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GLOSSARY  

Aerial survey – the process of collecting and combining images from an airborne platform to 

produce a composite photograph with which volumes, areas, and counts of assets can be 

derived (Hupy & Kroening, 2018). 

 

CHF – the central hardwood forest region describes an area throughout the east-central United 

States that predominantly consists of deciduous hardwood species such as Oak and Hickory, 

which display mesophytic elements, as well as mixed noncommercial conifer species 

(Fralish, 2003).  

 

CORS – continuously operating reference stations are a network of ground GNSS 

receivers operated by the national geodetic survey which provide constant position 

correcting measurements to enhance precision of geographic measurements (CORS, 

2021).  

 

Disturbance – for the purposes of this study, a disturbance refers to a discrete fire or timber felling 

event that significantly and rapidly changes the vegetated composition of an area. 

 

GCP – ground control points are physical markers, placed throughout the study area, to have their 

coordinates collected and referenced during photogrammetric processing in order to 

geospatially align aerial imagery (Zhang, Aldana-Jague, et al., 2019).  

 

GEOBIA – geographic object-based image analysis involves the clustering of neighboring pixels 

in an aerial image based on similar spectral and spatial characteristics in order to classify 

out various objects for geospatial analysis (Kucharczyk et al., 2020).  

 

Georeferencing – the act of associating “real-world coordinates” to an “ordinary image” for the 

purposes of scaling and querying an image relative to the physical space on earth it 

represents (GISGeography, 2021c).  
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GIS – geographic information systems are used to “store, analyze, and visualize” spatial 

relationships of geographic data through a network of “computer-based” tools, 

(GISGeography, 2021b).  

 

GNSS – global navigation satellite system refers to the synonymous network of “positioning, 

navigation, and timing” satellites used in triangulation for determining an object’s position 

on earth (GPS.gov, 2021a).  

 

GPS – global positioning system is the United States owned network of satellites and correction 

stations which relates earth positioning information to receivers (GPS.gov, 2021b).  

 

GSD – ground sample distance is the size of a given image pixel relative to its true ground 

measurement (Tomaštík et al., 2019).  

 

Image segmentation – the first step in image classification, image segmentation is a semi-

automated process of clustering multiple pixels together based on similar spectral and 

spatial characteristics through user-defined parameters (Nuijten et al., 2019).  

 

Land classification – land classification refers to the development and use of vectorized GIS layers 

which display ground objects as generalized categorical land covers (LaGro Jr, 2005).  

 

Land cover – land cover refers to the vegetation, materials, or surfaces that comprise the horizontal 

space in an aerial image (Gibril et al., 2020).   

 

Orthomosaic – a geometrically oriented data product which is constructed by blending multiple 

aerial photographs into one composite image (Pix4D, 2021a). 

 

Photogrammetry – calculating measurements from photographs by computing the distance away 

from an object, the focal length, and angle of capture (Walford, 2017).  
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PPK – post-processing kinematics refers to the corrective calculations of the UAS’ camera position 

and orientation, relative to a known reference point (Zhang, Aldana-Jague, et al., 2019).  

 

Prescribed burn – periodical fire events that are intentionally set and controlled for a variety of 

ecological management objectives (Newman, 2019).  

 

RTK – real-time kinematics involves a dual-frequency GNSS station, emitting reference 

positioning data in real-time to the receivers on the UAS (Zhang, Aldana Jague, et al., 

2019).  

 

Selective timber harvest – the deliberate removal of timber from a forest stand, where the stems 

selected are based on temporal, spatial, and phenological characteristics (Newman, 2019).  

 

SfM – structure from motion photogrammetry relies on keypoint matching of similar pixels from 

multiple aerial images to reconstruct a single composite image and 3D model (Tomaštík et 

al., 2019).  

 

Treatment – for the purposes of this study, a treatment refers to an intentional act conducted by 

land managers in an attempt to restore native vegetation and facilitate sustainable 

regeneration. 

 

UAS – an unmanned aerial system or ‘drone’ is “an aircraft and its associated elements which are 

operated with no pilot on board,” (ICAO, 2011).  

 

WGS 84 / UTM Zone 16 North – the World Geodetic Datum is a vertical coordinate system that 

is used in conjunction with a projected coordinate system, Universal Transverse Mercator 

(UTM), to determine positions within localized zones, for instance Zone 16 North 

(GISGeography, 2021d).
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LIST OF ABBREVIATIONS 

AA  accuracy assessment 

AFC  above forest canopy (referring to flight altitude) 

AGL  above ground level (referring to flight altitude) 

DSM  digital surface model 

ESR  equal stratified random (sampling) 

GEOBIA geographic object-based image analysis 

GNSS   Global Navigation Satellite System 

GSD  ground sample distance 

KPIS   key point image scale (Pix4D processing parameter for feature scaling) 
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ABSTRACT 

Three prescribed burn sites and seven selective timber harvest sites were surveyed using a 

UAS equipped with a PPK-triggered RGB sensor to determine optimal image collection 

parameters surrounding each type of disturbance and land cover. The image coordinates were 

corrected with a third-party base station network (CORS) after the flight, and photogrammetrically 

processed to produce high-resolution georeferenced orthomosaics. This addressed the first 

objective of this study, which was to establish effective data procurement methods from both 

before and after planned disturbances.  

Orthomosaic datasets surrounding both a prescribed burn and a selective timber harvest, 

were used to classify land covers through geographic image-based analysis (GEOBIA). The 

orthomosaic datasets were segmented into image objects, before classification with a machine-

learning algorithm. Land covers for the prescribed prairie burn were 1) bare ground, 2) litter, 3) 

green vegetation, and 4) burned vegetation. Land covers for the selective timber harvest were 1) 

mature canopy, 2) understory vegetation, and 3) bare ground. 65 samples per class were collected 

for prairie burn datasets, and 80 samples per class were collected for timber harvest datasets to 

train the classifier. A supported vector machines (SVM) algorithm was used to produce four land 

cover classifications for each site surrounding their respective planned disturbance. Pixel counts 

for each class were multiplied by the ground sampled distance (GSD) to obtain area calculations 

for land covers. Accuracy assessments were conducted by projecting 250 equalized stratified 

random (ESR) reference points onto the georeferenced orthomosaic datasets to compare the 

classification to the imagery through visual interpretation. This addressed the second objective of 

this study, which was to establish effective data classification methods from both before and after 

planned disturbances.  

Finally, a two-tailed t-Test was conducted with the overall accuracies for each disturbance 

type and land cover. Results showed no significant difference in the overall accuracy between land 

covers. This was done to address the third objective of this study which was to determine if a 

significant difference exists between the classification accuracies between planned disturbance 

types. Overall, effective data procurement and classification parameters were established for both 

before and after two common types of planned disturbances within the CHF region, with slightly 

better results for prescribed burns than for selective timber harvests.  
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CHAPTER 1 - INTRODUCTION 

In 2019, record-breaking wildfires across the globe incinerated millions of acres of forest, 

reduced thousands of structures to ash, nearly extirpated some wildlife species, and killed hundreds 

of people (CRS, 2020). Since then, the number and intensity of wildfires have only increased; 

degrading natural forest resources and wildland/urban interfaces in a negative reinforcing loop 

(CRS, 2021). To combat these destructive disturbance events, land managers are increasingly 

implementing frequent low-intensity planned disturbances such as selective timber harvest and 

prescribed burn “treatments” to remove overgrown and/or non-native vegetation fuel loads in a 

controlled setting. Planned disturbance treatments like these belong to a methodology of forest 

management known in the industry as natural disturbance-based management or “NDBM”. 

NDBM treatments can significantly reduce damage from unplanned disturbances, as well as 

produce healthy, diverse, and resilient forest ecosystems (Kuppinger et al., 2010; O'Hara, 2016).  

Despite decades of research demonstrating promising benefits for both prescribed burning 

and selective cutting, these treatments are inherently risky and can unintentionally accelerate forest 

degradation if done incorrectly (Kuppinger et al., 2010). Therefore, it is necessary when applying 

NDBM to repeatedly monitor changes to the physical environment of the treated area, to determine 

if the desired outcome was achieved and adjust practices accordingly (Fernandes & Botelho, 2003). 

To do this, land managers must properly inventory the treated area both prior to and repeatedly 

after the planned disturbance event (Rousselet, 2019). While there are is a lengthy repository of 

treatment efficacy and vegetation health indices, land cover is a commonly used example and is 

known for being a good indicator of a variety of forest health metrics (Anderson, 1976; Lister et 

al., 2020). 

Traditionally, collecting inventories involved manual ground-based methods, which were 

time-intensive, laborious, and even dangerous in some areas (Frayer & Furnival, 1999). More 

recently, land managers have relied upon conventional aerial imaging platforms, such as manned 

aircraft or satellite networks to conduct inventories (King, 2000). However, manned aircraft 

operations can also be dangerous and are often too expensive to be worthwhile (Anderson & 

Gaston, 2013). Furthermore, satellite imagery often lacks the temporal (return rate) and spatial 

(pixel size) resolution needed for this scale of disturbance (Ruwaimana et al., 2018). For example, 

while many image-collecting satellites only return to an area every few weeks and are legally 
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limited to pixel sizes of ≥30cm, they can cover large areas such as multiple watersheds to produce 

landscape-level land cover classification (Sakumara, 2019). While this resolution is useful for 

disastrous unplanned disturbances, many planned disturbances are conducted at plot-level scales, 

where coarse spatial and temporal resolutions of traditional remote sensing platforms cannot 

provide the detail needed to derive useful land cover assessments (Asenova, 2018). Fortunately, 

drones are now a ubiquitous data collection tool across many industries, coveted for their ability 

to collect high-spatial resolution imagery nearly on-demand (Merkert & Bushell, 2020).  

Drones are known in the industry as “unmanned aerial systems”—hereafter referred to as 

“UAS”— and have the potential to serve as flexible, inexpensive, and efficient aerial surveying 

platforms for land managers to conduct inventories before and after planned disturbance events 

(Hassler & Baysal-Gurel, 2019; Mayes et al., 2016). Despite their demonstrated capability as an 

effective geospatial data collection tool, the integration of UAS in the forestry community has, 

until recently, been limited. For example, the vast size of many forests could not be covered 

effectively with the short-endurance UAS of the past. Today, advancements to UAS design, battery 

technology, and mission planning software make it easier than ever to survey relatively large areas 

precisely and efficiently. Additionally, dense forest canopy made it difficult in the past to obtain 

an accurate survey of ground control tie-in points (GCPs)—a time and labor-intensive task, but 

necessary to obtain useful inventory measurements. Furthermore, real-time kinematics (RTK) 

technology, which relays positional data to the UAS during flight via a fixed dual-frequency 

ground station, has also demonstrated precision deficiencies in dense forest environments 

(Tomaštík et al., 2019). Now, with post-processing kinematic (PPK) technology, an on-board GPS 

sensor is used to simultaneously trigger the camera and capture the bounding coordinates of each 

image at sub-decimeter positional accuracies (Miller et al., 2021). This combination of precision 

and rapid deployment capabilities has the potential to produce robust datasets for analyzing the 

efficacy of planned disturbance treatments. 

While UAS technology presents strong potential for this application, it also raises several 

important research questions: 1) Can the precise spatial and temporal resolutions offered by UAS 

be leveraged to effectively inventory land covers prior to and repeatedly after planned disturbance 

events? 2) Can the UAS imagery be effectively processed and classified to accurately quantify 

land cover both before and after planned disturbance events? And 3) Can this combination of 
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technological methods produce similar results across different disturbance treatments and land 

covers? The following research objectives were developed to address these research questions. 

1.1 Research Objectives 

 Image acquisition parameters and processing methods vary significantly between other 

similar studies. Subsequently the difference in UAS image quality and resulting land cover 

classifications between these studies is vast. However, to better understand the factors influencing 

the quality of UAS imagery, diligent testing of data collection parameters and associated results 

are needed to integrate UAS into forestry applications effectively (Buters et al., 2019). Therefore, 

my first research objective is to establish effective data procurement methods with UAS for both 

before and after planned disturbances. In this first objective, I also intend to optimize processing 

parameters for this application, and examine to what extent the parameters can be modified to 

enhance data collected with poor quality. While collecting and processing quality data are 

important to any forest inventory, equally as important is the quality and usefulness of the resulting 

data products (Cromwell et al., 2021).  

Data classification parameters and results also vary significantly across other pertinent 

studies, yet are crucial to the replicability and effective implementation of this method (Buters et 

al., 2019). Therefore, my second research objective is to establish effective data classification 

methods with UAS imagery to quantify land cover from both before and after planned disturbances. 

By developing sequential maps of land cover at every stage surrounding the disturbance treatment, 

quantifiable areas of vegetation loss, retention, and regeneration can be determined (Fernandes & 

Botelho, 2003).  

Because this part of the study will also involve validating the resulting classifications 

through visual interpretation, these results can be used to compare output quality between land 

cover types (Husson et al., 2016). Therefore, my third research objective is to determine if there 

was a significant difference in output classification quality between the prescribed burn and the 

selective harvest treatment land covers. By comparing the quality of classified map series between 

the two disturbance types, the reliability of this inventory method between open and closed canopy 

land covers can be examined. Completing these objectives promises to establish an effective 
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methodology for the efficient inventorying of land cover change both before and after planned 

disturbance treatments.  
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CHAPTER 2 – REVIEW OF THE LITERATURE 

For centuries, scientists have studied disturbance by quantifying damage to and recovery 

of forests following the event (Fernandes & Botelho, 2003; Frayer & Furnival, 1999). This is due 

to disturbances being viewed as mainly unplanned events such as wildfires, tornadoes, and floods 

for example (Samiappan et al., 2019). However, many land managers are increasingly 

implementing frequent low-intensity disturbances to not only reduce damage caused by naturally 

occurring disturbances, but also to develop healthy, diverse, and resilient ecosystems (Hobbs et al., 

2006; Kuppinger et al., 2010). Due to the nature of conducting a planned disturbance, such as a 

prescribed burn or selective timber harvest, land managers now have an opportunity to inventory 

management areas before the disturbance as well as after (Anderson, 2019). Despite this potential, 

traditional methods of forest inventory fall short in terms of providing the necessary temporal and 

spatial granularity needed for such a discrete timeframe and event (Asenova, 2018). As a result, 

land managers are looking for new and efficient methods to conduct pre and post disturbance 

inventories with greater temporal and spatial detail than traditional means. While UAS have 

demonstrated their capability as an efficient and precise data collection tool, their use for 

inventorying planned disturbances, until now, has been limited.  

In this review, I will begin by providing a brief overview of disturbance ecology and 

management, to highlight the importance of maintaining proper inventories and adjusting 

management actions accordingly. Then, traditional forest inventory and remote sensing methods 

will be reviewed to explain both the benefits and shortcomings of these methods. Finally, 

exemplary use-cases of UAS in disturbance ecology will be examined to gain a better 

understanding of how to best apply relevant methods from the literature to prescribed burns and 

selective timber harvest treatments. 

2.1 Disturbance Ecology and Management Overview 

This section of the literature review first defines what disturbances are within the context of 

forest ecology, then describes disturbances from post-European settlement through the present. 

This then leads into the development of wilderness fire policy, prescribed burning management, 

and selective timber harvesting management. 
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2.1.1 Defining Forest Disturbances 

Disturbances are any event that cause significant change in the composition of forests 

(Aplet, 2006; Hobbs et al., 2006; Kuppinger et al., 2010; O'Hara, 2016). Typically, these include 

a variety of naturally occurring and/or anthropogenic-caused damage such as: fire, windthrow, 

disease, pests, non-native plant invasion, agriculture, and timber harvests (Alvarez-Taboada et al., 

2017; Asenova, 2018; Fernandes & Botelho, 2003; Garcia Millan et al., 2020; Hesseln, 2000; 

Lehmann et al., 2017; Martin et al., 2018; Sandino et al., 2018). Changes caused by disturbances 

can introduce or propagate problems to the ecological sustainability and economic benefit of 

forests, such as: wildlife habitat degradation; soil erosion; and introduction or propagation of pests, 

disease, or non-native vegetation—all of which produce compounding effects to biodiversity and 

productivity of forest ecosystems (Kuppinger et al., 2010). For over a century, land managers have 

studied how the size, frequency, and intensity of disturbances affect the composition, health, and 

value of forests to directly address these challenges through continually advancing silvicultural 

management (Alberdi, 2021; Beheler, 2020; Frayer & Furnival, 1999; Hobbs et al., 2006; HTIRC, 

2017; Nordén et al., 2019; Powell, 1996).  

2.1.2 Post-Settlement Disturbance in the United States 

After decades of intense logging during early European settlement of the US, most of the 

forests throughout the country were cleared for agricultural development (Evans et al., 2001). The 

sudden and vast change in land cover from settlement has led to novel ecosystem development at 

a variety of spatial and temporal scales. Novel ecosystems are characterized by Hobbs, et al (2006): 

“Novel ecosystems have species compositions and relative abundances that have 

not occurred previously within a given biome” and “ecosystems that are the result 

of deliberate or inadvertent human action, but do not depend on continued human 

intervention for their maintenance,” (Hobbs et al., 2006, p. 2). 

The combination of globalized markets, land degradation, and manipulation of sites for 

crop cultivation have contributed to the creation of novel ecosystems. Globalization has led to 

species propagation spanning vast distances that would be otherwise nearly impossible to happen 

naturally. Land degradation comes in the form of urbanization, intensive grazing/ agricultural 

practices, and extraction of resources, all of which have caused significant soil erosion, low 

biodiversity, and resource depletion (Hobbs et al., 2006). As a result, one of the most degraded 
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landscapes in the world today are temperate deciduous forests (TDF) (Nordén et al., 2019); an 

exemplary case of which exists in the state of Indiana, which makes up part of the central hardwood 

forested (CHF) region of the US (HTIRC, 2017).  

In the early 1800’s prior to European settlement, meso/pyrophytic forests covered an 

estimated 87% of Indiana, with the remainder consisting of prairie (5%) and wetland (10%) in the 

northwestern corner. By 1920, just 6% of the state’s pre-settlement forested area remained after 

intensive clear-cutting for crop cultivation. In 2001, less than 1% of pre-settlement old growth 

remained in Indiana, with just 17% of the state’s land use/ land cover (LULC) comprising forest 

(Evans et al., 2001). Today, forests comprise 19.4% of Indiana’s land cover with 85% under private 

ownership, and are commonly divided into 10-60 acre plots managed for hardwood lumber and 

veneer production but also provide critical wildlife habitat (Brown et al., 2018; Grimm, 2017; 

NCRS, 2021). While profitable wood products can be extracted from these areas, which benefits 

the local economy, it must be done carefully and with objective reasoning to sustain healthy native 

ecosystems, as there is little margin for error. Without repetitive monitoring and precise record-

keeping, these ecosystems could rapidly disappear through non-native invasion, habitat reduction, 

or destructive unplanned disturbances (Kuppinger, et al., 2010).  

2.1.3 Wilderness Fire Policy 

Since the inauguration of the US Department of Agriculture (USDA) – Forest Service (FS) 

and the National Park Service (NPS) during the early 1900’s, research on silvicultural systems has 

played a vital role in shaping the nation’s forest resources and how those resources are managed 

(Frayer & Furnival, 1999). As Aplet (2006) discusses, these programs were established after 

wildfires destroyed millions of acres in Idaho and Montana, killing 86 in 1910. This led to the 

development of wilderness fire policy (WFP) and initially was made to suppress all wilderness 

fires. Between 1968-78, following scientific review, the USDA-FS and NPS adopted the "let it 

burn" policy, which allowed some naturally occurring fires in federally protected lands to burn 

under controlled circumstances. Then, in 1988, a series of fires in Yellowstone, combined with 

abundant fuel load, drought, and wind destroyed much of the park's ecological infrastructure—

again fires were immediately suppressed. It wasn't until 1995 that WFP was adapted to "endorse 

wildland fire use for resource benefit," to fight against destructive wildfires ((Aplet, 2006)p. 10). 

