rate Γ.

2. By the expression for the FMR frequency (equation  2.17 ), solve the H⊥.
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3. Then obtain the thickness of the ferromagnet Lx by the expression for VCMA-

modulated H⊥ (equation  2.62 ).

4. Evaluate the sensitivity by analytically figuring out dΓ
dω

and dω
dE

at such operation

frequency.

For numerical simulation of the VCMA case, the first three steps are the same. For the

fourth step, the evaluation of dΓ
dω

is different:

1. A Runge-Kutta LLG solver is used to obtain magnetization dynamics δm′
i under the

thermal noise.

2. The power spectrum of the magnetization Cij is obtained by first calculating the

correlation functions in time domain ⟨δm′
iδm

′
j⟩ and doing fast Fourier transform.

3. Using the rotated version B̄ matrix elements we construct K̃(ω) by linear combinations

of Cij.

4. A smoothing procedure is conducted by firstly down-sampling using a Fourier method

(scipy.signal.resample in python) and then interpolating with a polynomial (scipy.interpolate.UnivariateSpline

in python) with smoothing factor s = 108.

The simulation related parameters are: T = 300K, simulation time Tsim = 5µs, time

step dT = 10ps. The simulation is repeated for 100 times and we take the average.

Now we have been through all the theoretical basis and details of the simulation. Next

chapter, we will demonstrate some simulation results and compare them with the theoretical

calculation.
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4. SIMULATION RESULTS

In this chapter, we will exhibit the figures of K̃(ω) for both theoretical calculation and

simulation results. The estimated sensitivity will be given accordingly. We will focus on the

VCMA results and compare the sensitivity ∆Emin to the magnetoelastic effect case later.

The simulation results (solid cyan line), sampled data from simulation results (red dot),

polynomial fitting curves (dot-dash black line), and theoretical results (solid blue line) at

operation frequencies from 1.8GHz to 0.6GHz for VCMA effect case are shown in Figure

 4.1 :

(a) K̃(ω) at ωFMR = 1.8GHz for VCMA (b) K̃(ω) at ωFMR = 1.6GHz for VCMA

(c) K̃(ω) at ωFMR = 1.4GHz for VCMA (d) K̃(ω) at ωFMR = 1.2GHz for VCMA
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(e) K̃(ω) at ωFMR = 1.0GHz for VCMA (f) K̃(ω) at ωFMR = 0.8GHz for VCMA

(g) K̃(ω) at ωFMR = 0.6GHz for VCMA

Figure 4.1. VCMA simulation results at differint FMR frequency

By looking at the theoretical results, the heights of the peaks almost remain the same.

This arises from the adjustment of NV height to make sure Γ0 ∼ 1/tm (recall section  3.3 ).

However, the shapes become narrower with lower frequency - intuitively, we can say that the

slopes dK̃(ω)
dω

, an approximation of dΓ
dω

, increases with lower ωFMR. Such a trend exists in the

simulation results, too. This means that reducing ωFMR can improve both dΓ
dω

and dω
dE

. As a

result, we expect the sensitivity to be enhanced with lower FMR frequency. Comparing sim-

ulation and theoretical results, we find that the peaks of the simulation results are lower than

the theoretical ones, and the peak frequencies of theoretical and simulation results match
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well at first but gradually deviate from each other with lower frequencies. We summarize

some observations of the trends in Table  4.1 and will plot some interesting parameters later.

Table 4.1. Summary results for VCMA
ωFMR[GHz] 0.6 0.8 1.0 1.2 1.4 1.6 1.8

dΓ
dω theory

[ × 10−3] 8.487 8.561 8.442 7.952 6.981 5.955 4.690
dΓ
dω simulation

[ × 10−3] 2.633 3.972 3.667 3.316 2.964 2.330 2.059
dω
dE

[Hz/(V/cm)] 2034.841 1383.539 992.758 732.237 546.151 406.586 298.036
stheory[V/(cm ·

