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ABSTRACT

Understanding thermal transport across length scales lays the foundation to developing

high-performance electronic devices. Although many experiments and models of the past few

decades have explored the physics of heat transfer at nanoscale, there are still open questions

regarding the impact of periodic nanostructuring and coherent phonon effects, as well as the

interaction of strain and thermal transport. Thermomechanical effects, as well as strains

applied in flexible electronic devices, impact the thermal transport. In the simplest kinetic

theory models, thermal conductivity is proportional to the phonon group velocity, heat ca-

pacity, and scattering times. Periodic porous nanostructures impact the phonon dispersion

relationship (group velocity) and the boundaries of the pores increase the scattering times.

Strain, on the other hand, affects the crystal structure of the lattice and slightly increases

the thermal conductivity of the material under compression. Intriguingly, applying strain

combined with the periodic porous structures is expected to influence both the dispersion

relation and scattering rates and yield the ability to tune thermal transport actively. But

often these interrelated effects are simplified in models.

This work evaluates the combination of structure and strain on thermal conductivity by

revisiting some of the essential methods used to predict thermal transport for a single layer

of graphene with a periodic porous lattice structure with and without applied strain. First,

we use the highest fidelity method of Non-Equilibrium Molecular Dynamics (NEMD) simula-

tions to estimate the thermal conductivity which considers the impact of the lattice structure,

strain state, and phononic band structure together. Next, the impact of the geometry of the

slots within the lattice is interrogated with Boltzmann Transport Equation (BTE) models

under a Relaxation Time Approximation. A Monte Carlo based Boltzmann Transport Equa-

tion (BTE) solver is also used to estimate the thermal conductivity of phononic crystals with

varying pore geometry. Dispersion relations calculated from continuum mechanics are used

as input here. This method which utilizes a simplified pore geometry only partially accounts

for the effects of scattering on the pore boundaries. Finally, a continuum level model is also

used to predict the thermal conductivity and its variations under applied strain. As acoustic
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phonon branches tend to carry the most heat within the lattice, these continuum models and

other simple kinetic theories only consider their group velocities to estimate their impact on

phonon thermal conductivity. As such, they do not take into account the details of phonon

transport across all wavelengths.

By comparing the results from these different methods, each of which has different as-

sumptions and simplifications, the current work aims to understand the effects of changes to

the dispersion relationship based on strain and the periodic nanostructures on the thermal

conductivity. We evaluate the accuracy of the kinetic theory, ray tracing, and BTE models

in comparison to the MD results to offer a perspective of the reliability of each method of

thermal conductivity estimation. In addition, the effect of strain on each phononic crystal

with different pore geometry is also predicted in terms of change to their in-plane thermal

anisotropy values. To summarize, this deeper understanding of the nanoscale thermal trans-

port and the interrelated effects of geometry, strain, and phonon band structure on thermal

conductivity can aid in developing lattices specifically designed to achieve the required dy-

namic thermal response for future nano-scale thermoelectric applications.
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1. INTRODUCTION

The electronics industry continues to grow while the thermal requirements for applications

have been getting more challenging. The demand for miniaturization and new transistor tech-

nologies led to the need to understand low-dimensional materials. Developing application-

specific lattice designs may enable the control of thermal properties. For example, the ability

to direct heat flow and manipulate thermal conductivity in electronics applications could en-

able more reliable devices by routing heat around delicate components.This has driven the

scientific community towards understanding and controlling thermal transport in materials.

One class of materials that has been developed to tune mechanical and thermal properties

are called phononic crystals (PnCs). These are metamaterials, often consisting of thin layers,

with engineered pore geometry, vacancies and inclusions designed for a particular applica-

tion. Much of the current work aims to contribute towards understanding and modeling

such materials for thermoelectric applications [  1 ], [  2 ]. But here, these systems are evaluated

for the control of thermal transport.

1.1 Phononic Crystals and Applications

Phononic crystals are metamaterials designed to tune the propagation of sound and heat

within them. Since the propagation of heat and sound depends on the properties of the

energy carriers within the PnCs, the tuning is mostly achieved by relying on the effects on

these properties due to the different pore geometries and lattice configurations. Some of the

common methods explored currently are by introducing vacancies and impurities within the

PnCs [  3 ], varying pore shape [  4 ] and material layer thicknesses [  5 ], in addition to developing

composite PnCs [ 6 ]. This tunability of properties in these materials presents an opportunity

for electronics thermal management applications which need nanoscale materials for thermal

shielding or heat flow deflection. In cases where high-energy density hot spots are common,

the inclusion of phononic crystals to tune the thermal behavior has been studied both the-

oretically [  4 ]–[ 7 ] and experimentally [  8 ], [  9 ]. Hole and pillar based phononic crystals have

been studied to investigate their applicability to electronics [  1 ], [  4 ], [  8 ], [  10 ], [  11 ], with pillar

based crystals being favored as they do not significantly affect the overall electrical conduc-

13



tivity. Thermally shielding or cloaking using phononic crystals has also been explored to

ensure heat sensitive devices within the the electronics do not experience high temperatures

during operation [  12 ]–[ 14 ]. While some studies focused on developing phononic crystals for

these application, others have explored different material options for the same applications.

Some of the materials investigated are Graphene [ 4 ], [  9 ], [  15 ], Silicon [  1 ], [  11 ], [  16 ], [  17 ],

Boron Nitride [  18 ], [  19 ], Phosphorene [ 20 ]–[ 22 ] and Molybdenum Disulphide [  23 ]–[ 25 ]. The

phonon band structure of materials like silicon are nearly isotropic, while that of Graphene

and Phosphorene are anisotropic. Each material also has different electronic properties. Es-

pecially for thermoelectric materials, the ability to reduce the thermal conductivity without

disturbing the electrical conductivity is needed. In such cases, phononic crystals can greatly

improve the overall thermoelectric performance [ 26 ], [  27 ]. The demand from these appli-

cations combined with the complex physics involved with these phononic crystals is what

drives the need for more research towards these materials.

1.2 Phonons and Types of Phonon Transport

In phononic crystals, heat is carried by quantized modes of vibrations called phonons.

These phonons are modeled with both particle and wave-like behavior to predict the overall

energy transfer, thermal conductivity, and dispersion relations. Phonons can transport in

different wavemodes which are determined by the material dispersion relationships and the

corresponding density of states. Phonons can carry heat in different ways depending on how

the geometry scale compares to the mean free path (MFP). When the length scale of the

system becomes comparable to the phonon wavelengths and mean free paths, the physics

of predicting thermal conductivity becomes complex due to the interaction of phonons with

each other, domain boundaries, interfaces, and impurities, as well as changes to the allowed

modes due to the geometry.

The transport modes based on the lattice constant and phonon mean free path are

compared using a parameter called Knudsen number, Kn. The Knudsen number is the ratio

of phonon mean free path to a characteristic length scale (such as lattice constant), Kn = Λ
L

,

where Λ is the phonon mean free path and L is the characteristic length of the phononic
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crystal considered. Depending on the range of the Knudsen number, three different phonon

transport regimes can be defined. They are as follows:

1. Diffusive Transport: When phonon mean free path is significantly smaller than the

characteristic length scale of the lattice (i.e, when Kn << 1), the phonon transport

is dominated by collisions, and the heat transfer is diffusive. This applies at the

macroscale where Fourier’s law can be used to accurately model the heat transfer

within the material.

2. Ballistic Transport: On the other hand, when the phonon mean free path is very

large compared to the characteristic length of the lattice (i.e, when Kn >> 1), the

phonons directly transmit the heat without interacting with any of the other phonons

or boundaries. This absence of internal scattering where carrier-carrier interactions can

be completely neglected, is the ballistic phonon transport regime and phonon group

velocities alone can be used to model the heat flow.

3. Transitional Region: Finally, when the phonon mean free path and the characteris-

tic length are comparable (i.e, when 0.1 < Kn < 10), the overall phonon transport is

a combination of diffusive and ballistic transport where carrier interactions are signif-

icant. Here, modeling at the atomic scale is needed to account for phonon transport

within the region making this the most complex region to simulate. Several tech-

niques have been developed to solve for phonon transport within this region including

molecular dynamics models based on simulating the atomic motion.

1.3 Lattice Thermal Conductivity Calculation Approaches

Phonon transport modeling is critical for understanding heat transfer in phononic crys-

tals. As such, multiple techniques have been proposed to model phonons based on various

set of assumptions and considerations. Depending on the available computational power and

time, different methods can model the heat transfer within the phononic crystals. Approaches

range from high fidelity models computing atom positions and interatomic potentials to lower

fidelity approximate continuum models. For bulk materials, certain assumptions like uniform
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properties and isotropic band structures are typically assumed. These assumptions make the

systems simpler to model. But care needs to be taken to ensure that the accuracy of the

model is not affected too much by the assumptions. In this work, four different phonon

modeling approaches, falling into two main categories, are used:

1. Molecular Dynamics (MD) Methods: This is the most detailed thermal transport

model as every feature starting from geometry to phonon flow is simulated using atomic

vibrations within the lattice. Here, the lattice crystal structure is obtained using first

principle calculations or experiments and interatomic potentials are applied to simulate

energy transfer. Depending on the energy formulation and boundary conditions, MD

simulations are categorized into multiple types. Though these MD models are very

accurate, they are extremely computationally expensive.

2. Boltzmann Transport Equation (BTE) Solvers: As an alternative to compu-

tationally expensive models, BTE solvers utilize the wave-particle duality of phonons

to simulate their transport within the PnCs. The Boltzmann transport equation is

based on conservation of the energy carrying “particles” within a medium. It applies

to both electrons and phonons and is used to predict the corresponding conductivity

values. This equation is used together with material and geometry based assumptions

to predict the overall thermal transport in a PnC.

• BTE Solver - Finite Volume Approach: One approach to solve the BTE

involves discretizing the domain and applying the particle conservation equation

using a finite volume approach. Some of the most common assumptions used

are that the band structure is isotropic, the material is 2D, and the relaxation

time approximation (which will be discussed in detail in Chapters 3) applies.

These methods utilize phonon dispersion relations as input to predict the phonon

transport within the PnC for any given pore geometry.

• BTE Solver - Monte Carlo Methods: Another method to solve the BTE

leverages the Monte Carlo approach to predict phonon thermal conductivity based

on their particle-like behavior by randomly placing phonon packets in the struc-
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ture and simulating their motion and interaction. This requires inputs from the

band structure including the phonon group velocities obtained either through first

principle calculations or simplified continuum models and known internal scatter-

ing phenomenon. A reasonably small time step is chosen and all the accounted

effects within the PnC are calculated. This simulation continues until the conduc-

tivity predictions converge. Due to the need to simulate large number of phonon

packets for many number of time steps to reach convergence, MC methods are

usually very computationally expensive too. So, these methods use different as-

sumptions to simplify the model and reduce the computation time. These will be

described in detail in Chapter 4.

• Simplified BTE - Thermal Conductivity Integral Approach: The BTE or

kinetic theory can be used to derive a simplified equation to predict thermal con-

ductivity based on the band structure and scattering mechanisms within a system.

