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ABSTRACT 

As society rapidly migrates to digitized services, the Information, Communications, and 

Technology (ICT) sector is projected to sustain a 16% compound annual growth rate (CAGR) over 

the next five years, surpassing $1 trillion in revenue by 2024. The hardware infrastructure that 

supports ICT growth, such as semiconductor chips and hard disk drives (HDDs), is also 

experiencing parallel growth trajectories.  Thus, large technology companies need to understand 

the environmental implications of growth in these vital components within their supply chains, as 

they strive to reach ambitious targets for carbon, water, and waste reduction. 

 

Life cycle assessment (LCA) is a powerful tool for measuring environmental impacts along the 

life cycle of a product and is implemented here to measure emissions and resource use in the 

semiconductor and HDD manufacturing supply chains, and to quantify the benefits of circularity 

for HDD components.  However, to understand how environmental impacts of a manufacturing 

process relate to the landscapes (i.e. ecosystems) where manufacturing occurs, one must look to 

methods beyond LCA.  

 

Footprinting methods are a promising tool for bridging the gap between LCA process data 

inventories and site-specific impacts on ecosystems.  Further, the footprint assesses the total 

volume of emission over a time period, which is aligned with the concept of absolute sustainability. 

As such, regionalized footprint methods for freshwater use in the semiconductor industry and toxic 

chemical pollution for the HDD rare earth magnet supply chain were undertaken. In each case, 

data from the LCA literature or custom LCAs were used as the basis for the life cycle inventory, 

but advanced methods including regional databases of water scarcity and toxicity factors were 

used to quantify and communicate impacts. Further, geographic information systems (GIS) were 

used to allocate emissions or water use from a manufacturing facility with their associated 

watershed, which enabled aggregation of data across various geographies (i.e. watershed, region, 

country).   
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This work implements multi-disciplinary methods, databases, and tools with the aim to bring water 

and chemical footprinting methods a step closer towards meaningful assessment of a product’s 

impact on local, regional, and planetary boundaries.   
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 INTRODUCTION 

1.1 The Electronics & ICT Sectors 

The electronics sector is comprised of the computer and electronic product manufacturing entities 

(U.S. Census Bureau, 2017) that provide the hardware to support the information technology and 

communication (ICT) sectors.   This hardware includes servers and their associated circuit boards, 

processor chips, and storage devices (e.g. HDDs) which underpin ICT services, such as cloud 

computing.  As society rapidly migrates to more digitized services (Giemzo et al., (2020), 

industries which provide hardware, software, or internet as a service (i.e. SaaS, HaaS, IaaS) are 

projected to sustain a 16% compound annual growth rate (CAGR) over the next five years, 

surpassing $ 1 trillion in revenue by 2024 (IDC, 2020).  The semiconductor industry manufactures 

key components (i.e. chips) which support IT infrastructure, and enables aviation, automotive, 

appliance, and other connected IoT devices, as well.  The industry is currently valued at $476 

billion (IDC, 2021a) and is projected to have a 5% CAGR over the period from 2019-2024 (IDC, 

2021b).  Similarly, storage devices such as hard disk drives (HDDs) and solid-state drives (SSDs) 

are vital to data center and personal computer markets and the storage market is projected to grow 

18% between 2019 and 2024, with an estimated doubling of the volume of data stored every 4 

years (Reinsel & Rydning, 2020).  

 

Further, the entire digital economy, which is more broadly defined as “goods and services that 

either were produced using digital technologies or include these technologies,” is estimated to 

currently represent 15.5% of global GDP and is growing 2.5 times faster than global GDP (Henry-

Nickie et al, 2019).  Thus, the societal impact of this digital transformation cannot be emphasized 

enough, and the so-called 4th Industrial Revolution will continue to disrupt and shape the way we 

live our lives (Schwab, 2016). This transformation has shifted the production and consumption of 

goods and services, and ultimately will inform how we mitigate technology’s impact on society. 

Our society must continue to decouple growth from environmental damage (Everett et al., 2010) 

and the ICT sector has an opportunity to accelerate this process with innovations within the 

electronics supply chain, by enabling efficiency improvements in other sectors such as transit and 
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using technology to empower consumers to make low-carbon decisions, among others (Varro & 

Kamiya, 2021). 

1.2 Environmental Impacts of Electronics  

Both consumer and enterprise electronics, often referred to as “electrical and electronic equipment 

(EEE)” are being manufactured and disposed of at an accelerating pace (3-5% growth per year, 

Shittu et al, 2021). Environmental impacts along the life cycle of electronics are due to extraction 

and processing of raw materials such as aluminum, gold, copper and palladium, highly complex 

manufacturing of silicon into advanced microprocessor devices, transport impacts due to the 

globalized nature of the electronics supply chain, electricity-related impacts during use phase, and 

a growing volume of toxic waste attributed to a low global recycling rate (17.4%) of consumer 

electronics (Forti et al, 2020).  

 

“The 1.7 Kilogram Microchip:  Energy and Material Use in the Production of Semiconductor 

Devices” by Williams et al. (2004) was one of the first papers to estimate the life cycle emissions 

of semiconductor devices and highlighted that one of the most impactful products in the electronics 

industry comes in a very small package.  The authors describe the material and energy inputs 

required to produce a DRAM (i.e. memory) chip and highlight how the high purity chemicals, 

water, and electricity required to transform silicon into advanced computing chips are orders of 

magnitude more intensive than traditional goods.  Water and energy use have continued to be areas 

of concern for this industry (Boyd et al, 2012), especially in arid environments where many of 

these fabs are located (Klop & Wellington, 2008).  

 

Waste EEE (WEEE) comprises a relatively small portion of the total solid waste stream (<2%) but 

represents approximately 70% of the contribution of heavy metals (and their associated toxicity) 

to municipal solid waste landfills (USEPA, 2004). And although the recycling rates of enterprise 

electronics (i.e. servers in a hyperscale datacenter) are very high, at up to 90%, (Polverini et al, 

2018), resource-intensive recycling practices for precious metals (e.g. chemical extraction and 

smelting of gold) are often required due to low concentrations of the materials within products and 

the associated difficulty in separating materials.  In some cases, there are no viable reuse pathways 
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for electronic products and components and there is a complete lack of recycling streams for many 

critical metals (Jin et al, 2020) and low-value plastics.   

1.2.1 Critical Materials 

The specialized nature of electronic components such as semiconductors and rare earth magnets 

require an ever-expanding list of rare and precious metals (Graedel et al, 2015), which have unique 

properties and have enabled Moore’s law scaling over the last two decades.  However, many of 

these substances are considered “critical materials”, because of vulnerability to supply chain 

disruptions, supply chain restrictions, or low substitutability (Graedel, 2015).  Material criticality 

can be considered a sustainability issue because of the integral role of these materials in the 

functioning of most electronics products, yet the U.S. is 100% import reliant for 14 critical 

minerals (Center for Sustainable Systems, 2021).  Additionally, many of these materials also 

typically have intensive environmental impacts in the mining and processing phase, as well as 

minimal or non-existent recycling streams (Jin et al, 2020). 

1.3 ICT Sector Sustainability 

The overall picture is of an industry that is among the strongest drivers of growth for the U.S. and 

global economies, but with increasing environmental concerns within the supply chain and at end-

of-life (EoL).  Given the urgency of carbon reductions required to meet Paris Agreement targets 

(UNEP, 2021) and the market competition around sustainability (Unruh, 2010), top technology 

companies have made aggressive sustainability commitments (Quinson, 2021), promising to grow 

their revenue and increase their physical footprint, all while reducing their environmental footprint. 

These commitments are usually focused on the reduction of greenhouse gases (e.g. Microsoft’s 

pledge to be carbon negative by 2030), but increasingly companies have made pledges related to 

water positivity, zero waste, and ecosystem health, as well (Microsoft, 2020).   

 

These metrics are often defined, and progress is measured, relative to the greenhouse gas (GHG) 

accounting standard which classifies an organization’s emissions or resource use into Scope 1, 2 

and 3 (GHG Protocol, n.d.).  Scope 1 emissions are direct emissions from an organization’s owned 

or controlled assets, Scope 2 are indirect emissions from purchased electricity, and Scope 3 are all 



 
 

20 

emissions associated with the supply chain of the organization, both upstream and downstream.  

While technology companies comprise only a small amount (~1%) of the total global GHG 

emissions, they have led the shift towards renewable energy, accounting for 3.5% of all global 

renewable capacity additions (Varro & Kamiya, 2021), and have made impressive progress 

towards completely offsetting Scope 2 emissions (BBC, 2020).  However, Scope 3, or ‘supply 

chain emissions’, are often difficult to quantify and mitigate, especially for impact categories that 

are subject to large spatial and temporal variability.   

 

While the focus of most sustainability initiatives has been on lowering greenhouse gas emissions, 

to date, advances in the quantification and mitigation of freshwater use, emissions of toxic 

chemicals, and other impacts within the electronics supply chain (Scope 3) must be pursued, in 

parallel, as these represent real threats to the Earth’s environmental boundaries. (Clift et al., 2017).   

1.4 Quantifying Environmental Sustainability with Life Cycle Assessment 

One of the most powerful tools available to quantify the environmental impact over the life cycle 

of a product is life cycle assessment.  Life cycle assessment (LCA) is a comprehensive 

environmental management tool that quantifies the environmental inputs (e.g. water, energy, 

minerals) and outputs (emissions, co-products) of a product from raw material acquisition to end-

of-life.  LCA also considers a comprehensive set of impact categories, which convert inventories 

of emissions and resource use to impacts associated with three main areas of protection: human 

health, biotic environment, and abiotic environment (ILCD, 2010) (Figure 1).  LCA uses a 

systematic approach, establishing clear boundaries and accounting methods which allow for fair 

comparisons to be made among products or over product generations.  Additionally, LCA has been 

in active development over the last four decades to support product sustainability assessment, and 

there are robust methodologies (e.g. ISO standards), professional organizations, generic and 

sector-specific inventory databases, and a suite of software tools to support modeling of products.   
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Figure 1.1. Results from a life cycle inventory (LCI) are used to determine an array of mid-point 
impacts as part of the life cycle impact assessment analysis. Used with permission. © European 

Union, 2010. ILCD    

1.4.1 LCA and the Electronics Circular Economy 

The circular economy (CE) is “an industrial system that is restorative or regenerative by intention 

and design” (Ellen MacArthur Foundation, 2012).  As society transitions from a linear “take-make-

waste” economy to a circular economy, LCA will continue to be important as a systems-level 

analysis tool to support decision-making.  Organizations are increasingly looking to incorporate 

principles of circular economy such as design for reuse, remanufacturing, and advanced recycling 

into their business models (Frost et al, 2020); thus, providing real-world examples of reuse of 

subassemblies or components is important to demonstrate the feasibility of a circular business 

model.   

 

Electronic devices are comprised of high value components and critical materials (Buechler et al., 

2020). Hard disk drives (HDDs), in particular, are a prime candidate for circularity because of the 

stable design form and high collection rates from commercial users (i.e. estimates of 90-95% from 
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hyperscale or enterprise data centers) (Handwerker et al., 2017).  It is important to understand the 

potential environmental impacts and benefits of a new circular business model and be able to 

compare it to “business as usual” to understand the potential circularity benefits, especially when 

large, upfront capital investments are required.  LCA can help communicate these benefits, as well 

as describe any burden shifting which may occur when implementing new processes.   

1.4.2 Limitations of LCA 

There is widespread acknowledgement that LCA is best suited to assess the eco-efficiency of a 

functional unit of product, i.e. relative improvements in sustainability, but is not optimal for  

considering  macro-level impacts (Williams, 2011) or ‘absolute sustainability’ (Bjorn et al 2015; 

Kara et al, 2018). The absolute sustainability framework considers sustainability with respect to 

the “foreseeable growth in market volume that results from increases in population and affluence” 

(Hauschild et al., 2020). 

 

Additionally, in a typical LCA study, environmental impacts are defined at the midpoint level (e.g. 

aquatic ecotoxicity) but these potential impacts are not quantified with respect to the ecosystems 

in which they occur (e.g. the ability of a waterbody to assimilate the toxic pollutant) (Bare, 2006; 

Hauschild and Potting, 2005).  This is especially problematic when considering highly localized 

impacts such as water use, nutrient pollution, or toxic chemical pollution (Clift et al, 2017).  

Because environmental systems are dynamic and highly variable, describing impacts without 

relating them to local conditions may lead to under- or overestimation of impacts and consequently, 

erroneous decision-making.   

1.5 LCA and Planetary Boundaries 

This issue can be addressed by combining the rich life cycle process emissions data provided by 

LCA with consideration of local, regional, or global ecosystems and their associated boundaries. 

(Bjorn et al., 2015; Kara et al, 2018; Ryberg et al, 2020). The concept of a ‘planetary boundary’ 

was introduced by Rockström et al. in 2009, and since has garnished wide attention from the 

research community and beyond (Steffen et al, 2015). Planetary boundaries (PBs) are “… 

scientifically based levels of human perturbation of the ES [earth system] beyond which ES 
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functioning may be substantially altered”: nine processes were identified as critical to maintaining 

the ES (Figure 1.2).  Staying within the associated boundary for each process allows the ES to 

remain within a “safe operating space” for humanity and takes a conservative, precautionary 

principle approach to boundary setting. (Rockström et al, 2009).  

 

 

Figure 1.2. Depiction of the planetary boundaries concept.  J. Lokrantz/Azote based on Steffen et 
al (2015).  Used with permission. 

Since PBs were conceptualized in 2009, many authors have advocated for PBs that account for 

spatial heterogeneity and researchers have been working towards the development of regional 

boundaries for impact categories such as freshwater use and biosphere integrity (Steffen et al, 



 
 

24 

2015).  For example, Clift et al (2017), promoted the use of the Available Water Remaining 

(AWaRe) indicator as a step towards quantifying regional and global PBs for freshwater use.  The 

Science-Based Targets initiative is another example of how a PB for climate change (i.e. 1.5°C of 

warming) has been operationalized to assign reductions across sectors and within specific 

timeframes (SBTi, 2021).  

 

However, the other impact categories still do not have an agreed upon regional or planetary 

boundary.  This is especially true for “novel entities” (Rockström et al, 2009) such as chemical 

pollution due to the inherent complexity in quantifying emissions of thousands of chemicals, the 

fact that they interact with several PBs (e.g. biosphere integrity, nutrient pollution) (Clift et al, 

2017), and lack of agreement or standardization of methods. 

 

Although operationalizing the PBs is still under active development (Bjorn et al, 2020; Ryberg et 

al, 2016), the PB framework has brought into focus the need to place a product or process-LCA 

within the context of total environmental impact (Hauschild et al., 2020).  The functional unit, a 

cornerstone of LCA, is key for comparing environmental impacts among products and measuring 

product or process improvements (i.e. eco-efficiency) (Bjorn et al, 2015).  However, only when 

the impact of a product is considered in terms of absolute sustainability and related to planetary 

boundaries, can society truly begin to measure progress in reducing global pollution, allocating 

environmental space to various entities, and ensuring that we maintain a safe operating space for 

humanity (Bjorn et al, 2015; Hauschild et al., 2020).   
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Figure 1.3. The framework from Hauschild et al., (2020) depicts how life cycle engineering 
relates to PBs and absolute sustainability.  Used with permission (CC BY NC ND). 

 

In practice, this means that the unit of product under consideration (i.e. functional unit) needs to 

be analyzed with the following questions in mind:  

1. What is the total volume of emissions over a time period (i.e. how many 

products or functional units are being manufactured each year?)  

2. Where are the locations of emissions along the life cycle (i.e. where in the 

supply chain are the emissions actually occurring?) 

3. What is the proximity of emissions to the receiving ecosystem (e.g. 

waterbody)?  

4. What is the carrying capacity of that receiving ecosystem? 

1.6 Footprinting as a Bridge 

Footprint indicators are a promising tool to bridge LCA-derived product emissions and PBs as 

they are already designed to integrate life cycle emissions data with measures of absolute 

sustainability (Vanham et al, 2019).  Hoekstra defines a footprint as the “quantitative measure 

describing the appropriation of natural resources by humans” (2011) and environmental footprints 

http://creativecommons.org/licenses/by-nc-nd/4.0/
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can be implemented at the product, organization, sector, region, or country level.  Footprints have 

arisen within the last decade as a response to a common criticism of LCA impact assessment, 

namely the difficulty in interpretation of LCA results by a non-technical audience (Ridoutt & 

Pfister, 2013).  The carbon footprint, the most notable of the footprint family, has seen great 

success because communicating impacts of a single facet of pollution is much easier (Ridoutt & 

Pfister, 2013) and can be summarized at an organizational level (Fang & Heijungs, 2014).  The 

two footprint categories explored in this work are related to freshwater use and chemical pollution 

(i.e. chemical footprint) by major stakeholders within the electronics supply chain.  

 

 

Figure 1.4. Family of footprint indicators and how they relate to planetary boundaries.  Used 
with permission under CC BY 4.0. 

 

https://creativecommons.org/licenses/by/4.0/
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1.6.1 Freshwater Use 

1.6.1.1 Industrial Freshwater Use 

In most countries, including the U.S., industrial water use is not understood with a high degree of 

spatial or temporal granularity (Frost and Hua, 2019).  McCall et al. (2021) described the pressing 

need to accurately understand the volume of industrial water use across sectors and at more 

granular spatial and temporal scales.  They argue that in order to ensure there is enough water to 

meet the demands of all users (industry, people and ecosystems), more comprehensive, transparent, 

and publicly available databases providing water use per facility, along with its location within a 

sub-basin, is needed.  Without first understanding what the baseline of water use is within an 

industry, or within a watershed, it is difficult to prioritize process improvements related to water 

reuse and water efficiency or determine regulatory interventions to influence behavior. It is also 

difficult to predict risk when considering new manufacturing facilities in a watershed unless co-

location of water-using industries within a watershed are accounted for (McCall et al, 2021).   

 

McCall et al. (2021) make recommendations to help address the gaps in water use data that are 

prevalent within the U.S. and globally due to lack of standardized data collection and disparate 

governing bodies.  Estimates of water use based on process data, or other sources such as economic 

input-output data should attempt to disaggregate data to the facility-level and be responsive to 

changes in technology, as well as the hydro-environmental variables within a watershed (i.e 

existing scarcity) (McCall et al, 2021).  Spatial analysis tools such as GIS can be used to spatially 

aggregate or disaggregate facility-level inventories, allowing this data to be summed over 

geographies of interest.   

1.6.1.2 Water-Energy Nexus  

Industry is estimated to use 33% of total energy in the United States (EIA, 2020) and 57% of the 

world’s total delivered energy (IEA, 2021).  Accurate estimation of water use from electricity 

production is vital given the outsized impact of the energy sector on water resources (Macknick et 

al., 2012), which is often referred to as the ‘water-energy’ nexus.  Water use data have been 

categorized by electricity generating type (e.g. coal, natural gas, hydroelectric) and associated 

cooling technologies (i.e. open loop cooling, closed loop cooling, and air cooling) and Meldrum 
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et al. (2013) summarized and reported both water consumption and withdrawal factors by life cycle 

phase for use in LCA studies. The impact of electricity use during the manufacturing phase is 

highly dependent on up-to-date data for the mix of fuels supplying the grid in a given location, and 

where feasible, technology and location-specific, water use metrics should be used (McCall et al., 

2021).   

1.6.1.3 Water Scarcity 

Many areas of the globe are already reaching the limits of a sustainable supply of freshwater for 

human and ecosystems demands (UN Water, 2019), i.e. water scarcity. In general, water scarcity 

describes the relative water demand to total water availability for a given area, or the ‘potential of 

water deprivation’ for humans or ecosystems (Boulay et al., 2017).  Xu and Wu (2017) reviewed 

several water scarcity indices and methodologies that have been developed over the past thirty 

years and found that these metrics have converged around two basic approaches: “water crowding” 

indices which are focused on per capita human water needs and “use-to-resource ratio” indices 

which are focused on the ratio of water withdrawals or consumption to available resources (Xu & 

Wu, 2017).    

 

The AWaRe (Available Water Remaining) method is a ‘use-to-resource ratio’ method and has 

obtained wide consensus among LCA practitioners.  This method implements the AWaRe index, 

which is a watershed-based water scarcity characterization factor developed by the SETAC/UNEP 

Water Use Life Cycle Assessment Group (WULCA, 2018). The AWaRe index is calculated by 

assessing water availability minus demand by humans and aquatic ecosystems, per area and by 

month; thus, taking into account the spatial and temporal variability of freshwater supply. The 

AWaRe water scarcity factors (Boulay et al., 2017) can be used to assess existing scarcity, acting 

as a scarcity ‘multiplier’ for water use to indicate potential risk of depriving other users (i.e. 

humans or aquatic organisms) of freshwater.   

1.6.1.4 Consumption vs Withdrawals 

Water withdrawals are defined as “water removed from the ground or diverted from a surface-

water source for use” (USGS, 2016).  Alternatively, consumptive water use refers to water 
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withdrawn that is incorporated into a product or crop, or evaporated, transpired or consumed by 

animals or humans. Water that is withdrawn but ultimately returned to the same watershed from 

which it came does not count as consumptive use (USGS, 2016).  The AWaRe method put forth 

by WULCA is based on a blue water consumption calculation.  

 

Although consumptive water use is the recommended approach by WULCA, industrial water use 

data is often not reported with respect to consumptive use and withdrawals-to-consumption ratios 

have not been established for many industries, or are highly aggregated (Bijl et al, 2016). Thus, a 

withdrawals-based approach is often required, due to data limitations, but can also be considered 

more aligned with the use of a precautionary principle within the PB framework (Rockström et al, 

2009).  In this way, withdrawals-based inventories can be used as a screening-level assessment of 

potential impacts on other users (e.g. aquatic ecosystems), rather than an absolute measurement of 

volumetric water use.   

1.6.1.5 Water Use in the Semiconductor Industry 

Although the electronics industry (including the semiconductor industry) is considered a small 

user of direct water when compared to paper or primary metals, Rao et al. (2017) reported that the 

electronics sector has the third highest energy-water ratio (after “Machinery” and “Electrical 

Equipment” sectors, respectively), highlighting the importance of the water-energy nexus for 

electronics.  The semiconductor industry has shown improving trends in water reuse, but 

semiconductor industry trends (i.e. doubling of transistor density every two years) has led to 

increases in the need for high purity water and chemicals, and more complex and energy-intensive 

patterning steps. In addition, increases in wafer size and the associated transition from batch 

processing to single wafer processing which requires more water per wafer, has also contributed 

to increased total water demands by the industry (Libman & Neuber, 2008; Sematech, 2013). This 

indicates that the semiconductor industry constitutes a small, but growing user of direct and 

energy-related water. 

 

Boyd has provided water use data for semiconductor manufacturing, stratified by semiconductor 

technology type (e.g. DRAM, NAND flash, CMOS) and technology node (e.g. 32 nm, 57 nm).  
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This can be applied to a global semiconductor production database (SEMI, 2017) so that facility-

level water use with respect to production volume and technology type can be calculated.   

1.6.2 Toxic Chemical Pollution 

A chemical footprint has been defined by Sala as “a quantitative measure describing the 

environmental space needed to dilute chemical pollution due to human activities to a level below 

a specified boundary condition” (2013).   Interest in chemical footprinting has been on the rise in 

response to public health research that indicates chemical pollution is a growing, global problem, 

and its impacts on human health and ecosystems are often poorly defined (Landrigan et al., 2018). 

Government regulations related to chemicals management has also increased rapidly over the last 

couple of decades, led by European initiatives such as REACH (Registration, Evaluation, 

Authorization and Restriction of Chemicals) and RoHs (Restriction of Hazardous Substances) 

(ECHA, 2021).   

 

Thus, industry must consider the management of chemicals as part of its operational, regulatory, 

and reputational risk management strategy.  These considerations gave rise to the chemical 

footprint project (CFP), a program of Clean Production Action, which works towards the goal of 

“environmentally sound management of chemicals.” (Peele et al., 2018).  The CFP uses an annual 

survey of companies which assesses their chemical inventory and quantifies their chemical 

footprint.  There is wide support for this project across all industrial sectors and signatories include 

Johnson & Johnson, Kimberly-Clark, Seagate, and Walmart, among others.  This effort is centered 

around the identification of chemicals of high concern (CoHCs) and the strategies that companies 

have in place to reduce these chemicals not only within their own facilities, but in their supply 

chain and through end of life. 

 

This type of ‘chemical footprint’ is an excellent first step towards understanding chemical use at 

an aggregate level and encouraging companies to initiate the intensive process towards full 

chemicals disclosure. However, there is much to be gained by using tools such as LCA to quantify 

chemical use throughout the product’s life cycle, use supply chain data to locate the emissions to 

a geographic area, and then determine the potential impacts of those chemicals in that geography.   
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An advanced chemical footprint method, as conceptualized by Sala & Goralcyk (2013), combines 

life cycle methodology with human and ecological risk assessment principles to determine the 

release of chemicals into air, soil, and water and potential impacts on ecosystems (Sala, 2013; Zjip 

et al, 2014; Bjorn et al 2014). According to Zijp et al. (2014), the chemical footprint considers 1) 

exposure assessment and 2) impact assessment (grounded in traditional risk assessment and LCA 

principles), 3) boundary conditions (i.e.  safe thresholds of pollution defined at local, regional or 

global scale (Steffen et al., 2015), and 4) the dilution volume needed to maintain the boundary 

condition, which is a concept advanced by the grey water footprint method (Hoekstra, 2011).    

1.7 Regionalized Footprinting  

Regionalized footprint and LCA methods, and associated regional PBs, are preferred for several 

categories of environmental impact such as freshwater use, and nutrient and chemical pollution.  

For freshwater use (i.e. bluewater footprint), these regions have been well-defined and Bjorn et al. 

(2020) described how to bridge the gap between LCA process data and regional PBs. 

Regionalization of footprints have also been described for chemical footprints (Makarova, et al., 

2018; Wang, 2019), but the method is still under development and is ripe for increased 

standardization.  One of the current major barriers to uptake of a regionalized chemical footprint 

is method complexity (Clift et al, 2017).  There are two main ways to address this: thoughtful 

geographic and chemical substance scoping (Clift et al, 2017) and the use of state-of-the-art, 

regionalized datasets for chemical toxicity (Verones et al, 2020) and hydrology (Linke et al, 2019).  

