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ABSTRACT

With the growth of the popularity of e-commerce and mobile apps during the past decade,

people rely on online reviews more than ever before for purchasing products, booking hotels, and

choosing all kinds of services. Users share their opinions by posting product reviews on merchant

sites or online review websites (e.g., Yelp, Amazon, TripAdvisor). Although online reviews are

valuable information for people who are interested in products and services, many reviews are

manipulated by spammers to provide untruthful information for business competition. Since

deceptive reviews can damage the reputation of brands and mislead customers’ buying behaviors,

the identification of fake reviews has become an important topic for online merchants. Among the

computational approaches proposed for fake review identification, network-based fake review

analysis jointly considers the information from review text, reviewer behaviors, and production

information. Researchers have proposed network-based methods (e.g., metapath) on

heterogeneous networks, which have shown promising results.

However, we’ve identified two research gaps in this study: 1) We argue the previous

network-based reviewer representations are not sufficient to preserve the relationship of reviewers

in networks. To be specific, previous studies only considered first-order proximity, which

indicates the observable connection between reviewers, but not second-order proximity, which

captures the neighborhood structures where two vertices overlap. Moreover, although previous

network-based fake review studies (e.g., metapath) connect reviewers through feature nodes

across heterogeneous networks, they ignored the multi-view nature of reviewers. A view is

derived from a single type of proximity or relationship between the nodes, which can be

characterized by a set of edges. In other words, the reviewers could form different networks with

regard to different relationships. 2) The text embeddings of reviews in previous network-based

fake review studies were not considered with reviewer embeddings.

To tackle the first gap, we generated reviewer embeddings via MVE (Qu et al., 2017), a

framework for multi-view network representation learning, and conducted spammer classification

experiments to examine the effectiveness of the learned embeddings for distinguishing spammers

and non-spammers. In addition, we performed unsupervised hierarchical clustering to observe the
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clusters of the reviewer embeddings. Our results show the clusters generated based on reviewer

embeddings capture the difference between spammers and non-spammers better than those

generated based on reviewers’ features.

To fill the second gap, we proposed hybrid embeddings that combine review text

embeddings with reviewer embeddings (i.e., the vector that represents a reviewer’s characteristics,

such as writing or behavioral patterns). We conducted fake review classification experiments to

compare the performance between using hybrid embeddings (i.e., text+reviewer) as features and

using text-only embeddings as features. Our results suggest that hybrid embedding is more

effective than text-only embedding for fake review identification. Moreover, we compared the

prediction performance of the hybrid embeddings with baselines and showed our approach

outperformed others on fake review identification experiments.

The contributions of this study are four-fold: 1) We adopted a multi-view representation

learning approach for reviewer embedding learning and analyze the efficacy of the embeddings

used for spammer classification and fake review classification. 2) We proposed a hybrid

embedding that considers the characteristics of both review text and the reviewer. Our results are

promising and suggest hybrid embedding is very effective for fake review identification. 3) We

proposed a heuristic network construction approach that builds a user network based on user

features. 4) We evaluated how different spammer thresholds impact the performance of fake

review classification. Several studies have used the same datasets as we used in this study, but

most of them followed the spammer definition mentioned by Jindal and Liu (2008). We argued

that the spammer definition should be configurable based on different datasets. Our findings

showed that by carefully choosing the spammer thresholds for the target datasets, hybrid

embeddings have higher efficacy for fake review classification.
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CHAPTER 1. INTRODUCTION

With the growth of the popularity of e-commerce and mobile apps during the past decade,

people rely on online reviews more than ever before for purchasing products, booking hotels, and

choosing various services. Users share their opinions by posting product reviews on merchant

sites or online review websites (e.g., Yelp, Amazon, Tripadvisor). A local consumer reviewer

survey (Rosso & Cagnina, 2017) found that 68% of consumers have reinforced their decision to

purchase a product or service by reading positive online reviews, and 92% of consumers read

online reviews to judge a local business or a product. Although online reviews are valuable

information for people who are interested in products and services, many reviews have been

found to be manipulated by spammers to provide untruthful information for business competition.

Since deceptive reviews can damage the reputation of brands and mislead customers’ buying

behaviors, the identification of fake reviews has become an important topic for online merchants.

For example, Mayzlin, Dover, and Chevalier (2014) discuss how undetectable fake reviews

influence consumers to make suboptimal choices when purchasing products. Also, the presence

of biased reviews may lead consumers to mistrust reviews. In 2009, the Federal Trade

Commission in the United States updated its guidelines governing endorsements and testimonials

to include online reviews (FTC, 2009). Furthermore, in February 2012, the UK Advertising

Standards Authority ruled that the travel review website TripAdvisor must stop claiming that it

offers “honest, real, or trusted” reviews from “real travelers” since too many fake reviews were

manipulated to mislead people. Since more attention has been drawn to the dangers of fake

reviews, fake review identification has become more and more important. In the next sections, we

discuss the development of fake review identification in the past years, which sets the context for

the research questions and experiments addressed by this work.

1.1 Definitions

To reduce the ambiguity caused by the usages of terms, we define the following terms:
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Fake reviews: Reviews written and manipulated for purposes other than providing the truthful

opinions of reviewers. Since the terms “fake review”, “opinion spam”, and “deceptive

review” are often used to refer to the same concept in previous literature, we use them

interchangeably throughout this work

Network embeddings: Low-dimensional representations (usually vectors) of vertices in networks

that capture and preserve the network structure (D. Wang, Cui, & Zhu, 2016). Such vector

representations are able to preserve the proximities between nodes, which can be used as

features for network analysis (Qu et al., 2017)

View: A view is derived from a single type of proximity or relationship between nodes, which

can be characterized by a set of edges.

Reviewer embeddings: Network embeddings that capture and preserve the characteristics (e.g.,

writing or behavioral patterns of reviewers) of a reviewer network structure

Spammers: Reviewers who wrote at least one fake review (Jindal & Liu, 2008)

1.2 Background of Fake Review Identification

According to Jindal and Liu (2007), there are three common types of fake reviews: 1)

Untruthful opinions, which deliberately mislead readers or opinion mining systems by giving

undeserving positive reviews to promote objects or by giving malicious negative reviews to

deteriorate the reputations of objects; 2) reviews on brands only, which comment on the brands

and manufacturers rather than products; 3) non-reviews, which are advertisements or random text

irrelevant to the products.

To identify type 2 and type 3 fake reviews, researchers usually recruit annotators to

(manually) label spam and non-spam reviews. Since these two types are more recognizable (i.e.,

type 2 reviews are only related to brands but not the target product; type 3 reviews contain

advertisements that are irrelevant to the target product), annotators can more easily reach a

consensus on whether a review is type 2 or type 3 (Jindal & Liu, 2007). After collecting labels

for spam and non-spam reviews, researchers explore useful features and design predictive models
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to identify whether a given review is fake or genuine. However, labeling type 1 fake reviews is

relatively difficult. First, untruthful reviews can be deliberately crafted and are always not even

composed by the user who posts the reviews. Spammers sometimes get incentives to imitate real

reviewers’ opinions. Second, reviewers can intentionally fabricate reviews to indicate features

that are nonexistent or to give misleading opinions about the target products, brands, and services.

Even if we carefully compare the details (e.g., product specification, service description, store

location) mentioned in the review with the actual properties of the target product, it is still hard to

tell if a review is deceptive or not. Third, according to the findings of Jindal, Liu, and Lim (2010)

and Mukherjee et al. (2012), the behavioral patterns of a reviewer (or a group of reviewers) can

play a more important role in fake review identification than the content of a review. Due to the

above reasons, labeling type 1 reviews is more complicated, and annotators tend to agree less.

Because this is an ongoing problem that requires a robust solution, we focus our investigation on

this type of review.

It is also important to distinguish between opinion spam and other types of spam. Jindal

and Liu (2007) distinguished opinion spam from web spam, email spam, and recommendation

system attacks. Gyongyi and Garcia-Molina (2005) defined web spam as actions intended to

mislead search engines into ranking some pages higher than they deserve. There are two types of

web spam: link spam and content spam. Link spam is a type of spam where a web page contains

advertisement URL links, which do not have a clear overlap with opinion spam. Content spam is

a type of spam in which certain words, usually irrelevant to the content, are added to a web page.

The nature of opinion spam is very different from content spam because a fake review is not

usually formed by irrelevant spam words. Email spam refers to unsolicited commercial

advertisements in email. Although commercial advertisements also exist in reviews,

advertisements in reviews are not as frequent as those in email. Besides, the major challenge of

email spam is to effectively identify advertisements, whereas the major challenge for the domain

of opinion spam is detecting untruthful reviews. A recommendation system attack refers to

actions whereby attackers manipulate data (e.g., ratings, feedback) to mislead a recommendation

system. This kind of attack is often done by adding malicious user profiles to a recommendation

system. This type of attack is different from opinion spam because researchers do not consider

reviewer profiles for opinion spam detection. Instead, reviewer behavioral patterns and reviewer
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group indicators have been used in previous studies of opinion spam (Jindal et al., 2010;

Mukherjee et al., 2012).

Figure 1.1 contains examples of suspicious reviews that show the characteristics of spam

reviews and spammers. The reviews were written by three different reviewers; however, the

following suspicious patterns can be noted: 1) The three users all reviewed the same three

products and gave all of them five-star ratings. 2) The posted reviews are within a small time

window of four days. 3) The reviewers only reviewed these three products. 4) The reviewers were

among the earliest reviewers of the products after their release.

Figure 1.1. Examples of fake reviews on Amazon (Mukherjee et al., 2012)

The above examples showed that many features of reviews and reviewers can be used to

determine whether a review is fake or genuine. In the next section, we introduce the features that

were used in previous studies.

1.2.1 Features

In previous research, many linguistic features have been considered for analyzing

deceptive reviews, including statistical features such as N-grams (Cagnina & Rosso, 2015;

S. Feng, Banerjee, & Choi, 2012; S. Feng, Xing, Gogar, & Choi, 2012; Fusilier, Montes-y

Gómez, Rosso, & Cabrera, 2015b; Ott, Cardie, & Hancock, 2013; Ott, Choi, Cardie, &

Hancock, 2011), part-of-speech tags (Lai, Xu, Lau, Li, & Jing, 2010; Ott et al., 2013, 2011),

word embeddings (Aghakhani, Machiry, Nilizadeh, Kruegel, & Vigna, 2018; Ren & Ji, 2017;

W. Zhang, Du, Yoshida, & Wang, 2018), and psycho-linguistic features (Cagnina & Rosso,

2015; Ott et al., 2013, 2011). Although linguistic features are effective for text analysis such as
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authorship attribution (Juola, 2008; Koppel, Schler, & Argamon, 2009; Stamatatos, 2009) and

sentiment analysis (Nasukawa & Yi, 2003; Taboada, 2016), it is difficult to only use linguistic

properties to determine whether a review is deceptive or not (Mukherjee, Venkataraman, Liu, &

Glance, 2013). Thus, researchers have incorporated various perspectives, such as textual features,

reviewer behaviors, and spammer group indicators, to identify untruthful reviews. Reviewer

behaviors reflect whether a reviewer displays a pattern with respect to promoting and/or demoting

products from certain brands (Jindal et al., 2010). Spammer group indicators utilize common

patterns between different reviewers to evaluate if there are spammer groups (Mukherjee, Liu,

Wang, Glance, & Jindal, 2011). A more detailed review of the use of features will be described in

Chapters 2 and 3.

Since the features are extracted from real-world data, we need to understand the datasets

investigated in previous research. In the next section, we survey the datasets built and used for

fake review identification.

1.2.2 Datasets

Many initial studies constructed datasets based on the meta-information of reviewers and

reviews, unusual review patterns, and indicators of spam groups (Mukherjee et al., 2011). Jindal

and Liu (2007) and Jindal and Liu (2008) collected more than 5 million product reviews from

Amazon and other online stores. They designed heuristic rules of fake review annotation and

recruited annotators to label a small portion of the collected data based on the provided rules.

After the small datasets were labeled, they used them to infer the labels of a larger amount of

data. However, the resulting datasets were not convincing enough and were not widely used in

other studies. Later, after crowdsourcing resources such as Amazon Mechanical Turk (AMT)

became more popular, researchers started to hire workers to build human-annotated datasets. Ott

et al. (2011) collected real hotel reviews from multiple sources (e.g., TripAdvisor, Expedia,

Hotels.com, Orbitz, Priceline, and Yelp) and marked them as truthful. They also collected

deceptive reviews by recruiting AMT workers and asking them to write reviews based on

provided instructions. J. Li, Ott, and Cardie (2013) built the FOUR-CITIES dataset, which

consists of deceptive reviews of eight hotels in four cities (i.e., Chicago, New York, Los Angeles,
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and Houston) from AMT as well as a set of truthful reviews from TripAdvisor. While these

datasets were 100% built by people, the reviews written by AMT workers were not written by

actual customers. In addition, as the AMT workers followed rules provided by the researchers to

fabricate the reviews, it is questionable whether the data is similar to real-world data.

A turning point in the development of fake review datasets came with the Yelp datasets,

which were collected by Yelp.com and were first used by Mukherjee, Venkataraman, Liu, and

Glance (2013). In these datasets, Yelp labeled “filtered” and “unfiltered” reviews by their filtering

algorithm. Reviews labeled as “filtered” were treated as fake or suspicious by Yelp’s filtering

algorithm. However, its filtering algorithm is a trade secret. In this study, we experiment with

Yelp’s filtered and unfiltered reviews to find out what Yelp’s filter might be doing. It is important

to note that Yelp had a filtering algorithm to identify recommended and filtered reviews. The

filtered reviews were made public. Although the Yelp anti-fraud filter was not perfect, according

to the analysis done by Mukherjee, Venkataraman, Liu, and Glance (2013), fake review

classification under a balanced class distribution (i.e., the same amount of fake reviews and

genuine reviews) had an accuracy rating of 67.8%, which was significantly higher than random

guessing (50%).

Several studies (Mukherjee, Venkataraman, Liu, & Glance, 2013; Rayana & Akoglu,

2015, 2016) have discussed Yelp’s filtering algorithm using its filtered and recommended reviews.

The researchers have since released three different datasets:

• The YelpChi dataset contains 67,395 reviews (13.23% of filtered reviews) from 38,063

reviewers (20.33% of spammers) across 201 hotels and restaurants in Chicago.

• The YelpNYC dataset contains 359,052 reviews (10.27% of filtered reviews) from 160,225

reviewers (17.79% of spammers) across 923 hotels and restaurants in New York City.

• The YelpZIP dataset contains 608,598 reviews (13.22% of filtered reviews) from 260,277

reviewers (23.91% of spammers) across 5,044 restaurants. The reviews were collected and

organized by zip code in a continuous region of the U.S., including NJ, VT, CT, and PA.

Each review was labeled as filtered (fake) or recommended (non-fake) by Yelp.com and has

product and user information, a timestamp, ratings, and review content. Compared to the datasets
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built before, the Yelp datasets contain genuine reviews written by real users. Moreover, the size of

the datasets is much larger than previous ones, and the datasets are accessible to the public.

In order to automatically extract features and identify fake reviews from the datasets,

computational approaches based on machine learning have been widely adopted over the past

decade. We next discuss these computational methods used for fake review identification.

1.2.3 Computational Approaches

In the early stages, many studies made rule-based assumptions to distinguish untruthful

and genuine reviews. For example, Wu, Greene, and Cunningham (2010) defined several

predefined criteria and calculated the correlations between those criteria. The correlations were

treated as “expected rules”. For each review, the authors computed the deviation between the

expected rules and the review to indicate ”suspiciousness” or ”unexpectedness” (Jindal et al.,

2010). Due to a lack of labeled fake reviews, the researchers considered the suspiciousness value

as the label of review. The next step was to train logistic regression (LR) or support vector

machine (SVM) models with the small dataset labeled by the rule-based suspiciousness value.

The models were then used to predict fake reviews or spammers.

After the release of gold-standard annotated datasets, many researchers were able to adopt

various computational methods on fake review detection and treated this as a classification

problem. Among traditional supervised classification methods, the best performance reported in

these models was about 91% in accuracy and in F1 (S. Feng, Banerjee, & Choi, 2012; S. Feng,

Xing, et al., 2012). Utilizing deep learning for fake review identification has also recently

attracted a lot of attention. These models can achieve better performance on classification, and

they preserve the sparse and high dimensional features in low-dimensional vectors on latent

space. The best performance among the neural network approaches reached around 95% in F1

W. Zhang et al. (2018).

Moreover, in order to tackle the problem that most real-world datasets do not contain

labeled fake reviews, many Positive and Unlabeled learning (PU-learning) and collective

classification approaches have been used. PU-learning enables models to learn from a smaller

labeled training set but still achieves high performance. The key idea is to learn a classification
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model from a small portion of a dataset and then to use the model to infer labels for the rest of

unlabeled data, known as “pseudo labels”. The classification model then refits the whole dataset

with real and pseudo labels, which is used for predicting unknown data. The best performance

among the PU-learning approaches has achieved over 80% in F1 when using 25% of training data

as known data and 75% as unknown data, and over 85% in F1 when using 50% of training data as

known data and 50% as unknown data Cagnina and Rosso (2015).

Another interesting direction is network-based fake review identification. Researchers

focus on performing classification on heterogeneous networks (H. Li et al., 2014). By

inferencing the “metapath” (Yuan et al., 2018) between nodes in heterogeneous networks, the

nodes in different types of networks can be correlated. Figure 1.2 is an example of a

heterogeneous network, which contains edges that connect different types of nodes (e.g., review,

reviewer, and IP address). Figure 1.3 is an example of a metapath that walks across different types

of nodes (review, reviewer, and feature).

Network-based methods attempt to learn embeddings, usually vectors, to represent nodes

in a network by approximating the likelihood between the original network and the node

embeddings. That is, if two nodes are very similar or connected in a network, the distance of their

node embeddings should be close. For instance, reviewers 1 and 2 share the same feature ACS in

Figure 1.3, so the distance between their node embeddings is more likely to be small.