This approach, commonly referred to as a Callaway-Holland Model [  28 ]–[ 30 ], is

very computationally efficient, but omits details of the geometry as scattering at

boundaries is typically included based on a characteristic length scale. Similar

to the Monte Carlo solvers, it requires inputs of the dispersion relationship and

scattering mechanisms, and often many assumptions are required including the

relaxation time approximation.

1.3.1 Molecular Dynamics Method

Molecular dynamics methods predict the phonon transport based on the understanding

that phonons are quantized lattice vibrations carrying energy[  31 ]–[ 34 ]. Here, the material is

modeled at the atomic level with vibrations predicted based on the interatomic structure.

The bonds, bond lengths and interatomic potentials are obtained using first principle calcu-

lations or experimental techniques like spectroscopy. The vibrational modes are calculated

to estimate the energy transfer within the lattice. This method has high fidelity but is com-

putationally expensive. There are multiple types of molecular dynamics methods, depending

on the type of heat source and method to estimate energy transport including Equilibrium
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Molecular Dynamics (EMD)[  35 ], [  36 ], Non-Equilibrium Molecular Dynamics (NEMD)[ 37 ],

[ 38 ], and Reverse Non-Equilibrium Molecular Dynamics (RNEMD)[  39 ], [  40 ]. Molecular dy-

namics models require knowledge of the interatomic potentials between neighboring atoms

and these vary depending on the material. These first principle based calculations should

lead to the most accurate predictions of phonon thermal conductivity, but their extremely

high computational cost makes them challenging to apply to multiple PnC configurations.

This work uses NEMD to model phonon transport for selected geometry. A more detailed

description on this method is discussed in Chapter 2.

1.3.2 Boltzmann Transport Equation Solvers

Since phonons can be considered as particles of ”phonon gas” due to their particle-like

nature, a conservation of number of particles can be used as the fundamental equation

governing the phonon flow. This equation is called the Boltzmann Transport Equation

(BTE), which describes the conservation of particles like phonons and electrons in phase-

space. Applying this to phonons involves solving for both diffusive as well as collision based

phonon population change with time. A typical formulation of this BTE is as in the equation

 1.1 : (
∂n

∂t

)
+ vg. (∇rn) =

(
∂n

∂t

)
scattering

, (1.1)

where n is the energy carrier (phonon) population distribution and vg is the group velocity

of phonon wave modes of interest. Different methods to estimate these terms, specifically

the scattering term, causes differences between each solver.

Finite Volume BTE Solver with the Relaxation Time Approximation

Due to the complexity in phonon scattering within a lattice, numerous approaches are

chosen to simplify and predict phonon scattering effects. One such approximation is the re-
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laxation time approximation (RTA), which assumes that the deviation in phonon population

from the equilibrium population due to scattering is linear with time:

(
∂n

∂t

)
scattering

= −(n − n0)
τ

, (1.2)

where τ is the relaxation time due to the internal phonon scattering processes and n0 is

the equilibrium phonon population distribution at a given temperature T defined by Bose-

Einstein distribution. This approximation simplifies the BTE equation to a linear form,

which can be discretized using a finite volume approach and applied to a PnC domain of

interest. The discretization technique and the time step are chosen depending on the type

of geometry involved. These solvers also utilize dispersion relations as input to predict

the lattice thermal conductivity[ 41 ], [  42 ]. One such solver used in this work is OpenBTE

[ 43 ]. It is an open-source solver which uses linearized BTE as the governing equation. This

deterministic solver applies BTE to all the three directions but assumes an isotropic and

uniform material to simplify the model as needed. A more detailed description on the

method, its advantages and disadvantages are discussed in Chapter 3.

Monte Carlo Method-based BTE solvers

While deterministic solvers are a good approach to utilize for simple cases, methods

based on probability and sampling like Monte Carlo methods become helpful to simulate

multiple complex phonon interactions at once. While modeling scattering and phonon-

phonon collisions in other methods requires defining many effective terms based on the wave

nature of phonons, Monte Carlo methods use the particle nature to model every phonon or

group of phonons as a bunch traveling together and colliding with boundaries, interfaces and

other phonons[  44 ], [  45 ]. Each phonon is randomly assigned a position, a wave mode and

direction in the beginning of the simulation, and after each time step, they travel with the

group velocity extracted from the phonon dispersion relations. These dispersion relations,

which are used as input to this solver, are obtained either through first principle calculations

or simplified continuum models based on structural mechanics. At each time step, the
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phonons are allowed to traverse and interact with other phonons and boundaries. These

phonon collisions, their new velocities and the resultant conductivity are calculated at each

time step before continuing to the next time step. To sample the thermal conductivity

accurately, a large number of phonons have to be simulated this way thus increasing the

technique’s overall computational cost. On the other hand, since this is not a mesh or

element dependent simulation, the computational cost only increases linearly with lattice

scale making this a suitable approach for slightly larger simulation domains.

Thermal Conductivity Integral: Callaway-Holland Model

Callaway-Holland model is based on a simplified analytical solution to the BTE devel-

oped to predict phonon transport within bulk materials and thin layers[ 28 ]–[ 30 ]. It generally

assumes a uniform, isotropic material with only the first three acoustic wave modes con-

tributing to the total thermal transport. The relaxation time approximation, used in this

model, assumes that the rate of change of phonon population due to scattering is linear. The

phonon dispersion relations from first principle calculations or continuum models are used

to extract group velocities, specific heat, relaxation times and are then used to calculate the

thermal conductivity as in the equation  1.3 :

k = 1
6π2

∑
i

∫
q
(C)(v)2(τ)q2dq, (1.3)

where k, i, q, C, v are thermal conductivity, wave mode branch index, phonon wave number,

specific heat and group velocity of each phonon respectively. This is one of the simplest

phonon transport models as it does not use complex functions to define internal scattering.

Thus, the computation time is the least out of all explored methods in this work. A detailed

description of this method is presented in Chapter 5.

1.4 Gaps in Current Literature

Despite the diverse and detailed research on modeling phonon transport, there are still

open questions related to thermal transport in PnCs. Though some works have attempted to
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report experimental data on PnCs [  46 ], [  47 ], the predicted ideal lattice sizes are on the order

of a few nanometers. Thus, the PnC fabrication and experimentation is often at larger length

scales thus limiting the comparison to models. In addition to this, the multiple scattering

phenomenon and numerous wave modes make it complex to model the phonon flow. Though

a few works have presented some level of understanding of phonon flow in simple lattices

[ 48 ]–[ 50 ] and the effect of thickness on the phonon flow [  51 ], [ 52 ], there are still gaps in

knowledge especially on a few PnCs with complex pore geometries and interface scattering.

On that account, a few major voids in current research include:

• Accuracy of the phonon transport model

Even though multiple models and methods have been proposed to estimate phonon

transport in PnCs [  53 ]–[ 56 ], a model that balances accuracy and computational expense

is still missing. While this is partly due to the complex phonon behavior, it is also

due to the incomplete understanding of internal scattering processes. Therefore more

work towards understanding internal scattering is needed to head towards developing

an accurate and fast phonon transport simulation.

• Effect of individual phonon properties on the overall heat flow

While there is some understanding of phonon behavior including their fundamental

particle nature [ 57 ], [ 58 ] and wave nature [  59 ], [ 60 ], as well as the dispersion relations

[ 61 ], [  62 ], a detailed understanding of effect of each different phonon property on the

overall PnC thermal behavior is missing. This knowledge is a necessary part of design-

ing PnCs for specialized applications and hence, a significant part of phonon research

should be steered in this direction.

• Experimental investigation of nanoscale PnCs

Experimental investigations form the baseline data for model validation. With PnCs,

the experiments to perform are complex due to their small scale and non-linear thermal

behavior. This level of complexity and the corresponding lack of experimental data

needs to be resolved to effectively validate any future transport models or measure

properties of newly developed PnC composites.
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• Effect of external actuation like strain on phonon behavior

While phonon transport itself is complex, the effect of external force or strain acting on

the PnC can lead to effects which are not completely understood at this point. Though

some work on the effect of strain on PnCS is already performed using various existing

models [ 63 ] and experiments [  64 ], these do not report completely the causes behind

the results or the phenomena taking place thus indicating a lack of understanding in

this area too.

1.5 Objective of the Thesis

This thesis aims to address open questions regarding the phonon transport in PnCs and

the effect of different phonon parameters and strain on the overall thermal transport behavior

of the PnC. The current work first investigates the accuracy of the different thermal modeling

approaches for phonon transport by evaluating single layer graphene (SLG) with numerous

types of pore structures that form lattices. SLG was chosen specifically as it is a single

layer material with small lattice size enabling easier usage of computationally heavy MD

methods. In addition to this, SLG’s molecular structure and equivalent elastic properties

are also widely available. Silicon is also a good option for the test material as its fabrication

in an experimental environment is relatively easier. But applying MD methods on Silicon

PnCs is computationally too expensive for the current resources available. Thus SLG is

chosen as the test material to study phonon thermal transport in this thesis.

Initially, we investigate the size effects and phonon scattering at pore boundaries in fixed

geometries using the different modeling approaches. An overview of different methods used

in this work and effects each method consider are shown in the Figure  1.1 . Understanding

phonon thermal transport requires addressing different effects starting from the dispersion

relations, wave modes and group velocities to scattering at nanopore boundaries and inter-

faces. These effects originating from different phonon transport features like pore geometry

and dispersion relations are laid out in the Figure  1.1 , and the corresponding methods with

a capability to predict each of them is shown beside. These methods are used in combination
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to possibly separate and understand the various transport features of phonons in single layer

graphene.

Figure 1.1. An overview of techniques used and effects described in this work.

In addition to controlling the pore geometry, the impact of strain on the PnCs is investi-

gated based on the approach discussed to identify the features affecting the phonon transport

with an applied strain. Since each method introduced takes into account only some of the

scattering mechanisms, the results from multiple models are utilized to identify directions

to design a lattice highly sensitive to external strain. This approach and the corresponding

inferences from each technique are described in detail in Chapter 6.

1.6 Overview of the Thesis

The current work first discusses different techniques to model the phonon transport

starting with the high fidelity NEMD model in Chapter 2 followed by Boltzmann transport

equation solvers in Chapter 3. It is then followed by variance reduced Monte Carlo model

and Callaway-Holland models in chapters 4-5. Finally, the results from each technique are
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discussed in Chapter 6 followed by addressing the contribution and future directions in

Chapter 7.
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2. NON-EQUILIBRIUM MOLECULAR DYNAMICS

2.1 Introduction

With the need for more accurate phonon transport studies, methods like molecular dy-

namics were explored which are computationally very expensive but accepted widely as one

of the most accurate material analyzing tools. As such, these MD methods have been applied

to phononic nanocrystals as well to calculate phonon properties like dispersion plots and re-

laxation times [ 31 ], [ 32 ]. MD methods have also been applied to predict heat fluxes and

thermal conductivity values of PnCs [  33 ], [  34 ]. Since Molecular Dynamics involves studying

time evolution of each specific atom and its interaction with neighbours, the accuracy of

the model is very high as long as the interatomic interactions (potential) are defined well.

But this advantage in accuracy comes at a high price of extreme computational expense.