1.8 Problem Statement & Aims 

A lack of spatially explicit unit process data in LCA may lead to over or under-estimation of 

impacts.  Further, the eco-efficiency approach of LCA does not consider absolute sustainability, 

which strives to understand the impacts of a product with respect to the total volume of emissions 

and relate impacts to regional or global planetary boundaries. Research has begun to bridge this 

gap, but methods must be advanced and standardized to promote wider adoption, with the tenets 

of the precautionary principle, in mind. And given the importance and growth rate of the ICT 

sector, more case studies within the electronics industry are needed.   
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This dissertation aims to assess the spatial variability of impacts of the electronics sector by 1) 

applying LCA and a water footprint technique to determine the risks to freshwater ecosystems by 

the semiconductor industry, 2) illustrating how LCA can be used to assess a circular economic 

business model for HDDs, and 3) advancing methods to bridge the gap between LCA and planetary 

boundaries, with respect to chemical pollution from HDD component manufacturing.  Below is a 

summary of the chapters addressing these aims: 

 

Chapter 2: The objective of this chapter is to provide the first report of total global water 

withdrawals for the semiconductor manufacturing industry, a known large user of process water 

and electricity, using a bottom-up approach and application of derived regional electricity water 

use coefficients.  This project quantified the water withdrawals from fab process water and 

electricity use that are associated with various chip technologies by using existing LCA data and 

industry estimates.  The water use intensity of electricity (water-energy nexus) was also delineated 

at a regional level, when possible, to fully explore the variability across geographies.  A water 

scarcity multiplier was applied to water withdrawals to determine scarcity-weighted water use at 

each individual facility and summed to quantify use by the global semiconductor industry.   The 

results are presented using maps to describe spatial variability, and an assessment considering 

temporal variability (i.e. seasonal fluctuation in water scarcity) was also presented.  

 

Chapter 3: This chapter describes the environmental impacts of implementing a closed-loop 

recovery and reuse process for a highly reliable HDD subassembly, known as the voice coil motor 

assembly (aka “magnet assembly”), using data from an industry pilot study. The pilot project 

demonstrated a circular business model to disassemble an HDD within a datacenter, remove the 

rare earth magnet assembly (MA), and send the MA back to the HDD manufacturer for direct reuse 

in a new HDD and quantified process impacts using LCA.   The inventory implemented up to date 

rare earth (RE) metals and RE magnet unit process data and material and power use measurements 

of a magnet assembly (MA) recovery process in a hyperscale DC, use of supply chain specific 

shipping/logistics data, inclusion of packaging configurations based on a commercially scaled 

process, and updated RE magnet data from an enterprise helium drive which is expected to serve 

as a flagship technology in DCs for the next decade. Further, this study presented several scenarios 
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for MA recovery including the effect of purchasing renewable energy and the effect of automation 

of recovery processes on environmental impacts.   

 

Chapter 4: Among other impacts, the LCA in Chapter 3 identified aquatic ecotoxicity 

concerns with respect to HDD RE magnet mining and processing.  Because the RE magnet 

manufacturing supply chain is concentrated in just a few locations, spatial unit processes were 

determined, and a spatially explicit chemical footprint was undertaken to understand the impact of 

HDD RE magnet manufacturing on local ecosystems.  Specifically, this method uses a typical 

LCA inventory process to determine chemical emissions to air, soil and water, but implements 

regionalized fate and exposure data from USETox, a chemical regulatory boundary concept, and 

the use of a standardized, hydrobasin dataset to determine the capacity of the receiving ecosystem 

to assimilate pollution. 
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 FRESHWATER USE BY THE GLOBAL SEMICONDUCTOR 
MANUFACTURING INDUSTRY 

Reprinted under CC BY-NC-ND from Frost, K., & Hua, I. (2019). Quantifying spatiotemporal 
impacts of the interaction of water scarcity and water use by the global semiconductor 
manufacturing industry. Water Resources and Industry, 22, 100115. 
https://doi.org/10.1016/j.wri.2019.100115 

2.1 Background 

The high-tech semiconductor manufacturing sector is integral to the international electronics 

industry and was valued at over $400 billion USD in 2017 (Manoca, 2018).   Semiconductors are 

the silicon microchips utilized in electronics to control the flow of electrical signals.  The complex 

transistor circuitry required to transmit these signals is layered onto silicon wafers at 

semiconductor fabrication plants (‘fabs’).  

 

Semiconductor fabs are largely concentrated in the United States, Taiwan, China, South Korea, 

and Japan.  These areas currently account for 83% of fab manufacturing capacity and the rapid 

evolution of the technology sector means that new fab facilities are being constructed at a high 

rate.  As such, China and Taiwan are outpacing the growth rates of other industry leaders 

(Semiconductor Industry Association, 2016; Boyd, 2012), which will result in a spatial shift in 

resource demands by the industry.   

2.1.1 Water Use in Semiconductor Manufacturing 

Semiconductor fabrication is a water intensive process and efforts have been made by individual 

companies to assess the water-related risks posed by supply chain (raw materials, transportation 

and electricity), operations, use, and end-of-life (Quantis International, 2012). Industry has focused 

on reducing water use in their operations and correspondingly, relative water use efficiency has 

improved over the years (Sematech, 2013).  However, growth in absolute water use is predicted 

due to year-to-year increases in chip sales (2%-24% from 2016-2018) and associated production 

capacity, including a 41% increase in capacity for multi-layer flash memory (Liu, 2018). And 

despite overall improving trends in water reuse effiiciency, industry pursuit of Moore’s Law (i.e. 

https://doi.org/10.1016/j.wri.2019.100115
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doublilng of transistor density every two years) has led to increases in the use of higher purity 

water and chemicals and more complex processing steps. In addition, increases in wafer size (i.e. 

moving from predominantly 200 mm to 300 mm, and now 450 mm), and the associated transition 

from batch processing to single wafer processing which requires more water per wafer, has also 

contributed to increased water demands by the industry (Libman & Neuber, 2008; Sematech, 2013). 

 

Boyd (2012) and Cooper et al. (2011) indicated that the use phase (i.e. use of the chips within the 

electronic devices) and manufacturing phase are the two most water intense stages in the life cycle 

of a semiconductor chip (2012). Electricity-related water from the use phase is the primary water 

user for most chip types and the manufacturing phase is the second largest user of water (Boyd, 

2012).  Within the chip manufacturing process, water used in the production of electricity to power 

the semiconductor fabs (i.e. indirect water use) is the single largest user of water; while fab 

feedwater (i.e. direct water use) represents another major user (Boyd 2012, Cooper et al., 2011).  

Fab manufacturing water, or ‘feedwater’, serves three major functions in chip manufacturing: 

process cooling water, production of ultrapure water to rinse the wafer between processes, and 

cooling water to maintain cleanroom heating, ventilation and cooling (HVAC) systems.  

 

The focus of this assessment is on fab feedwater (FW) and electricity-related water (ERW) 

withdrawals for the following reasons: i) as mentioned, these two elements represent the two 

largest water use categories in chip manufacturing (Cooper et al, 2011), ii) there is precedent for 

manufacturing (i.e. direct or ‘Scope 1’) and electricity-related (i.e. indirect or ‘Scope 2’) resource 

use as the boundary for analysis within the carbon footprinting literature (Matthews, Hendrickson, 

& Weber, 2008), iii) both FW and ERW withdrawals associated with a fab are likely to be spatially 

related and impacts may occur within the same watershed, and iv) water uses related to other 

processes in the life cycle of a semiconductor chip (e.g. silicon ingot processing, 

infrastructure/transportation) are comparatively smaller withdrawals (total just 6%, according to 

estimates from Cooper et al. [2011]).  Another important consideration is that feedwater and 

electricity use are managed by the manufacturer, as opposed to embedded within the supply chain; 

thus, quantification of withdrawals and associated decisions related to water reduction efforts can 

be more easily managed within this scope (Mueller et al, 2015). Manufacturing process data from 

the life cycle assessment literature (Boyd, 2012) and industry reports (Sematech, 2013) provide 
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estimates of water and energy use intensity, reported at the single microchip or wafer (i.e. hundreds 

of chips) level.   

2.1.2 Electricity-related Water Withdrawals 

Estimates of water use from electricity production has been examined over the last decade (Cai, 

Zhang, Bi, & Zhang, 2014; Jiang & Ramaswami, 2015; Liao, Hall, & Eyre, 2016; Macknick, 

Newmark, Heath, & Hallett, 2012; Maupin et al., 2014; Spang, Moomaw, Gallagher, Kirshen, & 

Marks, 2014; Tidwell & Moreland, 2016; Vassolo & Döll, 2005) as understanding of the large 

impact of the energy sector on water use (the water-energy nexus) has emerged.  Water use data 

have been categorized by electricity generating type (e.g. coal, natural gas, hydroelectric) and 

associated cooling technologies (i.e. open loop cooling, closed loop cooling, and air cooling). 

Meldrum, Nettles-Anderson, Heath, and Macknick (2013) summarized and reported withdrawal 

factors by life cycle phase for ease of use in life cycle assessment (LCA) studies.  

 

A closer examination of the application of electricity water withdrawal metrics is appropriate 

(Pfister, Saner & Koehler, 2011; Lee, Han, Elgowainy, & Wang, 2018) and addressed here by 

calculating regionalized electricity water use intensity factors for two of the world’s major 

semiconductor producing countries: the U.S. and China.  In the U.S., electricity generation by fuel 

type for each of the country’s eight major electricity trading regions (collectively known as the 

North American Electric Reliability Corporation or NERC) are provided by the U.S. EPA EGRID 

program (USEPA, 2014), and Diehl and Harris (2014) provide water use estimates for many of 

the country’s largest electricity generating facilities. In China, provincial electricity data is 

supplied by the National Bureau of Statistics of China and summarized by Cai et al., 2014; Jiang 

and Ramaswami, 2015; Liao et al., 2016; Zhang et al., 2016 for China’s six regional energy grids.  

For all countries except the U.S. and China, country averaged estimates of electricity mixes are 

provided by the International Energy Agency (IEA, 2015). It should be noted that power plants 

commonly use freshwater resources for cooling.  For example, in the U.S., it is estimated that 

power plants account for 40% of the nation’s freshwater withdrawals (Averyt et al., 2011). 
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2.1.3 Industrial Water Use 

Water withdrawals are defined as “water removed from the ground or diverted from a surface-

water source for use” (USGS, 2016).  Alternatively, consumptive water use refers to water 

withdrawn that is incorporated into a product or crop, or evaporated, transpired or consumed by 

animals or humans. Water that is withdrawn but ultimately returned to the same watershed from 

which it came does not count as consumptive use (USGS, 2016).  This study is an extension of our 

previous work (Frost and Hua, 2017) and assesses water withdrawals for manufacturing and 

electricity from fab facilities (Note: the terms water use and water withdrawals are used 

interchangeably in this text).  Thus, this assessment does not consider a facility’s efforts to recycle 

or return water to the watershed.  And although individual companies have invested considerable 

effort into lowering their consumptive water use rates, reuse rates across the industry are highly 

variable, thus difficult to quantify on an industry-wide basis.  Libman and Neuber (2008) reported 

a benchmarking study in which only 2 out of 7 companies met the water consumption targets set 

by the International Technology Roadmap for Semiconductors (ITRS) with exceedances ranging 

from 10-50% of the target.  

 

Water withdrawn is a good measure of potential water use impacts because water used in 

manufacturing would rarely be returned to the same water body without some loss in water 

quality). The appropriation of water resources due to degradation in water quality, known as ‘grey 

water’ (Hoekstra et al., 2011), is often quantified separately from consumptive water use (i.e. ‘blue 

water’) (Scherer & Pfister, 2016); however, as this study does not separately address water quality 

issues associated with semiconductor manufacturing (and the associated freshwater required to 

assimilate pollution), water withdrawals serve as a proxy for both consumptive and degradative 

uses of water (Bonamente et al., 2017).   However, water withdrawn may not be a good measure 

of actual physical scarcity of water (Boulay et al., 2017) and could overestimate impacts from 

manufacturing water demands in a watershed.   Therefore, withdrawals-based water use 

inventories represent a conservative approach to estimating water use impacts and should be used 

as a screening-level assessment of potential impacts, rather than an absolute measurement of 

volumetric water use.   
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In most countries, including the U.S., industrial water use is not understood with a high degree of 

spatial or temporal granularity (Frost and Hua, 2017; Mueller et al, 2015).  As mentioned, the 

water-energy nexus is vital to capture since industry is estimated to use 22% of total energy in the 

United States (EIA, 2016) and 54% of the world’s total delivered energy.  Although Rao, Sholes, 

Morrow, and Cresko (2017) reported that the electronics sector is currently considered a smaller 

user of water when compared to the major users (i.e. paper, primary metals, and chemical 

manufacturing sectors), they report that the electronics sector has the third highest energy-water 

ratio, further enumerating the importance of the water-energy nexus for electronics. According to 

the U.S. Energy Information Agency, the semiconductor subsector comprises 1.2% of U.S. 

manufacturing net demand for electricity (2013).  This indicates that the semiconductor industry 

constitutes a small, but growing demand for direct water use and energy-related water use. 

2.1.4 Water Scarcity 

Many areas of the globe are already reaching the limits of a sustainable supply of freshwater for 

human and ecosystem demands (UN Water, 2019).  Brown and Matlock (2011) and later, Xu and 

Wu (2017) reviewed several water scarcity indices and methodologies that have been developed 

over the past thirty years to quantify vulnerability of water resources. These metrics have 

converged around two basic approaches, as defined by Xu and Wu (2017): “water crowding” 

indices which are focused on per capita human water needs and “use-to-resource ratio” indices 

which are focused on the ratio of water withdrawals or consumption to available resources.  

Although there is considerable debate as to which metric, (of the almost two dozen available) is 

appropriate to quantify sustainable water use (Hoekstra, 2016; Pfister et al., 2017; Xu & Wu, 

2017), this study incorporates the AWaRe (Available Water Remaining) indicator.    

 

The AWaRe indicator is the result of a consensus-based process from the United Nations 

Environment Program/Society of Environmental Toxicology and Chemistry (UNEP/SETAC) 

Water Use Life Cycle Assessment (WULCA) group, comprised of industry, academic, 

government, and consulting experts, which was charged with creating a standardized water 

footprinting method that could be implemented in life cycle-based assessments of products, 

services and economies (WULCA, 2018). The AWaRe index utilizes data from the WaterGAP3 

model which implements a global hydrology model (Muller Schmied et al., 2014) and a study 
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simulating global industrial and domestic water use (Florke et al., 2013).  The available water 

remaining (aka ‘AWaRe’) in a watershed is calculated by assessing freshwater availability (surface 

+ renewable groundwater) minus demand (AMD) by humans (i.e. domestic, industrial, 

agricultural, livestock and energy sectors) and by freshwater aquatic ecosystems, per area and by 

month.  The AWaRe method is described by Boulay et al. (2017) and represented by the following 

equation, expressed in terms of volume of water remaining per month (m3/month) within a 

watershed area (m2): 

 

𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖 =
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠+𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟−𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔  −𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶.𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠+𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔− 𝐸𝐸𝑛𝑛𝑛𝑛.𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊 𝑅𝑅𝑅𝑅𝑞𝑞′𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ∗ (𝑚𝑚3)

𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊ℎ𝑒𝑒𝑒𝑒 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 (𝑚𝑚2) ∗ 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚ℎ
 

(2.1) 
 

 
The inverse of AMDi , or 1/AMDi, is used to represent the ‘potential for water deprivation’ in a 

watershed i.  This potential for deprivation is then used to create a scarcity characterization factor 

(CFAWARE) for a watershed.  To calculate the CF, 1/AMDi is first normalized to the world average 

(m3i/m3world-avg) and a dimensionless index is created by ranking each watershed against the 

normalized values calculated for all of the other watersheds in the world on a scale from .01 to 

100, where 1 represents the world average and 100 represents areas that have 100 times less water 

available than the world average (Boulay et al., 2017).   

 

The AWaRe method and its associated scarcity CF was selected as the scarcity indicator for this 

work because it is i) a consensus indicator and associated with an ISO standard (Boulay et al, 

2017), ii) the metric is ‘ecocentric’ as it considers ecosystem water requirements (EWR) (Xu and 

Wu, 2017), iii) it is relatively simple to apply and communicate, consisting of a single 

characterization (weighting) factor to measure potential to deprive another user (human or 

ecosystem) of water (Xu & Wu, 2017; Boulay et al., 2017) and iv) it has been integrated as a 

midpoint impact characterization factor in the major LCA software tools (e.g. GaBi and Simapro), 

and is thus, gaining wider use in LCA and water footprinting communities.  

 

However, the AWaRe indicator only addresses physical water scarcity and does not take into 

account socio-economic water scarcity (e.g. Aqueduct) and its associated risk factors.  Another 

point of debate regarding the use of a scarcity characterization factor, such as those employed by 
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the AWaRe method, is that multiplying a water use inventory by a scarcity CF lacks ‘physical 

meaning’ (Hoekstra, 2016). However, Pfister et al. (2017) argued that the process of transforming 

inventory flows and their associated potential impacts into a common unit, represented here as 

H2O equivalents, is common in both LCA and footprinting methods (e.g. carbon equivalents, 

toxicity equivalents).  Thus, in our study, the goal of the water scarcity-weighted characterization 

step is to transform the water use inventory (i.e. H2O in liters) to an impact equivalent that relates 

the pressure exerted on the resource to the resource in question (i.e. H2O in liter equivalents) 

(Pfister et al, 2017).  Maps displaying the water scarcity impact data will help locate regions of 

potential concern and will be utilized to identify current locales with the highest potential water 

use impacts from semiconductor production.   

 

This study represents the first report of total global water withdrawals for the semiconductor 

manufacturing industry and improves upon our prior water withdrawal estimates (Frost & Hua, 

2017) using a bottom-up approach and application of derived regional electricity water use 

intensity coefficients.  This study also presents facility-level estimates of FW and ERW 

withdrawals, addressing the need for highly granular data due to the local and regional issues 

surrounding water use and water scarcity. We report watershed-specific impacts by presenting 

scarcity-weighted withdrawals (quantified in liters of H2O equivalents) for semiconductor fab 

feedwater to better understand the potential for manufacturers in a watershed to deprive other users 

(both ecosystems and humans) of water. 

 

Semiconductor manufacturing and other industrial water use estimates within the literature have 

either been limited geographically (Rushforth and Ruddell, 2018), not technology specific (based 

on sector wide input-output assessment), use only national averages for electricity-related water 

use (Cooper et al., 2011), and often do not address spatial variation in impacts (Blackhurst, 

Hendrickson, & Sels i Vidal, 2010).  Reporting of water withdrawals by semiconductor 

manufacturers, typically through their Corporate Social Responsibility (CSR) reports, is often 

limited in its usefulness because withdrawals are reported at a company-wide level, instead of 

individual facilities (where impacts are felt), and the metrics for reporting may not be easily 

compared with other companies due to a lack of metrics standardization within the industry (Den, 
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Chen, and Luo, 2018).  Further, with the exception of a few, companies rarely report their Scope 

2 indirect water withdrawals (i.e. ERW withdrawals). 

2.2 Materials and Methods 

2.2.1 Estimating Facility Water Use 

2.2.1.1 Semiconductor Facility Production Data 

SEMI is an industry association which tracks global semiconductor fabrication (fab) 

manufacturing facilities for both current and planned operations (SEMI, 2017).  The SEMI 

database consists of 1129 facilities and its characteristics are described in detail in our previous 

work (Frost and Hua, 2017).  Most notably, the database contains information about location, 

integrated circuit (IC) technology node produced at the plant (e.g. 250 nm, 32 nm), wafer size (e.g. 

8 inch [200 mm]), and fab production capacity, reported in wafer starts per month. In the past, a 

‘technology node’ referred to the transistor gate length, which approximately scaled with transistor 

density in a microchip. Improvements in chip technology allowed for smaller gate lengths and 

thus, tighter packing of transistors over time (e.g. a 350 nm logic chip was state-of-the-art in 1995, 

compared to 45 nm in 2007). However, as the industry has reached the physical limits of size 

scaling, the term technology node has become uncoupled with gate length and now generally refers 

to a specific generation of microchip and its associated processes and design parameters.  

Production capacity was used as a proxy for actual production, as many of these facilities would 

be expected to operate at full or near full capacity, although this assumption may lead to 

overestimates of water withdrawals in some locations operating below capacity. The database was 

used to estimate total chip production (by product and per technology node) at each facility using 

the aforementioned parameters.  Only production lines with valid wafer production data from the 

fourth quarter of 2016 were used (N=1021).    

2.2.1.2 Geocoding 

For each production line, addresses provided by SEMI were geocoded using two software services 

to obtain geographic coordinates for input into a Geographic Information System (GIS).  The 

Environmental Systems Research Institute’s World Geocoder, accessed via ArcGIS Pro (ESRI, 

2017), and the GoogleMaps API, accessed through the R ‘ggmap’ library (Kahle & Wickham, 
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2013) geocoding services, were used to obtain the latitude and longitude in decimal degrees for 

each geocoded address.  The geocoding software returns information about the estimated precision 

of each geocode. For each geocoded address that returned a rooftop centroid (indicating a high 

level of precision) we utilized the data as provided by either software (N=594).  If neither 

geocoding service provided a rooftop geocode (N=427), corrections to the data were made using 

a manual geocoding process which included use of aerial imagery from GoogleMaps or Bing, and 

if needed, confirmation of the correct address by investigation of the company’s website.  Manual 

correction of geocoded data is vital to ensure accurate locations (McDonald, Schwind, Goldberg, 

Lampley, & Wheeler, 2017; Swift, Goldberg, & Wilson, 2008) of fab facilities which are used to 

estimate localized water use impacts. If manual correction of an address was not feasible, less 

precise location data provided by the geocoding software was used (N=12).  Only one facility was 

unable to be located and was excluded from the analysis; thus, water use analysis was conducted 

for 1020 fab production lines. 

2.2.2 Fab Feedwater (FW) Use: Water Use By Technology Type 

As previously described (Frost and Hua, 2017), the SEMI database is categorized by the product 

type and technology node for each production line.  This includes major categories such as ‘logic’, 

‘memory’, ‘foundry’, and ‘discrete’ which represent various types of semiconductor products such 

as CMOS (complementary metal-oxide semiconductor), DRAM (dynamic random-access 

memory), NAND (logic gate that stands for negative-AND), and ASICS (application-specific 

integrated circuits).  Foundry facilities comprise a growing portion of the semiconductor 

manufacturing sector (SIA, 2016) and may produce multiple technologies; however, specific 

production lines will often produce one dominant product type.  The use of general product 

categories provided by the SEMI database was determined to be adequate for purposes of water 

withdrawal estimation but would need to be refined with facility level data for a detailed, local 

assessment.  

 

Estimates of fab FW are drawn from the LCA work of Boyd (2009; 2012) and semiconductor 

industry reports (Sematech, 2001-2013). Boyd reports comprehensive estimates of FW and 

electricity use for CMOS, DRAM and NAND products for technology nodes during the period 

1995-2013 (350 nm to 22 nm) at the chip level for a typical U.S. semiconductor facility.  Feedwater 
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estimates for other technology types (e.g. MEMS) and newer technology nodes (i.e. 2013-2016) 

were estimated using ITRS reports from 2001-2013 (Sematech). These industry targets were used 

when specific values from Boyd were not available and may represent an optimistic estimate of 

feedwater withdrawals.  Other estimates of semiconductor chip water use from the life cycle 

literature were difficult to interpret due to aggregated reporting of results. Further difficulties arise 

from trying to pinpoint the exact kind of chip made from a foundry facility as it may manufacture 

a mix of technology types and nodes, so assumptions about the primary technology produced at 

these facilities were made by using text analysis from the SEMI database. 

 

Table 2.1. Table of fab FW use and electricity use by technology type and node 
Approximate 

Technology 

Year 

Technology Node 

(nanometers) - 

oldest to newest 

Fab Feedwater 

Use (liters per 

cm2 of wafer) 

Fab Electricity 

Use (kWh per 

cm2 of wafer) 

Logic (e.g. CMOS, Bipolar, MEMs)a 

1995 & older 350-1000000 25.32 3.31 

1996-1997 250-350 25.32 3.31 

1998-1999 180-250 5.12 3.06 

2000 130-180 11.27 1.33 

2001-2004 90-130 21.85 1.53 

2005-2006 65-90 20.63 1.49 

2007 45-65 15.72 1.75 

2008-2009 32-45 6.55 2.07 

2010 32 7.21 2.12 

2012 & newer 5-22 7.8b 2.12 

Memory (e.g. RAM, DRAM, MRAM)a 

1998 & older 250-1000 0.16 0.14 

1999 180-250 0.16 0.14 

2000-2001 130-180 0.07 0.45 

2002-2003 90-130 0.93 1.04 

2004-2005 70-90 2.12 0.76 

2006-2007 57-70 1.18 0.10 

2008-2011 40-57 5.24 8.73 

2012-2015 25-40 10.48 17.47 

2016 & newer 10-22 20.96 34.93 

Flash (CMOS, NAND)a 
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Table 2.1 continued 
2000 & older 150-400 48.55 2.07 

2000-2001 120-150 48.55 2.07 

2002-2003 90-120 21.24 3.03 

2004-2005 65-90 12.14 2.53 

2006-2008 45-65 12.73 4.24 

2009-2016 14-40 7.8b 6.60 

Other (e.g. GaAs, Sapphire, MEMs, Indium)b 

2000 & older 130-20000 7.0 1.4 

2001-2004 90-130 7.0 1.4 

2005-2007 65-90 9.0 1.4 

2008-2010 40-65 8.1 1.5 

2011-2015 22-40 7.0 1.0 

2016 & newer 5-22 7.8 1.0 

a Boyd (2012) 
b Sematech (2001-2013) 

2.2.3 Electricity Water Use 

Electricity use by each fab was calculated using technology-specific values from Boyd and where 

these values were not available, industry targets reported by ITRS were used. Electricity use values 

from Boyd, reported in kWh per chip, were normalized to kWh per cm2 of wafer.  Semiconductor 

fabs typically use electricity purchased from the grid, so determining the grid mix (the fuel mix 

and/or power sources for electricity generation in each area) of a region or country is vital to 

determining the water use associated with electricity consumption. 

 

Typically, water use intensity values from electricity are based on LCA estimates of the impacts 

of 1 kWh of net electricity from a standard national grid mix of electricity.  Because electricity use 

is such a large determinant of water use in a Scope 2 assessment, and often dominates water use 

values for technology (Boyd, 2012), this study includes refined electricity values, estimated for 

China and the U.S.  Regional electricity factors were calculated for the U.S. and China because of 

the large geographic variation in grid mixes across these two countries.   
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2.2.3.1 U.S. Electricity Water Use 

Water withdrawal data from Diehl and Harris (2014), Macknick et al. (2012), and Meldrum et al. 

(2013) were used to characterize water use intensity (water withdrawal per kWh of production) for 

each electricity generation type.  Diehl and Harris calculated detailed water withdrawal estimates 

in MGal/day for 1290 thermoelectric power plants in the U.S., covering a variety of fuels and 

cooling technologies. They also provided net generation values for each plant in megawatt hours 

(MWh) and these values were used to calculate water use intensity (in liters per kWh) for each 

thermoelectric facility.  Figure 1 depicts the locations of each thermoelectric facility in the U.S. 

(EIA, 2015) that were estimated by Diehl and Harris.  An average of water use intensities (WUI) 

weighted by annual net generation of electricity for each facility was used to calculate an average 

thermoelectric WUI over the electricity trading regions in which the facilities were located. This 

approach is preferred over national or regional grid mixes from the LCA literature because it 

incorporates a large and representative amount of detailed facility level water use data. The North 

American Electric Reliability Corporation (NERC) is the entity responsible for coordinating and 

supplying electricity to various regions of the U.S.  A NERC region operates as a trading region 

and electricity supply is mixed and redistributed within this region; thus, this is the appropriate 

level of spatial aggregation to calculate electricity water use intensity.  

