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GLOSSARY 

Amplitude – “The maximum displacement or distance moved by a point on a vibrating body or 

wave measured from its equilibrium position” (Britannica, The Editors of Encyclopedia 

(n.d.)) 

 

British Thermal Unit (Btu) – “The quantity of heat required to raise the temperature of one pound 

of water one degree Fahrenheit at a specified temperature” (Merriam-Webster (n.d.)) 

 

Disruptive innovation – A service, product, or innovation which increases accessibility and 

affordability to a wider population, competing against and displacing proven rivals 

(Christensen, Raynor, & McDonald, 2015) 

 

Frequency – “The number of waves that pass a fixed point in unit time; also, the number of cycles 

or vibrations undergone during one unit of time by a body in periodic motion” (Britannica, 

The Editors of Encyclopedia (n.d.)) 

Industry 4.0 – “The fourth revolution in manufacturing adopting automation for “smart and 

autonomous systems fueled by data and machine learning” (Marr, 2019) 

Internet of Things (IOT) – “The networking capability that allows information to be sent to and 

received from objects and devices (such as fixtures and kitchen appliances) using the 

Internet” (Merriam-Webster (n.d.)) 

 

Metric – “A standard of measurement” (Merriam-Webster (n.d.)) 

 

Resonance – “A vibration of large amplitude in a mechanical or electrical system caused by a 

relatively small periodic stimulus of the same or nearly the same period as the natural 

vibration period of the system” (Merriam-Webster (n.d.)) 

 

Turbine generator (TG) – “an electric generator driven by a steam, gas, or hydraulic turbine” 

(Merriam-Webster. (n.d.)) 

 

Watt – “the absolute meter-kilogram-second unit of power equal to the work done at the rate of 

one joule per second or to the power produced by a current of one ampere across a potential 

difference of one volt: ¹/₇₄₆ horsepower” (Merriam-Webster. (n.d.)) 

  

https://www.merriam-webster.com/dictionary/equilibrium
https://www.britannica.com/science/wave-physics
https://www.britannica.com/science/periodic-motion
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ABSTRACT 

Equipment health is the root of productivity and profitability in a company; through the 

use of machine learning and advancements in computing power, a maintenance strategy known as 

Predictive Maintenance (PdM) has emerged. The predictive maintenance approach utilizes 

performance and condition data to forecast necessary machine repairs. Predicting maintenance 

needs reduces the likelihood of operational errors, aids in the avoidance of production failures, and 

allows for preplanned outages. The PdM strategy is based on machine-specific data, which proves 

to be a valuable tool. The machine data provides quantitative proof of operation patterns and 

production while offering machine health insights that may otherwise go unnoticed.  

Purdue University’s Wade Utility Plant is responsible for providing reliable utility services 

for the campus community. The Wade Utility Plant has invested in an equipment monitoring 

system for a thirty-megawatt turbine generator. The equipment monitoring system records 

operational and performance data as the turbine generator supplies campus with electricity and 

high-pressure steam. Unplanned and surprise maintenance needs in the turbine generator hinder 

utility production and lessen the dependability of the system.  

 The work of this study leverages the turbine generator data the Wade Utility Plant records 

and stores, to justify equipment care and provide early error detection at an in-house level. The 

research collects and aggregates operational, monitoring and performance-based data for the 

turbine generator in Microsoft Excel, creating a dashboard which visually displays and statistically 

monitors variables for discrepancies. The dashboard records ninety days of data, tracked hourly, 

determining averages, extrema, and alerting the user as data approaches recommended warning 

levels. Microsoft Excel offers a low-cost and accessible platform for data collection and analysis 

providing an adaptable and comprehensible collection of data from a turbine generator. The 

dashboard offers visual trends, simple statistics, and status updates using 90 days of user selected 

data. This dashboard offers the ability to forecast maintenance needs, plan work outages, and adjust 

operations while continuing to provide reliable services that meet Purdue University’s utility 

demands. 
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CHAPTER 1. INTRODUCTION 

Chapter One described the problem, purpose, and research questions posed while creating 

a dashboard using Microsoft's Excel, specific to the maintenance and monitoring needs of a turbine 

generator. This chapter described the research's scope and significance, through the lens early error 

detection and the benefits of predictive maintenance strategies. Finally, Chapter One detailed the 

assumptions, limitations, and delimitations encountered.  

1.1 Problem Statement 

Equipment maintenance plays a critical role in the reliability and efficiency of a facility's 

production as the U.S. Census Bureau estimates that manufacturers spent $240 million on 

maintenance and repair in 2018 (Annual Survey of Manufacturers: Summary Statistics for Industry 

Groups and Industries in the U.S.: 2018., 2018). Machine health is the root of optimal production. 

Malfunctions, unplanned shutdowns, and inadequate funding lead to catastrophic production 

failures (Douglas, 2018) while wasting time, money, and labor hours. The world has undergone 

three industrial revolutions, each powered by disruptive innovation. The steam engine, the 

assembly line, and the high-speed computer not only transformed work and production efficiency 

but forever altered the work process (Munirathinam, 2019). Founded in the Industrial Internet of 

Things (“IoT”), Industry 4.0, builds on computer technology, focusing on machine learning and 

interconnectivity. The Industrial IoT links physical systems and cyber data, resulting in what is 

referred to as "big data.” The key benefits of big data lie in its volume, velocity, and variety. The 

quantity, speed of accessibility, and the assortment of variables available offer a wealth of 

company-specific knowledge as they reveal patterns, trends, and faults (Munirathinam, 2019). Big 

data insights can also forecast production disturbances, finding discrepancies in data while in 

minute stages.  Big data predictions allow for planned maintenance needs, lessening the likelihood 

of catastrophic disruptions and justifying machine care.  

The availability and reliability of equipment is largely dependent on the quality of 

maintenance the system receives. When correcting failures, maintenance is nearly always in 

reactive mode, as companies focus on "what can we do" to repair failures as opposed to "what 

should we do" means of prevention (DeGrendel, 2018). Predictive maintenance is a condition-
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based strategy. Machine-specific data can alert personnel to impending faults, allowing time to 

plan and execute maintenance repairs before errors impact production (Douglas, 2018). 

The Wade Utility Plant is responsible for providing reliable energy and utility services to 

Purdue University’s campus. The first step in reliable services is ensuring the health of equipment. 

The Wade Utility Plant has condition-based data readily available for Turbine Generator One 

(TG1) but does not have predictive analytics, as these software packages are costly to install and 

maintain. The problem addressed in this study is how to leverage existing big data to forecast 

maintenance needs in a cost-effective and accessible manner.  

1.2 Purpose 

The Wade Utility Plant collects a multitude of data for the utility plant through OSIsoft's 

PI System, consulting historic data for operational purposes. However, Wade does not monitor nor 

analyze equipment data with the intention of maintenance predictions. Aggregating and navigating 

large volumes of data, while looking for useful insights, can be challenging and costly. The purpose 

of this study is to design and create a platform for Wade Utility Plant's TG1, monitoring conditional 

and operational data for early error detection. This dashboard promotes the ideals of predictive 

maintenance (PdM), offering an analytic platform that is accessible, comprehensible, and adaptive.  

1.3 Significance 

Initial startups of PdM programs are expensive, though forecasting maintenance offers a 

competitive advantage. A Deloitte report finds that PdM programs offer a 5-10% cost savings in 

both operations and maintenance (Coleman et al., 2017) and the Department of Energy finds 

implementing a PdM program has the potential to save 30-40% based on reliance and material 

conditions when compared to reactive maintenance programs (Sullivan et al., 2010). The 

significance of this study show that big data and maintenance predictions are achievable at an in-

house level. The dashboard provides data-centric and justifiable proof of TG integrity, while 

maintenance forecasts strengthen production reliability and financial planning logistics. 
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1.4 Research Questions 

The problem addressed in this study was how to leverage a turbine generator’s big data to 

forecast maintenance needs cost-effectively and accessibly. The purpose of this study was to 

design and create a platform for Wade Utility Plant's TG1, monitoring conditional and operational 

data for early fault detection. 