In 2002, the policy's goal was amended to "restore, rehabilitate, and maintain fire-adapted 
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ecosystems," ((Aplet, 2006)p. 10). Now, WFP requires measurable performance via inventories to 

determine when and where the use of fire is appropriate for their goal (Aplet, 2006). From then on, 

the use of fire through prescribed burning, and the consequential effects on ecological processes 

and economic value of forests, have been studied extensively.  

2.1.4 Prescribed Burning Management 

Hesseln (2000) reviewed the economic consequences of wildfire suppression and 

prescribed burning of forest ecosystems: 

“It is widely acknowledged that in the absence of wildfire, vegetative changes have 

resulted in fuel loads far exceeding historic levels, which would pose a serious 

threat to forest and cultural resources if ignited” (p. 322).  

While federal and local policy and perception of prescribed burning is based on economic 

incentive and risk aversion, many factors influence how risk and cost benefits can be calculated. 

These include: Site preparation (line building, partial cuts, etc), ignition type (manual ground torch, 

aerial, etc), post-fire clean-up (ash, coarse woody debris, equipment, etc), size of site (number of 

acres and volume of fuel burned), potential damage from escape (private, public, and cultural 

assets), and social costs (smoke intrusion, air quality, safety, and aesthetics). Due to the complex 

nature of this calculation, Hesseln found that determining acceptable levels of risk as well as proof 

of econo-ecological benefit must be studied further in order to implement this practice on a larger 

scale. To address these findings, Fernandes & Botehlo (2003) explained how wildfire intensity 

(WFI) is a function of ‘fuel load’ times the ‘rate of spread’ and performed a computer simulation 

with historical wildfire data to test the potential efficacy of various management actions (including 

prescribed burning) for reducing WFI. They found that reduction of fuel loads through frequent 

low-intensity prescribed fire disturbance worked best, showing reduction of “average fireline 

intensity of wildfires by 76% and total burned area by 37%” (Fernandes & Botelho, 2003, p.119).  

While prescribed burning shows promise in restoring native fire regimes to heavily 

degraded landscapes, scrutinized by invasive-dominated regions for example, this practice poses 

risky management conditions where a combination of fire and poor post-fire maintenance could 

unintentionally propagate invasive populations. Kuppinger, et al., (2010) discuss how fire 

suppression in the southern Appalachian Mountains has led to the foreign invasion of princess tree 

(Paulownia tomentosa) establishment in areas where native species (Virginia Pine, Pitch Pine, 
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Table-Mountain Pine, Eastern White Pine, Scarlet Oak, Chestnut Oak, and White Oak) are 

disturbance-dependent. They found that prescribed burning led to 67% reduction of predicted 

habitat for princess tree after 4 years following fires, and 73% after 6 years following fires. 

However, the authors warn of perpetuating invasive dominance following burns in xeric regions 

where biodiversity is already low. Because of this risk, but also because some species/regions do 

not require fire to reproduce, another common NDBM practice for wildlife habitat maintenance 

and often sustainable timber production comes in the form of selective timber harvesting. 

2.1.5 Selective Timber Harvesting Management 

O’Hara (2016) investigated how forest managers are increasingly implementing frequent 

and low-intensity controlled disturbances, such as selective timber harvests (and prescribed burns), 

as a means to simulate native disturbance regimes. Selective cutting assists in restoring native 

compositions and/or producing profitable vegetation species, while simultaneously preventing 

destructive wildfires through fuel reduction, patch dynamics, and removal of invasive species. 

Selective cutting has been shown to contribute to healthier biodiversity, wildlife habitats, and 

natural species regeneration (O'Hara, 2016). An exemplary study on this was conducted by 

Halpern, et al., (2012).  

The research team assessed long-term (>10yr) responses of understory vegetation to 

various harvest experiments of mature conifer forests in the Pacific Northwest. Selective 

harvesting has been recognized as a practical way to enhance econo-ecological value and species 

continuity, but only if enough late-seral species (a.k.a “bio-legacies”) remain. Five 13ha sites were 

used to perform various harvest experiments where two variables were tested: Size (40% or 15%) 

of retention, and dispersal (uniformly dispersed or aggregated) of 1ha harvest patches. They found 

that while species composition didn't change much, larger and more uniform harvests did have 

more pronounced changes on some understory bushes and bryophytes. Clear-cuts retained the 

lowest species richness of the harvest types, but all sites recovered well, with some species even 

exceeding their pre-harvest heights. This was likely due to the recruitment of early-seral species 

as well as the recovery and expansion of more disturbance-tolerant forest herbs (Halpern et al., 

2012). 

Additionally, Nordén, et al., (2019) studied the econo-ecological effects of converting low-

longitude boreal forests to temperate deciduous forests (TDF) along the Norway/Sweden border 
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through selective harvest regeneration. After a 2016 harvest, net lumber revenue from the sites 

averaged -€1,668 (~$1,980). Despite this, mean basal area increased from 79% to 89% between 

2003 and 2018, and coarse woody debris (CWD) increased by 78% between 2001-2018, both of 

which are useful indicators of forest health and wildlife habitat. An additional benefit of converting 

to TDF is that minimal ungulate browsing, due to lack of preferred species, will benefit more 

natural regeneration without the need for planting or fencing. Spruce regeneration in these 

environments will contribute to greater economic revenue than non-transitioned stands. 

Furthermore, the authors suggest that converting abandoned farmlands to TDF will better prepare 

them for climate change. For example, these converted TDF areas would likely benefit from 

reduced WFI with greater diversity of more fire-resistant/dependent species spaced further apart 

than a typical boreal forest setting. In order to continue examining the objective and tangential 

benefits of select timber harvest and prescribed burn management, researchers must have a way to 

obtain inventories both before and after the planned disturbance event, however most of the 

literature to date focuses solely on the after-event inventory without having a temporally relevant 

or spatially detailed enough dataset from before the event. 

2.2 Post-Disturbance Inventories 

Clearly, much effort has been put into studying the effects of NDBM treatments, however 

these efforts have largely focused on studying regrowth solely after disturbance events. Alvarez-

Taboada, et al., (2017) mapped invasive bushy needlewood (Hakea sericea) species after 

establishment. Fernández-Guisuraga, et al., (2018) classified land cover (LC) of heterogenous 

forest after a 2016 wildfire in Spain. Garcia Millan, Rankine, Sanchez-Azofeifa, (2020) calculated 

crop loss following various disturbances to develop a general applicability model. Knoth, et al., 

(2013) performed object-based classification (OBC) of vegetation cover in previously cut-over 

peat bogs. Larrinaga and Brotons, (2019) computed greenness indices for post-wildfire succession 

of scots and black pine (Pinus sylvestris and P. nigra) in coastal Spain. Lehmann, et al., (2017) 

identified invasive black wattle (Acacia mangium) in a savannah-type Brazilian Atlantic Forest 

following establishment. Martin, et al., (2018) developed LC assessments of knotweed (Fallopia 

japonica and F. bohemica) presence after invasion in eastern France. Pádua, et al., (2019; 2020) 

created 3-class burn severity assessment following a 2017 wildfire in Portugal. Pérez-Rodríguez, 

et al., (2020) examined efficacy of two prescribed burns in Spain exclusively from after the 
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disturbance took place. Rousselet (2019) classified burn severity from post-wildfire aerial imagery 

of the 2019 fires in Paradise, California. Samiappan, et al., (2019) generated a post-wildfire 

damage analysis and vegetation recovery for Grand Bay along the Mississippi/Alabama border. 

Sandino, et al., (2018) conducted invasive plant detection of desert vegetation in Australia post-

establishment. White et al (2018) observed stone pine (P. banksiana) regeneration following a 

wildfire in the upper peninsula of Michigan. 

The reason for this focus on post-disturbance inventories comes back to the historical view 

of disturbances as typically unplanned events and therefore researchers could not obtain 

inventories prior to the event (Aplet, 2006; Fernandes & Botelho, 2003; Garcia Millan et al., 2020; 

Larrinaga & Brotons, 2019; O'Hara, 2016; Pádua et al., 2019; Pádua et al., 2020; Rousselet, 2019; 

Samiappan et al., 2019; Simpson et al., 2016; White et al., 2018). Now, with increasing 

implementation of frequent but low-intensity planned disturbances, such as prescribed burns and 

selective timber harvests, various silvicultural management goals can be achieved ("Forest 

Inventory and Analysis Strategic Plan," 2016). Examples of these include: diverse species 

compositions, invasive species removal,  wildfire fuel mitigation, and wildlife habitat maintenance 

(Alvarez-Taboada et al., 2017; Bagaram et al., 2018; Beheler, 2020; Getzin et al., 2014; Getzin et 

al., 2012; Hobbs et al., 2006; HTIRC, 2017; Kuppinger et al., 2010; Lehmann et al., 2017; Lister 

et al., 2020; Martin et al., 2018; Ollero et al., 2006; Powell, 1996; Pérez-Rodríguez et al., 2020; 

Restas, 2006; Ruwaimana et al., 2018; Sandino et al., 2018; Sill, 2020). An objective determination 

of phenomena like species diversity, amount of invasives/fuel removed, and percentage of suitable 

wildlife habitat in a given area following a NDBM treatment is needed for determining whether 

that action was effective at achieving its intended purpose. Without determining what was removed 

or how that area changed from before the event, land managers cannot effectively determine a 

cause-and-effect relationship needed for future applications of NDBM treatments.  

2.2.1 Traditional Forest Inventory and Remote Sensing Techniques 

In order to determine if a particular management action was effective, land managers must 

have a way to quantify the efficacy of the disturbance from both before and after the event 

(Anderson, 2019; Fernandes & Botelho, 2003; Ollero et al., 2006; Pérez-Rodríguez et al., 2020; 

Rousselet, 2019; Samiappan et al., 2019). Fernandes & Botehlo (2003) stress the importance of 

systematic data collection surrounding prescribed fires to assess management efficacy. The authors 
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suggest quantifying vegetated land cover categories and percentages of charred severity, from both 

before and after the event as indicators of fire efficacy, should be documented with a photograph 

series. In a similar study, Rousselet (2019) reiterated the importance of obtaining both pre and 

post-disturbance imagery for determining percentage of land cover change, but acknowledges that 

in order to be effective, the images must have: 

“1. Precise spatial registration of multi-temporal images  

2. Precise radiometric/atmospheric calibration of multi-temporal images  

3. Similar phenological states between images  

4. As similar as possible spatial and spectral resolution of images" (p. 4). 

 Aerial imagery provides an efficient way to cover areas which have been affected by a 

disturbance (Anderson & Gaston, 2013; Asenova, 2018; Berie & Burud, 2018; Boon et al., 2017; 

Dainelli et al., 2021; Goodbody et al., 2018; Lehmann et al., 2017; Li et al., 2019; Manfreda et al., 

2018; Mayes et al., 2016; Ruwaimana et al., 2018; Sandino et al., 2018; Singh & Frazier, 2018). 

Traditionally, land managers have relied on satellite or manned aerial imagery to assess land covers 

(Al-Ali et al., 2020; Alvarez-Taboada et al., 2017; Boardman, 2020; Evans et al., 2001; Frayer & 

Furnival, 1999; Gibril et al., 2020; King, 2000; Kucharczyk et al., 2020; Latifi et al., 2014; Lister 

et al., 2020; Mao et al., 2020; Matasci et al., 2018; Matese et al., 2015; Pádua et al., 2020; Tang & 

Shao, 2015). However, obtaining a pre-disturbance dataset becomes challenging with traditional 

methods due to inherent limitations. For example, while satellites can cover large areas, they have 

fixed return periods which can limit the temporal resolution needed to obtain accurate pre-

disturbance vegetation covers for planned events (Anderson, 2019; Boardman, 2020; Buters et al., 

2019; Fernandes & Botelho, 2003; Pérez-Rodríguez et al., 2020; Samiappan et al., 2019). 

Additionally, many satellite images have too coarse of a spatial resolution—legally limited to 

30cm per pixel in the US (Sakumara, 2019)—making them less than ideal for precise land cover 

quantification of discrete (often <20ha) planned disturbances (Manfreda et al., 2018; Matese et al., 

2015; Ristorto et al., 2015) that are typical within the CHFR (Beheler, 2020; Evans et al., 2001; 

HTIRC, 2017). Furthermore, manned aircraft are capable of providing more appropriate spatial 

resolutions, but are often cost prohibitive to do so for discrete planned disturbances (Anderson & 

Gaston, 2013; Berie & Burud, 2018; Ruwaimana et al., 2018). Unmanned aerial systems (UAS) 

have been recognized as a cost-effective and efficient means to collect precise aerial imagery for 
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repeated analysis of disturbances (Anderson & Gaston, 2013; Berie & Burud, 2018; Buters et al., 

2019; Getzin et al., 2014; Guerra-Hernández et al., 2017; Pádua et al., 2020; Rousselet, 2019; 

Ruwaimana et al., 2018; White et al., 2018).  

2.3 UAS in Disturbance Ecology 

 While UAS is nothing new to the remote sensing (RS) and geographic information systems 

(GIS) communities, their popularity is growing in the field of forestry due to their rapid 

deployment, low-cost, and flexible mission-planning capabilities (Anderson & Gaston, 2013; 

Buters et al., 2019; Dainelli et al., 2021; Guimarães et al., 2020; Lister et al., 2020; Manfreda et 

al., 2018; Miller et al., 2021; Ruwaimana et al., 2018; Singh & Frazier, 2018). The versatility of 

UAS RS to collect vital forest inventory attributes has been demonstrated throughout numerous 

studies. For example, Getzin et al. (2014; 2012) showed how small canopy gaps (<1ha) are good 

indicators of biodiversity/forest health, but were only distinguishable with UAS imagery as 

opposed to coarse spatial resolutions of traditional RS platforms. Similarly, Baragam et al. (2018) 

were able to quantify the density, diversity, and development over time of understory vegetation 

within canopy gaps, again made possible by the high spatial and temporal resolution of UAS. 

Another study used UAS imagery for inventorying pest-infested and abiotically damaged trees in 

Bulgaria to carry out precise and efficient phytosanitary removal (Asenova, 2018). Due to the high 

spatial and temporal resolution of UAS as well as improvements to georeferencing capabilities, 

UAS can collect highly precise geometrically corrected images, making them even more rigorous 

of an inventory method. They have been used in combination with the 30+ year old RS technique 

(Kucharczyk et al., 2020) of geographic object-based image analysis (GEOBIA) to objectively 

classify various phenological conditions of discrete forests for damage and regeneration 

assessments following disturbances. 

2.3.1 UAS with GEOBIA 

 Al-Ali et al. (2020) and Sandino et al. (2018) used UAS with GEOBIA to inventory non-

native plant invasion in deserts with 93% overall accuracy (OA). Boardman (2020) leveraged the 

duo for inventorying woody plant encroachment in southern rangelands, and was able to classify 

6 land covers with 84.4%-92.7% OA. Lehmann et al. (2017) compared different types of GEOBIA 
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(object-based classification [OBC] vs pixel-based classification [PBC]) for invasive plant 

identification, and found that both methods achieved similar accuracies (82.7%-85.4%). Most 

importantly, these methods have also been used for timber felling and fire related events. Two 

examples of timber felling events which were inventoried through UAS-derived OBC are Knoth 

(2013) and Goodbody (2018). They both examined previously cut sites which were under 

restoration. Knoth (2013) was able to inventory 4 peatbog species (waterlogged bare peat, tussocks, 

peat moss, and European white birch) with 91% OA and individual class accuracies ranging 

between 84%-95%. Goodbody et al. (2018) were able to inventory several conifer species such as 

Douglas-fir, western larch, western white pine, lodgepole pine, Engelmann spruce, and white 

spruce at various ages (5, 10, and 15 years since planting). 3 LCs were classified to assess seral 

succession performance: Conifer, deciduous, and bare ground. They achieved OAs of 86%-95% 

between age groups. Both of these studies exemplify the versatility of timber management 

applications this combination of tools can provide, and furthermore, mostly do so within the 

guidelines of today’s remote sensing standard of ≥85% OA and ≥80% individual class accuracies 

for land cover assessment (Anderson, 1976). 

 For fire events, UAS-derived OBC has also been studied extensively. Larrinaga (2019) 

employed OBC for post-fire inventory of two successional pine species (black and scots pine) 

within an oak-dominant Mediterranean forest. Similarly, White et al. (2018) leveraged OBC for 

inventorying jack pine succession following a wildfire in northern Michigan with OAs of 98%. 

Both Pádua et al. (2019) and Anderson (2019) performed manual OBC for inventorying 

phenological condition of forests following fire events. Pádua (2019) digitized three classes of 

post-fire damage severity, in addition to target species tree identification using image segmentation. 

Anderson (2019) constructed a three-class vegetation height map and pine regeneration stand map 

through visual interpretation and digitization of image objects. Pérez-Rodríguez et al. (2020) 

achieved an 84.3% OA for a three-class vegetation burn severity inventory. Rousselet (2019) 

performed image differencing of burn classes following Paradise, CA wildfires with multiple OBC 

maps. Samiappan et al. (2019) also performed three-class OBC of burn severity following wildfires 

in the southern plains. And Simpson et al. (2016) assessed tropical peatland burn with OBC of LC 

and achieved 96% OA when compared to verified high resolution manned imagery. 
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2.3.2 Literature Shortcomings 

While a range of OA and individual class accuracies have been demonstrated, much of the 

research that has been done in this area is concerned with assessing damage (burn severity, or gap 

size/frequency) and inventory of land covers (heights, species, and percent coverage) again from 

solely after burn events, with some studies using satellite or manned aircraft imagery for pre-

disturbance datasets (Pádua et al., 2020; Samiappan et al., 2019; Sill, 2020; Simpson et al., 2016). 

However, these are typically at different spatial and temporal scales and require downsampling of 

the high spatial and temporal resolution of post-disturbance UAS imagery (Samiappan et al., 2019), 

which effectively negates the inherent advantages of using UAS in the first place. With increasing 

implementation of planned disturbances and the forest industry’s desire to learn more about their 

associated econo-ecological effects efficiently, presents an opportunity to leverage the rapid, 

precise, and efficient data collection methods provided by UAS. Moreover, due to the planned 

nature of prescribed burns and selective timber harvests, as well as advancements to on-board post-

survey georeferencing methods (which eliminate the need for time-consuming terrestrial-based 

surveys) (Miller et al., 2021), exists the opportunity to not only repeatedly inventory land cover 

following a disturbance, but also before to develop a comprehensive disturbance analysis which 

would advance the silvicultural management of local forests (Fernandes & Botelho, 2003; "Forest 

Inventory and Analysis Strategic Plan," 2016  ; HTIRC, 2017).  
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CHAPTER 3 – METHODS 

 This chapter describes the approach used to address the research questions and objectives 

of this study. 

3.1 Study Area 

 Temperate deciduous forest (TDF) biomes are currently regarded as one of the most 

degraded in the world (Nordén et al., 2019), but make up crucial land covers for important 

ecosystems around the globe (Hoff et al., 2017). These biomes exist at mid-latitudes, and are 

dominated by mixed broadleaf deciduous trees, such as oak, maple, beech, and hickory, as well as 

a variety of shrubs, perennial vegetation, and mosses. Species in these biomes are resilient, facing 

temperature fluctuations between -22ºF (-30ºC) to 86ºF (30ºC) and receiving anywhere from 30 – 

60 inches of rain in an average year (NASA, 2021). Furthermore, many ecosystems that comprise 

this biome are adapted to withstand frequent low-intensity disturbances and often require such 

events to sustain establishment (Kuppinger et al., 2010). One such example of a severely degraded 

TDF biome is the central hardwood forest (CHF) region (Figure 1) within the eastern interior of 

the United States (Evans et al., 2001).   