 

For non-thermoelectric power plants in the U.S. (i.e. hydroelectric, solar photovoltaic, and wind), 

estimates of water withdrawal from Meldrum et al. (2013) were used and production-weighted 

water use intensities were calculated by averaging known production levels of thermoelectric and 

non-thermoelectric power within each NERC region (USEPA, 2014) using the following equation: 

 

      𝑊𝑊𝑊𝑊𝑊𝑊𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = ∑𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖 ∗ �
𝑃𝑃𝑃𝑃𝑖𝑖
𝑅𝑅𝑅𝑅𝑅𝑅

� + (𝑊𝑊𝑊𝑊𝑊𝑊𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ∗ 𝑅𝑅𝑅𝑅𝑅𝑅) + (𝑊𝑊𝑊𝑊𝑊𝑊𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 ∗ 𝑅𝑅𝑅𝑅𝑅𝑅) + (𝑊𝑊𝑊𝑊𝑊𝑊ℎ𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦 ∗ 𝑅𝑅𝑅𝑅𝑅𝑅)         (2.2) 

 

where: 

WUIregional: U.S. NERC electricity region water use intensity (Liters/kwh);  

TEWUi: Annual thermoelectric water use per facility (liters);  

PCi: annual production capacity per thermoelectric facility (kWh); RPC: total annual 

thermoelectric regional production capacity (kWh);  
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WUIsolar: water use intensity of solar photovoltaic power (L/kWh); RSP: regional solar electricity 

production as percentage of total production (%);  

WUIwind: water use intensity of wind power (L/kWh); RWP: regional wind production as 

percentage of total production (%);  

WUIhydro: water use intensity of hydroelectricity production (L/kWh); RHP: regional hydro 

production as percentage of total regional electricity production (%)  
 

Each fab facility in the U.S. was then assigned an ERW withdrawal intensity associated with its 

derived NERC region water use intensity (WUIregional) factor.  This assignment was 

determined by overlaying fab locations with a map of electricity regions provided by the U.S. 

Electricity Information Agency (EIA).  Detailed information about the production mix and net 

generation of each region are provided in Appendix A, Table A.1. 

 

 

Figure 2.1. Derived water use intensity factors (in L/kWh) of NERC electricity regions overlaid 
with the thermoelectric power plants from Diehl and Harris (2014).  The boundaries of NERC 

electricity regions were provided by EIA (2015). FRCC = Florida Reliability Coordinating 
Council, MRO = Midwest Reliability Organization, NPCC = Northeast Power Coordinating 
Council, RFC = Reliability First Corporation, SERC = SERC Reliability Corporation, SPP = 

Southwest Power Pool, TRE = Texas Regional Entity, WECC = Western Electricity 
Coordinating Council.  The white areas of the map are classified by EIA as ‘indeterminate, with 

various NERC memberships’; thus, a WUI was not calculated for these areas. 
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2.2.3.2 Chinese Electricity Water Use 

C. Zhang, Zhong, Fu, Wang, and Wu (2016) reported water withdrawals by the various 

thermoelectric cooling technologies (i.e. recirculating, once-through cooling, dry cooling, and 

seawater cooling) used across China.  By understanding province-level electricity production 

mixes and cooling types, water use intensities by province were calculated for China using 

equation 2 below. Province-level water use intensities, production and cooling type data (Table 

A.2), and sample calculations are available in Appendix A.    

 

𝑊𝑊𝑊𝑊𝑊𝑊𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = ∑𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃�(𝑅𝑅𝑅𝑅𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ∗ 𝑊𝑊𝑊𝑊𝑊𝑊𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟) + (𝑂𝑂𝑂𝑂𝑂𝑂𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ∗ 𝑊𝑊𝑊𝑊𝑊𝑊𝑜𝑜𝑜𝑜𝑜𝑜) + (𝐷𝐷𝐷𝐷𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ∗ 𝑊𝑊𝑊𝑊𝑊𝑊𝑑𝑑𝑑𝑑𝑑𝑑)� + 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃�(𝑅𝑅𝑅𝑅𝑛𝑛𝑛𝑛 ∗

𝑊𝑊𝑊𝑊𝑊𝑊𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟� +  �𝑂𝑂𝑂𝑂𝑂𝑂𝑛𝑛𝑛𝑛 ∗ 𝑊𝑊𝑊𝑊𝑊𝑊𝑜𝑜𝑜𝑜𝑜𝑜�� + (𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 ∗ 𝑊𝑊𝑊𝑊𝑊𝑊𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛) + (𝑃𝑃𝑃𝑃𝑃𝑃 ∗ 𝑊𝑊𝑊𝑊𝑊𝑊𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏)+(𝑃𝑃𝑃𝑃𝑃𝑃 ∗𝑊𝑊𝑊𝑊𝑊𝑊𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) +

(𝑃𝑃𝑃𝑃𝑃𝑃 ∗𝑊𝑊𝑊𝑊𝑊𝑊𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤) + (𝑃𝑃𝑃𝑃𝑃𝑃 ∗ 𝑊𝑊𝑊𝑊𝑊𝑊ℎ𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦)            (2.3) 
 

where: 

WUIprov: Chinese provincial water use intensity (liters/kwh); PCPC: Provincial coal-power 
capacity (kWh); RC: electricity production from recirculating cooling as percentage of total 
thermoelectric production in province (%);  

WUIrecirc: water use intensity of recirculating cooling operations in China;  OTC: electricity 
production from once through cooling as percentage of total thermoelectric production in 
province (%);  

WUIotc: water use intensity of once through cooling operations in China; SC: electricity 
production from seawater cooling as percentage of total thermoelectric production in province 
(%); PNGPC: Provincial natural gas power capacity (kWh); PNPC: Provincial nuclear power 
capacity (kWh);  

WUInuclear: water use intensity of nuclear power (L/kWh);  

WUIsolar: water use intensity of solar photovoltaic power (L/kWh); PBP: biomass electricity 
production as percentage of total provincial electricity production (%); PSP: solar electricity 
production as percentage of total provincial electricity production (%);  

WUIwind: water use intensity of wind power (L/kWh); PWP: wind production as percentage of 
total provincial electricity production (%);  

WUIhydro: water use intensity of hydroelectricity production (L/kWh); PHP: hydro production 
as percentage of total provincial electricity production (%)  
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Like the U.S., China has electricity producing regions in which electricity is mixed and 

redistributed; however, electricity grid mixes by region were not directly accessible.  Thus, a 

weighted average of production capacity for each province within the electricity region was 

used to calculate a production capacity weighted average for the region.  A map of electricity 

regions was adopted from N. Zhang, Hu, Shen, He, and Zheng (2017) and using spatial 

overlays, each fab within that electricity region was assigned a water use intensity associated 

with its regional mix of electricity production (Figure 2.2).  This may result in error if a fab 

does not purchase electricity from the grid of the electricity region in which it is located. 

 

Figure 2.2. Calculated water withdrawal intensity (in liters per kilowatt hour) of Chinese 
electricity regions.  The boundaries of Chinese electricity regions were adopted from N. Zhang et 

al. (2017). 

2.2.3.3 Rest of World 

For all other countries in which fab production takes place, country specific average grid mixes 

from the IEA were utilized.  Average water use intensity factors (Macknick et al., 2012; Meldrum 

et al., 2013) were applied per generation type to electricity production within these countries. Table 

2.2 summarizes the water use factors associated with each generating type and Table A.4 displays 

the water use intensities calculated for each country based on their grid mix and factors` from 

Table 2.2. 
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Table 2.2. Default water use intensity factors for each electricity generation type. All values from 
Meldrum et al. (2013), except for petroleum and hydroelectric (Macknick et al., 2012). 

Electricity 
Generation 
Type 

Water use 
intensity (liters 

per kWh) 
Coal 2.5 
Natural gas 9.5 x 10-1 
Petroleum 3.9 x 10-1 
Nuclear 1.8 x 102 
Biomass 1.7 x 10-2 
Geothermal 1.2 
Solar thermal 2.9 x 10-1 
Hydroelectric 1.1 x 101 
Solar 
Photovoltaic 

2.3 x 10-2 

Wind 5.7 x 10-3 

2.2.4 Characterizing Water Use Per Facility 

As developed in detail in our previous work, an estimate of global water use by the semiconductor 

industry can be calculated using the following basic equation (Frost & Hua, 2017): 

 

  𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = � (𝐹𝐹𝐹𝐹𝐹𝐹𝑖𝑖+𝐸𝐸𝐸𝐸𝐸𝐸𝑖𝑖) ∗ 𝑀𝑀𝑀𝑀𝑀𝑀𝑖𝑖  
𝑛𝑛
𝑖𝑖=1                                    (2.4) 

 

FWW = WUItech*SAwafer                                                                                                        (2.5) 

 

EWW = EItech*WUIelec* SAwafer                                                                                     (2.6) 

 

where: 

SMGWU: semiconductor monthly global water use; n: the number of semiconductor facilities in 

Q4 of 2016 with valid production data;  

FWW: fab feedwater per wafer;  

WUItech: water use intensity of semiconductor technology at facility i (Liters/cm2);  

SAwafer: surface area of wafer (cm2);  

EWW: electricity water per wafer;  

EItech: electricity intensity of semiconductor technology (kWh/cm2);  

WUIelec: water use intensity of electricity mix (Liters/kWh); and  
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MWS: monthly wafer starts per facility in Q4 2016 (SEMI, 2017). This monthly figure was 

annualized to calculate total annual consumption.   

2.2.5 Scarcity-weighted Water Use 

The AWaRe characterization factors (CFs) described in Section 2.1.4 have been developed for 

11,050 watersheds, with the largest 34 watersheds divided into subwatersheds. These are available 

for download from the WULCA website as a kmz file and are provided both on a monthly basis 

and as an annual average (WULCA, 2017). By utilizing location specific information about 

semiconductor production, water use at various spatial extents (e.g. watershed, country, globally) 

could be aggregated.  This data was summed at the watershed level and was weighted by the 

AWaRe CFs available for each watershed.  This analysis resulted in 202 scarcity-weighted 

watersheds associated with the 1020 fab facilities.  Due to the difficulty and potential error 

associated with allocating water withdrawn for electricity from the grid mix to a specific 

watershed, only fab FW withdrawals (which can be associated with an exact location or area) was 

considered as part of the scarcity-weighted assessment. For the purposes of this assessment, it was 

assumed that facilities were withdrawing water from within their own watershed to meet their 

manufacturing needs.  All of the fab facility water withdrawals within a watershed were summed 

across the watershed using spatial libraries in R (R Core Team, 2017) and visualized using ArcMap 

10.5.1 (ESRI, 2018).  This work modified our previously developed equation to summarize the 

scarcity-weighted withdrawals for each of the watersheds that contain semiconductor facilities, 

and was expanded to include many more facilities and watersheds (Frost and Hua, 2017): 

 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = � 𝐴𝐴𝐴𝐴𝐴𝐴𝑛𝑛 ∗ 𝑊𝑊𝑊𝑊𝑊𝑊(𝑎𝑎𝑎𝑎𝑎𝑎)

𝑚𝑚

𝑖𝑖=1
                                      (2.7) 

 

AFWn = FWWn * MWSn * 12 (months)                                      (2.8) 

 

where:  

SWWU: Scarcity Weighted Water Use (Liter equivalents);  

m: the number of facilities in a given watershed;  
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AFWn: annual feedwater withdrawals per facility;  

FWWn: Feedwater withdrawals per wafer (see equation 2.5);  

MWS: monthly wafer starts and  

WSF(avg): the average annual water scarcity factor for that watershed.   

2.2.6 Temporal Variability of Water Scarcity 

Due to the seasonal nature of water scarcity, monthly AWaRe scarcity indicators were also 

considered.  For each of the 202 watersheds associated with fab production, the minimum annual 

scarcity values, as well as maximum annual scarcity values for each watershed in a year were 

mapped to represent best and worst-case scenarios of water scarcity.  These maps identified 

seasonal “hotspots”: locations characterized by seasonally high water scarcity and water 

withdrawals by semiconductor fabrication.    

2.3 Results 

The following results describe the facility level production data and associated FW and ERW 

withdrawals for the 1020 semiconductor fab production lines available for analysis.  Scarcity-

weighted withdrawals were calculated using AWaRe scarcity characterization factors applied to 

each of the 1020 facilities located in 202 watersheds across the globe and are summarized and 

presented here.  The raw data used to produce each of these graphs and maps are available along 

with an interactive web map (Frost & Hua, 2019). 

2.3.1 Feedwater (FW) Withdrawals 

The annual FW withdrawals by semiconductor facilities were summarized over various spatial 

extents.  Total annual semiconductor wafer production and total annual water withdrawals per 

country for the top global producers is presented in Figures 2.3 and 2.4.  The top five producers 

are Japan, Taiwan, South Korea, China and the United States, respectively.  Japan has the largest 

FW withdrawals for any single semiconductor producing country, which aligns with its large wafer 

production numbers.  Taiwan is the second largest semiconductor producer, despite having the 

third largest water withdrawals after South Korea and Japan.  This is likely due to the type of chips 
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being produced in Taiwan, compared to South Korea, which are dominated by newer, more water 

intensive chip production. 

 

 

Figure 2.3. Annual wafer production (in 8-inch [200 mm] wafer equivalents) by countries 
producing more than one million wafer starts per year. 
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Figure 2.4. Annual fab FW withdrawals by country and technology.  Countries producing more 
than one million wafer starts per year are displayed. The value next to each bar represents the 
average FW withdrawal intensity (in L/cm2) for each country’s semiconductor manufacturing 

facilities, averaged across all technology types. 
 

 

Figure 2.5. Semiconductor manufacturing facility annual wafer starts overlaid on AWaRe scarcity 
factors, by watershed.  *Wafer production normalized to 8-inch [200 mm] wafer.   
 

Figure 2.6 is a map of fab annual FW withdrawals summed at the AWaRe watershed level.  Table 

2.3 indicates that watersheds located in South Korea, Taiwan, Malaysia, and China display the 

highest levels of fab FW withdrawals.  Summarizing by watershed reveals potentially high impact 

areas that may not be apparent when delineated at the state/province or country level.  
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Manufacturing facilities in these watersheds have the potential to cause physical shortages of water 

resources; however, this must be further investigated with consideration of existing watershed 

scarcity-related factors such as climate, ecosystem water needs, and human water use patterns. 

 

 

Figure 2.6. Annual semiconductor manufacturing FW withdrawals summed by AWaRe watershed. 
 

Table 2.3. Top five global watersheds for semiconductor manufacturing FW withdrawals. 
AWaRe 

Watershed 
ID 

Country # of Fab 
Facilities in 
Watershed 

Unweighted 
Feedwater  

Withdrawals 
(billions of liters) 

AWaRe Scarcity 
Factor (.01-100) 

6339 South Korea 27 143.99 8.20 
7282 Taiwan 47 80.60 0.52 
8837 Malaysia 24 45.78 0.79 
6895 China 26 45.28 67.58 
6848 China 37 45.20 0.22 

2.3.2 Scarcity-Weighted Withdrawals 

Wafer production and watershed scarcity data can be combined to gain a general understanding of 

how much semiconductor production is located in areas with high potential water use impacts. 

Table 2.4 summarizes the amount of total wafer production in areas considered to be water scarce 

by the AWaRe index, indicating that almost 13% of production occurs in very water scarce areas 

(60-100 times less water than the global average), and nearly half (~47%) of all semiconductor 

manufacturing occurs in locales exhibiting more scarcity than the global average (scarcity factor 

>1).    
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Table 2.4. Percent of total wafer production occurring in areas of various water scarcity.  
Description of water scarcity factors are adapted from Boulay et al. (2017). 

AWaRe Scarcity 
Characterization 

Factor 
Description of Scarcity % of Global 

Wafer Production 

0.01-0.5 values <1 for regions with less problems of scarcity than the 
world average 21.97 

0.5-1 values <1 for regions with less problems of scarcity than the 
world average 33.29 

1-10 
a value of 10, for example, representing a region where 
there is 10 times less water remaining per area within a 
certain period of time than the world average, 

21.99 

10-30 10 – 30 times less water remaining per area within a certain 
period of time than the world average, 5.06 

30-60 30-60 times less water remaining per area within a certain 
period of time than the world average, 4.80 

60-100 The upper cutoff of 100 affects regions where demand is 
higher than availability 12.89 

 

 

 

Figure 2.7. Scarcity-weighted FW withdrawals by country. The withdrawal is expressed in 
billions of liter-equivalents to denote the transformation of withdrawal inventory data (in liters) 

into an impact equivalent (in liter equivalents). 
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While four of the top five countries are the same as for unweighted FW withdrawals, the order of 

the countries changes somewhat. The greatest volume of weighted FW withdrawals from 

semiconductor manufacturing occurs in China, despite having lower wafer production numbers 

than Japan, Taiwan and South Korea.  Scarcity-weighted withdrawals indicate potential areas of 

concern with relation to existing water availability for humans and ecosystems. Regional water 

issues in China are attributed to heavy water demands from agriculture, energy, and dense 

manufacturing, especially in the heavily populated and industrialized eastern provinces which 

comprise 47% of China’s total industrial output (China Water Risk, 2018).  

 

Figure 2.8 maps the interaction of existing water scarcity and semiconductor FW withdrawals 

across the globe at the watershed level by summing and displaying scarcity-weighted withdrawals 

for each watershed.  By comparing Figures 2.8 and 2.6, one can see the spatial shift in impacts 

when scarcity is considered. 

 

 

Figure 2.8. Annual scarcity-weighted semiconductor manufacturing FW withdrawals summed by 
AWaRe watershed. The withdrawal is expressed in billions of liter-equivalents to denote the 

transformation of withdrawal inventory data (in liters) into an impact equivalent (in liter 
equivalents). 
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Table 2.5. Top five global watersheds for scarcity-weighted semiconductor manufacturing FW 
withdrawals. 

AWaRe 
Watershe
d ID 

Country # of 
Facilities 

in 
Watershed 

Weighted 
Feedwater 

Withdrawal 
(billions of liter 

equivalents) 

AWaRe Avg 
Scarcity Factor 

(.01-100) 

6895 China 26 3046 67.30 
7405 Taiwan 19 1562 42.50 
6339 South Korea 27 1181 8.20 
6269 China 15 806 82.10 
6825 U.S. 8 657 100 

2.3.3 Temporal Analysis 

The AWaRe factors provided by WULCA are comprised of annual average scarcity factors and 

monthly scarcity factors, with the latter representing the temporal variation in water scarcity 

throughout the year.  The figure below represents the difference in withdrawals when using a best 

case (minimum annual scarcity value) versus worst case (maximum annual scarcity value) 

scenario.  In Figure 2.9, the dark orange areas highlight the top 10% of watersheds that are of the 

most concern with regard to seasonal scarcity, representing the largest annual variation (in absolute 

terms) with respect to scarcity-weighted withdrawals.  Figure 2.10 represents the coefficient of 

variation (standard deviation of each watershed’s annual scarcity factor normalized by mean 

annual scarcity).  This shows areas that may display a large swing in annual scarcity, but which 

may not appear problematic with respect to total withdrawals.   
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Figure 2.9. Difference between maximum monthly scarcity weighted withdrawals and minimum 
monthly scarcity weighted withdrawals on an annual basis.  This represents the difference 

between a best-case and worst-case scenario for water scarcity in a year, per watershed.  The data 
is divided into deciles to better visualize variation across the dataset. 

 

 

Figure 2.10. Coefficient of variation (standard deviation of annual scarcity factor normalized by 
mean annual scarcity) of the AWaRE scarcity factor per watershed.  This indicates watersheds 

that are likely to exhibit the largest percentage change in scarcity over the course of a year. 

2.3.4 Fab Electricity Water Use 

The annual electricity-related water withdrawals by semiconductor facilities were summarized 

over various spatial extents. Water withdrawals for electricity consumption are not weighted since 

they are not accurately attributable to a specific watershed.   A country-level summary of fab ERW 

withdrawals for the top global producers is presented in Figure 2.11.  This analysis indicates that 
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South Korea has the largest ERW withdrawals for any single semiconductor producing country 

and China is the second largest user of ERW.  China and South Korea’s higher water withdrawals 

is due to water intensive electricity production such as coal and hydroelectric, and coal and nuclear, 

respectively.  See the Appendix for breakdown of electricity demand by generating type for each 

country. 

 

 

Figure 2.11. Fab ERW withdrawals by country.  The value next to each bar represents the 
average ERW withdrawal intensity (L/cm2) for each country’s semiconductor manufacturing 

facilities. 
 
Although it is difficult to directly associate electricity use from the grid with impacts on a specific 

watershed, in Figure 2.12 we overlay fab electricity use with water scarce areas in East Asia to 

draw a general picture of the relationship between water scarcity and fab ERW withdrawals in this 

important semiconductor manufacturing region.   
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Figure 2.12. Map of East Asian (i.e. Japan, South Korea, China, Taiwan) fab electricity-related 
water withdrawals by facility, overlaid on AWaRe scarcity factors.  A map of global ERW 

withdrawals is available in the Appendix (Figure A.1). 

2.3.5 Total Water Withdrawals 

The total water withdrawal for each fab is the sum of withdrawals for the fab FW and the ERW 

withdrawals.  This metric is not scarcity weighted.  The annual, total global, Scope 2 water 

withdrawal for semiconductor manufacturing is 2.096×1013 liters per year, or approximately 21 

trillion liters (2.1 billion m3) per year.   As seen in Figure 2.13, electricity water withdrawals 

dominate water use for fabs; thus, South Korea’s fabs are the largest total water users.  Given the 

relative dominance of ERW withdrawals (10-50 times more than FW withdrawals, in some cases), 

it is expected that South Korea and China have the largest total withdrawals. 
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Figure 2.13. Total water withdrawals (FW + ERW) by the five highest producing countries in the 
semiconductor manufacturing sector. 

2.4 Discussion and Conclusion 

2.4.1 Discussion 

Current understanding of global water use emphasizes agricultural and thermoelectric demand, 

and less data is available about industrial water uses. Many of the industrial water use studies 

analyze a single facility or industry, or consider the water use of an entire industry without being 

spatially explicit. Thus, the methodologies are not easily applied across industries or spatial scales. 

The present study reports total global water use by an important and growing sector, semiconductor 

manufacturing, and provides a methodology that could be applied to many other manufacturing 

sectors. 

 

The increasing production of electronics will likely represent a growing share of the global water 

demand by the semiconductor industry. Thus, this study enhances the current understanding of 

water use by semiconductor manufacturing operations around the globe. We report annual water 

use for nearly 100% of semiconductor manufacturing capacity in Q4 2016 and identify Scope 2 
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(electricity-related) water withdrawals as more significant than Scope 1.  Production data indicates 

a high level of water use in South Korean, Chinese, Japanese, U.S. and Taiwanese electronics 

manufacturing sectors.  However, we have also segmented semiconductor manufacturing capacity 

with respect to water scarce locations, using watershed-level scarcity characterization factors 

provided by the AWaRe index.  This analysis indicated that almost 13% of production occurs in 

very water scarce areas, and nearly half (~47%) of all semiconductor manufacturing occurs in 

locales exhibiting more scarcity than the global average.  This study also examined areas that 

undergo seasonal scarcity, which is not captured by annual average scarcity values that are often 

reported.  Manufacturers should consider the variability in water use impacts on ecosystems and 

humans that may occur seasonally.   

 

This study presents a method for applying regional electricity water withdrawals and LCA/industry 

water use coefficients to calculate industry-wide, global, scarcity-weighted withdrawals. The 

granularity of the present analysis allows for summary of data at various spatial extents. The 

regional electricity water use factors calculated for the US (using plant specific data) and China 

(using provincial production data) provide more accurate withdrawal data for large countries that 

may exhibit regionally variable electricity production and water scarcity. The derived regional 

electricity water use factors used in this study can be applied to other industrial sectors.   

2.4.2 Limitations 

This work does not provide a complete picture of water use by all users (industrial, commercial 

and residential) within a watershed area; thus additional studies of global water withdrawals by 

other industrial sectors, at the same spatial granularity as this one, are vital to a better understanding 

of water use and potential impacts.  Withdrawals-based estimates were used here as a conservative 

estimate of water use, given that degradative consumption (water used to dilute pollutants to an 

acceptable level) was not included in the analysis. 

   

This study also does not provide a complete water footprint for the semiconductor industry, as it 

focuses on manufacturing water use and excludes the significant ERW withdrawals attributed to 

the use phase of these semiconductor chips.  Additionally, while some basic benchmarking was 



 
 

69 

conducted against limited available data, more complete benchmarking of facility level data 

against these LCA based estimates should be completed. 

 

Scarcity-weighted water withdrawals (quantified in liters of H2O equivalents) are not a direct 

measurement of physical water scarcity, thus estimates provided here serve as a screening level 

indicator of the potential of this industry to deprive other users (ecosystems or humans) of clean 

water, resulting in regulatory or reputational risk. This study does not explicitly address the 

operational risks to the manufacturer associated with the withdrawal of feedwater in a water scarce 

area.   

2.4.3 Conclusions 

This study may serve as a benchmark for global withdrawals by the semiconductor industry and 

could be used by industry or regulatory bodies to set withdrawals-based standards.  Additionally, 

the spatially explicit water withdrawal data for the semiconductor sector can be used to improve 

existing databases of national and regional water use coefficients that are often applied in LCA 

input-output studies. (Blackhurst et al., 2010; Boero & Pasqualini, 2017) 

 

Industry leaders such as Intel and Taiwan Semiconductor Manufacturing Company (TSMC) have 

shown that large reductions in fab water use can be achieved with the appropriate investments in 

water-saving technologies.  And although these water savings are vital for reducing localized water 

impacts, this study indicates that in the case of semiconductor manufacturing, the most efficient 

way to reduce overall manufacturing water withdrawals (and associated regional watershed 

impacts) is through reduction in fab electricity use.  Reductions in electricity water use can also be 

achieved by using less water intensive sources of electricity, such as solar PV and wind, which is 

especially important during seasons of higher water scarcity.   

 

Large electronics OEMs can use this location-specific data to determine water use impacts of 

operations from this energy and water intensive component within their supply chain.  Specifically, 

the rise in semiconductor manufacturing growth in certain regions in China may enhance water 

scarcity in areas that are already water stressed, due to existing demands by industry, agriculture 

and domestic users.  Supply chain decisions, such as sourcing semiconductor chips from less water 
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stressed areas, may be a potential approach to reducing the overall water footprint of electronic 

products and managing the associated regulatory or reputational risk.    
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2.6 Appendix. Chapter 2 Supporting Information  

Table A.1. Net generation, fuel mix, and water use intensity for U.S. NERC electricity regions. 

