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ABSTRACT

Severe acute respiratory syndrome (SARS)-CoV-2 emerged in late 2019, then became an

unprecedented public health crisis. Hundreds of millions of people have been affected. What is

worse, many researchers have revealed that COVID-19 may have long-term effects on varieties of

organs even after recovery. Consequently, there is a need for the study of its sequelae. The

purpose of this project is to use machine learning algorithms to study the relationship between

patients’ EMR data and long-term sequelae, especially kidney diseases. Inspired by a recent

learning disentangled representation for recommendation work, this project proposes a method

that (i) predicts the development trend of the kidney disease; (ii) learn representations that

uncover and disentangle factors related to kidney diseases. The major contribution is that this

model has high interpretability which enables medical works to infer the development of patients’

condition.
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CHAPTER 1. INTRODUCTION

This chapter gives an introduction of the research question. It introduces the background

knowledge by stating the significance of this research question. Additionally, this study is based

on some assumptions that are presented in this chapter. Besides, limitations and delimitations are

important to define the scope of the study.

1.1 Background

Coronavirus disease 2019 (COVID-19) emerged in approximately December 2019, then

rapidly affected the entire world. As of May 2021, more than 100 million individuals have been

infected and it has caused more than 3 million deaths worldwide. This outbreak has already

resulted in tremendous societal disaster in the United States, which caused over 33 million cases

and over 590 thousand deaths according to Johns Hopkins Coronavirus Center (COVID-19 Map,

n.d.). Although this pandemic is still not over, emerging issues have yet to be resolved. A lot of

research has revealed that COVID-19 can cause long-term effects even after recovery.

Martinez-Rojas et al. (2020) presented that in spite of the fact that COVID-19 mostly affects the

respiratory system, its multi-organ involvement causes severe damage to many different organs as

well, including the heart, liver, blood vessels, bone marrow, kidneys, gut, and brain, which could

be related to Human angiotensin-converting enzyme 2 (ACE2). ACE2 is an entry receptor and

commonly seen in lung, heart, and kidneys cells (Alimadadi et al., 2020).

COVID-19 is a contagious disease that possibly brings serious complicating diseases, and

long-term sequelae of COVID-19 are unknown. So far, few works study long-term sequelae of

patients survived the acute phase. Janiri et al. (2020) proposed an important open question: ”Once

recovered from COVID-19, what will happen to patients, and how does the virus affect their

bodies?” (Janiri et al., 2020). 22% of patients had acute kidney injury (AKI), but some studies

have found that acute kidney injury was not caused by SARS-CoV2 infection itself (Wang et al.,

2020). This pandemic has already resulted in tremendous societal disasters worldwide. A rough

estimate is that more than 22 million people will suffer from AKI. Therefore, it is a huge

challenge for the health care system.
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Within the intense stage of COVID-19, the incidence of complications including liver and

kidney is high, but it is not clear how many of these complications will persist in the medium and

long term (Dawei Wang, 2020). It may be expected that patients with severe symptoms will have

long-term complications and permanent damage. There is a lack of guidelines for postoperative

recovery from COVID-19. “It is predicted that 45% of patients discharged from hospital will

require support from healthcare and social care and 4% will require rehabilitation in a bedded

setting” (Barker-Davies et al., 2020). Therefore, it is obviously necessary to propose insights for

the recovery of COVID-19 survivors. there are very few guidelines on how to better rehabilitate

such patients.

COVID-19 affects different individuals differently, from insignificant symptoms to the

serious respiratory system infection requiring put on ventilator. Therefore, it is necessary to

conduct further research on the sequelae of COVID-19. This project is based on the hypothesis

that some patients infected with COVID-19 may still have potential long-term sequelae,

especially kidney diseases, even after recovery. Furthermore, leveraging machine learning to

analyze patients’ clinical data can infer how they are different from other people, and on this basis

make long-term treatment recommendations for patients.

The problem as perceived by the researcher at this point is that although other researchers

have proposed some machine learning models that have high accuracy on related problems,

however, interpretability of their models is the major concern when applied in real-world practice.

Since the machine learning models are supposed to assist medical workers in making decisions

about the patient’s condition. If medical workers do not know why the machine learning model

makes such predictions, they cannot trust these predictions. In the medical field, misdiagnosis is

not acceptable. Imagine that if a patient suffers from a certain disease and the machine learning

model predicts negative, this may cause them to miss the optimal treatment time; conversely, if a

patient does not have some disease and the machine learning model gives a positive prediction,

this can be a disaster. In this case, the practicality of the machine learning model is greatly

reduced.
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1.2 Problem Statement

As researchers and medical workers better understand COVID-19, the proportion of

patients surviving the virus is increasing at present. However, having defeated the virus is just the

beginning of an uncharted recovery path for infected patients. The long-term sequelae of COVID-

19 still remain unknown. “The sequelae in those who survive this illness will potentially

dominate medical practice for years and rehabilitation medicine should be at the forefront of

guiding care for the affected population” (Barker-Davies et al., 2020). According to the European

Centre for Disease Prevention and Control (ECDC), a correlation was observed between chronic

kidney disease (CKD) and COVID-19 severity: In spite of the fact that Acute kidney injury (AKI)

is not very commonly seen in the mild COVID-19 infection, it is more common in critically ill

patients. “It is probable that kidney lesions acquired during the disease’s activity remain as

sequelae that may result in a slow and asymptomatic progression towards advanced stages and

CKD” (Herrera-Valdés et al., 2020), which indicates that severely ill patients may still have

medium- and long-term renal sequelae even after recovery.