Figure 1.2. Heterogeneous network (H. Li et al., 2014)

In this study, we are especially interested in network-based approaches since these studies

provide a more comprehensive perspective across different types of information networks. After

our investigation, we identified two major research gaps in the literature. We discuss the gaps in

the next section.
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Figure 1.3. Sample network of users, reviews, and features (Yuan et al., 2018)

1.3 Research Gaps

The first research gap is that previous studies of fake review approaches cannot effectively

capture and preserve the relationship between reviewers. The first reason is that, although

previous network-based methods, such as metapath, can correlate two reviewers if they share the

same features or have posted reviews about the same products, those methods failed to preserve

the relationship of two reviewers if there was no direct edge connecting them. Based on our

observation, the previous network-based methods capture only the first-order proximity of

reviewers but cannot preserve the second-order proximity between reviewers (J. Tang et al.,

2015). First-order proximity estimates the observed links in the local structure of the networks,

while second-order proximity captures the extent to which the neighborhood structures of two

vertices overlap. As illustrated in Figure 1.4, the first-order proximity between vertices 6 and 7 is

high because they are connected to each other. On the other hand, it is low for vertices 5 and 6

because there is no edge between them. However, the second-order proximity of vertices 5 and 6

is high because it preserves the characteristic that the two vertices share a similar neighborhood

even though they are not connected. J. Tang et al. (2015) showed their LINE model outperformed

the graph factorization approach (Ahmed, Shervashidze, Narayanamurthy, Josifovski, & Smola,

2013) and DeepWalk (Perozzi, Al-Rfou, & Skiena, 2014) in experiments on node classification

and link prediction by considering the second-order proximity of networks. The second reason for

not effectively capturing and preserving the relationships between reviewers is that previous
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studies of fake review identification did not learn review/reviewer representations with multiple

views. A view is derived from a single type of proximity or relationship between the nodes, which

can be characterized by a set of edges. Considering multiple types of views for node

representation learning is important because multiple views exist in many real-world networks.

For instance, social media sites like Twitter consist of multiple types of proximities that can be

induced by the following-followee, reply, retweet, and mention relationships. Each proximity

defines a view of a network, and multiple proximities yield a network with multiple views.

According to Qu et al. (2017), since each individual view is usually sparse and biased, the node

representations learned from multi-view networks are more comprehensive and robust than those

learned by single-view networks.

Figure 1.4. First-order proximity and second-order proximity (J. Tang et al., 2015)

The second research gap is that, to the best of our knowledge, the text embedding of a

review was not jointly considered with its reviewer embedding in previous literature. Since

different reviewers, especially spammers, have different behavioral patterns or writing styles

(Jindal et al., 2010), it is necessary to consider the text embedding of a review along with its

reviewer’s profile.

In order to fill these gaps, we set up two main research questions and corresponding

research methods. The details are illustrated in the next section.

1.4 Research Questions

To recap, we have identified the following two research gaps: 1) Previous graph-based

fake review studies did not consider the characteristics of second-order proximity and multiple
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proximities of a reviewer network. 2) The text embedding of a review was not considered with its

reviewer embedding in previous literature. We, therefore, proposed the following two research

questions to address these gaps.

The first research question is: Do reviewer embeddings learned via multi-view network

representation approaches preserve the characteristics of spammers? This research question is

tied to the first research gap. As we’ve discussed earlier, if reviewer features are not created by

considering second-order proximity and multiple proximities, they cannot effectively capture the

relationship between reviewers. In order to verify this, we adopted a multi-view network

representation, MVE (Qu et al., 2017), because of its strength to learn reviewer embeddings in

consideration of second-order proximity and multiple proximities. To evaluate whether the

reviewer embeddings are effective as the features of spammer classification, we conducted

spammer classification experiments and used the reviewer embeddings as features. In addition,

we applied a clustering algorithm to group reviewer embeddings into two clusters and compared

the difference between the distribution of clusters and the distribution of spammer labels.

The second research question is: Is the hybrid embedding of a review more sensitive at

distinguishing whether a review is fake compared to the review’s text embedding? This question is

tied to the second research gap. Since the text embedding of a review has not been jointly

considered with its reviewer embedding for fake review classification, we compare the

performance between having and not having reviewer embeddings. Moreover, we aim to explain

how reviewer embeddings contribute to the performance difference. To perform the comparison,

and thus fill this gap, we built hybrid embeddings that consist of each review’s text embeddings

and its reviewer’s embedding. Next, we performed fake review classification experiments and

evaluated whether using the hybrid embeddings as features was more effective than using the text

embeddings as features. Finally, we conducted a feature ablation study to examine each of the

features used to build reviewer embeddings.

The contributions of this study are four-fold: 1) We adopt a multi-view representation

learning approach for reviewer embedding learning and analyze the efficacy of the embeddings

used for spammer classification and fake review classification. 2) We propose a hybrid

embedding that considers the characteristics of both the review text and the reviewer. Our results

are promising and suggest hybrid embedding is very effective for fake review identification. 3)

25



We propose a heuristic network construction approach that builds a user network based on user

features. 4) We evaluate how different spammer thresholds impact the performance of fake review

classification. Several studies have used the same datasets as we used in this study, but most of

them followed the spammer definition mentioned by Jindal and Liu (2008). We argue that the

spammer definition should be configurable based on different datasets. Our findings show that by

carefully choosing the spammer thresholds for the target datasets, hybrid embeddings have higher

efficacy for fake review classification.

1.5 Assumptions

The following are the assumptions of the study:

• The fake/filtered review labels provided by Yelp in the datasets used in this study were

treated as the ground truth of fakeness.

• The third-party libraries used in our experiments had no significant defects that may lead to

incorrect experiment results.

1.6 Limitations

The following are the limitations of the study:

• The study only considers reviews written in English. Reviewers who had no English

reviews were removed

• Studies based on crowdsourcing data may yield low-quality answers due to the openness of

crowdsourcing (i.e., many crowdsourced reviews were not well-formed or not written under

critical thinking) (Zheng, Li, Li, Shan, & Cheng, 2017). However, since this is not the

focus of this study, we do not discuss whether the issue exists in the Yelp datasets.
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1.7 Delimitations

The delimitations for this study include:

• Findings and observations in this study were based on the reviews and reviewers collected

in the YelpChi, YelpNYC, YelpZIP datasets.
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CHAPTER 2. REVIEW OF RELEVANT LITERATURE

2.1 Fake Review Identification

Data annotation for untruthful reviews is quite difficult. Before the release of large,

annotated datasets, researchers proposed various unsupervised approaches for identifying

effective features and abnormal patterns in untruthful reviews. However, after the release of

several gold-standard datasets, researchers were able to conduct supervised learning and had a

more reliable evaluation for this task.

To the best of our knowledge, Jindal and Liu (2007) and Jindal and Liu (2008) were the

first studies to propose unsupervised approaches for spam reviews. The authors explicitly defined

three types of review spam (i.e., untruthful reviews, reviews on brands only, and non-reviews) and

developed a product review dataset from Amazon. They built three types of features from the

dataset: 1) review-centric features, 2) reviewer-centric features, and 3) product-centric features.

To detect type 2 and type 3 spam reviews, they manually labeled 470 spam reviews and trained a

logistic regression (LR) model for fake review detection. Next, the authors conducted the

following steps to detect type 1 spam reviews. First, they analyzed the dataset and identified

duplicated reviews by content comparison (i.e., by computing whether the Jaccard distance of the

bigram union of two reviews was over 90%) (B. Liu, 2007). They assumed that duplicated

reviews were spam reviews while others were non-spam reviews. Moreover, they also assumed

“outlier reviews” (i.e., reviews whose ratings largely deviated from the average rating but were

not duplicated) were spam reviews. Second, the authors trained an LR model to learn from the

duplicated reviews and found their model was predictive of both duplicated reviews and outlier

reviews. They, therefore, suggested that the model was predictive of type 1 spam reviews if their

assumption (i.e., duplicated reviews and outlier reviews are very likely to be type 1 spam reviews)

held. In terms of evaluation metrics, the Area under ROC curve (AUC) was employed to evaluate

the classification results. The best classification result in AUC values reported for type 2 and 3

spam reviews were 98.7%, while for duplicated reviews, it was 78%. For the detection of outlier

reviews, the authors reported visualized lift curves, and they split outlier reviews into five
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categories: 1) Negative deviation, 2) positive deviation, 3) negative deviation on the same brand,

4) positive deviation on the same brand, and 5) bad product with average reviews. Based on the

lift curves, they suggested that their LR model was predictive of four types of outlier reviews,

with the exception being the positive deviation type.

In a subsequent paper (Jindal et al., 2010), the authors identified unusual reviewer

patterns by finding unexpected rules that indicate spam activities. They used the same Amazon

dataset as Jindal and Liu (2007) and Jindal and Liu (2008) and defined a series of unexpectedness

factors based on class association rules (Ma & Liu, 1998). They also evaluated the confidence

unexpectedness of their association rules for the dataset. The authors did not conduct experiments

on spammer identification but provided a case study to show how their unexpected rules could

identify suspicious reviewers. Their rules suggested that a reviewer could be a spammer if the

person wrote negative reviews about all the products of a brand but wrote positive reviews about a

competing brand.

Many studies followed the study of Jindal and Liu (2008) and proposed unsupervised

approaches. Lai et al. (2010) proposed a hybrid approach to detect untruthful reviews by an

unsupervised probabilistic language model that estimates the similarity between any pairs of

reviews and to detect non-review by a supervised SVM model. Their unsupervised probabilistic

language model was inspired by web spam detection approaches (Martinez-Romo & Araujo,

2009; Mishne, Carmel, Lempel, et al., 2005), which were based on Kullback-Leibler (KL)

divergence. KL divergence is a measure commonly used to estimate the distance between two

probability distributions. For each pair of reviews, the authors computed the KL divergence

between two reviews and treated them as spam if they are similar. For the supervised model, the

authors adopted Joachims (1998)’s SVM package and extracted syntactical, lexical, and stylistic

features to detect non-review. For collecting part-of-speech (POS) tags, they developed a POS

tagger based on WordNet lexicon (Miller, Beckwith, Fellbaum, Gross, & Miller, 1990) and

WordNet API. In their evaluation, they followed Jindal and Liu (2007) and constructed the

Amazon dataset. The authors adopted an evaluation approach, TREC Spam Track (Macdonald,

Ounis, & Soboroff, 2007), used in email spam detection. Their system automatically scanned

through a collection of consumer reviews to identify the spam. The classification results were

then compared with the gold standard (i.e., the labels generated by Jindal and Liu (2007)’s

29



approach). The authors reported four effectiveness measures of TREC Spam Track based on the

confusion matrix as well as a measure called ”Area Above the ROC Curve” (1-AUC). They

compared their unsupervised model with a LR-based baseline (Jindal & Liu, 2008) and a vector

space model baseline (Dillon, 1983). According to the performance reported in the paper, their

unsupervised approach achieved the best (lowest) 0.1416% in (1-AUC)% compared to baselines.

In addition, the authors compared their supervised SVM model with a LR-based baseline and also

achieved a better 1.8059% in (1-AUC)%.

Lin et al. (2014) proposed six time-sensitive features to highlight fake reviews in review

sequences based on review contents and reviewer behaviors. They devised supervised solutions

and an unsupervised threshold-based solution for spotting fake reviews. The six time-sensitive

features include: 1) personal content similarity, 2) similarity with reviews on a product, 3)

similarity with reviews on other products, 4) the review frequency of a reviewer, 5) the review

frequency of a product, and 6) the repeatability measure. The former three features modeled the

review contents while the latter three modeled the reviewer behaviors. The authors applied two

supervised models, LR and support vector machine (SVM), to predict the labels of reviews.

However, the authors noted that fake reviews usually occupy a small proportion of all reviews and

are difficult to collect for training. Thus, they devised a threshold-based approach without labeled

samples. The idea is to calculate the summation score of weighted feature scores for each review

and compare it with a predetermined threshold to determine if a review is spam or non-spam. The

authors reconstructed the Amazon dataset and followed the process used by Jindal and Liu (2007)

to treat duplicated/near-duplicated reviews as fake reviews. The evaluation metrics were

precision, recall, and F-measure (F1). For supervised approaches, the best result of SVM was

92.3% in F1 while for LR, it was 85.9% in F1. Their best performance for their unsupervised

approach was 85.1% in F1.

Some studies worked on defining or exploring useful features for spam detection. Wu et

al. (2010) proposed suspiciousness criteria to be a feature set comprised of several different

dimensions of features: 1) Proportion of positive singletons, 2) concentration of positive

singletons, 3) reactive positive singletons, 4) review weighted rating, 5) contribution weighted

rating, 6) truncated rating, 7) sentiment shift, and 8) positive review length difference. The

authors applied the Single Value Decomposition (SVD) and Unsupervised Hedge (UH)
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algorithms (Tan & Jin, 2004) for projecting the high dimensional features into a suspiciousness

score. They collected a review dataset of 741 hotels on TripAdvisor and recruited 55 users to

label the reviews of 46 hotels. They conducted a case study to compare the suspiciousness ranks

of hotels labeled by human with the ranks calculated by their SVD method and the hedge

algorithm method. Their analysis suggested that the proportion of positive singletons, reactive

positive singletons, and truncated rating were the strongest features compared to others. In

addition, SVD outperformed UH in their feature aggregation.

Mukherjee et al. (2011) focused on spam group identification and proposed eight

indicators: 1) Time window, 2) group deviation, 3) group content similarity, 4) member content

similarity, 5) early time frame, 6) ratio of group size, 7) group size, and 8) support count. The

authors used the dataset built by Jindal and Liu (2008). The first step was to apply a frequency

pattern mining model to find candidate groups. Second, they ranked the candidate groups with the

proposed indicators and applied SVM rank (Joachims, 2002) to produce the final ranking of the

candidate spammer groups. In the experiment, they showed 300 out of 2,273 groups ranked by

the proposed method to three human judges. The 300 groups consisted of three types: 100

top-ranked, 100 middle-ranked, and 100 bottom-ranked. The human judges labeled each of the

300 groups as spam or non-spam. The evaluation metrics of the inter-rater agreement were based

on Cohen’s Kappa (Landis & Koch, 1977). The reported Cohen’s Kappa scores for the three

types of groups were all above 0.8, which indicates the proposed indicators and human judges had

a high level of agreement regarding spam group identification.

Xie, Wang, Lin, and Yu (2012) proposed a singleton review (SR) spam detection model to

identify unusual temporal patterns for singleton reviews (i.e., the only review written by a

reviewer). The authors observed that a normal reviewers’ arrival pattern is stable and uncorrelated

to their rating pattern temporarily, while spam attacks are usually bursty and are either positively

or negatively correlated to their rating pattern. Based on correlated abnormal patterns, the authors

indicated there is a high likelihood of SR spam attacks. To apply the analysis in multidimensional

time series, they first detected bursts in single time series. Second, they identified correlated

abnormal patterns in multidimensional time series (e.g., time series of ratings, number of reviews,

and ratio of SR). Finally, they pinpointed suspicious periods with higher time resolution (i.e., the

window size of fluctuations on a time series). In the experiment, the authors used a snapshot of a
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review website (www.resellerratings.com) on October 6th, 2010. They recruited three human

judges to label the suspiciousness of 53 resellers as well as 147 SRs. They conducted three case

studies regarding the multidimensional time series of several stores, spam attacks caused by

similar product competition between resellers, and reviews with direct evidence that the stores

hired reviewers to provide positive singleton reviews.

As the gold-standard datasets were released by Ott et al. (2011) and Ott et al. (2013),

many supervised learning methods were proposed for fake review identification. The dataset

consists of truthful and deceptive reviews of 20 Chicago hotels: 400 truthful positive reviews

(promoting the products) from TripAdvisor, 400 deceptive positive reviews from Amazon

Mechanical Turk (AMT), 400 truthful negative reviews (damaging the reputation of products)

from Expedia, Hotels.com, Orbitz, Priceline, TripAdvisor, and Yelp, and 400 deceptive negative

reviews from AMT.

Ott et al. (2011) considered three automated approaches for detecting positive reviews: 1)

Genre identification. Since the frequency distribution of POS tags is dependent on the genre of

the text (Douglas, 2010; Rayson, Wilson, & Leech, 2002), they extracted POS features and

evaluated if they were predictive at identifying truthful or deceptive reviews. 2) Psycho-linguistic

deception detection. The authors used the Linguistic Inquiry and Word Count (LIWC) software

(Pennebaker, Chung, Ireland, Gonzales, & Booth, 2007) to extract occurrence features about

psycho-linguistic keywords for deception detection. 3) Text categorization. Word-level unigrams,

bigrams, and trigrams were used to detect deception. They trained Naive Bayes and SVM

classifiers with the above features for supervised deception detection.

The results showed that while standard n-gram based text categorization was the best

individual detection approach (Bigram, 88.7% in F1 for truthful class, 89.0% in F1 for deceptive

class), a combination approach using psycho-linguistic features and n-gram features performed

slightly better (LIWC with bigram, 89.8% in F1 for truthful class, 89.8% in F1 for deceptive

class). In a subsequent study (Ott et al., 2013), they applied the same approaches but focused on

negative deceptive review detection. The best model reported reached approximately 86% in

accuracy.