In addition to this, the domain size that can be simulated is very less thus leading to size

effects coming into play during the simulation. This necessitates careful planning of the

simulations.

Molecular dynamics is, simply put, an application of Newton’s second law of motion

at classical level to a system of atoms. Thus, if a lattice or metamaterial needs to be

analyzed by Molecular Dynamics(MD), its atomic structure has to be known in advance along

with their bond lengths, angles and interatomic interaction. In a simple domain of atoms

under MD study, the interatomic force is calculated from interatomic potential function.

There are multiple types of potentials in application currently like Tersoff potential [ 65 ],

[ 66 ]; Weber potential [  67 ], [ 68 ]; and other reactive potentials [  69 ], [ 70 ]. Using these and

applying boundary conditions on different atomic systems, their equivalent properties are

estimated. In this chapter, the molecular dynamics technique, its different variants and

finally its application to phononic nanocrystal analysis is discussed.

25



2.2 NEMD Methodology

Molecular dynamics simulations runs on the application of second law of motion. If a

system of atoms is considered, this application of second law gives the following equation:

M
d2ri

dt2 =
N∑

j,j6=i
Fi,j (2.1)

where M is the mass of each atom, N is the total number of atoms, while r and F are position

and interatomic potential of each atom. Here, the force of interaction Fi,j is obtained by

deriving interatomic potential as:

Fi,j = ∂φi,j

∂r
(2.2)

These equations form the basis of the Molecular dynamics methods as these forces and

atom movements(vibrations) are used later to calculate dispersion relations and other sim-

ilar properties accurately. There are two major types of Molecular Dynamics techniques

- Equilibrium Molecular Dynamics (EMD) [ 35 ], [  36 ], and Non-Equilibrium Molecular Dy-

namics (NEMD) [ 37 ], [  38 ]. There are also recently developed techniques like Reverse Non-

Equilibrium Molecular Dynamics (RNEMD) [  39 ], [  40 ]. The key difference between all of

these methods is how the energy source is treated within the atomic system. In EMD,

Green-Kubo formulation[ 71 ], [  72 ] is used and the temperature is kept constant throughout

the simulation, while in NEMD, a temperature gradient is applied on the lattice and thermal

conductivity is calculated from the obtained heat flux using Fourier’s law. In RNEMD, the

cause and effect are reversed as heat flux is imposed on the system initially and the cor-

responding temperature gradient is calculated to predict the thermal conductivity. In this

thesis, NEMD is used to predict thermal conductivity of single layer graphene PnCs with

different pore geometries.

2.2.1 Algorithm

Since the MD technique is at classical level involving force calculations and energy bal-

ances, there are multiple algorithms followed to estimate thermal conductivity. This is what
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led to the development of new techniques like RNEMD. A typical algorithm used in an

NEMD solver to estimate thermal conductivity of a given crystal structure is as shown in

the Figure  2.1 . The technique involves following substeps in series:

1. Crystal structure study

2. Definition of simulation domain

3. Initial system relaxation/equilibrium

4. Heat transfer initiation

5. Temperature gradient and thermal conductivity estimation

Figure 2.1. A typical algorithm utilized by an NEMD solver to calculate
thermal conductivity.

Material Crystal Structure Study

While NEMD offers a very accurate route to analyzing phonon transport, one of the

input terms needed for the technique is the atomic configuration. Since atom positions are
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used directly to calculate interatomic potentials, the bond length, bond angle and other such

parameters directly effect the simulation. Especially when it comes to anisotropic materials

like graphene, the atom positions have to be accurately calculated. So, many researchers

utilize the already experimentally measured atom positions. For this study, the graphene

structure from Franz et al. [ 73 ] is used to calculate the atom positions in the simulation

domain. The schematic representation of unit cell of single layer graphene is as shown in

the Figure  2.2 . Here, the horizontal direction is armchair direction while the vertical one is

zigzag direction.

Figure 2.2. Schematic representation of graphene crystal structure.

Definition of Simulation Domain

As seen in the Figure  2.2 , the lattice constant is about 0.142 nm with the inter-layer

distance between graphene layers being around 0.335 nm. These distances are used to

calculate atom positions to fill up a total space of a 40 nm x 10 nm simulation domain. This

results in a total of around 16656 atoms within the domain. Each of these atom positions are
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calculated accurately using the bond lengths from Franz et al. [  73 ], and a Tersoff potential

function is used on the system. An equilibrium temperature of 300 K and a timestep of 0.5

fs are chosen for the current study.

Initial System Relaxation

With the simulation domain ready as input, the molecular dynamics method can now be

performed, and that is done here using LAMMPS solver [  74 ]. Though the atom positions

are carefully calculated using the bond properties from Franz et al. [  73 ], it is still essential

that the system is allowed to relax before any energy transfer. This is to ensure that the

atoms reach their equilibrium positions and are stabilized before any external action can

be applied on the system. This equilibrium is achieved by enforcing an Isothermal-Isobaric

ensemble (a constant atom number, pressure and temperature process - NPT) for about

1000000 time steps. This constant pressure and temperature process allows the atoms to

stretch or compress to any equilibrium dimension freely.

Heat Transfer Initiation

Once this step is completed, a temperature gradient of 10-20 K is applied on the system

under NVE ensemble to initiate heat transfer. A Microcanonical ensemble (constant atom

number, volume and energy - NVE) ensemble makes sure no energy is lost and geometry

(shape) of the simulation domain stays intact. The boundary conditions applied on the

simulation domain during this process are as shown in the Figure  2.3 . The left and right

end strips of atoms are assigned high temperatures to be Hot regions (shown in red), and

the center strip of atoms are assigned low temperature to be Cold region (shown in blue).

It is made sure that the applied temperature gradient is along the length direction. This

temperature gradient causes heat flow along the length direction as well. Periodic boundary

conditions are applied at both X and Y boundaries. And for the overall (time-averaged)

heat flow, Fourier’s law of heat conduction can be utilized as follows.

< Q >= −k 〈∇T 〉 (2.3)
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Figure 2.3. Schematic of Graphene simulation domain with applied boundary conditions.

where Q and ∆T are the heat flux and temperature gradient within the simulation domain

while k is the thermal conductivity. Also, < > denotes the time-averaged quantities here.

Thermal Conductivity Estimation

After the temperature gradient is applied for enough number of time steps, say 40000,

a time average of the temperatures and energies is calculated using the following method.

The energy exchanged between the hottest and coldest atoms in the Hot region is calculated

as ∆E. This exchanged energy is used to estimate the time-averaged heat flux within the

system as follows:

< Q >= −〈∆E〉
2A∆t

, (2.4)

where A and ∆t are the area of cross section of the Graphene domain and the simulation

time step respectively. The temperature profile is also calculated by first splitting the domain

into chosen number of parts in the direction of heat flow, say 50. An energy balance between

the potential and kinetic energy is then used as follows:

NikBTi = 1
3

Ni∑
j=1

mjv
2
j , (2.5)
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where Ni and Ti are the number of atoms and their temperature in the part i of the domain

while mj and vj are the mass and velocity values of each atom in that part. This equation,

when simplified, provides the temperature profile, Ti as a function of kinetic energy of the

internal atoms. Now, omitting the data near hot and cold region to avoid edge effects, the

interior temperature points are chosen and a linear fit is used to obtain the temperature

gradient in the direction of heat flow (∂T
∂x

). This, along with the earlier calculated heat flux,

is used to calculate the thermal conductivity in the direction of heat flow as the ratio of heat

flux to temperature gradient which results in the following equation:

k = 〈∆E〉
2A∆t

(
∂T
∂x

) . (2.6)

The same approach can be applied to the other in plane direction by modifying the

geometry of the simulation domain (see Figure  2.4 ). The longest side of the simulation

domain should always be in the direction of heat flow to accommodate enough room to

assign two hot and one cold regions. The configuration on the left side in the Figure  2.4 can

be used to estimate the thermal conductivity in the armchair direction while the configuration

on the right can be used to estimate the same in the zigzag direction.

2.3 Implementation of Strain in the model

To model the effect of strain on the phononic crystal thermal conductivity, the simulation

domain has to undergo deformation before the temperature gradient can be applied. This

necessitates a slight change in the NEMD algorithm presented in the Figure  2.1 . The new

algorithm which accounts for effect of strain on the simulation domain is shown in the Figure

 2.5 . Here are the substeps in the new algorithm:

1. Crystal structure study

2. Definition of Simulation domain

3. Initial system relaxation/equilibrium

4. Simulation domain deformation
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Figure 2.4. Schematic of two different simulation domains which are used
to estimate thermal conductivity of single layer graphene in both zigzag and
armchair directions (The red shaded areas denote hot regions, while the blue
shaded area denotes the cold region).

5. Heat transfer initiation

6. Temperature gradient and thermal conductivity estimation

The biggest difference between the new algorithm and the old one, as seen from the Figure

 2.5 in contrast to the Figure  2.1 , is that a new deformation process under Canonical ensemble

is enforced on the simulation domain. During this deformation process, the total strain is

applied over a selected number of time steps under a constant strain rate. The Canonical

ensemble (constant atom number, volume and temperature - NVT) allows the strain at each

time step to not revert back to original by enforcing a constant volume condition. Once

the strain application is complete, the system is let to relax again before the NEMD solver

proceeds to apply the temperature gradient under an NVE ensemble. The rest of the method

including the calculations follow a similar procedure as seen in the previous section for the

unstrained single layer graphene case. With the strained case too, in order to obtain the
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Figure 2.5. Modified NEMD algorithm to model the effect of deforma-
tion(strain) on thermal conductivity.

effect of strain on thermal conductivity in both zigzag and armchair directions, the simulation

domain has to be modified again as shown in the Figure  2.4 .

2.4 Closure

With the effect of strain included in the analysis, the thermal conductivity predictions

calculated with NEMD before and after strain for different lattice geometries are reported

in Chapter 6. In addition, the effect of strain on the thermal anisotropy is also studied.

While the MD simulations can account for the detailed physics of strain on heat transfer,

it is computationally expensive. Thus we consider other approaches of calculating thermal

conductivity in the following chapters.
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3. RELAXATION TIME APPROXIMATION BASED BTE

SOLVER

3.1 Introduction

Modeling phonon transport within a material is complex due to their ballistic and dif-

fusive nature. Dislocations, interfaces and other material configurations only add to the

complexity of the modeling. The Boltzmann Transport equation is considered widely as the

fundamental equation governing phonon transport in metamaterials, and thus becomes a

part of any framework or algorithm solving for phonon transport. While many researchers

have used traditional approaches like Callaway-Holland method [  28 ]–[ 30 ] to estimate ther-

mal conductivity, more recent techniques utilize a combination of first principles and density

functional theory as inputs to BTE solvers[ 75 ], [ 76 ]. Based on these methods, researchers

have utilized Python as a framework to devise solvers for the steady state BTE. One of the

first solvers designed this way was ShengBTE [ 41 ] which is primarily made to solve thermal

transport for bulk materials and nanowires. It solves the Boltzmann Transport Equation by

using force constants obtained from fundamental first principles. Other solvers include Four-

Phonons [ 77 ] which solves the BTE for four phonon scattering, and Phono3Py [  78 ] solver

which solves BTE under relaxation time approximation. Another popular solver named

AlmaBTE [  42 ] solves for dispersion plots and thermal conductivity among other material

properties in bulk materials, nanowires, thin films and superlattices using first principle

calculations and solving BTE. There are other solver packages too like PhonTs [  79 ] and

ALAMODE [  80 ] which solve for phonon transport. While most of these solvers which are

designed for simpler geometries use deterministic solvers, the solvers which work on complex

geometries use Monte Carlo methods.