NERC Region 

Net 

generation 

(TWh) 

% of Region’s Electricity Provided By Fuel Type (EPA, 2014) Water 

use 

intensity 

(L/kWh) 

Thermoelectric Non-thermoelectric 

Coal Oil Gas Nuclear Biomass 
Geo-

thermal 
Hydro Wind 

Solar 

PV 

Florida Reliability 

Coordinating Council 

(FRCC) 

220 21.6 0.8 61.4 12.7 2.0 0.0 0.1 0.0 0.1 42.67 

Midwest Reliability 

Organization (MRO) 
227 60.2 0.3 3.9 11.9 1.7 0.0 5.5 16.3 0.0 49.57 

Northeast Power 

Coordinating Council 

(NPCC) 

244 3.9 1.7 41.2 32.3 4.0 0.0 13.2 2.4 0.2 75.55 

Reliability First 

Corporation (RFC) 
947 50.3 0.6 15.7 28.6 1.0 0.0 0.7 2.3 0.1 51.10 

SERC Reliability 

Corporation (SERC) 
1090 42.2 0.5 25.4 26.1 2.0 0.0 3.0 0.4 0.1 59.88 

Southwest Power 

Pool (SPP) 
226 53.5 1.6 26.0 3.8 1.1 0.0 1.5 12.3 0.0 29.23 

Texas Regional 

Entity (TRE) 
368 33.4 0.1 44.9 10.7 0.3 0.0 0.1 9.9 0.1 45.41 

Western Electricity 

Coordinating Council 

(WECC) 

741 27.5 0.1 30.1 7.9 1.5 2.1 21.9 6.4 2.0 12.97 

Table A.2.  Chinese provincial electricity production capacity, fuel mix, and water use intensities.  Weighted averages based on 
production capacity were used to create regional averages.  
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Province 

 

Chinese 

Elec. 

Region 

Provinc 

Product 

Capacit

y 

(TWh) 

% of  Provincial  Production Capacity for Each Energy Type (Cai et. 

al., 2014) 

% of  Thermoelectric Production Using 

Various Cooling Types (C. Zhang et al, 

2016) 

Provincial 

Average 

Water Use 

Intensity 

Capacity 

Weighted 

Regional 

Average WUI 

(L/kWh) 

Coal 
Natur

al gas 

Biom

ass 

Nucle

ar 
Hydro Wind Solar 

Recirculati

ng 

Cooling 

Once- 

through 

Cooling 

Dry 

Cooling 

Sea-water 

Cooling 
 

 

Chongqin

g 
Central 109.78 

76.7% 0.0% 1.1% 0.0% 21.9% 0.4% 0.0% 66.6% 33.4% 0.0% 0.0% 46.89 

51.33 
Henan Central 303.14 94.2% 0.0% 1.3% 0.0% 3.1% 1.4% 0.0% 96.0% 4.0% 0.0% 0.0% 7.71 

Hubei Central 272.93 37.2% 0.0% 0.4% 12.8% 49.5% 0.1% 0.0% 40.6% 59.4% 0.0% 0.0% 105.69 

Hunan Central 205.68 52.0% 0.0% 0.9% 17.0% 30.1% 0.0% 0.0% 35.8% 64.2% 0.0% 0.0% 117.27 

Sichuan Central 364.37 22.4% 0.0% 1.2% 0.0% 75.9% 0.4% 0.1% 98.5% 1.5% 0.0% 0.0% 11.01 

Anhui East 288.7 95.3% 0.0% 2.1% 0.0% 1.6% 1.0% 0.1% 75.7% 24.3% 0.0% 0.0% 33.39 

77.69 

Fujian East 215.21 46.0% 7.0% 1.1% 22.8% 21.1% 2.0% 0.0% 9.1% 13.3% 0.0% 77.6% 120.51 

Jiangsu East 448.52 71.2% 17.7% 1.3% 7.3% 0.1% 2.2% 0.2% 42.2% 49.3% 0.0% 8.6% 83.85 

Jiangxi East 118.88 53.2% 2.1% 3.0% 29.4% 10.4% 1.7% 0.2% 63.5% 36.5% 0.0% 0.0% 101.71 

Shanghai East 149.84 75.2% 22.6% 1.1% 0.0% 0.0% 1.0% 0.1% 7.7% 75.9% 0.0% 16.4% 117.79 

Zhejiang East 385.59 61.3% 16.0% 1.3% 13.8% 7.0% 0.5% 0.1% 23.9% 7.2% 0.0% 68.9% 56.78 

Beijing North 48.72 56.4% 37.6% 2.5% 0.0% 1.0% 1.9% 0.5% 90.7% 9.3% 0.0% 0.0% 14.28 

8.31 

Hebei North 301.93 93.3% 1.4% 1.4% 0.0% 0.2% 3.6% 0.2% 65.2% 4.0% 12.3% 18.5% 8.59 

Shandong North 479.07 92.9% 0.0% 1.9% 3.9% 0.1% 1.2% 0.0% 80.7% 1.2% 0.5% 17.6% 11.08 

Shanxi North 380.12 98.2% 0.0% 0.5% 0.0% 1.1% 0.3% 0.0% 35.9% 3.4% 60.8% 0.0% 7.27 

Tianjin North 126.24 77.2% 21.5% 1.2% 0.0% 0.0% 0.1% 0.0% 65.1% 0.2% 0.0% 34.6% 2.90 

W. Inner 

Mong. 
North 227.37 

87.0% 0.0% 0.3% 0.0% 0.8% 

11.8

% 0.1% 46.0% 2.6% 51.4% 0.0% 5.57 

E. Inner 

Mongolia 
NE 227.37 

87.0% 0.0% 0.3% 0.0% 0.8% 

11.8

% 0.1% 46.0% 2.6% 51.4% 0.0% 5.57 
19.37 
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Heilongji

ang 
NE 138.78 

88.4% 0.0% 2.1% 0.0% 2.4% 6.9% 0.3% 78.2% 21.8% 0.0% 0.0% 30.14 

Jilin NE 100.25 
63.3% 0.0% 5.6% 0.0% 9.1% 

21.8

% 0.2% 81.5% 11.5% 7.0% 0.0% 17.51 

Liaoning NE 183.66 74.7% 0.0% 2.2% 15.2% 2.7% 5.0% 0.2% 62.6% 0.1% 1.9% 35.4% 29.32 

Gansu NW 121.4 
54.5% 0.0% 1.5% 0.0% 22.2% 

21.0

% 0.8% 55.5% 0.0% 44.5% 0.0% 3.37 

3.15 

Ningxia NW 141.67 91.9% 0.0% 0.4% 0.0% 1.3% 5.7% 0.7% 42.3% 0.0% 57.7% 0.0% 1.26 

Qinghai NW 90 46.9% 0.0% 0.0% 0.0% 48.8% 1.3% 3.0% 100.0% 0.0% 0.0% 0.0% 6.60 

Shaanxi NW 274.98 92.4% 0.0% 1.1% 0.0% 4.5% 1.5% 0.5% 45.8% 0.0% 54.2% 0.0% 1.69 

Xinjiang NW 272.03 88.1% 0.0% 0.0% 0.0% 6.6% 5.3% 0.0% 82.8% 1.2% 16.0% 0.0% 4.12 

Xizang NW 9.91 3.8% 0.0% 0.0% 0.0% 94.6% 0.0% 1.6% 100.0% 0.0% 0.0% 0.0% 10.72 

Guangdo

ng 
South 469.69 

55.1% 15.0% 0.4% 19.5% 9.1% 0.9% 0.0% 21.0% 12.2% 0.0% 66.8% 84.48 

55.63 
Guangxi South 198.14 63.4% 1.6% 1.5% 7.1% 25.7% 0.8% 0.0% 17.9% 48.0% 0.0% 34.0% 110.23 

Guizhou South 215.65 79.3% 0.0% 2.9% 0.0% 16.4% 1.4% 0.0% 98.5% 1.5% 0.0% 0.0% 5.61 

Hainan South 20.56 82.5% 0.0% 5.8% 0.0% 7.3% 3.4% 1.0% 11.4% 0.0% 0.0% 88.6% 2.78 

Yunnan South 264.07 31.0% 0.0% 1.2% 0.0% 67.2% 0.4% 0.1% 100.0% 0.0% 0.0% 0.0% 8.30 

 

Sample calculation for provincial electricity WUI: 

�𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃�(%𝑅𝑅𝑅𝑅𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ∗ 𝑊𝑊𝑊𝑊𝑊𝑊𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟) + (%𝑂𝑂𝑂𝑂𝑂𝑂𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ∗ 𝑊𝑊𝑊𝑊𝑊𝑊𝑜𝑜𝑜𝑜𝑜𝑜) + (%𝐷𝐷𝐷𝐷𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ∗ 𝑊𝑊𝑊𝑊𝑊𝑊𝑑𝑑𝑑𝑑𝑑𝑑)� + 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(�%𝑅𝑅𝑅𝑅𝑛𝑛𝑛𝑛 ∗ 𝑊𝑊𝑊𝑊𝑊𝑊𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟� + �%𝑂𝑂𝑂𝑂𝑂𝑂𝑛𝑛𝑛𝑛 ∗𝑊𝑊𝑊𝑊𝑊𝑊𝑜𝑜𝑜𝑜𝑜𝑜��

+ (𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 ∗ 𝑊𝑊𝑊𝑊𝑊𝑊𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛) + (𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 ∗ 𝑊𝑊𝑊𝑊𝑊𝑊𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏)+(𝑃𝑃𝑃𝑃𝑃𝑃 ∗𝑊𝑊𝑊𝑊𝑊𝑊𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) + (𝑃𝑃𝑃𝑃𝑃𝑃 ∗𝑊𝑊𝑊𝑊𝑊𝑊𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤) + (𝑃𝑃𝐻𝐻𝐻𝐻 ∗𝑊𝑊𝑊𝑊𝑊𝑊ℎ𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦)   

 

For Shanghai Province, the calculation would be as follows:    

Shanghai Province WUI =  0.752*((.077*2.37)+ (.759* 95.5) + (0*0.334)) +  0.226((.077/(.077+.759))*2.75) + 

(0.759/(.077+.759)*34.07)) + (0*178) + (0.011*0.0172) + (0.01*0.0227) + (0.001*.0057) + (0*11.245) 
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Sample calculation for regionally averaged WUI, weighted by the production capacity of each province in the electricity trading 

region. 

 

Table A.3.  Weighted production capacity of each province in the ‘East’ electricity trading region. 

Province Electricity Region 

Provincial 

Production 

Capacity 

(TWh) 

Prov Weighting Factor 

(Prov Capacity/Total 

Regional Capacity) 

Anhui East 288.7 0.18 

Fujian East 215.21 0.13 

Jiangsu East 448.52 0.28 

Jiangxi East 118.88 0.07 

Shanghai East 149.84 0.09 

Zhejiang East 385.59 0.24 

 
Total Regional 

Capacity 
1606.74 

1.0 

 

 

East Region WUI = (AnhuiWUI*AnhuiWeightFactor ) + (FujianWUI*FujianWeightFactor ) + (JiangsuWUI*JiangsuWeightFactor ) + 

(JiangxiWUI*JiangxiWeightFactor ) + (ShanghaiWUI*ShanghaiWeightFactor ) + (ZhejiangWUI*ZhejiangWeightFactor ) 

East Region WUI = (33.39 *0.18) + (120.51*0.13) + (83.85* 0.28) + (101.71*0.07) + (117.79*0.09) + (56.78*0.24) 

East Region WUI = 77.69 L/kWh 
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Table A.4. Electricity grid mix, total production capacity (IEA, 2015) and water use intensities for each semiconductor producing 

country (except China and U.S.). 

Country Coal Oil Gas Biofuels Waste Nuclear Hydro 
Geo-

thermal 
Solar 
PV 

Solar 
Thermal Wind Tide Other 

Total Elec 
Prod (GWh) 

WUI 
(L/kWh) 

Australia 62.9% 2.7% 20.8% 1.4% 0.0% 0.0% 5.3% 0.0% 2.4% 0.0% 4.5% 0.0% 0.0% 252360 2.378 
Austria 7.8% 1.3% 11.9% 6.3% 1.6% 0.0% 62.2% 0.0% 1.4% 0.0% 7.4% 0.0% 0.0% 65299 7.304 
Belarus 0.1% 1.1% 97.9% 0.4% 0.1% 0.0% 0.3% 0.0% 0.0% 0.0% 0.1% 0.0% 0.0% 34082 0.969 
Belgium 6.0% 0.3% 32.3% 6.6% 3.0% 36.9% 2.0% 0.0% 4.3% 0.0% 7.9% 0.0% 0.6% 70648 66.421 
Brazil 4.7% 5.0% 13.7% 8.4% 0.0% 2.5% 61.8% 0.0% 0.0% 0.0% 3.7% 0.0% 0.1% 581652 11.731 
Bulgaria 45.8% 0.4% 3.8% 0.6% 0.0% 31.2% 12.5% 0.0% 2.8% 0.0% 2.9% 0.0% 0.0% 49228 58.181 

Canada 9.8% 1.2% 10.0% 1.9% 0.0% 15.1% 56.8% 0.0% 0.4% 0.0% 3.9% 0.0% 0.8% 670851 33.626 
Czech 
Republic 52.3% 0.1% 2.7% 5.6% 0.2% 32.0% 3.7% 0.0% 2.7% 0.0% 0.7% 0.0% 0.1% 83892 58.668 
Denmark 24.5% 1.1% 6.3% 11.4% 5.8% 0.0% 0.1% 0.0% 2.1% 0.0% 48.8% 0.0% 0.0% 28947 0.689 

England 22.6% 0.6% 29.5% 7.8% 1.9% 20.7% 2.7% 0.0% 2.2% 0.0% 11.9% 0.0% 0.0% 339095 38.057 
Finland 12.8% 0.3% 7.6% 16.0% 1.2% 33.9% 24.4% 0.0% 0.0% 0.0% 3.4% 0.0% 0.4% 68598 63.433 
France 2.1% 0.4% 3.5% 0.7% 0.7% 77.0% 10.4% 0.0% 1.3% 0.0% 3.7% 0.1% 0.1% 568454 138.169 
Germany 43.9% 1.0% 9.7% 6.9% 2.0% 14.2% 3.8% 0.0% 6.0% 0.0% 12.2% 0.0% 0.3% 646888 26.872 
India 75.3% 1.7% 4.9% 1.8% 0.1% 2.7% 10.0% 0.0% 0.4% 0.0% 3.1% 0.0% 0.0% 1383004 7.871 
Ireland 26.0% 1.4% 43.6% 1.4% 0.5% 0.0% 3.9% 0.0% 0.0% 0.0% 23.2% 0.0% 0.0% 28387 1.504 

Israel 45.8% 0.7% 51.6% 0.1% 0.0% 0.0% 0.0% 0.0% 1.7% 0.0% 0.0% 0.0% 0.0% 64226 1.641 
Italy 16.0% 4.7% 39.2% 6.0% 1.7% 0.0% 16.6% 2.2% 8.1% 0.0% 5.2% 0.0% 0.2% 282994 2.686 
Japan 33.0% 9.8% 39.4% 3.3% 0.7% 0.9% 8.8% 0.2% 3.4% 0.0% 0.5% 0.0% 0.0% 1041343 3.837 
Korea 42.8% 2.3% 22.2% 0.4% 0.1% 29.8% 1.0% 0.0% 0.7% 0.0% 0.2% 0.1% 0.3% 552876 54.427 
Latvia 0.0% 0.0% 49.8% 13.9% 0.0% 0.0% 33.6% 0.0% 0.0% 0.0% 2.7% 0.0% 0.0% 5533 4.254 
Malaysia 42.3% 1.2% 46.6% 0.5% 0.0% 0.0% 9.3% 0.0% 0.2% 0.0% 0.0% 0.0% 0.0% 150123 2.545 

Netherlands 38.7% 1.3% 42.3% 2.7% 3.3% 3.7% 0.1% 0.0% 1.0% 0.0% 6.9% 0.0% 0.1% 110070 7.971 
Norway 0.1% 0.0% 1.8% 0.0% 0.3% 0.0% 95.9% 0.0% 0.0% 0.0% 1.7% 0.0% 0.2% 145021 10.799 
Russia 14.9% 0.9% 49.6% 0.0% 0.3% 18.3% 15.9% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 1067544 35.211 
Scotland 22.6% 0.6% 29.5% 7.8% 1.9% 20.7% 2.7% 0.0% 2.2% 0.0% 11.9% 0.0% 0.0% 339095 38.057 
Singapore 1.2% 0.7% 95.0% 0.4% 2.5% 0.0% 0.0% 0.0% 0.1% 0.0% 0.0% 0.0% 0.0% 50415 0.932 
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Slovakia 12.4% 1.4% 6.0% 6.1% 0.2% 56.3% 15.4% 0.0% 1.9% 0.0% 0.0% 0.0% 0.4% 26903 102.265 
Slovenia 29.0% 0.1% 2.7% 1.8% 0.1% 37.4% 27.1% 0.0% 1.8% 0.0% 0.0% 0.0% 0.0% 15100 70.346 
Sweden 0.8% 0.2% 0.3% 5.6% 1.8% 34.8% 46.6% 0.0% 0.1% 0.0% 10.0% 0.0% 0.0% 162058 67.120 
Switzerland 0.0% 0.1% 1.0% 0.8% 3.4% 34.1% 58.9% 0.0% 1.7% 0.0% 0.2% 0.0% 0.0% 67720 67.292 
Taiwan 45.4% 4.2% 32.4% 0.1% 1.2% 12.0% 3.7% 0.0% 0.4% 0.0% 0.6% 0.0% 0.0% 264114 23.206 

Thailand 19.5% 0.6% 71.4% 4.1% 0.3% 0.0% 2.7% 0.0% 1.3% 0.0% 0.2% 0.0% 0.0% 177760 1.465 
Turkey 29.1% 0.8% 37.9% 0.5% 0.0% 0.0% 25.6% 1.3% 0.1% 0.0% 4.5% 0.0% 0.2% 261783 3.989 
United Arab 
Emirates 0.0% 1.2% 98.5% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.2% 0.0% 0.0% 0.0% 127366 0.938 

Wales 22.6% 0.6% 29.5% 7.8% 1.9% 20.7% 2.7% 0.0% 2.2% 0.0% 11.9% 0.0% 0.0% 339095 38.057 
 

 

 
Figure A.1.  Map of global fab ERW withdrawals by facility, overlaid on AWaRe scarcity factors.   
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 ENVIRONMENTAL IMPACTS OF A CIRCULAR RECOVERY 
PROCESS FOR HARD DISK DRIVE RARE EARTH MAGNETS 

Reprinted with permission from Frost, K., Sousa, I., Larson, J. Jin, H. & Hua, I. (2021). 
Environmental Impacts of a Circular Recovery Process for Hard Disk Drive Rare Earth Magnets. 
Resources, Conservation and Recycling. 173 105694 
https://doi.org/10.1016/j.resconrec.2021.105694.  Copyright 2021 Elsevier B.V. 

3.1 Introduction 

3.1.1 Circular Economy and the ICT Sector 

Industry, government, and non-profit organizations are developing and promoting innovative 

business models that are built upon the principles of circular economy (i.e. minimize material input 

and maintain materials at their highest quality use for as long as possible [WEF, 2014]). However, 

for these material and waste reduction goals to be viable, circular business models must also align 

with aggressive carbon reduction targets (UNFCCC, n.d.), all while remaining economically and 

logistically viable.   

The Information and Communications Technology (ICT) sector, including the electronics devices 

which support ICT services, are prioritized by many stakeholders for implementation of circular 

economy (CE) initiatives (EC, 2020; EMF, 2018; Handwerker & Olson, 2019; US CoC 2015) 

because these products are comprised of many high value components and critical materials 

(Buechler et al., 2020; Peiro et al., 2020).  Hard disk drives (HDDs) and their constituent 

components are an ideal ICT product for applying CE approaches because of the stable design 

form (i.e., 2.5” and 3.5”), high collection rates from large commercial users (i.e. estimates of 90-

95% from hyperscale or enterprise data centers (DCs) [Nguyen et al., 2017]), and the large 

economic potential. Additionally, HDDs contain notable amounts of critical materials, such as the 

rare earth elements (REEs) neodymium and praseodymium, that have major importance to both 

technology and clean energy but entail high supply risks due to limited availability, low 

substitution and recycling rates, competing materials demands, and socio-political factors (Balde 

et al., 2017; Gibbs, 2019; U.S. DOE, 2011; Schulz et al., 2017).  Many studies have demonstrated 

the feasibility of mining critical materials from alternative sources such as waste electronics 

https://doi.org/10.1016/j.resconrec.2021.105694


 
 

83 

(Isildar et al., 2018), mine tailings (Tunsu et al., 2019), and landfills (Blengini et al., 2019); 

however, HDDs provide a large pool of high quality, concentrated REEs (>10,000 ppm), and have 

been targeted for various critical material recovery strategies (King, 2017). 

3.1.2 The HDD Recovery Cascade 

Frost et al. (2020) described the ideal recovery cascade for an HDD & rare earth (RE) magnet 

circular economy beginning with whole HDD reuse, then subassembly and component reuse, RE 

magnet recycling, rare earth oxide (REO) recycling, shred & base metals recovery, and finally, 

energy recovery.  Whole HDD reuse is well-established, and several other pathways in the 

recovery cascade have been successfully demonstrated at various scales by industry, government, 

and academia (Handwerker and Olson, 2019). For example, Dell recently piloted a project to 

recover and recycle RE magnets from HDDs wherein the RE magnets from end-of-life (EoL) 

HDDs were recovered, RE oxides were chemically extracted, and then processed into new RE 

magnets (RBA, 2019). This is a promising EoL pathway for RE magnets because it does not 

require a specific HDD design for placement of the reformed magnet; however, reprocessing the 

magnets is not optimal from an environmental impact perspective when compared to whole HDD 

or HDD component reuse (Jin et al., 2020).  A portfolio of recovery options should be utilized by 

HDD stakeholders and is often dictated by end user data security policies, the functionality of the 

EoL HDD, logistics & supply chain constraints, and available recovery technologies (Table 3.1). 
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Table 3.1. The HDD & RE magnet value recovery cascade.  The table was summarized from 
Frost et al (2020). These are listed in order from highest to lowest economic and environmental 

value. 

 

Value Recovery 

Option 

Description of 

Technology/Process 

Barriers/Opportunities for 

Circular Business Model 

HDD reuse Secure data wiping and 

internal company reuse or sell 

to secondary markets 

Highest value recovery option 

and most environmentally 

beneficial. A common practice 

of shredding HDDs for data 

security reasons precludes other 

downstream uses. 

HDD component 

reuse (e.g. magnet 

assembly) 

Disassemble, recover and 

reuse or remanufacture HDD 

components 

Requires active collaboration 

among end users (or ITADs) 

and HDD manufacturers. 

Currently limited by placement 

within similar drive model  

Intact magnet 

recovery for non-

HDD Use 

Magnets are punched out of 

HDD and reused as intact 

magnets for axial gap motors 

Technology is theoretically 

viable*, but motors must be 

designed with reusing HDD 

magnets in mind.  

Magnet-to-magnet 

recycling* 

Process HDD RE magnets 

into new sintered magnets 

with magnetic properties 

similar to HDD magnets 

Magnets need to be certified in 

HDDs to close the loop, locked 

in linear supply chains for RE 

magnets.  Need sufficient 

volumes of HDD RE magnets 

Making RE Oxides 

from HDD magnets 

and other precious 

metals recycling 

HDD magnets can be 

processed into high purity RE 

oxides* for open or closed 

loop recycling 

Process needs to be scaled 

beyond pilots, traceability of RE 

oxides is difficult; locked in 

linear supply chains 

*See Handwerker and Olson (2019) for detailed technology description. 

 

Within this portfolio, recovery and reuse of intact HDD subassemblies or components (when HDD 

reuse is not feasible) has potential as a high-value recovery option (Handwerker & Olson, 2019), 

but current examples are very limited. Component recovery and remanufacturing/reuse is currently 

challenged by the widespread practice of HDD shredding due to data security concerns, lack of 
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qualified disassembly and recovery processes, and the existing supply chain structure which could 

negate the environmental benefits of reuse. In particular, reverse logistics are key: the electronics 

supply chain is focused in Asia, yet many of the largest DC users and investment in sustainable 

recovery initiatives are concentrated in Europe and North America (Synergy Research Group, 

2020; iNEMI; 2019, CEDaCI, 2020). Thus, careful scrutiny of recovery processes and reverse 

logistics is key for ensuring sustainability and discovering hotspots that may be associated with 

introducing these recovery initiatives (Barba-Gutiérrez et al., 2008; Jin et al, 2020). 

 

To mitigate risk of introducing environmental hotspots through implementation of a new CE 

approach, it is imperative to quantify the potential environmental benefits of the proposed business 

model to devise the best implementation strategy for full-scale operations. And although important 

strides are being made to incorporate sustainability into CE performance metrics (Woolven, 2021), 

these tools are still under development, and current metrics focus on dematerialization or material 

cycling rates.  It is, therefore, necessary to couple CE strategies with mature evaluation tools such 

as LCA to gain a full understanding of the environmental sustainability of the proposed CE 

business model (Beaulieu, 2015; Elia et al, 2017; Haupt & Hellweg, 2019; Walker et al., 2018).  

 

Rehberger et al. (2020) reviewed the use of LCA to assess cascading product systems across 100 

studies, which featured a wide variety of product types and methodological choices.  However, to 

date, only a handful of studies have addressed the cascades of high-tech products and/or those 

containing critical materials, which focused largely on electric vehicle lithium-ion battery packs 

(Ahmadi et al., 2014; Bobba et al., 2018; Riccha et al., 2017), photovoltaic modules (Perez-

Gallardo (2017), and more recently HDDs (Jin et al, 2020).  Studies show that reuse could save up 

to~69% of global warming impact compared to the business-as-usual but stressed the importance 

of a “life cycle centric” approach for analyzing environmental trade-offs among an array of 

technical and methodological parameters (Richa et al., 2017).  

3.1.3 Rare Earth (RE) Magnets LCA 

High-quality LCA data for the BAU scenario is vital for a fair comparison to the proposed R&R 

process.  In particular, up-to-date unit process data for the RE metals and RE magnet processing 

steps is essential because RE magnets contribute almost 80% of the GHG impacts associated with 
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manufacturing an MA and 8% of the total HDD materials and manufacturing impacts (Jin et al., 

2020; Seagate, 2016). Given the growing importance of RE magnets to products such as industrial 

motors, electric vehicles, wind turbines, and HDDs, extensive work has been done recently to 

characterize the environmental impacts of RE metal mining and processing, and transformation 

into high-tech magnets.  

 

The rare earth elements considered in this study are two light rare earth elements (LREEs): 

neodymium and praseodymium, based on the bill of materials of the HDD MA under investigation.  

The global supply of LREEs is largely concentrated in the bastnasite/monazite deposits from the 

Bayan Obo region of China, thus the Bayan Obo mining and production route (Bailey et al., 2020; 

Arshi et al., 2018) was assumed for this study. Bailey et al. (2020) provided a comprehensive 

summary of the REE LCA work, to date, and classified rare earth oxide (REO) processing into 5 

major stages: mining, beneficiation, acid roasting, leaching, and solvent extraction. REO solvent 

extraction and separation into individual REOs represents 65% of the GHG impacts and nearly 

100% of the human and ecotoxicity impacts from RE processing, when considering the Bayan Obo 

production route (Bailey et al, 2020).  Sprecher et al. (2014) conducted one of the first studies that 

estimated impacts from extraction and processing of bastnasite and monazite deposits of RE 

elements and estimated unit process (UP) impacts of both RE metals and subsequent RE magnet 

production. Vahidi et al. (2016), and Arshi et al. (2018) used Chinese production data to update 

UP data for RE oxides and RE metals and magnets production from bastnasite, monazite, and ion 

adsorption clays, which are the three major types of geological deposits of REs in China. Jin et al. 