√
Hz)] 202.240 293.809 416.811 600.844 905.704 1443.877 2505.781

ssimulation[V/(cm ·
√
Hz)] 646.572 630.178 951.613 1426.300 2139.124 3654.944 5642.781

dF [nm] 1.009088 1.011898 1.015354 1.019706 1.025358 1.032991 1.043872
hNV [nm] 263 223 190 160 131 95 45

Table  4.1 assembles some results from the figures above. We find that with the reduction

of the operation frequency, whether for theory or simulation results, both the dΓ
dω

and dω
dE

increase and cause enhanced sensitivity. To visualize such trends, we first try to plot the

relation between dω
dE

and ωFMR in Figure  4.2(a) . Figure  4.2(a) shows that dω
dE

may have an

(a) dω
dE − ωFMR relation (b) dω

dE − ω−1
FMR relation

Figure 4.2. Exploring the relation between dω
dE

and ωFMR
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inverse-like relation to ωFMR, that is, dω
dE

∼ ω−n
FMR. By trying n = 1 we plot the dω

dE
against

ω−1
FMR in Figure  4.2(b) and it has very good linearity. So we can say dω

dE
∼ ω−1

FMR.

However, the relation between dΓ
dω

and ωFMR is relatively complicated and is plotted in

Figure  4.3 . Whether for theoretical and simulation results, dΓ
dω

increases with a lower fre-

quency and almost saturates at low frequencies (except for ωFMR = 0.6GHz), which coincides

with our previous observation.

Figure 4.3. dΓ
dω

− ωFMR relation

Based on the trends we show in Figure  4.2 and  4.3 , lowering ωFMR contributes to not

only higher dω
dE

but also better dΓ
dω

. As the product of these two parameters, dΓ
dE

increases

with lower FMR frequency and results in better sensitivity. The sensitivity - ωFMR relation

is illustrated in Figure  4.4(a) for VCMA case:
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(a) sensitivity - ωFMR relation for VCMA, sen-
sitivity is improving with lower frequency

(b) sensitivity - ω3.5
FMR relation for VCMA,

the sensitivity is approximately proportional to
ω3.5

FMR

Figure 4.4. Exploring the relation between sensitivity and ωFMR

Such relation is like ∆E ∼ ωn
FMR, by several trying we find that when n = 3.5, the

consequent curve shows good linearity. Given Figure  4.4(b) , we can say the sensitivity can

be enhanced by tuning the operation frequency, and such adjustment can be made by using

ferromagnet with different thicknesses. Meanwhile, from Table  4.1 , we can find that even

if the ωFMR changes by over 1GHz, the corresponding thickness only varies about 0.03nm.

Such a phenomenon indicates that the magnet material may be susceptible to its shape,

which is utilized by the electric-field-induced magnetoelastic effect using PMN-PT.

The calculation and simulation for PMN-PT have been done in [ 66 ]. With the sensitivity

∆E ≈ 5.3V/(cm ·
√
Hz), it outperforms the VCMA case in this work (∆E ≈ 200V/(cm ·

√
Hz)) for two orders of magnitude. Following, we would like to compare some parameters

between VCMA and PMN-PT to figure out the reason.

Recall the evaluation of η:
dΓ
dE

= dΓ
dω

dω

dE
(4.1)

In this expression, we decompose the coupling of transition rate to electric field into two

parts. The first term describes how the quantum system (in our case, the NV center) will

62



respond to the noisy magnetic field, corresponding to the NV part. For both schemes using

the NV center, such NV-dependent dΓ
dω

should not make a significant difference. However, for

the magnet part, dω
dE

shows different behaviors. By equation  3.2 , the parameter ξV CMA and

ξP MN−P T play an important role. Table  3.1 includes these two parameters, and ξP MN−P T is

about two orders higher than ξV CMA, which partially accounts for the two orders of better

performance. Besides, since in PMN-PT case, the modulated Hk enters both of the frequency

components ωH and ω⊥, it has greater dω
dHk

than dω
dH⊥

for VCMA, which is shown in equation

 3.2 .