The CHF region is home to a variety of deciduous hardwood species that exist in a 

segmented mosaic of savannahs and prairies between private plantings of agricultural crops and 

hardwood forests (Evans et al., 2001). Many prairies and hardwood forest plots in this region are 

protected areas that are privately owned and managed, ranging in size from 10-60 acres. To 

maintain native species in these areas, land managers often engage in controlled burns and 

selective timber harvests throughout the spring, fall, and winter. The goal of these planned 

disturbances is to mimic the frequency and intensity of natural fire and windthrow events, but in a 

controlled setting as to facilitate native species regeneration (Fernandes & Botelho, 2003). This 

way, both the ecosystem and the land manager can benefit by reducing biomass accumulation, 

increasing favorable conditions for native species regeneration and wildlife habitat, and producing 

valuable forestry goods (Hesseln, 2000).  
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 However, in order to know if a particular natural disturbance-based management (NDBM) 

treatment was effective, land managers must be able to quantify what the land cover was before 

the disturbance, as well as after, to determine whether the disturbance was helpful or harmful to 

the affected area (Fernandes & Botelho, 2003). This is especially true in heavily degraded 

landscapes, such as the CHF, where novel monoculture ecosystems dominate and non-native 

invasions, like Asian bush honeysuckle, have established (Beheler, 2020). Instances like the CHF 

require diligent management plans, so that planned disturbances do not unintentionally advance 

degradation and extirpate native species (Kuppinger et al., 2010). Despite this, few studies exist 

where land cover change surrounding planned disturbances is quantified, let alone at such discrete 

management scales as those within the CHF region. In order to enhance the NDBM of natural 

resources within the CHF, quantitative measurements of planned disturbance efficacy must be 

conducted through precise and efficient means (HTIRC, 2017). Historically, this has been 

challenging to do as disturbances were—and still are—often thought of as solely unplanned events. 

Furthermore, traditional remote sensing methods cannot provide the temporal or spatial detail 

needed for assessing changes in land cover from planned disturbances in this region.  

 Fortunately, many recent studies on land cover assessments of disturbance have increased 

the temporal and spatial resolutions of aerial image collection by leveraging UAS, but failed to 

analyze the land cover from before the disturbance. Therefore, the many disturbance-treated plots 

within the CHF region presented a unique opportunity to apply UAS surveys for land cover 

assessments both before and after the event. This way, local stakeholders would have a precise 

and efficient means to objectively determine the efficacy of their NDBM treatments and adjust 

their management actions accordingly. With the help of local stakeholders, namely members of 

the Hardwood Tree Improvement and Regeneration Center (HTIRC) and Purdue’s Forestry and 

Natural Resources (FNR) department, several suitable study areas within the CHF were identified, 

particularly throughout the state of Indiana and just over its Michigan and Ohio borders (Figure 

1).  
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Figure 1. Study area and site map for prescribed burn and selective timber harvest plots throughout the 

state of Indiana. Sites selected for final analysis are outlined in red. The ‘CHF Boundary’ locator map was 

adapted from The Central Hardwood Forest: Its Boundaries and Physiographic Provinces (Fralish, 

2003). 
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3.1.1 Prescribed Burn Sites 

 Data collection for prescribed burn treatments was conducted first at three different prairie 

properties. These prairies, symbolized as beige trees in Figure 1, are owned and maintained by 

Purdue’s FNR department for local ecological resources. Each of these properties contains 

between 8 and 60 acres of native prairie land over relatively flat terrain. The properties are 

segmented into multiple 1-acre plantings of native grass and forb seed mixtures, which include 

Big/Little Blue Stem, Black/Bown-eyed Susan, Stiff Goldenrod, Indian Grass, White/Purple 

Prairie Clover, Wild Rye, Side Oats Grama, Prairie Dropseed, and many others (Brooke, 2021). 

With 10-15 ft fire line paths separating the plantings, the structure of these properties allows 

ecology researchers to conduct prescribed fire seasonality studies, where individual plots are 

burned at bi-annual, annual, or 2-year intervals so that correlations between fire frequency and 

species regeneration can be determined (Miller & Brooke, 2019). 

Doak and Hermann properties (Figure 2) were used for preliminary flight testing with the 

UAS, and were burned on September 19th, 2019 and October 8th, 2019 respectively. Each of these 

sites were surveyed both immediately before and after the prescribed burn treatment to gather 

preliminary datasets with the UAS. Then, PWA (Figure 2) was burned on April 2nd, 2020, and was 

flown multiple times; one day before the burn, one day after the burn, and multiple times thereafter 

(Table 1). 

Table 1. Prescribed burn information for each prairie site surveyed. 

Property Prairie 

Coverage 

Number of 

Plots 

Burned 

Total 

Burned Area 

(in acres) 

Burn 

Date 

UAS Survey Dates 

Doak 

(49.2 acres) 

15 acres 5 plots ~5 9/19/19 Pre and Post Burn: 9/19/19 

Hermann 

(38.4 acres) 

8.9 acres 4 plots ~4 10/8/19 Pre and Post Burn: 10/8/19 

PWA 

(290 acres) 

60 acres 9 plots 

 

~14.7 4/2/20 Pre-burn: 4/1/20 Post-burn: 4/3/20 

4/11/20, 4/22/20, 4/28/20, 5/1/20, 5/9/20, 

5/13/20, 6/21/20, 6/26/20, 7/17/20 
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Figure 2. Purdue FNR prairie plots for prescribed fire seasonality research (outlined in yellow). (A) = Doak, (B) = Hermann, (C) = PWA. PWA 

was selected for final land cover analysis of prescribed burns.
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The proximity of PWA made it possible to gather many datasets following the disturbance, 

achieving the best temporal resolution of the three sites. Therefore, this site was used in the final 

land cover assessment for prescribed burns in this project. By assessing land cover change 

surrounding the prescribed burn at PWA, FNR land managers can leverage this information in 

conjunction with their current management procedures to assess the efficacy and ecological 

response of their burn treatment (Fernandes & Botelho, 2003). 

3.1.2 Selective Timber Harvest Sites 

Data collection for selective timber harvests was conducted after prescribed burns at seven 

different hardwood timber plantings (Figure 3). These plantings, symbolized as green trees in 

Figure 1, are owned and maintained by Pike Lumber Company for valuable hardwood lumber and 

veneer production (Pike, 2017). Each of these properties is between 10 and 60 acres (Table 2), 

harboring species such as Oak, Maple, Hickory, Beech, Poplar, Basswood, Walnut, and many 

others (Table 3). These discrete plantings are surrounded by private agricultural fields and/or 

unmanaged forests, often with easement corridors that allowed for sufficient vertical take-off and 

landing (VTOL) clearance with the UAS. However, some sites were more accessible than others 

and this determined which were revisited (Table 2). Every site was flown once before harvest, five 

sites were flown more than once, and just one site was chosen for the resulting land cover 

classification analysis; Volz (Figure 3). Although Volz was farthest away, it was chosen for three 

primary reasons: 1) Open space surrounding the plot provided a safe environment for VTOL with 

the UAS; 2) Volz was the smallest site and therefore most efficient for testing various data 

collection parameters; and 3) Pike recently assumed management of Volz in February of 2010, 

making this harvest their first management action on the site (Tables 2 & 3). By assessing the land 

cover change surrounding the first harvest of Volz, Pike’s land managers can leverage this 

information in conjunction with their current management procedures to assess the efficacy and 

ecological response as a result of their harvest actions (Halpern et al., 2012).
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Figure 3. Pike Lumber Company forest plots for timber production (outlined in yellow). (A) = Rough,   (B) = Deardorff, (C) = Jackson, (D) = 

Urton, (E) = McAffee, (F) = Whiteman, (G) = Volz*. Volz was selected for the final land cover analysis.
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Table 2. Selective timber harvest information for each forest site surveyed. 

Property # of Trees 

Harvested 

Amount Harvested 

(in Board feet’) 

Harvest 

Duration 

UAS Survey Dates 

Deardorff 

(17.3 acres) 

127 35,824’ 5/8/20 -5/13/20 Pre-cut: 5/7/20, 5/18/20 

Post-cut: 7/2/20, 10/9/20 

Jackson 

(23.6 acres) 

126 58,702’ 6/11/20 -

8/20/20 

Pre-cut: 5/16/20 

McAffee 

(27 acres) 

217 selected* *Not yet harvested NA Pre-cut: 5/16/20 

Rough 

(20.7 acres) 

199 11,268’ 6/1/20 -6/10/21 Pre-cut: 5/18/20, 10/9/20 

Urton 

(51.9 acres) 

311 109,209’ 5/30/20 -

6/20/20 

Pre-cut: 5/22/20 

Whiteman 

(56.2 acres) 

166 74,956’ 5/13/20 -

6/25/20 

Mid-cut: 5/16/20 

Post-cut: 7/9/20 

Volz 

(10 acres) 

65 39,515’ 5/7/20 -6/25/20 Pre-cut: 5/7/20 

Mid-cut: 5/21/20 

Post-cut: 7/2/20, 8/26/20 

 

Table 3. Harvest sites information. 

Site Dominant Species Minor Species Soils Topography 

Deardorff 
Akron, IN 

(1968) 

Hackberry 

Hard Maple 

Hickory 

Beech 

Soft Maple 

Basswood 

Red Oak 

Cottonwood 

Walnut 

Sycamore 

Bur Oak 

Blue Ash 

Red Elm 

Poplar 

Coffeenut 

Crosier Loam  

(75 SI—Red/White Oak)  

 

Barry Loam  

(75 SI—White Oak,  

78 SI—Red Oak) 

Flat with depressions 

that hold standing water 

much of the year 

Jackson 
Kokomo, 

IN 

(1982) 

Hard Maple 

Basswood Soft 

Maple Hickory 

Hackberry 

Poplar 

Bur Oak 

Elm 

Walnut 

Cottonwood 

Swamp White Oak 

Red Oak 

Beech 

Buckeye 

58% Crosby Silt Loam  

(75 SI—Red/White Oak) 

 

42% Brookston Silty Clay 

Loam  

(75 SI—White Oak) 

Flat with depressions 

that tend to pond 

McAffee 
Coldwater, 

OH 

(1965) 

Red Oak 

Soft Maple 

Bur Oak 

Hard Maple 

Hickory 

Basswood 

White Oak 

Miscellaneous No Soil Information Flat with depressions 

that hold standing water 

much of the year 
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Table 3. continued 

Rough 
Buchanan, 

MI 

(1985) 

Hard Maple 

Tulip Poplar 

Beech 

Red Oak 

Hickory 

Basswood 

Soft Maple 

Bitternut Hickory 

Shagbark Hickory 

Butternut 

Cherry 

Sassafras 

Ironwood 

Red Elm 

Grey Elm 

67% Martinsville fine 

sandy loam  

(98 SI—Tulip Poplar) 

 

15% Selfridge loamy 

sand 

 

10% Metea loamy sand  

(68 SI—Red Oak) 

 

6% Oshtemo loamy sand  

(61 SI—Sugar Maple) 

Flat to slightly rolling 

with eastern and 

southern parts wet, 

perennial ponds 

during wet periods 

Urton 
Reelsville, 

IN 

(1997) 

Poplar 

White Oak 

Bitternut Hickory 

Shagbark Hickory 

Mockernut Hickory 

Red Oak 

Hard Maple 

Beech 

Cherry 

Red Maple 

Sycamore 

Walnut 

43% Hickory loam  

(85 SI—White/Red Oak) 

 

30% Ava silt loam  

(75 SI—White Oak) 

Flat to steep 

Whiteman 
Kitt, IN 

(1986) 

Hard Maple 

Red Oak 

White Oak 

Hickory 

Swamp White Oak 

Bur Oak 

Soft Maple 

Miscellaneous 36% Blount-Glynwood  

(65 SI—White/Red Oak) 

 

20% Pewamo silty clay  

(90 SI—Pin Oak) 

Very slight slope to the 

north (wetter) 

Volz 
Milan, IN 

(2010) 

Pin Oak 

Soft Maple 

Shagbark Hickory 

Sweet Gum 

Black Gum 

White Oak 

Poplar 

Beech 

Bitternut Hickory 

Pignut Hickory 

Black Locust 

Eastern Red Cedar 

On 0-2% slopes,  

81% Avonburg silt loam  

(75 SI--Northern Red Oak) 

 

On 2-6% slopes,  

16% Nabb silt loam  

(eroded, no SI available) 

Flat, slightly higher in 

southern part, manmade 

horseshoe pond on 

eastern side of plot 

Note: SI = Site Index, which “is the height in feet a tree reaches in 50 years and is a measurement for the 

productivity of a forest soil,” (Grimm, 2017). 

 

Once the sites for both NDBM treatments were established, the next step was to engage in 

data collection testing. This was done in order to optimize the atmospheric, sensor, and mission 

planning parameters for quality imagery surrounding burn and harvest events. Data collection was 

performed with an industry-grade UAS and sensor combination. 

3.2 Materials 

 This section describes the UAS and image collection systems employed for data collection. 
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3.2.1 UAS and Sensors Combination 

 To test various data collection parameters and gather image datasets for each planned 

disturbance, a multi-rotor UAS was equipped with a mirrorless interchangeable lens (MIL) digital 

camera and post-processing kinematic (PPK) sensor (Figure 4, Table 4, Table 5, and Table 6). The 

UAS used was a DJI Matrice 600 Pro (M600) and was selected for its well-balanced combination 

of payload capacity, rapid deployment, and endurance. With six propeller motors affixed to a full 

carbon frame, this UAS was powered by six lithium polymer (LiPo) batteries and capable of a 

relatively long flight time (Max. ~26 min) while remaining steady in strong winds (up to 20 mph) 

(DJI, 2021).  

Table 4. UAS specifications (DJI, 2021). 

UAS Type Rotors Dimensions 

(mm) 

Dry 

Weight 

Takeoff 

Weight 

Max Flight 

Time 

DJI M600 Pro Multi-

rotor 

6 1668 x 1518 x 727 9.6kg 

(21.2lbs) 

11kg 

(~24.2lbs) 

~26 min 

Note: Dry weight is weight of platform with all TB48S batteries installed but no sensor payload. Takeoff 

weight is weight of platform including batteries and all payload used for data collection. Max flight time 

is for takeoff weight of UAS. 

 

This particular UAS and sensor combination was selected for its ability to rapidly gather 

multiple datasets, sometimes up to three flights in one day, with precise and accurately geolocated 

images in a variety of field settings. This allowed for efficient testing of multiple data collection 

parameters between flights until quality imagery was consistent. Because the sites were relatively 

discrete, and high temporal datasets were necessary, a multi-rotor was chosen over a fixed wing, 

which often require more time in the field and larger deployment areas to be safe and worthwhile 

(Berie & Burud, 2018). Furthermore, the VTOL capability of a multi-rotor allowed the aircraft to 

launch and land in tight areas, such as road ditches, easement corridors, or small canopy openings, 

in addition to open areas (Boon et al., 2017)—all of which were present in this study. Additionally, 

the M600 was light weight and had ample surface area that allowed for mounting external payloads 

such as the camera and georeferencing system used to capture and geolocate imagery. 
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Figure 4. The UAS platform used in this study was a DJI M600 Pro (DJI, 2021) and was equipped with a 

Geosnap PPK (Field of View, 2021) which triggered a Sony A6000 Mirrorless Interchangeable Lens 

Camera (Sony, 2018). 

Table 5. The UAS platform used in this study was a DJI M600 Pro (DJI, 2021) and was equipped with a 

Geosnap PPK (Field of View, 2021) which triggered a Sony A6000 Mirrorless Interchangable Lens 

Camera (Sony, 2018). 

Image 

Sensor 

Weight Lens Focal 

Length 

Megapixels Ground Sample 

Distance (GSD) 

DJI 

Sensor 

Weight 

Sony A6000 ~0.5kg 

(~1lb) 

Voigtländer 

Color Skopar 

Aspherical 

21mm 24.3 MP 2-3cm per pixel Zenmuse 

XT2 

(13mm) 

~0.6kg 

(~1.3lbs) 

 

 

The camera used in this study was chosen because of its interchangeable lens, which was 

able to fit a short (21mm) lens with a wide field of view (91.2°), and had a 24.3-megapixel (MP) 

resolution. This allowed the camera to capture many overlapping pixels between images, thus 

providing the photogrammetric software with many tie-points when producing orthomosaic 

composites (Cromwell et al., 2021; Pix4D, 2021b). With a manual shutter speed, ISO, aperture, 

and zoom, the settings on this camera could be adjusted for the given atmospheric conditions in 

order to capture intense detail (2.3cm/pixel GSD) while suspended from a moving platform with 
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a frequently changing depth of field. The detailed resolution of this camera is important, because 

according to Seifert, et al. (2019) the greatest contributing factors to producing quality aerial image 

products are the camera’s resolution and heavy overlap between images. The authors also suggest 

georeferencing with on-board PPK, which requires a compatible image sensor. Fortunately, the 

Sony A6000 was compatible with the PPK system selected for this study. Lastly, while vegetated 

land covers were the focus of this study, and therefore could benefit from using a multi-spectral 

sensor, the goal was to determine the effectiveness of UAS-based GEOBIA with technology that 

has a low barrier to entry. In this case, a ‘normal-colored’ (RGB) camera was used to demonstrate 

the feasibility of this practice with relatively inexpensive and easy-to-use equipment. 

Table 6. Georeferencing payload specifications (DJI, 2018; Field of View, 2021). The UAS positioning 

system was fixed to the aircraft and controlled the position of UAS during flight. The image 

georeferencing system was the GeoSnap PPK and was independently operational from the UAS. 

Georeferencing 

System 

Uncorrected PPK 

Accuracy 

Max Corrected  

PPK Accuracy 

Weight Dimensions 

(mm) 

UAS 

Positioning 

GPS 

Accuracy 

Field of View 

GeoSnap PPK 

30 cm 

Vertical/Horizontal 

2 cm 

Vertical/Horizontal 

206g 

(~0.5lb) 

90 x 50 x 28 A3 GPS 

Compass 

Pro 

50cm 

Vertical, 

150cm 

Horizontal 

 

 

 The georeferencing system used for this study was a GeoSnap PPK (Field of View, 2021). 

This system was designed to mount on most any mapping-grade UAS and contains its own GPS 

receiver, internal metric unit (IMU), and central processing unit (CPU) to gather its own position 

(externally from the UAS) and trigger the camera based on predefined user settings. By adjusting 

the PPK configuration file settings, the PPK was responsible for triggering the Sony A6000 to 

capture 80% overlap and sidelap between consecutive images in a gridded mapping mission. This 

system of georeferencing was not only more efficient than traditional ground control point (GCP) 

surveys, but also produced inherently more precise resulting datasets (Miller et al., 2021). This is 

because each image taken from the camera is triggered by the PPK—which has its own set of 

coordinates that can be corrected with third-party base stations to cm-level precision. Whereas 

GCPs require the manual identification of ground control points in the imagery, for which some 

images might not contain a visible GCP marker. Furthermore, placing GCP markers and collecting 
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coordinates for them is a time-intensive task that is prone to refraction of multi-path satellite 

signals in dense forest canopies (Miller et al., 2021; Tomaštík et al., 2019). 

