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ABSTRACT

Epithelial tissues, one of the four primary tissue structures found in our human body,

are known to comprise of tiny cells interconnected in a unique continuous pattern. In most

cases, they serve a dual purpose of protecting the internal organs from physical damage, and

at the same time, enable in facilitating inter-cellular activities and prevent pathogen break

ins. While the tissue mechanics and its proliferation have been scrutinized to great detail,

it is their geometric uniqueness, that has remained more or less unexplored. With an intent

of doing the same, this thesis identifies and explores those geometric properties/parame-

ters that have an influence on the micro structure’s homogenized and localized response.

However, it does so by extracting the microstructures profile and representing its cell edges

via three dimensional beam elements - hence the name, bio-inspired structures. The anal-

ysis is carried out by first developing a staggered Representative Volume Element (RVE)

using finite elements, and identifying its appropriate size. The staggered assembly aids in

minimizing boundary effects from creeping in, and at the same time, provides the requisite

statistical homogeneity. This is followed by the geometry study. A wide range of epithelial

geometries are considered for the study, ranging from completely isotropic skin models, to

in plane anisotropic cuboidal structures and out of plane anisotropic stratified geometries.

The effects of orientation, relative density and edge length are extracted and studied in great

detail. It is observed that cell edges initial orientation has a direct dependence on the parti-

cle distribution, whereas the change in orientation is largely dependent on the deformation

the microstructure is subjected to. Relative density is documented to show a direct cor-

relation to a materials homogenized response i.e. larger the relative density, greater is the

microstructures stiffness and homogenized stress response to the same deformation. Edge

length, on the other hand is observed to showcase a downward trend on the cell edge’s axial

stress. On average, in any kind of distribution and any kind of deformation, smaller cell

edges are known to showcase larger stresses, as compared to the larger cell edges.
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1. INTRODUCTION

Figure 1.1. A side by side comparison of the stratified epithelial tissue struc-
ture found in esophagus with the stratified open-foam cell edge microstructure
[1 ]

Biological systems, such as epithelial tissues are known to exhibit very unique microstruc-

ture geometry and cell arrangement [2 ]. As a result, these patterns have fascinated a wide

range of scientists and engineers of every era - from Robert Hooke attempting to peek through

a wine cork with his medieval microscope, to microbiologists and scientists trying to model

cell growth and proliferation in skin tissues to engineers and designers attempting to mimic

and develop structurally alike mechanical systems and mechanisms [3 ]–[5 ]. Now, what is

truly fascinating about these structures is the geometric uniqueness they showcase, as they

span and engulf an eclectic range of three dimensional sub-spaces [6 ]–[8 ]. Simple cuboidal

cells found in the inner linings of the stomach and the intestines, although randomly dis-

tributed in its corresponding hyper-plane, are single layered, and their cells are columnar in

shape[9 ]. Keratinized skin tissue on the other hand, observe a stratified distribution of cells

along their thickness i.e. the size of the cell reduces as you go from the base of the tissue

to the outer surface[10 ]. Going through the vast histological data of epithelial tissues makes
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you question the very influence of these geometric properties on its homogenized mechanical

response i.e what are these properties, and how to do they affect their response.

This question is actually derived/inspired/stems from a more prominent one i.e. to

understand why epithelial tissues behave the way they do. This has been proven important

for a multitude of reasons, and as a consequence, has been addressed in a plethora of ways.

A prominent approach to this question would start by understanding the role of epithelial

tissues. Epithelial tissue, as we know it, constitutes the largest organ in our body, covering

vast expanses of both, outer and inner surfaces[11 ]. It is primarily responsible for protecting

delicate organs, not only from zombies in the outer world, but also from pathogens and

harmful chemical reactions that can disrupt the physiological processes and activities of the

neighbouring cells. Common examples of physical protection include - 1) Any violent crash

that might result in the rupturing of an organ/s, 2) Subjection of extreme temperature

changes, which might be a result of a fire or some chemical reaction. In such scenarios,

understanding the mechanical behavior of tissue structure becomes paramount, as it directly

helps in the treatment of tears and burns. For instance, the study of tissue mechanics has

played a prominent role in making complicated surgical procedures possible [12 ]–[14 ]. It

is the experimental work of stretching skin samples and fitting their homogenized response

to material models, that has enabled the computation domain to model tissue structures

effortlessly [15 ]–[18 ]. Several researchers have thus been able to simulate these surgical

procedures using Finite Element softwares and advise surgeons on more suitable techniques

based on parameters like skin deformations and stress concentrations. While this approach

addresses tissue mechanics very well, it does not allow you to extend its scope to our first

question i.e. how is the tissue’s microstructure contributing to that response? An insight

on how the tissue microstructure looks like, and how it translates to the stress distribution

developed within it remains unanswered.

A second common approach to understanding epithelial tissue response arises from biolog-

ical curiosity. Tissue monolayers are known to exhibit mechanical stresses in morphological

processes like mitosis, cell motility and delamination [7 ], [19 ]–[21 ]. In this regard, you observe

extensive research in developing and applying numerical models that accurately capture cell

sheet dynamics of such systems. Vertex dynamic models, as they are called, are prominently
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used to investigate both elastic, viscoelastic and plastic behavior of such systems[22 ]–[24 ].

Consequently, there are some papers that focus on identifying and highlighting the biological

parameters like contractility of actin-myosin rings and molecular adhesion, and their effect

on mechanical response[25 ]–[27 ]. They also provide a great insight on the contribution of

geometric extension of cell and cell division to the same response[28 ]–[30 ]. While biological

papers with this approach certainly discuss one of the important properties of such mi-

crostructures i.e. orientation, the analogy is limited to just that i.e. they do not investigate

the effect of relative density, connectivity, and/or any other localized properties that might

also have an impact. Moreover, the study is limited to two dimensions i.e. monolayers. This

means that the work does not indulge into anisotropy, not just in the plane, but also out of

plane i.e. into the thickness of such tissues. There is, thus an inherent need to understand

the role of the same geometric properties in all sorts of patterns and geometries.

There are good histological papers that clearly showcase the range of geometries seen

in an epithelial tissue structure[9 ], [10 ], [31 ], [32 ]. There has also been a general need to

understand the effects of these parameters with an aim of furthering of knowledge in that

domain.

In this thesis, we list and classify these geometric parameters and study their effects

on the homogenized response of common epithelial tissues. This includes tissues which

showcase anisotropic distribution of cell particles within the plane, and out of plane. We also

investigate how these geometric parameters might have an influence on the stress distribution

within each cell. The detailed process flow is provided here. Chapter 2 comprises of a detailed

methodology on how the microstructure geometry is constructed. It starts by emphasizing a

great deal on how the distribution of cells within the geometry influences the microstructure.

The geometry in itself is conceived by the principles of voronoi spaces, where each particle

represents a voronoi cell, and its vertices, a collection of points closest to the subspace

in question. The connection of such points in a pre-determined sequential order can be

visualized as cell edges, which together form the overall microstructure about the particles.

Each particle is assumed to have the same weight associated. As a result, we propose an

open foam vertex connected beam structure in our thesis. The decision to develop an open

foamed structure as opposed to closed foam geometry, is because we are purely interested in
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studying just the geometric effects and not necessarily in capturing the actual behavior of

such tissues. In order to do so, one would need to account for all the biological phenomena

that occur during mechanical stretch i.e. develop an extension to the active vertex model to

three dimensions, and , at the same time, incorporate and investigate the geometric effects.

This methodology unnecessarily complicates the process, rendering the direction mute. As a

result, to characterize the structure of a cell, we make an assumption that cell edges can be

represented by three dimensional beam elements. By doing so, we are able to preserve the

geometric characteristics of epithelial tissues. Now, it is important to remember the fact that

the consequence of doing so, results in a epithelial tissue like structure, similar in geometry,

but different in composition. Hence the name, epithelial tissue-inspired structures. Geometry

creation is followed by the application and need for creating periodic geometries in next sub

section. Since the geometry in question is intended to span the entire subspace, developing

a repeating structure makes sense. To extract the complete three dimensional response of

the geometry, we propose three distinct biaxial stretch simulations. The methodology of

extracting the homogenized response of the structures is explained in the final sub section.

Chapter 3 focuses entirely on the development of a Representative Volume Element

(RVE), with the discussion flowing from the methodology and size determination, to perform-

ing and analyzing the homogenized response of every RVE size. The final chapter includes

all the variations of the geometric properties, and the study of their homogenized response.