S. Feng, Banerjee, and Choi (2012) and S. Feng, Xing, et al. (2012) extended Ott et al.

(2011) n-gram features and introduced deep syntax features (i.e., syntactic production rules
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derived from probabilistic context-free grammar parse trees.) Their experimental results achieved

91.2% accuracy on the Tripadvisor datasets used by Ott et al. (2011) and showed that deep

syntactic patterns are helpful in discriminating deceptive writing. In a subsequent study

(V. W. Feng & Hirst, 2013), the authors further extended S. Feng, Banerjee, and Choi (2012)

method and incorporated profile compatibility features. They considered a product’s profile (e.g.,

description about location, price, and service) and measured the extent to which a profile is

compatible with the aspects mentioned in reviews. The results achieved scores of 91.3% in

accuracy and 91.4% in F1. Although the above studies (S. Feng, Banerjee, & Choi, 2012;

S. Feng, Xing, et al., 2012; V. W. Feng & Hirst, 2013; Ott et al., 2013, 2011) demonstrate that

fake review detection can achieve scores of over 90% in accuracy and F1, those approaches are

still not applicable in reality because it is difficult to collect such large quantities of labeled

truthful and deceptive reviews for training. For example, the gold-standard dataset contains 50%

labeled truthful reviews and 50% deceptive reviews, and S. Feng, Banerjee, and Choi (2012),

S. Feng, Xing, et al. (2012), V. W. Feng and Hirst (2013) utilized 80% of reviews as a training set

and 20% as a testing set. However, for real-world datasets, we are only able to collect a small

portion of labeled data. The classifiers can only rely on a small training set but need to achieve a

decent predictive performance for a large testing set.

In order to be able to learn from a small portion of positive reviews and unlabeled

samples, H. Li et al. (2014) proposed a collective classification algorithm called “Multi-typed

Heterogeneous Collective Classification” and then extended it to Collective Positive and

Unlabeled learning (PU-learning) by leveraging the dependencies among reviews, users, and IP

addresses. The authors treated the problem as one of collective classification in heterogeneous

networks (as illustrated in Figure 1.1). They developed a dataset from Dianping, a Chinese review

hosting site, which consists of 3,523 filtered (fake) reviews and 6,242 unfiltered (unlabeled)

reviews from 500 restaurants in Shanghai, China. In the training phase, they considered the

unlabeled reviews as unlabeled, but in the testing phase, they considered the unlabeled reviews as

negative samples. The comparison baselines were 1) a logistic regression model; 2) PU-LEA

(Hernández, Guzmán, y Gomez, & Rosso, 2013), another PU-learning algorithm that iteratively

removes positive data instances from unlabeled ones, but does not consider network relations; 3)

Spy-EM and Spy-SVM (B. Liu, Dai, Li, Lee, & Philip, 2003), a series of classifiers for learning
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from positive and unlabeled data; 4) Heterogeneous Collective Classification (Kong, Yu, Ding, &

Wild, 2012), a heterogeneous classifier based on meta-path (Sun, Han, Yan, Yu, & Wu, 2011). In

the experiments, the proposed model had the best performance and achieved around 59% in F1

when using 10% of the training data, about 70% in F1 when using 40% of the training data, and

eventually about 75% in F1 when using 90% of the training data.

Ren, Ji, and Zhang (2014) proposed a semi-supervised PU-learning approach on the

datasets collected by Ott et al. (2013). First, the authors identified reliable negative examples

from the unlabeled dataset. Second, they generated both positive and negative examples with

Latent Dirichlet Allocation (LDA) (Blei, Ng, & Jordan, 2003). Third, for the remaining

unlabeled examples, two similarity weights were calculated regarding the probability of an

unlabeled example belonging to the positive class and the negative class. They trained an SVM

classifier for incorporating the unlabeled examples and their similarity weights. Their best results

reached 86% in accuracy when using 40% of the training data.

Fusilier, Montes-y Gómez, Rosso, and Cabrera (2015a) proposed a PU-learning approach

for the hotel review datasets gathered by Ott et al. (2013). The authors used only a hundred

examples of deceptive opinions for training and achieved 80% in F1 for positive reviews and 70%

in F1 for negative reviews. Moreover, the authors analyzed the role of opinion polarity in the

detection of deception. Their results showed that negative spam reviews were more difficult to

detect than positive ones. The authors also showed that using a single classifier for analyzing both

kinds of opinions was better than using two separate classifiers. This implied that there were

common characteristics in the way people write positive and negative fake reviews. In a

subsequent study (Fusilier et al., 2015b), the authors considered detection as a stylish

classification. They used character n-grams as features to capture the characteristics of lexical

content as well as stylistic information. In their experiments, they compared character n-grams

with word n-grams. They analyzed the features with Naive Bayes and SVM classifiers. The best

results of character n-grams (5-grams) achieved 90% in F1 on the positive class and 88% on the

negative class, which outperformed the best setting of word n-grams (i.e., unigram and bigram)

on both positive class (88.2% in F1) and negative class (85.4% in F1). Furthermore, character

n-grams also reached 80% in F1 when using 25% of the training data and 85% in F1 when using

50% of the training data.
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Cagnina and Rosso (2015) extended the work of Fusilier et al. (2015b) and jointly utilized

character n-grams, emotion-based features (Burgoon, Blair, Qin, & Nunamaker, 2003; Hancock,

Curry, Goorha, & Woodworth, 2007; Newman, Pennebaker, Berry, & Richards, 2003), and

LIWC-based features (Pennebaker et al., 2007). When applying character n-grams, the authors

considered character n-grams in tokens rather than traditional n-grams (i.e., they only considered

n-grams with n non-space characters) to reduce the dimensions of the n-gram features. The

authors applied the features and trained SVMs. They used the datasets collected by Ott et al.

(2013, 2011). In the experiments, the best results for both positive reviews and negatives were

using character 4-grams with LIWC (89% in F1 for the positive class, 86% in F1 for the negative

class). They also compared their work with Fusilier et al. (2015b) and showed their approach

achieved the same level of performance but used only 3% of the feature dimensions for the

positive class and 5% of the feature dimension for the negative class.

Recently, several studies (Aghakhani et al., 2018; Dong et al., 2018; H.-H. Huang, Wen,

& Chen, 2017; Luo et al., 2017; Ren & Ji, 2017; C.-C. Wang, Day, Chen, & Liou, 2018;

X. Wang, Liu, & Zhao, 2017a; W. Zhang et al., 2018) have applied various neural networks for

supervised fake review detection because of the popularity and high performance of deep

learning. Many neural networks, such as Convolutional Neural Networks (CNN), Recurrent

Neural Networks (RNN) (LeCun, Bengio, & Hinton, 2015), Long Short-Term Memory (LSTM),

Graph RNN (GRNN), Autoencoder decision forests, Generative Adversarial Networks (GAN)

(Goodfellow et al., 2014), and attention-based CNNs, were adopted in the detection approaches.

A large portion of these studies focused on either adopting state-of-the-art neural networks or

designing deep neural networks. In order to keep our focus on fake review identification rather

than the variety of neural networks, we do not introduce the detailed designs of the neural

networks in this paper.

Ren and Ji (2017) introduced a bi-directional average GRNN model for fake review

detection. The model learned word embeddings as features using the CBOW model (Mikolov,

Sutskever, Chen, Corrado, & Dean, 2013) from an Amazon review corpus. The authors

compared the proposed network with other state-of-the-art models (i.e., CNN, RNN, GRNN,

average GRNN) on the dataset developed by Ott et al. (2013, 2011) and H. Li et al. (2014) and

showed their model achieved the best performance, 83.6% in accuracy and 83.4% in F1.
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H.-H. Huang et al. (2017) compared the performances of SVM, CNN, and

Dependency-based CNN (DCNN) on an advertisement dataset crawled by the authors. They used

the Chinese Word Segmenter and the parser of Stanford CoreNLP to build their features. The

training data of the positive class was from the department of health of Taipei City government,

which published cases of illegal advertisements monthly in the government’s open data

collection. The training data of the negative class consisted of sentences in legal advertisements.

In the experiments, DCNN consistently achieved the best performance in three product domains

(86.77% in F1 for cosmetics; 93.18% in F1 for food; 87.46% in F1 for drugs).

Luo et al. (2017) proposed a multi-aspect based neural network model to identify fake

reviews. Three aspects of review features were considered: metadata, similarity, and sentiment.

The metadata features were built based on human knowledge and expert experience; the

similarity-based features were developed by a combination of TF-IDF and SimHash (Sadowski &

Levin, 2007) methods to convert each review into a 64-bit feature word; the review sentiment

features were built in four aspects: positive rate, negative rate, average positivity, and average

negativity (Ott et al., 2011). Their dataset consisted of 3,000 comments and was manually

labeled through 4,672 questionnaires (4,391 reclaimed). Each comment received about 30

annotated results. They adopted a feedforward neural network (FNN) to classify fake reviews.

Their best result reached 83.1% in precision and 87.2% in recall.

Aghakhani et al. (2018) proposed FakeGAN, a semi-supervised GAN model for detecting

deceptive reviews. Unlike the typical applications of GANs, where the ultimate goal is to have a

strong generator, FakeGAN leverages GAN to create a well-trained discriminator. The authors

utilized word2vec vector embeddings (Mikolov, Sutskever, et al., 2013) as input features. They

applied FakeGAN to the dataset collected by Ott et al. (2011). The final model achieved 89.1% in

accuracy.

Dong et al. (2018) presented an end-to-end trainable unified model to leverage the

appealing properties from Autoencoder and random forest. A stochastic decision tree model was

implemented to guide the global parameter learning process. The authors utilized several

reviewer behavioral features and review features. They used the Amazon dataset collected by He

and McAuley (2016) as well as ground-truth spamming reviews (Mukherjee et al., 2011). Their

best model achieved 95.11% in F1.
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W. Zhang et al. (2018) proposed a Deceptive Review Identification by Recurrent

Convolutional Neural Network (DRI-RCNN) model to identify deceptive reviews by using word

contexts and deep learning. The model learned two sets of word embeddings using the Skip-gram

model (Mikolov, Sutskever, et al., 2013) on deceptive reviews and truthful reviews. They applied

their model to the spam dataset collected by Ott et al. (2011) and the deception dataset collected

by Ott et al. (2013, 2011) and H. Li et al. (2014). Compared to the baselines, DRI-RCNN

consistently achieved better performances in F1 when using above 70% of the training data for

the two datasets (spam dataset: 84.58% in F1 when using 70% of the training data; deception

dataset: 82.42% in F1 when using 70% of the training data).

X. Wang, Liu, and Zhao (2017b) proposed a neural network model to detect review spam

for the cold-start problem by learning to represent the reviews written by new reviewers with

jointly embedded textual and behavioral information. The model learned embeddings for reviews,

review ratings, and average product ratings. They followed the idea of TransE (Bordes, Usunier,

Garcia-Duran, Weston, & Yakhnenko, 2013), which encodes the graph structure and represents

the nodes and edges (head, relation, tail) in low dimension vector space. They treated products as

the head part of TransE, reviewers as the relation part, and reviews as the tail part. The authors

then used the learned embeddings as features and trained SVM classifiers. They applied their

model to the Yelp dataset collected by Mukherjee, Venkataraman, Liu, and Glance (2013) and

Rayana and Akoglu (2015) and showed the combination of their learned embeddings was more

predictive of fake review detection than traditional linguistic features and behavioral features

discussed by Mukherjee, Venkataraman, Liu, and Glance (2013). Their best model achieved

67.2% in F1 for hotels and 67.5% in F1 for restaurants.

X. Wang, Liu, and Zhao (2017a) presented an attention-based neural network to detect

deceptive review spam by using linguistic and behavioral features. The authors considered several

effective behavioral features proposed by Mukherjee, Venkataraman, Liu, and Glance (2013) and

Rayana and Akoglu (2015) and X. Wang, Liu, He, and Zhao (2016) as the inputs of the

Multi-Layer Perceptron (MLP) hidden layer and took the output vectors as behavioral feature

vectors. In addition, they trained a bigram word embedding model as the inputs of a CNN and

took the output vectors as linguistic feature vectors. They applied their model to the Yelp dataset

collected by Mukherjee, Venkataraman, Liu, and Glance (2013) and Rayana and Akoglu (2015).
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Their results consistently outperformed the baselines. For hotel reviews, their best model with the

attention mechanism reached the best performance of 87.3% in F1 when incorporating the

behavioral features used by Mukherjee et al. (2011) and 88.9% in F1 when incorporating the

behavioral features used by X. Wang et al. (2016). For restaurant reviews, their best model with

the attention mechanism reached the best performance of 87.9% in F1 when incorporating the

behavioral features used by Mukherjee et al. (2011) and 91.2% in F1 when incorporating the

behavioral features used by X. Wang et al. (2016).

2.2 Network Representation Learning

In the early stages of network representation learning, there were several unsupervised

learning approaches that attempted to capture the “manifolds”, which are also called

”embeddings”. Manifold learning typically learns a low-dimensional vector for a node in a

network. Most of the initial studies were based on nearest-neighbor graphs (Goodfellow, Bengio,

& Courville, 2016). Belkin and Niyogi (2002, 2003) computed low-dimensional representations

that preserved local neighborhood information for network nodes based on the graph Laplacian.

Their approach used the properties of the Laplace Beltrami operator to construct invariant

embedding maps. The algorithm constructs adjacency graphs for nodes, weights the edges, and

computes the eigenvalues and eigenvectors as low-dimensional representations of nodes. The

researchers showed node embeddings can reduce the influence of outliers and form clear clusters

in different types of datasets through several case studies and data visualizations.

Perozzi et al. (2014) proposed DeepWalk, which utilizes local information from truncated

random walks to learn node embeddings. Their approach first performed random walk to sample

random paths for nodes. Second, the authors treated the random paths as textual sentences and

applied the SkipGram algorithm (Mikolov, Chen, Corrado, & Dean, 2013), a language model that

maximizes the co-occurrence probability among words that appear within a window in a

sentence, to update the representations for nodes. In order to improve the efficiency of training

time, they apply Hierarchical Softmax (Mnih & Hinton, 2009; Morin & Bengio, 2005) to

reduce the computation of posterior distribution. They compared Deep Walk with five baseline

methods: SpectralClustering (L. Tang & Liu, 2011), EdgeCluster (L. Tang & Liu, 2009a),
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Modularity (L. Tang & Liu, 2009b), wvRN (Macskassy & Provost, 2003), and Majority (i.e.,

choose most frequent labels). They performed a multi-label classification task on the

BlogCatalog, Flickr, and YouTube datasets. The experiments showed DeepWalk performed better

than four (out of five) baseline methods in F1 scores (42% for BlogCatalog, 38.7% for Flickr,

43.05% for YouTube). Also, when less than 60% of labeled nodes were provided, DeepWalk

outperformed all baseline methods.

J. Tang et al. (2015) developed the LINE model, which preserves first-order proximity and

second-order proximity separately when learning network embeddings. First-order proximity

refers to the local pairwise proximity between the vertices in the network, while second-order

proximity captures the “context” of a node (i.e., the neighborhood nodes of a vertex) and

preserves the context proximity between different vertices. LINE introduces an edge sampling

approach to solve the gradient divergence problem when edge weights have a high variance. The

researchers treated weighted edges as multiple binary edges (e.g., converting an edge whose

weight is five to five binary edges) and randomly sampled edges with the sampling probabilities

proportional to the original edge weights. They compared LINE with a graph factorization

approach (Ahmed et al., 2013) and DeepWalk (Perozzi et al., 2014) and performed experiments

on language networks (Wikipedia), social networks (Flickr, YouTube), and citation networks

(DBLP). For language network datasets, LINE outperformed others in the word analogy

experiment in F1 scores (66.1%) and in the document classification experiment (83.74%). For

social network datasets, LINE also outperformed others in the multi-label classification task for

the Flickr dataset (64.74%) and for the YouTube dataset (46.43%). For citation network datasets,

LINE outperformed others in the multi-label classification task for the DBLP AuthorCitation

network dataset (66.05%) and for the DBLP PaperCitation network dataset (62.80%).

Node2Vec (Grover & Leskovec, 2016) maximizes the likelihood of preserving network

neighborhoods of nodes when mapping nodes to a low-dimensional space of features. The

researchers designed a flexible notion for a node’s network neighborhood to facilitate Node2Vec

in learning richer node representations. Compared to DeepWalk (Perozzi et al., 2014) and LINE

(J. Tang et al., 2015), which were also inspired by the Skip-gram model (Mikolov, Chen, et al.,

2013) and analogized a network to a document, Node2Vec introduced a second-order random

walk for path sampling rather than the traditional random walk used by DeepWalk and LINE. The
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second-order random walk used a return parameter p and an in-out parameter q to control the

likelihood of whether the path traversal stays near the starting node or goes out further to reach far

nodes. In the experiments, Node2Vec was compared with three baselines: Spectral Clustering

(L. Tang & Liu, 2011), DeepWalk (Perozzi et al., 2014), and LINE (J. Tang et al., 2015) on a

multi-label classification task and a link prediction task. For the multilabel classification task,

Node2Vec outperformed baselines when tested on the BlogCatalog dataset (25.81% in F1 score),

the PPI dataset (17.91%), and the Wikipedia dataset (15.51%) with 50% of the nodes labeled for

training. For the link prediction task, the researchers evaluated four different binary operators

(i.e., average, Hadamard, weighted-L1, weighted-L2) to form an edge vector with two node

embeddings. The result shows that the edge vectors built using the Hadamard operator achieved

better performances on link predictions for Node2Vec. Node2Vec outperformed baselines when

tested on the Facebook dataset (96.8% in Area Under Curve score), the PPI dataset (77.19%), and

the arXiv dataset (93.66%) by using the Hadamard operator as the edge forming operator.

Cao, Lu, and Xu (2015) proposed GraRep, which defines k-step loss functions to capture

k-step local relational information between different vertices of a graph. This further reveals

useful global structural information associated with graphs. To obtain k-step relational

information, GraRep manipulates different global transition matrices over the graph. LINE

(J. Tang et al., 2015) also considers higher-order relationships among vertices, but it cannot be

easily extended to tackle k-order (k ¿ 2) relationships. Moreover, GraRep introduced an Enhanced

SGNS (E-SGNS) method for sampling nodes and sequences from weighted graphs. It uses

transition probabilities to measure the relationship between nodes. In the experiments, the authors

compared GraRep with LINE (J. Tang et al., 2015), DeepWalk (Perozzi et al., 2014), E-SGNS

(an enhanced Skip-gram model), and Spectral Clustering (L. Tang & Liu, 2011). In the clustering

task for the 20-NewsGroup dataset, GraRep consistently outperformed other baselines and

achieved over 81% in normalized mutual information (NMI). In the classification task (via

logistic regression) for the Blogcatalog dataset, GraRep also outperformed others and achieved

44.24% in micro-F1 score. In another classification task for the DBLP Network dataset, GraRep

performed better (1.0070) than others in the reported Kullback-Leibler divergence.