 

1. What are the variables and critical metrics needed to justify quality maintenance in a 

turbine generator? 

 

2. What is an accessible, comprehensive, and adaptive way to leverage big data for the 

intention of predictive maintenance in a turbine generator? 

1.5 Scope 

The work in this study utilizes big data collected from a turbine generator, creating an 

operational and performance dashboard, which alerts to up-coming maintenance needs. The 

dashboard's purpose is to provide a simplified summary of monitoring, operational, and 

performance data in an accessible and low-cost fashion. The intent is to navigate big data to create 

a dashboard that is user-friendly yet comprehensive, justifying TG health and service 

dependability. The scope of this study investigates the key metrics needed to justify the 

maintenance needs of a turbine generator. Data from vibration, temperatures, flow rates, pressures, 

velocities, electrical power production, and heat rate is trended and analyzed in the dashboard.  

1.6 Limitations 

The data collected from PI historian was assumed accurate, based on the Wade Utility 

Plant's operating standards. Data used to create the dashboard is historical and real-time, collected 

from PI Data Archive input into Microsoft Office’s Excel. The scope of this research has no input 

on system or sensor calibrations, instrument precision, sensitivities, or monitoring equipment 

accuracy. Variable conversion and signal processing for data acquisition and transmission are 

unknown. Discrepancies in transmission, collection, and operating strategies may cause the 

dashboard to display errors, as the dashboard may not have access to a complete set of data for the 
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chosen variables. Data has the potential to be inaccurate or missing from the dashboard due to 

programing and rounding errors, in sensors, calibrations, transmission, and display. While the 

dashboard is adaptable and sizable, the memory, analytic functions, and computing capabilities are 

limited to the capabilities available in Microsoft Excel.  

1.7 Delimitations 

The scope of this research study contains specific operation and performances monitoring 

metrics available for TG1. These boundaries are set forth under the research and recommendations 

of existing industry maintenance techniques, operational reporting for turbine generators, and by 

actual operation and reporting needs at the Wade Utility Plant. Metrics recorded in this research 

are machine specific and made available through OSIsoft’s PI. The discrepancies and errors 

reported by the dashboard prove noteworthy as the data is sourced from historic and real-time 

operation and production. Justifying TG1’s health using quantifiable data aids proper performance 

and provides alerts to impending maintenance needs. 

The computing and representation of available data for the dashboard is programmed and 

presented using Microsoft's Excel. Employees who have access to PI system database and Excel 

will have the ability to access the dashboard. Employees at the Wade Utility Plant have varying 

levels of statistical knowledge. The analytics of the dashboard are kept simple and straightforward 

to provide inclusivity and comprehensibility across varying departments.  

1.8 Chapter One Summary 

Chapter One summarized the problem of leveraging big data for useful maintenance 

insights. The chapter described the purpose and significance of this research, as the dashboard can 

justify TG1 reliability, while alerting to data discrepancies. Finally, the chapter detailed the scope, 

limitations and delimitations encountered while designing and building a predictive maintenance 

minded dashboard for Purdue University's Wade Utility Plant. Chapter Two presents the literature 

review, investigating industry recognized maintenance programs, maintenance program 

importance, the principles of equipment testing and the recommended turbine generator 

maintenance practices.  



 

16 

 

CHAPTER 2: REVIEW OF LITERATURE 

Chapter Two provided an overview of industry-recognized maintenance programs, 

machine maintenance testing procedures and data collection, maintenance program missions, and 

professional suggestions for the successful transmission and incorporation of predictive 

maintenance programs and techniques. Finally, the review of literature concludes by detailing the 

the functions, operations, and integral component of a steam turbine generator, as well as 

reviewing industry-suggested maintenance practices to ensure care of a turbine generator. 

2.1 Background 

A widespread issue in machine maintenance programs is ineffective management, as a 

lack of quantifiable machine data exists to justify systems and equipment repairs. With rapidly 

changing technology and increased competition, it is beneficial to a company to ensure that vital 

equipment is maintained appropriately (Gilabert et al. 2017). Ineffective maintenance strategies 

have grave impacts, as improper or unnecessary work results in the loss of time, money, and 

potential production (Mobley, 2002). Maintenance programs use statistical and time-based 

trends, (“runtime”), or failures to establish a baseline for proper operating performance. Industry 

4.0 and automated processing have made great strides in data availability, allowing constant 

collection for individual components, machines, systems, and processes (Mobley, 2002; Passlick 

et al., 2020). 

2.2 Industry Recognized Maintenance Programs 

Ensuring vital equipment is appropriately maintained, is to a company’s benefit, in order 

to protect infrastructure, and remain competitive. A well-organized and robust strategy for 

maintenance can help identify failures and be useful in time-based replacement for passing 

inspections, extending warranties, and ultimately ensuring the function and safety of components 

(Gilabert et al. 2017). There, are five commonly recognized maintenance schedules in the industry: 

corrective maintenance, predetermined maintenance, condition-based maintenance, preventive 

maintenance, and predictive maintenance.  
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Corrective maintenance restores a broken component to working order, and it is reactive, 

meaning it happens after an active fault occurs (Swanson, 2001). Corrective maintenance plans 

break down into four corrective action patterns; immediate, deferred, planned, and unplanned 

(Corrective maintenance comparisons, n.d.). In immediate corrective maintenance, actions to 

restore the component take place as soon as possible (Bengtsson & Lundström, 2018). Deferred 

corrective maintenance allows for delays, meaning after an issue has occurred, repairs may not be 

deemed critical and allow for prioritization (Bengtsson & Lundström, 2018). Planned corrective 

maintenance occurs when a piece of equipment is deliberately run to failure (Stenström et al., 

2015). Finally, unplanned corrective maintenance occurs when errors are unavoidable, meaning a 

piece breaks unexpectedly and must be fixed quickly (Christiansen, 2019). Corrective maintenance 

requires organization, as it is retroactive and presents planning challenges. Company 

communication is vital; problem identification and reporting must be efficient, and maintenance 

personnel needs access to detailed problem reports, previous repair history, and equipment 

manufacturer specifications (Wang, Deng, Wu, Wang, & Xiong, 2014). Attention to past 

maintenance, correct part replacement, and proper organization will help safeguard that a repair 

occurs correctly (Wang, Deng, Wu, Wang, & Xiong, 2014). 

Condition-based maintenance programs rely on data collection, assessment, and 

maintenance actions specific to a machine's needs. This strategy is deployed in intervals of time 

and operation or can be done in a continuous fashion. Condition monitoring, in physical and 

operational assessments, uses maintenance-testing techniques to determine needed maintenance 

repairs (Condition Based Maintenance & Monitoring (CBM Maintenance,) n.d.). When applied 

correctly, condition-based maintenance is a resource-consuming and expensive maintenance 

approach, but discrepancies and faults are discovered early, minimizing unplanned downtime 

(Jardine, Lin, Banjevic, 2005). 

Predetermined maintenance is scheduled based on fixed intervals, regardless of 

equipment's needs or operation. Predetermined maintenance plans are baselined from 

manufacturers' specifications or suggestions, frequently found through the statistical analysis of 

run time; an example of this would be "mean time to failure" found in reliability testing (Malik, 

1979; Bengtsson & Lundström, 2018). Creating a company maintenance schedule with this data 

can hypothesize when general repairs, part replacement, or overhaul may be necessary (Au-Yong, 

Shah Ali, & Ahmad, 2016). The predetermined maintenance approach is machine-specific, but 
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testing conditions in a lab may vary from the stresses a machine experiences in the field (Malik, 

1979). As this program lacks company-specific operational use patterns, maintenance repairs 

waste time, money, and resources fixing a component that may not need repair (Bengtsson & 

Lundström, 2018).   

Preventative maintenance keeps a record of the machine's operation, and its past 

maintenance history to manage scheduled outages and repair (Arno, Dowling, & Schuerger, 2015). 