Cell edge orientation, relative density and the localized response of a completely isotropic

material is studied first. This is followed by the anisotropy study of commonly observed

epithelial tissue structures. The thesis ends by summarizing the contribution and effects

of the geometric parameters on epithelial tissue-inspired structures, and overlays the future

work that can take this research forward.
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2. MATERIALS AND METHODS

2.1 Geometry Creation: From Voro++ to ABAQUS

Voronoi vertices 
with finite stiffness

Wires 
representing 

cell edges

Figure 2.1. The geometry creation flowchart for all microstructures: Voro++
assists in converting the particle distribution in 3D space into voronoi sub
spaces. The resultant geometry is imported into co-ordinates of con-jointed
poly-lines, which are in turn scripted into ABAQUS as cell edges with finite
stiffness. The combination of all poly lines results in the overall voronoi tes-
sellation.

The process of developing the tissue microstructure begins with the creation of the ge-

ometry in Voro++[33 ]. Histologically accurate cell density and distribution of the tissue

is fed into the software, along with its size and output post processed data requirements.

Upon receiving this data, a computationally accurate voronoi tessellation is generated that

spans the domain space. Now, it is well understood that developing a model of the entire
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tissue is not necessary - only a statistically periodic representative volume element that can

be tiled repeatedly in the hyper-plane does the job well. A geometry, periodic in x and y

and non periodic in z is thus developed. The methodology of experimenting and deciding

the true RVE size is explained in the next chapter. The same process is repeated for all

microstructures and cell distributions showcased in this thesis.

The geometry, consisting of several con-jointed poly-lines, is first visually analyzed in a

POV generator and then imported and scripted in the Finite Element software, ABAQUS

via Python[34 ]. The output geometry is entirely represented by wires, which when connected

together in a sequential pattern constitute the overall geometry. The wires signify the edges

of a voroni cell and are intended to capture the deformation behavior of the structure. Thus,

scripting/connecting all the individual poly-lines together with joints of finite stiffness will

ultimately yield the voronoi tessellation in the Abaqus environment. At this stage, a majority

of the geometric properties are already assigned - particle distribution, wire orientation and

vertex connectivity. Once the model is generated, the next step that is assigning the last two

crucial properties that will define its behavior - material properties and beam profile radius.

To mimic the elastic behavior of tissue microstructure, the following strain energy density

function is adopted -

Ψ = C10(Ī1 − 3) + 1
D1

(J − 1)2, (2.1)

where the material constants are represented by C10 = µ0/2 = 0.83 kPa and D1 = 1/K

= 0.0612 kPa and the strain state is given by I1 and J. In the expression, µ0 represents the

shear modulus of the material, and K represents the bulk modulus. Their corresponding

values are obtained by referring to the experimental studies performed on similar tissues in

the literature [35 ], [36 ]. The need for a nearly incompressible model, arises to address the

computational difficulty faced in such problems. Non linear simulations such as these are

known to encounter convergence issues when they deal with purely incompressible materials.

Thus, to counter that, a very small compressibility factor is iterated and utilized here [37 ].

It has been well established in previous literary work that deformation seen in open foam

structures, when subjected to external loads, are more accurately captured with three di-
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mensional flexible beams, than trusses[6 ], [38 ]–[41 ]. This is because each wire, as a result

of the nature of the connectivity is subjected to not only axial but also a combination of

in-plane and out of plane shear forces and concentrated moments. And this is a result of

the elastic nature of the vertex joints - they possess a finite stiffness, thereby resisting the

rotation of the joint about all three axes, thereby declaring a beam element as an ideal

choice. With this analogy, each wire is modelled with a shear deformable three dimensional

two node beam element. A non-linear hybrid B31-H Timoshenko beam element is chosen

for this purpose. It has been shown in past literary work that hybrid elements work best

for close to incompressible material models and hence the choice [37 ]. While the beams

are intended to capture the mechanics of deformation during stretch, there are no contacts

defined/established between them. This underlying reason is given here - we intend on cap-

turing the geometric properties of open foam structures and their influence on deformation.

Including contact properties complicates the problem unnecessarily. Deciding the element

choice now introduces the final parameter that represents the model geometry - beam profile

radius. It is influenced by two constraints - 1) Aspect ratio of the wire, and, 2) Average

relative density of the model. Aspect ratio of a B31-H beam element is known to capture

deformation accurately unto a value of 1/5 [42 ], [43 ]. Anything beyond that, will introduce

errors into the simulation, and the structure should no longer be modelled using beams, but

rather by a solid three dimensional element.

The final constraint influencing beam profile radius is the relative density of the model.

Literature defines a cellular solid as that microstructure whose relative density is less than

thirty percent [38 ]. Anything greater than that, is usually considered as a transition solid

and is thus not modelled using this methodology. With these two constraints, an appropriate

profile radius is chosen, satisfying both the parameters. The model, at this point is ready to

be subjected to multiple loading conditions and deformations.

2.2 Tiling the hyper-plane: creating periodic boundaries

The reasoning behind developing periodic boundaries for the model is two-fold - 1) It is

crucial to develop a microstructure that when tiled repeatedly in x and y, spans the entire
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two dimensional sub-space, and, 2) Periodic boundary surfaces, as opposed plane square

surfaces, eliminate the presence of straight and perpendicular bounding edges, something

that is nonphysical and unheard of in regular tissue microstructures. Even though the

former condition of two dimensional space tiling is met by square bounded geometries, the

introduction of the bounding edges lead to unusual and restricted deformations, something

that does not occur in tissues. This analogy, however, does not hold true to the third

dimension of thickness, as the model is not meant to span in z.

2.3 Applying boundary conditions to Finite Element Model (FEM)

Top Face strain in Y

Right Face strain in XLeft Face fixed in X
Bottom Face fixed in Y

Back Face fixed in YFront Face is free

Figure 2.2. Boundary conditions: Cell edges passing through three faces i.e.
Left Face, Bottom Face, and Back Face are fixed in x, y and z directions re-
spectively. Cell edges passing through Right and Top Faces have displacement
boundaries specified. The Front is free from any boundaries.

The model is subjected to in-plane displacement boundary conditions, satisfying the need

to mimic typical deformations of epithelial tissues [18 ], [44 ], [45 ]. It is subjected to three

classical tests - 1) Equi-Biaxial stretch in x and y, 2) Off-Biaxial stretch in x, and, 3)Off-

Biaxial stretch in y, each satisfying an inherent need to understand the non linear tissue

response [46 ]. This process is carried out by establishing displacement strain on the first

five distinct faces of the geometry and leaving the sixth face, free of constraints (surface of
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the tissue). From the figure shown above, the right and top face is subjected a non zero

tensile strain about their respective perpendicular axes. In the meantime, the left and the

bottom face is restricted from any strain in the same axis. The back face is fixed in z, while

the front face is free from all boundary conditions. Now, in an ideal sense, one would be in

favour of applying periodic boundary conditions to opposing faces - this process eliminates

any boundary effects that can creep in through the edges and allows the geometry to deform

as though the entire plan is spanned by it. However, attempting to do so on the requisite

geometry leads us to a new computation problem - opposing boundary faces of the model no

longer have the same profile, which in turn, entails that the opposing faces no longer have

equal number of nodes. Periodic boundary conditions cannot be used for such geometries

[47 ]. To circumvent this situation, a new method is proposed - the response of the geometry

will be measured, not from the boundary, but rather, from an inner RVE that lies within

the bounding region. The size of this region, along with the size of the RVE box will be

determined appropriately so as to minimize any boundary effects that might creep into the

model.

2.4 FEM Post-processing: Obtaining homogenized response

To characterize and define the homogenized response of the deformation, we need to

establish a methodology of quantifying the stress and strain response of the whole model.

To do so, we generate an arbitrary fictitious plane that passes through the geometry entirely

and is perpendicular to one of the cartesian-coordinate axis. After doing so, we take an

account of all the elements passing through the plane, and calculate their internal elemental

stress S11. One thing to remember at this step, is that the internal stress developed is given

in the deformed configuration i.e. it is the force per deformed beam cross sectional area.