Several different learning methods were proposed to improve the quality and scalability of

node embeddings. Most of them were compared with the methods we’ve discussed above
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concerning the link prediction task and the multi-label classification task on different datasets.

SDNE (D. Wang et al., 2016) is a semi-supervised model that simultaneously optimizes

first-order and second-order proximity when learning node representations. Compared to LINE

(J. Tang et al., 2015), SDNE jointly optimizes first-order and second-order proximity so that it

can preserve both the local and global network structure and become more robust on sparse

networks. Ou, Cui, Pei, Zhang, and Zhu (2016) proposed the HOPE model, which preserves

high-order proximity as well as asymmetric transitivity for node embeddings. They generalized

their approach to high-order proximities and found a theoretical upper bound on the

approximation of their HOPE model. Moreover, they argued that the asymmetric transitivity of

directed graphs was not well-considered in previous approaches. They also claimed asymmetric

transitivity can be preserved by approximating high-order proximity, and they evaluated these

aspects in experiments. X. Wang, Cui, et al. (2017) proposed a Modularized Nonnegative Matrix

Factorization (M-NMF) model that considers both the microscopic structure (first-order and

second-order proximity) and the mesoscopic structure (communities within a network). The node

embeddings are learned through a jointly optimized model.

With the growth in popularity of deep neural networks, network representation learning

via deep neural networks has gained increasing attention recently. Pan, Wu, Zhu, Zhang, and

Wang (2016) presented TriDNR, a tri-party deep network representation model based on

DeepWalk (Perozzi et al., 2014). The model learns from random walk sequences and also

combines with neural networks to learn from the node-content relations. TriDNR was compared

with several baselines on node classification and achieved 77.7% in F1 score for the Citeseer-M10

network dataset and 74.4% in F1 score for the DBLP network dataset.

Kipf and Welling (2016) introduced the Graph Convolutional Networks (GCN) model for

semi-supervised learning on graph-structured data. Instead of using a deep neural network as a

complement in node representation learning, the GCN model constructs fast approximate

convolutions on graphs directly. The authors focused on solving the semi-supervised node

classification problem with multi-layer GCN models. With limited node labels, GCN learns the

node characteristics from both graph structures and labels and uses the vectors of hidden layers as

node embeddings. The authors compared GCN with ManiReg (Belkin, Niyogi, & Sindhwani,

2006), SemiEmb (Weston, Ratle, Mobahi, & Collobert, 2012), LP (Zhu, Ghahramani, &
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Lafferty, 2003), DeepWalk (Perozzi et al., 2014), ICA (Getoor, 2005), and Planetoid (Z. Yang,

Cohen, & Salakhudinov, 2016) regarding the task of node classification and showed GCN

outperformed all other models in classification accuracy on four datasets (70.3% for Citeseer;

81.5% for Cora; 79% for Pubmed; and 66% for NELL).

2.3 Multi-view Network Representation

Multi-view Network Representation has gained more attention recently since many

real-world network datasets contain multiple types of edges between nodes. A view of a network

is derived from a single type of proximity or relationship between the nodes, which can be

characterized by a set of edges. Qu et al. (2017) proposed MVE, multi-view network

representation learning. Since the networks in real-world data are usually complex, the edges in a

network can vary when describing different views. To simultaneously consider the complexity of

multiple views, MVE learns node representations for a multi-view network and infers robust node

representations across different views. For each individual view, MVE follows LINE (J. Tang et

al., 2015) to jointly preserve first-order proximity and second-order proximity for optimizing

view-specific node embeddings. Next, MVE integrates those view-specific node embeddings by

assigning voting weights for robust node representations. The voting weights are learned by the

back-propagation of an attention-based weight learning mechanism. The objective functions of

the attention mechanism vary according to different predictive tasks. The authors demonstrated

that MVE outperformed single-view approaches in F-1 scores on a node classification task for

DBLP (74.85%), Flickr (58.95%), and PPI (26.96%) datasets and a link prediction task for

YouTube (94.01%) and Twitter (84.98%) datasets.

Ni et al. (2018) proposed a deep-learning multi-view network representation learning

method, DMNE, for social and information networks. DMNE is capable of simultaneously

learning from multiple networks of different sizes. The learning process is based on

cross-network relationships between nodes in different networks. DMNE learns single-network

embeddings to capture the network structure and uses cross-network regularization to penalize

embedding disagreement (ED) and proximity disagreement (PD) for nodes in different networks.

The authors compared DMNE with eight baselines on a multi-label classification task for two
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news group datasets (i.e., 6-NG and 9-NG), DP-NET (Hwang et al., 2012), DBIS (J. Tang et al.,

2008), and CiteSeer-M10 (K. W. Lim & Buntine, 2015). The results showed DMNE consistently

outperformed other baselines. Also, among the five datasets, DMNE regularized with ED

performed best in the DP-NET dataset, and DMNE regularized with PD performed best in the

other four datasets.

MVN2VEC (Shi et al., 2018) learns multi-view network embeddings via a preservation

objective and a collaboration objective. The authors introduced MVN2VEC-CON, which reflects

collaboration by enforcing constraints on context node embeddings and sharing parameters across

different views. They also introduced MVN2VEC-REG, which reflects preservation by

regularizing embeddings across different views. The authors compared the two proposed models

with MVE (Qu et al., 2017) and DMNE (Ni et al., 2018) on a link prediction task for YouTube,

Twitter, and Snapchat datasets. MVN2VEC-CON and MVN2VEC-REG outperformed other

baselines and MVN2VEC-REG performed better in most experiments.

Sun, Bui, Hsieh, and Honavar (2018) proposed a single view network embedding

approach (SVNE) and extended it to a multi-view version (MVNE) by using graph factorization

clustering (GFC) and an objective function that maximizes the agreement between views based

on both the local and global structure of the underlying multi-view graph. They compared SVNE

with three single-view approaches, LINE (J. Tang et al., 2015), DeepWalk (Perozzi et al., 2014),

and Node2Vec (Grover & Leskovec, 2016) on a node label prediction task for Blogcatalog, PPI,

Wikipedia datasets. They also compared MVNE with multi-view learning methods, Co-RegSC

(Kumar, Rai, & Daume, 2011), MultiNMF (J. Liu, Wang, Gao, & Han, 2013), and MVE (Qu et

al., 2017) for Flickr and Last.fm datasets. The results showed both SVNE and MVNE constantly

outperform their baselines.

F. Huang et al. (2018) proposed VAE, a multi-view correlation learning based variational

auto-encoder. VAE learns node embeddings that consider the link information and multi-modal

contents simultaneously. The authors proposed a visual-textual model that uses LSTM with the

attention mechanism to learn from pictures and their captions. They compare VAE with four

methods that combine content and network structure: SDNE (D. Wang et al., 2016), HNE

(Chang et al., 2015), TADW (C. Yang, Liu, Zhao, Sun, & Chang, 2015), and VAEBNR (H. Li,

Wang, Yang, & Odagaki, 2017). They conducted a multi-label classification experiment and
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showed VAE outperformed other baselines for PASCAL (Everingham, Van Gool, Williams,

Winn, & Zisserman, 2010), MIR (Huiskes & Lew, 2008), NUS-WIDE (Chua T et al., 2009)

datasets. Also, the results suggested that the VAE variant that combined the visual-textual

attention model and the multi-view VAE of the mixed mode performed best.

Sun, Wang, Hsieh, Tang, and Honavar (2019) presented MEGAN, a generative adversarial

network (GAN) for multi-view network embedding. The authors designed a GAN architecture

that included a multi-view generator and a node-pair discriminator. They conducted a node

classification task and a link prediction task, and they compared MEGAN with GraphGAN

(H. Wang et al., 2017), Node2Vec (Grover & Leskovec, 2016), MVE Qu et al. (2017), DRNE

(Tu, Cui, Wang, Yu, & Zhu, 2018), and MNE (H. Zhang, Qiu, Yi, & Song, 2018). The Last.fm

and Flickr datasets were used in the experiments. The results showed MEGAN slightly

outperformed other baselines in both tasks for the two datasets.
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CHAPTER 3. FRAMEWORK AND METHODOLOGY

We first introduce the Yelp datasets used in the experiments as well as the reviewer

features used for network construction. Secondly, we discuss how we adopted multi-view

network representation learning to generate reviewer embeddings for the first research question:

Do reviewer embeddings learned via multi-view network representation approaches preserve the

characteristics of spammers? We conducted spammer classification experiments and performed

clustering analysis on the learned reviewer embeddings. Thirdly, we present the hybrid

embeddings that jointly consider review text and the reviewer, which were used in the fake review

classification experiments to answer the second research question: Is the hybrid embedding of a

review more sensitive at distinguishing whether a review is fake than the review’s text embedding?

The overview of our methodology is illustrated in Figure 3.1, with each of the steps outlined

above represented: orange arrows corresponding to the first research question and the green

arrows corresponding to the second one.

Figure 3.1. Methodology Overview
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3.1 Datasets

We used the datasets YelpChi (Mukherjee, Venkataraman, Liu, & Glance, 2013; Rayana

& Akoglu, 2015, 2016), YelpNYC (Rayana & Akoglu, 2015, 2016), and YelpZIP (Rayana &

Akoglu, 2015, 2016) to train the reviewer embeddings and perform reviewer/review classification

tasks. There are several reasons why we chose these datasets: 1) The three Yelp datasets have

been broadly used in many previous studies that were discussed in the literature review. 2) Since

our study focuses on learning reviewer representation and uses them to enhance fake review

identification, the Yelp datasets are useful because they contain not only the review information

but also information about reviewers, which are not provided in many other datasets.

The statistics of the datasets are described in Table 3.1. Each review has product id, user

id, timestamp, rating, review content, and a filtered label. The filtered labels are given by Yelp

based on their filtering algorithm, which has evolved over the years since their launch in 2005 to

filter shill and fake reviews.

Table 3.1. The statistics of the Yelp datasets

Dataset # of reviews # of reviewers
YelpChi 67,395 (13.23% of filtered reviews) 38,063 (20.33% of spammers)

YelpNYC 359,052 (10.27% of filtered reviews) 160,225 (17.79% of spammers)
YelpZIP 608,598 (13.22% of filtered reviews) 260,277 (23.91% of spammers)

3.2 Reviewer Features

We followed Rayana and Akoglu (2015) and selected eight features that are related to a

reviewer’s behavioral and textual patterns (see Table 3.2). The behavioral statistical features are

comprised of the maximum number of reviews written in a day (MNR), the ratio of positive

reviews with 4 or 5 stars (PR), the ratio of negative reviews with 1 or 2 stars (NR), the average

rating deviation of a user (avgRD), and the entropy of the rating distribution of a user’s reviews

(ERD). On the other hand, the textual features are comprised of the average review length in

number of words (RL), the average content cosine similarity between any pairs of users (ACS),
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and the maximum content similarity between any pairs of users (MCS). Those features have been

used in many studies of opinion spam detection (Fei et al., 2013; Jindal & Liu, 2008; E.-P. Lim,

Nguyen, Jindal, Liu, & Lauw, 2010; Mukherjee et al., 2012; Mukherjee, Venkataraman, Liu, &

Glance, 2013; Rayana & Akoglu, 2015).

Table 3.2. Reviewer Features

Name Description
MNR Maximum number of reviews written in a day

PR Ratio of positive reviews (4-5 star)
NR Ratio of negative reviews (1-2 star)

avgRD Average rating deviation of user i’s reviews
ERD Entropy of rating distribution of user’s reviews
RL Average review length in number of words

ACS Average content similarity-pairwise cosine similarity among user’s reviews, where
a review is represented as a bag-of-bigrams

MCS Maximum content similarity—maximum cosine similarity among all user pairs

Tables 3.3, 3.4, and 3.5 show the mean and standard deviation of reviewer features of

YelpChi, YelpNYC, and YelpZIP. The distributions of most features are similar among the three

datasets.

Table 3.3. The statistics of reviewer features of YelpChi

YelpChi MNR PR RL NR avgRD ERD ACS MCS
mean 1.136 0.751 126.533 0.138 0.175 0.473 0.008 0.013
std 0.466 0.393 107.468 0.321 0.364 0.837 0.021 0.031

Table 3.4. The statistics of reviewer features of YelpNYC

YelpNYC MNR PR RL NR avgRD ERD ACS MCS
mean 1.212 0.78 100.411 0.122 0.186 0.579 0.008 0.015
std 0.648 0.37 89.574 0.302 0.366 0.987 0.02 0.037
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Table 3.5. The statistics of reviewer features of YelpZIP

YelpZIP MNR PR RL NR avgRD ERD ACS MCS
mean 1.252 0.742 100.025 0.163 0.21 0.601 0.008 0.017
std 0.76 0.391 89.926 0.34 0.402 1.013 0.024 0.044

3.3 Reviewer Network Construction

Since the Yelp datasets do not contain reviewer networks, we proposed a heuristic

reviewer network construction to build edges between reviewer nodes. Given a reviewer set R and

the reviewers’ feature values F regarding a target feature, the following are the steps of the

process:

1. Initialize an empty reviewer network N.

2. For each reviewer ra ∈ R and its feature value fa, where fa ∈ F , calculate the mean absolute

deviation da∗ =
∑ | fa− fk|
|R|−1 ,∀ fk ∈ F and rk 6= ra.

3. For each reviewer pair (ra,rb), where ra 6= rb, if 1
dab+1 ≥

1
da∗+1 , add an edge (ra,rb) with the

weight 1
dab+1 into N.

4. Return N as the reviewer network regarding the target feature.

We explain the network construction in a running example. Let’s say we want to build a

reviewer network for four reviewers, ra, rb, rc, rd , and they all have a feature f . ra has fa = 2, rb

has fb = 3, rc has fc = 1, and rd has fd = 4. Firstly, we initialize an empty reviewer network N.

Secondly, we calculate the mean absolute deviations da∗ =
4
3 , db∗ =

4
3 , dc∗ = 2, dd∗ = 2. Thirdly,

we add the following edges into N:

• Edge (ra,rb) with the weight 1
2 , since 1

dab+1 = 1
2 ≥

3
7 = 1

da∗+1 .

• Edge (ra,rc) with the weight 1
2 , since 1

dac+1 = 1
2 ≥

3
7 = 1

da∗+1 .

• Edge (rb,rd) with the weight 1
2 , since 1

dbd+1 = 1
2 ≥

3
7 = 1

db∗+1 .
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Figure 3.2. A running example of Reviewer Network Construction: build edge (ra,rb)

Figure 3.3. A running example of Reviewer Network Construction: build edge (ra,rc)

The other node pairs do not form any edges because their weights are smaller than the mean

absolute deviation of nodes. Lastly, we return N = {(ra,rb) : 1
2 ,(ra,rc) : 1

2 ,(rb,rd) : 1
2} as the
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Figure 3.4. A running example of Reviewer Network Construction: build edge (rb,rd)

reviewer network regarding the target feature f . The network construction method builds

weighted edges for reviewers based on the deviation of the feature values between reviewers;

meanwhile, it reduces the number of edges by keeping only edges with higher weights (i.e.,

reviewer pairs that have smaller deviations).

3.4 Multi-view Reviewer Representation Learning

As illustrated in Figure 3.5, we learn reviewer embeddings with regard to a reviewer’s

textual and behavioral characteristics via MVE (Qu et al., 2017) for reviewer networks.

For each feature view, we firstly conduct the reviewer network construction process

introduced in the previous section. Secondly, we adopt MVE to learn view-specific embeddings.

Thirdly, we use MVE to learn the voting weights for those views. The edge weights are calculated

by the deviation-based scores introduced in the reviewer network construction. Lastly, the robust

reviewer embeddings are obtained by the linear combination of weighted view-specific reviewer

embeddings.
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Figure 3.5. Multi-view Reviewer Network

Furthermore, we explore the different parameters of MVE on reviewer representation

learning: 1) The different sizes of MVE embeddings; 2) the different numbers of training epochs

of MVE.

3.5 Word Embedding

Word2vec is the language model introduced by Mikolov, Sutskever, et al. (2013). It is

effective at generating word embeddings (i.e., vectors) that capture the characteristics of words

based on the co-occurrences of words used in the corpus. The learned embeddings can be used to

infer the relationships between words by vector arithmetic. The Word2Vec models are shallow,

two-layer neural networks. Word2vec takes a large corpus of text as the input and generates a

low-dimensional (e.g., 300) vector space. Each word (but not each sense of a word) is represented

as a unique vector in the vector space. Word vectors are positioned in the vector space such that

words that share common contexts in the corpus are located close to one another in the space. For
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instance, we know Paris is the capital of France and London is the capital of England. In many

news articles, the text pattern of word occurrences between ‘Paris‘ and ‘France‘ is similar to that

between ‘London‘ and ‘England‘. Thus, if we train a Word2Vec model that learns from a large

number of news articles, and we take the word embeddings of ‘Paris‘, ‘France‘, and ‘London‘ to

do a vector arithmetic (‘Paris‘+ ‘France‘− ‘London‘), the result would be very close to the word

embedding of ‘England‘. There are more examples of this kind of word analogy in Figure 3.6.