(2018) partnered with a US RE magnet recycler to quantify the environmental benefits of RE 

magnet recycling in comparison with new production. Finally, Jin et al. (2020) assessed reuse of 

the entire RE magnet assembly (RE magnet + steel bracket) in an enterprise HDD and found 3.8 

kg CO2-eq benefit per MA using assumptions for a small, demonstration recovery process. 

3.1.4 Piloting of HDD Rare Earth Magnet Assembly (MA) Recovery & Reuse 

Soderman and Andre (2019) point out that case studies of real circular business models are in 

“short supply”; thus, providing real-world examples of reuse of subassemblies or components, is 

vital to demonstrating a viable circular business model.  The focus of this work is on the closed-

loop recovery and reuse of a highly reliable subassembly, known as the voice coil motor assembly 
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(aka “magnet assembly”). An assembly or subassembly is a distinctive part of a product which 

typically consists of several components. In this case, the upper and lower magnet assembly (MA) 

consists of two powerful, sintered NdFeB magnets (aka “RE magnets”) each epoxied onto a steel 

bracket which actuate the head stack assembly, enabling hard drive read-write functionality.  Here, 

highly reliable indicates that the recovery process yield is expected to be very high (~100%), and 

there is no degradation of functionality between a virgin and reused MA.  The reliability of the 

MA, as demonstrated by internal engineering reliability data by the HDD manufacturer, is due to 

the properties of the magnets themselves (i.e. ‘permanent magnets’ which have high Curie 

temperatures, the temperature required to de-magnetize, of ~380℃ depending on magnet 

composition [Jin et al, 2020) and the fact that the magnet assembly, as a whole, is not subject to 

the same issues of wear as other components within the HDD. 

In 2018, a small demonstration project (n= 6 HDDs) was conducted to investigate the potential of 

a process for MA recovery and reuse, and to assess environmental impacts using LCA 

(Handwerker and Olson 2019; Jin et al, 2020). This demonstration project brought together key 

stakeholders in the HDD recovery supply chain and served as a low-risk opportunity to build trust 

amongst key actors while exploring a viable circular business model. (Frost et al, 2020).  The 

present work represents the next step towards an HDD MA circular business model and describes 

a collaborative, large-scale pilot project (n=6100 HDDs) between two major HDD stakeholders to 

assess the feasibility of a long-term process for recovery of HDD components within a DC and 

placement into new HDDs at the manufacturer. For highly secure data types, in-house shredding 

of entire HDDs followed by base and precious metals recovery is the preferred EoL option for 

many end-users which are subject to strict physical destruction policies and represents a significant 

barrier to HDD subassembly or component recovery (Handwerker & Olson, 2019). Recovering 

and diverting components of value before they leave the DC is a novel recovery approach which 

complies with  data security policies and abides by restrictions on the transboundary movement of 

e-waste (EC, 2019)  

Project stakeholders envisioned a process wherein the MAs of HDDs destined for the shredder are 

recovered within a DC (e.g., U.S.) and shipped back to the HDD manufacturer in Thailand for 

cleaning and placement into a new HDD. This MA recovery system was piloted over several 
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months in fall of 2019, during which time data on electricity, materials use, and transport logistics 

were collected.  

3.2 Methods 

3.2.1 Study Description & Goal 

This LCA study assesses a new recovery process wherein the magnet assemblies within an HDD 

destined for the shredder are recovered within a datacenter (e.g., U.S.) and shipped back to the 

HDD manufacturer in Thailand for cleaning and placement into a new HDD. This recovery system 

was piloted over several months in fall of 2019, during which time data on electricity, materials 

use, and transport logistics were collected.   

 

The study was carried out for the MA recovery and reuse (R&R) pilot with the following purposes: 

1) quantify the environmental impacts of a circular MA recovery option as compared to the current 

business practice (shred and base metals recovery) and 2) identify environmental hotspots in the 

MA recovery process and evaluate alternative scenarios. The LCA study is attributional.  The 

results are intended to be used for decision support in the final design and scale-up of a MA 

recovery process and to document environmental impacts of components that contain critical 

materials which are important for the electronics industry. 

3.2.2 Functional Unit & System Boundary 

The functional unit for this product system is a set of rare earth MAs, consisting of an upper and a 

lower MA (weighing 57.86 g and 46.36 g, respectively), within a Seagate Evans 16 TB SATA, 

Model Number ST16000NM003G (an enterprise helium drive with 16 TB capacity weighing 670 

g). In the R&R system, the MAs are subsequently recovered for reuse in the second life cycle. 

System expansion was used to include the avoided production of a second magnet; thus, the 

functional unit for the business as usual (BAU) system is equivalent to two corresponding sets of 

MAs that are not recovered at EOL, providing a similar function to the R&R system (virgin MA 

+ 1-time reuse). See Figure 1 for an image of the MA and constituent NdFeB magnet.  
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Figure 3.1. Magnet assembly (MA) within a specialized shipping tray. Image used with 
permission (photo courtesy of Ikenna Ike). 

3.2.2.1 Business As Usual (BAU) System 

The life cycle of the BAU magnet includes the extraction, refining and transport of virgin 

materials, manufacturing of RE magnets, manufacturing and assembly of the MA, transportation 

of the MA to the assembly facility for HDD production, transportation of the HDD to the DC for 

use, HDD data erasure, HDD shred (including the magnet), and ferrous metals recovery. Figure 

2a is a general schematic of the MA lifecycle and serves as the BAU (i.e. baseline scenario) for 

our comparative assessment. Boxes in gray were excluded from the system boundary in our 

comparative assessment because they are assumed to be equal in the BAU and R&R systems. 

3.2.2.2 Magnet Assembly Recovery & Reuse (R&R) System 

Figure 2b represents the process flow diagram for the MA recovery & reuse (R&R) pathway to be 

compared with the BAU shown in Figure 2. The processes that are unique to R&R include the EoL 

recovery and reuse processes introduced by the new, circular recovery system which consist of 

HDD disassembly, MA extraction and packaging in a cleanroom environment, transport to the 

HDD assembly facility, and cleaning for placement into a new HDD.  For this comparative LCA, 

we elaborate only processes that are unique to each system and exclude the common processes of 

HDD production, transport from the HDD manufacturer to the user, or use phase of the product 

from our system boundary. Use phase performance is considered to be the same between a new 

and recovered MA, which has been validated through quality control testing - no difference was 

observed in HDD’s power consumption when using new MAs vs. recovered MAs. We consider 
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only one additional useful lifetime of the MA and assume shred and ferrous metals recovery at the 

end of the second life of the MA. As noted in Section 3.1.4, the R&R system is expected to have 

a very high yield (~100%), although other yield scenarios are presented in the SI. 

a) 

 
b) 

 

Figure 3.2. Fig (a) is the Business As Usual (BAU) process, depicting MA virgin manufacturing 
processes and EOL treatments for two sets of MAs.  Fig (b) depicts the life cycle diagram for the 

MA R&R system with one-time reuse of one MA set. Boxes in green represent the new R&R 
processes and boxes in orange represent virgin manufacturing processes. Boxes shaded in gray 

represent those processes that are common to both the BAU and R&R systems, which are 
excluded from our system boundary for the comparative assessment. Boxes in blue depict EoL 

recycling processes that occur at the end of first life for BAU and second life for R&R. 
CN=China, JP=Japan, MY=Malaysia, TH=Thailand, OK=Oklahoma, USA. 
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As recovered MAs are directly substituted for virgin MAs within the same product system without 

loss of quality/function/lifetime, a full credit was given to the R&R system for the avoided burden 

of MA virgin production, (Allacker et al, 2017). Such a credit incentivizes the R&R system for RE 

magnets reuse, whose value is currently almost entirely lost due to shredding and mixed scrap 

recovery. 

 

Eq 3.1 represents the life cycle impacts of production of one set of MAs under BAU assumptions. 

Eq 3.2 shows the net life cycle impact (including credits for avoided burden) of an MA set for the 

R&R system, under a 1-time reuse scenario. These equations are used to calculate the comparative 

results shown in Figure 3.5.  

 

𝐸𝐸𝐹𝐹𝑀𝑀𝑀𝑀,𝐵𝐵𝐵𝐵𝐵𝐵  =  𝐸𝐸𝑉𝑉,𝑀𝑀𝑀𝑀  + 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸,𝐹𝐹𝐹𝐹 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 − 𝐸𝐸𝑉𝑉,𝐹𝐹𝐹𝐹 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠                                                                    (3.1) 

 

𝐸𝐸𝐹𝐹𝑀𝑀𝑀𝑀,𝑅𝑅&𝑅𝑅  =  𝐸𝐸𝑉𝑉,𝑀𝑀𝑀𝑀  +  𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸,𝑅𝑅&𝑅𝑅  +  𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸,𝐹𝐹𝐹𝐹 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 − (𝐸𝐸𝑉𝑉,𝑀𝑀𝑀𝑀  − 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸,𝐹𝐹𝐹𝐹 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 + 𝐸𝐸𝑉𝑉,𝐹𝐹𝐹𝐹 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 )                 (3.2) 

 

where: 

EFMA, BAU = environmental footprint from production and EoL treatment of one MA set in the BAU 

system  

EFMA, R&R = one life cycle equivalent impacts of an MA set modeled via avoided burden approach 

for the R&R system 

EV, MA = environmental footprint from production of a virgin MA set 

EEoL,R&R = environmental footprint from the MA value recovery process (e.g., collection, 

disassembly, transportation and remanufacturing). 

EEoL,Fe recycling = environmental footprint from shredding and transportation of iron scrap.   

EV, Fe scrap = environmental credit from the iron scrap generated at EOL of MAs (i.e., the displaced 

acquisition impact of iron scrap). 
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3.2.3 Life Cycle Inventory 

3.2.3.1 Description of Pilot MA Recovery & Reuse System 

The MA R&R pilot study was conducted over 6 weeks (42 days) in a DC in Oklahoma (OK), 

USA.  During this time 6,100 units of HDDs were disassembled, each containing a set of magnet 

assemblies with two RE magnets (MAupper + MAlower). The MAs were manually removed in a 

cleanroom (CR) environment and then packaged and sealed.  The process required 2.5 full-time 

equivalent (FTE) operators which results in processing approximately 25 units (i.e. HDDs) per 

hour. The MAs were transported from OK to the HDD manufacturing facility in Thailand. It is 

worth noting that over 80% of global HDDs are manufactured in Thailand (AEC+ Business 

Advisory, 2019), so the current logistics assumption is valid for a variety of HDDs. The MAs were 

visually inspected, cleaned, and placed into the production line for newly manufactured enterprise 

HDDs, and eventually deployed back into DCs.  Data on material use, electricity use, and transport 

logistics were collected throughout the pilot project. Figure 3 shows a detailed process flow 

diagram depicting the resource inputs and associated unit process (UP) data for the R&R system 

inventory.   
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Figure 3.3. Material and energy inputs, direct emissions, and associated unit process data for the 
MA recovery process of the MA set from one HDD (Model Number ST16000NM003G). IPA= 

isopropyl alcohol, PET= polyethylene terephthalate, CNC= computer numerical controlled, 
methac. = methacrylate, PS= polystyrene, Non-ESD = non-electrostatic discharge, PP = 

polypropylene. Material and electricity inputs associated with operation of the cleanroom (CR) 
are highlighted separately in the green boxes. 

3.2.3.2 Data Collection 

3.2.3.2.1 Electricity Use 

3.2.3.2.1.1 Tools 

Power draw by each of the tools used in the recovery process was measured using a Kill-A-Watt® 

P4400 voltage meter (P3 International, 2020). Total electricity consumption was calculated using 

power use data combined with measurements of active and standby operating time for each piece 

of equipment. The MA recovery process was operated 8 hours per day, 5 days a week, over the 

span of the 6-week pilot. Electricity use for the CO2 cleaning process at the HDD manufacturing 

facility was estimated by the HDD manufacturer. 
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The following equation shows how tool power consumption data was used to estimate electricity 

use per MA set (i.e. the functional unit). The specific data on electricity use per process is available 

in Figure 3 and the SI. 

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝑈𝑈𝑈𝑈𝑈𝑈 𝑝𝑝𝑝𝑝𝑝𝑝 𝑀𝑀𝑀𝑀 (𝑘𝑘𝑘𝑘ℎ)  = (𝑇𝑇𝑇𝑇𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 [𝑘𝑘𝑘𝑘]  × 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎[𝑠𝑠𝑠𝑠𝑠𝑠]  +  𝑇𝑇𝑇𝑇𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 [𝑘𝑘𝑘𝑘] ×

                                                         𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠[𝑠𝑠𝑠𝑠𝑠𝑠])/3600 𝑠𝑠𝑠𝑠𝑠𝑠
ℎ𝑟𝑟

                                                   (3. 3) 

Where: 

TPUactive or Tool Power Useactive: measured power draw by the tool while in active use mode (kW) 

Timeactive: measured time the tool was in active use per set of MAs (sec). 

TPUstandby or Tool Power Usestandby: measured power draw by the tool during downtime between 

active uses (kW). 

Timestandby:   �
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑡𝑡ℎ𝑒𝑒 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑤𝑤𝑤𝑤𝑤𝑤 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑜𝑜𝑜𝑜 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 (240 ℎ𝑟𝑟𝑟𝑟∗3600𝑠𝑠𝑠𝑠𝑠𝑠ℎ𝑟𝑟

# 𝑜𝑜𝑜𝑜 𝑀𝑀𝑀𝑀 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
�- TPUactive 

3.2.3.2.1.2 Cleanroom (CR) 

The MAs must be removed in a CR environment to reduce the likelihood of particle contamination 

during the recovery process. The CR setup for this pilot’s manual DC recovery system consisted 

of one modular ISO 7 (Class 10,000) and one modular ISO 6 (Class 1000) rated CRs, each 

occupying a 64 square foot area for a total of 128 sq. ft (1024 ft3).  A modular cleanroom is one 

that is entirely self-contained: the air handler, lights, and structure can be assembled onsite and 

sized for the needs of the project.   

Each of the CR air handlers was operated 24 hours a day, 7 days a week (24/7) for the duration of 

the 6-week pilot because the CR must be operated continuously to maintain its certificate of 

compliance for contamination control. CR lights were assumed to be operated during working 

hours: 8 hours a day for 30 days. The power draw of the CR air handler was measured using a 

voltmeter and had comparable efficiency (i.e., 0.67 kWh/ft3) to CRs of similar ratings (i.e., 0.63 

kWh/ft3) (Mathew & Sartor, 2009). See the SI for a detailed description of CR specs and inventory 

data. The modular CRs were used only for the pilot recovery process, thus the associated power 

draw was attributed entirely to the MA recovery process and normalized to the functional unit.  
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The scenario analysis in Section 3.3.3 explores options for maximizing the process throughput 

relative to the CR footprint.   

3.2.3.2.2 Material Use 

Material inputs for the pilot were either directly measured or estimated based on material 

specification sheets provided by the HDD manufacturer. The major materials used in the recovery 

process were 1) the polyethylene terephthalate (PET) wipes and isopropyl alcohol (IPA) used to 

manually clean the drives during disassembly, 2) the vacuum seal bags used to package the trays 

containing the recovered MAs and maintain cleanliness during shipping, 3) cardboard packaging 

materials used to ship the MAs, and 4) liquid CO2 to clean the recovered MAs before assembly 

into HDDs.  The cardboard packaging for shipment is identical between R&R and BAU and was 

not included in the comparative assessment. However, the contribution analysis for the R&R 

system incorporated all material impacts (including packaging) from the R&R process to assess 

for any material use hotspots.  

 

PET wipes and IPA are used to wipe down each HDD before and during disassembly in order to 

minimize the amount of particulate contamination associated with the disassembly processes.  A 

unit process for PET fabric wipes was constructed using datasets provided by van der Velden et 

al. (2013) for the electricity, materials, and fuel required for PET fabric processing (e.g. spinning, 

knitting, washing, drying). If multiple values were available for a process, an average was used. 

3.2.3.2.3 Transportation 

The MAs are shipped via ocean and truck transport from the DC in Oklahoma to the HDD 

manufacturer in Thailand.  Data was provided by the enterprise HDD end user on likely shipping 

routes for the MA. Mileage for ocean transport was estimated using an online tool for calculation 

of distances between seaports (sea-distances.org, 2020), and for truck transport using Google Maps 

(Google maps, n.d.). The weight of both the packaging and the MAs were included in the 

comparative assessment for transportation. 
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3.2.3.2.4 Direct Emissions 

The only direct emissions that are unique to the MA recovery process were from the CO2 cleaning 

process (assumed all CO2 inputs were converted to CO2 emissions) and the CR gown laundering 

process from Vozzolo et al. (2018). 

Detailed assumptions, calculations, and associated unit process data for each of the R&R processes 

can be found in Tables S1, S3, and S8. 

3.2.3.3 Business As Usual (BAU) Processes 

The BAU process for HDD MA production consists of mining and refining of RE metals in China, 

the production of NdFeB (RE) magnets in Japan, and manufacturing of the MAs in Malaysia. The 

MAs are then shipped to the HDD assembly facility in Thailand and placed into the HDD along 

the manufacturer’s assembly line. The HDDs are distributed to end users (e.g. a hyperscale or 

enterprise DC) where the HDD is used for 3-5 years.  After the useful lifespan has ended, the HDD 

is shredded, and the HDD shred is sent to a regional metal recycler where the ferrous portions of 

the MA are recovered as well as other base metals and precious metals from the remainder of the 

HDD. During this process, RE metals are not recovered and become trace contaminants in the 

mixed iron scrap.  

Because the MA manufacturer was not directly involved in this study, several assumptions were 

made about the MA manufacturing processes. MA manufacturing includes the process of 

manufacturing the steel bracket and adhering the NdFeB magnets to the assembly using epoxy.  

The materials consumption data were drawn from bill of materials provided by the HDD 

manufacturer, and MA manufacturing process was modeled by the unit process of “Metal working, 

average for chromium steel product manufacturing {GLO}| market for | APOS, U”, similar to prior 

studies (Jin et al., 2020).   
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Table 3.2. Summary of distinctive processes and associated data collection for major materials and energy inputs for the R&R and 
BAU systems. The table follows the process order outlined in the resource flow diagram (Figure 3).  Refer to Table S1and S2 for 

documentation of all processes used in the study.  

Processes 
that require 
material or 
energy inputs 

Description of Process Data Collected or Estimated Data Source Ecoinvent Unit Process 
Amount 
(Unit) 

Recovery & Reuse Process   

CNC Deweld 

HDD is placed inside a CNC mill to 
deweld (i.e. break the HDD 
perimeter seal) between the cover 
plate and rest of HDD. 

Power draw (W) in active and 
standby use modes by CNC mill 
and air compressor, 
Measurement of active time to 
deweld (sec), and standby time 
(calculated) 

Direct 
measurement of 
pilot process using 
voltmeter and 
stopwatch 

Electricity, medium voltage {SPP}| 
market for | APOS, U 
 

2.98E-02 
 (kWh) 
 

IPA Wipe 

Manual process to wipe the surfaces 
of the HDD with a specialty made 
PET wipe that is wetted with 
isopropyl alcohol (IPA). This 
cleaning process reduces particulate 
matter contamination during 
subsequent recovery processes. 

Amount and specifications of 
PET wipes and gallons of IPA 
used during the study 

Direct 
measurement of 
IPA use, estimated 
use of PET wipes 
over course of 
pilot 

Isopropanol {RoW}| market for 
isopropanol | APOS, U 
 

1.02E-02 
(kg) 

PET textile production (custom UP 
using data from van der Velden et al 
(2013). 

4.13E-03 
(kg) 

Cleanroom 
Air Handler 
& Lights 

The MAs must be removed in a CR 
environment to reduce particle 
contamination. The air handler for 
the CR was in operation 24/7 during 
the pilot study. Cleanroom lights 
were powered on during working 
hours. The prep room was ISO 7 
(Class 10,000) certified and the 
disassembly room was ISO 6 (Class 
1,000) certified. 

ISO 7 (Class 10,000) & ISO 6 
(Class 1000) CR. Total power 
use was measured (W) and 
allocated to each room based on 
the number of air handlers and 
lights required to power each 
room. The number of air handlers 
required to maintain a cleanliness 
standard is related to the size of 
the room and the number of air 
exchanges required. 

Specs of 
cleanroom 
provided by 
datacenter; Direct 
measurement of 
power draw using 
voltmeter 

Electricity, medium voltage {SPP}| 
market for | APOS, U 
 

2.18E-01 
(kWh) 
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Table 3.2 continued 

Transport 
from DC to 
HDD 
Manufacturer 

Ocean and truck transport from OK, 
USA > Los Angeles, CA > 
Singapore > Thailand 

Calculated t*km using ocean and 
truck transport distances and total 
weight of pallet + packaging + 
MAs 
t*km = weight of shipment (tons) 
* distance shipped (km) 

Google Logistics 
team provided 
locations, 
distances 
estimated using 
GoogleMaps, 
measured weight 
of pallet 

Transport, transoceanic freight 
ship/OCE U 

2.7E+00 
(t*km) 

Transport, freight, lorry, 
unspecified {RoW}| market for 
transport, freight, lorry, unspecified 
| APOS, U 

9.39E-01 
(t*km) 

CO2 Clean 

Process of cleaning the recovered 
MAs before placement into a new 
HDD. This technology uses ‘air 
knives,’ or pressurized CO2, to 
clean the MAs in their trays. 

Data was provided for electricity 
consumption and CO2 
consumption on a per MA basis. 
CO2 emissions from the process 
were assumed to equal CO2 
inputs 

Data on electricity 
and CO2 use from 
HDD 
manufacturer 

Carbon dioxide, liquid {RoW}| 
market for | APOS, U 

3.60E-02 
(kg) 

Electricity, medium voltage {TH}| 
market for | APOS, U 

3.60E-02 
(kWh) 

Return 
Transport 
from 
Manufacturer 
to DC 

Because the trays used to ship the 
MA are specially made, empty trays 
must be returned to the datacenter 
for future packaging. 

The weight of the return 
packaging was used to determine 
transport impacts. This includes 
all packaging but excludes the 
weight of the MAs 

Calculated by 
using the 
manufacturer’s 
packaging 
configuration and 
subtracting the 
weight of MAs 

Transport, transoceanic freight 
ship/OCE U 

1.22E+00 
 (t*km) 
 
 

Transport, freight, lorry, 
unspecified {RoW}| market for 
transport, freight, lorry, unspecified 
| APOS, U 

4.25E-01 
(t*km) 
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Table 3.2 continued 

BAU Processes   

RE Metals 

Mining and refining processes 
required to process 
basnasite/monazite ore into 
individual RE oxides and then RE 
metals for high-tech applications 

HDD Bill of Materials (BoM) 
used to determine Nd and Pr 
amounts in final product, 
assuming yield loss factor of 1.26 
to derive REO weights (only 
used for transport) 

Used Arshi et al 
(2018) impact 
data for 1 kg of 
Nd and Pr metals 
and scaled to RE 
metals in Evans 
drive 

Transport, freight, lorry, 
unspecified {RoW}| market for 
transport, freight, lorry, unspecified 
| APOS, U 
 

4.22E-03 
(t*km) 
 

 Transport, aircraft, freight, 
intercontinental/RER U 

3.71E-02 
(t*km) 

 

Impacts from producing 1 kg of Nd 
metal and 1kg of Pr metal are 
directly derived from Arshi et al 
(2018) 

Included 
in 
magnet 

NdFeB 
magnets 

The process to combine RE metals 
with iron, boron, nickel coating and 
adhesives to create the magnet. This 
process also includes grinding and 
slicing of the magnet to get 
appropriate shape for HDD 

Used HDD BoM to adjust unit 
process data from Jin et al 
(2020). Used magnet average 
yield loss factor of 1.7 

Jin et al, 2018, 
2020 (updated) 

Modified from Jin et al, see SI 
Table S9 for full unit process 
inputs. 
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Table 3.2 continued 

Magnet 
Assembly 

The process to create the steel 
assembly and adhere the RE 
magnets 

Used HDD BoM for weight of 
steel and epoxy 

Ecoinvent 
stainless steel 
process 

Epoxy resin, liquid {RoW}| market 
for epoxy resin, liquid | APOS, U 

3.00E-06  
(kg) 
 

Steel, chromium steel 18/8 {GLO}| 
market for | APOS, U 

7.26E-02  
(kg) 
 

Solvent, organic {GLO}| market for 
| Alloc Def, U 

1.17E-04  
(kg) 
 

Metal working, average for 
chromium steel product 
manufacturing {RoW}| processing | 
APOS, U 

1.04E-01 
(kg) 

Transport, freight, lorry, 
unspecified {RoW}| market for 
transport, freight, lorry, unspecified 
| APOS, U 

1.42E-01 
(t*km) 

Transport, freight, lorry, 
unspecified {RoW}| market for 
transport, freight, lorry, unspecified 
| APOS, U 

1.17E-01 
(t*km) 
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3.2.4 Unit Process Data & Impact Assessment Methods 

Ecoinvent v.3 database was primarily used to model the unit processes (UPs) associated with the 

BAU and R&R systems. Several of the most important UPs are described in Table 3.2 and the 

remaining UP data are available in the supplemental information.  Environmental impacts from 

Nd and Pr production were directly quoted from Arshi et al (2018), a study which also employed 

the Ecoinvent database v.3.   

 

Environmental impacts were characterized using the US EPA TRACI v.2.1 impact assessment 

methodology framework (Tool for Reduction and Assessment of Chemicals and Other 

Environmental Impacts) (Bare, 2011). TRACI was chosen because of its compatibility with prior 

LCAs on RE metals and magnets production (Arshi et al., 2018; Jin et al., 2018; Jin et al., 2020). 

3.2.5 Life Cycle Interpretation 

3.2.5.1 Renewable Energy Purchasing 

Electricity impacts associated with the datacenter MA recovery process (most notably, CR 

electricity use) is the largest contributor to GHG impacts from the R&R process, thus a scenario 

of using renewable energy purchasing was explored to see its impact on GHG emissions. The 

Oklahoma DC matches 100% of their annual electricity consumption with renewable energy 

purchases, which takes the form of a power purchase agreement (PPA) (Google, 2013). To 

understand the effect of this renewable energy matching on the LCA results, each of the electricity-

using processes at the Oklahoma DC were modeled with the typical grid mix for the Southwest 

Power Pool (i.e. coal, gas and wind) as well as with the energy mix provided by the PPA. Under 

this PPA, in 2019, electricity consumption at the Oklahoma DC was matched 96% by carbon-free 

energy (CFE) on an hourly basis, with the remaining 4% supplied by fossil fuels (i.e. carbon-based 

energy) (Google, 2020). This ratio of CFE to CBE was represented by the following unit processes: 

“Electricity, high voltage {SPP}| electricity production, wind, 1-3MW turbine, onshore | APOS, 

U”) and “Electricity, medium voltage {SPP}| market for | APOS, U”. Infrastructure processes were 

included for all electricity generation types, as is recommended when comparing traditional and 

renewable electricity generation (Hauschild, 2018). Only processes occurring within the OK DC 

were modeled with the carbon-free energy mix.   
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3.2.5.2 Automated MA Recovery 

An important step towards optimizing and scaling the MA circular recovery process is a transition 

from manual disassembly to an automated process. To measure the potential effects of automation 

on environmental impacts, scenarios were modelled using assumptions about a semi-automatic 

and automatic process for MA recovery and compared to data from the baseline (i.e. manual) 

process. 