Taking this into account, we extract the appropriate internal force developed within the beam

element, and, subsequently the contribution of the elemental force to the response along the
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𝑃𝑥𝑥 =
𝝨 Fi . 1,0,0

𝑦. 𝑧

𝐹1

𝐹1

𝐹2
𝐹2

𝐹3

𝐹3

Figure 2.3. The methodology of extracting the homogenized stress and strain
response - creating a fictitious plane passing through the geometry, and ac-
counting for the intersecting cell edges and their response

co-ordinate axis in question, using the following equation. This equation is summarized as

follows -

Pxx =

All intersecting cell edges∑
i

(Fi.[1, 0, 0])

Undeformed plane area y.z
,

Pyy =

All intersecting cell edges∑
i

(Fi.[0, 1, 0])

Undeformed plane area x.z
,

Pzz =

All intersecting cell edges∑
i

(Fi.[0, 0, 1])

Undeformed plane area x.y
,

(2.2)

Summing the contribution of internal forces of all intersecting elements and dividing it

over the un-deformed plane cross section area gives us the expression for the homogenized

first Piola-Kirchhoff stress at the plane. Performing the same across the remaining two cross

sections gives us the response in y and z axes. Now, our methodology of extracting the
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homogenized response of the microstructure makes use of just the axial forces in the beam,

and not the components responsible for torsion/twist in the member. This assumption can

be made in our case, as the internal reaction moments responsible for twist turns out to

be significantly small. As a result, the resulting internal torsional stresses generated in

individual elements are significantly small, and are ignored.

The true strain of the plane in question, can be obtained by calculating the average

displacement response of all the intersecting beams. This analogy, although accurate, does

contain the boundary effects. To try and mimic a true periodic boundary, similar calcula-

tions are performed on an opposing face (equi-distant from the center-plane of the geometry),

and the two are subtracted as follows. This technique is intended to separate any displace-

ment that might’ve taken place within the geometry, from the true strain that the model

is subjected to. By doing so, the post-processing technique is ready, and the homogenized

response of any Inner geometry within the structure can be extracted and calculated.
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3. REPRESENTATIVE VOLUME ELEMENT STUDY (RVE)

3.1 Size determination: Criteria

The need for a representative volume element becomes paramount, especially when one

is dealing with microstructure geometries that are intended to span vast spaces[48 ]. In

such scenarios, modelling entire geometries is not only computational tedious and expensive,

but also highly inconvenient. With this foundation, an appropriate RVE is explored i.e.

the one that not only captures the statistical homogeneity of epithelial tissues, but is, at

the same time, small enough to make computation feasible. What that means, is that the

suggested size should be large enough that the model alone contains all the necessary quirks

that a randomly selected model would. It should essentially capture the same orientation

distribution, contain the same relative density, volume fraction, and should have sufficient

lapses that a generic sample would[49 ]. With this analogy, we know that anything lager than

the minimum size would work just fine. However, to make the study computationally viable,

it is important that we recognize the threshold size.

Having established the need for an RVE, the next step is to estimate the appropriate size

of it. In a classical method, one would usually be concerned only about parameterizing the

outer size of the RVE. However, in our case, the need to eliminate boundary conditions creates

a second parameter that needs to be optimized i.e. deciding the geometric dimensions of the

inner region, which we will now refer to as the Inner RVE. From a mathematical perspective,

we will need to maximize the inner RVE geometry and minimize the ratio between the Inner

RVE and the outer box for the following reasons -

1. To ensure that all the necessary statistical homogeneity is captured, and

2. To eliminate boundary effects.

Satisfying both the conditions will ultimately help decide the appropriate Inner RVE

and Box dimension. Now, the first parameter is crucial when dealing with experimental

samples which usually possess impurities in the form of voids and inclusions in their systems

[50 ]. Including sufficient material in the RVE becomes paramount, as you are not strictly

in control of the distribution of the said impurities. In our case, however, it is us, who
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decide the distribution of the particles i.e. we decide the cell distribution. Now, it is true

that random structures might introduce some variation in the results. However, it is still

manageable, compared to the second parameter. In an ideal geometry, cutting the geometry

and calculating the resultant reaction forces at any plane should be essentially the same. As

we learn in basic mechanics, it should be independent of the position of the cut. However,

our study tells another tale. Thus, identifying and minimizing this factor becomes of prime

importance in this study. The entire chapter, thus focuses on that.

To start with, three arbitrary box sizes are chosen, and at the same time, three arbitrary

inner RVE sizes are chosen. The average RVE thickness A combination of the two parameters

is going to yield nine different configurations of the setup, as shown in the figure. The

specifications of the three boxes and Inner RVE sizes are all provided are listed below:

1. Configuration 1,2,3: Inner RVE 1: 30 µm x 30 µm x 75 µm (l x w x h)

(a) Box 1: 50 µm x 50 µm x 75 µm

(b) Box 2: 75 µm x 75 µm x 75 µm

(c) Box 3: 100 µm x 100 µm x 75 µm

2. Configuration 4,5,6: Inner RVE 2: 40 µm x 40 µm x 75 µm (l x w x h)

(a) Box 1: 50 µm x 50 µm x 75 µm

(b) Box 2: 75 µm x 75 µm x 75 µm

(c) Box 3: 100 µm x 100 µm x 75 µm

3. Configuration 7,8,9: Inner RVE 3: 50 µm x 50 µm x 75 µm (l x w x h)

(a) Box 1: 50 µm x 50 µm x 75 µm

(b) Box 2: 75 µm x 75 µm x 75 µm

(c) Box 3: 100 µm x 100 µm x 75 µm

The in-plane dimensions of both the Inner RVE and the Box are chosen arbitrarily,

whereas the thickness is established from the existing literature. This is because the geometry
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is in fact, not tiled along its thickness i.e. in the z direction, and hence needs no alteration.

Thus, for an epithelial tissue sample taken from the dorsal portion of the palm, the overall

thickness of the epithelial tissue structure can be assumed to be 75µ m [10 ]. Now, it can be

concluded from the list that the second parameter i.e. size ratio between the two sizes will

range from a minimum of 0.3 to a maximum of 1, with the box three and Inner RVE one

having the smallest size ratio, to box one and Inner RVE three having the largest size ratio

of one, respectively.

Box 01 Box 02 Box 03

Inner 
RVE 01

Inner 
RVE 03

Inner 
RVE 02

Inner 
RVE 01

Inner 
RVE 02

Inner 
RVE 03

Inner 
RVE 01

Inner 
RVE 02

Inner 
RVE 03

Figure 3.1. Configuration setup for all the Inner RVE’s and boxes. Each
Box size variation comprises of three inner RVE variations i.e. in total 9
configurations. Each configuration has a total of 5 samples each, to account
for randomness in the microstructure geometry.
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The point of obtaining reliable and consistent results is often raised in such simulations.

Since the geometries obtained are assumed to be completely random, there is a possibility

for every model to possess an inherent bias/anisotropy within itself. Thus, to address this

point, five samples for each box configuration is generated. This ultimately eliminates any

variance/bias that might’ve been introduced into the system and, at the same time, pro-

vides confidence in the results[48 ]. Thus, with the suggested range of RVE dimensions, the

respective model samples are generated, and their corresponding homogenized response for

the models are plotted and analyzed.

The methodology of analyzing both Inner RVE size and the size ratio adheres to the

following analogy - It is of utmost importance to first define the validity of the data be-

ing scrutinized. If the data in question is not consistent, we cannot definitively place any

confidence in it. To enforce this, we incorporate five samples into the mix and observe the

variance of their homogenized stress strain response at a strain of 10 percent. If the variance

in data is greater than a certain threshold i.e. user defined 15 percent, the samples are

deemed unfit for analysis and new samples for the same configuration are generated. The

process is repeated until this criteria is met. The methodology adopted, is similar to paper

[48 ], which also showcases similar means of ensuring consistency in results.

In our data, you can clearly observe from the table that all nine configurations have

achieved the set variance when subjected to all three loading conditions and tests. This data

is now set to be analyzed further, to optimize the two governing parameters for the RVE

study. The same can be concurred by observing the variance plot provided in figure xx.

Iterating through multiple model geometries helps us identify the perfect samples that

satisfy statistically similar model geometries. Once this is ensured, we delve into identifying

the appropriate RVE size. The proposed process flow for deciding the correct configuration

is going to be the following:

This study provides a comprehensive review and comparison between the nine configu-

rations discussed earlier.

1. Pick the configuration 1 i.e. smallest inner RVE and smallest Inner RVE to box ratio

i.e. Inner RVE 1 and Box 1
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2. Obtain the homogenized stress response in both x and y at a strain of 10 percent. Do

the same for all three tests (Equi-BI, Off-X and Off-Y).

3. Pick the next configuration i.e. 2, same Inner RVE, but Box size 2

4. Obtain its corresponding homogenized response in the plane at the same strain.

5. Now, estimate the relative error that exists between the two consecutive configurations.

6. Repeat the process by looping through the remaining seven configurations and obtain

the homogenized response and their corresponding relative errors.