Preventative maintenance is a proactive strategy, though it involves extensive planning, both long 

and short-term (Arno, Dowling, & Schuerger, 2015). Preventative maintenance follows two paths, 

time-based, and usage based. Time-based preventative maintenance occurs on a scheduled interval 

(Shang et. al, 2018). In contrast, usage-based preventative maintenance will be specific to the 

machine's workings or production at specified limit (Shang et. al, 2018). Parameters must be 

adjusted to fit a company's needs and based on criticality. This strategy is time-intensive; if faults 

go unnoticed, unreported, or under-serviced, assets will fail (Trout, 2008). The reactive 

maintenance in these situations is costly and may affect a system (Arno, Dowling, & Schuerger, 

2015). 

Predictive maintenance utilizes computerized learning to analyze machine health by 

monitoring data, creating trends, and identifying patterns in machine data (Sagnier, 2019). 

Predictive programs alert to deviations in data, giving advanced warning to a machine’s future 

maintenance needs (Selcuk, 2016; Persigehl, Gellermann, Thumm, & Stoiber, 2020). This program 

is possible through Industry 4.0's big data analysis, as continuous monitoring facilitates better 

management and control of machine wear (Passlick et al., 2020). While implementing this 

technology is time-intensive and has high up-front costs; it allows for real-time planning catered 

to a machine's needs, eliminating excess or redundant maintenance work. Predictive maintenance 

practices, because they are based in machine-specific data, offer quantifiable proof of equipment 

condition, and give advanced warning for future needs (Persigehl, Gellermann, Thumm, & Stoiber, 

2020). 

2.3 Maintenance Program Impacts 

  Maintenance management is essential to proper function and productivity. Not only does 

machine care affect the reliability and quality of functions, but it also allows for competitiveness 

and profitability in the marketplace (Swanson, 2001). A maintenance program's objectives are to 
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ensure the safety and dependability of components and systems while also facilitating proper 

outage planning and financial planning (Stenström et al., 2015). Previously, middle, and corporate 

level management viewed maintenance as a "necessary evil" with focused efforts on product 

quality, production costs, and ultimately profitability (Mobley, 2002). Predicated data, such as a 

company’s expected output, manufacturers' recommendations, and failure rates were previously 

the center of maintenance scheduling, though the integration of computing powered 

instrumentation in machining operations has changed this mindset (Mobley, 2002). This 

instrumentation provides the means to explore operations, showing real-time machine-specific 

data, leading to predictive maintenance strategies (Persigehl, Gellermann, Thumm, & Stoiber, 

2020).    

Abnormalities in performance reduce productivity, lessen reliability, produce unforeseen 

expenses, and threaten safety (Mobley, 2002). A well-organized predictive strategy is more 

profound than just a computerized data collection system, as predictive technologies fill the critical 

void of unknown performance (Swanson, 2001). However, switching from or between 

maintenance strategies is challenging, as the perceptions of data analysis must be broken down 

and explained as an instrument for optimizing success (Bengtsson & Lundström, 2018). To 

corporate-level management, machine runtimes, failure data, and machine histories just data 

(Mobley, 2002). With little maintenance knowledge, management may not see the insights this 

data holds. Data collection and analysis are the founding principles, but correct usage and 

implementation produce results (Bengtsson & Lundström, 2018). Maximizing the efforts of 

predictive maintenance tools involves management strategy, provided support, and continued 

maintenance actions. 

2.3.1 Maintenance Mission 

Predictive maintenance technologies change the ideals behind maintenance programs. The 

focus of maintenance is no longer centered on "fixing" a system that is broken, but rather changes 

focus on "prevention and mediation" of losses caused by operational errors (Mobley, 2002).  

Pertinent data must be available to ensure proper care and baseline future work. The 

maintenance must be specific for the system, done efficiently, and most importantly, be correct. A 

company must have spare part planning available and work with vendors for suitable replacements, 

as well as with outside companies for efficient repair turnarounds (Silaipillayarputhur, 2016). This 
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may also mean optimizing available resources, such as planning for systems to run alternatively 

or creating backup operations when a system needs maintenance. Sustained up-keep on new 

practices and techniques or relative maintenance technologies is beneficial (Bengtsson & 

Lundström, 2018). Finally, having a trained, well-versed maintenance staff to fix found issues is 

key (Levitt, 2011). Cross-training, continued training, and refresher training courses should be 

made adequately available and required for technicians at hand. Growth in a predictive 

maintenance strategy will mean reviewing existing maintenance practices, reliability studies, 

safety programs, and training for dependable use of existing equipment (Silaipillayarputhur, 2016; 

Bengtsson & Lundström, 2018). When management, personnel, funding, and maintenance come 

together in an organized and motivated manner, a maintenance program's benefits emerge (Levitt, 

2011).  

2.4 Machine Maintenance Testing Methods  

Machine maintenance testing is the foundation for robust maintenance programs. Machine 

maintenance verifies assets' health using scheduled monitoring, issue investigation, and problem 

resolution (QA Platforms, 2019). Machine testing is versatile, being scaled and performed to fit 

maintenance needs. Testing routines may encompass entire systems, individual pieces of 

equipment, or specific components. Testing can be invasive, meaning a system shuts down to run 

machine diagnostics, or noninvasive, as a system maintains its operation during an inspection (QA 

Platforms, 2019).  

2.4.1 Vibration Analysis 

Vibration analysis measures a rotating component's vibration signatures, looking at the 

amplitude and frequency of a specified period's waveforms (Petherus, Nirbito, & Nurhantoko, 

2019). This data is analyzed with computer algorithms, and trained vibration experts can 

pinpoint issues on specific components (Reimche et. al., 2003; Soliman, 2021). 

Vibration testing is often applied to monitor gears, bearing impellers, or motors, granting 

insight into wear conditions, or degradation that may go unnoticed (Soliman, 2021). Vibration 

formulas use rotations per minute and the count of bearing balls or rollers, gear teeth, pump 

cylinders, or turbine blades (Vibration Analysis n.d.). One example of vibrational diagnostic 
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testing is the identification of vibration peaks produced during operational running speeds. These 

integer vibrational peaks may signify imbalance, misalignment issues, or looseness. In contrast, 

non-integer peaks found in higher intervals of this speed suggest bearing wear issues (Vibration 

Analysis n.d.). Aside from misalignment and imbalance, vibration monitoring can find bending, 

eccentricity (off-set from center,) looseness, resonance, and wear, though analyzing these readings 

may not always be so straightforward (Reimche et. al., 2003). When using vibration monitoring in 

predictive maintenance practices, the key to proactively detecting potential issues is creating a 

robust baseline system of operational measurements used in comparisons (Trout, 2019). 

Establishing this baseline occurs through regular testing, trending, and tracking of equipment in 

operation. It may be done by equipment walk-throughs of vibration technicians or with fixed 

analyzer equipment that collects readings continuously (Trout, 2019). Vibration monitoring is both 

proactive and retroactive, employed to find and diagnose problems for preventative and corrective 

practice (Reimche et. al., 2003). Today, with the continuous real-time collection, data aggregation, 

and predictive analytics, this form of testing is transforming proactive strategies. By trending 

frequency patterns, small deviations in the waveform can be monitored and tracked, predicting 

impending operation failures well in advance (Reimche et. al., 2003). 

2.4.2 Oil Analysis 

Oil analysis tests both physical and chemical properties of lubrication conditions and 

indicates a machine's health. In this analysis, lubricants are tested for degradation and 

contamination, such as acidity, particle count, water content, and viscosity (Fitch, 2013). Samples' 

findings can also indicate specific machine-wear issues through concentration, size, color, and 

shape of debris found (Fitch, 2013). Sample findings can also include identification of abrasion, 

sealing wear, corrosion, and cavitation (Soliman, 2020) Oil sampling can occur when a component 

is running, as it is noninvasive.  