The purpose of this project is to provide insights into the long-term sequelae of the

kidneys of COVID-19 patients. This project aims to give recommendations to health care workers

about potential sequelae that need careful attention (e.g., plan what is necessary in the medium

and long term) in order to optimize future healthcare delivery. The final aim is to let the affected

patients return to their normal life in a healthy state.

Since interpretability is a very significant component in this study, learning disentangled

representations is an appropriate way to find the correlation between examination results and the

development of kidney diseases. In this study, a Disentangled Variational Auto-Encoder (DVAE)

will be built to learn a set of prototypes that illustrate the correlation between various examination

results and the development of kidney diseases.

1.3 Research Question

This research contributes answers for following questions:
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1. How to predict the Chronic kidney disease (CKD) progression risk base on clinical

variables from EMR data?

2. Which of the clinical variables may have hidden relationship in the latent space?

3. How do clinical variables affect the the CKD progression?

1.4 Significance

The White House called global AI researchers to take action to develop novel data mining

techniques to assist research related to COVID-19. Alimadadi et al. (2020) showed that a great

number of machine learning techniques have been used to analyze the biochemical and clinical

data shortly after the pandemic. Digging out hidden information from clinical data to improve

treatments is promising. AI techniques are able to unearth implicit patterns and provide insights

for health care workers. The development of advanced ML-based models to reveal unique

mechanical insights which cannot be obtained from traditional methods, is essential for the future

health care system.

Therefore, in summary, applying machine learning technology to study long-term

sequelae of COVID-19 is of great significance and may inspire long-term treatments. However,

this issue has not been studied and discussed so far. In consequence, an in-depth study will lead to

an extreme meaningful discovery.

1.5 Assumptions

The assumptions for this study include:

• The data is true and reliable. Assume the dataset will be used in experiments comes from

real electronic medical records (EMR) and assume the EMR data covers all the features

needed in experiments.

• These indicators have some relationship with certain sequelae that cannot be explicitly

detected, but machine learning models are able to catch the hidden patterns.
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• It is possible to learn disentangled representations for latent factors that related to the

sequelae.

1.6 Limitations

The limitations for this study include:

• There are a lot of missing data since a patient is very unlikely to do all the tests. In most

cases, a patient may only do a few types of examinations.

• The performance of the proposed model is limited by the size of training data due to the

limited computation power.

1.7 Delimitations

The delimitations for this study include:

• This project only studies the long-term sequelae of the kidney.

• This project aims to study various examination results using machine learning algorithms.

The dataset will be used is from National COVID Cohort Collaborative (N3C). There is no

interaction with patients.

• The purpose of this project is to conduct further research on the sequelae of COVID-19,

provide insights for long-term treatments. However, this study will not produce any specific

post-recovery treatments.

1.8 Summary

This chapter introduced the required background knowledge and defined the scope of the

research question. Additionally, it presented the assumptions that the study was based on. It

described the limitations and delimitations for the study as well. The next chapter gives a

literature review of related works.
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CHAPTER 2. REVIEW OF LITERATURE

The content of the literature review covers the study of the sequelae of covid-19, examples

of utilizing the machine learning in the medical field, and the study of disentangled representation.

2.1 COVID-19 Sequelae

Some survivors have early sequelae related to COVID-19, e.g. cardiac sequelae

(Demertzis et al., 2020). Some previous works have studied the clinical variables related to of

COVID-19. In addition, the methods used to diagnose and treat patients have been widely studied

as well. However, further studies on the potential sequelae in COVID-19 survivors remain to be

conducted (Guan et al., 2020). It has been shown that patients might have phisical and mental

diseases even though they survived severe acute respiratory syndrome (SARS) (Lam, 2009).

Rogers et al. (2020) have studied the clinical variables of SARS and Middle East respiratory

syndrome and presented that patients recovered from COVID-19 might have psychiatric sequelae.

Nevertheless, there is a lack of investigations diving into the long term sequelae of patients who

recovered from the intense stage of COVID-19. Besides, further studies on the treatment are also

remain to be conducted (Janiri et al., 2020).

Within the intense stage of COVID-19, the incidence of complications including liver and

kidney is high, but it is not clear how many of these complications will persist in the medium and

long term (Wang et al., 2020). It may be expected that patients with severe symptoms will have

long-term complications and permanent damage. There is a lack of guidelines for postoperative

recovery from COVID-19. “It is predicted that 45% of patients discharged from hospital will

require support from healthcare and social care and 4% will require rehabilitation in a bedded

setting” (Barker-Davies et al., 2020).

Since there are many survivors of COVID-19, the sequelae may be of great significance

for the survivors to get back to the normal life. It has been proved that the central nervous system

(CNS) is a target affected by the coronavirus. Thus, it compromises the CNS and causes

psychiatric diseases. A few affected patients showed intense psychiatric side effects such as

delirium, encephalopathy and anosmia (Vaira, Salzano, Deiana, & De Riu, 2020). Lai, Ko, Lee,
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Jean, and Hsueh (2020) showed that patients affected by COVID-19 tend to be more possible to

have psychiatric diseases and when they get psychiatric diseases, the situation tends to be severer.

Moreover, recent research works also mentioned that when patients suffer from mental diseases,

the coronavirus could make their situation even worse. Nevertheless, there is no researchers have

studied the correlation between mental diseases and the coronavirus.

In summary, the sequelae caused by COVID-19 infection is a real problem and remain to

be resolved. Consequently, the problem studied in this project is of great significance.