3.2 RVE study: Homogenized response

The homogenized stress strain response for all configurations and samples have been

plotted in Fig. 3.2 . Subsequently, their stress response in the plane at a strain of 10 percent

has been tabulated in Fig. 3.3 , along with the relative error that exists between box 2

and 3 for all the three Inner RVE configurations. The blue plot consists the interpolated

data for the homogenized response for the first box configuration. The green plot provides

the response for the second box, whereas the red plot provides for the last i.e. third box

configuration.

3.2.1 Configuration 1,2,3: Inner RVE 1 - Box 1,2,3

The Equi biaxial plot for Inner RVE 1 (Row 1, Column 1) provides the homogenized

stress strain response in x and y for all three box configurations. In it, we make the following

observations:

• The stress response in both x and y appear to coalesce, for every Inner RVE - box

configuration i.e. visually speaking, there is little to no variation. This indicates that

the microstructure in question is truly isotropic in nature, in it, that it showcases

similar mechanical behavior in the plane. The same can be inferred quantitatively by

comparing the stress response in x and y from Fig. 3.3 . On average, you observe a
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variation of at-most, 5 percent. This is a good indication that the microstructure is in

fact, isotropic in nature.

• The statistical variation between samples for each configuration is well below the

threshold limit, throughout the strain range. The variance for Box 1 and 2 turn out to

be very low, which conclusively proves that a statistical mean is achieved. However,

the variance for box 3 is considerably higher. This is because of the lack of sufficient

data points for larger strains - box 3 is the largest structure of the three, could not

achieve high strains, as box 1 or 2 did, citing divergence issues in the simulations.

• Boundary effects can be clearly seen creeping into the box 1 configuration as its re-

sponse seem to be way off as compared to Box 2 and 3. However, the same is not true

for the next configuration i.e. 2, as the response between Box 2 and 3 is very similar.

This is proven true after observing that the relative error between the configurations

is 6 and 11 percent in x and y respectively Fig. 3.3 . This study showcases the fact

that by switching the size of the outer box, we are able to reduce the Inner RVE to

box ratio, thereby eliminating boundary effects. Once this condition is achieved, any

further reduction of the size ratio has little to impact on the homogenized response,

as can be inferred by the relative errors.

Observing the remaining two plots in the row gives an overview on off biaxial deforma-

tions:

• It is observed that the variation of stress response within the plane remains very

low for both off biaxial stretches. This is a good indicator that, irrespective of the

displacement boundary conditions, the model is subjected to, the model experiences

similar stresses in the plane, rendering the model truly isotropic. We can thus conclude

that the random distribution of particles in the medium does result in a isotropic

microstructure.

• For a particular strain, the stress observed in any of the off biaxial deformation is lower

than its response in the equi biaxial test.
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• Box 1 shows clear presence of boundary effects, as you observe a sudden jump in

stress as the configuration is moved to box 2. The same is not true for the change

in configuration from box 2 to 3 - the stresses, in fact, are very similar in magnitude,

and showcase low relative error in their response in both x and y. One thing to notice

though, is that only the Off-Y deformation follows the norm (relative error of 11 and

13 percent), while there is a significant deviation of stress levels for the Off-X data

with a relative error of 32 percent in x. The response in y is reasonable with a relative

error of 6 percent. Thus, this might be an anomaly.

The analysis of all three configurations of Inner RVE conclusively proves that the relative

error for configuration 2 i.e. Inner RVE 1 - Box 2, showcases a relative error that is below

our accepted norm of 15 percent. This configuration, has thus been able to minimize the

boundary effects from creeping in. From this analysis, it is clear that we can proceed with

the rest of the study with our choice of RVE. Anything larger will only increase the extent

of boundary effects creeping in, and will hence be a less desirable choice. However, for the

sake of completeness, we showcase the same by analyzing configurations 4 through 9 in the

next two sections.

3.2.2 Configuration 4,5,6: Inner RVE 2 - Box 1,2,3

The analysis of Configurations 4 through 6 also showcase promising results. As we go

through all the three deformation types, we observe box 2 to showcase almost consistent

results with box 3, with relative errors still being in the acceptable range for most of them.

It is the off biaxial stretch in x, that continues to showcase irregular stress response in x. The

reason why that occurs might be purely statistical, as we might have one of the simulations

going rogue by attaining instabilities.

3.2.3 Configuration 7,8,9: Inner RVE 3 - Box 1,2,3

Moving to the third and final Inner RVE size, raises some intriguing questions. Starting

with configuration one, we observe that the stress response for the 7th configuration i.e. box

1, is close to zero. Here, the size of the Inner RVE is same as that of the box. We believe
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this is due to the presence of our fictitious plane being so close to the boundary. All the

edges, under the influence of the free end of the boundary, experience little to no resistance

to displacement. As a results, their internal stresses are close to zero. Configuration 8 on

the other hand, does not fair any better either, as the Inner RVE to box ratio has risen

significantly. Citing no reason to proceed the analysis further, we abandon ship, and move

forward with our research with the previously accepted configuration i.e. 2 - Inner RVE 1 -

Box 2.
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STRESS RESPONSE IN X (kPa) @ 
10% STRAIN BOX 1 BOX 2 BOX 3

RELATIVE 
ERROR (BOX 2 

AND 3)

EQUI-BI

RVE 1 0.014325 0.0205307 0.021843 6.391891168
RVE 2 0.00842483 0.0147753 0.0162577 10.03296041
RVE 3 0.000209707 0.0116065 0 NA

OFF-X

RVE 1 0.00997809 0.0145221 0.0191806 32.07869385
RVE 2 0.00567913 0.0104488 0.0135757 29.92592451
RVE 3 0.000152789 0.00819183 0 NA

OFF-Y

RVE 1 0.0101732 0.0161641 0.0179935 11.31767312
RVE 2 0.00585289 0.0111986 0.0127916 14.22499241
RVE 3 0.000131901 0.0090389 0 NA

STRESS RESPONSE IN Y (kPa) @ 
10% STRAIN BOX 1 BOX 2 BOX 3

RELATIVE 
ERROR (BOX 2 

AND 3)

EQUI-BI

RVE 1 0.0147726 0.0212331 0.0236778 11.51362731
RVE 2 0.00824093 0.0154198 0.0173289 12.38083503
RVE 3 0.000327239 0.0121192 0 NA

OFF-X

RVE 1 0.0104817 0.0168713 0.0180175 6.793785897
RVE 2 0.00599031 0.0122651 0.0135615 10.56982821
RVE 3 0.000211549 0.00964619 0 NA

OFF-Y

RVE 1 0.00989252 0.0150105 0.0170437 13.54518504
RVE 2 0.00529171 0.0107791 0.0126512 17.3678693
RVE 3 0.000229884 0.008211 0 NA

Figure 3.3. A comparison of the homogenized stress response in both x
and y at a strain of 10 percent, for all nine configurations, and for all three
deformations. The final column provides the relative error between Box 2 and
Box 3 for every Inner RVE.
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S.D IN X @ 10% STRAIN BOX 1 BOX 2 BOX 3

EQUI-BI

RVE 1 0.000997752 0.000453959 0.000666811
RVE 2 0.000995919 0.00082993 0.000727211
RVE 3 8.11E-05 0.000497737 0

OFF-X

RVE 1 0.00115087 0.000284204 0.00149622
RVE 2 0.000811794 0.000399083 0.00144071
RVE 3 7.40E-05 0.000610957 0

OFF-Y

RVE 1 0.00112308 0.000974052 0.00154923
RVE 2 0.000966091 0.000214414 0.00138823
RVE 3 5.12E-05 0.000889052 0

S.D IN Y (kPa) @ 10% 
STRAIN BOX 1 BOX 2 BOX 3

EQUI-BI

RVE 1 0.000731435 8.47E-05 0.00104116
RVE 2 0.000724725 0.000694539 0.00120288
RVE 3 0.00010787 0.00115558 0

OFF-X

RVE 1 0.000697227 0.00116316 0.000209992
RVE 2 0.000506102 0.000654702 0.000605239
RVE 3 7.67E-05 0.00125185 0

OFF-Y

RVE 1 0.000449417 0.00110794 0.000422688
RVE 2 0.000657568 0.000604801 0.000705498
RVE 3 5.97E-05 0.000148489 0

Figure 3.4. A comparison of the Standard Deviation (S.D) of the homog-
enized stress response in both x and y at a strain of 10 percent, for all nine
configurations, and for all three deformations.