The solver considered here, OpenBTE, developed by Romano et al. [  43 ], solves the first

principles and Boltzmann transport equation in three dimensions to solve for temperature,

heat flux, and thermal conductivity for thin films and materials of complex geometry by using

the bulk cumulative thermal properties as input. While the solver is still in development,

it has been utilized and validated experimentally for silicon thin films within the range of

100nm [ 81 ].
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3.2 Boltzmann Transport Equation

Heat transport in phononic crystals can be modeled as transport of energy packets (or

particles). Following classical theory, phonon transport can be modeled as flow of particles

and their conservation at steady state is a starting point to analyze their flow. This partic-

ular assumption becomes valid as long as the coherence effects in phonon transport can be

neglected (i.e the quantum wave effects are not as important to the overall phonon flow).

Under these set of assumptions and considerations, the conservation of number of particles or

phonons at steady state is derived and called the Boltzmann transport equation. But when

the characteristic length of the lattice system is smaller than the wavelength of phonons,

the wave effects become very essential as the wave interference cannot be neglected. This

leads the particle-based theory to fail and thus the BTE too. So, the Knudsen number helps

identify the applicability of BTE (i.e when Kn»1), the phonon transport is more ballistic

and BTE is not very accurate. It can also be proved that BTE reduces to the standard

Fourier law of heat conduction in the case of collision dominated heat flow (i.e at continuum

limit, Kn << 1).

3.2.1 General Form

Now, if function ‘f ’ defines the probability distribution to find a phonon, the Boltzmann

transport equation indicates that there is no change in this probability distribution function

in the material at steady state. So, the general form of BTE is as follows:

(
∂f

∂t

)
=
(

∂f

∂t

)
diffusion

+
(

∂f

∂t

)
f ields

+
(

∂f

∂t

)
collisions

(3.1)

where f(r, k, t) is the phonon probability distribution, a function in three dimensional space

vector, r, time t, and phonon wave vector, k. Now, for the diffusion process, we are aware

that the the rate of change with respect to time can be written in terms of velocity and rate

with respect to position. (
∂f

∂t

)
diffusion

= −v. (∇rf) (3.2)
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where v is the particle velocity of phonon, given by ∂r
∂t

. Similarly for the rate under external

fields, the term can be written as a product of rate of change in wave vector and partial

differential of probability function with respect to the wave vector:

(
∂f

∂t

)
f ields

= −
(

∂k

∂t

)(
∂f

∂k

)
. (3.3)

This yields the net equation as equation  3.4 and  3.5 which are the Boltzmann Transport

Equation (BTE) for energy carriers:

(
∂f

∂t

)
= −v. (∇rf) −

(
∂k

∂t

)(
∂f

∂k

)
+
(

∂f

∂t

)
collisions

(3.4)

or (
∂f

∂t

)
+ v. (∇rf) +

(
∂k

∂t

)(
∂f

∂k

)
=
(

∂f

∂t

)
collisions

. (3.5)

Now, applying the Boltzmann transport equation to phonons, we can ignore the con-

tribution from external fields to the change in probability distribution function. The rate

contribution from collisions is solely attributed to the scatterings happening within (note that

there are multiple types of scattering processes). If we consider n as the space dependent

phonon distribution, then the overall equation now becomes:

(
∂n

∂t

)
+ vg. (∇rn) =

(
∂n

∂t

)
collisions

, (3.6)

where vg is the group velocity of phonon wave modes of interest. At steady state, the

linearized form of this equation in terms of phonon population deviation is as given in  3.7 .

This equation formulates a collision matrix to define the rate of change in phonon population

distribution under collisions:

vg · (∇rn) = −
∑

ν

Ων(nν − nν0), (3.7)

36



where ν indicates phonon wave vector for each branch, Ω is the collision matrix, and n0 is

the Bose-Einstein distribution at given temperature. If it is assumed that the temperature

deviation from the ambient is low, the equilibrium population terms can be expressed using

Taylor series expansion while neglecting higher order term as:

n0(T ) = n0(T0) + C

~ω
(T − T0), (3.8)

where C = kBη2(sinh η)−2 is the mode resolved heat capacity and T0 is the ambient tem-

perature. Here, the term η is expressed as ~ω/2kBT0. Phonon temperature deviation is

expressed in similar terms as ∆T = (~ω/C)∆n, which simplifies the above equation  3.7 as:

Cvg · (∇r∆T ) = −
∑

ν

Wν(∆Tν), (3.9)

where Wν is the collision scattering operator in terms of energy for a given phonon wave

vector, ν. This equation  3.9 is the linearized steady state phonon BTE formulated in terms

of temperature deviation from ambient.

3.2.2 Relaxation Time Approximation (RTA)

While the left hand side of the equation  3.9 depends on the phonon dispersion wave

modes, the right hand side which includes the scattering operator is complex to quantify.

Same is the case with the equation  3.6 where the scattering term on the right hand side of the

equation is complex to define. This is due to the multiple wave mode possibilities for phonons

in addition to the scattering phenomenon in the thermal transport. Thus, an assumption is

chosen to simplify the model depending on the applicability to the material. One such widely

used assumption is the Relaxation Time Approximation where the rate of change of phonon

population due to internal scattering is calculated as the ratio of population deviation from

equilibrium distribution to the relaxation time, τ :

(
∂n

∂t

)
collisions

= −(n − n0)
τ

. (3.10)
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This approximation, when applied to the phonon temperature deviation, similarly approx-

imates the collision operator formulation to a rate of change of temperature deviation with

respect to relaxation time, thus simplifying the linearized steady state phonon BTE expressed

in temperature (Equation  3.9 ) to:

vg · (∇r∆T ) = −∆T − ∆Tl

τ
, (3.11)

where ∆Tl is the pseudo lattice temperature deviation which is calculated based on energy

conservation within the system. This is the governing equation used by the current solver.

3.3 Software Solution Methodology

OpenBTE solves a linear system of equations iteratively to arrive at the required thermal

solution for phonon transport in materials. The primary governing equation used here is the

relaxation time approximated linearized BTE expressed in terms of phonon temperature

deviation (expressed in the equation  3.11 ). The simulation domain along with the applied

boundary conditions are discussed in this section.

3.3.1 Simulation Domain and Boundary Conditions

The simulation starts with a cuboidal lattice domain of chosen dimensions, say lx, ly and

lz in the thee dimensions, respectively, as shown in Figure  3.1 . Periodic boundary conditions

are applied at all the major faces. In addition to this, energy conservation is applied at

every interface, pore boundary and in the overall lattice. While the energy conservation

at the interfaces and pore boundaries helps to solve the thermal properties of incoming

and outgoing phonons at those positions, energy conservation on the overall lattice helps

to determine the pseudo lattice temperature deviation, ∆Tl. In addition, a temperature

gradient in the direction of choice, say X direction, is introduced to initiate heat transfer in

the domain.
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Figure 3.1. A sample simulation domain used in OpenBTE along with the
applied boundary conditions.

3.3.2 Solution Framework

Now, with the simulation domain and the boundary conditions in place, the governing

equations need to be solved to obtain the thermal properties of the PnC domain of interest.

The solution starts with discretizing the linearized BTE under RTA, as in equation  3.11 .

The equation is discretized using an upwind finite-volume scheme and the phonon modes

are resolved. It is then simplified until a system of linear equations are obtained to solve

iteratively. All the incoming and outgoing phonons are assumed to thermalize to the same

temperature. This is done to further simplify flux calculations in the energy balances. The

fourier law of heat conduction is then used to provide the code with an initial estimate

of temperature. This discretization of the heat conduction done for both orthogonal as

well as complex domains is used to obtain a bulk thermal conductivity estimate. Lastly, the

software iteratively solves the system of linear equations using the provided initial guess until

it reaches the temperature solution. This temperature data along with the calculated heat
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fluxes are utilized to solve for the thermal conductivity contributions from the heat fluxes

and the ballistic phonon transport. Finally, the mode resolved as well as the cumulative

thermal conductivity values are calculated and reported.

3.3.3 Modules in the Software

While the implementation of the BTE within the software is accurate, a much more

impressive feature is its set of modules - Geometry and Material. The entire framework for

the software is as shown in the figure  3.2 , which is reproduced from [  43 ]. Each of the modules

and their submodules are discussed below.

Figure 3.2. Software framework for OpenBTE solver (reproduced from [ 43 ]).

Geometry Module

The geometry module is the first package utilized within the solver. It is used to define

the simulation domain or the lattice design. Since the solver is designed to be used for wide

range of geometry selections, there are different submodules introduced as geometry types

within the software. Some of them currently in usage include

• Bulk geometries
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• Thin films with custom designed slots

• Complex lattice geometries

Material Module

Once the lattice geometry is defined, the material properties have to be input to the

software. This is dealt by the Material module of the package where the mode-resolved bulk

phonon dispersion data along with their group velocities, heat capacity and scattering rates

for the chosen material are extracted from AlmaBTE or Phono3Py sources which use first

principle calculations. These properties are then utilized within the lattice or superlattice

builder to obtain properties for the PnC.

RTA-BTE Solver Module

Finally, utilizing the material properties together with the geometry defined, the software

iteratively solves the discretized BTE under periodic boundary conditions and an applied

temperature gradient in the direction of choice. During this process, Fourier’s law of heat

conduction is also solved on the defined geometry to obtain the Fourier thermal conductivity.

The temperature and flux values thus calculated can be plotted and the dominant heat flow

paths within a custom lattice design can be identified.

3.4 Implementation of Strain in the model and Closure

Since the software utilizes the dispersion plots calculated for pre-strained bulk materials,

the strain cannot be modeled directly in this case. The only way to have the software calcu-

late the post-strain thermal conductivity is by inputting a new dispersion plot information

for each given lattice under required strain calculated from the first principles. This would

also require accurately obtaining the heat capacity and scattering rates. As this is extremely

time-consuming, this solver is not used to calculate the post-strain thermal anisotropy, but

is only used to evaluate and identify key (heat flux dominant) features in a specific lattice
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geometry pre-strain. These results and inferences derived from them are reported in Chapter

6.
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4. VARIANCE REDUCED MONTE CARLO METHOD FOR

BTE

4.1 Introduction

Monte Carlo methods are statistical methods which are widely used to numerically solve

equations. Compared to extensive analytical methods or first principle calculations, they

are easier to apply when there are many independent variables in the system. Thus, many

researchers have tried to utilize Monte Carlo methods to solve Boltzmann Transport Equation

as well. Mazumdar et al. [  82 ] worked on one of the earliest algorithms involving Monte

Carlo methods to solve the BTE. While the early works just focused on modeling advection

based flow and simple scattering processes [  44 ], [ 45 ], more improvements have been made to

the scattering operators to increase the accuracy of the model using efficient energy-based

formulations. One of the methods with such improvements is the variance reduced Monte

Carlo method proposed by Pearaud et al. [  83 ] and later improved based on linearized BTE

formulations [ 84 ], [ 85 ] and ab-initio calculations [ 86 ].