2.2 Interpretability

People cannot trust anything if they don’t understand why it works, especially in the

medical field. Miller (2019) defined interpretability as: “Interpretability is the degree to which a

human can understand the cause of a decision”.

There is no doubt that machine learning models can learn patterns hidden in big data and

make predictions with high accuracy. Nevertheless, most of the existing models do not have

interpretability, which means people cannot explain the reason why they make such predictions.

In this case, researchers are working on building ML models that people can understand

assumptions and decisions behind predictions, that is, models are supposed to be open,

transparent, and understandable.

2.2.1 Prediction-level Interpretation

Prediction-level approaches is used to understand the importance of each feature for each

prediction. In order to achieve the prediction-level interpretation, a widely used method is to a

relevance factor to each feature. In this case, a variable that has a higher relevance score

represents a higher contribution to a certain prediction result (Murdoch, Singh, Kumbier,

Abbasi-Asl, & Yu, 2019). For instance, a heat map can be used to represent the importance of

each pixel contributing to the prediction.
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2.2.2 Model-based Interpretation

“One type of post hoc model-specific explanation methods is knowledge distillation,

which is about extracting knowledge from a complex model to a simpler model (which can be

from a completely different class of models)” (Carvalho, Pereira, & Cardoso, 2019). There are a

number of methods to achieve knowledge distillation, e.g. model compression (Polino, Pascanu,

& Alistarh, 2018), tree regularization (Wu et al., 2018), etc.

2.2.3 Model-agnostic Interpretation

The contribution of input to output can be determined through occlusion and omission.

This line of work “tries to answer the question: which parts of the input, if they were not seen by

the model, would most change its prediction? Thus, the results may be called counterfactual

explanations” (Du, Liu, & Hu, 2020). However, it is not practical in the real world since few

models take blank inputs. Another problem is that it may cause side effects. For example, if a

number of pixels are occluded with green color, it may give a prediction of a lawn class which is

obviously a disturbance and even cause the misclassification.

2.2.4 Applications

An important application area of Interpretability is model debugging. A typical example is

Adversarial Machine Learning (Nguyen, Yosinski, & Clune, 2015). As Du et al. (2020) stated,

ML Models might give wrong predictions for specially crafted adversarial examples. However,

these errors can be easily discovered by humans. Interpretability helps humans analyze why

models fail and furthermore promote robustness.

Another significant application is knowledge discovery. Humans are able to have a better

understanding about machine learning models make a certain decision. In this case, the users with

expertise in the applied area may be able to help justify the prediction. It is even possible to

obtain new insights that were not noticed in the past. Thus, new theories are derived from there

(Du et al., 2020). For instance, Caruana et al. (2015) proposed an interpretable model to predict
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the mortality risk for pneumonia patients. Health care workers provide more aggressive treatment

based on the insights provided from the prediction. Facts have proved that the treatment achieved

better results.

In summary, interpretability enables people to have a deeper understanding of the model.

Humans can explain why it happens, which means the thinking procedure has meanings to human

beings. Even if the models don’t give the right predictions, there is still some useful information.

As a result, a model with interpretability is much more valuable than that only giving predictions.

2.3 Machine Learning in the Medical Field

Machine learning techniques have been widely studied and applied to many fields since

they are able to reveal the hidden information embedded in the raw data. Many researchers have

studied applying machine learning into the medical field:

Xiao et al. (2020) proposed a deep learning model to estimate the disease severity of

COVID-19 patients based on computed tomography (CT) imaging. It used multiple instance

learning. They used the data of 303 patients in the People’s Hospital of Honghu to train their

model and tested it on the data of 105 patients in The First Affiliated Hospital of Nanchang

University. They evaluated their model by calculating the receiver operating characteristic curve

and the confusion matrix. On the training set, the accuracy was over 97% and the area under the

curve (AUC) was 0.987. While on the test set, the accuracy was over 81% and the AUC was

0.892. The analysis on the subgroup of patients without server symptoms on admission,

accuracies in the Honghu and Nanchang subgroups were 97.0% and 81.6% and the model

achieved ACUs of 0.955 and 0.923 respectively.

Booth, Abels, and McCaffrey (2020) conducted a review assessing research facility

information and mortality from patients with positive RT-PCR test for SARS-CoV-2. They

created a machine learning model utilizing 5 serum chemistry laboratory parameters from 398

patients for predicting patient expiration status. Their model achieved over 90% on both

sensitivity specificity for the prediction of death on test data.

Patel et al. (2021) developed a ML model based on radionics that analyses CT images and

clinical variables to predict COVID-19 severity as well as the possible of deterioration to severe
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diseases in the future. They collected data from patients confirmed to be positive for COVID-19.

Moreover, they collected radiomics features from patients’ chest CT images. They trained 2

models: one for prediction severity and the other for predicting the progression to severe diseases.

These models were trained with radionics features and clinical variables. They evaluated their

models by calculating the receiver operating characteristic area under the curve (ROC-AUC),

concordance index (C-index), and time-dependent ROC-AUC and compared the results with

consensus CT severity scores made by radiologists using visual evaluation.

Berenguer et al. (2020) proposed an interpretable machine learning model based on a

semi-supervised classifier that utilizes a VAE to extract embeddings. They have optimized the 2

networks that take CT images as inputs. First, they developed a new conditional variational

autoencoder (CVAE) that has a particular architecture with which the class labels can be

integrated into the encoder. Second, they implemented a supervised CNN classifier taking

advantage of the encoder structure.