29



4. RESULTS

Having identified an appropriate RVE size for the process, we can now delve into the analysis

of geometric parameters and their influence on the RVE’s homogenized response. Their

influence on both the homogenized response and the localized stress distribution is thus

investigated:

Strain – 0

Strain ~ 0.1

Figure 4.1. Uniformly random structure: First row - Isometric view, front
view and side view at 0 strain. Second row - same views of the structure at
approximately 10 percent strain. Third column showcases the advantage of
using periodic boundaries in the hyper-plane - little to no boundary effects
visible in the deformed structure.

4.1 Cell Edge Orientation

The first parameter we intend on investigating is the orientation of the cell edges and

how it changes as the RVE is subjected to different strains. Any beam, in three dimensional
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space can be represented uniquely as a combination of its direction cosines and the Carte-

sian normal’s of the three dimensional space. We use this approach to identify our three

orientation parameters i.e. alpha, beta and gamma. Alpha is the angle made by a cell edge

with the positive x axis, beta is the angle made with the positive y axis and subsequently,

gamma, with the positive z axis. These three angles together communicate the orientation

of any cell edge and will hence be termed as the cell edge orientation parameters (see first

column in Fig. 4.2 . As the RVE is stretched to different strains, we track these parameters

and develop their corresponding polar plots. The same is shown in Fig. 4.2 below, for three

different loading conditions we earlier described.

The microstructure in the spotlight is the uniformly random RVE structure, which ulti-

mately emerged as the appropriate model size. For a truly isotropic structure, we observe

that the initial distribution of all three angles are uniform, which means that the statisti-

cal weight associated with every orientation is the same. Keeping this in mind, what one

would expect would be a circular plot for all three orientation parameters. However, that

is not observed in our figure, as we look at the blue dense polar plot for all deformations

and orientation parameters. What you observe, is a mushroom kind of distribution of cell

edges for all three angles, with the peak consisting of edges perpendicular to its associated

co-ordinate axis. The observation of this particular phenomenon is particularly true, be-

cause of the nature of our co-ordinate axes, and the dimension of the sub space we deal with.

For instance, an edge parallel to one co-ordinate axis is perpendicular to the other two. If

you have three edges, each parallel to each co-ordinate axis, each orientation parameter will

consist of two edges perpendicular to its own corresponding axis, and one being parallel to

it, thus resulting in the gradient in the polar plot. If you account the same for an array

of beams spanning the three dimensional space uniformly, the gradient you observed earlier

morphs into the mushroom like distribution you see in our figure. Hence, the distribution

is, in fact, perfectly represented by the initial polar plot for zero strain.

As the RVE attains a strain of approximately 10 percent, we observe that the edges

tend to re-align themselves, in a somewhat biased fashion. The same can be concurred by

taking a look at the overlapping hollow orange plots on the same figures as discussed above.

Starting with the equi-biaxial stretch, we observe that the edges, as they deform, tend to
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move toward the direction of stretch i.e. along x and y proportionally. The shift is seen

because of the re-orientation of cell edges. This can be inferred by tracking the difference

between the initial blue polar plot and the overlapped orange polar plot. You can clearly

observe that the height of the mushroom profile tends to decrease in the alpha and beta plots,

as the frequency of perpendicular beams drops. They are, in fact, re-orienting themselves

along the direction of stretch. As a result, the alpha and beta plots move towards zero

and 180 degrees. The examination of the third orientation parameter, however i.e. gamma,

throws light on something different. Cell edges which were initially randomly oriented, now

suddenly re-orient themselves along the directions perpendicular to its respective co-ordinate

axis i.e. edges move toward 90 and 270 degrees. And this shift is quite evident, as there is

no applied strain along its axis, making a drastic shift in the gamma parameter.

The examination of cell edge orientation in the off biaxial deformation leads to a slightly

more significant change in alpha and beta parameters. In both, the Off-X and Off-Y defor-

mations, one of the principal stretches is offset by a factor of two to the other. For instance,

in an Off-X stretch, the RVE is deformed to twice the strain along the y axis, than it is in

X. The opposite holds true for Off-Y. As a result, we observe a shift in orientation, with

edges showing a slight preference in orientation, as the RVE gets stretched to its maximum

deformation. In Off-Y, edges tend to align more along the x axis, as it is observed by the

orange polar plot in column three. Thus, they shift to being more perpendicular to the

other two axis. As we observed in the previous test, it is the gamma orientation, that is still

observing a greater shift, because of the absence of any applied stretch in z. The converse

holds true for the Off-X stretch as seen in the same figure.

Our study helps us make two critical observations - Firstly, in a completely isotropic

microstructure, more cell edges are perpendicular to a particular co-ordinate axis than they

are parallel to it. This geometric understanding helps us explain the mushroom like polar

plot we see in such three dimensional structures. Secondly, our study conclusively proves

that upon deformation of a microstructure such as this, cell edges tend to align themselves

more towards the direction of the applied stretch. However, this re-alignment of cell edges

although significant, might not showcase drastic changes in the alpha and beta polar plots,

creating an illusion of rest. The same is not true for gamma plots.
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4.2 Relative density

The second geometric parameter worth investigating would be the effect of relative den-

sity on the RVE’s homogenized response. From previous literary works, we are quite aware

that relative density constitutes as one of the prime factors that governs the stiffness of a

material[38 ], [51 ]. The greater is the relative density of a material/cellular solid, the higher

would be its resistance to deformation. In our problem, we vary the relative density in

increments of one percent from one, all the way to a maximum of 4.3 percent, that is the

maximum the model can attain without altering the particle density of the RVE, and at the

same time not reducing the aspect ratio of the edges beyond 1/5. Keeping this in mind, we

carry out the same deformations and keep a track the homogenized response of the RVE in

both x and y. The response has been showcased in Fig. 4.3 .

A clear trend with a direct dependence on the RVE’s relative density is captured. As

the relative density increases, we see a steady rise in the internal stress response of the RVE

i.e. greater the relative density, more is the homogenized stress response. This increase in

stiffness of the model accurately depicts what is seen in similar studies governing the effects

of relative density. With increase in relative density, the microstructure clearly tends to

experience larger homogenized stresses, at the same strain, indicating the fact that it is now

much stiffer. This result is seen for all our three loading conditions, which further bolsters

our understanding its effect.

4.3 Localized response

The localized response for our isotropic RVE gives a peek into the stress state within

the structure. It allows us to analyze individual portions of the geometry and their stress

states. This enables us with the ability to make inferences and draw correlation between

the homogenized response and the intricate microstructure cell arrangement. We investigate

two important indicators of stress states, namely the relation of axial stress with its local

orientation and two, its relation with edge length. These two parameters constitute the

prime determinants that have a strong hold on the microstructures stress state, and, as a

result are investigated accordingly.
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4.3.1 S11 vs. Orientation

To understand the influence of cell edge orientation on the axial stress it experiences

can be understood by plotting a polar plot shown in Fig. 4.4 . The radial angle constitutes

the span of the orientation, whereas the radial distance represents the relative magnitude of

the axial stress. An individual cell edge is thus represented by a scatter point lying in that

range. The three individual polar plots, from left to right, show the distribution of the axial

stress observed in each member as a function of the three primary orientation parameters i.e.

alpha, beta and gamma, respectively (at a strain of approximately 10 percent). As a result, it

helps us in analyzing whether there is a clear bias for a particular orientation, where all edges

are experiencing similar stress states. The existence of such a bias can be found by looking

for any asymmetric/non uniform distribution in edge stress. If such an orientation does not

exist, and that there is no clear bias, what we should observe is a uniform distribution of

axial stresses for any and all orientations.

For our isotropic RVE in Fig. 4.4 , we make the following observations:

• Starting from the left: The distribution of S11 with alpha shows an almost uniform

and symmetric distribution - almost all scatter points (represented by blue points)

cover the entire domain space equally. The radial distance is also uniform, indicating

that the distribution is accurate.

• The distribution is similar for the second plot. This indicates that the localized stress

state is uniform across the two co-ordinate axis i.e. uniform in the plane.

• The third plot showcases greater density of more scattered cell edges at 90 degrees,

than it does at the remaining orientations. This indicates that most of the elements

experiences higher axial stress lie perpendicular to the z axis, or lie in planes parallel

to the x-y plane. This makes a lot of sense, as the deformation the model is subjected

to, is truly in x and y. There is no applied stress in z.