Because particle dynamics like phonon transport and scattering can be modeled much

easily with Monte Carlo based methods, they offer an advantage compared to other solution

techniques. In addition, the effect of scale of the lattice on the computational speed is linear.

Any lattice geometry constituting simple features can be modeled in this technique. But

this method needs dispersion plots, group velocities, and relaxation times as inputs usually,

if not also mean free paths. If these input values are not calculated accurately, the error

can carry over to the MC simulation as well. Another disadvantage with the MC method is

the computational expense. An appropriate time step has to be chosen and the simulation

needs to be run for multiple number of time steps until convergence is achieved. Though

the method has its drawbacks and complexities, it has highly capable of modeling particle-

like known inter-phonon scattering effects within the lattice, as well as interactions with

boundaries.
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4.2 MC Methods to Solve BTE - Approach

One of the earliest proposed algorithms to solve BTE using MC methods was by Mazum-

dar et al. [  82 ]. The approach involved random selection of bundle of phonons simulated

across the chosen PnC lattice. The wavemodes and positions are randomly chosen too, and

during a time step, they are allowed to undergo ballistic transport first before the scatter-

ing was calculated. Different boundary conditions like adiabatic and diffusive surfaces were

chosen based on the type of simulation. A small enough time step was selected too to allow

phonons to interact within the lattice before they can go out of bounds. The Boltzmann

Transport Equation is widely regarded as the fundamental equation governing the transport

of phonons. As such, MC methods use the BTE as starting point too. Traditional MC

methods use the Relaxation time approximated BTE (combining equations ( 3.6 ) and ( 3.10 ),

as derived in Chapter 3):

(
∂n

∂t

)
+ vg. (∇rn) = −(n − n0)

τ
.

A typical MC algorithm is shown in the Figure  4.1 . It is a straightforward step-by-step

implementation of phonon progression in time involving the following steps:

1. Simulation domain definition

2. Phonon bundle initialization

3. Phonon mobilization through advection

4. Temperature sampling

5. Phonon scattering

4.2.1 Simulation Domain Definition

The domain chosen as the simulation box is a thin layer of size 10 nm x 10nm and

with thickness of one atomic layer (0.335 nm). Periodic heat flux conditions are applied

as boundary conditions in the directions other than the heat flow direction such that the
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Figure 4.1. A typical algorithm followed by an MC-based BTE solver.

phonons leaving from one side of the lattice can enter from the other side thereby maintaining

the periodicity while conserving the energy and momentum balance. On the other hand, a

temperature gradient is applied to the faces in the heat flow direction to initialize the heat

flow. The major governing equation used here is the BTE expressed in terms of either the

phonon population distribution (equation ( 4.1 )) or the phonon energy distribution (equation

( 4.2 )) or the phonon energy deviation (equation ( 4.3 )) as follows:

(
∂n

∂t

)
+ vg. (∇rn) = −(n − n0)

τ
, (4.1)

(
∂e
∂t

)
+ vg. (∇re) = −(e − e0)

τ
, (4.2)
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(
∂ed

∂t

)
+ vg. (∇red) = −(ed − ed0)

τ
, (4.3)

where e, e0, ed, and ed0 are phonon energy distribution, equilibrium phonon energy distribu-

tion, phonon energy deviation, and equilibrium phonon energy deviation, respectively.

4.2.2 Phonon Bundle Generation

With the thermal boundary conditions in place, a sample simulation domain with di-

mensions lx, ly and lz look like the domain in the Figure  4.2 below.

Figure 4.2. A sample lattice domain showing boundary conditions.

Phonons are generated in bundles based on the equilibrium phonon population distribu-

tion and their density of states. The Bose-Einstein distribution is usually the distribution

function followed while drawing and assigning frequencies to phonons. But, some other

methods using energy-based formulations [ 83 ] utilize other distributions too, like fnew for

example:

fnew =
~ω

∑
p D

exp
(

~ω
kBT

)
− 1

. (4.4)
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Here D, and p are phonon density of states and phonon polarization respectively. Since

the optical wave modes do not contribute much to the overall thermal conductivity, only

the acoustic wave modes are usually considered as the available phonon states - i.e one

longitudinal acoustic (LA) mode and two transverse acoustic (TA) modes. A random set

of numbers is chosen again to assign random positions and frequencies to each phonon

bundle depending on their corresponding distributions and assigned wave modes. From these

parameters, quantities like group velocity, density of states, specific heat and relaxation time

are calculated as needed. This sets everything up for the advection calculation.

4.2.3 Phonon Mobilization through Advection

With each phonon bundle in place and with their own unique frequency and direction,

the first step that happens after the time of the simulation starts is the phonon movement

under advection based on their group velocities. This is a very simple process and can be

numerically expressed as:

u(t + ∆t) = u(t) + vg∆t. (4.5)

Here, ∆t, u and vg are simulation time step, position vector and phonon group velocity

respectively. During this step, the scattering processes are not yet considered. This step

decides the final position of the phonon bundles along with their defined momentum and

energy. If phonon advection is interfered either by a boundary (hot or cold wall) or by a

geometric feature (pore geometry), phonons undergo reflection or diffuse transmission ran-

domly. If phonons encounters an interface (composite material layer), a similar probability

is followed to address their response. This is how boundary and interface scattering is ac-

counted for in the MC methods. After this, the phonon bundles continue moving until the

end of the time step and reach their new positions.
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4.2.4 Temperature Sampling

With phonon bundles occupying their new positions, the new temperature and pseudo

temperature are calculated from the corresponding local energy, E, (equation (  4.6 )) and

pseudo energy, Ẽ, (equation ( 4.7 )) expressions as follows respectively:

E = V
∫ ωmax

0

∑
p

D~ω

exp
(

~ω
kBT

)
− 1

dω, (4.6)

Ẽ = V
∫ ωmax

0

∑
p

1
τ

D~ω

exp
(

~ω
kBT

)
− 1

dω, (4.7)

where V , D, and p are simulation domain volume, phonon density of states and phonon

polarization respectively.

4.2.5 Phonon Internal Scattering

Finally, the simulation at this time step reaches the substep where internal scattering

is taken into consideration. While boundary and interface scattering have been accounted

for earlier during the advection step based on the phonon position, internal scattering is

accounted for based on a probability function called scattering probability, P, for each phonon

bundle which is calculated as:

P = 1 − exp

(
−∆t

τ

)
. (4.8)

Depending on the scattering probability, a set of phonons are chosen to undergo scatter-

ing. Since it is a process in which the energy is conserved, different techniques are employed

to make sure the conservation is followed. In phonon population based approach, the post-

scattering phonon frequencies are randomly chosen. In such cases, the phonon number is

increased or reduced to ensure the energy conservation is held. On the other hand, in phonon

energy or energy deviation based approaches, the energy is always conserved by treating the

number of phonons as a variable. Both the approaches boil down to similar numerical basis

after which the simulation carries on to the next time step.
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After each time step, the temperature plot is calculated and compared with the plot

obtained in the previous time step. The process carries on until the temperature plot does

not change with time indicating steady state. Then, the overall simulation box dimensions

and the temperature within the box are used together to calculate heat flux or thermal

conductivity using an expression similar to the Fourier’s law of heat conduction.

4.3 Calculation of Phonon Dispersion Relations

Phonon dispersion relations are very essential to any meta material property calculations

where in depth understanding of effect of phonon vibrations is needed. A phonon dispersion

relation is a set of functions which describe the relation between phonon frequency (or

energy) of different wave modes and the wave vector. Depending on whether the material is

isotropic or anisotropic, multiple wave mode curves are obtained. These curves are then used

to calculate phonon properties like group velocity, specific heat and relaxation times which

in turn aid in estimating the thermal conductivity. Many methods are used to estimate these

relations starting from lattice dynamics calculations [  61 ], [  62 ] to scattering experiments [  87 ].

While these experimental and in-depth numerical techniques are very accurate, they are also

time consuming or computationally expensive. Thus, in this study, a continuum mechanics

based dispersion plot estimation is used to obtain the respective phonon dispersion relation

for meta materials with different pore geometries. For the single layer graphene with no

pores, the experimental dispersion data is used. The results from the continuum model are

validated against this data. The elastic model is then used to estimate dispersion relations

for PnCs with different pore geometries. Though this level of estimation for thin films using

an elastic model is not very accurate due to phonon confinement, the method is used as an

initial evaluator to compare with other more accurate thermal conductivity estimations.

4.3.1 Continuum Mechanics based Phonon Dispersion Relations

In this approach, a geometry domain with the size of the required PnC and with intended

pore geometry is built. Assuming that the material is uniform and isotropic, the material

properties at given temperature are used as input to the system. Single layer graphene
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is anisotropic, but at low strains, the single layer graphene PnC can be modeled as an

isotropic material. The equivalent elastic mechanical properties are obtained from molecular

mechanics calculations from literature for the current phonon dispersion calculations. The

properties used and the references from which they are extracted are shown in the Table  4.1 .

Table 4.1. Calculated properties of single layer graphene using molecular
mechanics calculations

Property Name Value Reference

Bond Length 1.42 Å [ 73 ]

Young’s Modulus 1022.01 GPa (Zigzag) [  88 ]

1023.95 GPa (Armchair) [ 88 ]

Density 2270 kg/m3 [ 89 ]

Poisson’s ratio 0.190 [ 90 ]

Once the domain is chosen and properties are applied, a swept mesh containing at least

5 layers in thickness direction and required number of elements in the in-plane direction is

built. An example lattice geometry with mesh is shown in the Figure  4.3a . As boundary

conditions, Floquet-Bloch periodic conditions are used at the in-plane lattice boundaries -

with parallel faces being the source and destination respectively. The displacement field at

the boundary conditions are as follows:

udst = usrcexp(−jkF (rdst − rsrc)), (4.9)

where u, j, kF and r denote displacement field, square root of negative unity, Floquet

wave number and spacial coordinates respectively. Also src and dst represent source and

destination respectively. For the boundaries in the thickness direction, traction-free condition

is applied. All of these boundary conditions on a sample thin layer lattice is shown in the

Figure  4.4 .

Now, a parameter k, for wave vector, is defined and this is parametrically swept across

the lattice to calculate for their corresponding eigenvalue solutions. The resulting plot of the

eigen values with respect to the wave number correspond to the dispersion relationships. To

50



(a) Domain showing mesh elements.

(b) Domain showing mesh along thickness.

Figure 4.3. A sample lattice with mesh of appropriate element size.

obtain a complete dispersion plot, these resulting eigenvalues have to be plotted for the first

Brillouin zone, which is defined by the shaded area in the Figure  4.5 .

4.4 Implementation of Strain in the Model

While the heat transfer due to phonons is estimated, the effect of the strain has to be

accounted for too. This is where the dispersion plots are utilized. To account for strain, the

geometry is left the same as the strain applied is very low. The continuum models are used

to calculate the post-strain dispersion relationships for each different pore geometry. These

post-strain dispersion relations are substituted as input instead of the original no strained

dispersion. The resulting thermal conductivity estimated with these new set of frequencies,
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Figure 4.4. A sample domain showing boundary conditions applied.