In summary, applying machine learning in the medical field helps health care workers

diagnose diseases. However, these models cannot be fully trusted because they are not

interpretable. It is the research gap this project will fill up.

2.4 Variational Auto-Encoder

An auto-encoder contains two connected networks: one is encoder, the other is decoder.

The encoder network receives the input and compresses it into a relatively small dense vector

which can be converted back to the original input by the decoder. The encoder and the decoder

are commonly trained together. The loss function is usually used to measure the difference

between the reconstruction and the original data, called reconstruction loss. The encoder needs to

select the most useful information in order to achieve a small size of the representation, while the

decoder needs to learn how to extract as much as possible information from the representation

and reconstruct the original input with it. Together they form an auto-encoder.

Standard auto-encoders learn to compress data and reconstruct from the encoded data, but

apart from being used in some applications, such as denoising auto-encoders, their usage is quite

limited. The basic problem with auto-encoders is that they convert their input into a code vector,
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the latent space in which they are located may be discontinuous, or allow simple interpolation. A

generative model is not build to reconstruct the output exact same as the input. It is expected to

generate variations that are derived from the original input by altering some dimensions of factors

in the latent space.

Autoencoder

Variational 
Autoencoder

Input

x

x

Input

Encoder Decoder

Encoder Decoder

z = E(x)

Latent 
Space

Laten 
Distribution

Reconstruction

D(z)

p(z|x)

ReconstructionSampled 
Representation

z ~ p(z|x) D(z)

Figure 2.1. Difference between auto-encoder (deterministic) and variational
auto-encoder (probabilistic)

Variational auto-encoders (VAEs) have a unique property: their latent space is continuous,

which enables random sampling and interpolation (Doersch, 2016). It is achieved by making

some constraints: the encoder does not output a code vector of size n, but outputs two vectors of

size n: the average vector µ and another standard deviation vector σ . The difference between

auto-encoder and variational auto-encoder is shown in Figure 2.1.

The training process is as follows (Kingma & Welling, 2014):

1. The encoder network takes the input and encode it as a distribution over the latent space.

2. Sample a point from the distribution calculated in the previous step in the latent space.

3. The decoder network takes the point as input and reconstruct the original input.

4. The reconstruction error is computed and backpropagated through the network.
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2.5 Learning disentangled Representations

Each dimension in the disentangled representation represents a dimension of factors that

contain meaning information to human beings (Gilpin et al., 2018). Currently, there is no formal

definition of disentangled representation, but the generally accepted informal definition is as

follows:

• A disentangled representation ought to isolated the particular, informative components of

varieties in the data.

• A change in a certain factor leads to a variation in latent space while any other changes of

different factors contribute very little (Bengio, Courville, & Vincent, 2013).

• An alter in an embedding factor of the variable zi ought to lead to an alter in a factor in the

encoded representation r(x) (Locatello et al., 2019).

Intuitively, the benefits of disentangled representation are:

• They ought to display the data in a compact format which has the interpretability (Chen et

al., 2016).

• They ought to be valuable for transfer learning (Chen et al., 2016).

To sum up, the purpose of disentanglement is to separate latent, underlying, high-level

explanatory factors from low-level observation data. The purpose of disentangled representation

is to spparate factors independently and map them to laten units of different dimensions in

representation vectors. On the one hand, such a representation can integrate a variety of

explanatory factors, making it more semantic and explanatory; on the other hand, the

independence between different factors is robust, and a slight disturbance of a factor will not

affect other factors. If a task is highly related to a certain factor , the separated representation can

better solve the task through the related factor, which is conducive to transfer learning and small

sample learning. On the contrary, since entangled representation couples all the factors, the

learned representations are highly dependent on the specific task, and the interpretability is not

strong enough.
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2.5.1 Learning Disentangled Representations for Recommendation

Ma, Zhou, Cui, Yang, and Zhu (2019) developed an advanced VAE named MACRo-mIcro

Disentangled Variational Auto-encoder (MacridVAE). This model was used to learn disentangled

representations and give recommendations based on that. Their approach “achieves macro

disentanglement by inferring the high-level concepts associated with user intentions (e.g., to buy a

shirt or a cellphone), while capturing the preference of a user regarding the different concepts

separately. A micro-disentanglement regularizer, stemming from an information-theoretic

interpretation of VAEs, then forces each dimension of the representations to independently reflect

an isolated low-level factor (e.g., the size or the color of a shirt)” (Ma et al., 2019).

The main objectives of this work are (1) to learn a factorized representation of user’s

interests about item classes; (2) to disentangle users’ favourite at a low level, e.g. colors, sizes,

etc. The intuition of the two objectives is that (1) users may have varied interests, e.g., clothes,

electronic devices; (2) users’ preference about each product may depend on the categories itself,

that is, a user who prefers a red handbag may not like a red refrigerator (Ma et al., 2019).

The decoder predicts the rank of items are likely to be interacted with a user while the

encoder computes the representation of a user given behavior data.

Their experiments are conducted on five real-world datasets, four of which are the

large-scale Netflix Prize dataset (Bennett, Lanning, et al., 2007), and 3 different sizes MovieLens

datasets, i.e., ML-100k, ML-1M, and ML-20M (Harper & Konstan, 2015). The other dataset is

AliShop-7C which is from Alibaba’s online shopping platform. It consists of associations from

users to merchandises. There are seven categories of products in the dataset. Each item has

attributes such as titles and images. Each user has at least two interactions associated with items

from different categories.