As we move forward with our study, it is possible that we might observe some differences

when we encounter anisotropic geometries.
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4.3.2 S11 vs. Edge length

A histogram plot of the distribution of cell edges with their frequency is plotted in the

Fig. 4.5a . Next to that, a scatter plot of all edges lengths with their corresponding axial

stress is provided, Fig. 4.5b . The first plot clearly showcases that a majority of the edges are

in fact lying within the two micrometer range. As the edge length increases, the frequency

drops almost linearly. On average in our isotropic RVE, the largest cell edge is around

fourteen micrometers. With our understanding of the distribution of cell edges and their

lengths, we can take a closer look at our scatter plot and try to make sense of it i.e. if there

is any dependence of axial stress on edge length or not. To do so, we take weighted averages

of the axial stress experienced by cell edges within a certain length, and develop a linear plot

by fitting that data to a line. Doing so, enables to identify if there is any clear pattern in

the change in axial stress. Now, it is always possible to have certain edges which experience

an unusual magnitude of stress. However, they are not considered as anomalies and are also

included in the analysis, as they represent real edges. Moreover, taking weighted averages

minimizes any one time time occurrence. For our isotropic geometry for example, we observe

little to no dependence on edge length. The slope of the line is slightly negative, and of the

order one hundred, compared to that of the average stress experienced by all edges. The

result makes sense - almost all edges are oriented randomly in the RVE, regardless of their

length. They possess same cross sectional area, and similar connectivity, and as a result,

experience similar stresses.

4.4 Anisotropy

Having analyzed isotropic geometries, it is time that we delve into the commonly ob-

served microstructures of epithelial tissues. Our investigation of such structures helps us

further our understanding in the next parameter i.e. anisotropy of cell distribution. It is

our understanding that introducing a bias in the particle distribution is ultimately going

to introduce the same in the cell structure. This, as a consequence, alters not only the

homogenized response, but also the localized edge stresses developed within the geometry.

To verify our assumption, we start by segregating the structures into in-plane and out of
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plane anisotropic particle distribution. The corresponding tissue structures we end up with

resemble cuboidal and stratified tissues. Once we have such geometries, we subjected them

to the same in-plane stretches as seen in the previous section. We post-process the data

obtained from the RVE structure and analyze the results.

4.4.1 Cuboidal structures: In-plane anisotropy

We start by analysing the initial orientation of the structures.

Orientation: In-plane

Cuboidal epithelium is seen in the inner linings of internal organs like the kidney, and

gastro-intestinal linings of our digestive tissue [7 ]. They are single layered tissue structures,

and thus showcase anisotropy only in the plane they span. To understand the full extent

of anisotropy in plane, we develop four cuboidal structures of the similar dimensions and

overall particle count, but ones which differ strictly in the particle distribution within the

plane. To ensure that the anisotropy is limited to a single plane, our distribution of particles

within the thickness is limited to one cell in a single layer. The four structures of interest

include:

1. Isotropic cuboidal structure 01

• Dimensions: 75 µm x 75 µm x 11.6 µm

• Number of particles: 400 cells

• Distribution density 0.27 cell per unit length in x and y, 1 cell in z

2. Anisotropic cuboidal structure 01

• Dimensions: 75 µm x 75 µm x 11.6 µm

• Number of particles: 395-400 cells

• Distribution density 0.21 cell per unit length in x, 0.33 cell per unit length in y,

1 cell in z
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3. Anisotropic cuboidal structure 02

• Dimensions: 75 µm x 75 µm x 11.6 µm

• Number of particles: 395-400 cells

• Distribution density 0.27 cell per unit length in x, Wave pattern in y, 1 cell in

z

4. Anisotropic cuboidal structure 03

• Dimensions: 75 µm x 75 µm x 11.6 µm

• Number of particles: 395-400 cells

• Distribution density Wave pattern in x, Wave pattern in y, 1 cell in z

,

The particle count and outboard geometric parameters are obtained from skin histology

literature [10 ]. All structures will thus possess on average 400 cells, with a thickness of

around 11.6 micrometers. The in-plane size of the structure would be same as the RVE size

we determined earlier. One thing to remember though, is that the in-plane distribution of

particles is purely made up, in the interest of exploring the influence of anisotropy. Doing

so, helps us develop the corresponding tissue structures that are capture all kinds of in-plane

anisotropy, that can tile a two dimensional space. Once the geometry is constructed, and

subjected to the requisite deformations, we start by extracting and plotting the orientation

of the cell edges within the plane:

Fig. 4.6 , accurately showcases the geometry and its in-plane orientation parameters

(alpha and gamma). The third orientation parameter i.e. gamma is not looked at, as there

is no set of edges relevant to in-plane distribution. For the first structure i.e. uniform in-plane

geometry, we observe that the angle the cell makes with each of the two planar co-ordinate

axis is truly uniform i.e. the alpha and beta angle distribution is spread across uniformly

from zero to 2π. This indicates that by developing voronoi tessellation structures around

uniformly distributed particles, we develop a microstructure consisting of cell edges which are

truly inform in that plane. Of course, you will have cell edges running parallel to the third
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co-ordinate axis (gamma = 0) to complete the cell geometry, but they undergo compressive

stresses in the third co-ordinate axis, and do not contribute directly to the homogenized

response in the plane, and hence, are not shown here. This resulting distribution of alpha

and beta seen in cuboidal structures is much more intuitive to the mushroom-like distribution

seen in the the previous section. The is because, most of the edges we analyze here are limited

to a single plane, and, with the particle density being limited to one along its thickness,

introduces no extra edges being perpendicular to it.

The following three structures consists of some sort of anisotropic particle distribution in

the plane. The second structure has anisotropy introduced by changing the particle density

along each co-ordinate axis. It consists, on average sixteen particles along the x axis, and

around twenty-five particles along the y axis, with the overall particle density remaining

constant at four hundred cells per RVE. The result of such a particle distribution is an

anisotropic microstructure. It is observed that increasing the particle density along the y

axis has introduced several cell edges lying perpendicular to it. This conclusion is drawn by

looking at the alpha orientation, being lob-sided towards zero and π. Similarly, with a lesser

density along x axis, results in lesser particles along y and more perpendicular to it. This is

evident by the beta orientation.

The third structure consists of a wave like-particle distribution along the y axis, and a

random uniform particle distribution along the other (x axis). The wave pattern in the y

axis is brought about by distributing a select bunch of particles normally about a sequence of

points. The resulting structure also has the same particle density, but a very clear bias in its

orientation, as can be seen from the figure. Most cell edges end up lying perpendicular to the

x axis, and parallel to the y axis. This is going to lead to some very interesting homogenized

behavior. The fourth structure of interest is one that possess a wave like distribution along

both the x and the y axis. The resulting orientation is somewhat uniform, but having a

slight bias towards the x axis.

Having examined the in-plane edge orientations, we can move on to analyze their effects

on the homogenized response.
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Homogenized response

We start with the isotropic structure. Performing a equi-biaxial stretch to the structure,

shows us that the homogenized stress response in both the x and y direction is exactly the

same as seen in Fig. 4.7 . As we move toward the off biaxial stretches, we start to observe

a minute deviation in the homogenized response between x and y. The model seems to be

showcasing marginally higher stresses in the y direction, as compared to the stress in the x

direction in the off biaxial stretch in x. The opposite is seen, when the same microstructure

is subjected to an off biaxial stretch with a bias in y. The discrepancy, although minute, is

present in the first structure.

The second structure, as we had concluded in our previous study showcases a clear bias as

it is stretched in the plane. For instance, upon subjecting the model to equi-biaxial stretches,

the homogenized stress observed along the x axis is much higher as compared to the y axis.

This result is in terms with the in-plane orientation that we discussed earlier. With the

majority of elements lying along he x axis, reaction force of those edges will be significantly

higher. Thus, as a consequence, these members will experience a greater stress state. The

explanation holds true, as we sweep through the remaining two deformation states. In both

the off biaxial stretches, it is the homogenized response along the x axis, which is significantly

larger, as compared to the response along y axis. The third structure, showcasing the highest

degree of anisotropy, has a similar outcome on its homogenized response. The wave like

pattern along the y axis has essentially resulted in a multitude of cell edges lying parallel

along the y axis, as compared to the x axis. As a result, when the structure is subjected

to an equi biaxial stretch, the homogenized response along the y axis is clearly larger to its

response along x. The same pattern repeats for the remaining two loading conditions. Our

fourth and final structure, showcases a uniform response within the plane when subjected

to equi-biaxial stretch, but its response differs drastically when compared to the first model.

This is essentially true for the remaining two deformation studies i.e. off biaxial stretches in

x and y. There is a clear difference in the homogenized response in x and y.
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S11 vs. Edge length

As investigated previously for the isotropic RVE, we study the relation between edge

length and the axial stresses experienced by the cell edges, for cuboidal tissue structures.