When creating a maintenance plan involving lubrication monitoring, it is essential to keep 

sampling collection places and procedures identical, such as the location, operating conditions, 

and environment, and to avoid external contamination (Fitch, 2013). The samples' reports get 

tracked and recorded in predictive strategies (Soliman, 2020). In conjunction with other testing 

techniques and maintenance records, wear patterns and degradation may show associations and 

insights into a machine's malfunctions or needs (Soliman, 2020). 
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2.5 Turbine Generator 

A steam turbine generator converts the fluid energy of steam into mechanical energy, 

where, in conjunction with an alternating current (AC) generator, it gets converted into electrical 

energy. Fluid energy breaks down into three forms: speed (kinetic), pressure, and temperature, all 

of which significantly impact a steam turbine's design (Steam Turbine Basic Parts, 2018).  

The mechanical aspects simplify into four parts the casing, the shaft, the rotors, and the stators. 

The shaft runs lengthwise and has rotors attached, which are fin-shaped blades blasted by steam 

(Landis F., Budenholzer R., 2017). The rotors' airfoil design creates a pressure difference, inducing 

a lift force that propels the blades, allowing for rotation of the shaft. As these blades absorb the 

fluid energy, it is turned into mechanical energy as the shaft rotates (Maheshwari & Singh, 2019). 

Within this system, as the fluid energy is converted, speed, pressure, and temperature decrease. 

The steam's velocity powers the system's rotations, and to optimize the rotation of the shaft, 

velocity must be maintained to produce enough lift force throughout the system. To increase the 

velocity of this steam after its rotor impact, there are stationary stators attached to the casing of the 

machine (Landis F., Budenholzer R., 2017). They are also aerodynamically designed, taking the 

steam off the rotors, and essentially act as nozzles. Flow area decreases as steam rushes through 

the stators, creating an increase in velocity (Maheshwari & Singh, 2019). This repetition of the 

design of the rotors and stators repetition throughout the turbine's casing optimally mediates the 

steam flow rate (Steam Turbine Basic Parts, 2018). 

As steam flows through a turbine, energy balance states that as the steam's kinetic energy 

increases, the steam's pressure and temperature will decrease, so the system energy remains 

constant (Landis F., Budenholzer R., 2017). This concept is the fundamental basis in the design of 

the turbine. As the system's pressure reduces drastically, the volume will increase, and 

accommodate for this, and so must the flow area. This effect gives the turbine its shape, as each 

series of rotors and stators increases to adjust for this, growing larger and longer towards the outlet, 

thereby mediating the flow speed (Landis F., Budenholzer R., 2017). Steam turbines design also 

breaks into stages such as high pressure, intermediate and low pressure allowing for steam 

extraction for use in auxiliary equipment and systems.  
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Figure 2.1 TG1 Installation (Wade Utility Plant, n.d.) 

The turbine generator creates electricity using an alternating current (AC) generator. The 

shaft's mechanical energy is converted into electrical energy through electromagnetic induction. 

This conversion is based on Faraday's law of induction (Electricity explained, The science of 

electricity, 2020). Inside the AC generator, a magnetic conductor attached to the turbine shaft spins 

inside a series of cylindrically wound wire coil. This action produces an electromagnetic field and 

creates a flow of electrons, thus inducing a voltage (Electricity explained, The science of 

electricity, 2020). Electromagnetism occurs between the atomic nuclei and the orbiting electrons, 

creating the force which holds the atom together. Similarly, electric charges can attract or repel, as 

do magnetic poles, with north and south seeking poles, creating a magnetic field (Electricity 

explained Magnets and Electricity, 2020). The strength of the current in the coils is proportional 

to the rate of change through the magnetic field; thus, the faster the conductor spins, the more 

electricity produced (Electricity explained, The science of electricity, 2020). 

The turbine, being a high-pressure steam vessel, needs strong support to alleviate 

extraneous forces. The three common types of bearings found within turbines are fluid-film, radial 

and thrust bearings. Fluid-film (oil) bearings have a stationary outer ring, supporting an inner ring 

which holds the turbine generator’s shaft. A film of lubricant separates the rings, enabling rotary 
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motion during operation (Bigret, 2001). Radial bearings are sets of rollers or balls encased between 

an inner ring, where the turbine shaft sits, and the outer ring braces and is attached to the supports 

(Pennacchi, 2017). When a turbine is at a standstill, the weight of the rotors can bend the shaft. 

Thus, radial bearings offer support in both axial and radial loads (Steam Turbine Basic Parts, 

2018). Thrust bearings hold the shaft in the axial direction and offer support through the various 

stages and pressure drops in the system (Pennacchi, 2017). Thrust bearings alleviate the steam's 

constant pushing pressure, keeping the rotors steady (Steam Turbine Basic Parts, 2018). 

Seals are also an essential efficiency and safety component in turbines, reducing leakage 

between the system's moving and stationary parts (Blažević, Mrzljak, Anđelić, & Car, 2019). Shaft 

seals and gland seals prevent steam leaks and unwanted air entrances from areas where the shaft 

enters or exists the casing (Steam Turbine Basic Parts, 2018; Blažević, Mrzljak, Anđelić, & Car, 

2019). Common types include carbon rings and labyrinth seals. Layers of carbon rings and garter 

springs make the carbon ring seal. As the shaft rotates, pressure creates a seal with close tolerance 

ranges, preventing leaks (Steam Turbine Basic Parts, 2018). Labyrinth seals are non-contact, using 

a passageway of various chambers and the shaft rotation to create a pressurized seal in which fluid 

cannot escape (Steam Turbine Basic Parts, 2018). The spring-loaded labyrinth seals are most 

commonly made of brass or stainless steel (Steam Turbine Basic Parts, 2018). Blade seals prevent 

leaking between the shaft and the stators and significantly impact the turbine's efficiency.  

2.5.1 Turbine Generator Maintenance 

Proper maintenance sustains proper performance. Turbines are multifaceted, and to 

maintain proper function need rigorous maintenance programs to ensure long-term performance. 

Daily maintenance monitoring tracks a system's performance, including steam flow rate, speed, 

loading, voltage, current, and power output (Akers, Dickinson, & Skooglund, 1968; Steam Turbine 

Generator Maintenance Programs, 2016). These elements allow for remote adjustment performed 

by trained operators. On-site daily maintenance includes lubrication and oil monitoring, bearing 

temperatures, bearing vibrations levels, seals conditions, inlet steam pressures, outlet steam 

pressures, and temperatures, visual and auditory walkthrough, steam leak checks, and chemistry 

checks of the boiler feed-water (Fenton, Gott, & Maughan, 1992; Steam Turbine Generator 

Maintenance Programs, 2016). Monthly maintenance includes valve trip checks, air and oil filter 

replacements, draining or replacement of bearing lubrication, and ventilation or air intake checks. 
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Annual inspections include in-depth inspections of bearing housings, pipes, filters, drains, and 

valves (Steam Turbine Generator Maintenance Programs, 2016). Maintenance checks will 

encompass mechanical and electrical conditions and testing of all instrumentation and calibrations 

(Akers, Dickinson, & Skooglund, 1968). Annual inspections encompass steam leaks, proper valve 

positioning, conduit, wiring, and insulation. Proper turbine generator maintenance includes 

tracking planned starts and stops, unplanned outages, and operating errors experienced within the 

year (Fenton, Gott, & Maughan, 1992). Proper annual maintenance offers critical information 

when planning both minor and significant system over-hauls (Steam Turbine Generator 

Maintenance Programs, 2016). 