There are two state-of-the-art mothods used in their experiments, i.e., MultDAE (Liang,

Krishnan, Hoffman, & Jebara, 2018) and β -MultVAE (Liang et al., 2018). Notice that

β -MultVAE does not learn disentangled representations.

They follow the experiment design established by Liang et al. (2018). They evaluate the

performance of all three models under strong generalization (Marlin, 2004):

1. Split all users into training set, validation set, and test set.
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2. Train models using all the interactions of the training set.

3. To evaluate, split the validation set or the test set into 2 parts: a training set and a test set,

i.e. validation-training set and validation-test set or test-training set and test-test set. Learn

users’ preference from the training set and then evaluate how well models perform on the

rest of the unseen dataset, i.e. the test set.

They use the same evaluation metrics as Liang et al. (2018) which are Recall@R and

NDCG@R.

2.6 Summary

This chapter reviewed a number of the literature relevant to the sequelae of COVID-19,

machine learning techniques applied in the medical field, variational auto-endoders and

disentangled representation learning. The next chapter describes the methodology to be used in

this project.
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CHAPTER 3. PROPOSED SOLUTION

This chapter provides the proposed framework. The dataset used in this study, the data

preprocessing procedure, the evaluation criteria, and the measure to handle the imbalanced data

are introduced in this chapter.

3.1 System Modeling

This section describe the framework of the system. It traduces the necessity of developing

interpretable ML models in the medical field. In addition, it shows the raw dataset, the data

preprocessing procedure and the structure of the model.

3.1.1 Introduction

Predicting the development of the disease based taking advantage of machine learning

models is very promising, and researchers have proposed many models with very impressive

accuracy. Since machine learning is a black box, that is, although the model can make

predictions, people don’t know why it makes such predictions. In the medical field, these

predictions are related to the health and even life of patients, so the interpretability of the model is

of great significance. Therefore, the project aims to study a machine learning model with high

interpretability. On the one hand, it predicts the development of the disease based on the patient’s

EMR data, and on the other hand, disentangles the latent factors.

3.1.2 Research Approach

The research approach is mainly divided into three parts: the first step is data

preprocessing, in this step raw data is converted into the input format accepted by the machine

learning model; the second part is building the model, in this step the model and the loss function

are designed to learn the latent factors of the data; the third step is to evaluate the model and

interpret the pattern learned by the model.
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3.1.2.1 Data Preprocessing

Raw data is based on encounters, that is, every record in the database is an encounter

record. Each encounter record contains the patient’s, gender, feature name, corresponding data,

and time. The features used in this project are shown in Table 3.1. The dataset used in this project

includes patients of different ages, races, sexes, and health conditions. A total of 20 features are

used for research. In addition, the patient’s survival time can be obtained according to the

outcome database. First, according to the predetermined baseline time, obtain the data two years

before the baseline time, calculate the median value of each patient’s clinical variables, and also

calculate the BMI index based on the height and weight. Second, according to the classification

standards of various clinical variables commonly used in medical fields, each indicator is mapped

to the corresponding level. In addition, due to the missing data also has some certain meaning (for

example, a patient who does not have high blood pressure may have very little or even on blood

pressure data, however a patient with high blood pressure is likely to have a great number of

blood pressure testing encounters), it is necessary to add a category to represent the absence.

Table 3.2 gives an example of a record in the ERM dataset. The column ”concept.id”

contains the name of the feature and the column ”nval.num” contains the corresponding value.

Note that the age is calculated based on the date of the exam and their birthday.

There is another dataset called ”outcome” indicating how soon the condition becomes

worse. Table 3.3 gives an example.

As described above, calculate means, classify them, and combine the EMR dataset with

the outcome data set to get the final table shown in Table 3.4. The value xi, j in the ith row and jth

column represents that the ith patient has jth state. A state can be a certain class of a clinical

variable, e.g. EGFR0. Note that 0 means the patient does not have any records of this clinical

variable.

The final table is an adjacent matrix in fact, hence a graph can be built from it. Each node

in the graph represents a patient or a state, and an edge connecting a patient and a state represents

that the patient has this state. Since most of the clinical variables are null, the graph is a sparse

graph as illustrated in Figure 3.1.

The dataset is then divided into three sub-datasets (e.g., training set, validation set and

testing set).
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Table 3.1. Features in EMR data

Feature

ALK Alkaline Phosphatase
ALT SGPT Alanine Aminotransferase
AST SGOT Aspartate Aminotransferase
BP DIASTOLIC BP DIASTOLIC
BP SYSTOLIC BP SYSTOLIC
CHOLESTEROL CHOLESTEROL
CREATINE KINASE CREATINE KINASE
EGFR Creatinine
HBA1C Hemoglobin A1c
HDL High Density Lipoprotein
HEMOGLOBIN HEMOGLOBIN
HT HEIGHT
INR Prothrombin Time and International Normalized Ratio
LDL Low-density Lipoprotein Cholesterol
TBIL Total bilirubin
TRIGLYCERIDES TRIGLYCERIDES
TROPONIN TROPONIN
WT Weight
Age

Table 3.2. EMR dataset example

pat id concept.cd nval.num units.cd age csn

...... ...... ...... ...... ...... ......
64146 EGFR 66.0821139111329 mg/mL/1.73m2 84.6657534246575 30857975
...... ...... ...... ...... ...... ......