Figure 3.6. Word2Vec example (NLP with gensim (word2vec), 2021)

GloVe, which was proposed by Pennington, Socher, and Manning (2014), learns a specific

weighted least squares model that trains on global word-word co-occurrence counts. GloVe

combines the advantages of two major model families for learning word vectors: 1) global matrix

factorization methods, such as latent semantic analysis (LSA) (Dumais, 2004), and 2) local

context window methods, such as Word2Vec. According to the experimental results of

Pennington et al. (2014), GloVe outperformed Word2Vec models and other baselines using single

value decomposition (SVD) (Van Loan, 1976) with 75% accuracy on the word analogy dataset.

However, when compared to Word2Vec in various publications, each of the models can

outperform another depending on the task and corpus.
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Recently, contextual text embedding approaches, such as BERT (Devlin, Chang, Lee, &

Toutanova, 2018), have drawn great attention because they are much more effective in many NLP

tasks compared to static text embeddings (e.g., Word2vec and GloVe). In this study, we consider

only static text embeddings in our experiments. There are two reasons for this: 1) Our goal is to

examine whether the multi-view reviewer embedding of a review’s reviewer can complement any

review’s text embedding on fake review identification. We do not focus on comparing which type

of text embedding method performs best, but we consider static embeddings to perform suitably

well for our task. 2) The training and fine-tuned processes of contextual approaches are,

computationally, extremely expensive. Even though contextual embedding methods might

achieve better performance than static ones, this does not increase the value of the research since

the research does not pursue the highest performance of classification. Based on these two

reasons, we consider only Word2vec and GloVe in our experiments.

3.6 Hybrid Embedding

Since it is difficult to distinguish whether a review is deceptive or not without considering

the reviewer’s previous review patterns, we are interested in generating hybrid representations by

jointly considering textual embeddings as well as multi-view reviewer embeddings. First, we

compute the review embeddings created by pre-trained Word2Vec (Mikolov, Sutskever, et al.,

2013) and GloVe (Pennington et al., 2014) respectively. Second, for each review, we find its

reviewer and concatenate the corresponding reviewer embedding and the review’s text embedding

as the hybrid embedding. Third, we treat the hybrid embedding as the features and conduct fake

review classification experiments. We compare the performance of models learned by the text

embeddings only (Word2Vec-only, GloVe-only) with those learned by the hybrid embeddings

(Word2Vec+MVE, GloVe+MVE).
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3.7 Data Analysis

3.7.1 Classification Analysis

The goal of classification is to predict the target class (e.g., the filtered labels in the Yelp

datasets) accurately for each sample of data. The following metrics are widely used in

classification tasks:

• Precision: The fraction of true positive predictions among the instances that were predicted

as positive. The equation is illustrated as Equation 3.1.

Precision =
true positive

true positive+ false positive
(3.1)

• Recall: The fraction of true positive predictions among the truly positive instances. The

equation is illustrated as Equation 3.2.

Recall =
true positive

true positive+ false negative
(3.2)

• F1 score: The harmonic mean of precision and recall. The equation is illustrated as

Equation 3.3.

F1 =
2

1
Precision +

1
Recall

(3.3)

Here is a detailed explanation of the relationship between precision and recall. When a

classification model is designed to be stricter on predicting positive cases, it tends to predict fewer

false positives but more false negatives. On the contrary, if a model is less strict, it predicts more

false positives but fewer false negatives. For instance, suppose we have a test kit to evaluate

whether a person caught the flu. If the test kit were designed to predict positive cases only for

patients with multiple apparent symptoms so that the hospital doesn’t waste medical resources on

false alarms, the test results would be higher in precision (i.e., fewer false positives) but lower in
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recall (i.e., more false negatives). Conversely, if the test kit were designed to predict positive

cases even when the patients have minor symptoms, because the hospital doesn’t want to miss any

infected people, the test results would be lower in precision (i.e., more false positives) but higher

in recall (i.e., fewer false negatives). The trade-off between precision and recall highly depends

on the goal we want to achieve, and there is no exact answer for which setting is better. Therefore,

choosing the metrics for model evaluation is extremely critical. To jointly consider both precision

and recall, the F1 score is a harmonic mean of both and is a more comprehensive measure when

precision and recall are equally important to the classification task.

3.7.2 Cluster Analysis

We analyze clusters in the node classification task discussed in previous sections. In terms

of cluster analysis, there is no best measure for evaluating cluster quality. However, considering a

mix of internal and external quality criteria can provide a comprehensive view for evaluating

clustering approaches (Bhatnagar & Ahuja, 2010). Therefore, we adopt two widely used metrics:

purity (Zhao & Karypis, 2001) as an external criterion and normalized mutual information (NMI)

(Strehl & Ghosh, 2002) as an internal criterion to evaluate the quality of the clustering results.

Purity measures the extent to which the documents in a cluster are from primarily one

specific class. Given that there are k clusters formed by a total of n documents and that each

document was labeled by one of I classes, the purity of the r-th cluster Sr with size nr is defined

by Equation 3.4.

P(Sr) =
1
nr

maxi(ni
r),∀i ∈ 1,2, ..., |I| (3.4)

ni
r is the number of documents of the i-th class that were assigned to the r-th cluster. The

overall purity of the clustering solution is obtained as a weighted sum of the individual cluster

purities and is given by Equation 3.5. In general, the larger the purity value, the better the

clustering solution is.

Purity =
k

∑
r=1

nr

n
P(Sr) (3.5)
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NMI provides an indication of the shared information between a pair of clusters. Given X

and Y are two random variables described by two different cluster labelings, let I(X ,Y ) denotes

the mutual information between X and Y , H(X) and H(Y ) denote the entropy of X , Y . The

equation for NMI is shown in Equation 3.6.

NMI(X ,Y ) =
I(X ,Y )√

H(X)H(Y )
(3.6)

The value of NMI is a fraction between 0 and 1, with 0 indicating that the two clusters do

not share the same information and 1 indicating that the two clusters are exactly the same. In

general, high mutual information means a large reduction in the difference between two clusters;

low mutual information means a small reduction; and zero mutual information between two

clusters means the two distributions are independent and do not share mutual information.
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CHAPTER 4. EXPERIMENTS

We evaluate the multi-view reviewer embeddings on two tasks: spammer classification

and reviewer clustering. The two experiments address our first research question, “Do reviewer

embeddings learned via multi-view network representation approaches preserve the

characteristics of spammers”. Next, we evaluate the hybrid embeddings (i.e., text+reviewer) on a

fake review classification task. Also, we evaluate each feature’s contribution to fake review

classification by a feature ablation study. The experiments address our second research question,

“Is the hybrid embedding of a review more sensitive at distinguishing whether a review is fake

than the review’s text embedding”

Moreover, we investigate the effectiveness of the reviewer network construction approach

proposed in this study. Lastly, we examine whether setting the spammer threshold at a different

level impacts the reviewer embeddings when they were used in fake review classification. The

setup of the experiments is described in the following sections.

4.1 Experimental Setup

As discussed in the previous chapter, we conducted experiments on the datasets YelpChi,

YelpNYC, and YelpZIP. Eight features were considered, including MNR, PR, NR, avgRD, ERD,

RL, ACS, and MCS. For each feature, we built a view (i.e., a network derived from a single type

of proximity or relationship between the nodes) with edges and weights based on the reviewer

network construction approach introduced in chapter 3. Since the size of spammers and the size

of non-spammers are not balanced in the original datasets (as described in Table 3.1), we

randomly sampled the same amount of spammers and non-spammers. In addition, we

investigated the spammer threshold parameter X , which defines a user as a spammer if the user

has written more than X filtered reviews. We set the spammer threshold as 4 to separate

spammers and non-spammers based on our experiments described in section 4.5. Next, we

followed the best practices provided by Qu et al. (2017) to choose the parameters for MVE: the

number of negative examples for negative sampling was set at 5, the depth of random walk was
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set at 1, and the number of training samples was set at 3 million in an epoch. The embedding size

and training epochs vary for different tasks.

4.2 Spammer Classification

In the spammer classification experiments, we investigated to what extent the learned

reviewer embeddings capture the characteristics of spammers. The reviewer embeddings were

taken as features, and the labels of reviewers were the prediction target. For parameter tuning, we

tested a list of embedding sizes [3, 10, 20, 50, 100] and a list of MVE training epochs [1, 5, 10,

20]. Since the best parameter may vary from different datasets, thus, instead of exploring all

possible options to find the best one, we focused on evaluating how different levels of embedding

sizes and training epoch numbers influence the performance of spammer classification. We used

the GridSearchCV packages (scikit-learn version 0.24.2) in the scikit-learn toolkits. We adopted

the random forest classifier as the classification method. We chose the random forest classifier

because it outperformed other classifiers (i.e., logistic regression, SVM) in preliminary tests. For

each dataset, we sampled a balanced set with the same number of spammers and non-spammers.

The balanced set is then randomly split into a 80% training set and a 20% testing set based on

spammer labels. Thus, one reviewer does not exist in both the training and testing sets. The best

models were selected through 10-fold cross validation based on the parameter settings ’n

estimators’: [100,200], ’min samples leaf’: [1,2], ’max features’: [”auto”, ”sqrt”, ”log2”].

Precision, Recall, and F1 scores are reported as the comparison metrics in Table 4.1, 4.2, and 4.3.

Table 4.1. Spammer classification with different embedding sizes (Precision)

embedding size 3 10 20 50 100
YelpChi 0.923 0.722 0.923 0.929 0.929

YelpNYC 0.838 0.871 0.807 0.866 0.841
YelpZIP 0.804 0.837 0.845 0.859 0.871

According to the results in Table 4.3, the larger embedding sizes have better performance

on reviewer classification in general (as shown in Figure 4.1). For YelpChi, the best performance

was .929 in F1 score when the embedding size was 50 or 100; for YelpNYC, the best performance
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Table 4.2. Spammer classification with different embedding sizes (Recall)

embedding size 3 10 20 50 100
YelpChi 0.857 0.929 0.857 0.929 0.929

YelpNYC 0.912 0.941 0.956 0.949 0.934
YelpZIP 0.935 0.941 0.966 0.966 0.947

Table 4.3. Spammer classification with different embedding sizes (F1)

embedding size 3 10 20 50 100
YelpChi 0.889 0.813 0.889 0.929 0.929

YelpNYC 0.873 0.905 0.875 0.905 0.885
YelpZIP 0.865 0.886 0.901 0.909 0.907

Figure 4.1. Spammer classification with different training sizes (F1)

was .905 when the embedding size was 10 or 50; and for YelpZIP, the best performance was .909

when the embedding size was 50.

Next, we evaluated the impact of different numbers of training epochs on reviewer

classification. According to the results in Table 4.6, for YelpChi, the best performance was 1.00 in

F1 score when the training epochs was 10; for YelpNYC, the best performance was .915 when the

training epochs was 10; and for YelpZIP, the best performance was .907 when the training epochs
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Table 4.4. Spammer classification with different training epochs (Precision)

training epochs 1 5 10 20
YelpChi 0.875 0.933 1.000 0.929

YelpNYC 0.859 0.813 0.854 0.841
YelpZIP 0.857 0.837 0.856 0.871

Table 4.5. Spammer classification with different training epochs (Recall)

training epochs 1 5 10 20
YelpChi 1.000 1.000 1.000 0.929

YelpNYC 0.941 0.926 0.985 0.934
YelpZIP 0.896 0.885 0.963 0.947

Table 4.6. Spammer classification with different training epochs (F1)

training epochs 1 5 10 20
YelpChi 0.933 0.966 1.000 0.929

YelpNYC 0.898 0.866 0.915 0.885
YelpZIP 0.901 0.892 0.906 0.907

Figure 4.2. Spammer classification with different training epochs (F1)
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was 20. As shown in Figure 4.2, there is no consistent choice for the best number of training

epochs.

4.2.1 Summary

In summary, the reviewer embeddings capture the characteristics of spammers well. The

experiments achieved higher than 0.9 in F1 scores in the three datasets. Furthermore, the results

suggest that the larger embedding sizes perform better, but the performance does not improve

much for the datasets after the size is greater than 50. On the other hand, it is interesting to see

that increasing training epochs does not play a crucial role after 5 to 10 epochs, which suggests

that the MVE training process is efficient enough to learn from the Yelp datasets through a small

number of training epochs.

This experiment partially answers the first research question, as we have shown reviewer

embeddings are sensitive at classifying spammers and non-spammers with over .9 in F1 scores.

The numbers are promising; however, is this actually because of the effectiveness of reviewer

embeddings, or is it due to the strength of the classification algorithms? To answer this question,

we took a further step and investigated the clusters formed by reviewer embeddings in the next

experiment.

4.3 Reviewer Clustering Analysis

Instead of spammer classification, we investigated clusters formed by reviewer

embeddings in the second experiment. Firstly, we conducted an unsupervised hierarchical

clustering of the reviewer embeddings by grouping the embeddings into two clusters. We then

compared the difference between the assigned cluster and the spammer label of the reviewers. In

the hierarchical clustering experiments, we adopted the agglomerative clustering in scikit-learn

and set the number of clusters to two. Agglomerative clustering is a bottom-up algorithm that

builds nested clusters by minimizing the variance of the clusters being merged recursively.

We compared the clusters built by using 1) the reviewer’s multi-view embeddings and 2)

the reviewer’s eight original features as the features respectively. Based on the results in Tables
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4.3 and 4.6, we used different embedding sizes and training epochs for different datasets

(YelpChi: embedding size=100, training epochs=10; YelpNYC: embedding size=50, training

epochs=10; YelpZIP: embedding size=50, training epochs=20). The results of Purity and NMI

scores are as shown in Table 4.7 for multi-view reviewer embeddings versus original features.

The Purity scores reflect the degree to which the spammers and non-spammers are “correctly”

grouped into two clusters based on the reviewer’s embedding, while the mutual information

scores indicate the degree of reduction in uncertainty. Using multi-view reviewer embeddings as

features resulted in better purity scores (.674 for YelpChi, .702 for YelpNYC, .741 for YelpZIP)

and NMI scores (.114 for YelpChi, .146 for YelpNYC, .189 for YelpZIP) than using the original

reviewer features. The results suggest that both Purity and NMI are enhanced when using

multi-view reviewer embeddings rather than using the original features directly.

Table 4.7. Reviewer Embeddings vs. Reviewers’ Original Features

dataset/metrics Purity (Multi-view) Purity (Original) NMI (Multi-view) NMI (Original)
YelpChi 0.674 0.645 0.114 0.075

YelpNYC 0.702 0.571 0.146 0.049
YelpZIP 0.741 0.542 0.189 0.030

Next, we performed dimensional reduction on the reviewer embeddings and visualized the

points by using PCA (Wold, Esbensen, & Geladi, 1987) and t-SNE (Van der Maaten & Hinton,

2008). The experiments bring a different perspective than scores and illustrate how multi-view

reviewer embeddings can be used to distinguish spammers and non-spammers. Concerning the

configuration of the visualization, we set the dimensions to two for plotting the 2-D figures. We

used the reviewer embeddings generated with an embedding size of 100 and a training epoch size

of 20. The PCA plots of the three datasets are shown in Figures 4.3, 4.4, and 4.5 and t-SNE plots

are shown in Figures 4.6, 4.7, and 4.8. Through the two different visualization approaches, we

found that the multi-view reviewer embeddings can clearly distinguish spammers and

non-spammers.
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Figure 4.3. PCA plot of reviewer embeddings of YelpChi

Figure 4.4. PCA plot of reviewer embeddings of YelpNYC

4.3.1 Summary

In summary, the experiments showed that multi-view reviewer embeddings preserve the

characteristics of spammers through unsupervised approaches. Firstly, we compared the Purity

and NMI scores between the clusters generated from multi-view reviewer embeddings and from
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Figure 4.5. PCA plot of reviewer embeddings of YelpZIP

Figure 4.6. t-SNE plot of reviewer embeddings of YelpChi

original reviewer features. The results suggested that the former captures the characteristics of

spammers better. Secondly, we observed that multi-view reviewer embeddings can effectively

separate spammers and non-spammers through the visualization of PCA and t-SNE plots.

64



Figure 4.7. t-SNE plot of reviewer embeddings of YelpNYC

Figure 4.8. t-SNE plot of reviewer embeddings of YelpZIP

The experiment provided another aspect of unsupervised learning that can explain why

reviewer embeddings are effective at separating spammers from non-spammers. According to the

results, the clusters formed by the vectors of reviewer embeddings aligned with the spammer
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labels. Combining the results of spammer classification and cluster analysis, we have answered

the first research question from the perspectives of both supervised and unsupervised learning.

4.4 Fake Review Classification

In the previous experiments, we showed that multi-view reviewer embeddings are

effective at distinguishing spammers and non-spammers. To answer the second research question,

our next step is to incorporate the reviewer embeddings with the text embeddings of reviews and

investigate to what extent collaboration could improve review identification. As we discussed in

previous chapters, it’s difficult to recognize untruthful reviews simply based on the review text.

Thus, considering text review along with its reviewer’s information provides us with a more

comprehensive perspective on fake review identification. In fake review classification, we

examine whether using a review’s hybrid embedding (i.e., text + reviewer) is more sensitive on

fake review identification than using only a review’s text embedding.

Text embedding approaches, such as Word2Vec (Mikolov, Sutskever, et al., 2013) and

GloVe (Pennington et al., 2014), have been widely adopted in various natural language

processing (NLP) and understanding tasks. Those approaches have been proved to be able to

capture the statistical and semantics patterns in articles. We use a pre-trained Word2Vec model

(Google News dataset, 100 billion tokens, 3 million vocabularies and phrases, and an embedding

size of 300) and a pre-trained GloVe model (840 billion tokens crawled from the internet, 2.2

million vocabularies, and an embedding size of 300). The Word2Vec model can be accessed from

the Github pages of Miháltz (2021), and the GloVe model is from the web pages of Pennington,

Socher, and Manning (2021).