 With this combination of UAS and sensors, each of the identified burn and harvest sites 

were surveyed (Figure 1), testing the various data collection parameters that affect image quality 

before processing the imagery and engaging in land cover assessments (Figure 5). 

 

 

Figure 5. Workflow diagram of methods. Yellow squares = user actions/processes, and blue circles = 

outputs (and inputs). 

3.3 Data Collection 

 This section describes the procedure used for collecting images surrounding each planned 

disturbance event. 
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3.3.1 Objective 1 – Part I 

To address the first objective of this study, which was to: Establish effective data 

procurement methods for both before and after planned disturbances, the many factors 

contributing to quality image collection with UAS needed to be identified and tested to ensure 

quality aerial image products before engaging in land cover analyses (Buters et al., 2019). Before 

conducting any flights with the UAS, the main data collection variables affecting image quality 

were identified through the literature and previous UAS survey experience. These variables were 

divided into three main categories: 1) atmospheric conditions, 2) sensor settings, and 3) mission 

planning (Table 7).  

Table 7. Data collection parameters affecting image quality that were tested throughout the data collection 

phase. 

Category Data Collection Parameters 

Atmospheric Conditions Sun angle, brightness (cloud cover), and wind 

Sensor Settings Shutter speed, aperture, ISO, and zoom 

Mission Planning Flight altitude, overlap/sidelap, and number of 

images collected outside study area 

 

 

Atmospheric conditions are often only considered for how they might affect the safe 

operation of the UAS, but also should be considered for quality image collection especially in 

forested environments (Cromwell et al., 2021; Seifert et al., 2019). Conditions such as wind, sun 

illumination, and sun angle can all have an effect on the quality of images captured by the UAS 

and therefore, the quality of output image products (Dandois et al., 2015; Getzin et al., 2014). 

Similarly, sensor settings affecting the quality of imagery were defined as shutter speed, aperture, 

ISO, and zoom (Bagaram et al., 2018; Díaz-Varela et al., 2015; Frey et al., 2018; Guerra-

Hernández et al., 2017; Larrinaga & Brotons, 2019; Lehmann et al., 2017; Seifert et al., 2019; 

Simpson et al., 2016). Finally, mission planning settings that affect image quality included flight 

altitude, overlap/sidelap between images, and number of images collected outside the study area 

(Fraser & Congalton, 2018; Seifert et al., 2019; Shahbazi et al., 2014). Once these settings were 

identified, the next step was to test them in the field, first at Doak and Hermann prairie burn sites 

(Figures 1 and 2). 
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Preliminary flights were conducted at Doak and Hermann prairie burn sites in 2019 to test 

these data collection parameters. The first dataset was collected at the Doak burn with ‘default’ 

collection parameters (Table 8), such as flying at 400 ft above ground level (AGL) and using the 

preset shutter speed of 1/1600 sec, to determine the quality of outputs with these settings. Then, 

these settings were revised and tested at the Hermann burn (Table 9), before conducting the series 

of UAS surveys surrounding the PWA prairie burn in 2020 for the final land cover analysis (Table 

10). 

3.3.1.1 Prairie Site Testing 

 Prairie sites were tested first due to the openness of these areas which provided safe 

operational practice with the UAS and reduced risk for tree, bird, and aircraft collisions (Hubbard 

et al., 2017). Here, ‘default’ data collection variables were tested both before and after a prescribed 

burn was conducted at the Doak site (Table 8).  

Table 8. Preliminary data collection parameters tested for first two flights at Doak prairie burn site. 

Consideration Subject Parameter Tested Notes 

Atmospheric 

Conditions 

Sun Angle° 

(Takeoff time) 

48.6° (1130) 

& 39.9° (1500) 

Shadows present in both datasets, slightly longer 

shadows present in second flight 

Brightness Clear, sunny Shadows present from tall objects in both datasets, 

high reflectance of exposed vegetation 

Wind Variable,  

around 5 MPH 

No issues with motion blur 

Sensor 

Parameters 

Shutter Speed 1/1600 Slightly overexposed, difficult to see shaded areas 

Aperture and 

Focal Length 

Wide (f/3.5) and 

short (21mm) 

Wide field of view, no warping present on outer 

edges, all objects in focus 

ISO and Zoom ISO 'Auto' and  

'∞' zoom 

Well-balanced ambiance, all objects in focus 

Mission 

Planning 

Flight Altitude 120m (400ft) AGL Quality detail (~2 GSD), wide field of view, no 

motion blur present 

Overlap / 

Sidelap 

80% x 80% 321 images (for each flight) collected, strong overlap 

present between consecutive images 

Number of 

Boundary 

Images 

At least 1 image pass 

outside of study area 

Ground exposure present along study area border, 

complex ground objects not present 
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 Fortunately, the Doak burn started at 1200 noon and was completed by 1500, which 

allowed for data collection to occur at two different times of the day (1130 and 1500) and at two 

different sun angles (48.6° and 39.9°). The sky was clear and sunny, which meant shadows were 

present in both sets of images, however those present in the second dataset were slightly longer as 

the sun angle had decreased later in the day. Winds were variable but calm, hovering around five 

miles per hour, and producing little to no movement of prairie vegetation. The default shutter speed 

of 1/1600 was used, which slightly overexposed the images, making vegetation in shaded areas 

undistinguishable in both datasets from the burned areas in the second dataset (Figure 6). Despite 

this, the field of view and clarity of image objects were superb. This was likely because the 

relatively short (21mm) focal length and wide (f/3.5) aperture captured a 91.2° field of view, while 

the ISO (set to ‘auto’) balanced the gain, and the ∞ zoom setting ensured consistent detail in all 

image objects. Additionally, at 400 ft AGL with an 80 x 80 overlap/sidelap percentage, these 

preliminary images achieved a ground sampled distance (GSD) of 2cm per pixel—which is finer 

than many resolutions achieved by similar studies at lower altitudes and with higher overlap 

percentages (Fernández-Guisuraga et al., 2018; Fraser & Congalton, 2018; Fraser & Congalton, 

2019; Frey et al., 2018; Larrinaga & Brotons, 2019; Lehmann et al., 2017; Li et al., 2019; Martin 

et al., 2018; Mayes et al., 2016; Simpson et al., 2016). 

 

  

Figure 6. Shaded areas in pre-burn present similar spectral profile to burned areas in post-burn dataset. 

 For the second data collection test at Hermann, much of the same settings were used with 

the exception of sun angles, wind, and shutter speed (Table 9). Because the Hermann burn (10/8/19) 

was performed almost a month after the Doak burn (9/19/19), the burn was conducted later in the 
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day (between 1500 and 1730). Given that the total sun exposure and sun angles were reduced at 

this time of year, this allowed the treated vegetation to be as dry as possible in order to produce a 

‘complete burn’ (Miller & Brooke, 2019). This later start time also provided an opportunity to test 

data collection with the UAS at later times of the day and with lower sun angles (43.2° and 2.5°). 

Flights were conducted on 10/8/19 both before (1315) and after (1800) the prescribed burn, and 

the shutter speed was increased from the default (1/1600) to 1/2500 (Table 9).  

Table 9. Data collection parameters tested for two flights at Hermann prairie burn site. 

Consideration Subject Parameter Tested Notes 

Atmospheric 

Conditions 

Sun Angle° 

(Takeoff time) 

43.2° (1315) 

& 2.5° (1750) 

Shadows present in both datasets, longer shadows 

present in second flight 

Brightness Clear, sunny Shadows present from tall objects in both datasets, 

moderate reflectance of exposed vegetation 

Wind Low, > 5 MPH No issues with motion blur 

Sensor 

Parameters 

Shutter Speed 1/2500 Better exposure and view into shaded areas than 

1/1600 

Aperture and 

Focal Length 

Wide (f/3.5) and 

short (21mm) 

Wide field of view, no warping present on outer 

edges, all objects in focus 

ISO and Zoom ISO 'Auto' and  

'∞' zoom 

Well-balanced ambiance, all objects in focus 

Mission 

Planning 

Flight Altitude 120m (400ft) AGL Quality detail (~2 GSD), wide field of view, no 

motion blur present 

Overlap / 

Sidelap 

80% x 80% 140 images (for each flight) collected, strong 

overlap present between consecutive images 

Number of 

Boundary 

Images 

At least 1 image pass 

outside of study area 

Ground exposure present along study area border, 

complex ground objects minimal 

 

 

 Upon examining the preliminary image datasets from both burn sites, it was determined 

that the sensor parameters and mission plan settings used for the Hermann burn flights produced 

higher quality images than those collected from the Doak burn flights. Despite lower sun angles 

producing longer shadows, the shutter speed increase (1/2500) balanced the exposure and view 

into shaded areas. Therefore, the sensor parameters and mission plan settings for the Hermann 

burn were used for data collection surrounding the PWA burn (Table 8). Atmospheric conditions 

of the repeat PWA flights varied slightly, but were mostly conducted during peak sun angle times 

(1100 – 1600), with clear skies, and low wind (Table 10). 
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3.3.1.2 PWA Burn Data Collection 

 In order to capture the vegetation coverage from before the prescribed burn at PWA, a pre-

burn image dataset was successfully collected on April 1st, 2020—a day before the prescribed burn 

took place. The next day, on April 2nd, 2020, the prescribed burn was conducted by intentionally 

setting 4 x 1-acre interior plots and 2 x 5-acre border plots ablaze until most if not all vegetation 

within each plot was consumed by the fire. Then, on April 3rd, 2020 a post-burn image dataset was 

successfully collected covering the same area in order to capture the vegetation immediately after 

the burn while affected plots were still heavily charred. Then, to monitor the recovery and 

regeneration of the prairie plots, the same mission was flown as close to weekly as possible for 

three months following the burn (Table 10). 

Table 10. Flight information for each UAS survey surrounding PWA prescribed burn. 

Date Takeoff Landing Total 

Duration 

Number 

of Images 

Clouds / 

Brightness1 

Wind1 

4/01/20* 1500 1520 20 min 303 Scattered, sunny Variable ~8 MPH 

4/03/20 1113 1130 17 min 378 Overcast, diffuse Calm <3 MPH 

4/11/20 1409 1428 19 min 389 Clear, sunny Low <5 MPH 

4/22/20 1008 1023 15 min 374 Clear, sunny Calm <3 MPH 

4/28/20 1251 1313 22 min 388 Scattered, sunny Calm <3 MPH 

5/01/20 1332 1347 15 min 310 Clear, sunny Variable ~5 MPH 

5/09/20 1500 1518 18 min 399 Scattered, sunny Low <5 MPH 

5/13/20 1347 1406 19 min 399 Overcast, diffuse Variable ~6 MPH 

6/21/20 1520 1540 20 min 399 Overcast, diffuse Variable ~8 MPH 

6/26/20 1434 1457 23 min 327 Broken, diffuse Calm <3 MPH 

7/17/20 1303 1328 25 min 249 Clear, sunny Low <5 MPH 

NOTE: * = pre-burn, 1= unstandardized data collection parameters. 

 

 

Every repeat flight at the PWA site was flown using the same mission plan which was 

constructed before conducting the first flight at PWA. This was possible because the mission 

planning software used in this study has a feature that allows users to save and re-use mission 

plans. Therefore, each UAS flight covered the same 26-acre area in roughly 15 minutes (not 

including manual launch and landing time), by flying a north-to-south “snake” pattern at a height 

of 400 ft AGL and a maximum ground speed of 20 MPH during image passes. While the mission 

was set to capture 80% overlap between consecutive images, and 80% sidelap between image 

passes, the mission planning software based this parameter on the dimensions of the DJI sensor, 
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which was required to operate the UAS, but has different dimensions than the external PPK-

triggered Sony A6000 sensor. While the PPK was also configured to trigger images with 80% 

overlap, the actual sidelap of the images was likely higher because neighboring image passes were 

based on a narrower field of view than the Sony A6000.  

3.3.1.3 Forest Site Testing 

During the post-burn data collection phase of PWA, preliminary testing for data collection 

parameters at timber harvest sites began. Each forest site was flown to test the data collection 

parameters established for the PWA burn site (* in Table 9). With these settings, some of the initial 

images contained motion blur, were overexposed, and had low depth of field (Figure 7 and Table 

11). On the next iteration of data collection parameter test flights (** in Table 11), the flight 

altitude was increased to 500ft (150m) AGL to broaden depth of field and field of view, as well as 

reduce motion blur and overall number of images (Fraser & Congalton, 2018). Since the canopy 

heights were around 100ft (30m) tall, this increase in flight altitude was permittable by 14 CFR 

Part 107 regulations, which allows for the operation of UAS no more than 400ft above the ground 

or above the tallest object in open airspaces (FAA, 2021).  

 

  

Figure 7. Examples of poor-quality image over forest site with initial data collection settings. (Left) high 

contrast from intermittent cloud cover, overexposed canopy, and dark canopy gaps, (right) motion blur 

from high wind, overexposed canopy and dark canopy gaps. 
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Table 11. UAS data collection parameters tested for preliminary imaging of forest sites. 

Site Date Sun 

Angle° 

(Takeoff 

Time) 

Cloud 

Cover & 

Brightness 

Wind 

(MPH) 

Shutter 

Speed 

Flight 

Altitude 

(AGL) 

Notes 

Volz* 5/7/20 (0900) Clear, sunny Med ~9 1/2500 400 ft Slightly 

overexposed 

Deardorff* 5/7/20 (1230) Clear, sunny High ~11.5 1/2500 400 ft Motion blur, 

overexposed 

McAffee* 5/16/20 (1115) Broken, 

variable 

Med ~7 1/2500 400 ft Motion blur, 

inconsistent 

lighting 

Whiteman* 5/16/20 (1230) Scattered, 

sunny 

Low ~4.5 1/2500 400 ft Motion blur, 

inconsistent 

lighting 

Jackson* 5/16/20 (1545) Scattered, 

variable 

High ~10 1/2500 400 ft Motion blur, 

good exposure 

Rough** 5/18/20 (1330) Overcast, 

diffuse 

VRB ~3, 

gusting 10 

1/2500 500 ft Some blur, 

slightly 

overexposed 

Deardorff** 5/18/20 (1615) Overcast, 

diffuse 

High ~10 1/2500 500 ft Some blur, 

slightly 

overexposed 

Volz*** 5/21/20 (1130) Overcast, 

diffuse 

Med ~8 1/4000 500 ft Good detail, 

slightly 

underexposed 

Urton**** 5/22/20 (1445) Scattered, 

sunny 

Med ~9 1/4000 500 ft Good detail, 

good exposure 

Note: number of ‘*’ denotes change to iteration of data collection parameter tests. *= various 

atmospheric conditions, 1/2500 ss, and 400 ft AGL; **= low and high wind, 1/4000 ss, 500 ft AGL; ***= 

diffuse and overcast lighting, 1/4000 ss, 500 ft AGL; ****= bright lighting, 1/4000 ss, 500 ft AGL. 

 

 

After reviewing the preliminary image datasets from the second round of flights (** in 

Table 11), many images were still overexposed and blurry even with little wind present. It was 

then determined that increasing the shutter speed as well as avoiding particularly clear/sunny skies 

whenever possible would likely correct these issues (Getzin et al., 2014). A faster shutter speed 

was set (1/4000) and tested with overcast lighting (*** in Table 11), which appeared to resolve 

motion blur, but produced underexposed images. This meant that if overcast lighting was present, 

shutter speed could be reduced to 1/3200 in the next flights, and left at 1/4000 if brighter conditions 

were present (****= in Table 11). Additionally, after the first iteration of harvest site tests it was 

determined that 1 image outside the study area was not adequate for preventing outer image 

distortion at forested sites. To compensate for this, the number of ‘buffer’ images was increased 

to ≥ 2 images outside the study area at plots with borders containing visible ground, and ≥ 3 images 
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in areas with dense canopy surrounding borders. All remaining flights were then conducted at 500 

ft AGL and switching between 1/3200 (for overcast lighting) and 1/4000 (for bright lighting). 

3.3.1.4 Volz Selective Harvest Data Collection 

 In order to capture the vegetation coverage from before the selective harvest at Volz, a pre-

cut image dataset was successfully collected on May 7th, 2020—a day before the selective harvest 

began. Then, between May 8th, 2020 and June 25th, 2020, the selective timber harvest was 

conducted, removing 65 select trees totaling 39,515 board feet of hardwood lumber. During that 

time, a mid-cut flight was conducted (5/21/2020) as a pseudo post-cut test with the data collection 

parameters being tested at the time (Table 11). Following the completion of the harvest, a post-cut 

image dataset was successfully collected (7/2/20) in order to capture the vegetation coverage 

immediately after the cut while the forest floor in canopy gaps was still bare. Then, to monitor the 

recovery and regeneration within the understory, the plot was flown again two-months following 

the harvest (Table 12). 

Table 12. Flight information for each UAS survey surrounding Volz selective timber harvest. 

Date Takeoff Landing Total 

Duration 

Number of 

Images 

Clouds / 

Brightness 

Wind 

(MPH) 

5/07/20* 0901 0916 15 min 256 Clear, sunny Med ~9  

5/21/20 1128 1143 15 min 159 Overcast, diffuse Med ~8  

7/2/20 1140 1158 18 min 157 Clear, sunny Med ~6  

8/26/20 1127 1140 13 min 176 Clear, sunny High ~10  

NOTE: * = pre-cut 

 

 

Every repeat flight at the Volz site was flown using the same mission plan which was 

constructed before conducting the first flight at Volz. Therefore, each UAS flight covered the same 

10-acre area in 15 to 20 minutes, by flying an east-to-west “snake” pattern. Since the flight height 

changed between the first and last three flights (400 ft AGL to 500 ft AGL) the number of images 

was reduced, but also captured a wider field of view and greater depth of field.  
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Once all flights for the prescribed burn at PWA and the selective timber harvest at Volz 

were completed, the next step was to correct the image coordinates that were collected by the 

PPK and engage in photogrammetric processing (see Figure 5 for workflow). 

3.4 Data Processing 

 This section describes the procedure used for processing imagery surrounding each planned 

disturbance event. 

3.4.1 Objective 1 – Part II 

The next step in establishing effective data procurement methods for both before and after 

planned disturbances, was to produce quality output products; specifically, georeferenced 

orthomosaics. Georeferencing is the process of pairing each image with their associated 

coordinates. This can be achieved in many different ways, such as with GCPs, RTK, or PPK, or a 

combination of these methodologies (Jurjević et al., 2020; Tomaštík et al., 2019; Zhang, Aldana 

Jague, et al., 2019; Zhang, Aldana-Jague, et al., 2019). Once the images have been georeferenced, 

their orientation and true-earth locations upon capture are known. This way, the images can be 

mosaicked together to create a composite photograph of the entire surveyed area with precise 

proportions and dimensions in a GIS. A composite aerial photograph from numerous images is 

called an orthomosaic dataset. Georeferenced orthomosaics were produced for each image dataset, 

while those surrounding the PWA and Volz disturbances were used in the final land cover 

classification assessments. When testing processing methods for prairie and forested sites, the 

procedures were mostly the same, however some forested datasets performed better after adjusting 

two specific parameters in Pix4D (Table 14).  

3.4.1.1 Georeferencing 

PPK was used in this study to both capture images and georeference the imagery. A 

Geosnap PPK (Field of View, 2021) was attached to the UAS platform and connected to the Sony 

A6000 camera via a 5-pin data cable (Figure 4). The PPK device has its own system of location 

sensors, such as GPS and GLONASS communications, IMU, and CPU (Table 13). These systems 

are used to determine the position of the PPK and trigger the camera at user-defined overlap 
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settings (Figure 8). Trigger command settings are stored in a configuration file on a microSD card 

that is inserted into the PPK. The microSD card also stores the trigger event data; documenting the 

UTC time, altitude, and 2D coordinates for each picture taken. This information was synchronized 

to each image in the dataset for georeferencing.  