3.1.2.2 Learning Disentangled Representations

After the dataset is preprocessed, the next step is to build a Disentangled Variational

Auto-Encoder (DVAE) that learns the hidden patterns embedded in patients’ EMR data. The

DVAE is expected to learn disentangled representations and they should have meaning to human

beings. In addition, the disentangled representations are also supposed to be controllable by

manipulating the encoded vectors. DVAE is mainly composed of two components, one is an
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Table 3.3. Outcome dataset example

pat num year2 ture year2 false year5 true year5 false year10 true year10 false

...... ...... ...... ...... ...... ...... ......
63655 1 0 1 0 1 0
...... ...... ...... ...... ...... ...... ......

Table 3.4. Final table example

pat num ...... EGFR1 EGFR2 ...... ALK0 ALK1 ...... year2 true ......

...... ...... ...... ...... ...... ...... ...... ...... ...... ......
63655 ...... 0 1 ...... 1 0 ...... 1 ......
...... ...... ...... ...... ...... ...... ...... ...... ...... ......

Figure 3.1. Building a sparse graph from the final table

encoder and the other is the decoder. The input data is the graph constructed in the previous step.

The graph is mapped to the latent space through the encoder network, and the decoder

reconstructs the graph with the value of the latent space. Finally, calculate the reconstruction loss

based on the original graph and the reconstructed graph. Then adjust the parameters in the

network according to the output of the loss function. A set of prototypes are learned from the

relationship of patients’ states and outcomes. The are expected to capture hidden patterns from

patients’ state to final outcomes.

27



The next step is to use the training set to train a DVAE and use the validation set to prevent

overfitting during the training process. The training process is shown in Figure 3.2. The input is

the sparse graph built from the final table. The DVAE model first encodes the input into the latent

space and decodes the representation to reconstruct the sparse graph, then evaluates the

construction loss based on the input and the output. Finally, use the testing set to evaluate DVAE

performance.

Figure 3.2. Training the DVAE model

Note that the originally DVAE gives out a relevance score associated with each item and

relevance scores lies in the range (−∞,0). As a consequence, there is an extra step to normalize

relevance scores. A widely used normalization function: r(i) = r(i)−min
max−min was used in this step,

where r(i) describes the relevance of item i, max is the maximum relevance score and min is the

minimum relevance score.

3.2 Evaluation Criteria

As mentioned in Section 2.5.1, Liang et al. (2018) used NDCG@R as evaluation criteria

in their experiments and NDCG (Normalized Discounted Cumulative Gain) is commonly used to

measure how good a recommendation system is. It mainly measures two aspects:

• The degree of correlation between the series of recommended items and the users’ real

interests, which means how would a user like them given a set of recommended items.
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• How well does the order of the recommended items match users’ real interests? The reason

is obvious, most users would look through recommended items from the top to the bottom.

However, the order does not matter in this project. As a result, different from the

evaluation metrics used in Liang et al. (2018), the researcher used cross entropy loss and accuracy

as evaluation metrics for the following reasons:

• NDCG@R and Recall@R are not suitable under this circumstance as they not only consider

the relevance of the prediction and the ground-truth, buy also take the order of predicted

items into consideration as well. However, the order does not matter under such situation.

• Cross entropy loss is normally used to measure how two probabilities differ from each

other. After the normalization step mentioned in Section 3.1.2.2, relevance scores lie in the

range [0,1] which can be considered as probabilities.

3.3 Handling the Imbalanced Data

Due to the reason that the outcome dataset is highly imbalanced, the model would tend to

predict one class over the others. Table 3.5 shows the summary of the validation set and the test

set. The sizes of validation set and test set are both 458. It is easy to see 2 characters:

1. The number of non-empty records in 2 years is much greater than the number of non-empty

records in 5 years, and the number of non-empty records in 5 years is much greater than the

number of non-empty records in 10 years.

2. The number of false is much greater than the number true for all 3 classes.

The above characters would cause the class year2 f alse dominate the prediction. In order

to solve this problem, weights need to be added to each class. The weight of each class can be

calculated by:

w(i) =
1
ni
× N

M
(3.1)
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Table 3.5. Summary of the validation set and the test set

year2 ture year2 false year5 true year5 false year10 true year10 false

Validation set 34 424 54 262 80 97
Test set 60 398 105 219 136 78

Figure 3.3. Weights of each class

where w(i) is the weight of the ith class. ni is the number of occurrence of the ith class. N

is the sum of nis and M is the number of classes. Figure 3.3 illustrates weights of each class to

balance the impact.

Additionally, downsampling is an alternative method that randomly picks a similar size of

training data from the larger class (Provost, 2000). In this way, the dataset becomes balanced and

no class dominates the prediction.
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3.4 Summary

The proposed methodology and evaluation criteria are described in this chapter. Due to

the imbalanced data, techniques to prevent one class dominating the prediction is also introduced.

The next chapter shows empirical results.
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CHAPTER 4. EXPERIMENTS

This chapter provides experiments design and empirical results. The experimental setup,

including the environment, the baseline model and evaluation metrics are introduced in this

chapter. In addition, empirical results are given and the interpretability is disscussed.

4.1 Experimental Setup

This section describe the experimental setup, including the environment,

hyper-parameters, the baseline model and evaluation metrics used in experiments.

4.1.1 Environment

All the experiments were run on a personal laptop, 2 2017 Apple MacBook Pro with a 2.3

GHz Dual-Core Intel Core i5 processor, 8GB memory and 256GB SSD running on MacOS 12.0.

The DAVE model was built based on Tensorflow 1.14.0. The DVAE was trained using CPU-only.