Figure 4.5. Figure showing Brillouin Zone (shaded area) in reciprocal space.

group velocities and density of states is presented as post-strain thermal conductivity pre-

diction from this method. This way of modeling strain in this MC method (shown in Figure

 4.6 ) can be made more accurate if dispersion relations used as input here are calculated from

first principles instead of continuum mechanics.
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Figure 4.6. Algorithm implemented to obtain pre and post strain dispersion relations.

4.5 Closure

The predicted thermal conductivity values for single layer graphene PnCs with different

pore geometries and the validation against experimental data is presented in chapter 6.

Along with this, the comparison of this method with other techniques is also presented

before addressing the individual effect of group velocities on the thermal conductivity. The

next chapter discusses Callaway-Holland model which is another model solving the RTA

based steady state Boltzmann Transport Equation.
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5. CALLAWAY-HOLLAND MODEL

5.1 Introduction

Thermal transport by phonons is usually understood to be similar to a broadband en-

ergy transmission where phonons with multiple wavemodes collectively carry heat across the

lattice. Thus understanding phonons, their wave modes and the corresponding dispersion be-

havior becomes key to cracking the code for estimating the thermal conductivity accurately.

An important feature for phonon flow is the mean free path (Λ). The relative comparison

between the characteristic length and mean free path given by Knudsen number, Kn, is used

to categorize the phonon flow and the corresponding heat transport features.

Modeling phonon flow is a popular topic in heat transfer research. Many researchers have

tried to model phonon flow using just dispersion relations attributing to their ballistic trans-

port. Monte Carlo methods were then used to estimate effective heat flux and thermal

conductivity [  83 ]. But on an analytical front, most of the research in phonon flow has con-

verged towards applying Boltzmann Transport Equation which is based on conservation of

number of particles [  29 ], [  42 ], [  43 ]. In this chapter, one such analytical model is discussed.

The phonon dispersion relations are estimated using continuum mechanics – based model.

They are then combined with the estimates of the phonon mean free path and scattering

times to estimate the effective in-plane thermal conductivity using Callaway-Holland solution

to the Boltzmann Transport Equation.

5.2 Governing Transport Equation - BTE

This solver utilizes relaxation time approximated steady state BTE as the governing

equation. The simplified general form of BTE as derived in Chapter 3 (see equation  3.6 is

as follows: (
∂n

∂t

)
+ vg. (∇rn) =

(
∂n

∂t

)
collisions

, (5.1)

where vg is the phonon group velocity of each mode obtained from dispersion relations. To

simplify the collision term on the right hand side of the equation  5.1 , the RTA assumption

is used which expresses the change in phonon population, n, as an exponential reduction in
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deviation from an equilibrium distribution, n0. Using this assumption, the collision term on

the right hand side can be simplified to the ratio of difference in population distribution to

the relaxation time as:

(n − n0) ∝ exp(− t

τ
)

or

(
∂n

∂t

)
= −(n − n0)

τ
, (5.2)

where τ is the relaxation time due to the combined effect of all the scattering processes

and n0 is the equilibrium phonon population, at a temperature T , given by Bose-Einstein

distribution as:

n0 = 1
exp

(
~ω

kBT

)
− 1

, (5.3)

where ~, ω, and kB are reduced Planck’s constant, angular frequency (in rad/s), and

Boltzmann constant respectively. Also note that the values of these constants are ~ =

1.0546x10−34Js and kB = 1.3806x10−23J/K. This when substituted in the right hand side

of the equation  5.1 gives the simplified Boltzmann Transport Equation under Relaxation

Time Approximation: (
∂n

∂t

)
+ vg. (∇rn) = −(n − n0)

τ
. (5.4)

Now, at steady state, the net rate of change of phonon population with time goes to zero.

Thus, the above equation  5.4 is further simplified as:

vg. (∇rn) = −(n − n0)
τ

. (5.5)

This is the steady state Boltzmann transport equation under relaxation time approximation,

the fundamental governing equation that is used in Callaway-Holland method to estimate

heat flux and thermal conductivity due to the flow of heat carriers (phonons).
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5.3 Callaway-Holland Analytical model

The steady state BTE equation obtained earlier has been solved by using multiple tech-

niques including analytical solutions and numerical methods of various accuracy levels. One

of such widely used analytical models is Callaway-Holland model. It is an approximate

solution where relaxation time, τ , due to scattering is estimated for momentum conserving

processes (normal processes) and momentum non-conserving processes (Umklapp scattering,

impurity scattering and boundary scattering):

1
τ

= 1
τC

+ 1
τNC

, (5.6)

where τC is relaxation time due to normal processes which conserve momentum, and τNC

is the relaxation due to scattering processes which do not conserve momentum. Note that

τC is sufficiently large that its overall contribution towards the rate of change of phonon

population can be neglected. For the non-conserving processes, Matthiessen’s rule is used to

estimate the scattering rate due to the combined effect of Umklapp, impurity and boundary

scattering as follows:
1

τNC

= 1
τUm

+ 1
τIm

+ 1
τBo

, (5.7)

where τUm, τIm, and τBo are relaxation times under Umklapp scattering, impurity scattering,

and boundary scattering, respectively. Under the bulk material assumption and in the chosen

direction within the metamaterial, the above relaxation time terms are further expressed as:

1
τUm

= C1Tω2exp(−C2

T
),

1
τIm

= C3Tω4,

1
τBo

= v

C4
, (5.8)
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where the constants C1, C2, C3, and C4 are obtained by fitting the thermal conductivity data

to the available experimental data. These relaxation time terms depend on the frequency of

the phonon wave mode and temperature of the material (i.e dispersion relation data). This

total scattering rate combined with the summation of energies from all modes using specific

heat for each mode gives the overall thermal conductivity solution from Callaway-Holland

model:

k = 1
6π2

∑
i

∫
q
(C)(v)2(τ)q2dq, (5.9)

where k, i and q are thermal conductivity, wave mode branch index, and phonon wave

number, respectively. Here the specific heat value corresponding to each specific phonon

branch is again expressed as:

C = ~2ω2

kBT 2

exp
(

~ω
kBT

)
(
exp

(
~ω

kBT

)
− 1

)2 . (5.10)

Equations  5.9 and  5.10 give the solution for total thermal conductivity estimate from the

Callaway-Holland model for Boltzmann transport equation under relaxation time approxi-

mation:

k = 1
6π2

∑
i

∫
q

 ~2ω2

kBT 2

exp
(

~ω
kBT

)
(
exp

(
~ω

kBT

)
− 1

)2

 (v)2(τ)q2dq. (5.11)

Every term here is a function of phonon wave vector, frequency, and corresponding group

velocities for all phonon branches of interest. This data can be obtained from phonon dis-

persion relations for the specific metamaterial geometry similarly to the technique discussed

in the section 4.3.

5.4 Implementation of Strain in the Model

The continuum model results in an approximate dispersion plot from which the wave

modes of interest are extracted and are validated against a set of accurate dispersion plots

obtained either from experiments or first principle calculations. The lattice domain is then
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strained and the Floquet-Bloch boundary conditions are reapplied to obtain a new set of

eigen values for the same wave vector parameters thus giving us the dispersion plots post

applied strain. These pre and post strain dispersion relations for the wavemodes of interest

are used in the equation  5.5 to predict the effective pre and post-strain thermal conductivity

values.

5.5 Closure

The thermal conductivity values predicted using this model are reported in chapter 6.

In addition to the comparison with other methods, a detailed investigation of effect of tem-

perature and strain on thermal transport in PnCs is performed and reported too.
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6. RESULTS

This chapter compares the different models applied to a single layer graphene (SLG) lattice,

and evaluates the impact of different transport and scattering mechanisms.

6.1 Thermal Conductivity Estimation of Single Layer Graphene Lattice

This section compares predictions from different techniques used to model phonon trans-

port at nanoscale. The first part presents the calculated thermal conductivities before strain

is applied, while the next part reports the changes to thermal behavior with strain. These

are used to then evaluate the sensitivity of phonon transport in single-layer graphene lattices

to strain. Though the BTE is a common governing equation for many of the solvers evaluted

here, the assumptions and conditions chosen to solve them along with the accuracy of the

input data provided in each of the methods affect the overall thermal conductivity estimate

compared to the MD simulations that rely only on the input of the interatomic potentials.

6.1.1 Prediction and Validation of Thermal Conductivity from First Principle
Calculations

An open source phonon transport solver, called AlmaBTE [ 42 ], is used to calculate disper-

sion data along with the thermal conductivity tensor for a bulk material using first principle

calculations. In this work, AlmaBTE solver is used to obtain a set of benchmark thermal

conductivity values which will be used later to compare with the thermal conductivity es-

timations from other techniques. The inputs to this solver include structural parameters of

the lattice along with the potential energy values and force constants obtained using first

principle calculations. These are directly extracted from the AlmaBTE [  42 ] repository for

the current work. Using these quantities, the estimated thermal conductivity for a single

layer graphene lattice is shown in the Figure  6.1 . It can be seen from the Figure  6.1 that

the thermal conductivity estimations here match well with the data from the literature [ 91 ],

[ 92 ], especially above 300K. Based on this validation, the current work will use this thermal

conductivity prediction as the validation for the other thermal models.
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Figure 6.1. Validation of thermal conductivity of SLG calculated from
AlmaBTE solver against Opto-thermal experimental data [ 91 ] and Tersoff-
based NEMD solver output [ 92 ].

6.1.2 Thermal Conductivity from Callaway-Holland Method

The Callaway-Holland model predicts the thermal conductivity of the singe layer graphene

PnC with a given pore geometry using the following equation (recall equation  5.11 ):

k = 1
6π2

∑
i

∫
q

 ~2ω2

kBT 2

exp
(

~ω
kBT

)
(
exp

(
~ω

kBT

)
− 1

)2

 (v)2(τ)q2dq, (6.1)

where

τ =
(

C1Tω2exp(−C2

T
) + C3Tω4 + v

C4

)−1
. (6.2)

This model needs material dispersion relations as input which is obtained in this work

from periodic elastic models in COMSOL. Curve fitting of the bulk single layer graphene

thermal conductivity is then used to calculate the constants (C1, C2, C3, and C4) in the

relaxation time terms, where C4 is the minimum length feature in the lattice. Utilizing the

thermal conductivity values from Opto-thermal experimental data [ 91 ] to fit the model, the

constants are obtained as in Table  6.1 .
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Table 6.1. Curve-fitted constants for the Callaway-Holland model for Single
layer graphene with no pores

Curve fitting parameter Value

C1 3.7 × 10−20 s/K

C2 303 K

C3 1.32 × 10−46 s−3

C4 ∞ m

The thermal conductivity using these constants are compared against the conductivity

values reported from the AlmaBTE solver in the Figure  6.2 . Thus the model is calibrated,

and is later used to obtain thermal conductivity predictions for SLG PnCs with different

pore geometries.