The experimental setup is similar to the reviewer classification experiments. We used the

scikit-learn GridSearchCV packages and Random Forest classifiers. For each dataset, we sample

a balanced set with the same number of fake reviews and genuine reviews. The balanced set is

then sorted by reviewer ids. After that, the indices of reviews of each reviewer are locally shuffled

(i.e., the range of indices of a reviewer’s reviews does not change). Next, we select the first 80%

of reviews as the training set and the other 20% of reviews as the testing set. This sampling

ensures there is no more than one reviewer who exists in both training and testing sets. Also, it
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ensures the size of the training set is exactly 80% and of the testing set is exactly 20% of the

balanced set. The best random forest models were selected through 10-fold cross validation based

on the parameter settings {’n estimators’: [100,200], ’min samples leaf’: [1,2], ’max features’:

[”auto”, ”sqrt”, ”log2”]}. F1 scores were reported as the comparison metrics. For the

Word2Vec-only and GloVe-only experiments, we averaged the word embeddings as each review’s

embedding based on the word occurrences in the review. For the Word2Vec+Reviewer and

GloVe+Reviewer experiments, we concatenated the review’s text embedding with its reviewer

embedding as the hybrid embedding. The hybrid embedding was used as the review’s embedding.

After that, we took each review’s embedding as the features in the fake review classification tasks.

4.4.1 Comparison of different embedding sizes

We examined how different sizes [3, 10, 20, 50, 100] of reviewer embeddings impacted

the performance of review classification. The precision, recall, and F1 scores regarding

GloVe+Reviewer are reported in Tables 4.8, 4.9, and 4.10. The number regarding

Word2Vec+Reviewer are reported in Tables 4.11, 4.12, and 4.13.

For the GloVe experiments, the models with GloVe+Reviewer (size=100) embeddings

achieved .952 for YelpChi, .921 for YelpNYC, and .948 for YelpZIP in F1 score while the models

with GloVe only embeddings achieved .600 for YelpChi, .629 for YelpNYC, and .629 for

YelpZIP. For the Word2Vec experiments, the models with Word2Vec+Reviewer (size=100)

embeddings achieved .900 for YelpChi, .924 for YelpNYC, and .939 for YelpZIP in F1 score

while the models with Word2Vec only embeddings achieved .650 for YelpChi, .661 for YelpNYC,

and .679 for YelpZIP. As shown in Figures 4.9 and 4.10, using hybrid embeddings as features is

constantly more effective than using text embeddings only, even if the embedding size is only 3.

Moreover, larger reviewer embedding sizes tend to have better performances.

Based on our findings, we have partially answered the second research question by

showing that hybrid embedding outperformed a review’s text embedding on fake review

classification. However, we wonder whether the performance enhancement really comes from the

additional characteristics preserved by the hybrid embeddings, or whether it is simply because
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there are more features in the hybrid embeddings. To answer this question, in the next experiment,

we conducted a feature ablation study to analyze each feature used to build reviewer embeddings.

Table 4.8. Precision (GloVe-only vs. GloVe+Reviewer)

YelpChi YelpNYC YelpZIP
glove-only 0.667 0.611 0.616

glove+reviewer (emb size=3) 0.636 0.722 0.675
glove+reviewer (emb size=10) 0.667 0.759 0.749
glove+reviewer (emb size=20) 0.789 0.827 0.794
glove+reviewer (emb size=50) 0.952 0.907 0.913

glove+reviewer (emb size=100) 1.000 0.937 0.962

Table 4.9. Recall (GloVe-only vs. GloVe+Reviewer)

YelpChi YelpNYC YelpZIP
glove-only 0.545 0.648 0.642

glove+reviewer (emb size=3) 0.636 0.756 0.744
glove+reviewer (emb size=10) 0.636 0.848 0.802
glove+reviewer (emb size=20) 0.682 0.875 0.866
glove+reviewer (emb size=50) 0.909 0.920 0.927

glove+reviewer (emb size=100) 0.909 0.906 0.934

Table 4.10. F1 scores (GloVe-only vs. GloVe+Reviewer)

YelpChi YelpNYC YelpZIP
glove-only 0.600 0.629 0.629

glove+reviewer (emb size=3) 0.636 0.739 0.708
glove+reviewer (emb size=10) 0.651 0.801 0.775
glove+reviewer (emb size=20) 0.732 0.851 0.828
glove+reviewer (emb size=50) 0.930 0.913 0.920

glove+reviewer (emb size=100) 0.952 0.921 0.948
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Figure 4.9. F1 scores (GloVe-only vs. GloVe+Reviewer)

Table 4.11. Precision (Word2Vec-only vs. Word2Vec+Reviewer)

YelpChi YelpNYC YelpZIP
word2vec-only 0.722 0.655 0.657

word2vec+reviewer (emb size=3) 0.800 0.736 0.712
word2vec+reviewer (emb size=10) 0.750 0.761 0.755
word2vec+reviewer (emb size=20) 0.833 0.793 0.799
word2vec+reviewer (emb size=50) 0.905 0.888 0.887

word2vec+reviewer (emb size=100) 1.000 0.942 0.942

Table 4.12. Recall (Word2Vec-only vs. Word2Vec+Reviewer)

YelpChi YelpNYC YelpZIP
word2vec-only 0.591 0.668 0.702

word2vec+reviewer (emb size=3) 0.727 0.751 0.771
word2vec+reviewer (emb size=10) 0.682 0.820 0.802
word2vec+reviewer (emb size=20) 0.682 0.848 0.851
word2vec+reviewer (emb size=50) 0.864 0.925 0.921

word2vec+reviewer (emb size=100) 0.818 0.906 0.936

4.4.2 Feature ablation

This ablation study helps us understand the contribution of each feature to the overall

model. In this experiment, we removed one of the eight features each time, rebuilt the reviewer69



Table 4.13. F1 scores (Word2Vec-only vs. Word2Vec+Reviewer)

YelpChi YelpNYC YelpZIP
word2vec-only 0.650 0.661 0.679

word2vec+reviewer (emb size=3) 0.762 0.743 0.740
word2vec+reviewer (emb size=10) 0.714 0.789 0.778
word2vec+reviewer (emb size=20) 0.750 0.819 0.824
word2vec+reviewer (emb size=50) 0.884 0.906 0.904

word2vec+reviewer (emb size=100) 0.900 0.924 0.939

Figure 4.10. F1 scores (Word2Vec-only vs. Word2Vec+Reviewer)

network, generated reviewer embeddings based on the rest of the seven features, and investigated

the impact of feature removal on the performance of fake review classification. Tables 4.14 and

4.15 are the results of the feature ablation for YelpChi regarding the GloVe+Reviewer features

(reviewer embedding size=100) and the Word2Vec+Reviewer features (reviewer embedding

size=100). Tables 4.16 and 4.17 are the results of the feature ablation for YelpNYC, and Tables

4.18 and 4.19 are the results of the feature ablation for YelpZIP.

It is interesting when some features were dropped, the hybrid embeddings built with the

remaining features outperformed the hybrid embeddings built with all of the features. The results

answer our previous question: does the performance enhancement really come from the
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Table 4.14. YelpChi (GloVe+Reviewer)

Dropped feature Precision Recall F1 score
MNR 0.849 0.925 0.886

PR 0.836 0.910 0.871
NR 0.744 0.866 0.800

avgRD 0.790 0.955 0.865
ERD 0.827 0.925 0.873
RL 0.772 0.910 0.836

ACS 0.817 0.866 0.841
MCS 0.894 0.881 0.887
None 1.000 0.909 0.952

Table 4.15. YelpChi (Word2Vec+Reviewer)

Dropped feature Precision Recall F1 score
MNR 0.765 0.925 0.838

PR 0.818 0.940 0.875
NR 0.791 0.791 0.791

avgRD 0.778 0.940 0.851
ERD 0.877 0.955 0.914
RL 0.772 0.910 0.836

ACS 0.819 0.881 0.849
MCS 0.896 0.896 0.896
None 1.000 0.818 0.900

Figure 4.11. F1 scores - individual features (YelpChi)

additional characteristics preserved by the hybrid embeddings, or is it simply because there are

more features in the hybrid embeddings? Based on our findings, using more features to build
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Table 4.16. YelpNYC (GloVe+Reviewer)

Dropped feature Precision Recall F1 score
MNR 0.906 0.936 0.921

PR 0.916 0.934 0.925
NR 0.932 0.938 0.935

avgRD 0.925 0.934 0.929
ERD 0.902 0.927 0.914
RL 0.910 0.932 0.921

ACS 0.915 0.928 0.921
MCS 0.907 0.940 0.924
None 0.937 0.906 0.921

Table 4.17. YelpNYC (Word2Vec+Reviewer)

Dropped feature Precision Recall F1 score
MNR 0.895 0.946 0.920

PR 0.897 0.928 0.912
NR 0.921 0.939 0.930

avgRD 0.906 0.924 0.915
ERD 0.887 0.929 0.908
RL 0.890 0.939 0.914

ACS 0.907 0.939 0.923
MCS 0.903 0.934 0.918
None 0.942 0.906 0.924

Figure 4.12. F1 scores - individual features (YelpNYC)

hybrid embeddings does not guarantee better performance. On the contrary, including more

features actually made the performance worse in some cases. It is because we did not perform
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Table 4.18. YelpZIP (GloVe+Reviewer)

Dropped feature Precision Recall F1 score
MNR 0.897 0.917 0.907

PR 0.932 0.927 0.929
NR 0.920 0.926 0.923

avgRD 0.934 0.908 0.921
ERD 0.915 0.901 0.908
RL 0.911 0.919 0.915

ACS 0.926 0.914 0.920
MCS 0.926 0.919 0.923
None 0.962 0.934 0.948

Table 4.19. YelpZIP (Word2Vec+Reviewer)

Dropped feature Precision Recall F1 score
MNR 0.859 0.914 0.885

PR 0.904 0.923 0.913
NR 0.888 0.926 0.907

avgRD 0.913 0.907 0.910
ERD 0.893 0.903 0.898
RL 0.869 0.918 0.893

ACS 0.896 0.913 0.904
MCS 0.895 0.914 0.904
None 0.942 0.936 0.939

Figure 4.13. F1 scores - individual features (YelpZIP)

feature selection before adopting these eight features. Therefore, dropping certain features might

lead to a better performance than using all of the features. The results imply that conducting
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feature selection for the target dataset and the target type of embedding (e.g. GloVe+Reviewer,

Word2Vec+Reviewer) could enhance the performance of hybrid embeddings.

Another finding is: the precision scores for the YelpChi dataset are very high, sometimes

even reaching 1.000. It might be because the YelpChi dataset is relatively smaller in size (as

described in Table 3.1) compared to YelpNYC and YelpZIP. Ying (2019) discussed that smaller

datasets are prone to cause overfitting and achieve a nearly perfect result. Also, the results of

YelpChi are inconsistent with the other two datasets in many experiments.

Unfortunately, these results do not suggest any of the eight individual features constantly

contribute more than others. The performance of fake review classification varied from different

datasets. Thus, we further explored which feature groups constantly contribute more to the overall

model in the next sections. In particular, we examined the effect of behavioral and textual

features.

4.4.2.1 Behavioral vs. textual

In this section, we compared the dropout experiments of two feature groups: behavioral

features (i.e., MNR, PR, NR, avgRD, ERD) and textual features (i.e., RL, ACS, MCS). We

conducted fake review classification with the two groups respectively. The experiment helps us

understand the performance difference between dropping reviewer behavioral features and

dropping reviewer textual features. Tables 4.20, 4.21, and 4.22 are the results for the

GloVe+Reviewer features (reviewer embedding size=100). Tables 4.23, 4.24, and 4.25 are the

results for the Word2Vec+Reviewer features (reviewer embedding size=100).

Table 4.20. YelpChi (GloVe+Reviewer)

Dropped feature Precision Recall F1 score
Behavioral 0.826 0.851 0.838

Textual 0.824 0.910 0.865

As illustrated in Figure 4.14 and 4.15, we found that removing behavioral features

constantly caused more of a performance drop than removing textual features for all three

datasets and for both GloVe+Reviewer and Word2Vec+Reviewer embeddings. This shows a

reviewer’s behavioral features contribute more to fake review classification than textual features.
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Table 4.21. YelpNYC (GloVe+Reviewer)

Dropped feature Precision Recall F1 score
Behavioral 0.857 0.927 0.890

Textual 0.914 0.924 0.919

Table 4.22. YelpZIP (GloVe+Reviewer)

Dropped feature Precision Recall F1 score
Behavioral 0.862 0.880 0.871

Textual 0.928 0.918 0.923

Figure 4.14. F1 scores - behavioral and textual features (GloVe+Reviewer)

Table 4.23. YelpChi (Word2Vec+Reviewer)

Dropped feature Precision Recall F1 score
Behavioral 0.771 0.806 0.788

Textual 0.836 0.910 0.871

Table 4.24. YelpNYC (Word2Vec+Reviewer)

Dropped feature Precision Recall F1 score
Behavioral 0.851 0.936 0.892

Textual 0.917 0.927 0.922
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Table 4.25. YelpZIP (Word2Vec+Reviewer)

Dropped feature Precision Recall F1 score
Behavioral 0.827 0.893 0.858

Textual 0.893 0.921 0.907

Figure 4.15. F1 scores - behavioral and textual features (Word2Vec+Reviewer)

Our findings are in agreement with those in the studies of Rayana and Akoglu (2015) and

Mukherjee, Venkataraman, Liu, and Glance (2013). These two studies suggested reviewer

behavioral features played a much more critical role to the overall than reviewer textual features

did. The agreement indicates that Yelp’s filter might rely more on a behavioral-based approach

rather than a textual-based one.

To further understand which features/feature groups contribute more to the overall model,

we investigate which feature combinations are more critical in textual features and behavioral

features respectively. One method for exploring the eight features is to perform an exhaustive

comparison for all combinations. However, it is computationally expensive and does not actually

bring us an explainable and conclusive aspect. Thus, we chose feature groups based on the

commonality of features. In particular, for textual features, we examine the effect of content

similarity (represented by ACS and MCS) and review length (RL). We combined ACS and MCS

as one group since they are both related to content similarity. ACS captures unusual reviewers

who have different writing patterns from others regarding average content similarity, while MCS

addresses unusual reviewers who copy and paste many reviews. On the other hand, for behavioral
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features, we examine the effect of rating score features (represented by PR and NR) and rating

deviation features (represented by avgRD and ERD). Considering PR and NR simultaneously can

better capture reviewers who have abnormal rating scores (e.g., reviewers who are recruited to

provide only 5 stars to overpraise certain products or those who always provide 1 star to attack

business competitors). With regard to rating deviation, avgRD is an external measure that

computes the rating deviation between a reviewer and others, while ERD is an internal measure

that evaluates if a reviewer’s own rating distribution is abnormal. The two aspects help us

understand whether a reviewer has an unusual rating distribution. Besides, since MNR has been

discussed in the previous experiments and did not show a constant performance pattern, we do not

discuss MNR with other behavioral features here.

4.4.2.2 Textual features: content similarity vs. review length

In this section, we investigated the contribution of two different groups of textual features:

content similarity features (i.e., ACS, MCS) and the review length (i.e., RL). We conducted fake

review classification with the two groups respectively. Tables 4.26, 4.27 and 4.28 are the

precision, recall, and F1 scores for GloVe+Reviewer features (reviewer embedding size=100).

Tables 4.29, 4.30 and 4.31 are for Word2Vec+Reviewer features (reviewer embedding size=100).

Table 4.26. Precision: content similarity vs. review length (GloVe+Reviewer)

Dropped feature YelpChi YelpNYC YelpZIP
Content similarity (ACS,MCS) 0.833 0.911 0.921

Review length (RL) 0.772 0.910 0.911

Table 4.27. Recall: content similarity vs. review length (GloVe+Reviewer)

Dropped feature YelpChi YelpNYC YelpZIP
Content similarity (ACS,MCS) 0.896 0.940 0.923

Review length (RL) 0.910 0.932 0.919

According to the results of GloVe+Reviewer shown in Figure 4.16, removing content

similarity features caused a less significant performance drop among all three Yelp datasets than
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Table 4.28. F1 scores: content similarity vs. review length (GloVe+Reviewer)

Dropped feature YelpChi YelpNYC YelpZIP
Content similarity (ACS,MCS) 0.863 0.925 0.922

Review length (RL) 0.836 0.921 0.915

Figure 4.16. F1 scores: content similarity vs. review length (GloVe+Reviewer)

Table 4.29. Precision: content similarity vs. review length (Word2Vec+Reviewer)

Dropped feature YelpChi YelpNYC YelpZIP
Content similarity (ACS,MCS) 0.784 0.902 0.881

Review length (RL) 0.772 0.890 0.869

Table 4.30. Recall: content similarity vs. review length (Word2Vec+Reviewer)

Dropped feature YelpChi YelpNYC YelpZIP
Content similarity (ACS,MCS) 0.866 0.944 0.925

Review length (RL) 0.910 0.939 0.918

Table 4.31. F1 scores: content similarity vs. review length (Word2Vec+Reviewer)

Dropped feature YelpChi YelpNYC YelpZIP
Content similarity (ACS,MCS) 0.823 0.923 0.902

Review length (RL) 0.836 0.914 0.893
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Figure 4.17. F1 scores: content similarity vs. review length (Word2Vec+Reviewer)

removing review length feature. With regard to Word2Vec+Reviewer in Figure 4.17, the trend of

results is similar for YelpNYC and YelpZIP. However, it’s different for YelpChi. As we discussed

in Section 4.4.2, the inconstant performance of YelpChi could be caused by a smaller dataset size.

Except for YelpChi, the results implied that review length played a more important role to the

overall model than content similarity features did.

It is interesting that review length (RL) seems to be a more important factor than the

bigram-based content similarity features (ACS, MCS). These findings are in agreement with those

in the study of Mukherjee, Venkataraman, Liu, and Glance (2013), which found removing RL

caused a larger performance drop than removing MCS. Our experiment extends the study of

Mukherjee, Venkataraman, Liu, and Glance (2013) by adding ACS as a content similarity feature

in the ablation study. MCS examines whether some posted reviews are similar to previous

reviews, while ACS measures to what degree a reviewer’s content similarity should be considered

as abnormal. By considering ACS measure in addition to others, our study is more comprehensive

than those of Mukherjee, Venkataraman, Liu, and Glance (2013).