The Python version was 2.7.6, running in an Anaconda virtual environment.

4.1.2 Hyper-parameters

Table 4.1 shows the hyper-parameter values that gave the best results in experiments.

Since some of them affected the accuracy and the cross entropy loss significantly, the researcher

chose a set of values for some of them and evaluated the different combinations.

Considering the fact that all experiments were run on a personal laptop using CPU only, it

took less than 10 minutes to train all the models. The time efficiency of the model was acceptable.
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Table 4.1. Values of hyper-parameters

Parameter Meaning Value

epoch Number of training epochs 200
batch Training batch size 500
lr Initial learning rate 10−3

rg L2 regularization 0
keep Keep probability for dropout 0.5
beta Strength of disentanglement 0.2
tau Temperature of sigmoid/softmax 0.1
std Standard deviation of the Gaussian prior 0.075
kfac Number of facets (macro concepts) 7
dfac Dimension of each facet 100
nogb Disable Gumbel-Softmax sampling False
seed Random seed 98765

4.1.3 Baseline

The DVAE was compared with a random forest classifier. In order to fit a random forest

classifier, the dataset needs some transformation. Similar to 3.1.2.1, the raw data needs to be

processed in the following steps:

1. For each type of examination of each patient, filter all the data points after the baseline age

and calculate the mean.

2. According to classification standards, classify each mean value calculated in the previous

step to a certain class.

3. Fill out any empty class with 0.

4. Classify the outcome vectors.

The hyper parameters used in the random forest model were set to default except the

max depth was set to 30. The default values are given in Table 4.2.
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Table 4.2. Default parameter values used in the random forest

Parameter Default value

n estimators 100
criterion gini
min samples split 2
min samples leaf 1
min weight fraction leaf 0.0
max features auto
max leaf nodes None
min impurity decrease 0.0
bootstrap True
oob score False
n jobs None
random state None
verbose 0
warm start False
class weight None
ccp alpha 0.0
max samples None

4.1.4 Evaluation Metrics

4.1.4.1 Accuracy

One important criteria is accuracy. Accuracy of each class, i.e. year2, year5, year10, and

overall accuracy were measured. The method used for calculating the accuracy was defined as:

Considering year2, year5 and year10 are 3 separate classes and for each:

acc =
Number o f right predictions

Number o f patients
(4.1)

4.1.4.2 Cross Entropy Loss

As mentioned in Section 3.2, cross entropy loss was used to measure the difference

between predictions and groundtruths. For the prediction vector p and the groundtruth vector q,

the cross entropy loss was calculated by:
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L(p,q) =−∑
x

p(x) logq(x) (4.2)

Confusion Matrix, precision, recall, and F-1 score were evaluated in experiments as well.

4.2 Results

4.2.1 Empirical Results

Figure 4.1 illustrates training logs. The cross entropy loss was less than 0.15 on the

validation set and droped after around 100 epochs. On the test set, the accuracy of each class and

the overall accuracy are given in Table 4.3.

Figure 4.1. Tensorboard training logs

As mentioned in Table 3.5, year2 data points are much more than year5 data points and

year5 data points are much more than year10 data points. It is reasonable that the accuracy of

year2 class is the highest. Besides, because of the same reason, even though the accuracy of

year10 class is pretty low, the overall accuracy is still acceptable.

35



As for applying downsampling to balance the dataset, due to the lack of training data, the

accuracy was not desirable. Since adding weights outperformed downsampling, the following

experiments were based on the adding weights approach.

Table 4.3. The accuracy of adding weights and downsampling

Class Accuracy (adding weights) Accuracy (downsampling)

Year2 0.86900 0.59639
Year5 0.73148 0.48795
Year10 0.86916 0.38554
Overall 0.87363 0.48996

As mentioned previously, hyper parameters used in tuning the model affected the accuracy

significantly. A set of values were selected to find the model with the best performance. Table 4.4

shows values of parameters and corresponding results. When one parameter varied, all other

parameters were fixed.

Table 4.4. The accuracy of using different hyper parameters

Epoch Learning rate
50 100 200 1e−4 1e−3 1e−2

Year2 acc 0.84061 0.86900 0.86900 0.79258 0.86900 0.85153
Year5 acc 0.66975 0.67593 0.73148 0.63889 0.67593 0.63580
Year10 acc 0.38785 0.57944 0.86916 0.37850 0.57944 0.72897
Overall accuracy 0.77111 0.81441 0.87363 0.72999 0.81441 0.81732
Cross entropy loss 0.15886 0.12753 0.08999 0.22127 0.12753 0.09038
Training time (seconds) 142.03 302.16 524.94 313.38 302.16 203.732

Figure 4.2, Figure 4.3 and Figure 4.4 visualize the prediction results on test set. Each row

represents a patient. Rows are hierarchical clustered. In Figure 4.2, it is noticeable that for the vast

majority of patients, the probability of being predicted to be false is greater than the probability of

being predicted to be true. Besides, as time increases, the confidence level also decreases.
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Figure 4.2. Raw visualization of CKD progression risk. The label in each row
represents the index of the patient, and the shade of the color represents the

confidence level of the label.

Figure 4.3 illustrates the true/false ratio of each class. The value log2(
true
f alse) is positive if

the number of patients predicted to be true is larger than the number of false, and negative

otherwise. It is clear that the majority is negative except a part of class year10.

It is even clearer in Figure 4.4 which is binary, i.e. 1 if the possibility of true is greater

than that of false, 0 otherwise. As shown in Figure 4.4, the majority is black which means 0.