2.6 Chapter Two Summary 

Chapter Two described industry-recognized maintenance programs, including corrective, 

predetermined, condition-based, preventative, and predictive maintenance. Chapter Two also 

described maintenance testing techniques, the importance of managerial support, and professional 

suggestions for the successful incorporation of predictive maintenance. Finally, the literature 

review also detailed the integral components and turbine generator as well as industry-suggested 

maintenance routines to ensure equipment integrity. Chapter Three will discuss the methodology 

for this research study.  
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CHAPTER 3: RESEARCH METHODOLOGY 

Chapter Three Methodology contained the elements, variables, and decisions used in 

developing a predictive maintenance dashboard for a turbine generator. The dashboard utilizes 

historical and real-time data from OSIsoft's PI System (PI System: Operational Intelligence – Data 

Infrastructure, n.d.). The predictive dashboard tracked standard operating parameters, maintenance 

data and calculates performance metrics. The research methodology presented in Chapter Three 

included the equation used for calculating heat rate, the procedures used in developing a predictive 

maintenance dashboard, and an explanation for the dashboard's implementation into standard 

maintenance practices.  

3.1 Heat Rate Computation 

The predictive maintenance dashboard's central purpose is to aggregate monitoring, 

operational, and performance data points, displaying critical metrics used to quantify the 

maintenance requirements of TG1.  Real-time and historical data used include bearing vibration 

monitoring, bearing temperature monitoring, oil sampling, operational temperatures and pressures, 

heat rate, and production. Heat Rate is a critical metric when evaluating a turbine generator's 

operational efficiency, as it is the total amount of energy required to produce one kilowatt-hour. 

Equation 1 defines the heat rate (HR) as a function of heat input (Btu) over Kilowatt output (kWh). 

The lower the heat rate of a turbine, the higher the efficiency.  

 

Heat 𝑅𝑎𝑡𝑒 =
𝐻𝑒𝑎𝑡 𝐼𝑛𝑝𝑢𝑡

𝑘𝑊 𝑂𝑢𝑝𝑢𝑡
[
𝐵𝑡𝑢

𝑘𝑊ℎ
]  

                                                                                                                                     (Eq.1) 

 

Heat input is determined by performing a heat balance around TG1 and the cooling towers 

which feed water to the system. Equation 2 defines the Heat Input Rate (�̇�𝑖𝑛) as the Work Rate of 

TG1  (�̇�𝑡𝑢𝑟𝑏𝑖𝑛𝑒) added to the Heat �̇�𝑜𝑢𝑡  dissipated by the system.  

 

�̇�𝑖𝑛 = �̇�𝑡𝑢𝑟𝑏𝑖𝑛𝑒 + �̇�𝑜𝑢𝑡    

                                                                                                                                    (Eq. 2) 
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Initial heat input occurs as TG1 receives inlet steam pressure of 650-pounds. First level 

extraction occurs as 125-pound steam is extracted from TG1. 125-pound steam is sent to campus 

for heating needs, excess is returned to the system at 15-pounds, and the system is subject to heat 

lost in condensate. Here, heat balance is defined by Equation 3.  

 

∆�̇�𝑆𝑡𝑒𝑎𝑚 = �̇�𝑡𝑢𝑟𝑏𝑖𝑛𝑒 + �̇�𝑐𝑜𝑛𝑑𝑒𝑛𝑠𝑎𝑡𝑒 

                                                                                                                                                (Eq. 3) 

 

Heat balance (Q̇) is found using mass flow (ṁ) and enthalpy (h), also known as internal 

energy plus the product of pressure and volume (Hurley & Shamieh, 2020). The heat balance for 

TG1 found in Equation 4 is found by the input of 650 psi steam (provided by boilers,) the extraction 

of 125 psi steam (for campus use,) and the input of 15 psi steam returning from campus The total 

is equal to the work done by the turbine, and the heat loss in condensate returning from campus.  

 

�̇�650ℎ650 − �̇�125ℎ125 + �̇�15ℎ15 = �̇�𝑡𝑢𝑟𝑏𝑖𝑛𝑒 + �̇�𝑐𝑜𝑛𝑑ℎ𝑐𝑜𝑛𝑑        

                                                                                                                                                 (Eq.4) 

 

Manipulating equation 4, to solve for the work rate of TG1 (�̇�𝑡𝑢𝑟𝑏𝑖𝑛𝑒) produces equation 5. 

 

�̇�650ℎ650 − �̇�125ℎ125 + �̇�15ℎ15 − �̇�𝑐𝑜𝑛𝑑ℎ𝑐𝑜𝑛𝑑 = �̇�𝑡𝑢𝑟𝑏𝑖𝑛𝑒           

                                                                                                                                                (Eq. 5) 

 

Figure 3.1 is a pictorial representation of the heat balance of TG1 at the Wade Utility plant. 

The figure shows the input of 650 psi and 15 psi steam, as well as cooling tower water inputs. The 

outputs displayed are the 125 psi steam and the condensate. 
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Figure 3.1. TG1 Heat Balance (Ramaraj, 2018) 

3.2 Turbine Generator Dashboard Data 

The predictive maintenance dashboard is a tool that trends, analyzes, and displays utility 

performance metrics for TG1. The dashboard collects and connects data points from outside 

sources, displaying the data in a central location using graphs, tables, and charts.  The data accounts 

for monitoring data, operational data, and performance data. Monitoring Data is data specific to 

machine health monitoring and contains component-specific data. Included are bearing vibrations, 

bearing temperatures, stator temperatures, seal temperatures, seal pressures, and lubrication data. 

Turbine operators do not control these data points, and deviations from expected conditions 

indicate the need for maintenance. Operational data is data specific to production processes. These 

include hot well level, valve throttle, water tower flow, steam temperature, and steam pressures. 

Operators can control these data points, though the data points should not experience fluctuation 

unless the system is purposely altered. Variations in this data can be accounted for based on 

operators logs, and equipment runtime schedules. Deviations in operational data points outside of 

intentional adjustment show operation issues could need potential maintenance. Performance Data 

is data that is calculated or is the output of the system. This data includes steam velocity, TG1 heat 

rate, TG1 megawatt production, and stator over speed. Operators control these variables, and 

changes should be expected based on the demand for steam or electricity need on campus.  



 

29 

 

Table 3.1 provides a list of variables recorded for TG1. The table includes the categories 

of monitoring, operational, and performance, the variable type and the unit of measurement.  

The chosen variables and performance metrics are significant as they affect turbine performance, 

efficiency, and are direct indicators for future maintenance. For example, comparing a specific 

day’s Axial1 vibration readings to the next day’s values may show what appears to be negligible 

difference on a microscopic scale. As the dashboard trends Axial1 vibrations over a month of 

consistent use, the deviation from normal operating conditions grows. On the macroscopic scale, 

it is evident that a problem is developing. The dashboard displays operational data, enabling early   

error detection, allowing time to plan for maintenance, and avoiding unexpected outages.  

Table 3.1: Predictive Maintenance Dashboard Variables 

 

3.3 Turbine Generator Dashboard Development 

The TG1 data is built into a dashboard using Microsoft’s Excel, a platform available to all 

employees at Wade Utility Plant. The real-time dashboard capabilities will be compatible on the 

machines of all employees who have access the PI Database. Employees who do not have access 

to the PI Database can specify the time frame of data he or she would like to view and download 

a copy of the data to review on machines where PI Database is not accessible. The intent of 
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developing the dashboard in Excel is managing big data at an in-house level. The company’s 

understanding of predictive maintenance data and immediate actions involves more than just 

engineering departments and maintenance technicians. Forecasting maintenance procedures from 

big data requires management and financial planning departments. The graphing and trending 

aspect of this research depicts information pictorially, breaking data down piece by piece for those 

who may not be familiar with the workings or maintenance needs of TG1. Excel provides a 

platform for accessibility and easier understanding across multiple departments. This is a vital first 

step for quantifiable predictive maintenance program results.  

3.3.1 The Use of Microsoft Excel 

 The maintenance dashboard comprises four major areas of data: vibrations, temperatures, 

operational data, and performance sampling. For organization, ease of use, and computation 

purposes, the Excel workbook is comprised of six sheets in total. The first sheet is the main page 

of the workbook and displays the predictive dashboard. The first sheet has the analysis and trending 

that depicts the operational trends and alerts to discrepancies. The subsequent five sheets are the 

supporting data for the dashboard, organized into bearing vibrations, bearing temperatures, stator 

data, steam data, and operational data points. The data is pulled from the PI historian database 

using “tag” names as assigned in the PI system.  