  

The “semi-automatic” process requires an operator to place the drive into the CNC machine to 

deweld the HDD cover seal. The automated portion of the “semi- automated” process includes the 

use of a semi-automatic harvester instead of manual processes for screw removal, MA retrieval, 

and placement into MA trays. The semi-automated process has a buffer of 1 HDD and requires 1 

FTE operator to feed the machine every HDD cycle (process requires 2 FTEs total).  Semi-

automation requires an additional 272 sq. ft of CR space and an addition of a 5000 W harvester 

and yields an estimated recovery of 10 units per hour (UPH).   

 

The “full automation” tool partially replaces manual steps required for the CNC deweld and fully 

automates the screw removal, MA harvest, and placement into MA trays. The “full automation” 

machine also removes and separates many subassemblies such as the read/write head stack 

assembly (HSA), media discs, desiccant packets/filters, aluminum cast enclosure. The separated 

material/part is then ready for general recycling of raw material. This requires an automation line 

which draws an estimated 10,000 W of power and requires an additional 368 sq ft of CR space. 

The automation line can process an estimated 60 UPH with an input buffer of 100 HDDs and 

requires 1 FTE operator.  A summary of comparative CR specs is available in Table S5. 

3.2.5.2.1 Electricity & Material Use for Automated MA Recovery Scenario 

Due to the size of the automation tools, the semi and fully automated recovery process occupies a 

much larger CR footprint than the manual process.  The estimated CR footprint for a fully 

automated recovery setup was 192 square feet of ISO 7 (i.e., 3 times larger than the manual process 

for HDD preparation and storage) and 304 square feet of ISO 6 (i.e., about 2.5 times larger than 

manual process for disassembly and packaging).  CR power draw is assumed to scale linearly with 
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the size of the cleanroom; thus, measured power draw from the manual recovery system was used 

to quantify the estimated power needs for the larger CR footprint. 

 

Material inputs are unlikely to be largely affected by automation because packaging and shipping 

configurations are unchanged. There is a potential that fewer operators would be needed, reducing 

demand for CR gowns and laundry. There is also a potential that less PET wipes and IPA will be 

needed to clean the drive before disassembly, but this is not well understood at this time. As such, 

material inputs were assumed to remain constant per MA as a conservative assumption. 

3.2.6 Data Limitations & Uncertainty Analysis 

3.2.6.1 Scaling Assumptions 

An effort was made, where possible, to estimate how the R&R process would scale.  For example, 

transport logistics and packaging were assumed for a scaled process because of extensive internal 

documentation and similarity to existing BAU processes.  Where these scaling extrapolations 

could not be easily made, data from the pilot-scale were used to be conservative.  For example, the 

pilot process consumed 0.5 PET wipes per functional unit.  The consumption of PET wipes may 

be improved for a permanent process, but because the amount of this improvement is not well 

understood, pilot estimates were used to be conservative. Another example is how scaling could 

impact total process throughput.  The scenario analysis described in Section 3.3.3 was conducted 

to explore improvements to process throughput using assumptions such as 24/7 manual 

disassembly or various levels of automation. One of the biggest impacts of process throughput 

improvement would be on cleanroom utilization per functional unit. 

3.2.6.2 Monte Carlo Uncertainty Analysis 

The material losses encountered during the RE magnet manufacturing process have a substantial 

impact on the total environmental impacts of the BAU process (see Section 3.1.1). The machining 

process which is used to slice and grind the magnet block into the characteristic kidney shape 

required for HDDs, as well as out of spec magnets, can lead to losses at the manufacturers and 

magnet fabricators. Total yield losses have been reported with a great variance in the literature 

(ranging from 6-73%) for magnet applications, in general, and the specific losses for HDD magnets 
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have not been available. These yield losses increase the material and energy inputs required for 

RE magnet production and waste for the following magnet inputs: Nd metal, Pr metal, Fe (iron 

pellet) and Fe sludge, boron carbide, and electricity. Jin et al. (2020) assumed an average yield 

loss of ~40% after communication with a magnet manufacturer. This study also utilizes 40% as 

the baseline loss but conducted Monte Carlo Uncertainty Analysis (MCUA) simulation to address 

the large uncertainty for this estimate.   

 

Monte Carlo analysis is used to characterize uncertainty by running repeated analyses using 

random numbers generated from a range of input values which are represented by a probability 

distribution (Robert & Casella, 2004). A triangular distribution was chosen as the appropriate 

MCUA probability distribution function for magnet material loss because we have a minimum 

(6%), maximum (73%), and mode (most likely value based on professional judgement, 40%) (Ross 

& Cheah, 2019). Monte Carlo simulation was conducted on the yield loss values using 1,000 model 

runs. Results of this analysis were converted to a multiplier to ascertain the additional amount of 

material or electricity inputs required to manufacture two NdFeB (RE) magnets for the Evans 

HDD. This was multiplied by the associated global warming impacts for each unit process input 

and visualized using boxplots. The individual process inputs required under various yield scenarios 

and their effect on global warming impacts are summarized in Table S13. 

3.3 Results & Discussion 

3.3.1 Life Cycle Impact Assessment (LCIA) 

3.3.1.1 Comparative Analysis: MA Recovery & Reuse vs BAU 

Direct reuse of MAs in new HDDs is estimated to result in an 86% reduction in greenhouse gas 

(GHG) emissions per MA when compared to BAU (Fig. 3.4). Specifically, global warming impact 

from the MA recovery and reuse process results in 0.60 kg of CO2-eq and that from virgin MA 

production results in 4.30 kg of CO2-eq.   Figure 3.4 also depicts the impacts of shipping the whole 

HDD to Malaysia for disassembly and reuse of the MA.  This scenario used assumptions from Jin 

et al. (2020) which were updated with specs from the newer HDD model and disassembly process 

data from the U.S. DC recovery pilot.  Although the impacts from this scenario show similar 
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reductions in GHGs (3.61 vs 3.70 kg CO2-eq), there are notable disadvantages associated with this 

option, namely the transboundary movement of e-waste and data security concerns. 

 

The large disparity in GHG emissions between the BAU and R&R system is mainly due to 

foregoing the environmental impacts associated with virgin production of RE magnets (Fig 3.5).  

Specifically, mining and refining of RE-containing ore into Neodymium (Nd) and Praseodymium 

(Pr) metals accounts for 67% of the GHG emissions attributed to the BAU scenario and from 33-

87% of impacts across the remaining impact categories of TRACI, such as acidification and 

eutrophication (Fig 3.6).   

 

 

Figure 3.4. Comparison of GHG impacts in kg CO2-eq for one life cycle of an MA set, Business 
As Usual (dark gray; modeled with Eq. 1), Asia MA Recovery (light gray; modeled with Eq. 4, 

using sea transportation of an entire HDD to Asia and disassembly for MAs), and U.S. MA 
Recovery (light green; modeled with Eq. 2, using the US domestic disassembly of an HDD and 
shipping only MAs to Asia).  The net GHG benefits (or the reduced GHG impacts via R&R) are 

represented by ΔEF.    
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Figure 3.5. The difference in environmental impacts between BAU and R&R, with BAU 

considered the base case.   
 

 
Figure 3.6. Contribution of upstream RE magnet processing impacts and MA manufacturing and 
transport to the BAU scenario.  Nd and Pr Metals, shown here with patterned bars, includes the 

mining, refining, separation, and transport of RE metals to the magnet manufacturer. This 
includes yield losses of RE metals inputs during magnet processing. “Other RE Magnet” 

includes the iron, nickel coating, electricity, and other process chemicals required to manufacture 
a sintered NdFeB magnet (including yield losses of input materials). MA manufacturing includes 
raw materials and forming of the steel bracket and the process and materials required to adhere 
the NdFeB magnet to the bracket.  MA transport includes the transport of the MA to the HDD 

manufacturer and return transport of the MA trays.  EoL is not depicted due to its minor 
contribution to BAU impacts (0.25%). 
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3.3.1.2 Contribution Analysis: MA Recovery & Reuse (R&R) 

The purpose of an in-depth contribution analysis is to optimize the newly created circular process 

to minimize environmental impact and/or acknowledge tradeoffs required to balance economic 

and environmental sustainability.  Figure 7 details the contribution by each unit operation in the 

R&R system and indicates that transportation and cleanroom energy were environmental hotspots 

in this system. Transport of the MAs and their associated packaging from the US to Thailand, and 

the return trip of just packaging from Thailand back to the US DC was inevitable due to the current 

supply chain structure that focuses on HDD assembly in Thailand and the specialized nature of the 

packaging trays (i.e. trays are used to stage the MAs for placement into the HDD assembly line). 

It is worth noting that this project already reduced the transportation impact by setting up a 

disassembly line in the US to enable transporting only MAs overseas (see Fig. 3.4). Electricity use 

for the recovery process is dominated by the CR air handler in the data center (Fig 3.7). As 

mentioned above, the CR air handler must run 24/7 to maintain its cleanliness certification, 

although the recovery of drives only occurs for one 8-hr shift per day. Therefore, improving CR 

utilization by adding more shifts, increasing throughput by process automation, or extensive 

adoption of renewable energy could be explored to reduce the environmental impact per MA of 

the R&R system.  

 

The use of cleaning wipes in the disassembly process is the dominant material impact (50% of all 

material impacts are due to the PET wipes), highlighting the importance of optimizing cleaning 

wipes consumption or exploring alternative cleaning materials.  While global warming impacts are 

split nearly evenly among the transport, materials and electricity, eutrophication, carcinogenic, 

non-carcinogenic, respiratory, and ecotoxicity impacts are dominated by electricity impacts from 

the OK datacenter which utilizes the SPP Electricity Grid Mix (as implemented in Ecoinvent 3.0), 

comprised of 49% coal, 19% natural gas, 19% wind, 7% nuclear, and ~6% other.  Transport is the 

predominant impact driver with regards to ozone depletion, smog, and acidification impact 

categories from the use of diesel fuel and heavy fuel oil for truck and ship transport, respectively. 
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Figure 3.7. Summarized unit operation contribution to each of the TRACI impact categories for 
the R&R system. Tool Electricity includes electricity for dewelding, screw removal, and vacuum 
sealing during the disassembly and recovery process. CR Electricity includes the CR air handler 
and lights. Materials includes the PET wipes, isopropyl alcohol, vacuum seal bags, CR gowns, 
MA packaging, and CO2 required to clean the MAs. Transport includes the transport from the 

datacenter to the HDD manufacturer and return transport of the MA trays to the datacenter. 

3.3.2 Data Center Renewable Energy Purchasing 

The LCIA indicates a 97% reduction in electricity-related global warming impacts attributable to 

the DC (Figure 3.8a). This corresponds to a 30% reduction in the R&R system global warming 

impacts when compared to R&R modeled with Grid Electricity (Figure 3.8b).   
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a)

 

b)

 
Figure 3.8. Figure (a) depicts the global warming impacts (in kg CO2-eq) due to electricity 

supplied from SPP Grid Mix vs the DC grid mix which is comprised of 96% CFE and 4% CBE. 
Figure (b) displays the overall system impacts of BAU, R&R with SPP grid mix, and R&R with 

96/4 mix.   

3.3.3 Scenario Analysis – Automated MA Recovery 

Global warming impact for each of the DC disassembly scenarios - manual, semi-automated, and 

fully automated - are depicted in Figure 3.9.  Automation requires an increase in electricity 

consumption due to an expanded CR footprint required to accommodate automation tools but leads 

to a higher throughput disassembly process. For example, doubling the CR space for full 

automation could result in an estimated 2.4 times more MAs processed per hour (i.e. ~60 units per 

hour [UPH] vs 25 UPH). Changes in material impacts are expected to be negligible and transport 

impacts will remain the same for all three scenarios.   

 

The largest impact driver for automation is the increased electricity required by the expansion of 

the CR footprint. The CR must operate 24/7, even though MAs are only recovered during one 8 

hr-shift, 5 days a week (8/5). Automation maximizes the potential throughput that could be 

achieved for the recovery process but is limited by the current assumption of operating only one 

shift per day.  Fig 3.9 depicts the results of a theoretical exercise assuming a fully optimized 

automated process (operating 24/7). If drive disassembly could be operated continuously, the 

efficiency gains would nearly offset increased CR electricity use. Continuous operation over the 
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study period (42 days) would lead to an estimated recovery of 60,480 MAs using the full 

automation process. 

 

 

Figure 3.9. Global warming demand of DC recovery steps in kg CO2-eq per set of MAs under 
manual, semi-automated, and fully automated operating scenarios under two assumptions: 1) an 

underutilized CR operating an 8-hr shift, 5 days a week (8/5), and (2) a fully utilized CR 
operating 24 hours a day, 7 days a week (24/7). This  *Processes such as screw removal and 

vacuum seal are not depicted due to minor impact contribution. For the automation scenarios the 
deweld process is included as part of the category “automation tools”, instead of being 

considered as a separate process step. 

3.3.4 Uncertainty Analysis 

Current baseline assumptions about magnet yield loss result in a total of 3.41 kg CO2-eq impacts 

for Nd, Pr, Fe, Fe sludge, boron carbide, and electricity, whereas the mean of the MC analysis is 

3.57 (3.51-3.62 95% CI, min=2.19, max=7.08) (Fig 3.10). The implications of this analysis suggest 

that the CO2 impacts attributed to the BAU system, which are highly sensitive to Nd and Pr metal 

inputs, may be mischaracterized in the current baseline analysis due to uncertainty in the published 

values for yield loss. Given the scant data available to construct the probability distribution, future 

work should attempt to ascertain these values directly from measuring the material losses by an 

HDD NdFeB magnet manufacturer because of the distinctive shape required for HDD magnets. 
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Figure 3.10. Boxplots representing the distribution of global warming impacts associated with 
each of the RE magnet inputs affected by yield loss. In this plot the diamond is the mean, the bar 

is the median, the lower and upper hinges represent the 25th-75th percentile, and the whiskers 
extend to the minimum and maximum. *Fe, Fe sludge, and Boron carbide are not depicted 

separately in the graph due to their relatively small impact contribution but are included in the 
Total plot. 

3.4 Conclusions 

This study examined the environmental impacts of a circular recovery process piloted by two 

major HDD stakeholders for the reuse of a high value subassembly.  The magnet assembly was 

recovered from an enterprise helium HDD which is expected to serve as flagship technology in 

DCs for the next decade.  This required a close collaboration between an enterprise HDD end user 

and HDD manufacturer to create a certified manufacturing process within a datacenter (DC) and 

coordinate movement of materials.  LCA is used to substantiate expected environmental benefits, 

and as such, validate the next step of expanding the piloted recovery process into a permanent 

large-scale circular model. LCA results indicate that the circular processes for magnet assembly 

(MA) recovery initiated by this pilot will result in significant environmental benefits when 

compared to BAU.  

 

Based on this study, we recommend establishing collocated disassembly facilities with product 

end users (e.g., DCs) to increase the environmental benefits of value recovery. For the case of 
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HDDs, additional benefits of collocation include enhanced data security, avoiding transboundary 

shipment of wastes, and better process and quality control. In addition, we recommend adopting 

renewable energy and implementing efficient processes in value recovery to maximize the 

environmental benefits. For MA recovery, cleanroom electricity was a significant impact driver, 

which can be mitigated through use/purchase of renewable energy and automating the disassembly 

process to enable 24/7 utilization of the cleanrooms, which may be difficult to achieve by a manual 

process. 

 

A limitation to reuse of MAs is the functional requirement that an MA be reused within the same 

HDD platform or model family.  Because HDD technology progresses rapidly, and MA design 

similarly must support progression of those platforms, opportunities for reuse of MAs are currently 

limited.  However, MAs should be a priority for 'design-for reuse':  in addition to the performance 

stability and reliability of these assemblies, the yield on recovery of the MA is expected to be 

nearly 100% if recovered through a qualified process.  Design requirements of the MA must be 

expanded in the future to identify opportunities for commonality between platforms and extending 

potential MA reuse. Fortunately, an emerging focus on environmental impacts of REs and their 

supply criticality can be used to drive design goals. 

 

There are approximately 22 million HDDs available for some level of component or material 

recovery (i.e. cannot be reused) in North American DCs each year (Handwerker et al., 2017).  If 

this MA recovery model were expanded to all 22 million HDDs and if MAs could be successfully 

recovered and reused interchangeably, approximately 660 mTons of NdFeB magnets would be 

recovered, which could meet 20% of the average global HDD NdFeB magnet demand per year 

(Schulze & Buchert, 2016). This would also result in 78,540 Metric Tons of CO2-eq. global 

warming impact reduction per year. However, this would require industry coordination and a shift 

in how MAs are designed; thus, other promising recovery strategies for magnet-to-magnet and 

REE extraction technologies must be pursued in parallel.  

 

Other high-value components, such as the printed circuit board assembly (PCBA), should also be 

explored for recovery in DCs, given that they contain some of the most environmentally impactful 

components (i.e. integrated circuits) and are economically valuable.  An automated disassembly 
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process could be designed to co-recover MAs, PCBAs, and other components of value, and if 

coupled with a thoughtful design-for-reuse strategy for key components, would enable recovery 

and reuse of multiple HDD components in the future. 

 

In light of the COVID-19 pandemic and its associated disruption to worldwide supply chains 

(Linton & Vakil, 2020;), companies are exploring options for increasing the resiliency of their 

supply chain (Howells, 2020;), which is crucial with regard to critical materials (U.S. DOE, 2011; 

Vinoski, 2020).  The circular business model assessed by this study describes a pathway for 

domestic sourcing of high-grade rare earth metals, which could help offset supply chain risk 

associated with Chinese REEs and associated NdFeB magnets. Going forward, supply chain 

resiliency may be a key factor in the case for circularity; however, as circular business models are 

increasingly being implemented, there is an ongoing need to validate assumptions about 

environmental sustainability using mature analysis methods such as LCA. 
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3.6 Appendix. Chapter 3 Supporting Information 

Supporting tables in Excel spreadsheet format for this chapter can be found at the reference below. 
 

Frost, K. D.; Hua, I. (2021), "Supporting Information for Environmental Impacts of a Circular 

Recovery Process for Hard Disk Drive Rare Earth Magnets". (DOI: 10.4231/PF9S-PG56).  

https://doi.org/10.4231/QRYS-CR30
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 A REGIONALIZED CHEMICAL FOOTPRINT METHOD FOR HARD 
DISK DRIVE RARE EARTH MAGNETS 

4.1 Introduction 

4.1.1 Environmental Impacts of Rare Earth Elements 

Rare earth elements are vital to the production of many electronic products including hard disk 

drives (HDDs), electric vehicles, wind turbines, and LEDs.  The HDD industry is a major 

consumer of rare earth (RE) permanent magnets and thus, there has been great interest in 

quantifying the environmental impacts of HDD RE magnet production (Arshi et al, 2018; Jin,et al, 

2018; Sprecher et al, 2014).  

 

Light rare earth elements (LREEs) such as neodymium and praseodymium, are now the dominant 

RE metals found in HDD magnets.  REEs, although crustally abundant, are only found in minable 

concentrations in limited areas, and China (58%), the United States (U.S.) (27%), Myanmar (13%), 

and Australia (7%) are the only countries currently mining notable amounts of REEs (Gambogi, 

2021).  A majority of the world’s LREEs are mined from the monazite/bastnasite deposits within 

the Bayan Obo mining region of China.  Beneficiation and further processing to RE oxides and 

metals occurs nearby in Baotou, located 150 km south of the Bayan Obo mine (Fig 4.1).  This 

region in Inner Mongolia currently accounts for 60% of allocated Chinese LREE production (Hu, 

2020) and the associated environmental and social impacts from RE extraction and processing in 

this area have been well-publicized (Bontron, 2012).    
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Figure 4.1. Process flow diagram for HDD RE magnets with locations assumed for this study 
(Bailey et al, 2020; Frost et al, 2021). 

4.1.2 Human and Ecotoxicity of Rare Earth Mining and Processing 

Previous LCA work has characterized the human and ecotoxicity impacts from Chinese RE 

production processes, which is primarily attributed to rare earth oxide (REO) solvent extraction 

(Bailey et al, 2020). Using LCA data to quantify the chemical toxicity of products and processes 

is well-established and relies on the toxicity characterization factors from the USEtox database, a 

UNEP-SETAC consensus model which includes fate, exposure, and effect parameters for 

hundreds of substances (Fantke et al., 2017).  

 

In addition to toxicity impacts modeled through LCA, direct measurements of waterbodies 

draining the Bayan Obo RE mining and processing sites indicate that toxic levels of heavy metals 

(e.g. Cr, Cd, and Pb) are accumulating in the environment (Fan et al, 2008; Ma et al, 2016).  Many 

studies also indicate the presence of radiological species such as thorium and uranium, emitted 

from both natural and anthropogenic sources (FindeiB & Schaffer, 2016).  Process emissions of 

radiological species have been included in RE LCA inventory studies (Lee and Wen, 2016); 

however, chemotoxicity and radiotoxicity of these nuclides have only been included in one RE 

LCA study, to date (Bailey et al, 2020), and these did not include ecotoxicity impacts.   
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4.1.3 LCA & Chemical Footprint 

While LCA can quantify the amount and types of emissions relative to a functional unit of product, 

it does little to describe the highly localized relationships between sources and receiving 

environments (Bare, 2006; Hauschild & Potting, 2005) or account for the impacts of the total 

volume of emissions (Kara et al, 2018).  Thus, a hybridized approach using LCA to determine life 

cycle emissions and quantitative risk assessment (QRA) to quantify local or regional ecotoxicity 

impacts, may be preferred (Garcia et al, 2017).   

 

One promising metric for deeper exploration and communication of toxicity impacts is a chemical 

footprint (ChF).  A chemical footprint has been defined by Sala as “a quantitative measure 

describing the environmental space needed to dilute chemical pollution due to human activities to 

a level below a specified boundary condition” (2013). Chemical footprints are a part of the 

footprint family (i.e. carbon, ecological, water footprints), which have been proposed as a method 

for assessing perturbation of planetary boundaries (Fang et al, 2015; Posthuma et al 2014; Vanham 

et al, 2019) and more robust measurements of a growing, global chemical pollution problem 

(Landrigan et al., 2018). 

 

According to Zijp et al. (2014), the chemical footprint should consider 1) exposure assessment, 2) 

impact assessment (grounded in traditional risk assessment and LCA principles), 3) boundary 

conditions (i.e.  safe thresholds of pollution defined at local, regional or global scale [Steffen et 

al., 2015]), and 4) the dilution volume needed to maintain the boundary condition, which is a 

concept introduced by the European Eco-label scheme (1995) and further developed for water 

footprinting (Hoekstra, 2011).   

 

The initial application of ChF methods was focused on sector-level, macroscale ecosystem impacts 

of agricultural and chemical pollutants (Bjorn et al, 2014; Sala et al,2013; Zjip et al 2014,).  

However, product-level ChFs have been developed more recently for textile and pharmaceutical 

products and Li et al (2021) noted these studies primarily use a weighted toxicity approach derived 

from LCA and USETox. Further advancements for regionalizing product ChFs have been 

proposed (Makaraova et al, 2018; Wang, 2019), but a clear path forward has yet to be established.   
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4.1.4 Dilution Volume of Receiving Body 

The dilution volume (m3) of a receiving water body is the volume of surface freshwater available 

to dilute chemical emissions below an ecological or regulatory threshold and relates chemical 

emissions to the specific dilution capacity of an aquatic ecosystem (Hoekstra et al, 2011; Bjorn et 

al, 2014).   The emergence of datasets such as HydroATLAS (Linke et al, 2019) makes calculation 

of an aquatic ecosystem’s dilution capacity more reliable than previous studies which relied on 

coarser granularity databases or estimates for volumes of freshwater bodies (Bjorn et al, 2014).  

HydroATLAS is a database of “hydro-environmental sub-basin and river reach characteristics at 

15 arc-second resolution”, providing consistent calculation of hydrological characteristics and an 

understanding of up and downstream river reach connectivity’ (Lehner, 2019).   

4.1.5 Research Gaps & Aims 

Chemical footprint studies, to date, lack standardized hydrological data as a reference point for 

calculating dilution capacity, a key parameter to assess chemical impact on water bodies.  Further, 

the global fate and transport factors provided as the default within USETox (Kounina et al., 2014; 

Rosenbaum et al, 2008,) (and therefore LCA software) should be substituted with regionalized fate 

and exposure factors that have recently become more readily accessible (Verones et al, 2020). 

Additionally, to the authors knowledge, downscaling of Chinese grid mix emissions to allocate a 

site-specific chemical emissions profile has not been applied within chemical footprinting.   

 

This study will apply a regionalized, product-level ChF methodology to explore the aquatic 

freshwater ecotoxicity of the production of HDD RE magnet assemblies. Because most of the 

global HDD RE magnet extraction, processing, and assembly occurs within a few known regions, 

a high-resolution, spatially explicit assessment is possible, and should highlight any toxicity 

hotspots from virgin RE magnet production, and how it relates to existing aquatic ecosystem 

carrying capacity.  

 

This study also aims to advance regionalized, product-level ChF methods in several ways:  

1. High resolution emissions data from a global power plant database (Byers et al, 2019) 

will be used to downscale electricity grid emissions to a watershed (i.e. hydrobasin) level. 



 

124 

2. Use of regional fate and exposure factors for chemicals of concern (CoCs) from 

USETox/LC-IMPACT and estimated impacts for radionuclides on aquatic ecosystems 

using newly calculated factors. 

3. Implement state-of-the-art hydrological data for consistent and accurate calculation of 

dilution volumes per river reach.  

4.2 Methods 

This study followed the major analysis steps outlined by Zijp et al. (2014) and methodology 

developed by Bjorn et al. (2014) for combining LCA and USETox data to derive a chemical 

footprint.  Figure 4.2 provides an overview of the major methodological steps used in this study 

and the data sources and transformations performed.   
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Figure 4.2. Summary of the major methodological steps used in this study and the data sources 
and transformations performed. This methodology can be applied to any manufactured product, 

by adjusting Step 1 to include the product-specific Bill of Materials and supply chain (i.e. 
geographic scoping).   

4.2.1 Target and Scope 

The target product or ‘functional unit’ for this study is a set of RE magnet assemblies (i.e. voice 

coil magnet assembly) from a 16TB enterprise HDD, described by Frost et al. (2021).  The RE 

magnet assembly examined in this study was considered a reasonable proxy for other HDD magnet 

assemblies currently in production.  

 

There were several scoping steps within the study, namely geographic scoping (hydrobasin 

boundary of the receiving body), chemicals of concern (CoCs), and the product system boundary. 