Figure 4.5 shows predictions made by the DVAE model the random forest classifier. They

both tended to predict all inputs to a single class which still affected by the imbalanced dataset.

Figure 4.6 gives out their classification reports. As mentioned in the precious chapters, although

the random forest model outperformed the DVAE model, people cannot fully trust it because it is

not interpretable.
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Figure 4.3. Prediction of CKD progression risk. The label in each row represents the
index of the patient, and the shade of the color represents the confidence level of the

label.

4.2.2 Interpretability

As mentioned in previous chapters, the interpretability is of great significance in the

medical field. The DVAE model has inherent advantages being interpretable. As described in

Figure 2.1, the input data can be encoded to some latent space features that reveal the hidden

relationship among clinical variables. As shown in Figure 4.7, given the input graph x containing

the a patient and their states, the encoder compressed it into the latent space. Vectors in the latent

space had multiple dimensions and each dimension was expected to represent some information

interpretable to human beings.
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Figure 4.4. Prediction of CKD progression. The label in each row represents the
index of the patient, and the shade of the color represents the confidence level of the

label. The labels are binary, so any value is either 0 or 1.

The researcher gradually changed one dimension in the latent space. Specifically, the

researcher set 5 different values from the minimal to the maximal and fixed all other dimensions.

Then took these 5 feature vectors as input, and used the decoder to reconstruct the relationship

graph from the patient to states. Thus, 5 reconstructed graphs were generated. The researcher

repeated the process on 2 more dimensions.

Figure 4.7 shows the results, each figure representing the results of changing one

dimension. Taking the figure on the top as an instance, predicted confidence levels for each state

were grouped together. The abscissa represents the indices of the feature, and the ordinate

represents the predicted confidence levels. Most features were affected little, e.g. the 18th variable

CHOLESTEROL 2, while some features were affected significantly, e.g. the 22nd variable
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Figure 4.5. Confusion matrix
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Figure 4.6. Classification reports

CHOLESTEROL 2. Besides, the 5 corresponding predictions on the CKD event occurring time

were: (1) less than 2 years; (2) 2 years to 2-5 years; (3) 5-10 years; (4) 2-5 years; (5) 2-5 years.

This first increasing and then decreasing trend happened to be the opposite of the 22nd variable

which first decreased and then increased, which might imply they have the hidden relationship.

Similar relationships appeared as well in the other two figures in Figure 4.7.

4.3 Summary

Empirical results are given in this chapter. The DVAE model is compared with the random

forest classifier and apparently outperforms it. In addition, the interpretability of the DVAE model

is also discussed in this chapter.
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Figure 4.7. Reconstructed representations. The abscissa represents the indices of the
feature, and the ordinate represents the predicted confidence levels.
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CHAPTER 5. SUMMARY AND FUTURE PLAN

5.1 Summary

In this paper, the problem of disentangled representations learning was studied. The

researcher adopted a disentangled representation learning model in the medical field, building a

DVAE model that predicts the CKD progression as well as reveals the relationship between

clinical variables and the CKD progression. The DVAE model was compared with a baseline

model in terms of the evaluation criteria.

Chapter 1 gave an introduction of the research question. It introduced the background of

the problem, states the issues existing in the current situation, and explained the research

significance, assumptions, limitations, and delimitations.

Chapter 2 reviewed the related research works, providing the necessary background

theologies. First, it reviewed recent works studying the COVID-19 sequelae. These works proved

that the problem studied in this project indeed existed. In addition, state-of-art machine learning

models used in the medical field were also reviewed in this chapter. However, they were not

interpretable which was the research gap filled up in this study.

Chapter 3 described the proposed solution. It first presented the dataset used in

experiments. Second, it introduced the data preprocessing procedure. Third, It described the

structure of the proposed model and the criteria used to evaluate the model. Additionally, in order

to handle the imbalanced data, two methods were introduced in this chapter.

Chapter 4 evaluated the proposed approach and compares it with the baseline model. First,

it introduced the experimental setup and the baseline model as well as the evaluation metrics.

Second, it presented the experimental results including the accuracy, the cross entropy loss,

training logs, the visualization of CKD progression risk and the running time. Besides, it

discussed the interpretability of the DVAE model, proving that the DVAE model outperformed the

baseline model.

Chapter 5 summarized the thesis and discussed plans for the future work.

In terms of the research questions proposed in Chapter 1, they now can be answer here:
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1. The proposed method based on a variational autoencoder took clinical variables as inputs

and predicted CKD progression risk as described in previous chapters.

2. As shown in Chapter 3, changing one dimension in the encoded vector resulted in some

values changing and some remaining same. Certainly, those clinical variables might have

hidden relationships.

3. As shown in Chapter 3, changing one dimension in the encoded vector resulted in

predictions changing as well. Besides, they shared a similar pattern with some clinical

variables. On the other hand, it can be understood as: if those variables change in this way,

the prediction will be as above.

5.2 Future Plan

The future plan mainly includes the following two aspects:

1. As mentioned earlier, because the dataset is imbalanced, the empirical results are not good

enough for some classes. This paper has tried adding weights to balance, but the effect is

not very significant. The researcher considers exploring other methods in the future or

trying to obtain a more ideal dataset.

2. In Section 4.2.2, the researcher has demonstrated that gradually changing a dimension in

the latent space will affect some features in the reconstruction. Besides, some patterns are

observed. The researchers plan to take advantage of medical knowledge in the future to

explain the meaning of these changes and their impact on patients.
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