The frequency distribution of the edges is necessary to ensure that we take the weighted bias

of every cell edge’s axial stress response, while determining S11 dependence. Doing so, leads

us to the following relation, as seen in Fig. 4.8 . The frequency of cell edges with lengths

less than 4-6 µm is extremely high. It is our understanding that those particular cell edges

lie on the surface plane of the cuboidal structures. This is true, because of the distribution

pattern followed for constructing these geometries - The cell density in z is limited to one,

which means that the resultant voronoi subspace is not going to contain cell edges inside the

geometry, which are parallel to the x-y plane. All of them will lie on the top and bottom

planes. The only edges running through the geometry are going to be those perpendicular

to the surface. And since they face no opposition, they are usually long and slender beams.

Our analogy holds true for the first two structures, as we see a peak in frequency for cell

edges longer than 10 µm (which is close to the thickness of the structure). This information

becomes helpful as we study the third column i.e. S11 response to edge lengths.

In all of our four planar microstructures, we observe that there is an inverse relation

between the axial stress experienced by the cell edges and the edge lengths. The red line

provides the trend. This means, that the smaller edges in general experience much greater

stresses, when compared to longer ones. Referring back to the second column in Fig. 4.8 ,

helps us make a second inference. Smaller edges i.e. edges lying on the surface seem to

endure much greater stresses than their longer counterparts. This means that that stress

concentrations within similar microstructures lie at the surface, when they are subjected to

in-plane strains.

S11 vs. Orientation

Fig. 4.9 . showcases the axial stresses experienced by all cell edges, and the orientation

they lie at, at a fixed strain of 10 percent. This particular plot showcases the stress distri-

bution for off biaxial stretch, with a bias in x. From left to right, the first plot shows a high
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density of cell edges lying close at zero or π to the x axis. Their axial stresses are significantly

higher, as opposed to cell edges lying perpendicular to it. With our understanding of change

in orientation, we that increasing the deformation further, will result in edges aligning more

and more along the x axis. This includes even the edges lying perpendicular to it. Moving

to the next plot, we see the distribution of cell edges with beta. A significant portion of

edges seem to be lying at π/2. Their magnitudes of axial stress is also high as compared to

those lying along 0 and π. This is true, because the extent of stretch in y is much smaller

than it is in x.

Now, we made an assumption about the distribution of edge lengths with their orientation

in the previous section. Our justification of the same, can be inferred from the third polar

plot from Fig. 4.9 . It looks like most of the elements experiencing any significant amount of

axial stress lies perpendicular to the z axis. Those that lie along the axis, experience very

little stress in comparison. Thus, we can safely conclude that the scatter plots from Fig. 4.8 

in the first half, represent planar edges.

4.4.2 Stratified structures: Out of plane anisotropy

Our next section focuses on epithelial tissues which possess out of plane anisotropy.

Two common microstructures that come to mind are the stratified and pseudo-stratified

microstructures. These structures are known to exhibit some kind of bias in the particle

distribution along their thickness i.e. along the z axis [10 ], [52 ], [53 ]. To replicate the same,

we develop their corresponding micro-structures and subject them to the same deformations

as seen before and track their homogenized and localized response. The characteristics of

the two geometries is listen below:

1. Stratified structure

• Dimensions: 75 µm x 75 µm x 75 µm

• Particle density: 800 cells

• Distribution: Random in x and y, exponential distribution in z

2. Pseudo stratified structure
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• Dimensions: 75 µm x 75 µm x 11.6 µm

• Particle density: 400 cells

• Distribution: Random in x and y, normal distribution in z with two peaks

Homogenized response

Fig. 4.10 gives an insight into the in plane response of these structures. The equi biaxial

plot of the stratified epithelial structure shows us that the response in both x and y are very

similar. This is somewhat true for the second structure. The behavior, although very similar,

seems to have some inherent anisotropy present within it. Now, it is our understanding that

the result of this might be purely coincidental, and might not have a significant relation to

the distribution in z. As we move forward to the next two set of deformations, the stratified

structure behaves, as any in plane isotropic geometry would i.e. possessing almost similar

responses in both x and y, as the structure is subjected to different stresses. The same should

be technically true for the second geometry as well, i.e. the pseudo stratified structure.

We can thus conclude, that any significant anisotropic behavior of a microstructure is

purely a result of the particle distribution in the plane, and not out of plane.

S11 vs. Edge length

While the homogenized response in the z direction is not particularly helpful, breaking it

apart and analyzing the distribution of stresses with it, might have some merit. For instance,

an important question one can ask would to be to study if keratinized skin tissues observe

any gradient in the localized stresses along the thickness, when such a structure is subjected

to in plane stretches. One way to investigate that would be by taking a look at Fig. 4.11 ,

to get some insight into the effect of anisotropy.

We know that that the stratified structure observes an exponential distribution of cell

particles through the thickness i.e. the density is maximum at the top face, while it is

exponentially lower at the bottom face. This disparity of distribution is translated to edge

lengths as well, as seen in Fig. 4.11 (Row 1, Column 1). Edges ranging from 0 to 5 µ m are

in largest numbers, whereas consequent edges have exponentially lower frequencies. With
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both this knowledge, we can conclusively say that larger edges lie closer to the bottom face,

and smaller edges (more in number), lie closer to the top. The information proves helpful

as we investigate the second plot for stratified geometries (Row 1, Column 2). The S11 vs.

edge length plot trend, represented by the solid red line„ shows a negative trend. Smaller

edges i.e. the top surface experiences greater stresses, as compared edges lying closer to the

bottom. Thus, a clear gradient in particle distribution has ultimately resulted in a gradient

in localized stresses as well.

The pattern of stress distributions is very similar even for the pseudo-stratified geometry,

indicating the fact that smaller edges endure larger stresses. So, if there is an induced

anisotropy in particle distribution, there will be a gradient in localized stresses as well.
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Figure 4.2. Distribution of cell edge orientations for all three deformations
(columns): The deep plot in blue bar plot showcases initial orientation i.e. at
strain = 0. The overlapped orange plot provides the revised orientation at
strain = 0.1 (10 percent). First row: Alpha, Second row: Beta, and Third
row: Gamma
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Figure 4.3. Variation of relative density from 1 percent to a geometry allowed
maximum of 4.3 percent. Plots provided for all three deformations.
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Figure 4.4. Localized response: S11 vs. Orientation (Alpha, beta and gamma)

(a) Frequency distribution of edge lengths (b) Scatter plot of cell edge axial stress with edge
length

Figure 4.5. Localized response: S11 vs. Edge length
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Cuboidal Isotropic 
(20 x 20 x 1) ~ 400 

cells

Cuboidal Anisotropic 
(19 x 25 x 1) ~ 400 cells

Cuboidal Anisotropic 
(7 x 7_8 x 1) ~ 395 cells

Cuboidal Anisotropic 
(7 x 7_8 x 1) ~ 395 cells

Orientation

Alpha Beta

Figure 4.6. Microstructure and orientation of all four anisotropy geometries,
and their corresponding in-plane initial orientations (alpha and beta polar
plots)
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EquiBI Off-YOff-X

Figure 4.7. In plane homogenized response of the four cuboidal structures.
The flow of data follows previous figures: First row - Isotropic, subsequent
rows - In-plane anisotropic structures.
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Cuboidal Isotropic 
01 ~ 400 cells

Cuboidal Anisotropic 01 
~ 400 cells

Cuboidal Anisotropic 03 
~ 395 cells

Cuboidal Anisotropic 02 
~ 395 cells

S11 dependence on lengthEdge length distribution

Figure 4.8. Cuboidal structures: Frequency distribution of edge length and
dependence of axial stress with edge length.

Figure 4.9. Axial stress distribution of cell edges across three orientation
parameters - alpha, beta and gamma
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Figure 4.10. Stratified epithelial tissue structures: Homogenized response
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Stratified Pseudo-Stratified

S11 
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on length

Edge length 
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Figure 4.11. Stratified epithelial tissue structures: Edge length frequency
distribution and S11 dependence on length.
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5. CONCLUSION AND FUTURE WORK

The objective of this thesis was to develop a deeper understanding of the geometric pa-

rameters of bio-inspired tissue structures and document their influence on the structure’s

micro-mechanical response. The first challenge in carrying out this study, was developing

a geometrically accurate microstructure that incorporated most of the features of the tis-

sue. The process of doing so resulted in making a lot of assumptions, like characterizing

and shortlisting important geometric features that best captured the elastic deformation

of these tissues, while sidelining certain biological and physiological features that would

hinder the decision making process, or make the model unnecessarily complex. The param-

eters that were shortlisted included the cell orientation, cell edge length, cell distribution

(isotropy/anisotropy), connectivity and relative density. Meanwhile, biological factors like

cell division, dynamic cell re-arrangement, intercellular cadherin cell-adhesion and intracellu-

lar cell compression pressure were not included. The process of doing so, would help separate

the biological factors from the intended geometric study, making the analysis cleaner, but,

at the same time, implicate the study to bio-inspired micromechanics, rather than microme-

chanics in general. Thus, the geometry we develop and analyze in our work is a three

dimensional open foam microstructure, with cell edges represented as 3D beam elements,

and cell vertices represented by joints with finite elastic stiffness.