Table 13. GeoSnap PPK positioning and collection information. 

Accessible 

Constellations 

Estimated 

XYZ Accuracy 

Trigger 

Configuration 

Options 

Data Files Collected Storage 

Capacity 

GPS, GNSS, 

Galileo 

2 cm 2-D distance, time 

interval, overlap % 

RINEX, trigger events, 

configuration snapshot, 

geotags tool 

microSD card 

capacity (32 

GBs) 

 

 

Amazingly, PPK is capable of georeferencing individual images with centimeter-level 

precision and does not require additional georeferencing methods, such as GCPs or RTK (Field of 

View, 2021; Miller et al., 2021). GCP surveys are a time-intensive process that involves placing 

physical ground markers within the survey area and collecting their position either with a dual-

frequency survey-grade GPS ground station or on-board GPS sensors embedded within the 

physical marker (Harwin & Lucieer, 2012). Positions collected for each GCP marker are then 

brought into the photogrammetric processing software and used to orient images that show GCPs. 

This is done by manually clicking on the center point of each marker within every image that 

contains one, then reprocessing the dataset.  

While generally quite accurate in open areas, GCP surveys have been shown to increase 

time-in-field and induce positional errors in dense forested environments. This is due to the 

refraction of GPS signals and/or the inability to view GCP markers because of canopy coverage, 

making them both imprecise and inefficient when conducting aerial surveys of forests (Miller et 

al., 2021). Real-time kinematics (RTK) on the other hand, relay positioning data to the UAS in 

real time via a dual-frequency survey-grade base station (Bakuła et al., 2009). This can be done 

with a base station set up in the field or a third-party network of base stations such as the National 

Oceanic and Atmospheric Authority (NOAA) Continuously Operating Reference Stations (CORS). 

Again, this georeferencing technology is quite accurate in open areas, but in densely forested 

environments, trees can disrupt either the signal between the base station and UAS or the signal 
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between the base station and satellites, making RTK less than reliable for forest surveys (Tomaštík 

et al., 2017). With PPK, positional coordinates of the UAS and sensor are captured above the 

canopy and can be corrected and processed with the imagery in a matter of minutes upon returning 

from the field, as opposed to GCPs and RTK which can greatly extend time in the field and in 

processing.  

 

 

Figure 8. PPK configuration settings. Trigger mode was set to ‘overlap’ and the percentage was set to 

‘80’ (in green), altitude of flight was set to match the mission plan at ‘152 m AGL’ (in yellow), focal 

length and sensor dimensions were set to match the Sony A6000 camera (in red), and X, Y, Z offsets 

between camera and PPK antenna were entered (in blue). 

3.4.1.1.1 PPK Corrections 

Following each flight, the microSD card in the PPK contained a .html file of the 

configuration settings for the flight (shown in Figure 8), a .bin file with RINEX data, and a .txt file 

with the raw coordinates of trigger events. Receiver INdependent EXchange, or ‘RINEX’ data 

files “contain raw satellite navigation system data relative to a specified interval of time,” 

(Souliman, 2021). Data included in these files are: the name of base station, the day of the year 

(out of 365), the hour when recording started, the year, and connected satellite networks (GPS & 

GLONASS) (Souliman, 2021). Next is the .txt file, which contains raw coordinate positions for 

trigger events including: the event number; latitude (x), longitude (y), and altitude (z) of the PPK 

antenna; 3D orientation uncertainties (O, P, K); GPS date and time; and much more (Figure 9). 
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Figure 9. Screenshot of text file containing raw trigger event coordinates and other pertinent positioning 

data within time and space. 

Upon returning from the field, the trigger event coordinates were validated with a PPK 

correction software, which in this case was EZSurv. PPK correction software works by 

determining the time and position of data collection relative to the nearest third-party base station 

service to compensate for any atmospheric anomalies that could have affected satellite signals 

during the flight. In the US, the NOAA CORS network serves as a federal survey-grade system of 

ground stations for correcting positioning data; which was accessible through EZSurv PPK 

correction software. While EZSurv is one among many PPK correction software packages, it was 

selected for its compatibility with the data products derived from the GeoSnap PPK—outputting a 

corrected position table, that was readable by the photogrammetric processing software selected 

for this study, quickly and easily (Miller et al., 2021). 

Table 14. Datum and projected coordinate system used for georeferencing. NOTE: Estimated error 

obtained from World Geodetic System - ‘WGS84’ (GISGeography, 2021d). 

Datum Projected Coordinate 

System 

Zone Orthometric 

Surface 

Estimated 

Error 

World Geodetic System 

– 1984 revision 

(WGS 84) 

Universal Transverse 

Mercator (UTM) 

16 North Ellipsoidal 2 cm 

 

 

The first step in using EZSurv was to set the spatial reference by selecting a datum and 

projected coordinate system in order to preserve the true proportions of the survey area when 

producing orthomosaics. A regional datum and coordinate system were established so that the 

corrected image coordinates were projected into an appropriate spatial reference (Table 14). The 

datum chosen for this project was the World Geodetic System (WGS 84). WGS 84 was selected 

because it is the datum referenced by the GPS satellites used in flights to determine the position of 

the PPK and trigger the camera. Furthermore, this datum is compatible with the chosen projected 
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coordinate system in this project, which was UTM Zone 16 N. Universal Transverse Mercator 

(UTM) is a system of projected coordinate system zones that are optimal for mapping local areas 

in detail (GISGeography, 2021a). The calculated error of this datum and coordinate system is less 

than 2cm (GISGeography, 2021d), making them highly accurate and compatible with the level of 

precision achieved by the UAS imagery, which has a GSD of 2-3cm/pixel.  

Next, the .bin file containing RINEX data was uploaded to the EZSurv project. The 

software then automatically obtained the flight information and identified the nearest CORS 

location to perform corrections (Table 13). For the PWA prescribed burn site, the CORS 

referenced was “P775” which was located about 6km away. For the Volz timber harvest site, the 

CORS referenced was “KYBO” which was located about 35km away. While still effective at 

correcting positions from the flight, the accuracy can diminish as the distance between the CORS 

location and study site increases. Generally, sub-centimeter levels of accuracy can be expected 

when a site is 7km or less away from the CORS referenced. However, sites up to 41km away are 

still capable of producing positional accuracies within a few centimeters (Miller et al., 2021). Once 

the nearest CORS location was identified, the positional data from that station during the time of 

flight was referenced and used to calibrate any periods of uncertainty as well as remove outliers 

(float epochs in Table 15) from the PPK-collected positions.  

Table 15. NOAA CORS locations used for correcting PWA prairie burn (P775) and Volz timber harvest 

(KYBO) sites. 

CORS 

Site 

Distance 

from Site 

Mean 

Fixed 

Epochs 

Mean 

Float 

Epochs 

Constellations 

Used 

Mean 

Position 

Uncertainty 

(X) 

Mean 

Position 

Uncertainty 

(Y) 

Mean 

Position 

Uncertainty 

(Z) 

P775 6 km  

(3.7 mi) 

30,086 

(99.9%) 

3.2 

(0.012%) 

GPS 2.15 cm 2.18 cm 2.43 cm 

KYBO 35 km 

(21.4 mi) 

23,302 

(89.9%) 

4,869 

(10.1%) 

GPS + 

GLONASS 

2.7 cm 2.65 cm 2.73 cm 

 

 

Finally, an events interpolator tool in EZSurv was used to link the images to each trigger 

event coordinate captured by the PPK. This was done by locating the events file and image folder, 

entering in the offset between the camera and PPK, and selecting the data columns desired in the 

corrected output file (Figure 10).  
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Figure 10. (Left) X, Y, Z offset between camera and PPK antenna in meters. (Right) Corrected output 

data columns, set to be readable by photogrammetric processing software. 

 An output .csv file was produced with the corrected coordinates for each image. Because 

photogrammetric processing was to be done in Pix4D, the columns in this file needed to match the 

exact formatting that was required of the software during georeferencing. Three columns for the 

3D camera position uncertainties of each image were entered into the data table as ‘O, P, K’ and 

given ‘0’ values (Figure 11). Omega, phi, and kappa are position uncertainties in geodesy where 

O is yaw (Z axis), P is pitch (X axis), and K is roll (Y axis). Pix4D looks for these values in 

georeferencing files to orient the images, but since these were corrected for in EZSurv, they were 

given ‘0’ values throughout (Field of View, 2019). After completing PPK corrections, the images 

and georeference file were tied together in Pix4D photogrammetric processing software. 

 

 

Figure 11. Screenshot of PPK-corrected image coordinate output file from EZSurv.
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3.4.1.2 Photogrammetric Processing 

 Once the corrected image coordinates were in a proper data table, this information was 

brought in to Pix4D along with the associated image dataset to produce a georeferenced 

orthomosaic. Pix4D is a photogrammetric processing software, and was chosen for this project due 

to the user-friendly interface and value for price, as opposed to other conventional software (Fraser 

& Congalton, 2018; Manfreda et al., 2018), in addition to the inherent compatibility with the 

EZSurv PPK corrections output (Figure 11). From there, the input and output coordinate system 

were selected to align with those from the corrected PPK file (Table 14). Then, the ‘3D Maps’ 

template was used to produce a georeferenced orthomosaic, as well as a 3D point cloud and digital 

surface model (DSM). Every site was processed at least once, using Doak and Hermann burns as 

test datasets before processing PWA, while Deardorff and Rough datasets served as test sites 

before processing Volz. Burn datasets were processed first, using the default parameters in the 3D 

Maps template. Then, harvest datasets were processed; at first with default parameters, then with 

adjusted parameters as needed to correct for blurry images and/or the visually complex land cover 

present in densely forested areas. The two main parameters that Pix4D recommended to correct 

difficult datasets were: 1) keypoint image scale, and 2) calibration method. 

3.4.1.2.1 Keypoint Image Scale (KPIS) 

 When using the 3D Maps template in Pix4D, the user can adjust several parameters that 

affect the processing speed, output quality, and reconstruction detail. One such parameter is the 

Keypoint Image Scale (KPIS) in the “initial processing” step. KPIS defines the scale at which the 

processing algorithm looks for similar pixels of identifying objects between multiple images in 

order to properly position each image within the orthomosaic (Pix4D, 2021b). For example, setting 

the KPIS to 1, means that the algorithm will search the entire image for similar pixel objects 

relative to the other images in the dataset. Generally, accepting the default of “1” for KPIS will 

provide the most thorough and detailed reconstruction of image objects in the resulting 

orthomosaic, however Pix4D recommends reducing the KPIS if there are images within the dataset 

that are blurry or the survey area contains homogenous land covers, such as snow, or visually 

complex land covers, such as dense forest canopy (Pix4D, 2021b). For prescribed burn prairie sites, 

the default KPIS of “1” was used almost exclusively, while some selective harvest sites performed 
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better with a reduced KPIS of “½” or “¼”, especially when some of the images contained motion 

blur (Table 14). In some instances, adjusting the KPIS still wasn’t enough to produce a quality 

georeferenced orthomosaic, and for those cases, Pix4D recommends adjusting the calibration 

method from “standard” to “alternative” (Pix4D, 2021c).  

3.4.1.2.2 Calibration Method 

 Because Pix4D is a proprietary software, many of the background algorithms are not 

described in detail—the calibration method is one such algorithm. Although the difference 

between the “standard” and “alternative” calibration methods is not known, Pix4D recommends 

using the “alternative” option when the number of calibrated images upon initial processing is low, 

or again, when the survey area contains homogenous or complex land covers (Pix4D, 2021c). 

Because the burn sites performed well with the default “standard” calibration method, “alternative” 

was not tested for PWA. However, after discovering issues within some of the orthomosaics for 

harvest sites, Volz datasets were processed with both “standard” and “alternative” calibration 

methods for each KPIS to determine the best combination. 

3.4.1.2.3 Photogrammetric Parameter Testing 

When testing harvest sites with these parameter adjustments, the number of calibrated 

images and the overall visual quality of the resulting orthomosaic varied widely. Therefore, to 

determine which parameters were optimal for Volz datasets, each was processed with every 

combination of KPIS and calibration method parameters in order to both validate these methods 

and use the best iteration from each flight in the final land cover assessments. Then, in order to be 

thorough, the pre-burn PWA dataset was processed with each KPIS to see if any improvement in 

number of calibrated images could be made despite the already impressive performance of ‘default’ 

parameters. Table 16 contains the photogrammetric processing parameters tested for PWA prairie 

burn and Volz timber harvest datasets. 

As a result of photogrammetric processing, orthomosaic composites, as well as 3D Point 

Clouds and DSMs, were produced. From there, four orthomosaics were selected from the entire 

PWA dataset for classification, which included the pre-burn (4/1/20), post-burn (4/3/20), post- 



 

 

 61 

Table 16. Photogrammetric processing parameters tested for georeferenced orthomosaic generation at 

PWA prescribed burn and Volz selective timber harvest sites. 

Dataset Keypoint Image Scale Calibration Method Number of Calibrated Images 

PWA pre-burn 

(4/1/20) 

1 Standard 615/621 (99%) 

1/2 Standard 618/621 (99%) 

1/4 Standard 615/621 (99%) 

PWA post-burn 

(4/3/20) 

1 Standard 377/378 (99%) 

PWA post-burn 2 

(4/11/20) 

1 Standard 388/389 (99%) 

PWA post-burn 3 

(4/22/20) 

1 Standard 372/374 (99%) 

PWA post-burn 4 

(4/28/20) 

1 Standard 387/388 (99%) 

PWA post-burn 5 

(5/1/20) 

1 Standard 309/310 (99%) 

PWA post-burn 6 

(5/9/20) 

1 Standard 399/399 (100%) 

PWA post-burn 7 

(5/13/20) 

1 Standard 398/398 (100%) 

PWA post-burn 8 

(6/21/20) 

1 Standard 398/399 (99%) 

PWA post-burn 9 

(6/26/20) 

1 Standard 324/327 (99%) 

PWA post-burn 10 

(7/17/20) 

1 Standard 248/249 (99%) 

Volz pre-cut 

(5/7/20) 

1 Standard 241/256 (94%) 

1/2 Standard 241/256 (94%) 

1/4 Standard 239/256 (93%) 

1/2 Alternative 243/256 (94%) 

1/4 Alternative 239/256 (93%) 

Volz mid-cut 

(5/21/20) 

1 Standard 149/159 (94%) 

1/2 Standard 151/159 (95%) 

1/4 Standard 146/159 (92%) 

1 Alternative 148/159 (93%) 

1/2 Alternative 154/159 (97%) 

1/4 Alternative 149/159 (94%) 

Volz post-cut 

(7/2/20) 

1 Standard 155/157 (99%) 

1/2 Standard 156/157 (99%) 

1/4 Standard 154/157 (98%) 

1/2 Alternative 157/157 (100%) 

1/4 Alternative 156/157 (99%) 

Volz post-cut 2 

(8/26/20) 

1 Standard 166/174 (95%) 

1/2 Standard 168/174 (96%) 

1/4 Standard 163/174 (93%) 

1/2 Alternative 169/174 (97%) 

1/4 Alternative 163/174 (93%) 
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burn 2 (4/11/20), and post-burn ‘5’ (5/1/20). These datasets were selected to show what the 

vegetation was before the burn, immediately after the burn, one week after the burn, and one month 

after the burn. Later datasets were ultimately not used in the resulting classification as the 

vegetation did not display noticeable changes in land cover following the post-burn ‘5’ dataset. 

Furthermore, in order to compare the accuracies of land cover between both disturbance types, an 

equal number of datasets was needed for each NDBM treatment. Thus, four surveys surrounding 

the PWA burn were selected to match the number of datasets collected for the Volz timber harvest. 

These georeferenced orthomosaics were then used as the basis for land cover classifications. 

3.4.2 Data Classification 

 This section describes the procedure used for producing land cover classifications with the 

UAS imagery surrounding each planned disturbance. 

3.4.2.1 Objective 2 

 To directly address the second objective in this study, which was to: Establish effective 

data classification methods to quantify land cover from both before and after planned disturbances, 

the georeferenced orthomosaics produced in the previous step were brought into a GIS software 

to engage in geographic object-based image analysis (GEOBIA). When using GEOBIA for land 

cover classification, there are two types: supervised and unsupervised. The difference between 

these has to do with the level of user input (Domadia & Zaveri, 2011). As the name implies, 

‘unsupervised’ algorithms classify pixels within an image dataset based on pre-defined settings 

and do not require supervision from the user during that process. These types of algorithms are 

useful when the number or types of land covers are unknown and/or when working with large 

datasets covering vast areas, such as high-resolution satellite images. On the other hand, 

‘supervised’ algorithms are less autonomous and do require supervision from the user during 

classification, which bases the classification on user-identified samples for each class. Supervised 

algorithms are useful when the number, types, or distribution of land covers are known.  

Within these methods, there are two sub-divisions: pixel-based classification (PBC) and 

object-based classification (OBC). PBC classifies individual pixels within an image based on 

spectral characteristics, either through pre-defined parameters (unsupervised) or user-selected 
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samples (supervised). Conversely, OBC groups multiple pixels into objects based on similar 

spectral, textural, and proximate characteristics, again either through pre-defined parameters 

(unsupervised) or user-selected samples (supervised). PBC is useful when pixels are larger than 

objects within the image, such as low-resolution photos covering large areas, while OBC is useful 

when image objects are comprised of many pixels such as with high-resolution imagery covering 

relatively smaller areas (White et al., 2018). In the case of high-resolution UAS imagery, 

Kucharczyk, et al. (2020) highlight how object-based classification (OBC) enhances pixel-based 

classification (PBC) for aerial imagery with geographic applications: 

“(i) the partitioning of images into image-objects mimics human visual 

interpretation; (ii) analyzing image-objects provides additional related information 

(e.g., texture, geometry, and contextual relations); (iii) image-objects can more 

easily be integrated into a GIS; and (iv) using image-objects as the basic units of 

analysis helps mitigate the modifiable areal unit problem (MAUP) in remote 

sensing,” where MAUP refers to varying pixel-sizes from inconsistencies during 

data collection (p. 4). 

Furthermore, OBC relies on image segmentation prior to classifying land covers (Figure 

12). The process of segmentation groups pixels into objects with similar spectral and spatial 

characteristics, to simplify texture and color variances, before sample collection, making the 

process easier on the user and classification easier on the algorithm (Li & Shao, 2012). 

Segmentation requires user-set parameters for spectral, spatial, and minimum segment size 

sensitivities, that are typically optimized through trial-and-error and vary based on pixel resolution 

(Kucharczyk et al., 2020).  

Once the image has been segmented, the types of land cover classes are defined in a 

classification schema, and are typically based on those developed by James R. Anderson (1976). 

Next, the user collects samples for each land cover type within the classification schema by 

drawing polygons of exemplary objects over the segmented image (Figure 13). These sample 

polygons are then used to train the classification algorithm, which looks for objects of similar 

spectral and spatial characteristics as the samples collected for each class within the orthomosaic. 

Kucharczyk, et al. (2020) state while the optimal number of samples per class is subjective, it is 

generally agreed upon that “as the number of high-quality training samples increases, overall 
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Figure 12. Geographic object-based image analysis (GEOBIA) process. (a) PWA original image, (b) PWA segmented image, (c) PWA classified 

image, (d) Volz original image, (e) Volz segmented image, (f) Volz classified image. 
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accuracy increases," (p. 14) and that each class should contain an equal number of samples with 

a minimum of 50 per class. However, there is a trade-off between number of samples collected 

and the inherent efficiency of using semi-automated classification algorithms in the first place. 