We put the dc electric field sensitivity obtained by Stark effect using single NV center,

VCMA effect, and magnetoelastic effect together for comparison:

Table 4.2. Comparison among the sensitivity using Stark, VCMA, and Mag-
netoelastic effects

Stark(single NV) VCMA Magnetoelastic

∆Emin[V/(cm ·
√
Hz)] 891 ∼ 200 ∼ 1

Here we must have two questions:

1. Why are the peak frequencies of theoretical calculation and simulation not matched?

2. Why do the simulation results show much lower peak height?

For these two questions, one possible reason lies in the total simulation time. In Figure

 4.5 , we demonstrate the results for ωFMR = 0.8GHz, by keeping all the parameters the same

while only varying total simulation time from 1µs to 5µs. We can see that for most of

the cases except for 3µs, the magnitude of K̃(ω) increases with longer total simulation time.

Meanwhile, the frequency mismatch between theoretical and simulation results declines when

the simulation time increases. From this trend, we can expect that the simulation time will

approach the theoretical result when the simulation time is long enough. Here we give the

simulation result up to 5µs because longer simulation time becomes infeasible.
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Figure 4.5. K̃(ω) for simulation time 1µs ∼ 5µs: with longer simulation
time, the peaks of K̃(ω) (except for 3µs) increase and the frequencies also
approach the theory curve

Another explanation is the validation of the linearized LLG equation. For theoretical

derivation, we assumed that the thermal field is tiny such that we can omit the higher-order

terms in the original LLG equation. Recall the correlator of the thermal field Dth = αkBT
MsV

,

where V is the volume of the magnet. At room temperature, if the given material has a tiny

volume, chances are that the thermal noise may be large enough so that the higher-order

terms take effect and introduce frequency shift. When temperature and material are fixed,

a larger volume is expected to mitigate such effect but at the expense of spatial resolution.

To check whether linearized LLG equation is still valid we plot the magnetization dynamics

in time domain for operation frequency ωFMR = 1.8GHz and ωFMR = 0.8GHz in Figure  4.6 .

The largest fluctuation magnitude for ωFMR = 0.8GHz is 0.1 while for ωFMR = 1.8GHz it is

0.025. In this case, the linearized LLG equation still applies.
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(a) Magnetization dynamics at ωFMR = 1.8GHz for VCMA, the largest devia-
tion for mx is about 0.025

(b) Magnetization dynamics at ωFMR = 0.8GHz for VCMA, the largest devia-
tion for mx is about 0.1

Figure 4.6. Magnetization dynamics for ωFMR = 1.8GHz and ωFMR = 0.8GHz

Now we have gone over the main body of this work (theory, methodology, and results).

We will conclude and give some outlook in the following chapter.
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5. CONCLUSION

In this thesis, we propose an electric field sensor using the population relaxation of an

NV center. To overcome the NV center’s inherent weak coupling to the electric field, we

try to convert the electric field into the magnetic property modulation of a ferromagnet.

Consequently, the shifted power spectrum of the magnetic noise at the NV center renders

a different transition rate, facilitating the population difference measurement. Compared

to other sensing protocols, the pulse sequence of the relaxometry is very simple, and the

absence of a microwave leads to less power consumption. The room-temperature operation

and easy external magnetic field source (a permanent magnet) contribute to the simple lab

configuration. Since the magnetic noise arises from finite temperature, such a scheme can

also work as a temperature sensor.

The proposed sensor allows us to improve the sensitivity by trying different compositions

of materials with higher conversion coefficients from electric fields to magnetic properties. In

this work, the PMN-PT case combines the piezoelectric and magnetoelastic effect, showing

much superior electric-field modulation of magnetic anisotropy. This work also investigates

the sensitivities at different FMR frequencies and reveals that working at a lower FMR

frequency is preferable for better sensitivity. Compared to the early electric field sensing

work using single NV center[ 34 ], our sensor exhibits improved sensitivity, but still far from

two recent works [ 35 ] [ 36 ]. All these three sensors take advantage of direct coupling to the

electric field (Stark effect), but later two employ NV ensembles and achieve the sensitivity

improvement by order of ∼ 103 or more. Considering the single NV we are using, NV

ensembles are expected to enhance our performance. Overall, there remains a lot to do in

quantum sensing to explore its potential for more fundamental insight into the quantum

world and versatile applications in our lives.
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