3.3.2 OSIsoft’s PI System 

The data from PI database server are assigned output names and may have alarm levels (if 

applicable). The variables in this research project are assigned output names for user traceability 

and trackability throughout the workbook. This is necessary should a person need to find a data 

point within the supporting data sheets as opposed to visually on the dashboard. The variables of 

bearing vibrations and temperatures, seal temperatures and pressures, and rotor speed have 

associated alarm units. The alarm levels come from TG1 manufacturer specifications. Alarm levels 

are static points of data programmed into the trends and are not pulled from the PI server. The 

alarm levels act as alerts as deviations occur.  

Data pulled from the PI server is recorded once an hour as an average and is pulled in 90 

day stretches. The workbook is programmed to pull the previous 2,160 hours of data for each 
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variable when the user specifies a start date. The data retrieval is done using time and date functions 

compatible with PI database. The workbook also has an override for time and date starting and 

ending points. The user may enter an “ending date and time.” The workbook will automatically 

pull the data hourly between the two specified dates. This allows for user customization and is 

important for tracing errors or deviations. Variables with alarm points are trended as scatter plots 

and have warning points given lines. Each variable is also listed in a chart, calculating the daily 

mean, weekly mean, 30 day mean, 90 day mean, as well as the maximum and minimums for the 

day and the 30 day data pulls. The data which has specialized alarm levels also contains a status 

alert. If daily data is outside of specified limits, the dashboard gives a warning to the user. 

3.4 Chapter Three Summary  

Chapter Three provided an overview of the heat rate computation for TG1, and the design 

concepts for the ideals of a predictive maintenance dashboard for a turbine generator. Chapter 

Three covered the reasoning for creating on an accessible platform, as well as the elements, 

variables, and decisions used in developing a predictive maintenance. Chapter Four discusses the 

results of creating the dashboard, further discussing data collection, analysis, and accessibility.  
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CHAPTER 4: RESULTS 

Chapter four described the results of the TG1 dashboard for predictive maintenance. The 

dashboard is built in Microsoft’s Excel and sources data points from OSIsoft’s PI Data Historian. 

The workbook consists of a dashboard page, which serves as the user interface for data selection. 

The following worksheets provide the sourced data. The dashboard displays data visually and uses 

simple statistics to alert Wade personnel to errors and discrepancies in operational patterns. As 

employees have access to and are familiar with Excel, the workbook offers simple navigation and 

customization to fit the Wad Utility Plant’s needs.  

4.1 Dashboard Overview 

The optimal up-keep of TG1 is vital for energy and utility generation. The planning, 

forecasting, and purchasing involved for energy and utility production involves employees with a 

wide range of skill sets, backgrounds, and educations. This dashboard promotes predictive 

maintenance ideals, leveraging big data analysis to forecast maintenance needs through early error 

detection. The data from TG1 is gathered and arranged to create a dashboard using Microsoft 

Excel. Commercial forecasting and analytic software is expensive to both install and maintain. 

Limited licensing, software training, and difficulty in user comprehension means big data insights 

go unseen and misunderstood. This research creates a platform to leverage big data from a turbine 

generator, building a dashboard in Excel. Communication and interconnectivity between OSIsoft’s 

PI Data Historian and Microsoft Excel provide an in-house, and accessible path for employees to 

navigate and analyze TG1 data. The maintenance dashboard is low-cost, as the project is built with 

preexisting programs purchased by The Wade plant, and outside predictive software and machine 

learning are not used.  

The dashboard is built in an Excel workbook, containing six data sheets. The first page of 

the workbook is the dashboard, which acts as the user control and interface for data navigation. 

The dashboard aggregates and displays the trending and statistical analysis of TG1 data. The 

following five pages of the workbook collect data from OSIsoft’s PI Data Historian using assigned 

“tag” names for each variable. The data is collected and stored in arrays, input from the data 

historian in the form of data strings. The strings are converted into data values, which are displayed 
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visually in plots, and statistically analyzed over a single day, week, 30 day and 90 day period. The 

dashboard is accessible to all employees at the Wade Utility Plant, provided the employee has 

access to Microsoft Excel and the PI Data Historian. The workbook is unlocked, meaning the user 

may adapt and make changes to both the dashboard and the supporting data sheets as needs 

changes.  

4.2 Predictive Dashboard Analysis 

As previously mentioned in Chapter One: Introduction, the Wade Utility Plant has already 

invested in equipment monitoring instrumentation and data storage. This research study creates a 

platform to navigate big data from a turbine generator, creating a dashboard for the Wade Utility 

Plant employees. Early error detection is integral in predictive maintenance strategies, giving 

employees time to detect and plan for maintenance outages, as discrepancies and faults are found 

before unforeseen disruptions in production occur.  The first page of the workbook is the dashboard, 

which acts as the user interface. As seen in Figure 4.1, the user enters a start date, in the highlighted 

yellow Excel cell. The dashboard provides written instructions prompting the user to enter the date 

as month, day, year, and the time as hour, minute, second (mm/dd/yyyy hh:mm:ss).  The date 

function gives the user the ability to enter the current day’s date, or a previous date for past 

historical trending. Once the user enters a start date, Excel will count back 90 previous days using 

the function EDATE, taking the stating date and automatically subtracting 90 days. Figure 4.1 

provides an example with the starting dates as June 1, 2021, at 00:00:00. Excel back-dates 90 days, 

outputting an ending date of March 3, 2021, at 00:00:00. Using the start and end date, each variable 

is pulled as an hourly average. The following five workbook pages use the starting and ending 

dates as a reference to source operational data for TG1, outputting hourly data for each variable, 

 

Figure 4.1.  Date Control for Dashboard 
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4.2.1 Data Collection 

The workbook collects four primary areas of data: vibrations, temperatures, operational data, 

and performance data. For organization, ease of use, and computation purposes, the Excel 

workbook consists of six pages, the first page being the dashboard, and the five following pages 

providing sourcing and analyzing data for display. The first page is titled Dashboard, with the 

following worksheets labeled Vibration Data, Bearing Temperature Data, Stator Data, Steam 

Data, and Operational & Performance Data. Table 4.1 details the variables tracked in the 

workbook. Each variable has a description, and output name, an associated alarm if applicable, 

and a unit of measurement. The measurement description gives the variable type and states what 

variable is being recorded. The output name lists the shortened variable description with locations 

detailed. Output names are included for user traceability and trackability throughout the workbook. 

The alarm level is included if specified by operation specifications. Variables that have associated 

warning levels include bearing vibrations, bearing temperatures, stator temperatures, steam seal 

pressures, and rotor speed.  