Another finding is that removing one (RL) feature caused a more significant performance

drop than removing two (ACS, MCS) content similarity features. It supports our previous

argument: including more features in hybrid embedding does not necessarily lead to a

performance enhancement.

4.4.2.3 Behavioral features: rating score vs. rating deviation
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In this section, we investigated the contribution of two different groups of behavioral

features: rating score features (i.e., PR, NR) and rating deviation features (i.e., avgRD, ERD).

Regarding rating score features, Mukherjee, Venkataraman, Liu, and Glance (2013) found that

15% of the spammers have less than 80% of their reviews as positive (4-5 stars). For rating

deviation, Rayana and Akoglu (2015) discussed that reviewers with high avgRD and low ERD are

more suspicious. We conducted fake review classification with the two feature groups

respectively. Tables 4.32, 4.33 and 4.34 are the precision , recall, and F1 scores for

GloVe+Reviewer features (reviewer embedding size=100). Tables 4.35, 4.36 and 4.37 are for

Word2Vec+Reviewer features (reviewer embedding size=100).

Table 4.32. Precision: rating score vs. rating deviation (GloVe+Reviewer)

Dropped feature YelpChi YelpNYC YelpZIP
Rating score (PR,NR) 0.833 0.931 0.924

Rating deviation (avgRD,ERD) 0.836 0.892 0.906

Table 4.33. Recall: rating score vs. rating deviation (GloVe+Reviewer)

Dropped feature YelpChi YelpNYC YelpZIP
Rating score (PR,NR) 0.896 0.929 0.911

Rating deviation (avgRD,ERD) 0.910 0.924 0.904

Table 4.34. F1 scores: rating score vs. rating deviation (GloVe+Reviewer)

Dropped feature YelpChi YelpNYC YelpZIP
Rating score (PR,NR) 0.863 0.930 0.917

Rating deviation (avgRD,ERD) 0.871 0.908 0.905

According to the results of GloVe+Reviewer and Word2Vec+Reviewer shown in Figure

4.18 and 4.19, removing rating score features caused a less significant performance drop than

removing rating deviation features did for YelpNYC and YelpZIP. However, the result for

YelpChi on Word2Vec+Reviewer embedding shows a different trend from others, possibly due to

the reasons previously outlined. In overall, this implies reviewer’s rating deviation contributes
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Figure 4.18. F1 scores: rating score vs. rating deviation (GloVe+Reviewer)

Table 4.35. Precision: rating score vs. rating deviation (Word2Vec+Reviewer)

Dropped feature YelpChi YelpNYC YelpZIP
Rating score (PR,NR) 0.829 0.928 0.874

Rating deviation (avgRD,ERD) 0.826 0.889 0.879

Table 4.36. Recall: rating score vs. rating deviation (Word2Vec+Reviewer)

Dropped feature YelpChi YelpNYC YelpZIP
Rating score (PR,NR) 0.866 0.936 0.908

Rating deviation (avgRD,ERD) 0.851 0.929 0.897

Table 4.37. F1 scores: rating score vs. rating deviation (Word2Vec+Reviewer)

Dropped feature YelpChi YelpNYC YelpZIP
Rating score (PR,NR) 0.847 0.932 0.891

Rating deviation (avgRD,ERD) 0.838 0.909 0.888

more than reviewer’s rating score to our model. Our findings are different from those in the study

of Mukherjee, Venkataraman, Liu, and Glance (2013), which found rating score is more

important than rating deviation. There are two possible reasons for the disagreement: 1) their

study only considered PR, which captures spammers who are prone to give extreme positive

ratings, but did not consider NR, which assumes spammers could abuse negative ratings for
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Figure 4.19. F1 scores: rating score vs. rating deviation (Word2Vec+Reviewer)

business competition (Jindal & Liu, 2007); 2) their study only considered rating deviation based

on avgRD. Our study, instead, included both avgRD and ERD as the rating deviation features.

avgRD is an external measure that computes the rating deviation between a reviewer and others,

while ERD is an internal measure that evaluates if a reviewer’s own rating distribution is

abnormal. Although our conclusion is different from the conclusion of Mukherjee, Venkataraman,

Liu, and Glance (2013), we consider ours are more comprehensive because we included PR+NR

for rating score features and avgRD+ERD for rating deviation features.

4.4.2.4 Summary

In the last experiment, we partially answered the second research question by showing

that hybrid embedding outperformed a review’s text embedding in fake review classification.

Next, in the feature ablation study, we showed the performance improvement with hybrid

embeddings was not simply caused by including more features but was caused by effective

reviewer features. In addition, there are three interesting findings from the feature ablation study:

1) reviewer behavioral features contribute more to the overall model of fake review classification

than reviewer textual features; 2) regarding reviewer textual features, review length is more

important than content similarity; 3) in terms of reviewer behavioral features, rating deviation

features played a more important role than rating score features did.
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We have answered the second research question via the above experiments. However, to

further demonstrate the efficacy of hybrid embeddings in fake review identification, we conduct a

comparison between hybrid embeddings and related works in the next section.

4.4.3 Comparison with related works

We compared the results of fake review classification using our hybrid embeddings with

related works. The first baseline was proposed by Mukherjee, Venkataraman, Liu, Glance, et al.

(2013). They analyzed the reviews of the Yelp datasets and proposed eight statistical behavioral

features (e.g., the Activity Window, the Percentage of Positive Reviews). They applied SVM and

Naı̈ve Bayes on the behavioral and linguistic features and got the best performance with SVM.

The second baseline was presented by X. Wang et al. (2016). They collected relations

between any two entities (reviewers and products) as global information, used the global

information as features, and applied SVM to perform review classification experiments.

The third was introduced by X. Wang, Liu, and Zhao (2017b). They proposed a neural

network model to detect review spam for the cold-start problem. The model learned embeddings

for a review, a review’s rating, and a product’s average rating respectively. They followed the idea

of TransE (Bordes et al., 2013), which encodes the graph structure and represents the nodes and

edges (head, relation, tail) in low dimension vector space and treats products as the head part of

TransE, reviewers as the relation part, and reviews as the tail part. The authors then used the

learned embeddings as features and trained SVM classifiers for fake reviewer classification.

The fourth baseline was presented by X. Wang, Liu, and Zhao (2017a). The researchers

proposed an attention-based neural network to detect deceptive review spam by using linguistic

and behavioral features. They considered several effective behavioral features proposed by

Mukherjee, Venkataraman, Liu, and Glance (2013), Rayana and Akoglu (2015), and X. Wang et

al. (2016) as the inputs of the Multi-Layer Perceptron (MLP) hidden layer and took the output

vectors as behavioral feature vectors. In addition, they trained a bigram word embedding model

as the inputs of a CNN and took the output vectors as linguistic feature vectors.

We used the F1 scores reported in the study of X. Wang, Liu, and Zhao (2017a) as the

baselines of our comparison. Since they reported F1 scores for hotel reviews and restaurant
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reviews separately, we only listed the best numbers of the related works. On the other hand, since

our experiments were reported separately for the three Yelp datasets (i.e., YelpChi, YelpNYC, and

YelpZIP), we also report the best F1 scores. The comparison of results is shown in Table 4.38.

According to the comparison, the hybrid embeddings of Word2Vec+Reviewer and

GloVe+Reviewer both outperformed the F1 scores of the baselines (.939 for

Word2Vec+Reviewer, .952 for GloVe+Reviewer).

Table 4.38. Fake review classification (comparison with related works)

Methods Precision Recall F1
Mukherjee, Venkataraman, Liu, Glance, et al. (2013) 0.845 0.878 0.861
X. Wang et al. (2016) 0.868 0.918 0.892
X. Wang, Liu, and Zhao (2017a) 0.894 0.930 0.912
X. Wang, Liu, and Zhao (2017b) 0.584 0.751 0.657
Hybrid embeddings (Word2Vec+Reviewer) 0.942 0.936 0.939
Hybrid embeddings (GloVe+Reviewer) 1.000 0.909 0.952

4.4.4 Summary

In the experiments, first, we partially answered our second research question by showing

that hybrid embedding outperformed a review’s text embedding in fake review classification.

Second, in the feature ablation study, we further investigated each of the eight features used to

build the hybrid embeddings. The result showed including more features does not increase the

efficacy of hybrid embeddings in fake review classification, and it cleared the potential doubt of

the first experiment: the reason that the hybrid embeddings performed better was simply that they

included more features. Last but not least, we compared the hybrid embeddings with other related

works that used the same Yelp datasets. The comparison showed the two types of hybrid

embeddings (Word2Vec+Reviewer, GloVe+Reviewer) both outperformed related works. Based

on the experiments, we have answered the second research question.
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4.5 Reviewer network construction

In the methodology, we proposed a heuristic reviewer network construction, which is

capable of building a network for nodes based on the feature values of nodes. However, does this

approach actually build meaningful reviewer networks that can be used to generate effective

reviewer embeddings? Unfortunately, there is no exact answer for this question because the

reviewer networks were not provided in the Yelp datasets. Although we could not show whether

our heuristic approach built perfect networks for the Yelp datasets, we conducted two experiments

to examine whether the reviewer networks built by our approach were more effective at

preserving the characteristics of spammers than the reviewer networks built randomly. The first

experiment is to compare the clusters of reviewer embeddings built by our reviewer networks

with the clusters of reviewer embeddings built by random networks. Similar to the clustering

analysis in section 4.3, we compared the purity and NMI scores of the two sets of clusters. The

results are shown in Table 4.39.

Table 4.39. Clusters analysis (our reviewer networks vs. random networks)

dataset/metrics Purity (ours) Purity (random) NMI (ours) NMI (random)
YelpChi 0.674 0.529 0.114 0.002

YelpNYC 0.702 0.580 0.146 0.021
YelpZIP 0.741 0.548 0.189 0.008

We compared the clusters of reviewer embeddings built by our reviewer networks with the

clusters of reviewer embeddings built by random networks. Based on the results in Table 4.39,

using our reviewer networks resulted in better purity scores and NMI scores than using random

networks. The results suggest that both Purity and NMI are enhanced when using the reviewer

networks built by our approach rather than the random networks.

In the second experiment, we conducted fake review classification and compared reviewer

networks built by our approach and reviewer networks built randomly. Tables 4.40, 4.41, and 4.42

show the results of precision, recall, and F1 scores.

According to the results in Table 4.42, there is a consistent performance improvement

when using networks built by heuristic network construction to generate reviewer embeddings
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Table 4.40. Precision (heuristic vs. random)

Embedding Dataset Precision (heuristic) Precision (random)
GloVe+Reviewer YelpChi 1.000 0.750
GloVe+Reviewer YelpNYC 0.937 0.813
GloVe+Reviewer YelpZIP 0.962 0.864
Word2Vec+Reviewer YelpChi 1.000 0.786
Word2Vec+Reviewer YelpNYC 0.942 0.791
Word2Vec+Reviewer YelpZIP 0.942 0.806

Table 4.41. Recall (heuristic vs. random)

Embedding Dataset Recall (heuristic) Recall (random)
GloVe+Reviewer YelpChi 0.909 0.545
GloVe+Reviewer YelpNYC 0.906 0.936
GloVe+Reviewer YelpZIP 0.934 0.919
Word2Vec+Reviewer YelpChi 0.818 0.500
Word2Vec+Reviewer YelpNYC 0.906 0.931
Word2Vec+Reviewer YelpZIP 0.936 0.908

Table 4.42. F1 scores (heuristic vs. random)

Embedding Dataset F1 (heuristic) F1 (random)
GloVe+Reviewer YelpChi 0.952 0.632
GloVe+Reviewer YelpNYC 0.921 0.870
GloVe+Reviewer YelpZIP 0.948 0.891
Word2Vec+Reviewer YelpChi 0.900 0.611
Word2Vec+Reviewer YelpNYC 0.924 0.855
Word2Vec+Reviewer YelpZIP 0.939 0.854

rather than using networks built randomly. For the Glove+Reviewer features, our approach

outperformed randomly built networks by .320 in F1 for YelpChi, .051 in F1 for YelpNYC, .057

in F1 for YelpZIP; for the Word2Vec+Reviewer features, our approach outperformed random by

.289 in F1 for YelpChi, .069 in F1 for YelpNYC, and .085 in F1 for YelpZIP.
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4.5.1 Summary

By comparing our approach to randomly-created networks, the results show the

effectiveness of reviewer networks generated by heuristic network construction. Although our

heuristic network construction is not perfect, it helps us build meaningful reviewer networks that

are significantly better than random networks. The results also imply that a better approach to

reviewer network construction could largely improve the performance of fake review

classification. In the future, it is worth exploring more efficient approaches.

4.6 Spammer Threshold

The Yelp datasets do not contain spammer labels. Several studies used the same Yelp

datasets as we used in this study, but to the best of our knowledge, we did not find any that

discussed the definition of spammer. Jindal and Liu (2008) defined spammers as users with at

least one filtered review. However, this could be a careless definition. Firstly, users who wrote

dozens of unfiltered reviews were treated as spammers just because they wrote one filtered review.

Secondly, the reviewer embeddings learned under this rough spammer definition might not

capture the spammer’s characteristics well. Thus, we wanted to examine whether setting the

spammer threshold at a higher level (i.e., we set a stricter criterion for defining a user as a

spammer) impacted the learned multi-view reviewer embeddings when they were used in review

classification.

The experimental setup was similar to previous review classification experiments. We

tested different spammer thresholds [”>= 1”, ”>= 2”, ”>= 3”, ”>= 4”], where ”>= X”

indicates the user is a spammer when they wrote at least X filtered reviews. We compared the

hybrid embeddings with different spammer thresholds. The results are shown in tables 4.43 and

4.44.

For YelpChi and YelpZIP, the best models of GloVe+Reviewer embeddings achieved .952

and .948 in F1 score when the number of filtered reviews was greater than or equal to 4. For

YelpNYC, the best model achieved .929 when the number of filtered reviews was greater than or

equal to 3.
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Table 4.43. F1 scores of GloVe+Reviewer
(with different spammer threshold)

Dataset / Filtered Review >=1 >=2 >=3 >=4
YelpChi 0.754 0.839 0.865 0.952

YelpNYC 0.775 0.876 0.929 0.921
YelpZIP 0.796 0.884 0.908 0.948

Figure 4.20. Fake review classification GloVe+Reviewer
(with different spammer threshold)

Table 4.44. F1 scores of Word2Vec+Reviewer
(with different spammer threshold)

Dataset / Filtered Review >=1 >=2 >=3 >=4
YelpChi 0.748 0.784 0.826 0.900

YelpNYC 0.775 0.860 0.927 0.924
YelpZIP 0.784 0.862 0.891 0.939

For YelpChi and YelpZIP, the best models of Word2Vec+Reviewer embeddings achieved

.900 and .939 in F1 score when the number of filtered reviews was greater than or equal to 4. For

YelpNYC, the best model achieved .927 when the number of filtered reviews was greater than or

equal to 3.
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Figure 4.21. Fake review classification Word2Vec+Reviewer
(with different spammer threshold)

4.6.1 Summary

According to the results, using different spammer thresholds for different datasets could

significantly improve the performance of review classification. Overall, when the number of

filtered reviews was greater than or equal to 4, we had better performance for the three Yelp

datasets. Our findings also imply that by carefully choosing the spammer thresholds for the

datasets, the learned reviewer embeddings will be more effective at fake review classification.
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CHAPTER 5. SUMMARY AND FUTURE WORKS

In this study, we identified and tackled two research gaps: First, previous spammer

identification studies that adopted network approaches have not been able to effectively preserve

the relationship between reviewers. Second, in previous literature, the text embedding of a review

has not been jointly considered with its reviewer’s embedding. We proposed and answered two

major research questions:

1) Do reviewer embeddings learn via multi-view network representation approaches

preserve the characteristics of spammers? The research question addresses the first research gap.

In order to tackle it, we adopted MVE (Qu et al., 2017), a multi-view node representation

learning model, because of its strength in learning reviewer embeddings in consideration of

second-order proximity and multiple proximities. To evaluate whether the reviewer embeddings

were effective as features of spammer classification, we conducted spammer classification

experiments and used the reviewer embeddings as features. In addition, we applied a clustering

algorithm to group reviewer embeddings into two clusters and compared the difference between

the distribution of clusters and the distribution of spammer labels. Our results showed that

generating clusters with the reviewer embeddings capture the difference between spammers and

non-spammers better than with the reviewers’ features directly. In addition, the two-dimensional

PCA and t-SNE visualization plots of reviewer embeddings depicted a clear separation between

spammers and non-spammers.

2) Is the hybrid embedding of a review more sensitive at distinguishing whether a review

is fake than the review’s text embedding? This question addresses the second research gap. To fill

this gap, we built hybrid embeddings, which consist of each review’s text embeddings and its

reviewer’s embedding. Next, we performed fake review classification experiments and evaluated

whether using hybrid embeddings as features was more effective than using text embeddings as

features. Our results are promising and suggest that hybrid embeddings are more effective than

text-only embeddings on fake review identification. Using hybrid embeddings as features resulted

in a performance increase of .3 in F1 score compared to using only text embeddings. Moreover,

we conducted a feature ablation study to examine each of the features used to build reviewer

embeddings. In the study, we showed the performance improvement of hybrid embeddings was
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not simply caused by including more features but rather was caused by effective reviewer

features. Furthermore, we compared the results of fake review classification using hybrid

embeddings with the results reported by other related studies that also evaluated their methods on

the Yelp datasets, namely, Mukherjee, Venkataraman, Liu, Glance, et al. (2013), X. Wang et al.