Each of the scoping steps is described in more detail in Section 4.2.1.1, 4.2.2.2, and 4.2.5.  
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4.2.1.1  System Boundary & Spatiotemporal Scale 

This was a cradle-to-gate LCA; however, transportation impacts between manufacturing locations 

were not considered.  Figure 1 depicts the production processes included in the system.  This study 

assessed emissions to air, soil and water, which would be transferred to freshwater ecosystems 

(rivers and lakes) but did not consider emissions to seawater.   

 

Emissions were calculated based on annual production volumes of HDDs (and their mass of 

associated magnet assemblies).  This was determined using the 2019 global annual sales data for 

HDDs where 260,300,000 HDDs (Forbes, 2020) contain approximately 27,000 tons of HDD RE 

magnet assemblies.  

4.2.2 Quantification of Emissions 

4.2.2.1  LCA Unit Process Inventory - Step 1 

To construct the detailed unit process (UP) data required for a spatially explicit assessment, UP 

inventory data from Bailey et al. (2020) was used to build the life cycle inventory for the mining, 

beneficiation, acid roasting, leaching, and solvent extraction processes. Inventory data from Arshi 

et al. (2018) was used for the conversion of RE oxides to RE metals processing steps, and finally, 

data from Jin et al. (2020) and Frost et al. (2021) were used to construct processes for NdFeB 

magnet production and voice coil magnet assembly (VCMA) manufacturing (i.e. final product 

assembly where the magnet is epoxied into the steel bracket).  In total, 95 production processes 

were used to create the unit process inventory (Step 1 of Figure 2). The ecoinvent v3 database was 

used to create all inputs and was modeled within Simapro software v 8.5.2 (Pre Consultants, 2018).  

Table S1 provides the complete life cycle inventory and associated data sources.   

4.2.2.2 Emissions Inventory – Step 2 

The emissions inventory for each UP, which describes emissions to land, water, and air per 

substance, were exported from Simapro and compiled in R to summarize emissions per UP (in kg).  

A screening-level ecotoxicity impact assessment was also used to narrow the emissions inventory 

to a smaller list of CoCs, for further ChF analysis.  The cutoff for inclusion in the CoC list was a 

0.01% contribution to total aquatic ecotoxicity (in CTUe), which aligns with the recommendation 



 

127 

from USETox to include any chemical representing greater than 1/1,000th contribution to toxicity 

for in-depth analysis (Fantke, 2017).  Nineteen chemicals (17 metals and 2 organics) were selected 

as CoCs and an additional 3 substances, Thorium-232, Uranium-238, and Radium-226, did not 

have ecotoxicity data in USEtox, but were included as CoCs because of concerns with radioactive 

emissions from RE mining and processing (Lee and Wen, 2016; Bailey et al 2020; FindeiB & 

Schaffer, 2016). 

4.2.2.3 Assigning Spatial Unit Processes  - Step 3 

4.2.2.3.1 Manufacturing Materials 

Manufacturing locations along the RE magnet life cycle were taken from the literature (Bailey et 

al, 2020; Frost et al, 2021).  Manufacturing occurs in more than one location for some of the UPs 

and emissions were allocated based on approximate production volumes for each site where 

locations were known.  Each UP was assigned latitude-longitude coordinates and became part of 

the ‘Spatial Product System’ (Marzullo et al, 2018), referred to herein as a spatial unit process, or 

SUP.  Note: the manufacturing locations described in this study can be considered a theoretical 

supply chain for RE magnet assemblies based on a combination of known existing supplier 

locations, but it is not inclusive of all the possible manufacturing locations for this product.  

4.2.2.3.1.1 Steel Manufacturing Emissions 

 One of the major contributors to ecotoxicity impacts from the RE Magnet is from the engineered 

steel bracket (‘iron yoke’) which houses the RE magnet (Frost, 2021).  This is the largest 

component in the assembly, with a mass of 72.6 g (combined mass of upper and lower yokes), 

compared to 31.2 g for the RE magnets.  Thus, both the engineered steel and stainless steel that 

comprise the yoke were considered to be a high impact material and further disaggregation of the 

likely steel supply chain was needed to understand spatial variation of impacts related to its 

production.  The RE magnet is adhered to the yoke in Thailand, but the steel material for the yoke 

was likely imported, given the low amount of domestic steel production in Thailand, an assumption 

further justified by the specialty nature of the steel alloy used in these assemblies.  The Global 

Steel Trade Monitor (ITA, 2021) provides import-export data for many of the countries within the 

global steel exchange markets.  The top two trade partners with Thailand are Japan and China.  For 
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Japan, the emissions were spatially allocated at the country-level which aligned with the scale of 

the hydrobasin (Section 4.2.5.2) and for China, steel production impacts were allocated to the 

major steel exporting provinces (Worldsteel, 2020). The steel spatial allocation process is fully 

documented in Appendix C. 

4.2.2.3.2 Electricity 

4.2.2.3.2.1 Chinese Electricity Emissions 

Electricity from the grid is used to supply many of the manufacturing processes in the RE magnet 

supply chain, so impacts from electricity were allocated to the specific location where power was 

generated. The Global Power Plant Database’s (GPPD) facility-level, annual generation values 

(Byers et al, 2019) were used to construct the supply mixes for each of the six electricity grids 

within the Chinese mainland, following grid boundaries described in Frost and Hua (2019).  This 

approach is preferred over provincial or regional grid mix estimates provided by the LCA 

databases because it incorporates a large and representative amount of up-to-date facility-level 

production data.  However, the GPPD dataset only supplies generalized fuel types (i.e. 

hydroelectric, solar, wind, natural gas, etc.), so sub-fuel mixes within a fuel type (e.g. 

Hydroelectric Pumped Storage vs Hydroelectric Run-of-River) were taken from ecoinvent v3 grid 

mix profiles (Treyer & Bauer, 2016).  A custom unit process for each general technology/fuel type 

was then constructed as a weighted average of emissions based on the contribution of each of these 

sub-fuel types.  Example calculations of the sub-fuel mix are available in Appendix C. 

 

 𝐹𝐹𝐹𝐹𝐹𝐹𝑥𝑥,𝑓𝑓,𝑔𝑔 =  𝑤𝑤𝑠𝑠,𝑔𝑔 ∗ 𝑚𝑚𝑥𝑥,𝑠𝑠,𝑔𝑔                                                       (4.1) 

 

where: 

FME = Fuel Mix Emissions, where m is the mass of emissions per chemical (x), per sub-fuel type 

(s), and w is the proportion of electricity produced by the sub-fuel type within a particular 

electricity grid (g). 
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4.2.2.3.2.2 Other Countries 

Due to less geographic variability in grid mixes within Japan and Vietnam and the geographic 

scope of the receiving watershed (Figure 4.3), national level grid mixes were considered 

representative for these countries. The electricity grid in Thailand was excluded from this 

analysis because of the lack of data on electricity consumption in foreground processes for the 

VCMA manufacturing step. Grid mixes for Japan and Vietnam were derived from IEA 2019 

tables (IEA, 2019) and provide up-to-date data for production capacity by fuel type, per country.  

Sub-fuel type mixes for Japan and Vietnam from ecoinvent v3 were implemented as described 

in Section 4.2.2.3.2.1. 

4.2.2.3.2.3 Downscaling Grid Emissions to each Power Plant Facility  

Emissions per fuel type (e.g. coal, natural gas, hydroelectric) and per country (or per province, in 

China) were exported from the LCA software and each fuel mix profile was constructed in R using 

Equation 4.1.  The electricity usage for each manufacturing step was allocated to each RE 

manufacturing SUP to understand how much electricity was used in each location.  Each SUP was 

then associated with an electricity grid and spatially joined to the GPP database where annual 

generation from individual power plants could be used to downscale the emissions for each fuel 

mix to the exact facility locations (and basins) associated with each fuel (Eq 4.2).     

 

𝑃𝑃𝑃𝑃𝑃𝑃𝑥𝑥,𝑓𝑓,𝑔𝑔 = 𝐹𝐹𝐹𝐹𝐹𝐹𝑥𝑥,𝑓𝑓,𝑔𝑔 ∗   𝑤𝑤𝑖𝑖,𝑓𝑓,𝑔𝑔                          (4.2) 

 

where: 

PPE = Power Plant Emissions, where FME is derived from Eq 4.1 and w is the proportion of 

total electricity produced by individual power plant (i) of fuel type (f) within grid (g). 

4.2.2.4 Summarizing Emissions Per CoC – Step 3 & Step 7 

The emissions data for all SUPs, per chemical, can then be summarized over any spatial scale of 

interest (i.e. Lev 1-12 basins). For the Lev 4 basins used in this study, it was assumed that emissions 

were limited to the basin where the source was located.  This may not always be the case for certain 

source types (e.g. air emissions from power plants) due to wind speed/direction and complex 
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atmospheric transport and transformation mechanisms associated with air emissions from tall 

stacks.  However, the geographic scope of the basins used in this analysis (~1E+04 km2) 

encompasses near field dispersion of emissions (< 50 km radius from source) (Perry et al, 2005).   

4.2.3 Quantifying Fate and Exposure of CoCs - Step 4 

Regional fate and exposure factors are provided in the LC-IMPACT database (Verones et al, 

2020), which are an extension of USETox v2.12 factors and have been used to determine 

regionalized exposure data for each CoC.   Impact factors for radiological chemicals are not 

currently integrated into the USETox database, so fate and transport factors were constructed in 

USEtox using physico-chemical data from Paulillo et al. (2020), with the assumption that 

TENORMs (technically enhanced naturally occurring radioactive materials) behave similarly to 

metals with respect to solubility and mobility (MDEQ, 2015).   

 

There were three geographic regions of interest in this study with respect to fate and exposure 

factors: Eastern China, Japan and the Korean peninsula, and SE Asia (Vietnam, Malaysia and 

Thailand).  Regionalized impacts were sometimes five- to ten-fold larger than the default, global 

average factors, underscoring the need for more spatial granularity in impact assessment. For 

example, the fate factor for transport of cadmium (Cd2+) from rural air to freshwater is 1.72E+02 

and 3.40E+01 (d-1), for China and the global average, respectively. Fate and eco-exposure factors 

per chemical can be summarized using the following equations, adapted from Rosenbaum et al. 

(2008). 

𝐴𝐴𝐴𝐴𝐴𝐴𝑟𝑟,𝑥𝑥,𝑐𝑐 = 𝑋𝑋𝑋𝑋𝑟𝑟,𝑥𝑥 ∗  𝐹𝐹𝐹𝐹𝑟𝑟,𝑥𝑥,𝑐𝑐    (4.3) 

 

where: 

AFE = Aquatic Fate and Exposure in kg/day, where, r is the region of interest, x is the CoC, and 

c is the environmental compartment (land, air, water) transferring chemicals to freshwater (e.g. 

continental urban air to freshwater, continental rural air to freshwater).  

XF = Regional Eco-exposure Factor derived in LC-Impact (i.e. regionalized USETox) which 

represents the fraction of chemical dissolved in freshwater (dimensionless) which could impact 

aquatic freshwater species. 
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FF = Regional Fate Factor is rate of transfer in (d-1) for the transfer of emissions from air, water, 

and soil to freshwater. 

4.2.4 Chemical Pollution Boundary – Step 5 

The chemical pollution boundary or ‘ecotoxicity effect factors’ embedded in USETox are derived 

using the HC50 (i.e. the concentration at which 50% of the species are exposed above their EC50) 

and are widely implemented in LCA modeling.  However, given the hybridized approach intrinsic 

to chemical footprinting, there is an opportunity to consider regulatory, risk-assessment based 

boundaries, such as the NOEC or PNEC.  The use of more ‘average’ toxicity factors such as the 

HC50 versus more sensitive, conservative factors such as the NOEC or PNEC, are heavily debated 

amongst practitioners of LCA and QRA, with five alternative recommendations from these authors 

for use in the EU’s Product Environmental Footprint (Saouter et al, 2017). 

 

The boundary chosen for this study was the predicted no effect concentration (PNEC) which is a 

“policy” or regulatory boundary (Zjip et al, 2014) and is available from the European Chemicals 

Agency’s (ECHA) database of REACH registration dossiers (ECHA, 2021).  A PNECfreshwater was 

chosen as the policy boundary because of a) ready access to freshwater hazard information for a 

large, standardized, database of chemicals and b) calculation of PNECs follows a precautionary 

principle (Hauschild, 2005) by selecting the most sensitive species among the available ecotoxicity 

effect data and applying assessment factors to account for uncertainty (Saouter et al, 2017).  

However, there are drawbacks to using a regulatory boundary such as a PNEC: it does not take 

into account existing chemical pressures in the receiving waterbody or the specific existing species 

assemblages and their exposure to a mixture of chemicals (although conservative assessment 

factors partially account for this uncertainty).   

 

For most of the heavy metals being considered in this study, PNECs are readily available from 

ECHA or U.S. EPA’s ECOTOX database (EPA, 2021). For radionuclides, PNEC data was 

obtained from Hinck et al. (2010) and is represented by µGy/hr.  Gy or (gray) is a unit of ionizing 

radiation defined as the absorption of one joule of radiation energy per kilogram of matter.   For 

the radionuclides, Radium-226, Thorium-232, and Uranium-238, each chemical is subject to both 
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chemotoxicity and radiotoxicity PNECs.  The PNEC is used, along with the AFE (Eq 4.2), to 

derive an Aquatic Impact Factor per region, per chemical, and per compartment. 

 

            𝐴𝐴𝐴𝐴𝐴𝐴𝑟𝑟,𝑥𝑥,𝑐𝑐 =  1
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑥𝑥� ∗  𝐴𝐴𝐴𝐴𝐴𝐴𝑟𝑟,𝑥𝑥,𝑐𝑐                                               (4.4) 

 

where: 

AIF = Aquatic Impact Factor, where r is the USETox region, x is the CoC and c is the emissions 

compartment.  AFE is the aquatic fate and exposure calculated in Eq 4.3 and PNECx is the 

predicted no effect concentration for freshwater in µg/L or µGy/hour for radionuclides.   

Using the results of Eq 4.4, one can calculate the chemical footprint per chemical using the 

annualized mass of emissions per region, per chemical, and per compartment. 

 

𝐶𝐶ℎ𝐹𝐹𝑟𝑟,𝑥𝑥,𝑐𝑐  =  𝐴𝐴𝐴𝐴𝐴𝐴𝑟𝑟,𝑥𝑥,𝑐𝑐 ∗ 𝑚𝑚𝑟𝑟,𝑥𝑥,𝑐𝑐                                                      (4.5) 

 

where: 

ChF = Chemical footprint in m3, where AIF is Aquatic Impact Factor from Equation 4.4, x is the 

chemical of concern, c is the media compartment (air, water, land), m is mass of emissions, and r 

is the regional factor from Verones et al. (2020). 

4.2.5 Dilution Volume – Step 6 

4.2.5.1 Hydrobasins of Interest 

To determine the ChF and dilution capacity (DC) of emissions, each SUP must be associated with 

a receiving body of water.  The HydroBASINs dataset is comprised of hydro-environmental 

variables such as discharge, land cover, temperature, etc. (Linke et al, 2019).  Hydrological data, 

such as natural discharge, are available via integration of two companion datasets: BasinATLAS 

and RiverATLAS.  BasinATLAS provides the “hierarchically nested sub-basins at multiple scales” 

and RiverATLAS links these to the individual river reaches which drain each basin (Lehner, 2019).  

Both datasets are available at a highly granular 15 arc-second (~500 m) resolution. Sub-basins are 

delineated using the Pfafstetter system at levels 1-12, which are derived from high-resolution 

topography data (Linke, 2019), where Level 1 represents continental-scale watersheds and Level 
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12 is ~1E+02 km2.  Level 4 hydrobasins (~1E+04 km2) were selected as the geographic scope of 

interest for this study because it represented a suitable compromise between spatial granularity and 

a practical geographic scope relative to the emissions sources.  Figure 4.3 depicts the Level 4 

hydrobasins used in this study, as well as the high-resolution river reach data used to calculate the 

dilution capacity of the receiving body (Section 4.2.6).   

 

 

Figure 4.3. Figure a (left) is a map of the Level 4 basins for East Asia available from 
HydroBASINs with RE manufacturing locations represented as yellow stars.  Figure b (right) 

displays the 15 arc-second resolution river reaches within the Level 4 basin near Bayan Obo (top 
yellow star) and Baotou (bottom yellow star). 

4.2.5.2 Mapping SUP Emissions to Hydrobasins 

The latitude-longitude coordinates assigned to each SUP were used to spatially join emissions with 

the corresponding Level 4 HydroBASIN dataset, using the “sf” library in R (Pebesma, 2018).  

Level 4 was chosen as the scale for this study; however, results could be aggregated or 

disaggregated to suit various hydrobasin levels.   

 

HydroBASINs provides data on the natural discharge in m3/s of each river reach upstream of a 

sub-basin pour point (i.e. junction of a stream network) (Lehner, 2019).  River reach discharge is 

calculated in HydroBASINs using the globally integrated water balance model WaterGAP which 

is downscaled to the 15 arc-second (~500 m) resolution of the HydroSHEDS river network (Lehner 

& Grill, 2013).  Multiplying discharge by seconds per year gives an annual water volume flowing 

through the river reach which is available for dilution of annual chemical emissions. 



 

134 

4.2.6 Relating ChF to Local Dilution Capacity – Step 7 

A chemical footprint for each CoC can be calculated by multiplying the regional aquatic impact 

factor (AIFr) by the emissions of the CoC over a given boundary, for a length of time.  The 

boundary for this study is a Level 4 basin and the emissions occur over one year of production.  

To relate the chemical footprint to the receiving body’s dilution capacity, we must sum the 

footprints of all chemicals within the basin and divide by the total annual dilution capacity (annual 

river volume) of the river reach which drains the basin.  This results in a dilution factor (DF), 

which is the amount of the annual volume needed to dilute the CoC to the PNEC.  A DF > 1 

indicates that the volume required to dilute the CoCs exceeds the capacity of the waterbody and 

DF < 1 means there is enough freshwater available to dilute the CoC to a safe threshold for aquatic 

life.  This is similar to the process to calculate the grey water footprint, or ‘critical load approach’, 

however, this calculation does not take into account the existing natural background concentrations 

of each chemical (Hoekstra et al, 2011).   

 

𝐷𝐷𝐷𝐷𝑏𝑏 =  ∑ 𝐶𝐶ℎ𝐹𝐹𝑏𝑏,𝑥𝑥𝑥𝑥

𝐷𝐷𝐷𝐷𝑏𝑏
                                                              (4.6) 

 

DF = Dilution Factor, where ChF is from Equation 5, summed over the basin of interest (b), for 

each chemical of concern (x). 

4.3 Results & Discussion 

4.3.1 Chemical Footprint 

The cumulative ChF of all CoC emissions to air, soil, and water across the cradle-to-gate RE 

magnet manufacturing life cycle was 6.91E+12 m3 of freshwater per year.  This impact is 

associated with an annual production of ~27,000 tons of HDD RE magnet assemblies. To 

understand impacts relative to manufacturing locations and their associated receiving bodies, ChF 

emissions were also summarized for each Level 4 basin impacted by primary magnet assembly 

production (Scope 1) and electricity associated with production (Scope 2).   

 

Primary magnet manufacturing emissions occurred in nine Level 4 basins, with impacts 

predominating in the basins associated with RE processing (Baotou, China) and VCMA 
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manufacturing (Pathum Thani, Thailand) (Figure 4.4a).  The impact of VCMAs is due to steel 

metalworking processes required to shape the steel yoke that are assumed to happen in Thailand.  

Figure 4.4b displays the chemical footprints summarized by each major production unit, showing 

the impacts of the steel metalworking (VCMA) and the various RE separation processes including 

acid roasting and solvent extraction (depicted in ‘Pr Oxide’, ‘Nd Oxide’, and ‘REE sulfate from 

acid roasting 50 perc’ in Figure 4.4a).   

 

 

Figure 4.4. Chemical footprint in m3 from Scope 1 magnet manufacturing emissions by basin of 
interest (a) and by each major production unit (b).  The labels for each basin represent a general 
description of the geographic area (city, province or country) where the manufacturing occurs, 

based on granularity of location data available.   

4.3.2 Dilution Factor (DF) 

When comparing the ChF in each hydrobasin to the dilution capacity of its associated freshwater 

receiving body, the largest impacts were in Thailand, Bayan Obo (Inner Mongolia), and Jiangsu 

and Shandong provinces in China.  The DF is used to reflect the volume of the receiving body and 

its ability to assimilate chemical emissions. Figure 4.5a depicts the DF required to dilute the annual 

emissions from magnet processing (Scope 1) to the PNEC for CoCs within the river reach directly 

draining each watershed. Full results are available in Table S8.   

 

Dilution factors for these watersheds are very high in some cases, with an average DF of 2480 

times the available annal dilution volume.  This is likely due to the following factors:  
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1) The CoCs in this study are almost exclusively heavy metals, which are highly toxic to 

aquatic organisms (PNECs ~ 1E-9 g/L), corresponding to a large chemical footprint.  In 

line with LCA & QRA principles, chemical toxicity is considered in an additive 

manner, which is meant to consider the co-exposure of chemicals with similar modes 

of action (Saouter et al., 2017), but compounds the conservative uncertainty (i.e. safety) 

factors that are already applied in PNEC calculations.  Several authors have noted the 

large uncertainty introduced by toxicity parameters (Bjorn et al., 2014; Fantke et al., 

2017; Saouter et al., 2017). 

2) Several of the watersheds in consideration are located in semi-arid to arid climates, 

which may have very little average annual natural discharge (e.g. 0.4 m3/s).  As such, 

these areas likely require different treatment of waste chemicals (e.g. higher dilution of 

chemicals before emission to waterbodies), and may have contributions to flow from 

anthropogenic discharge, but this is not taken into consideration by current 

assumptions. 

 

 

Figure 4.5. Dilution factors of the river reach required to dilute the sum of each of the chemicals 
of concern to its PNEC for locations associated with RE magnet processing (Scope 1) and 

process electricity use (Scope 2).   
 

When electricity-related impacts (Scope 2) were also considered, the number of impacted 

watersheds expanded to 32, due to the large number of watersheds associated with grid-averaged 

electricity production. Electricity emissions and impacts are generally lower than those associated 

with materials and more dispersed in China due to the allocation of impacts across several 
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hydrobasins located within the grid.  Figure 4.5b depicts the dilution factor required to dilute the 

annual emissions from electricity use associated with RE magnet manufacturing (Scope 2) to the 

PNEC for CoCs within the river reach directly draining each watershed. Full results are available 

in Table S8.   

4.3.3 Chemical Footprint by TENORMs 

The total chemical footprint by TENORMs was a minor contributor, when compared to toxicity 

from heavy metals.  This is due to calculations for fate and transport, driven by the extremely low 

solubility and mobility of these chemicals.   

 

Table 4.1. Radiotoxicity and chemotoxicity footprints of three radionuclides associated with RE 
mining and processing. 

Chemical 
Substance 

Chemotoxicity 
Footprint (m3) 

Radiotoxicity 
Footprint (m3) 

Radium-226 4.04E-14 1.20E-12 
Thorium-232 5.99E-22 1.06E-13 
Uranium-238 7.52E-19 6.55E-11 

 
 

However, significant concentrations of these chemicals are present in nearby freshwater bodies 

due to migration from waste piles and mining/processing tailings ponds, with concentrations of 

thorium measured at up to 5 mg/L in leaching ponds and 0.1-1 µg/L in remote freshwater sites 

(Findeiß & Schäffer, 2017).  Current LCA emissions and transport modelling data may be an 

inadequate tool to describe the risk from these TENORMS, especially due to lack of integration 

of effluent pH and soil-specific mobility concerns (Findeiß & Schäffer, 2017), which are not 

addressed by generalized TENORM physico-chemical data.  

4.3.4 Contribution per CoC 

Ecotoxicity impacts were dominated by just a handful of heavy metals associated with RE 

manufacturing and metalworking. Chromium (VI) was the largest impact driver accounting for 

56.1% of the chemical footprint, followed by Cadmium (20.6%) & Nickel (11.3%).  Impacts per 

CoC are somewhat variable over hydrobasins (Figure 4.7), with a different emissions composition 
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from locations undertaking RE processing (i.e. CN-Baotou) and steel metalworking (i.e. TH-

Pathum Thani). 

 

Figure 4.6. Chemical footprint for each hydrobasin, displaying contribution by chemicals of 
concern (CoCs).  This figure excludes CoCs which contribute less than 0.01% of the total 

footprint. 

4.3.5 Predicted vs Sampled Concentrations of CoCs 

Predicted emissions from the magnet manufacturing processes and their associated concentration 

in receiving bodies can be compared to sampling data available for the Yellow River, at locations 

just downstream of the Baotou processing facilities.  For example, concentrations of Cd at these 

sites ranged from 0.1-4.3 µg/L in water and 0.16-0.53 mg/kg in sediment, respectively (Fan et al., 

2008; Ma et al., 2016), compared to modelled concentrations of 6.75 µg/L in water (Table 4.2).    

Although these monitored concentrations are within the correct order of magnitude, using LCA 

data to predict in-stream concentrations may be problematic because:  1) although the goal was to 

elucidate the impact of HDD magnets, these magnets only comprise a portion of the LREE metals 

mining and processing in this area, and annual mining and processing quotas may be a better 

indicator of total burden for the Baotou site, in particular,  2) LCA and USETox modeling relies 
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on steady-state assumptions of emissions, which does not account for the cumulative 

contamination from persistent, heavy metals from years of mining, processing, and slag storage in 

this area and the ongoing exchange between sediment-bound metals and overlying waters, and 3) 

the natural background levels of heavy metals in water at this location which are not accounted for 

in the USETox modeling. These issues are true for all LCA-derived emissions and underscores the 

difficulty of using LCA-derived ChF data to predict concentrations at a particular time and space, 

rather than as a tool to predict potential total ecotoxicity impact. 

  

Table 4.2. Modelled Concentrations vs Selected Monitoring Data from the Yellow River near 
Baotou, CN Rare Earth Processing Facilities. 

Chemical of 
Concern 

Modelled 
Concentration 

µg/L 

Sampled Concentrations 

Water µg/L1 Sediment2 
(mg/kg) 

Sediment 
Background2 

(mg/kg) 
Chromium (VI) 3.85 N/A 90 41.4-70.2 
Cadmium 6.75 0.1-4.3 0.16-0.53 0.1 
Nickel 47.2 N/A 15 19.5-36.6 
Zinc 74.2 2.8-227 50 58.8-68.5 

1 Fan et al. (2008) 
2 Ma et al. (2016) 
 

4.4 Conclusions 

This study quantified the freshwater ecotoxicity footprint of producing HDD RE magnet 

assemblies on the waterbodies associated with manufacturing facilities within a theoretical supply 

chain.  Twenty-three chemicals of concern were identified using the unit process emissions data 

available from the LCA literature. Heavy metals were the dominant drivers of ecotoxicity impact 

and the three radionuclides of concern were relatively minor by comparison, but may be 

inadequately represented by non-specific fate and transport factors and an underestimate of 

emissions. 