 

Table 4.1. TG1 Variables 

Measurement Description  Output Name Alarm Unit 

Bearing Vibration Brng1X 4 mils 

Bearing Vibration Brng1Y 4 mils 

Bearing Vibration Brng2X 4 mils 

Bearing Vibration Brng2Y 4 mils 

Bearing Vibration Brng3X 4 mils 

Bearing Vibration Brng3Y 4 mils 

Bearing Vibration Brng4X 4 mils 

Bearing Vibration Brng4Y 4 mils 

Bearing Vibration Axial1 -22 mils 

Bearing Vibration Axial2 -29 mils 

Bearing Temperature  Brng1T1 225 °F 

Bearing Temperature Brng1T2 225 °F 

Bearing Temperature Brng2T1 225 °F 

Bearing Temperature Brng2T2 225 °F 

Bearing Temperature Brng3TA 225 °F 

Bearing Temperature Brng3TB 225 °F 

Bearing Temperature Brng3TC 225 °F 

Bearing Temperature Brng3TD 225 °F 
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Table 4.1 continued 

Bearing Temperature Brng4TA 225 °F 

Bearing Temperature Brng4TB 225 °F 

Bearing Temperature Brng4TC 225 °F 

Bearing Temperature Brng4TD 225 °F 

Stator Temperature GS1 275 °F 

Stator Temperature GS2 275 °F 

Stator Temperature GS3 275 °F 

Stator Temperature GS4 275 °F 

Stator Temperature GS5 275 °F 

Stator Temperature GS6 275 °F 

650 Steam Velocity 650kpph  N/A kpph 

650 Steam Temperature 650T  N/A °F 

650 Steam Pressure  650PSI  N/A psi 

125 Steam Velocity 125kpph  N/A kpph 

125 Steam Temperature 125T  N/A °F 

650 Steam Pressure 125PSI  N/A psi 

15 Steam Velocity 15kpph  N/A kpph 

15 Steam Temperature 15T  N/A °F 

Steam Seal Temperature StmSTemp  N/A °F 

Hot Well Level HWL  N/A in Hg 

Chilled Water Valve GCWV  N/A % 

Condensate Valve CV  N/A % 

Condensate Pump Flow CPF  N/A gpm 

Steam Seal Pressure StmSPres 1.5-7.0 psi 

Tower Water Flow TWF  N/A gpm 

MW Production TG1_MW  N/A MW 

Heat Rate TG1_HR  N/A btu/kw 

Rotor Speed OvrSpd 3680 RPM 

 

 

 Each listed data point has a specific tag name associated with OSIsoft’s PI Data Historian, 

and produces data reliably, as specified by section 3.3.1 The Use of Excel. An example of a PI tag 

name is “g1-bb1x,” referring to turbine generator one (g1,) bearing one (bb1,) and vibration in the 

X direction (x), perpendicular to the rotor’s axis of rotation. Each tag is programmed into a data 

array, which is produced by Excel when downloading from the data historian. Figure 4.2 provides 
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an example of the data array used for bearing vibrational data for Bearing One. The image Figure 

4.2 describes the variable, Bearing 1 Vibration X direction, the tag name associated with  

The variable in PI, gi-bbx1x, and the name assigned to the variable in the 

workbook, Bearing1X. While each variable in the workbook has an associated tag in relation to PI 

Data historian, proper names and variables descriptions are not always provided. The names and 

descriptions described within the workbook are taken from PI or created with the intention of 

traceability, and user comprehension. 

 

 

Figure 4.2 Bearing Vibration Data Array 

The PI data enters the arrays as strings, taken as an hourly average, and is displayed alongside 

the date and hour from which it is recorded. As discussed in Section 4.2, the date on which the 

data is collected is time sourced from a user input. The Wade Utility Plant installed recording 

instrumentation in 2015, thus the user can trace issues or errors back up to six years.   

4.3 Data Analysis 

Microsoft Excel 365 is a software that offers the ability to collect, document, and analyze 

data for TG1, and offers a low-cost platform to create the TG1 dashboard. Excel is also an optimal 

choice for this research project, as the program is also used to answer and catalog operational, 

engineering, and financial data for the utility plant.  

Predicting maintenance needs is a competitive strategy. Operational and performance 

errors caught early allow time to plan maintenance outages around production needs and demand. 

Operators and engineers, as well as managers and financial planning staff must work together to   



 

37 

 

effectively understand and allocate time, and resources to service TG1. As the dashboard is 

available to a range of employees, understanding and navigating TG1’s data is essential. As the 

employees have a wide array of skills and statistical understanding, the dashboard primarily 

focusses on graphically representing the data. Data plots offer an effective balance of form and 

function, removing noise while effectively highlighting patterns and outliers with a quick glance. 

The dashboard incorporates scatter plots, which use Cartesian coordinates and line plots to display 

data for the 90-day interval.  

Figure 4.3 is an example of data visualization, showing the Axial 1 and Axial 2 vibration 

data. Axial 1 data from TG1 is displayed as green data markers, with a visual warning line at -22 

mils, left of bearing origin. Axial 2 data is displayed as blue data markers with a visual warning 

at -29 mils as dictated by vibration alarm specifications. The physical sensing equipment 

attached TG1 collects data via direct current (DC) voltage. The voltage gaps produced in the 

turbine’s shaft are converted to mils, describing the displacement of vibration in references to 

software offsets in the data acquisition software. According to Tom Spettel, previous auditor for 

Bentley Nevada, common practice for system vibrations read by a sensing probe show positive 

axial vibrations as the shaft shifts closer to the probe, and readings report negative axial 

vibrations as the shaft moves away from the sensing probe (T. Spettel, personal communication, 

October 21, 2021). 

 The scatter plot in Figure 4.3 displays both axial vibrations, while keeping the data and 

variable warnings in separate colors. The scatter markers show visual variability within the data 

range while warning lines remain constant, allowing for quick identification. For example, Axial 

1’s standard operating vibration patterns during the 90 days sit within the range of -12 to -9 mils. 

The user can see that the data sits well above the -22 mils warning. Axial 2 data shows more 

variability during its vibrations, falling in the -14 to -21 range. This variable also its well above its 

-29 mils warning and does not alert to serious shaft vibration. Users can see both bearings follow 

similar vibrational patterns as they rise and fall during operation. The trend also visualizes an 

operational shut-down and start-up as vibrational data spikes on March 16, 2021, during shut down. 

During the shut-down, both Axial 1 and Axial 2 show a significant decrease. As the turbine 

generator is brought back online, around, April 3, 2021, we see a decrease and then reasonably 

steady vibration values.  
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Figure 4.3. Axial Bearing Vibration 

The dashboard has scatter plots for all bearing vibrations in both the X and Y directions, 

showing similar scatter plots and warning lines at 4 mils. The dashboard has scatter plots of all 

bearing temperatures with alarm levels at 225 °F, and all stator temperatures with alarms at 

275 °F. Finally, the dashboard also has a scatter plot for the steam seal pressure, with two 

warning lines, located at 1.5 psi and 7 psi respectively.  

In addition to line graphs, the dashboard also uses average values, minimum and maximum 

values, and alarm ranges to give status warning of data discrepancies. Figure 4.4 shows the 

dashboard table of statistical results and status for the measured variables. Users see the variable 

description or name, the unit of measurement, the start date’s average and extrema, the start week’s 

average, the first 30 day’s average and extrema, and the total 90-day average. Data with warning 

levels has a status indicator. When data reported is within the specified range the “OK” status is 

displayed as a green cell. A component that falls outside of specific limits shows results in a red 

cell with a “Warning” label displayed. Components that do not have specified manufacturer or 

operational limits do not offer this feature, display as not applicable, or “N/A” and remain grey. 
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Figure 4.4. Statistical Data Analysis` 

 Steam data is controlled by the operators and based on the campus demand for electricity, 

and steam. Therefore, there is intrinsic variability within the pressure, temperature, and velocity 

data for 650 pound, 125 pound and 15 pound steam. These data points are not visually trended 

nor displayed in the analysis table. Instead, steam is shown as a separate table that lists the start 

day’s average and the start week’s average.  
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Figure 4.5. Steam Averages 

4.4 Chapter Four Summary 

Chapter four described the results of the TG1 dashboard, which alerts Wade personnel to 

data discrepancies within 90 days of data, taken hourly. The dashboard is built in Microsoft Excel, 

and sourcing TG1 operation and performance data from OSIsoft’s Pi Data Historian. As predictive 

software comes at great costs, Excel offers the ability to collect, analysis, and customize TG1 data 

needs, on a platform that is already used at the utility plant. Big data from TG1 shows quantifiable 

proof of machine health and can be used to forecast and predict maintenance needs in the future. 