After collecting training samples, another consideration for producing land cover assessments is 

the classification algorithm. 

While there are many software packages for performing land cover classification from 

aerial imagery, and therefore, many classification algorithms, numerous studies suggested using 

supported vector machines (SVM) over other popular algorithms, such as random forests, 

maximum likelihood, and ISO clusters to name a few (Al-Ali et al., 2020; Belgiu & Drăguţ, 2016; 

Boardman, 2020; Gibril et al., 2020; Liu et al., 2018; Mountrakis et al., 2011; Pande-Chhetri et al., 

2017; White et al., 2018). Additionally, few studies have examined the efficacy of a SVM 

classification algorithm in ArcGIS Pro for land cover change surrounding disturbances, and instead 

have focused on software packages such as eCognition, AgiSoft, and others (Al-Ali et al., 2020; 

Bagaram et al., 2018; Díaz-Varela et al., 2015; Fraser & Congalton, 2019; Manfreda et al., 2018; 

Martin et al., 2018). Fortunately, ArcGIS Pro was available for use in this study, and therefore 

could be tested for this purpose. 

 Lastly, determining the accuracy of the resulting land cover classification can be done by 

plotting points randomly on top of the classified image and comparing what class each point falls 

within to what the actual land cover of each point is. Husson, Ecke, and Reese (2016) validated 

this procedure by comparing the proportions of land covers in their classified dataset to proportions 

collected through field samples. After achieving an overall classification accuracy of 95% when 

compared to field measurements, the authors determined that standalone visual interpretation of 

their high spatial resolution orthomosaic image was sufficient for performing an accuracy 

assessment of land cover classifications produced with that imagery. While these findings provided 

a good foundation for performing geographic object-based image analysis (GEOBIA), the specific 

parameters for this application required further experimentation to produce quality land cover 

classifications for image datasets surrounding both prescribed burn and selective timber harvest 

NDBM treatments. 
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Figure 13. Screenshot of training sample polygon collection from PWA post-burn dataset. 

Supervised OBC was chosen for this study because the high-resolution imagery obtained 

by the UAS contained objects that were comprised of many pixels and the types of land covers 

were known. Preliminary testing was done using the Doak post-burn and Volz mid-cut datasets to 

optimize the many factors that contribute to quality land cover classifications, before applying 

them to PWA and remaining Volz datasets. 

3.4.2.1.1 Image Segmentation 

 The first step when engaging in object-based classification (OBC) is to reduce the 

complexity of the high-resolution imagery by grouping pixels of similar color and textures into 

objects containing many pixels. This process is known as image segmentation, and involves setting 

three main parameters that effect the range of colors and size of objects in the resulting segmented 

image. These parameters are defined by ArcGIS Pro documentation (ESRI, 2021): 

“There are three parameters that control how your imagery is segmented. Spectral 

Detail: Set the level of importance given to the spectral differences of features in 

your imagery. Valid values range from 1.0 to 20.0. A higher value is appropriate 

when you have features you want to classify separately but have somewhat similar 

spectral characteristics. Smaller values result in more smoothing and longer 
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processing times. For example, a higher spectral detail value in a forested scene 

will result in greater discrimination between the different tree species.  

Spatial Detail: Set the level of importance given to the proximity between features 

in your imagery. Valid values range from 1 to 20. A higher value is appropriate for 

a scene where your features of interest are small and clustered together. Smaller 

values create spatially smoother outputs. For example, in an urban scene, you could 

classify impervious surface features using a smaller spatial detail value, or you 

could classify buildings and roads as separate classes using a higher spatial detail 

value. 

Minimum Segment Size: This parameter is directly related to your minimum 

mapping unit. Segments smaller than this size are merged with their best fitting 

neighbor segment. Units are in pixels,” (lines 10-27). 

However, defining segmentation parameters is no small task. As declared by Kuckarczyk, 

et al. (2020),"in the GEOBIA literature the consensus is that determining an optimal segmentation 

parameter value is a heuristic, subjective, challenging, and time-intensive trial-and-error process" 

(p. 7). In ArcGIS Pro, the ‘default’ segmentation parameters are 15.5 (spectral), 15 (spatial), and 

20 (min. segment size). For the first test, the post-burn dataset from Doak was segmented using 

these default parameters, and then adjusted until image objects were comprised of as few segments 

as possible, without grouping multiple objects into one segment (Husson et al., 2016). This was 

done by increasing the spectral detail, decreasing the spatial detail, and increasing the minimum 

segment size. Figure 14 shows the progression of segmentation parameters tested, using the Doak 

post-burn dataset.  

Upon optimizing the segmentation parameters, orthomosaics for the PWA and remaining 

Volz sites were segmented using the ‘Segment Mean Shift’ tool in ArcGIS. The parameters used 

were: 17 spectral detail, 10 spatial detail, and 80 minimum segment size. After this was completed, 

the next step was to define a classification schema for each type of NDBM treatment. 

3.4.2.1.2 Classification Schema 

 One advantage of supervised OBC is that the classification schema is defined by 

the user. This allows for assessing land covers that are pertinent to the study. In this case two 

classification schemas were developed; one for each disturbance type (Table 17). For the PWA 

datasets, four classes were used to assess land covers surrounding the prescribed burn: 1) bare 

ground, 2) litter, 3) burned vegetation, and 4) green vegetation. For the Volz datasets, four classes 
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were used to assess land covers surrounding the selective timber harvest: 1) bare ground, 2) woody 

debris, 3) understory vegetation, and 4) mature canopy. 

 

Figure 14. Segmented image parameters tested. (a) original image; (b) ‘default’ segmentation parameters 

15.5 spectral, 15 spatial, 20 minimum segment size (MSS); (c) 17 spectral, 10 spatial, 20 MSS; (d) 17 

spectral, 10 spatial, 80 MSS. 

The ‘bare ground’ class was based on Anderson’s land use / land cover (LULC) schema 

(Anderson, 1976) and applied to both disturbance types. Because both burning and cutting 

treatments remove vegetation from the surface and leave soil exposed, ‘bare ground’ was a suitable 

land cover for either disturbance type. Bare ground land covers were visually interpreted in the 

imagery as exposed soil that was beige-to-brown in color, and when in direct sunlight, had high 
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reflectance. Because healthy vegetation reflects green light, any areas with high and non-selective 

reflectance could be collected as bare ground with high confidence. From there, the schemas 

deviate to include land covers more relevant to each type of NDBM treatment. 

Table 17. Land cover classification schemas for PWA burn and Volz harvest datasets. 

PWA Burn Classes Volz Harvest Classes Final Volz Harvest 

Classes* 

Bare Ground Bare Ground Bare Ground 

Litter Woody Debris 

Burned Vegetation Understory Vegetation Understory Vegetation 

Green Vegetation Mature Canopy Mature Canopy 

NOTE: Woody debris* samples were collected and used to produce land cover 

classifications, but were later grouped in with the ‘bare ground’ class for the 

final harvest classification maps (Figures 30 - 36 in Results section). 

 

For prescribed burn datasets, the next class was ‘litter’. Litter was defined as dry and/or 

dead prairie grasses within burn plots, which act as the primary fuel source when conducting 

prescribed burns (Brooke, 2021; Miller & Brooke, 2019). Litter was visually interpreted in the 

imagery as beige-colored areas with grassy texture. The third class was ‘burned vegetation’ and 

was defined as severely discolored vegetation, ash, and visibly charred soil. These areas ranged in 

color from grey/black to dark maroon/brown and were not considered ‘bare ground’ until: 1) the 

charring and ash was no longer present, and 2) the soil had reverted back to its natural color. The 

last class was ‘green vegetation’ and was defined as areas of living grass and forbs. Green 

vegetation was identified in the imagery in order to classify unburned plots as well as areas within 

burn plots that were unsuccessfully consumed by the fire.  

For the selective timber harvest sites, ‘woody debris’ was defined as felled trees lying on 

the forest floor. Woody debris was visually interpreted as grey-to-brown tree trunks perpendicular 

to standing stems visible through canopy gaps. Next, ‘understory vegetation’ was defined as shrubs, 

forbs, grasses, and tree seedlings below the canopy. Understory vegetation was visually interpreted 

in the dataset as shaded areas of green vegetation displayed underneath the crowns of mature trees 

that make up the canopy layer. Lastly, the ‘mature canopy’ class was defined as tree crowns within 

the top layer, or ‘canopy’, of the property. Mature canopy was visually interpreted as green areas 

within the dataset that were often noticeably brighter than understory vegetation and displayed 

well-developed crown structures. 
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After determining the classification schemas for each NDBM treatment type, the Doak 

post-burn and Volz mid-cut datasets were used first to test how the number of samples affected 

the performance of land cover classifications.  

3.4.2.1.3 Sample Collection 

 Within the GEOBIA literature, the number of samples collected for each class is still 

widely debated (Buters et al., 2019). However, the ideal number can change based on the size and 

complexity of the dataset, as well as the level of accuracy desired in the final land cover 

classification. For example, Ghosh and Joshi (2014) were able to achieve 94% overall accuracy 

(OA) in their resulting classification from 10 samples per class, whereas Gibril, et al., (2020) 

required 21-32 samples per class to achieve similar OAs (90.5% - 94.5%) in their classification. 

Furthermore, Kucharczyk, et al., (2020) suggest collecting an equal number of samples per class 

with a minimum of 50 to properly train the classification algorithm. In order to determine the ideal 

number of samples needed to produce quality land cover classifications in this study, various 

sampling sizes were tested using the Doak post-burn and Volz mid-cut imagery.  

 At first, 65 samples were collected for each class within the Doak post-burn dataset to train 

a supported vector machines (SVM) classification algorithm (Table 18). After observing the 

resulting classification accuracy (see Accuracy Assessment section), this sample size and classifier 

was then applied to the selected PWA burn datasets. Then, the Volz datasets were also initially 

processed with a sample size of 65 per class, but achieved mediocre outputs with the SVM 

classification algorithm. To determine if a better output could be achieved, the Volz mid-cut 

dataset was tested with the other three algorithms available (RF, ML, and ISO), using the same 65 

samples per class. The initial outputs revealed that SVM and RF generated visibly better results 

than the ML or ISO algorithms. Therefore, SVM and RF were tested again with 80 samples per 

class. From there, the remaining Volz datasets were classified with SVM from 80 samples per 

class (Table 18).
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Table 18. Sample size and machine-learning classification algorithms examined for both 

burn and harvest treatment datasets. 

Dataset Iteration 

Number 

Sample Size (per 

class) 

Classification 

Algorithm 

Doak post-burn (9/19/19) 1 65 SVM 

PWA pre-burn (4/1/20) 

and post-burns (4/3/20, 4/11/20, & 

5/1/20) 

1 65 SVM 

Volz mid-cut (5/21/20) 1 65 SVM 

2 65 ML 

2 65 RF 

2 65 ISO 

3 80 SVM 

3 80 RF 

Volz pre-cut (5/7/20)  

and post-cuts (7/2/20 & 8/26/20) 

1 65 SVM 

2 80 SVM 

 

3.4.2.1.4 Classification Algorithm 

 The ‘Image Analyst’ module within ArcGIS Pro contains the ‘Classify Raster’ tool which 

offers four different classification algorithms for OBC. These classifiers include: Random forests 

(RF), supported vector machines (SVM), ISO clusters (ISO), and Maximum likelihood (ML). Each 

of these machine-learning algorithms are trained by the samples collected in the previous step to 

interpolate land covers within the rest of the segmented image. Of course, many other classification 

algorithms exist, but three of the four offered in ArcGIS Pro (RF, SVM, and ML) were commonly 

used in previous studies. 

When researching the effectiveness of various machine-learning classifiers, RF and SVM 

were both highly regarded for their reliability and usability, and were often compared to each other. 

One such example was the review by Belgiu and Drăguţ’s (2016) who noted that both algorithms 

were equally reliable with RF performing better in multi-sourced and/or hyperspectral imagery 

with known compositions, and SVM performing better in smaller datasets with unknown 

compositions when vegetated features are made of many object segments. Since the latter was 

more applicable to this study, further investigation revealed that SVM often outperformed RF and 

other classifiers when high-resolution UAS imagery was used in particular. For instance, 

Boardman (2020) found that SVM outperformed RF and ML classifiers with UAS imagery, 

achieving OAs of 84.4% - 92.7%. Furthermore, Gibril, et al. (2020) found that SVM performed 

most consistently, achieving OAs between 90.5%-94.5%, when compared to ‘decision trees’ and 
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RF algorithms. This finding was confirmed by Liu, et al. (2018), which revealed that SVM 

consistently outperformed the RF classifier regardless of sample size.  

Based on these findings, SVM was used to classify the selected PWA burn datasets after 

visually interpreting its effectiveness with the Doak post-burn dataset. However, when attempting 

to classify the Volz datasets with the same parameters (65 samples per class and SVM classifier), 

the outputs were not as good as expected and further investigation into both sample size and 

algorithm type was conducted. The mid-cut dataset was then classified with all four algorithms 

available through ArcGIS Pro to compare the performance of sample size and classifier. This led 

to using 80 samples per class and the SVM classifier for the remaining Volz datasets (Table 18). 

 The iterative process of optimizing the classification methods for Volz was based on trial-

and-error (Kucharczyk et al., 2020), using visual interpretation of the outputs to eliminate ML and 

ISO classifiers, then verifying RF and SVM performance objectively through accuracy 

assessments. 

3.4.2.1.5 Area Calculations 

 Following each classification, a count of pixels within each land cover class was included 

in the resulting attribute table. Areas for each land cover were calculated by multiplying the 

number of pixels for each classification by the ground sampled distance (GSD). GSD is the size 

that one pixel in the image represents on the earth, which in this case was between 2-3cm. Area 

calculations were conducted for each PWA (Tables 25 – 28) and three-class Volz datasets (Tables 

35 – 38).   

3.4.2.1.6 Accuracy Assessment and Confusion Matrix 

 Accuracy assessments were conducted for two classification outcomes: 1) to determine the 

performance of RF and SVM classifications with the initial four-class Volz datasets, and 2) to 

obtain the resulting classification accuracies for the final PWA and Volz (three-class) datasets. 

The former used an equalized stratified random (ESR) sample of 100 points to examine both the 

overall and individual class accuracies between each classification method (80 samples per class, 

RF and SVM) for Volz datasets. Then, the ‘woody debris’ class was grouped into the ‘bare ground’ 

class and each Volz dataset was reprocessed with 80 samples per class and SVM. From there, final 
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classification accuracies were examined for each three-class Volz dataset and each PWA dataset, 

both produced with 80 samples per class and the SVM algorithm. This was also done with an ESR 

sample, but with 250 points to get a better representation of the sample population (Al-Ali et al., 

2020; Knoth et al., 2013; Pande-Chhetri et al., 2017). Accuracy assessments were performed using 

the “create accuracy assessment points” and “compute confusion matrix” tools in ArcGIS Pro.  

The accuracy assessment points tool projected an equal number of points for each class 

(ESR) onto the classified output, which generated a table with columns for: a) point ID, b) 

classified as, and c) ground truth (Figure 15). Each point was then examined using the 

georeferenced orthomosaic as a reference (Husson et al., 2016) to determine its true land cover for 

which the corresponding class value was entered into the ‘ground truth’ column. Once the table 

was filled with both the ‘classified as’ and ‘ground truth’ values, the “compute confusion matrix” 

tool was used to generate a table with individual class accuracies and overall classification 

accuracy (see Results section).  

 

 

Figure 15. Screenshot of ground truth referencing during accuracy assessment. 

The individual class accuracies describe both errors of omission (type I error) and errors of 

commission (type II error) (ESRI, 2021). Type I errors are reference points that were omitted from 
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the correct class. For example, a segment that was actually bare ground in the reference image, but 

was misclassified as mature canopy would represent a type I error (omission) and affect the 

producer’s accuracy. This describes the reliability of the classification method. Conversely, type 

II errors are reference points that were added (commissioned) to the wrong class. For example, a 

segment that was classified as ‘bare ground’ in the map, but was actually ‘mature canopy’ in the 

reference image would represent a type II error (commission) and affect the user’s accuracy. This 

describes the reliability of the classified map. Another way to think about this is the probability 

that a given land cover is accurately classified in the resulting map is the producer’s accuracy, 

while the probability that the classified map accurately depicts what the true land cover is 

represents the user’s accuracy ("Accuracy Metrics," 2019). 

Producer’s accuracy is calculated through dividing the number of reference points 

classified accurately by the total number of reference points within that column for a given class. 

User’s accuracy is calculated through dividing the number of correct classifications by the total 

number of reference points within that row for a given class. Finally, overall accuracy (OA) is 

calculated by taking the sum of correctly classified reference points for all classes and dividing it 

by the total number of reference points in the accuracy assessment ("Accuracy Metrics," 2019).  

3.5 Significant Difference Testing 

To compare the overall classification performance between both types of NDBM treatment 

and their respective land covers, a two-tailed t-test was conducted with the overall accuracies from 

each resulting classification. 

3.5.1 Objective 3 

 To directly address the third objective in this study, which was to determine if there was a 

significant difference in final classification quality between the prescribed burn and selective 

harvest treatment land covers, a two-tailed t-test assuming equal variances was performed. This 

was conducted in order to determine if, 1) the variance within disturbance types/land covers, and 

2) the variance between disturbance types/land covers, was significant at a 95% confidence level. 

By calculating this statistic, the reliability of the classification method for either type of disturbance 

and land cover could be determined. Excel was used for the calculation by first putting the overall 
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classification accuracies (OA) for each disturbance/land cover type into their own columns. Then, 

the “t-Test Two-Sample: Assuming Equal Variances” data analysis tool was used. The range of 

OA values for each disturbance/land cover type were put into the model as well as the 

“hypothesized mean difference”, which in this case was “0” because the variances were assumed 

to be equal. The data analysis tool generated an output with the mean, variance, and observation 

size (or sample) for each disturbance/land cover type; a pooled variance between both ranges of 

OAs; the hypothesized mean difference (“0”); degrees of freedom; then the t Stat, the P-value, and 

the t Critical values (see Table 43 in Results section).
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CHAPTER 4 – RESULTS 

 This chapter describes the findings for the research questions and objectives of this study. 

4.1 Objective 1 

 Objective 1 was to establish effective data procurement methods for both before and after 

planned disturbances, and was achieved by testing various data collection and processing 

parameters with UAS imagery at multiple prescribed burn and selective timber harvest sites in the 

Central Hardwood Forest (CHF) region. Key UAS data collection variables were tested for two 

types of land cover (prairie and forest) surrounding their respective natural disturbance-based 

management (NDBM) treatments (Tables 19 and 22). Three main categories of data collection 

variables were identified as: 1) atmospheric conditions, 2) image sensor settings, and 3) mission 

planning parameters. Atmospheric conditions included: i) sun angle/time of collection, ii) 

brightness/cloud cover, and iii) wind. Image sensor settings considered were: iv) shutter speed, v) 

aperture and focal length, and vi) ISO and zoom. Mission planning parameters involved: vii) flight 

altitude, viii) overlap/sidelap, and ix) number of boundary images. An on-board independent post-

processing kinematic (PPK) sensor was responsible for triggering the camera at a predefined 

overlap setting, and recording the position and time of each image captured.  

4.1.1 Optimized Data Procurement Methods for Prescribed Prairie Burns 

 This section shows the results of data collection and processing methods used for producing 

georeferenced orthomosaics from the UAS imagery surrounding the prescribed burn at PWA. 