Figure 6.2. Calibration of thermal conductivity of SLG calculated using
Callaway-Holland model against AlmaBTE values.
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6.1.3 Thermal Conductivity from the Monte Carlo Method

For the variance reduced Monte Carlo (VRMC) method, the thermal conductivity is

estimated at each time step until the process reaches steady state. A sample plot for the

conductivity calculated at each time step of the simulation is shown in the Figure  6.3 . The

calculation for a single layer graphene lattice uses a time step of 1 ps and the simulation

was run until the steady state in temperature or convergence in the thermal conductivity

is reached (approximately for 700 ps here for convergence in thermal conductivity). The

conductivity values are compared with the baseline AlmaBTE data in Figure  6.4 . It can be

seen that the conductivity predictions from MC for SLG lattice with no pores are slightly

lower than the AlmaBTE values, but are within the range of reported conductivity values

in the literature [ 91 ].

Figure 6.3. Thermal conductivity predictions at each time step in the VRMC simulation.
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Figure 6.4. Comparison of thermal conductivity of SLG obtained using
VRMC model against baseline data from AlmaBTE.

Figure 6.5. Heat Flux of SLG lattice predicted from OpenBTE solver.

6.1.4 Thermal conductivity from OpenBTE solver

Unlike the previous two solvers where an equivalent pore geometry is modeled, the

OpenBTE software needs a very specific geometry design as the simulation domain. Since
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the lattice is just a single layer graphene PnC, a simple cuboidal domain was defined. The

required lattice parameters as well as the potential energy constants are taken from the

AlmaBTE source [  42 ]. A temperature gradient of 1 K was applied on the system in the

X direction. Using these, the net heat flux output obtained for a simple lattice at a given

temperature of 300 K is as shown in the Figure  6.5 . The estimated thermal conductivity

is at 300K is 2934 W/m-K which matches well with our baseline data and other data from

literature.

6.1.5 Thermal Conductivity from Non-Equilibrium Molecular Dynamics

For the NEMD approach, the atom positions in the lattice are defined by using the data

from Figure  2.2 . The algorithm as detailed in the Figure  2.1 is used. The resultant energy

transferred at every time step is shown in the Figure  6.6 . As seen in Figure  6.6 , the energy

Figure 6.6. Energy in eV transferred at hot and cold regions during each
time step of the NEMD simulation.

transferred to both the hot and cold sides is equal and opposite as expected. The slope,

64



dEeV /dt of these curves gives the net heat transferred which is later used to calculate the

heat flux using equation  6.3 :

q′′
net = (1.602x10−19) dEeV /dt

Across−section

, (6.3)

where Across−section is the area of cross section of the single layer graphene lattice calculated

as the product of inter-layer distance (0.335 nm) and width of the lattice (20 nm). The

obtained temperature distribution along the direction of the applied temperature gradient is

also shown in the Figure  6.7 . To avoid the surface effects, only the interior points are chosen

to compute the temperature gradient, dT/dx.

Figure 6.7. Temperature distribution as a function of position within the
simulation domain in the direction of heat flow.

The calculated heat flux and temperature gradient values from Figure  6.6 and Figure

 6.7 are used to calculate the thermal conductivity of single layer graphene in that particular

heat flow direction using equation  6.4 :

kNEMD = q′′
net

dT/dx
. (6.4)
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The final reported thermal conductivity from this method at 300K is 1736 W/mK. which

is within the range of thermal conductivity reported [ 91 ], [ 93 ], [ 94 ].

6.1.6 Comparison of Predicted Thermal Conductivity

Figure  6.8 compares the predictions from all the methods used in this work. In addition

to the predictions from the different solvers, the grey bars represent the experimental limits

for SLG thermal conductivity predictions from Xu et al. [ 93 ] and Li et al. [ 91 ]. The

black bars, on the other hand, represent theoretical conductivity predictions using 3-phonon

scattering alone, and 3 and 4 phonon scattering combined from Feng et al. [ 94 ]. As seen,

all the predictions from this work fall between these limits, thus showing the validity of all

these models in predicting thermal conductivity for SLG without any pore structure.

Figure 6.8. Comparison of thermal conductivity predictions at 300 K for SLG
sheet with no pores calculated with the experimental [ 91 ], [  93 ] and theoretical
[ 94 ] predictions.

While Figure  6.8 reveals that all the methods reasonably predict the thermal conductivity

values of SLG with no pores at 300K. The challenge lies with modeling size effects and

interface effects due to various pore geometries which are absent in these initial data. This
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effect of pore geometry is addressed in the later sections. Now, another important parameter

to consider while comparing different methods is the total computation time. This, for each

method is shown in Table  6.2 . As expected, NEMD takes significantly more amount of

time for a calculation compared to all other techniques while Callaway-Holland provides the

quickest predictions. However, the Callaway-Holland model required calibration against the

first-principles calculations (or from experiments) for parameters of the scattering time.

Table 6.2. Computation time for a thermal conductivity prediction for each method

Technique Computation Time (Approx.)

NEMD 35-40 hrs

RTA based BTE 20-30 mins

Monte Carlo 8-10 hrs

Callaway-Holland <1 min

6.2 Size Effects on the Thermal Conductivity of Single Layer Graphene

While the thermal conductivity estimates for an SLG with no pores are consistent with

literature, additional complexity in solving phonon transport comes from including the pore

boundaries and interfaces within the system. Any pore feature added to the lattice affects the

Mean Free Path (MFP) of phonons thereby affecting the thermal conductivity. Though this

effect is negligible at macroscale, it becomes increasingly significant as the simulation domain

is scaled down to a nanometer level. For a sample lattice with an arbitrary pore design (see

Figure  6.9a (a)), the thermal conductivity estimated using the RTA-BTE method reduces as

the size of the repeating element reduces (see Figure  6.9b ). This can be explained based on

the cumulative thermal conductivity distribution. As illustrated by data from AlmaBTE (as

shown in the Figure  6.10 ), phonons with very small MFPs (in nanometer range) contribute

minimally to the overall thermal conductivity compared to the longer MFP phonons. As

the lattice size approaches the phonon MFP, collisions are significantly impacted, thereby

drastically reducing the phonons carrying heat across the lattice.
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(a) Lattice with defined ran-
dom pore geometry.

(b) Size effects seen in thermal conductivity predictions (from
RTA-BTE method).

Figure 6.9. A lattice with random pore geometry and the corresponding size
effects on thermal conductivity.

Figure 6.10. Cumulative thermal conductivity of SLG as a function of
phonon MFP from AlmaBTE.

6.3 Thermal Conductivity for Lattices with Different Pore Geometries

Because the phonon transport is a mixture of diffuse phonon flow as well as the ballistic

transport, boundary scattering including the impact of pore shape play a key role in thermal

68



transport. In addition to this, the size effects detailed in the previous subsection presses

more the need for an accurate phonon transport model especially at nanoscale. In order to

further understand the accuracy of the techniques discussed in the previous chapters, this

work compares the thermal conductivity estimations from each of those techniques for SLG

lattices with selected pore geometries.

6.3.1 Thermal Conductivity Prediction Results

Table  6.3 shows the lattice designs and their thermal conductivity predicted from different

techniques. The first three techniques assume that the single layer graphene is isotropic in

the plane. So, the overall conductivity prediction only has one reported value. For the last

technique, NEMD, the heat flow direction is chosen to be in the armchair direction and

thus reports the conductivity value in that direction for comparison with results from other

techniques.

Table 6.3. Estimated Thermal Conductivity values for Single Layer Graphene
lattices (20nm x 20nm) with different pore geometries
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The data from the NEMD method is chosen as the standard to compare the results from

other techniques. Based on the different assumptions and characteristics of each model, we

find the following key conclusions:

• Failure of Callaway-Holland Model to Predict the Size Effects Accurately:

As seen from the data, the thermal conductivity predictions from the Callaway-Holland

model fail to accurately account for size effects of the lattice and thus overpredict the

reduction in conductivity. This is due to the model being simplified to function for

bulk materials and thin layers with the specific pore geometry being included as a

characteristic length term in the phonon-boundary scattering rate calculation.

• Inaccurate Prediction of the Size Effect with the Current Version of the

VRMC Method:

The VRMC method, on the other hand, considers the overall size effects. But as this

model only includes an equivalent geometry based on the average boundary-boundary

distance to define the pore boundary scattering, some of the boundary scattering effects

are not accounted for thereby leading to inaccurate thermal conductivity predictions.

This can be fixed by updating the model by including an accurate pore boundary

model within the code while also having accurate scattering rate definitions.

• Overprediction of Size Effects in RTA-BTE Solver:

Finally the RTA-based BTE solver accounts for the size effects as well as the pore

boundary effects, but overpredicts their effect on the thermal conductivity, thus re-

ducing the predicted values. This indicates that the linearized BTE formulation with

considered assumptions may not be the best combination to model the thermal trans-

port in graphene.

These inferences help understand that while NEMD is the more accurate, it is also

computationally expensive. And the Callaway-Holland model used here with individual

dispersion plots can only be accurate up to a certain level unless geometry is accounted for

more into the scattering rate. Monte Carlo methods with geometry included as well as an

accurate RTA-BTE solver can account for scattering effects as long as care is taken to input
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correct material dispersion data. While advanced MC methods need to have more definitions

of scattering to account for all possible processes within the lattice, RTA-BTE solvers need

to omit certain assumptions taken to improve the thermal conductivity predictions.

6.4 Modeling the Effect of Strain on SLG PnC Thermal Conductivity

In this section, the effect of strain on thermal conductivity of single layer graphene lattices

is estimated using the four different techniques. The phonon transport is modeled for the

simple lattice designs. By utilizing the results for each of the lattices, the study aims to

understand the possible features affecting the phonon transport under strain.

6.4.1 Methodology

Here, all of the techniques previously discussed are brought together to understand the

effect of strain on a SLG lattice in detail while also identifying guidelines to design a lattice

with pore geometry which is the most thermally sensitive under applied strain. A uniaxial

strain of 6 % is applied in the X-direction on the lattice to determine the effect on the

thermal conductivity change in X and Y directions. Depending on the technique used, the

effects taken into consideration are different and therefore are separately evaluated. This

separation of effects and the overall combination is shown through a chart in the Figure  6.11 

(refer to Figure  1.1 in Chapter 1).

6.4.2 Impact of Strain on Thermal Conductivity

Phonon transport predictions are computed on each lattice before and after strain. The

effect of strain on a given PnC is reported in terms of their pre and post-strain thermal

conductivity values. These are predicted from each method separately and are presented in

the Tables  6.4 and  6.5 . In NEMD method, the X direction is the zigzag direction while the

Y direction is the armchair direction. In MC and Callaway-Holland models, on the other

hand, the single layer graphene is treated as isotropic initially and the approximate in-plane

conductivity values are predicted accordingly.
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Figure 6.11. Illustration of methods to predict thermal transport and which
strain-dependent transport mechanisms are included.

Table 6.4. Thermal conductivity under uniaxial strain of 6% for Single Layer
Graphene lattices (20nm x 20nm) with different pore geometries (predicted
using NEMD).
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Table 6.5. Thermal conductivity under uniaxial strain of 6% for Single Layer
Graphene lattices (20nm x 20nm) with different pore geometries (predicted
using Monte Carlo and Callaway-Holland models).