The workbook consists of six pages, the first being the dashboard, and the following five pages 

being the supporting data. Data is traced and recorded in the workbook by assigned variable names 

and tags which allow the interconnectivity between Excel and PI Data Historian. The dashboard 

users enter a starting date, as prompted, and the workbook back-calculates 90 days of data, 

updating trends and tables. The planning, forecasting, and purchasing involved for energy and 

utility production involves a wide range of employees, with varying levels of statical analysis 

skills. The dashboard incorporates 48 variables associated with the operation and performance of 

TG1, making simple visual trends as well as take the averages and extrema, and provided status 

updates. The dashboard offers users a look at the daily steam metrics, megawatt production, and 

heat rate, alongside the operation variables of vibrations, temperatures, and pressures. The 

dashboard offers a simple, yet customizable platform to navigate big data for TG1, alerting to 

discrepancies before the errors impact production.  
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CHAPTER 5: SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS 

Chapter Five offered concluding remarks and provides suggestion for future work and 

adaptations. This chapter reviews the proposed research questions discussing the dashboard 

metrics, and remarks on employee accessibility, data collections and adaptability. The dashboard 

is built in an Excel workbook that sources operational and performance data for TG1 at the Wade 

Utility plant. Trending and analyzing available data, the dashboard alerts to data discrepancies 

while minute. Using advanced warning, employees at Wade Utility Plant can plan for outages, 

managing time, finances and resources while ensuing reliable utility services from TG1.  

5.1 Dashboard Metrics 

The purpose of this research is to utilize the existing condition, monitoring, and operational 

data for TG1 at the Wade Utility Plant to create a dashboard justifying reliability and promoting 

the practices of predictive maintenance. Unexpected downtime can be detrimental in meeting 

demand needs and production expectations, in addition to a waste of employee time and company 

finances. This research study creates a dashboard referencing “big data” associated with the 

operation and performance of TG1. Predictive maintenance is data-centric, and for optimal results, 

the dashboard is a balance of form and function while being easily understood. With this in mind, 

simple statics and data visualization took precedence as an effective way to highlight patterns and 

outliers. The success of this dashboard is in being accessible, comprehensive, and adaptable, giving 

insight into early error detection, allowing Wade’s employees time to plan and prepare for repairs. 

Furthermore, the dashboard approach in navigating “big data” can be applied to other equipment 

and systems for future predictive maintenance strategies. 

5.1.1 Accessibility to Employees 

Ensuring the health and maintenance needs of equipment is critical for reliable utility 

services at the Wade Utility Plant. The dashboard is built using Microsoft Excel, a software capable 

of collecting, documenting, and analyzing essential metrics to justify maintenance and proof of 

reliability in TG1. While navigating big data is vital in predictive maintenance, it is equally 

essential for data to be comprehendible. The Excel software is an optimal choice. It offers the 
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ability to collect, document, and analyze data for TG and already licensed and installed on 

machines across the utility plant; creating the dashboard came at zero cost for Wade. The planning, 

forecasting, and purchasing for energy and utility production involves employees with a wide 

range of skills sets, backgrounds, and educations. As Excel is also a primary platform used to 

answer and catalog operational, engineering, and financial data at the Plant, there is only a slight 

learning curve necessary for software navigation department wide. 

5.1.2 Comprehensive Data Collection 

As discussed in Chapter Four, the predictive dashboard displays real-time and historical 

metrics for sub-sections of an operational turbine generator, creating a powerful tool for predictive 

maintenance strategies. The dashboard is built in a Microsoft Excel file, focusing on four primary 

areas of data: vibrations, temperatures, operational data, and production data. For organization, 

ease of use, and computation purposes, the Excel workbook has a page for the dashboard and 

supporting pages for data arrays and analysis. The sheets for vibrations, temperatures, operational 

and performance data link to PI Historian using “tag” names assigned in the PI system. Each tag 

name is associated with a measurement or calculation in or made from the operation of the turbine 

generator itself. The data is pulled into an array that lists a variable name, variable description, PI 

tag, date and time, and the associated variable point. As a user-friendly way to navigate big data, 

the dashboard utilizes scatter plots and line graphs to display information visually. For comparative 

measures, the dashboard also uses average values and minimum and maximum values for each 

day, week, 30-day time period, and 90-day time period. Finally, for data with specified alarm or 

alarm ranges, the dashboard also features a daily status value. The “OK” status is displayed as a 

green cell, “Warning” is displayed in a red cell, and “N/A” remains a gray cell.  

For a total, 48 variables and more than 100,000 data points are used as metrics for TG1 

performance and maintenance needs. These variables are read from sensing equipment on TG1 or 

auxiliary equipment, critical for the turbine generator's operation. As mentioned in Chapter 3.1, 

Heat Rate Computation, heat rate is the turbine generator's operation efficiency, the total amount 

of energy required to produce one kilowatt-hour. Alongside the heat rate and megawatt production, 

velocity, temperature, and pressure of the 650 psi, 125 psi, and 15 psi steam measurements are 

also critical performance metrics. Section 2.5 introduces key physical components in a turbine 

generator, and PI Historian has retrievable data, including the steam seal, stators, and bearings.  
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The steam seal has a retrievable pressure reading, the stators have six temperature readings, and 

an over-speed alarm read as rotations per minute. Finally, six total bearings offer fourteen 

temperature variables and ten vibrational readings. Lastly, auxiliary equipment and systems 

incorporated into the dashboard for TG1 include the hot well level, chilled water valve, condensate 

valve, pump, and cooling tower water, flow into the TG1 system. Faults in these components 

introduce the potential for operational errors in the turbine generator.  

5.1.3 Adaptability 

The predictive maintenance dashboard is customized to TG1 with 48 specific variables 

chosen, built to retrieve data in 90-day periods. The dashboard sheet is supported by five data 

sheets that resource information from PI historian. The workbook is constructed modularly, 

allowing users to trace and track a specific variable or set of variables outside of the dashboard 

page, with a specific tag, name, and description which is kept consistent throughout. Advanced 

trending and statistics are available through Excel, and the 90-day window can be adjusted for 

outage planning and forecasting. Tags are also easily added if the data is available in PI. The 

workbook can be easily molded and modified for future planning and additions. The workbook 

may also act as an example or outline, copied for other critical equipment at the Wade Utility Plant. 

5.2 Recommendations and Future Work 

Predictive maintenance is data-centric. Theoretically, the more operational and 

performance metrics made available and tracked, be more insight on the health of the turbine 

generator is available. The working tags available for TG1 and auxiliary equipment are utilized in 

this research study.  

The dashboard is set to use data collected in hourly increments for 90 days. These 

parameters can be adjusted. Future work could pull in daily, monthly, or yearly data to better 

understand operational and performance trends.   

As this Excel workbook is accessible for all employees at Wade, the dashboard displays 

statistical averaging, minimums, maximums, and data visualization using scatterplots and line 

graphs highlight patterns and outliers. The analysis and graphical representation in the workbook 

can be taken to a narrowed and advanced level. The workbook has the potential to be customized 
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should operations, engineering, management, or financial planning required different metrics 

when forecasting maintenance.  

Lubrication data is an important metric for TG1 and was not available. Important metrics 

to consider including particle count, viscosity, moisture content, and ISO rating during routine 

testing for TG1 at Wade Utility plant. This information is not available through PI historian is 

available in written records. 

5.3 Chapter Five Summary 

Chapter Five provided concluding remarks on this research study offering summaries of 

research questions and providing future work suggestions for continued research. The dashboard 

collects available data for TG1 using the interconnectivity of a physical system and cyber data. 

The dashboard is built in Excel, a platform that is both available and accessible to employees at 

the Wade Utility Plant. Having inclusivity and planning in-mind, the dashboard displays data 

visually though scatter plots, showing operating data and warnings. The dashboard also offers a 

simple statical study of the days, weeks, 30 day and 90 averages and extrema. Finally, with 

applicable, the dashboard also shows an easy-to-follow status of the variable, with a green “OK” 

status with data is within reason, and a red “Warning” which results in data changes outside of the 

satisfactory range. The workbook is unlocked, and can be changes, edited, and expanded upon, 

should the user feel it is necessary. Future work suggestions include expansion of data, both in 

number of variables and in also in time frame. This offers customization for better evaluation of 

regarding the equipment health and maintenance needs of TG1. 
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