In Chapter 2, we focus on scripting open foam microstructures from the Voro++ interface

to ABAQUS. The process flow of creating the geometry begins with specifying the particle

distribution and the volume space for the microstructure. Doing so enables the system

to develop multiple three dimensional voronoi subspaces, that virtually hug a particle to

their closest proximity. Their boundaries of intersecting spaces are thus represented by a

combination of vertices and their cell edges - this separates cell spaces from one another.

The resulting geometry is a voronoi tessellation. This representation of cell edges, in the

form of poly lines, is then scripted into the ABAQUS environment via Python, to finally

result in our open foam microstructure. Our resulting geometry is capable of capturing all

the necessary geometric variables, which we are interested in learning. Cell distribution is

a user defined value prescribed prior to generating the model. Cell edges are represented
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by beams/wires in the microstructure. Their corresponding length serves as our second

parameter. The connectivity can be calculated by determining the number of cell edges that

intersect at each node. The orientation can be prescribed by taking a dot product of the

cell edge vector with our preferred co-ordinate axes, giving us our three crucial orientation

parameters i.e. alpha, beta and gamma. And finally, relative density can be determined by

taking the ratio of the space occupied by the voronoi tessellation to the overall volume space

of our microstructure.

In this manner, all our crucial parameters are now defined, and we can comfortably

describe the deformation behavior of tissues now. Out of the biological parameters we ex-

cluded in our study, it is the intercellular pressure that can also be considered as a geometric

parameter that affects deformation. Our model does not capture that. This is indeed a

limitation. The only methodology of including it would be by developing a closed foam

voronoi tessellation. And the volume within each space could be monitored and controlled

via penalty methods, mimicking a more realistic cell. This process was pursued for a while.

The transition of open to close foam structure would entail that the geometry would now

be represented by 3D shells instead of beams and rigid vertices. The shells would be inter-

connected, thereby creating pockets of isolated volume, where the pressure inside the cell

could be mimicked by penalty methods. This analogy, although promising has its fair share

of drawbacks - for instance, replacing beam edges completely would mean that our ability

to capture other equally crucial parameters like cell orientation, connectivity and relative

density would diminish. Capturing accurate deformations is not the only agenda - it is

quantifying and characterizing it that is also important. The process of doing so with just

shells is hard. One would thus need to develop a combination of the two models and capture

that uniquely, without altering the actual deformation of the microstructure. As a result,

the concept of closed foam microstructure was dropped. However, this still remains as one

of our future works.

Our geometry creation concludes after we make our final inclusion i.e. adding periodic

boundary surfaces, and we move on to developing a finite element model for our study. More

so, a Representative Volume Element (RVE) as we deal with deformation of structures that

span an entire sub-space. In the process of developing an RVE, we come across one factor
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that might hinder our study i.e. boundary effects. With our inability to apply periodic

boundary conditions to the faces, we face the threat of boundary effects from creeping in.

While periodic boundary surfaces do help in alleviating some boundary effects, we decide to

minimize it by staggering our RVE geometry, by developing an RVE within an RVE. As a

result, we take on the task of iterating and modifying both RVE dimensions, until statistical

homogeneity is met and boundary effects are minimized in the system. Chapter 3 delves

deep into the analysis of the same. The exact process falls down to building three different

outer box geometries and selecting three different Inner RVE dimensions. A combination

of 9 configurations are analyzed and the one satisfying both conditions is chosen as a the

appropriate RVE. To eliminate variation in data, a total of 5 samples of each configuration

are generated. The entirety of the third chapter provides an in-depth comparison of the nine

configurations, and concludes with Configuration 2 as the prime RVE structure.

Chapter 4 delves into the geometric study of all microstructures. We learn that the

initial orientation of a microstructure is dependent on the distribution of cells in a medium.

As a result, uniform random distribution of cells should ultimately yield a similar uniform

distribution of cell edges within, resulting in similar alpha, beta and gamma distribution of

angles. And we observe the same as we develop a uniformly random distributed structure.

Understanding beam orientations in three dimensions gives us an insight on how to interpret

the plot themselves. This becomes useful as we plot the distribution of alpha, bet and

gamma and observe that although they appear non uniform (mushroom profile), they are

in fact random and equally distributed. The bias is seen purely because of the dimension of

the space. Increasing the dimension from three, will further skew the bias, which decreasing

it removes it. As a result, we see this profile emerge only for three or higher dimension

geometries. However it is not seen in planar two dimensional geometries. It is upon the

application of some deformation, that we learn more about cell re-orientation and change.

Upon studying three different types of deformations, we can safely conclude that a cell edge

orients itself along the direction of stretch. And the extent of this re-orientation is going to be

widely dependent on the strain it is subjected to. The study also confirms our understanding

on the effect of relative density on the homogenized response of the structures. Increasing

relative density, increases the stiffness and stress response of the microstructure. The stiffness
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will eventually rise towards the material stiffness as the relative density moves towards 1.

The localized response provides no significant insight for isotropic geometries. We do not

observe any clear dependence of axial stresses on orientation or edge length, and move on to

our final study on anisotropy.

Anisotropy constitutes the final section in our chapter, as it investigates the degree of

influence of all the geometric parameters. Two common epithelial structure types are mod-

elled and scrutinized - cuboidal planar epithelial tissue structures, and stratified epithelial

tissue structures. Cuboidal structures observe in plane cell distribution, and as a result, ob-

serve only planar anisotropy. Stratified structures, on the other hand, observe out of plane

anisotropy, or variation along its thickness. The separation of the two, helps identify the

degree of influence for each individually. While real life tissue like the keratinized epithelial

tissue structure observes both in plane and out of plane, anisotropy, this combination is not

analyzed here. But our study should be able to concur the same. We observe that intro-

ducing anisotropy in the plane has a significant impact on both - cell edge orientation, and

its homogenized response in the plane. We see that structures with cell edges oriented more

towards a principal axis observe a higher stiffness and stresses. The converse is true, for

cell edges oriented more towards the perpendicular direction i.e. they observe significantly

lesser stresses for the same amount of strain. This helps draw a correlation between cell

edge orientation and its corresponding homogenized response, which in turn relates cell par-

ticle distribution with its homogenized response. Investigating dependence of axial stresses

within the geometry on its cell edge length and orientation also provides some good insight

into the localized stress distribution within the structure. The axial stress endured by a

cell edge has an inverse dependence on its length. Thus, smaller edges experience greater

stresses, while longer edges experience lower stresses. A peak into the distribution of cell

orientation, further helps us identify the region of peak stress. It is seen that the surfaces

of such structures observe greater in plane stresses than the inner edges, which proves that

stresses are usually concentrated on the surface.

Observing localized response in out-of-plane anisotropic geometries teaches us about

the gradient of stress that exists along its thickness. Stratified geometries, like cuboidal

structures, also observe an inverse relation of axial stress on edge length. As a result, it is
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the top surface of the structure that truly experiences higher stresses. But, unlike cuboidal

structures, stratified geometries have a gradient of particle distribution along the thickness,

which in turn translates to gradient in edge lengths. This concludes that, a gradient in the

localized stress along z exists.

In all, our proposed method satisfies our two primary objectives conclusively. It captures

almost all geometric parameters effectively, and also provides a detailed insight on the micro

structure’s homogenized and localized response. However, it falls short on design valida-

tion. As the model is an imitation of the epithelial tissue structure without the osmotic

pressure a blatant comparison of our method with existing microstructure models would be

un-warranted. Thus, to truly get a grasp of its effective methodology, the model has to be

either adapted to account for the osmotic pressure (by introducing a penalty function on

volume, or by integrating shells to close cell volumes, as discussed previously) or by testing

its design with existing open foam methodologies in the literature. Going down the experi-

mental route of either 3D printing the microstructures or generating them using innovative

foaming technologies would also would also be interesting to implement and study.
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