(2016), and X. Wang, Liu, and Zhao (2017a). The results showed the hybrid embeddings of

Word2Vec+Reviewer and GloVe+Reviewer both outperformed all other baselines.

Furthermore, we validated the heuristic reviewer network construction proposed in this

study. By comparing our approach to randomly-created networks, we showed our heuristic

network construction built meaningful reviewer networks that are significantly better than random

networks. The results also imply that a better approach to reviewer network construction could

largely improve the performance of fake review classification.

Moreover, we challenged the definition of spammer used in previous literature. We

conducted fake review classification experiments and compared different spammer thresholds.

Our results showed when the spammer threshold is greater than or equal to 4, the learned reviewer

embeddings have better performance compared to the baseline. Our findings show that by

carefully choosing the spammer thresholds for the datasets, the learned reviewer embeddings may

be more effective at fake review classification.

As with any study, there are limitations and improvements that could be made. The

following are recommendations for future research on this topic.

1. Transfer learning has gained much research attention and was adopted for sharing the

learned models between homogeneous and heterogeneous data. An interesting direction

would be to use transfer learning to share the learned models of one dataset with other

homogeneous ones. Since constructing text and reviewer embeddings is computationally

expensive, it’s worth exploring whether the learned models are transferable between

different datasets, which could tremendously reduce the computational cost. Furthermore, it

is valuable to investigate whether the learned models from the Yelp datasets can be

extended to other unlabeled heterogeneous datasets via transfer learning.

2. Although we discussed the reasons why using contextual text embedding rather than static

text embedding was not required for this study, it would be interesting to extend this study
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and explore the collaboration between contextual text embeddings and multi-view reviewer

embeddings.
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APPENDIX A. SPAMMER CLASSIFICATION

In this appendix, we include the complete experiment results of spammer classification

with different configurations. For each configuration, we use the learned multi-view reviewer

embeddings as the features of reviewers and spammer labels as the prediction target. The trained

models were chosen from 5-fold cross validation and the best F1 scores are reported in the tables.

We also include the bar charts for the comparison purpose.

We use the multi-view reviewer embeddings learned with different spammer thresholds 1,

2, 3, 4, 5, 10%, 20%, 30%, 40%, 50% on the spammer classification. For each spammer

threshold, firstly, we fix the epochs as 20 and test different embedding size 3, 10, 20, 50, 100.

Secondly, we fix the embedding size as 100 and test different epochs 1, 5, 10, 20.

Table A.1. Spammer classification (different embedding sizes, spammer threshold=1)

embedding size 3 10 20 50 100
YelpChi 0.566 0.609 0.596 0.603 0.587

YelpNYC 0.556 0.582 0.590 0.603 0.612
YelpZIP 0.572 0.594 0.609 0.592 0.621

Figure A.1. Spammer classification (different embedding sizes, spammer threshold=1)
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Table A.2. Spammer classification (different epochs, spammer threshold=1)

training epochs 1 5 10 20
YelpChi 0.575 0.602 0.588 0.587

YelpNYC 0.581 0.586 0.600 0.612
YelpZIP 0.583 0.599 0.614 0.621

Figure A.2. Spammer classification (different epochs, spammer threshold=1)

Table A.3. Spammer classification (different embedding sizes, spammer threshold=2)

embedding size 3 10 20 50 100
YelpChi 0.835 0.820 0.853 0.826 0.851

YelpNYC 0.914 0.976 0.979 0.980 0.982
YelpZIP 0.908 0.955 0.958 0.961 0.963
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Figure A.3. Spammer classification (different embedding sizes, spammer threshold=2)

Table A.4. Spammer classification (different epochs, spammer threshold=2)

training epochs 1 5 10 20
YelpChi 0.878 0.815 0.819 0.851

YelpNYC 0.922 0.981 0.976 0.982
YelpZIP 0.927 0.959 0.966 0.963

Table A.5. Spammer classification (different embedding sizes, spammer threshold=3)

embedding size 3 10 20 50 100
YelpChi 0.804 0.833 0.871 0.845 0.859

YelpNYC 0.795 0.818 0.832 0.851 0.846
YelpZIP 0.822 0.833 0.862 0.841 0.864

Table A.6. Spammer classification (different epochs, spammer threshold=3)

training epochs 1 5 10 20
YelpChi 0.805 0.742 0.833 0.859

YelpNYC 0.842 0.844 0.858 0.846
YelpZIP 0.837 0.863 0.868 0.864
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Figure A.4. Spammer classification (different epochs, spammer threshold=2)

Figure A.5. Spammer classification (different embedding sizes, spammer threshold=3)

Table A.7. Spammer classification (different embedding sizes, spammer threshold=4)

embedding size 3 10 20 50 100
YelpChi 0.889 0.813 0.889 0.929 0.929

YelpNYC 0.873 0.905 0.875 0.905 0.885
YelpZIP 0.865 0.886 0.901 0.909 0.907
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Figure A.6. Spammer classification (different epochs, spammer threshold=3)

Figure A.7. Spammer classification (different embedding sizes, spammer threshold=4)

Table A.8. Spammer classification (different epochs, spammer threshold=4)

training epochs 1 5 10 20
YelpChi 0.933 0.966 1.000 0.929

YelpNYC 0.898 0.866 0.915 0.885
YelpZIP 0.901 0.892 0.906 0.907
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Figure A.8. Spammer classification (different epochs, spammer threshold=4)

Table A.9. Spammer classification (different embedding sizes, spammer threshold=5)

embedding size 3 10 20 50 100
YelpChi 0.928 1.000 0.928 1.000 0.857

YelpNYC 0.859 0.858 0.899 0.913 0.899
YelpZIP 0.906 0.931 0.909 0.904 0.901

Figure A.9. Spammer classification (different embedding sizes, spammer threshold=5)
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Table A.10. Spammer classification (different epochs, spammer threshold=5)

training epochs 1 5 10 20
YelpChi 0.928 0.928 0.854 0.857

YelpNYC 0.899 0.919 0.912 0.899
YelpZIP 0.882 0.909 0.890 0.901

Figure A.10. Spammer classification (different epochs, spammer threshold=5)

Table A.11. Spammer classification (different embedding sizes, spammer
threshold=10%)

embedding size 3 10 20 50 100
YelpChi 0.593 0.592 0.599 0.605 0.616

YelpNYC 0.552 0.600 0.589 0.606 0.590
YelpZIP 0.538 0.596 0.576 0.591 0.599

Table A.12. Spammer classification (different epochs, spammer threshold=10%)

training epochs 1 5 10 20
YelpChi 0.589 0.605 0.595 0.616

YelpNYC 0.587 0.611 0.603 0.590
YelpZIP 0.602 0.598 0.591 0.599
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Figure A.11. Spammer classification (different embedding sizes, spammer
threshold=10%)

Figure A.12. Spammer classification (different epochs, spammer threshold=10%)
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Table A.13. Spammer classification (different embedding sizes, spammer
threshold=20%)

embedding size 3 10 20 50 100
YelpChi 0.575 0.606 0.597 0.597 0.599

YelpNYC 0.577 0.598 0.612 0.611 0.622
YelpZIP 0.566 0.586 0.604 0.592 0.601

Figure A.13. Spammer classification (different embedding sizes, spammer
threshold=20%)

Table A.14. Spammer classification (different epochs, spammer threshold=20%)

training epochs 1 5 10 20
YelpChi 0.591 0.592 0.589 0.599

YelpNYC 0.547 0.588 0.587 0.622
YelpZIP 0.579 0.582 0.592 0.601

Table A.15. Spammer classification (different embedding sizes, spammer
threshold=30%)

embedding size 3 10 20 50 100
YelpChi 0.559 0.620 0.593 0.595 0.605

YelpNYC 0.548 0.582 0.591 0.595 0.598
YelpZIP 0.549 0.594 0.612 0.598 0.611
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Figure A.14. Spammer classification (different epochs, spammer threshold=20%)

Figure A.15. Spammer classification (different embedding sizes, spammer
threshold=30%)

Table A.16. Spammer classification (different epochs, spammer threshold=30%)

training epochs 1 5 10 20
YelpChi 0.587 0.576 0.595 0.605

YelpNYC 0.580 0.595 0.608 0.598
YelpZIP 0.575 0.603 0.597 0.611
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Figure A.16. Spammer classification (different epochs, spammer threshold=30%)

Table A.17. Spammer classification (different embedding sizes, spammer
threshold=40%)

embedding size 3 10 20 50 100
YelpChi 0.568 0.587 0.583 0.615 0.600

YelpNYC 0.571 0.599 0.612 0.621 0.600
YelpZIP 0.563 0.599 0.611 0.602 0.604

Table A.18. Spammer classification (different epochs, spammer threshold=40%)

training epochs 1 5 10 20
YelpChi 0.603 0.587 0.603 0.600

YelpNYC 0.594 0.586 0.616 0.600
YelpZIP 0.604 0.603 0.610 0.604

Table A.19. Spammer classification (different embedding sizes, spammer
threshold=50%)

embedding size 3 10 20 50 100
YelpChi 0.576 0.588 0.608 0.602 0.589

YelpNYC 0.551 0.622 0.620 0.607 0.607
YelpZIP 0.577 0.594 0.601 0.581 0.597
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Figure A.17. Spammer classification (different embedding sizes, spammer
threshold=40%)

Figure A.18. Spammer classification (different epochs, spammer threshold=40%)

Table A.20. Spammer classification (different epochs, spammer threshold=50%)

training epochs 1 5 10 20
YelpChi 0.593 0.583 0.619 0.589

YelpNYC 0.564 0.616 0.600 0.607
YelpZIP 0.590 0.594 0.597 0.597
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Figure A.19. Spammer classification (different embedding sizes, spammer
threshold=50%)

Figure A.20. Spammer classification (different epochs, spammer threshold=50%)
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APPENDIX B. FAKE REVIEW CLASSIFICATION

In this appendix, we include the complete experiment results of fake review classification

with different configurations. For each configuration, we use the hybrid embeddings (i.e. text +

reviewer) as the features of reviews and take the filtered labels in the Yelp datasets as the

prediction targets. The trained models were chosen from 5-fold cross validation and the best F1

scores are reported in the tables. We also include the bar charts for the comparison purpose.

We use the hybrid embeddings (Word2Vec/Glove text embeddings + multi-view reviewer

embeddings learned with different spammer thresholds 1, 2, 3, 4, 5) on the spammer

classification. For each spammer threshold, we test different embedding size 3, 10, 20, 50, 100 of

the reviewer embeddings.

Table B.1. F1 scores (Word2Vec+Reviewer, spammer threshold=1)

YelpChi YelpNYC YelpZIP
word2vec-only 0.633 0.653 0.655

word2vec + reviewer (emb size=3) 0.711 0.714 0.717
word2vec + reviewer (emb size=10) 0.710 0.732 0.727
word2vec + reviewer (emb size=20) 0.723 0.748 0.739
word2vec + reviewer (emb size=50) 0.729 0.771 0.779

word2vec + reviewer (emb size=100) 0.748 0.775 0.784

Table B.2. F1 scores (GloVe+Reviewer, spammer threshold=1)

YelpChi YelpNYC YelpZIP
glove-only 0.607 0.603 0.597

glove + reviewer (emb size=3) 0.688 0.706 0.718
glove + reviewer (emb size=10) 0.706 0.722 0.724
glove + reviewer (emb size=20) 0.712 0.738 0.740
glove + reviewer (emb size=50) 0.731 0.777 0.792

glove + reviewer (emb size=100) 0.754 0.775 0.796
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Figure B.1. Fake review classification (Word2Vec+Reviewer, spammer threshold=1)

Figure B.2. Fake review classification (GloVe+Reviewer, spammer threshold=1)
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Table B.3. F1 scores (Word2Vec+Reviewer, spammer threshold=2)

YelpChi YelpNYC YelpZIP
word2vec-only 0.667 0.645 0.607

word2vec + reviewer (emb size=3) 0.694 0.747 0.755
word2vec + reviewer (emb size=10) 0.713 0.790 0.780
word2vec + reviewer (emb size=20) 0.693 0.790 0.803
word2vec + reviewer (emb size=50) 0.763 0.810 0.826

word2vec + reviewer (emb size=100) 0.784 0.860 0.862

Figure B.3. Fake review classification (Word2Vec+Reviewer, spammer threshold=2)

Table B.4. F1 scores (GloVe+Reviewer, spammer threshold=2)

YelpChi YelpNYC YelpZIP
glove-only 0.635 0.593 0.589

glove + reviewer (emb size=3) 0.669 0.753 0.737
glove + reviewer (emb size=10) 0.708 0.763 0.769
glove + reviewer (emb size=20) 0.724 0.785 0.786
glove + reviewer (emb size=50) 0.775 0.815 0.840

glove + reviewer (emb size=100) 0.839 0.876 0.884
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Figure B.4. Fake review classification (GloVe+Reviewer, spammer threshold=2)

Table B.5. F1 scores (Word2Vec+Reviewer, spammer threshold=3)

YelpChi YelpNYC YelpZIP
word2vec-only 0.627 0.632 0.610

word2vec + reviewer (emb size=3) 0.648 0.729 0.670
word2vec + reviewer (emb size=10) 0.610 0.750 0.711
word2vec + reviewer (emb size=20) 0.698 0.798 0.741
word2vec + reviewer (emb size=50) 0.772 0.851 0.833

word2vec + reviewer (emb size=100) 0.826 0.927 0.891

Table B.6. F1 scores (GloVe+Reviewer, spammer threshold=3)

YelpChi YelpNYC YelpZIP
glove-only 0.610 0.619 0.569

glove + reviewer (emb size=3) 0.664 0.705 0.659
glove + reviewer (emb size=10) 0.670 0.735 0.714
glove + reviewer (emb size=20) 0.698 0.796 0.752
glove + reviewer (emb size=50) 0.804 0.861 0.864

glove + reviewer (emb size=100) 0.865 0.929 0.908
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Figure B.5. Fake review classification (Word2Vec+Reviewer, spammer threshold=3)

Figure B.6. Fake review classification (GloVe+Reviewer, spammer threshold=3)
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Table B.7. F1 scores (Word2Vec+Reviewer, spammer threshold=4)

YelpChi YelpNYC YelpZIP
word2vec-only 0.650 0.661 0.679

word2vec+reviewer (emb size=3) 0.762 0.743 0.740
word2vec+reviewer (emb size=10) 0.714 0.789 0.778
word2vec+reviewer (emb size=20) 0.750 0.819 0.824
word2vec+reviewer (emb size=50) 0.884 0.906 0.904

word2vec+reviewer (emb size=100) 0.900 0.924 0.939

Figure B.7. Fake review classification (Word2Vec+Reviewer, spammer threshold=4)

Table B.8. F1 scores (GloVe+Reviewer, spammer threshold=4)

YelpChi YelpNYC YelpZIP
glove-only 0.600 0.629 0.629

glove+reviewer (emb size=3) 0.636 0.739 0.708
glove+reviewer (emb size=10) 0.651 0.801 0.775
glove+reviewer (emb size=20) 0.732 0.851 0.828
glove+reviewer (emb size=50) 0.930 0.913 0.920

glove+reviewer (emb size=100) 0.952 0.921 0.948
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Figure B.8. Fake review classification (GloVe+Reviewer, spammer threshold=4)

Table B.9. F1 scores (Word2Vec+Reviewer, spammer threshold=5)

YelpChi YelpNYC YelpZIP
word2vec-only 0.642 0.630 0.642

word2vec + reviewer (emb size=3) 0.899 0.701 0.702
word2vec + reviewer (emb size=10) 0.697 0.752 0.733
word2vec + reviewer (emb size=20) 0.899 0.863 0.794
word2vec + reviewer (emb size=50) 0.847 0.925 0.873

word2vec + reviewer (emb size=100) 0.850 0.948 0.928

Table B.10. F1 scores (GloVe+Reviewer, spammer threshold=5)

YelpChi YelpNYC YelpZIP
glove-only 0.560 0.624 0.586

glove + reviewer (emb size=3) 0.688 0.670 0.651
glove + reviewer (emb size=10) 0.744 0.758 0.742
glove + reviewer (emb size=20) 0.670 0.875 0.807
glove + reviewer (emb size=50) 0.697 0.918 0.909

glove + reviewer (emb size=100) 0.850 0.945 0.936
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Figure B.9. Fake review classification (Word2Vec+Reviewer, spammer threshold=5)

Figure B.10. Fake review classification (GloVe+Reviewer, spammer threshold=5)
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APPENDIX C. DIFFERENT PERCENTAGES OF NODE LABELS

In this appendix, we include the complete experiment results of multi-view reviewer

learning through MVE (Qu et al., 2017). The tool implemented by the authors of MVE has the

functionality to take a list of node labels during the embedding learning. According to the

experiments performed in Qu et al. (2017), the labeled data moderately increased the performance

of node classification on their DBLP dataset (from .540 to .590 in micro-F1) and Youtube dataset

(from .825 to .850 in AUC).

In this study, we tested whether different percentages of node labels used for MVE

embedding learning impact the results of reviewer classification. First, we randomly sampled

10%, 20%, ..., 100% of node labels for MVE embedding learning. Second, we compared the

testing F1 scores of the classification models trained on different percentage of node labels.

According to the results listed below, there is not apparent trend that which percentage of node

labels performs better for the Yelp datasets. Therefore, we chose 100% of node labels for our

experiments.

Table C.1. F1 scores of fake review classification (GloVe-only vs. GloVe+Reviewer)

Percentage of node labels YelpChi YelpNYC YelpZIP
10% 0.854 0.874 0.860
20% 0.857 0.871 0.903
30% 0.893 0.886 0.876
40% 0.856 0.867 0.891
50% 0.964 0.874 0.906
60% 0.856 0.896 0.887
70% 0.892 0.885 0.906
80% 0.892 0.859 0.881
90% 0.893 0.875 0.878
100% 0.929 0.878 0.903
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Figure C.1. Spammer classification with different percentages of node labels
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