4.1.1.1 UAS Data Collection Parameters for Prairie Burn Sites 

 Quality image datasets were collected at Purdue Wildlife Area (PWA) both before and 

repeatedly after the prescribed prairie burn, which was conducted on April 2nd, 2020. Following 

preliminary data collection tests at Doak and Hermann prescribed prairie burn sites, the 

atmospheric, sensor, and mission planning parameters were optimized and implemented for PWA 

burn surveys (Table 19).  
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Table 19. Optimal data collection parameters for surveying prescribed prairie burn sites. 

Consideration Subject Recommendation Justification 

Atmospheric 

Conditions 

Sun Angle/ Time 

of Collection 

Mid-morning to 

mid-evening 

Little to no tall objects that would cause long 

shadows. Wider range of collection times 

than forested sites. 

Brightness/ Cloud 

Cover 

Bright to Diffuse/ 

Clear to Overcast 

Low vegetation height was less sensitive to 

overexposure from bright light. 

Wind 0-10 mph (med) Motion blur less common with low 

vegetation height. 

Sensor 

Parameters 

Shutter Speed 1/2500 – 1/3200 Properly exposed image with sharp detail for 

given lighting conditions. 

Aperture and Focal 

Length 

f/3.5 and 21mm Wide field of view for high image overlap. 

ISO and Zoom Auto and ∞ Auto-balanced gain and focused images. 

Mission 

Planning 

Flight Altitude 121m AGL (400ft) Sufficient depth of field for sharp detail. 

Overlap/ Sidelap 80% x 80% Ensured thorough coverage of study area 

Number of 

Boundary Images 

≥ 1 image Inherently more visible ground cover than 

forested sites allowed for smaller outside 

image buffer. 

 

4.1.1.2 Georeferencing and Photogrammetric Processing Parameters for Prairie Burns 

The optimal data collection parameters listed in Table 19, produced quality imagery for a 

total of 12 survey dates surrounding the prescribed burn. Images from each UAS survey were 

synchronized with their respective coordinate positions at the time of capture, and 

photogrammetrically processed to produce georeferenced orthomosaics that would serve as the 

foundation for conducting land cover assessments. Image coordinates were collected by the 

independent on-board post-processing kinematic (PPK) sensor and corrected with the continually 

operational reference station (CORS) network to achieve centimeter-level precision (Table 20). 

Corrected coordinates were then used to geolocate the imagery and produce precise aerial 

composites for each dataset. Key variables for photogrammetric processing were identified as 

keypoint image scale (KPIS) and calibration method. Multiple iterations of these variables were 

tested for harvest datasets to determine which combination was most effective at producing quality 

orthomosaics for either type of NDBM treatment and land cover (Table 21). 

Table 20. PPK correction and coordinate system information for PWA prescribed prairie burn site. 

Study 

Site 

CORS 

Site 

Distance Mean Horizontal 

Accuracy 

Mean Vertical 

Accuracy 

Constellations Used 

PWA P775 6km (3.7mi) 2.17 cm 2.43 cm GPS 



 

78 

Table 21. Optimal photogrammetric processing parameters for prescribed prairie burn datasets. 

Site Keypoint Image Scale (KPIS) Calibration Method 

PWA 1 Standard 

 

4.1.1.3 Resulting Georeferenced Orthomosaics Surrounding PWA Prescribed Burn 

 Upon georeferenced orthomosaic production, four datasets were selected for engaging in 

land cover classification. These datasets included: 1) pre-burn, collected on 4/1/20 (Figure 16); 2) 

post-burn, collected on 4/3/20 (Figure 17); post-burn 2, collected on 4/11/20 (Figure 18); and post-

burn “3”, which was actually the fifth dataset collected on 5/9/20 (Figure 19). 
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Figure 16. PWA pre-burn orthomosaic. UAS flight area shown in yellow, study area for land cover 

classification shown in green. 
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Figure 17. PWA post-burn orthomosaic. UAS flight area shown in yellow, study area for land cover 

classification shown in green. 
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Figure 18. PWA post-burn 2 orthomosaic. UAS flight area shown in yellow, study area for land cover 

classification shown in green. 
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Figure 19. PWA post-burn 3 orthomosaic. UAS flight area shown in yellow, study area for land cover 

classification shown in green. 
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4.1.2 Optimized Data Procurement Parameters Surrounding Selective Timber Harvests 

 This section shows the results of data collection and processing methods used for producing 

georeferenced orthomosaics from the UAS imagery surrounding the selective timber harvest at 

Volz. 

4.1.2.1 UAS Data Collection Parameters for Timber Harvest Sites 

 Optimal data collection parameters for harvest sites differed slightly from prairie burn sites 

due to the height of vegetation and sometimes minimal ground visibility. Quality imagery was 

collected for harvest sites with the parameters shown in Table 22. 

Table 22. Optimal data collection parameters for surveying Volz selective timber harvest site. 

Consideration Subject Recommendation Justification 

Atmospheric 

Conditions 

Sun Angle/ Time 

of Collection 

Mid-day Tall objects and dense canopy restricted 

times of collection to highest sun angle 

possible. 

Brightness/ Cloud 

Cover 

Diffuse/ Overcast Tall vegetation height was more sensitive to 

overexposure if too bright and view into 

canopy gaps was better with diffuse overcast 

lighting. 

Wind ≤ 5 mph (low) Motion blur more common with tall 

vegetation, wind needed to be minimal. 

Sensor 

Parameters 

Shutter Speed 1/3200 – 1/4000 Properly exposed image with sharp detail for 

given lighting conditions. 

Aperture and Focal 

Length 

f/3.5 and 21mm Wide field of view for high image overlap. 

ISO and Zoom Auto and ∞ Auto-balanced gain and focused images. 

Mission 

Planning 

Flight Altitude 152m AGL (500ft) Sufficient depth of field for sharp detail. 

Overlap/ Sidelap 80% x 80% Ensured thorough coverage of study area. 

Number of 

Boundary Images 

≥ 2 images Commonly less visible ground cover than 

prairie sites necessitated larger outside image 

buffer. 

4.1.2.2 Georeferencing and Photogrammetric Processing Parameters for Timber Harvests 

Following a similar procedure as prairie burn sites, Volz image datasets and their 

associated coordinates were gathered by the on-board PPK during flight, and corrected with the 

nearest CORS in EZSurv (Table 23). The images and coordinates were then synchronized in Pix4D 

photogrammetric processing software with slightly different parameters (Table 24) to produce four 

quality georeferenced orthomosaics for land cover classification surrounding the selective timber 

harvest (Figures 20 – 23). 
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Table 23. PPK correction and coordinate system information for Volz selective timber harvest site. 

Study 

Site 

CORS 

Site 

Distance Mean 

Horizontal 

Accuracy 

Mean 

Vertical 

Accuracy 

Constellations Used 

Volz KYBO 35km 

(21.4mi) 

2.68 cm 2.73 cm GPS + GLONASS 

 

Table 24. Optimal photogrammetric processing parameters for Volz selective timber harvest datasets. 

Site Keypoint Image Scale (KPIS) Calibration Method 

Volz 1/2 Alternative 

 

 

Georeferenced orthomosaics for both NDBM treatments were then brought into a GIS 

software to engage in geographic object-based image analysis (GEOBIA) for producing land cover 

assessments surrounding either NDBM treatment. 

4.1.1.3 Resulting Georeferenced Orthomosaics Surrounding Volz Timber Harvest 

Upon georeferenced orthomosaic production, four datasets were produced for engaging in 

land cover classification. These datasets included: 1) pre-cut, collected on 5/7/20 (Figure 20); 2) 

mid-cut, collected on 5/21/20 (Figure 21); post-cut, collected on 7/2/20 (Figure 22); and post-cut 

2, collected on 8/26/20 (Figure 23). 
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Figure 20. Volz pre-cut orthomosaic. Study area for land cover classification shown in yellow. 
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Figure 21. Volz mid-cut orthomosaic. Study area for land cover classification shown in yellow. 
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Figure 22. Volz post-cut orthomosaic. Study area for land cover classification shown in yellow. 
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Figure 23. Volz post-cut 2 orthomosaic. Study area for land cover classification shown in yellow. 
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4.2 Objective 2 

 Objective 2 was to establish effective data classification methods to quantify land cover 

from both before and after planned disturbances, and was achieved by testing the various 

segmentation, sampling, and classification algorithms for the chosen prescribed prairie burn (PWA) 

and selective timber harvest (Volz) datasets. The same segmentation parameters were used for 

both PWA and Volz datasets, after testing the preliminary Doak post-burn survey. 17 spectral 

detail, 10 spatial detail, and 80 minimum segment size were used. Once each orthomosaic was 

segmented with these parameters, classification schemas were established for either NDBM 

treatment and land cover type. For the PWA prescribed burn, a four-class schema was used and 

included: 1) bare ground, 2) litter, 3) green vegetation, and 4) burned vegetation. For the Volz 

selective timber harvest, a four-class schema was also used initially, which included: 1) mature 

canopy, 2) understory vegetation, 3) woody debris, and 4) bare ground. However, after achieving 

poor outputs with this initial classification schema, particularly with the ‘woody debris’ class, the 

schema was adjusted to group ‘woody debris’ into the ‘bare ground’ class. 

60 samples were collected for each class in the PWA prescribed prairie burn datasets, and 

in the initial four-class testing phase for Volz selective timber harvest datasets. A supported vector 

machines (SVM) classification algorithm was used to classify the PWA datasets (Figures 24 – 27 

and Tables 25 – 28), using an accuracy assessment of 250 equalized stratified random (ESR) points 

to produce confusion matrices for resulting classifications (Tables 29 – 32). Within each of the 

final land cover classifications, a new set of accuracy assessment points were generated, thus 

providing an objective determination of accuracy for individual maps. Volz was tested with all 

available algorithms because of the complexity of the image objects. This involved testing SVM, 

maximum likelihood (ML), random forests (RF), and ISO clusters (ISO) algorithms with 60 

samples per class (Figures 28 – 31). The initial outputs of these classifications revealed that SVM 

and RF performed best with the Volz mid-cut dataset and was classified again with each algorithm, 

using 80 samples per class (Figures 32 – 33 and Tables 33 – 34). 

 Then, the accuracy of these output classifications was determined by an accuracy 

assessment of 100 equalized stratified random points, which showed SVM performed better in 

both overall accuracy (OA) and individual class accuracy. From there, the ‘woody debris’ class 

was combined with the ‘bare ground’ class, and SVM was used to produce a three-class land cover 

assessment for the remaining Volz datasets with 80 samples per class (Figures 34 – 37 and Tables 
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35 – 38). The accuracy of the resulting three-class land covers for Volz were examined with a 250 

ESR accuracy assessment to produce confusion matrices for all four datasets surrounding the 

harvest (Tables 39 – 42).  Again, a new set of accuracy assessment points were generated for each 

of the final land cover classifications. 

4.2.1 Resulting Land Cover Classifications Surrounding PWA Prescribed Prairie Burn 

 The four selected georeferenced orthomosaics surrounding the prescribed prairie burn at 

PWA were used for producing land cover classifications (Figures 24-27 and Tables 25-28). 
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Figure 24. PWA pre-burn land cover classification. Burn plots shown in red outline. 

Table 25. PWA pre-burn land cover quantification. 

 
Pre Burn - (04/01/20) Square Meters Percentage 

Bare Ground 888 1.1% 

Litter 58,093 70.0% 

Green Vegetation 9,275 11.2% 

Burned Vegetation* 14,773 17.8% 



 

92 

 

Figure 25. PWA post-burn land cover classification. Burn plots shown in red outline. 

Table 26. PWA post-burn land cover quantification. 

Post Burn - (04/03/20) Square Meters Percentage 

Bare Ground 3,947 4.8% 

Litter 27,766 33.4% 

Green Vegetation 13,563 16.3% 

Burned Vegetation 37,751 45.5% 
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Figure 26. PWA post-burn 2 land cover classification. Burn plots shown in red outline. 

Table 27. PWA post-burn 2 land cover quantification. 

Post Burn 2 - (04/11/20) Square Meters Percentage 

Bare Ground 13,278 16.0% 

Litter 21,177 25.5% 

Green Vegetation 16,775 20.2% 

Burned Vegetation 31,801 38.3% 
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Figure 27. PWA post-burn 3 land cover classification. Burn plots shown in red outline. 

Table 28. PWA post-burn 3 land cover quantification. 

Post Burn 3 - (05/09/20) Square Meters Percentage 

Bare Ground 881 1.1% 

Litter 19,882 24.0% 

Green Vegetation 58,591 70.6% 

Burned Vegetation 3,636 4.4% 
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4.2.1.1 Resulting PWA Prescribed Prairie Burn Confusion Matrices  

Each land cover classification surrounding the prescribed burn at PWA were assessed for 

accuracy with 250 ESR reference points, the results of wich were used to produce confusion 

matrices (Tables 29-32). 

Table 29. PWA pre-burn confusion matrix. 

Pre-Burn Bare Ground Litter Green Vegetation Burned Vegetation Total 

User's 

Accuracy 

Bare Ground 54 9 0 0 63 85.7% 

Litter 0 63 0 0 63 100% 

Green Veg 0 2 57 4 63 90.5% 

Burned Veg 1 3 2 57 63 90.5% 

Total 55 77 59 61 252   

Producer's 

Accuracy 98.2% 81.8% 96.6% 93.4% OA= 91.7% 

 

Table 30. PWA post-burn confusion matrix. 

Post-Burn Bare Ground Litter Green Vegetation Burned Vegetation Total 

User's 

Accuracy 

Bare Ground 48 14 1 0 63 76.2% 

Litter 2 59 2 0 63 93.7% 

Green Veg 8 1 53 1 63 84.1% 

Burned Veg 0 0 0 63 63 100% 

Total 58 74 56 64 252   

Producer's 

Accuracy 82.8% 79.7% 94.6% 98.4% OA= 88.5% 
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Table 31. PWA post-burn 2 confusion matrix. 

Post-Burn 2 Bare Ground Litter Green Vegetation Burned Vegetation Total 

User's 

Accuracy 

Bare Ground 51 5 3 4 63 81% 

Litter 3 60 0 0 63 95.2% 

Green Veg 4 3 55 1 63 87.3% 

Burned Veg 9 7 2 45 63 71.4% 

Total 67 75 60 50 252   

Producer's 

Accuracy 76.1% 80% 91.7% 90% OA= 83.7% 

 

Table 32. PWA post-burn 3 confusion matrix. 

Post-Burn 3 Bare Ground Litter Green Vegetation Burned Vegetation Total 

User's 

Accuracy 

Bare Ground 47 15 1 0 63 74.6% 

Litter 4 58 1 0 63 92.1% 

Green Veg 0 0 62 1 63 98.4% 

Burned Veg 10 1 1 51 63 81% 

Total 61 74 65 52 252   

Producer's Accuracy 77% 78.4% 95.4% 98.1% OA= 86.5% 
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4.2.2 Volz Selective Timber Harvest Classification Algorithm Testing (Mid-Cut) 

The mid-cut Volz dataset was tested with four different OBC algorithms and 60 samples 

per class to determine which classifier preformed the best land cover classification (Figures 28-

31). 

 

 

 

 

Figure 28. Supported Vector Machines (SVM) from 60 samples per class.
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Figure 29. Maximum Likelihood (ML) from 60 samples per class. 

Figure 30. Random Forests (RF) from 60 samples per class. 
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Figure 31. ISO clusters (ISO) from 60 samples per class. 

4.2.2.1 Volz with RF and SVM from 80 Samples per Class (Mid-Cut) 

RF and SVM produced the best land cover classifications with 60 samples per class, so 

these OBC algorithms were tested again with 80 samples per class and confusion matrices were 

produced to objectively determine the performance of each OBC algorithm (Figures 32-33 and 

Tables 33-34).
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Figure 32. SVM from 80 samples per class. 

Table 33. Volz mid-cut confusion matrix for SVM with 80 samples per class. 

Volz Mid-Cut 

(SVM -80) 

Mature 

Canopy 

Understory 

Vegetation 

Woody 

Debris 

Bare 

Ground Total 

User's 

Accuracy 

Canopy 48 2 0 0 50 96% 

Understory 3 28 0 0 31 90.3% 

Woody Debris 1 4 2 3 10 20% 

Bare Ground 0 0 0 10 10 100% 

Total 52 34 2 13 101   

Producer's 

Accuracy 92.3% 82.4% 100% 76.9%  OA= 87.1% 
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Figure 33. RF from 80 samples per class. 

 

Table 34. Volz mid-cut confusion matrix for RF with 80 samples per class. 

Volz Mid-Cut 

(RF - 80) 

Mature 

Canopy 

Understory 

Vegetation 

Woody 

Debris 

Bare 

Ground Total 

User's 

Accuracy 

Canopy 48 4 0 0 52 92.3% 

Understory 5 26 0 1 32 81.3% 

Woody Debris 0 2 2 6 10 20.0% 

Bare Ground 0 0 0 10 10 100.0% 

Total 53 32 2 17 104   

Producer's 

Accuracy 90.6% 81.3% 100% 58.8%  OA= 82.7% 
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4.2.3 Resulting Land Cover Classifications Surrounding Volz Selective Timber Harvest 

The four georeferenced orthomosaics surrounding the selective timber harvest at Volz were 

used for producing three-class land cover maps with SVM and 80 samples per class (Figures 34-

37 and Tables 35-38). 

Figure 34. Volz pre-cut land cover classification. 

Table 35. Volz pre-harvest land cover quantification. 

Pre Harvest - (05/07/20) Square Meters Percentage 

Mature Canopy 18,814.22  42.82% 

Understory Vegetation 15,907.28  36% 

Bare or Woody Debris 9,216.65  21% 
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Figure 35. Volz mid-cut land cover classification. 

Table 36. Volz mid-harvest land cover quantification. 

Mid Harvest - (05/21/20) Square Meters Percentage 

Mature Canopy 21,940.22  49.88% 

Understory Vegetation 15,633.69  35.54% 

Bare or Woody Debris 6,411.74  14.58% 
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Figure 36. Volz post-harvest land cover classification. 

Table 37. Volz post-harvest land cover quantification. 

Post Harvest - (07/02/20) Square Meters Percentage 

Mature Canopy 24,072.75  54.77% 

Understory Vegetation 12,301.35  28% 

Bare or Woody Debris 7,576.53  17.24% 
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Figure 37. Volz post-harvest 2 land cover classification. 

Table 38. Volz post-harvest 2 land cover quantification. 

Post Harvest 2 - (08/26/20) Square Meters Percentage 

Mature Canopy 22,391.45  51% 

Understory Vegetation 11,415.43  26% 

Bare or Woody Debris 10,135.84  23% 
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4.2.3.1 Resulting Volz Selective Timber Harvest Confusion Matrices 

The four selected georeferenced orthomosaics surrounding the prescribed prairie burn at 

PWA were used for producing land cover classifications (Figures 24-27 and Tables 25-28). 

 

Table 39. Volz three-class pre-harvest confusion matrix. 

Pre-Cut (SVM -80) 

Mature 

Canopy 

Understory 

Vegetation 

Bare or Woody 

Debris Total 

User's 

Accuracy 

Canopy 62 20 1 83 74.7% 

Understory 13 69 1 83 83.1% 

Bare or Woody 

Debris 4 4 75 83 90.4% 

Total 79 93 77 249   

Producer's Accuracy 78.5% 74.2% 97.4%  OA= 82.7% 

 

Table 40. Volz three-class mid-cut confusion matrix. 