As seen from the conductivity values presented, the reported magnitudes and deviations

vary significantly between different methods. NEMD includes the most physics and should

be the most complete representation of the strain effect. Every other technique represents

predictions with some error. As such, there needs to be a common parameter which can be

compared between different methods to gauge the effect of strain as a whole. This leads to

in-plane thermal conductivity anisotropy (defined as A = kY /kX) for each of the PnCs.

6.4.3 Impact of Strain on Thermal Transport Anisotropy

The overall strain effect on each lattice is reported in terms of change in the in-plane

thermal anisotropy, which is defined as (Apost − Apre)/Apre ∗ 100, where A is the in-plane

thermal anisotropy, pre and post represent the pre-strain and post-strain conductivity pre-

dictions. The deviation in the anisotropy for an SLG lattice with no pore geometry is about

5.8% (using NEMD) which can be attributed solely to the effect of strain on the group ve-

locities, lattice geometry and molecular structure. Now, the anisotropy deviations for PnCs
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with chosen pore geometries from NEMD are expressed as deviations from this zero devia-

tion. The, thus calculated anisotropy deviations along with the same predictions from other

methods are reported in the Table  6.6 . For methods other than NEMD, the models initially

consider the PnC to be isotropic and hence the post-strain thermal anisotropy is directly

reported as the final in-plane thermal anisotropy deviation due to strain.

Table 6.6. Estimated Thermal Anisotropy Deviations under uniaxial strain
of 6% for Single Layer Graphene lattices (20nm x 20nm) with different pore
geometries

As seen from the Table  6.6 , the reported deviations also vary significantly between meth-

ods. NEMD is the most accurate representation of the strain effect and is used to compare

the other methods’ reported anisotropy deviations to evaluate the effectiveness of each of

those methods. In addition to this, to understand the impact of strain, first, the heat flux

plots for each chosen lattice design using the RTA-BTE solver are reported and the dominant

heat flow paths are identified as shown in the Figure  6.12 . These heat flow paths hold the

key to understanding the strain effect on the SLG lattice.

Based on the results from the table  6.6 along with the heat flux distributions from  6.12 ,

the following inferences can be made about the internal scattering effects:
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Figure 6.12. Dominant heat flow paths (indicated by red arrows) based on
heat flux distributions in each lattice calculated from the OpenBTE solver.

• Effect of the Assumption of Isotropic Band Structures and the Effect of

Material Properties:

As seen from the data, the predicted deviations in thermal anisotropy predicted by

the Callaway-Holland and VRMC models are smaller than the deviations predicted by

the NEMD model. This may be due to the isotropic assumption considered to obtain

the effective material modulus and Poisson’s ratio, which yielded inaccurate dispersion

relations. Since the major input to both the models here is the dispersion relation,

any inaccuracy in them may lead to errors in the eventual thermal conductivity and

aniostropy prediction.

• Effect of Dominant Heat Flow Paths:

The heat flux results from OpenBTE represent a much more accurate way of explain-

ing the effect of pore geometry on the thermal conductivity. Though the effect of

strain cannot be modeled well using this solver for now, the dominant heat flow paths

identified from it lay the foundation to understanding the phonon transport within the
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SLG lattice at the nanometer scale. From Figure  6.12 , it can be seen that when the

majority of dominant heat flow paths are aligned with the applied strain direction, the

overall anisotropy deviation under applied strain is low compared to the cases where

dominant heat flow paths are aligned at an angle to the applied strain leading to more

thermal anisotropy deviation.

• Effect of pore geometry in ballistic transport view point:

In addition to the dominant heat flow paths, the geometry itself affects affects the

phonon flow. This is because, at nanoscale with multiple nanopores in the lattice,

phonon transport tends to be in the ballistic regime. The material bridges caused

by nanopores and the change in their geometry under this applied strain affect the

thermal conductivity and heat flow.

6.4.4 Combined Effects of Lattice Size, Pore Geometry, and Heat Flow Paths

Finally, the predicted deviations in thermal anisotropy from the NEMD simulations pro-

vide more insight.

• For the lattices with non-aligned pore geometry and containing more dominant heat

flow paths aligned at an angle to the applied strain, the effects due to each complement

and stack up thus causing the highest thermal sensitivity under applied strain. This

is particularly evident in lattice design 2 and 4.

• The opposite effect can be seen with the lattice design 1, where the geometry is com-

pletely symmetric and the heat flow paths are perfectly aligned with the strain direc-

tion. In this lattice, the group velocity changes and the corresponding pore boundary

scattering do not become very significant. This leads to less deviation in the thermal

anisotropy.

• While the non-aligned geometry holds the key to higher strain sensitivity, in some cases

it can oppose the impact of strain. This can be seen in cases like lattice design 5 and

6 where too much scattering in the thermal bridges lessens the impact of strain on the

overall thermal transport.
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6.5 Closure

This chapter reports in detail the thermal conductivity predictions from each method

before and after the application of strain. The lattice predictions before strain are used

to gain an understanding of the applicability of different techniques. Then, the strained

conductivity studies are used to explore the factors affecting the thermal conductivity of SLG

layers with different pore geometries and under applied strain. This enabled identification

of features that promote large changes to the thermal anisotropy.
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7. CONCLUSION

7.1 Conclusion

This work investigates the applicability of different phonon transport models to single-

layer graphene with and without strain. While the conductivity predictions without strain

for a virgin single layer graphene layer using the different methods compare well with ex-

perimental data, the difference between the techniques is clearly observed when different

pore geometries are introduced. For a lattice without any pores, all the techniques predict

a thermal conductivity of about 2900 W/(m K) at a temperature of 300 K. The conduc-

tivity beyond that temperature decreases as the temperature increases, which is typical for

such materials. While NEMD predicts the lowest conductivity, it is still within the range of

reported conductivities for single layer graphene lattice.

For lattices with pores on the other hand, these solvers predict vastly different conduc-

tivity values. With conductivity predictions from NEMD considered as the most accurate

prediction, all other predictions are compared against the NEMD data. Firstly, for Callaway-

Holland model, it can be clearly seen that the model involves simplifications applicable to a

bulk material or a thin layer material with no complex pore geometry. The domain is also

considered continuous with no option to include geometry. This lack of consideration for

size and boundary scattering effects is also reflected in the conductivity predictions from the

model as they are very low compared to the NEMD values. The variance reduced Monte

Carlo method on the other hand considers a simplified pore geometry within the module and

does not model all the pore boundaries. This means that much of the internal scattering is

omitted. This is observed with the conductivity predictions from the method too as they

are larger than the NEMD predictions. Though the current conductivity predictions are not

very accurate, Monte Carlo methods are the most reliable solvers to model phonon transport

due to the ease of including any and all known additional phonon interaction phenomena.

They also have reduced simulation time for larger simulation domains.

The RTA-based BTE solver, OpenBTE, has one of the most detailed solutions to the

Boltzmann Tranport Equation. The decision to deterministically solve the BTE involved

the solver dealing with multiple complex boundary conditions along with intricate partial
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differential equations. Due to this, some assumptions were considered like common phonon

thermalizing temperature, and uniform isotropic material. These set of assumptions together

affect the thermal predictions by a lot especially when high level of scattering is involved.

That, exactly, is observed with the OpenBTE thermal conductivity predictions which are

lower than the expected NEMD values. This result indicates that while RTA-BTE solvers

account for geometry, size effects, and internal scattering, they need more refinement to

accurately predict the phonon transport.

With strained lattices, since the conductivity predictions varied a lot for each technique,

a common parameter, in-plane thermal anisotropy deviation, is considered to indicate the

effect of strain on the lattice. This term expresses the change in thermal anisotropy of

single layer graphene as it is strained. From the anisotropy deviation results obtained from

every technique, inferences similar to those of pre-strained predicitions can be drawn. The

Callaway-Holland model which does not accurately address the size effects fails to address the

strain effect accurately. VRMC method manages to predict some of the deviations. This is

very similar to the conductivity predictions, as the inclusion of the simplified pore geometry

accounts for some of the internal scattering. The RTA-BTE solver on the other hand, though

not useful in modeling strain, becomes useful as an initial evaluator tool to identify the effect

of strain based on the dominant heat flow paths concept. This along with the ballistic view

point on the geometry paves way to understanding the effect of strain on phononic crystals

in the order of nanometers. Based on these inferences, both the MC methods and RTA-

BTE solvers could become accurate thermal transport predictors replacing computationally

expensive MD techniques if they are further developed in the mentioned directions.

7.2 Contribution

This work focuses on specifically understanding the phonon transport at nanoscale while

also commenting on the type of solver capable of modeling the factors affecting it. The size

effects, or the MFP effects, were reported along with the cumulative thermal conductivity

calculations to validate the idea. The work also introduces the concept of dominant heat

flow paths in tandem with the pore boundary geometry to explain the nanolevel phonon
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flow. In addition, the advantages of using different solvers, and their drawbacks are reported

in detail. That section also reports the lacking area in each solver while identifying the

effects within those solvers that account for differences in the calculations. This is reported

to ensure the future work is steered in the right direction to address the scattering effects.

By using lattices with simple pore geometries, the thesis presents multiple factors affecting

the thermal conductivity of the phononic crystal. It also presents ways to model the effect

of strain on thermal conductivity of a lattice and correspondingly the thermal anisotropy.

Finally, the factors to be taken into consideration to design a lattice sensitive to strain are

laid out based on the inferences drawn from the results of each technique. With this work,

the author hopes to add more perspective to the phonon flow in thin layers, especially single

layer graphene, and the effect of strain and other parameters on its thermal behavior.

7.3 Future Work

Since the current work is very investigative and fundamental, the later part of the study

can be extended in the following directions:

• A solver to accurately model the phonon flow:

As an extension to the first half of the work involving investigating different solvers to

model the phonon flow, the next step to be taken can be to work on developing either

an MC based model or an RTA-BTE solver. An MC solver which accounts for the

pore geometry accurately can resolve the case. A technique to obtain more accurate

dispersion plots will also help sharpen the accuracy of such model. On the other hand,

the RTA-BTE models need focused work on developing new set of assumptions or

scattering operators to account for more effects while not increasing the complexity

and cost of the model.

• Expanding the work to other materials:

As phonon transport is studied in a material like single layer graphene, a study to

expand this knowledge towards other materials and later to composites can be another

good direction to move to as enough fundamental knowledge on phonons is lacking in

these fields. In addition to this, exploring different types of materials can also bring
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out more challenges to be addressed in phonon flow which would help develop a much

better phonon transport model later.

• Lattice design for specific thermoelectric applications and Experiments:

Based on the knowledge gained so far, the research can also be steered in a direction

of designing meta materials to specifically address different thermoelectric applica-

tions. This may involve static or dynamic tuning of thermal conductivity and thermal

anisotropy in the material. In additon to this, designing experiments to study and

validate these designs also contribute to adding more phonon transport knowledge to

the community. Silicon is an ideal material to experiment with, but since an NEMD

study cannot be conducted on it due to computational limitations, an accurate model

can either be built from experimental data or by using the knowledge of phonon flow

in other materials.
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