Mid-Cut (SVM -80) 

Mature 

Canopy 

Understory 

Vegetation 

Bare or Woody 

Debris Total 

User's 

Accuracy 

Canopy 77 6 0 83 92.8% 

Understory 10 72 1 83 86.7% 

Bare or Woody 

Debris 0 3 80 83 96.4% 

Total 87 81 81 249   

Producer's Accuracy 88.5% 88.9% 98.8% OA= 92.0% 
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Table 41. Volz three-class post-cut confusion matrix. 

Post-Cut (SVM -80) 

Mature 

Canopy 

Understory 

Vegetation 

Bare or Woody 

Debris Total 

User's 

Accuracy 

Canopy 75 7 1 83 90.4% 

Understory 6 74 3 83 89.2% 

Bare or Woody 

Debris 0 4 79 83 95.2% 

Total 81 85 83 249   

Producer's Accuracy 92.6% 87.1% 95.2% OA=  91.6% 

 

Table 42. Volz three-class post-cut 2 confusion matrix. 

Post-Cut 2 (SVM -

80) 

Mature 

Canopy 

Understory 

Vegetation 

Bare or Woody 

Debris Total 

User's 

Accuracy 

Canopy 63 18 2 83 75.9% 

Understory 14 67 2 83 80.7% 

Bare or Woody 

Debris 2 5 76 83 91.6% 

Total 79 90 80 249   

Producer's Accuracy 79.7% 74.4% 95.0%  OA= 82.7% 

4.3 Objective 3 

 Objective three was to determine if there was a significant difference between land cover 

classifications for each type of disturbance. 

4.3.1 Significance Testing 

A two-tailed t-test assuming equal variances was conducted between the average overall 

accuracies of each disturbance type in order to determine whether the difference in overall 

accuracy between disturbance types/vegetation cover was significant at a 95% confidence interval 
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(0.05) (Table 43). Because the GEOBIA processed used in this study was mostly the same between 

the two types of disturbances and land covers, the variances were assumed to be equal. 

Furthermore, by conducting this particular type of t-Test, the objective effectiveness of this method 

could be tested for the two types of NDBM treatments commonly employed in the CHF region. 

Table 43. Two-tailed t-Test Results. 

t-Test: Two-Sample Assuming Equal Variances PWA Burn Volz Harvest 

Mean 0.8728 0.8725 

Variance 0.0013 0.0026 

Observations 4 4 

Pooled Variance 0.0020  
Hypothesized Mean Difference 0 at 0.05 CI 

df 6  
t Stat 0.0086  

P(T<=t) two-tail 0.9933  

t Critical two-tail 2.4468  
 

 

 In order to have a statistically significant difference between the two types of disturbances 

and land covers, the P-value (0.9933) would need to be less than the confidence interval (0.05). In 

this case, the P-value is not less than the confidence interval, and therefore, there is not a 

statistically significant difference between the overall accuracies of PWA prescribed prairie burn 

and Volz selective timber harvest land cover classifications. This means that, while PWA did have 

higher overall and individual class accuracies, they were not significantly better than Volz, so both 

the collection and classification methods employed in this study were effective for either 

disturbance and land cover type.
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CHAPTER 5 – DISCUSSION & CONCLUSION 

 This chapter discusses the findings of this study—what was done, what was left out, and 

what could have been done differently, as well as what can be done in the future. 

5.1 Discussion 

 This section elaborates on the findings of this study and how the results were achieved. 

5.1.1 Objective 1 - Part I: Optimal Data Collection Parameters 

Before collecting any data, the various parameters affecting quality image collection with 

UAS were defined by reviewing similar studies within the literature and recalling UAS survey 

experience prior to engaging in this research study. Unfortunately, as Buters, et al. (2019) points 

out, each study contained a unique set of parameters for various parts of the collection, processing, 

or classification steps—thus, standards for this UAS application were non-existent. This led to the 

iterative testing of atmospheric, sensor, and mission planning parameters, in conjunction with 

diligent note-taking, to infer how these variables affected the quality of imagery collected by the 

UAS. Fortunately, a number of suitable prairie burn and timber harvest sites were identified, which 

allowed for this type of iterative testing without compromising the production of final land cover 

classifications for either type of disturbance. 

The results show that prairie burn sites were less sensitive to atmospheric conditions, such 

as sun angle, brightness/cloud cover, and wind (Tables 19 and 22). This was likely due to the low 

height and visual simplicity of the vegetation being imaged. Conversely, timber harvest sites were 

more sensitive to all three atmospheric conditions, likely due in part to the tall height and visual 

complexity of mature forest canopies. Therefore, the best resulting images were collected as close 

to solar noon as possible, with overcast skies and diffuse lighting, and low wind (Table 22 and 

Figure 20). Furthermore, the sensor settings were mostly the same, with the exception of shutter 

speed. However, this was mostly dependent on lighting and wind (Tables 19 and 22). Finally, the 

flight altitude and number of images collected outside the study area differed between the two land 

covers. Ensuring sufficient distance between the sensor and vegetation was easily done at 121m 

above ground level (AGL) for prairie sites, but given the height of mature trees at timber harvest 
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sites (often between 24 – 30 meters), the flight altitude was increased to 121m above forest canopy 

(AFC). Additionally, while prairie burn sites required just 1 image outside the study area to reduce 

outer image distortion in resulting orthomosaics, timber harvest sites required 2 or more, 

depending on the adjacent vegetation. This was likely due to the presence of ground within the 

datasets, where prairies had ample visible ground within and/or surrounding the study area, timber 

harvest sites only had visible ground present along plot perimeters, if at all. 

Overall, quality images were gathered with the respective data collection parameters, 

despite logistical challenges that prevented ideal data collection scenarios, especially for timber 

harvest sites. 

5.1.2 Objective 1 – Part II: Optimal Data Processing Parameters 

After gathering quality images for each site, the next step was to engage in data processing. 

This involved correcting image coordinates collected by the post-processing kinematic (PPK) 

sensor during flight, before synchronizing those coordinates with their associated image in a 

photogrammetric processing software to produce georeferenced orthomosaics. Because all of the 

datasets fell within the state of Indiana, or just across the border into Michigan or Ohio, the sites 

fell within the 16th zone of the universal transverse Mercator (UTM) projected coordinate system. 

This allowed each site to be corrected to the WGS 84 UTM Zone 16 North spatial reference which 

has an estimated error of just 2cm (GISGeography, 2021d). Fortunately, the world geodetic system 

(WGS) datum was also what was referenced by the connected satellite networks during data 

collection with the PPK. This made image coordinate correction both simple and precise for both 

types of land covers, which was especially important for the 3cm-resolution of images collected 

in this study (Tables 20 and 23).  

At the orthomosaic generation stage, photogrammetric processing parameters diverged 

slightly. Prairie sites performed well with the default parameters, often achieving image calibration 

numbers of 99% or better (Table 16). On the other hand, timber harvest sites required more 

“salvaging” in order to produce quality orthomosaics, particularly when images were collected in 

the aforementioned adverse conditions (Table 16). Motion blur, overexposure, dark shadows, 

and/or too few images collected outside the study area proved problematic for orthomosaic 

generation of timber harvest sites. To “salvage” these datasets, the keypoint image scale (KPIS) 

was reduced from “1” to “1/2”, thus reducing the number of tie points the software would look for 
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at one time and therefore performing better mosaicking than with the default KPIS (Pix4D, 2021b). 

Additionally, the calibration method was changed from “standard” to “alternative”, for which the 

back-end procedure is not publicly available. However, this parameter likely reduced the number 

of images discarded if enough keypoints were not identified, thus increasing the number of images 

kept in the resulting orthomosaic. 

Overall, many high-quality georeferenced orthomosaics were produced for both prescribed 

prairie burn and selective timber harvest sites, with some datasets requiring more adjustments to 

do so. 

5.1.3 Objective 2: Optimal Data Classification Parameters 

 Using the high-quality georeferenced orthomosaics generated in the previous step, 

supervised data classification methods were used to produce a series of land cover classification 

maps surrounding both PWA prescribed prairie burn and Volz selective timber harvest sites 

(Figures 24 – 27 and 34 – 37). This was done by adjusting segmentation parameters that affect the 

spatial, spectral, and size details of output segmented objects. As Kucharczyk, et al. (2020) noted, 

“determining an optimal segmentation parameter is a heuristic, subjective, challenging, and time-

intensive trial-and-error process" (p. 7). Looking at the resulting classifications, it appears that this 

process might be to blame for not achieving even higher overall and individual classification 

accuracies. While the “optimal” parameters for the cm-level resolution of images used in this study 

were assumed to be suitable for all datasets collected with the same sensor, this was decided after 

testing just one dataset (Doak post-burn). In hindsight, each iteration of segmentations tried should 

have been classified to determine which parameters led to the best initial classification accuracies 

before segmenting the rest of the datasets. Furthermore, timber harvest datasets would likely 

require different parameters, especially for spectral detail and minimum segment size, to better 

coagulate large tree crowns and distinguish felled timber stem colors from bare ground in canopy 

gaps.  

 Before collecting training samples, classification schemas were developed for both land 

covers, with specific and appropriate classes for each. When monitoring vegetation loss and 

recovery surrounding prescribed burns, it was important to know the proportions of no vegetation 

growth (bare ground), fuel (litter), healthy and/or unconsumed vegetation (green vegetation), and 

vegetation consumed by the fire (burned vegetation) (Miller & Brooke, 2019). By quantifying 
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these areas both before and after the disturbance, land managers have an objective determination 

of prescribed burn efficacy as it relates to native ecosystem vitality. For selective timber harvests, 

it was important to monitor the proportions of no visible growth (bare ground), regenerative growth 

(understory vegetation), and well-established growth (mature canopy), with woody debris being a 

function of wildlife habitat and forest structure (Nordén et al., 2019). While in some ways, 

quantifying the “volume” of these classes would be more desirable for forest managers, measuring 

the “area” of each land cover still provides a valuable insight into patterns and rate of regeneration 

as it relates to harvest techniques (Boardman, 2020; Goodbody et al., 2018; Husson et al., 2016; 

Knoth et al., 2013; Lister et al., 2020; Ruwaimana et al., 2018). Because the high-resolution of 

images used in this study were able to capture felled timber stems, woody debris was included in 

the initial classification schema for timber harvest sites. However, the space consumed by this type 

of land cover was too minimal to successfully classify, and caused omission and commission errors 

in resulting classifications. Therefore, this class was combined with “bare ground” in final land 

cover classifications for Volz.  

 Next, sample polygons were collected for each segmented image in order to train the 

machine-learning classification algorithm. Provided that the recommended sample size was equal 

across all classes with ≥50 per class (Kucharczyk et al., 2020), 60 samples were used for PWA 

and initial Volz classifications. While this worked well for PWA datasets, Volz required 80 

samples per class to produce quality land cover classifications. This was likely due to the similar 

spectral profiles of mature canopy and understory vegetation, combined with less-than-optimal 

segmentation parameters for the given land cover. Furthermore, distinguishing between understory 

vegetation and mature canopy proved difficult from visual interpretation alone. As a result, each 

Volz classification displayed instances of a ring around some tree crowns that was misclassified 

as understory vegetation. Layering a 3D digital surface model (DSM), which was a generated 

output from photogrammetric processing anyway, could help differentiate the understory from 

canopy through height filtering (Gibril et al., 2020; Larrinaga & Brotons, 2019; Lehmann et al., 

2017). 

Despite the number of samples collected, the machine-learning algorithm that performed 

the best, and therefore was selected for final land cover classifications in this study, was supported 

vector machines (SVM). Although, when tested on the Volz four-class mid-cut dataset, random 

forests (RF) produced similar accuracies to SVM, but was slightly less successful in both overall 
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and individual class accuracies, and was less user-friendly, which aligned with findings of similar 

studies (Belgiu & Drăguţ, 2016; Boardman, 2020; Ghosh & Joshi, 2014; Gibril et al., 2020; Liu et 

al., 2018).  

Finally, the results of the two-tailed t-Test assuming equal variances revealed no significant 

difference in resulting classification accuracies between the PWA burn and Volz harvest sites, thus, 

the data procurement and processing parameters applied were effective. 

5.2 Conclusion 

 Quantifying planned disturbance is an important component of any ecosystem management 

plan that allows land managers to objectively determine the efficacy of their treatment and adjust 

the frequency and severity of NDBM treatments accordingly. To do this, inventories of land cover 

must be collected both before and repeatedly after the disturbance event. This way, vegetation 

recovery can be determined by knowing what land covers were present before the disturbance 

event, what was removed as a result of the disturbance treatment, and what grew back after the 

disturbance.  

 Traditionally, obtaining a pre-disturbance inventory has been challenging to do because 

disturbances have mainly been viewed as unplanned events where the start time could not have 

been anticipated and therefore temporally precise image datasets would be unavailable. 

Additionally, traditional remote sensing methods, such as satellite, has a fixed return-rate that 

limits the temporal precision of pre-disturbance inventories, and commercially-available spatial 

resolutions are legally limited to 30cm that can be expensive to obtain.  

Furthermore, manned aircraft surveys can be logistically challenging to conduct for remote 

areas, and/or too expensive to be worthwhile. With planned disturbances, which are typically 

conducted in discrete (10-60 acres) areas, especially within the CHF region, the start time of the 

event is known, and therefore, this presents an opportunity to obtain a pre-disturbance inventory.  

 UAS imagery presents an efficient and precise solution to obtaining both pre-disturbance  

and repeated post-disturbance inventories, but until now, has not been used much for this purpose. 

With PPK georeferencing, that both triggers the camera and collects coordinate information for 

each image, precise UAS image surveys are more efficient than ever before. Using a standard RGB 

digital camera that was connected to the PPK and attached to the UAS, a GSD of <3cm can be 

achieved with positional orientations of similar accuracies. With unmatched spatial and temporal 
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resolutions, land cover classifications at the centimeter-level surrounding planned disturbances can 

be produced through GEOBIA methods in a GIS. 

 Land cover surveys were conducted surrounding two different types of planned 

disturbances and land covers that are common within the CHF region—namely prescribed prairie 

burns and selective timber harvests. Four classified maps were produced for each disturbance type 

to objectively determine the change in land cover from before and after a prescribed burn and 

timber harvest treatment.  

 It was determined that prairie burn sites were less sensitive to atmospheric, sensor, and 

mission planning parameters than forested sites during data collection. However, forested sites 

were still able to be successfully surveyed with the UAS after increasing the flight altitude, the 

shutter speed, and the number of images collected outside the study area. This was likely due to 

the height and visual complexity of the vegetation present at the forested sites, causing more issues 

with motion blur and overexposure. Additionally, the prairie burn site was successfully processed 

with default photogrammetric parameters in Pix4D, while the forest site required reducing the 

scale of keypoint identification and an alternative calibration method to produce quality 

georeferenced orthomosaics. Again, this was likely a result of the visual complexity of the tree 

canopies in the imagery, making keypoint matching difficult for the software. Lastly, both land 

covers achieved similar overall accuracies (87.27% for prescribed prairie burn and 87.25% for 

selective timber harvest), the variance for each type differed slightly, with the prairie site 

outperforming the forested site. This difference was probably caused by improper training sample 

collection in the timber harvest site, where understory vegetation and mature canopy was more 

difficult to distinguish than land covers present in prairie burn sites. Overall, the methods of data 

collection, processing, and classification produced high-quality land cover assessments 

surrounding planned ecological disturbances within the CHF region. 

 In future studies, researchers should compound on this study by examining optimal 

temporal resolutions for post-disturbance inventories, verifying land covers through field sampling, 

using field samples to train classifier algorithms, and experimenting with different segmentation 

parameters. Although the temporal resolution of post-disturbance inventories was not a main focus 

in this study, determining the optimal frequency and duration of surveys following a planned 

disturbance treatment would enhance the usability of this method. Due to COVID protocols, 

ground-truthing through field sample collection was not conducted in this study. However, doing 
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so would have been helpful in determining the accuracy of resulting land cover classifications as 

well as projecting those field samples onto the imagery during classifier training sample collection. 

Furthermore, while the segmentation parameters used in this study worked well for the prairie burn 

datasets, the minimum segment size was too small relative to the size of tree crowns, which likely 

contributed to the ability of the classifier algorithm to distinguish between mature canopies and 

seedlings in the understory, as well as bare ground and coarse woody debris. By experimenting 

with minimum segment sizes for forested sites further, optimal segmentation parameters for ultra-

high-resolution UAS imagery GEOBIA can be determined. 

 While these methods were effective for quantifying land cover change as a result of NDBM 

treatments, a plethora of other applications could benefit from this workflow. For example, land 

cover remediation following construction, mining, or landscaping projects could employ a similar 

workflow to objectively determine vegetation recovery. Other application examples include, but 

are not limited to: invasive species identification; preventative wildfire management; federal and 

private land use; pesticide and herbicide use in agriculture; water level monitoring (lakes, coastal, 

dams, etc.); excavation or landslide analysis; wildlife habitat development; and energy sector 

projects (solar, wind, conventional, etc.)—all of which present opportunities to examine before 

and after effects of planned disturbances.  

Although the solutions provided in this study require further development, they do progress 

the use of UAS and GIS technology in environmental applications by presenting a strong potential 

for land managers to efficiently and objectively determine the efficacy of their actions. This will 

undoubtedly enhance the sustainable management of Earth’s precious and finite natural resources.  

 



 

116 

APPENDIX A. SUPPLEMENTAL RESOURCES 

Zach Miller’s Professional Portfolio 

Here you will find my personal website which acts as my professional portfolio and contains 

links to all of the resources below, as well as all pertinent undergraduate and graduate 

coursework, a research blog, and contact information. 

Quick Reference Guide for DJI Matrice 600 Pro 

View the quick reference guide my colleagues and I developed during my time at Purdue 

University. This QRF covers a lot of basic information for safely and efficiently using an M600 

Pro for data collection. 

Operators Checklist for DJI Matrice 600 Pro with PPK-Triggered Sony A6000  

Click to view the Pilot-in-Command (PIC) checklist I developed with Kaleb Gould and William 

Weldon for operating the M600 Pro with GeoSnap PPK and Sony A6000 camera. 

PPK Processing with EZSurv Workflow Document 

Click to view the workflow I developed for using EZSurv to correct image geotags collected 

with a PPK-triggered UAS. 

PPK Processing with EZSurv Workflow Video 

Click to view my video which walks through the EZSurv workflow. 

Photogrammetric Processing for PPK-Derived UAS Imagery with Pix4D Document 

Click to view the workflow I developed for using Pix4D to produce quality georeferenced 

orthomosaic datasets from PPK-derived UAS imagery. 

Photogrammetric Processing for PPK-Derived UAS Imagery with Pix4D Video 

Click to view my video which walks through the Pix4D workflow. 

Land Cover Classification Workflow Blog Post 

Click to view my blog post on using SVM object-based classification to produce land cover 

maps.  

https://zacharymillergis.weebly.com/
https://zacharymillergis.weebly.com/uploads/1/0/1/0/101047916/m600_ppk_quickreferenceguide_072021.pdf
https://zacharymillergis.weebly.com/uploads/1/0/1/0/101047916/m600_ppk_quickreferenceguide_072021.pdf
https://zacharymillergis.weebly.com/uploads/1/0/1/0/101047916/m600_pic_checklist_071921.pdf
https://zacharymillergis.weebly.com/uploads/1/0/1/0/101047916/ezsurv_ppk_workflow_021521.pdf
https://www.youtube.com/watch?v=Hgh4aBT-ZdQ
https://zacharymillergis.weebly.com/uploads/1/0/1/0/101047916/pix4d_ppk_workflow_021821.pdf
https://www.youtube.com/watch?v=7XqVk3fGLTI
https://zacharymillergis.weebly.com/blog/classifying-uas-imagery-for-prescribed-burn-analysis
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