4.4.1 Beyond LCA 

The chemical footprint method gives insights beyond typical LCA by placing emissions and 

impact within context of the local receiving body (i.e. source-receptor pathway in QRA).  This is 
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important for many products that have known aquatic toxicity concerns and ChFs have been 

conducted for pesticides, textiles, detergents, and pharmaceuticals, to date.  In the case of HDD 

magnet assemblies, heavy metals toxicity from steel manufacturing and rare earth processing were 

shown to be impactful, but the main location for rare earth processing (in Baotou, CN) was less 

impactful than its footprint might suggest due to the high discharge volume of the Yellow River 

near Baotou processing facilities.  By factoring in the dilution capacity of a given receiving body, 

stakeholders can target the most vulnerable ecosystems with respect to these products, although 

existing vulnerability due to historic pollution should be considered, as well.   

4.4.2 Supply Chain Transparency and SUPs 

Compliance with government regulations such as REACH, Restriction of Hazardous Substances 

(RoHS), and Section 1502 of the Dodd-Frank Act (i.e. conflict minerals) has led to a deepened 

understanding of chemical use and more transparent supply chains across many sectors of the 

economy.  Given this evolution in ‘responsible sourcing’, it is now possible to pinpoint location-

specific impacts of many types of processes and products.   

 

Supply chain data, combined with robust, existing LCA inventory databases can help create 

spatially explicit, process-based emission inventories for use in chemical footprints and other 

location-specific impact methods.  However, given the complexity of creating a spatial unit process 

inventory, careful scoping based on geography and processes (or chemicals) of concern is required 

to make the study feasible. This makes it important for stakeholders to use tools such as screening-

level LCA to target processes that are likely driving impact in their supply chain and then pursue 

information about location-specific emissions, where available.  The allocation of emissions by 

location is crucial to how ecotoxicity hotspots are identified, so this spatial inventory process is 

one of the most important steps with respect to quantifying the chemical footprint of a particular 

product and its supply chain.  

4.4.3 Tools to Enable Chemical Footprinting 

To reduce the analytical burden of conducting chemical footprints generally, we recommend the 

development of a GIS-based tool which can link regional USETox fate and exposure factors, their 
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associated PNECs, and global HydroBASINs data including discharge volumes for river reaches 

at various spatial scales. This compiled information, when coupled with location-specific 

emissions (from LCA or directly from suppliers) should provide the inputs to calculate a robust, 

location-specific, chemical footprint. 

 

For this study, electricity impacts were relatively small when compared to direct material impacts, 

however there are many processes or products (e.g. semiconductor fabrication) where emissions 

from electricity will play a dominant role in the chemical footprint.  The methods developed here 

to downscale grid-level chemical emissions to individual power plants based on production data 

from the GPPD should be further developed for other countries and grids of concern. 

4.4.4 Potential of HydroBASINs for Use in Footprinting 

This standardized, high-resolution dataset contains many additional variables that could support 

more robust chemical footprinting (or other footprinting) methods.  The dataset is rich with 

environmental and developmental variables which are available at the hydrobasin level.  We 

encourage further exploration of this dataset for use in footprinting, and variables of interest 

include: a) human development and human footprint indices which could be used as a proxy of 

existing watershed pollution, in the absence of monitoring data, b) soils (e.g. carbon content) and 

geology data (for better understanding of site-specific chemical fate and transport mechanisms), c) 

lake and reservoir volumes (for calculating dilution capacity within these types of waterbodies), d) 

groundwater table depth (for estimating potential chemical migration and/or dilution with 

groundwater), and e) freshwater ecoregions (for understanding specific species assemblages and 

how they may be vulnerable to pollution).  Incorporation of these datasets may help to fill existing 

gaps in chemical footprinting methodology in a standardized manner. 

4.4.5 Linking with Science-Based Targets 

Ongoing work and future development of local and regionalized planetary boundaries for 

environmental impact categories, including chemical toxicity (Bjorn et al, 2020), should help 

organizations to develop science-based targets for toxicity reduction in their products or processes.  

A standardized, spatially explicit chemical footprinting methodology may play a vital role in 
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quantifying an organization’s impact and their contribution to, or exceedance of local or regional 

planetary boundaries.  To this end, this work aims to further develop and standardize the 

methodology, but there are still areas for improvement with regard to modeling variability in 

specific source-receptor interactions, accounting for existing chemical pressures in a waterbody, 

and linking with robust, aquatic biodiversity data. 
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4.6 Appendix. Chapter 4 Supporting Information 

Chapter 4 supplemental tables in Excel spreadsheet format can be accessed using the reference 

below. 

 

Frost, K. D.; Hua, I. (2022), “Supporting Information for Application of a Regionalized Chemical 

Footprint Method to Identify Aquatic Ecotoxicity Hotspots of HDD Rare Earth Magnets." (DOI: 

10.4231/QRYS-CR30).  

 

1.0 Calculating Emissions from Steel  

The engineered steel and stainless steel that comprise the magnet assembly yoke were understood 

to be a high impact material from LCA (Frost et al, 2021) and further disaggregation of the likely 

steel supply chain was needed to understand spatial variation of impacts related to its production.  

The RE magnet is adhered to the yoke in Thailand, but the steel material for the yoke was likely 

imported, given the low amount of steel production in Thailand, an assumption further justified by 

the specialty nature of the steel alloy used in these assemblies.  The Global Steel Trade Monitor 

(ITA, 2021) provides import-export data for many of the countries within the global steel exchange 

markets.  The top two trade partners with Thailand are Japan and China.  For Japan, the emissions 

were spatially allocated at the country-level which aligned with the scale of the hydrobasin and for 

China, steel production impacts were allocated to the major steel exporting provinces of Hebei, 

Jiangsu, Liaoning, and Shandong which account for 84% of Chinese steel exports. (Worldsteel, 

2020).  Table S6 provides a list of the Chinese steel allocation factors. 

 
 
  

https://doi.org/10.4231/QRYS-CR30
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a) 

 
b) 

 
Figure S1.  Figure a are the top steel import countries of Thailand.  Figure b are Thailand’s import 
sources broken out by products. 
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2.0 Calculating Emissions from Electricity  

2.1 Chinese Electricity Emissions 

 

The Global Power Plant Database’s (GPPD) facility-level, annual generation values (Byers et al, 

2019) were used to construct the supply mixes for each of the six electricity grids within the 

Chinese mainland, following grid boundaries described in Frost and Hua (2019).  This approach 

is preferred over provincial or regional grid mix estimates provided by the LCA databases because 

it incorporates a large and representative amount of up-to-date facility-level production data.  

However, the GPPD dataset only supplies generalized fuel types (i.e. hydroelectric, solar, wind, 

natural gas, etc.), so sub-fuel mixes within a fuel type (e.g. hydro pump storage vs hydro run-of-

river) were taken from Ecoinvent v3 grid mix profiles (Treyer & Bauer, 2014).  A custom unit 

process for each general technology/fuel type was then constructed as a weighted average of 

emissions based on the contribution of each of these sub-fuel types.    

          𝐸𝐸𝐸𝐸 1    𝐹𝐹𝐹𝐹𝐹𝐹(𝑥𝑥,𝑔𝑔) = �𝑤𝑤𝑖𝑖,𝑔𝑔𝑚𝑚𝑥𝑥,𝑠𝑠,𝑔𝑔

𝑛𝑛

𝑖𝑖−1

 

FME = Fuel Mix Emissions, where m is the mass of emissions per sub-fuel type s, and w is the 

proportion of electricity produced by the sub-fuel type within a particular electricity grid (g).   

An example calculation for the hydroelectric sub-fuel mix profile from the Chinese North Grid 

is below (full list of weighing factors are available in the accompanying Excel file - Table S2): 

 
𝐹𝐹𝐹𝐹𝐹𝐹𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁ℎ𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺−𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻

=  �𝐸𝐸𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁ℎ𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺,𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻−𝑅𝑅𝑅𝑅𝑅𝑅 ∗ %𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁ℎ𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺,𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻−𝑅𝑅𝑅𝑅𝑅𝑅�
+ �𝐸𝐸𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁ℎ𝐺𝐺𝐺𝐺𝑖𝑖𝑑𝑑,𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻−𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 ∗ %𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁ℎ𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺,𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻−𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃� 

 
                            𝐹𝐹𝐹𝐹𝐹𝐹𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁ℎ𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺−𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 = (. 0267 ∗ 𝐶𝐶𝐶𝐶𝐶𝐶 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝑜𝑜𝑜𝑜 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 − 𝑅𝑅𝑅𝑅𝑅𝑅) 

                                                                         + (0.973 ∗  𝐶𝐶𝐶𝐶𝐶𝐶 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 − 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃) 

 

 

The mass of emissions from each chemical associated with the sub-fuel type is available in Table 

S3. Example calculation for chromium emissions to freshwater is below. 

 
                            𝐹𝐹𝐹𝐹𝐹𝐹𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁ℎ𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺−𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 = (0.0267 ∗ 2.71𝐸𝐸−02 𝑢𝑢𝑢𝑢 𝐶𝐶𝐶𝐶6+) [Hydro-ROR] 
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                                                                         + (0.973 ∗  4.97𝐸𝐸+03 𝑢𝑢𝑢𝑢 𝐶𝐶𝐶𝐶6+) [Hydro-Pump Storage] 
 

2.2 Japanese and Vietnamese Electricity Emissions  

National level grid mixes were considered representative for Japan and Vietnam, relative to the 

size of the Lev 4 hydrobasin. The electricity grid in Thailand was excluded from this analysis 

because of the lack of data on electricity consumption in foreground processes for the VCMA 

manufacturing step. Grid mixes for Japan & Vietnam were derived from IEA 2019 tables (IEA, 

2020) and provide up-to-date data for production capacity by fuel type, per country.  Sub-fuel 

type mixes for Japan and Vietnam from Ecoinvent were implemented as described in Section 

1.1. 

  

2.3 Downscaling Grid Emissions to each Power Plant Facility 

Emissions per fuel type (e.g. coal, natural gas, hydro) and per country (or province, in case of 

China) were exported from the LCA software and each fuel mix profile was constructed in R using 

Equation 1.  The electricity usage for each manufacturing step was allocated to each RE 

manufacturing SUP to understand how much electricity was used in each location.  Each SUP was 

associated with an electricity grid and then spatially joined to the GPP database where annual 

generation from individual power plants could be used to downscale the emissions for each fuel 

mix to the exact facility locations (and basins) associated with each fuel (Eq. 2).   

Figure S2 depicts the spatial aggregation and disaggregation processes used to 1) construct the 

Chinese regional grid fuel mix and then 2) allocate the grid emissions mix per fuel type to each 

facility within the grid.  

 
Figure S2. Schematic of the Chinese grid emission calculation and downscaling process. 
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𝐸𝐸𝐸𝐸. 2     𝑃𝑃𝑃𝑃𝑃𝑃(𝑓𝑓,𝑔𝑔) = 𝐹𝐹𝐹𝐹𝐹𝐹𝑥𝑥,𝑓𝑓,𝑔𝑔 ∗ 𝑤𝑤𝑖𝑖,𝑔𝑔 

where: 

PPE = Power Plant Emissions, where wi is the proportion of total electricity produced by 

individual power plant i of fuel type f within grid g.   

Below is an example calculation for how each fuel type in the grid mix was used to downscale 

emissions to individual power plants for the Chinese North Grid: 

 
𝑃𝑃𝑃𝑃𝑃𝑃𝐶𝐶𝐶𝐶−𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁ℎ𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 = (𝐶𝐶𝐶𝐶𝐶𝐶 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝑜𝑜𝑜𝑜 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻) ∗ 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑜𝑜𝑜𝑜 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 𝑖𝑖𝑖𝑖 𝑡𝑡ℎ𝑒𝑒 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑏𝑏𝑏𝑏 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑖𝑖

+ (𝐶𝐶𝐶𝐶𝐶𝐶 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝑜𝑜𝑜𝑜 𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊) ∗ 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑜𝑜𝑜𝑜 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝑜𝑜 𝑖𝑖𝑖𝑖 𝑡𝑡ℎ𝑒𝑒 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑏𝑏𝑏𝑏 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑖𝑖

+ (𝐶𝐶𝐶𝐶𝐶𝐶 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝑜𝑜𝑜𝑜 𝑁𝑁𝑁𝑁𝑁𝑁 𝐺𝐺𝐺𝐺𝐺𝐺) ∗ 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑜𝑜𝑜𝑜 𝑁𝑁𝑁𝑁𝑁𝑁 𝐺𝐺𝐺𝐺𝐺𝐺 𝑖𝑖𝑖𝑖 𝑡𝑡ℎ𝑒𝑒 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑏𝑏𝑏𝑏 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑖𝑖

+ (𝐶𝐶𝐶𝐶𝐶𝐶 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝑜𝑜𝑜𝑜 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶) ∗ 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑜𝑜𝑜𝑜 𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜 𝑖𝑖𝑖𝑖 𝑡𝑡ℎ𝑒𝑒 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑏𝑏𝑏𝑏 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑖𝑖

+ (𝐶𝐶𝐶𝐶𝐶𝐶 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝑜𝑜𝑜𝑜 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁) ∗ 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑜𝑜𝑜𝑜 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑖𝑖𝑖𝑖 𝑡𝑡ℎ𝑒𝑒 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑏𝑏𝑏𝑏 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑖𝑖

+ (𝐶𝐶𝐶𝐶𝐶𝐶 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝑜𝑜𝑜𝑜 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁) ∗ 𝑃𝑃𝑃𝑃𝑜𝑜𝑜𝑜 𝑜𝑜𝑜𝑜 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑖𝑖𝑖𝑖 𝑡𝑡ℎ𝑒𝑒 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑏𝑏𝑏𝑏 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑖𝑖 
 

Tables S4 & S5 provide a list of each of the facilities in CHN-North, Japan and Vietnam and the 

proportion of electricity produced at each facility for each fuel type.  Facility fuel type was used 

to join the facility data with the fuel emissions profile created in Equation 1. 

 

3.0 Summarizing Emissions Per CoC 

3.1 Quantifying Fate, Transport and Exposure of CoCs  

There were three geographic regions of interest in this study with respect to the ecotoxicity 

characterization factors available from Verones et al. (2020) (i.e. LC-IMPACT): Eastern China, 

Japan & the Korean peninsula, and SE Asia (Vietnam, Malaysia & Thailand).  Impact per chemical 

can be measured by using the following equations, adapted from Rosenbaum et al. (2008). 

 

𝐸𝐸𝐸𝐸. 3    𝐴𝐴𝐴𝐴𝐴𝐴 (𝑟𝑟, 𝑥𝑥, 𝑐𝑐) =  𝑋𝑋𝑋𝑋𝑟𝑟,𝑥𝑥 ∗  𝐹𝐹𝐹𝐹𝑟𝑟,𝑥𝑥,𝑐𝑐 

 

AFE = Aquatic Fate and Exposure (kgemit/kgcomp*d-1), where, r is the USETox region of interest, 

x is the CoC, and c is the environmental compartment (land, air, water) transferring chemicals to 

freshwater (e.g. continental rural air to freshwater) 

XF = Regional Eco-exposure Factor (dimensionless) derived in USETox, which represents the 

fraction of chemical dissolved in freshwater which could impact aquatic freshwater species. 
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FF = Regional Fate Factor (kgemit/kgcomp*d-1) is the sum of fate factors for the transfer of 

emissions from air, water, and soil to freshwater. 

 

An example equation using Cr6+ emissions to continental rural air (CRA), emissions to 

continental freshwater (CFW), and emissions to continental natural soil (CNS) in East China is 

provided below: 

 

𝐴𝐴𝐴𝐴𝐴𝐴(𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝐶𝐶ℎ𝑖𝑖𝑖𝑖𝑖𝑖,𝐶𝐶𝐶𝐶6+,𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑡𝑡𝑡𝑡 𝑎𝑎𝑎𝑎𝑎𝑎)

= 𝑋𝑋𝑋𝑋𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸ℎ𝑖𝑖𝑖𝑖𝑖𝑖,𝐶𝐶𝐶𝐶6+  

∗ 𝐹𝐹𝐹𝐹𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝐶𝐶ℎ𝑖𝑖𝑖𝑖𝑖𝑖,𝐶𝐶𝐶𝐶6+,𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑜𝑜𝑜𝑜 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝐶𝐶𝐶𝐶𝐶𝐶 𝑡𝑡𝑡𝑡 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓ℎ𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 

AFEEast China,Cr6+,emissions to CRA to freshwater=  8.07E-01 (unitless) * 1.60E+02 

kgemit/kgcomp*d-1 

                                   = 129.12 kgemit/kgcomp *d-1  

 

Table S7 provides a complete list of regional fate and exposure factors used for the CoCs in this 

study. 

 

3.2 Chemical Pollution Boundary 

For most of the heavy metals being considered in this study, PNECs are readily available from the 

ECHA website. For the radionuclides Radium-226, Thorium-232, and Uranium-238, each 

chemical is subject to both chemotoxicity (µg/L) and radiotoxicity (µGy/hr) PNECs which were 

obtained from Hinck et al. (2010).  The PNEC is used, along with the AFE derived in Equation 3, 

to calculate an Aquatic Impact Factor per region, per chemical, and per compartment. 

 

𝐸𝐸𝐸𝐸 4     𝐴𝐴𝐴𝐴𝐴𝐴(𝑟𝑟, 𝑥𝑥, 𝑐𝑐) =  1
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑥𝑥� ∗  𝐴𝐴𝐴𝐴𝐴𝐴𝑟𝑟,𝑥𝑥,𝑐𝑐  

where: 

 

AIF = Aquatic Impact Factor, where r is the USETox region, x is the CoC and c is the emissions 

compartment.  AFE is the aquatic fate and exposure calculated in Equation 3 and PNECx is the 
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predicted no effect concentration for freshwater in ug/L or µGy/hr for radioactive species per 

chemical 

An example calculation for Eq 4 below for an AIF of Cr6+ emissions to air in East China: 

 

    𝐴𝐴𝐴𝐴𝐴𝐴(𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝐶𝐶ℎ𝑖𝑖𝑖𝑖𝑖𝑖,𝐶𝐶𝐶𝐶6+,𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑡𝑡𝑡𝑡 𝑎𝑎𝑎𝑎𝑎𝑎) =  1
𝑃𝑃𝑁𝑁𝑁𝑁𝑁𝑁𝐶𝐶𝐶𝐶6+� ∗  𝐴𝐴𝐴𝐴𝐴𝐴𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝐶𝐶ℎ𝑖𝑖𝑖𝑖𝑖𝑖,𝐶𝐶𝐶𝐶6+,𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑡𝑡𝑡𝑡 𝑎𝑎𝑎𝑎𝑎𝑎 

𝐴𝐴𝐴𝐴𝐴𝐴(𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝐶𝐶ℎ𝑖𝑖𝑖𝑖𝑖𝑖,𝐶𝐶𝐶𝐶6+,𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑡𝑡𝑡𝑡 𝑎𝑎𝑎𝑎𝑎𝑎) =
1

0.47 𝑢𝑢𝑢𝑢/𝐿𝐿
∗  129.12 𝑘𝑘𝑘𝑘𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐−1 ∗ 𝑑𝑑−1  

 

Using the results of Eq 5, we can calculate the chemical footprint per chemical using the annualized 

mass of emissions per region, per chemical, and per compartment. 

 

𝐸𝐸𝐸𝐸 6.       𝐶𝐶ℎ𝐹𝐹(𝑥𝑥) =  𝐴𝐴𝐴𝐴𝐴𝐴𝑟𝑟,𝑥𝑥,𝑐𝑐 ∗ 𝑚𝑚𝑟𝑟,𝑥𝑥,𝑐𝑐 

 

where: 

AIF is Aquatic Impact Factor from Equation 5, x is the chemical of concern, c is the media 

compartment (air, water, land), m is mass of emissions, and r is the regional factor from Verones 

et al. (2020).   

 

An example of Eq 6 below for the ChF of the mass of emissions to continental rural air (CRA), 

continental freshwater (CFW) and continental natural soil (CNS) of chromium 6+ in East China 

multiplied by the aquatic impact factor for each compartment. 

 

𝐸𝐸𝐸𝐸 6.      𝐶𝐶ℎ𝐹𝐹𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝐶𝐶ℎ𝑖𝑖𝑖𝑖𝑖𝑖,𝐶𝐶𝐶𝐶6+ (𝑚𝑚
3
𝑦𝑦𝑦𝑦� ) = 

 (𝐴𝐴𝐴𝐴𝐴𝐴𝐸𝐸.𝐶𝐶ℎ𝑖𝑖𝑖𝑖𝑖𝑖,𝐶𝐶𝐶𝐶6+,𝐶𝐶𝐶𝐶𝐶𝐶−𝐹𝐹𝐹𝐹 �𝑘𝑘𝑘𝑘𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒
𝑘𝑘𝑘𝑘𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

∗ 𝑑𝑑−1 ∗ 𝐿𝐿
𝑢𝑢𝑢𝑢
� ∗ 365 𝑑𝑑

𝑦𝑦𝑦𝑦
∗ � 1 𝑚𝑚3

1000 𝐿𝐿
� ∗ 𝑚𝑚𝐸𝐸.𝐶𝐶ℎ𝑖𝑖𝑖𝑖𝑖𝑖,𝐶𝐶𝐶𝐶6+,𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑡𝑡𝑡𝑡 𝑎𝑎𝑎𝑎𝑎𝑎(𝑘𝑘𝑘𝑘 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒) ∗ 1 𝑒𝑒+09 𝑢𝑢𝑢𝑢

1 𝑘𝑘𝑘𝑘
) + 

(𝐴𝐴𝐴𝐴𝐴𝐴𝐸𝐸.𝐶𝐶ℎ𝑖𝑖𝑖𝑖𝑖𝑖,𝐶𝐶𝐶𝐶6+,𝐶𝐶𝐶𝐶𝐶𝐶−𝐹𝐹𝐹𝐹 �𝑘𝑘𝑘𝑘𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒
𝑘𝑘𝑘𝑘𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

∗ 𝑑𝑑−1 ∗ 𝐿𝐿
𝑢𝑢𝑢𝑢
� ∗ 365 𝑑𝑑

𝑦𝑦𝑦𝑦
∗ � 1 𝑚𝑚3

1000 𝐿𝐿
� ∗  𝑚𝑚𝐸𝐸.𝐶𝐶ℎ𝑖𝑖𝑖𝑖𝑖𝑖,𝐶𝐶𝐶𝐶6+,𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑡𝑡𝑡𝑡 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤(𝑘𝑘𝑘𝑘 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒) ∗  1+𝑒𝑒09 𝑢𝑢 𝑘𝑘𝑘𝑘

1 𝑘𝑘𝑘𝑘
) +

 (𝐴𝐴𝐴𝐴𝐴𝐴𝐸𝐸.𝐶𝐶ℎ𝑖𝑖𝑖𝑖𝑖𝑖,𝐶𝐶𝐶𝐶6+,𝐶𝐶𝐶𝐶𝐶𝐶−𝐹𝐹𝐹𝐹 �𝑘𝑘𝑘𝑘𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒
𝑘𝑘𝑘𝑘𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

∗ 𝑑𝑑−1 ∗ 𝐿𝐿
𝑢𝑢𝑢𝑢
� ∗ 365 𝑑𝑑

𝑦𝑦𝑦𝑦
∗ ( 1 𝑚𝑚3

1000 𝐿𝐿
) ∗  𝑚𝑚𝐸𝐸.𝐶𝐶ℎ𝑖𝑖𝑖𝑖𝑖𝑖,𝐶𝐶𝐶𝐶6+,𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑡𝑡𝑡𝑡 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑘𝑘𝑘𝑘 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒) ∗ 1 𝑒𝑒+09 𝑢𝑢𝑢𝑢

1 𝑘𝑘𝑘𝑘
 )  
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3.3 Dilution Volume 

3.3.1 Hydrobasins of Interest 

To determine the ChF and dilution capacity (DC) of the emissions and exposure data, each SUP 

and its associated aquatic impact factor must be spatially joined with a hydrobasin (and associated 

river reaches) using the coordinates for each SUP.  The HydroBASINs dataset is comprised of 

hydro-environmental variables such as discharge, land cover, temperature, etc (Linke et al, 2019).   

The XY coordinates assigned to each SUP were used to spatially join emissions with the 

corresponding Level 4 HydroBASIN dataset, using the “sf” library in R using “point in polygon” 

type joins.  Level 4 was chosen as the scale for this study; however, results can be aggregated or 

disaggregated to suit any geography of interest.   

 

HydroBASINs provides data on the natural discharge in m3/s of each river reach upstream of a 

sub-basin pour point (i.e. junction of a stream network) (Lehner, 2019).  River reach discharge is 

calculated in HydroBASINs using the globally integrated water balance model WaterGAP which 

is downscaled to the 15 arc-second (~500 m) resolution of the HydroSHEDS river network (Lehner 

& Grill, 2013).  Multiplying discharge by seconds per year gives an annual water volume flowing 

through the river reach which is available for dilution of annual chemical emissions.   

 
Below is an example calculation for determining the total annual dilution volume of the reach of 

the Yellow River which drains the Level 4 Hydrobasin associated with the Baotou, CN RE 

Processing facilities.  

 

𝐸𝐸𝐸𝐸.  7        𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐷𝐷𝐷𝐷 𝑜𝑜𝑓𝑓 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅ℎ = 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 �
𝑚𝑚3

𝑠𝑠𝑠𝑠𝑠𝑠
� ∗ 1,233,721,75 �

𝑠𝑠𝑠𝑠𝑠𝑠
𝑦𝑦𝑦𝑦

� 

 

 𝐷𝐷𝐷𝐷𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌−𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐷𝐷4040548370  = 832.769 �
𝑚𝑚3

𝑠𝑠𝑠𝑠𝑠𝑠
� ∗ 1,233,721.75 �

𝑠𝑠𝑠𝑠𝑠𝑠
𝑦𝑦𝑦𝑦

� 

      = 1.027E+09 �𝑚𝑚
3

𝑦𝑦𝑦𝑦
� 
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3.4 Relating ChF to Local Dilution Capacity 

To relate the chemical footprint to the receiving body’s dilution capacity, we must sum the 

footprints of all chemicals within the basin and divide by the total annual dilution capacity (river 

volume) of the river reach which drains the basin.    
 
 
                                          𝐸𝐸𝐸𝐸. 7    𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑏𝑏 =  �𝐶𝐶ℎ𝐹𝐹𝑏𝑏,𝑥𝑥 𝐷𝐷𝐷𝐷𝑏𝑏⁄  

 
 
where: 

 

ChF is from Equation 6, summed over the basin of interest (b) and for each chemical of concern 

(x). 

𝐷𝐷𝐷𝐷𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻_4040548370 =  
𝐶𝐶ℎ𝐹𝐹𝐶𝐶𝐶𝐶6+_4040548370 + 𝐶𝐶ℎ𝐹𝐹𝐶𝐶𝐶𝐶_4040548370 + 𝐶𝐶ℎ𝐹𝐹𝑁𝑁𝑁𝑁_4040548370 + (… )

𝐷𝐷𝐷𝐷4040548370
 

 

The full dataset of results per hydrobasin, per CoC, and per production unit is available in Tables 

S8, S9 and S10, respectively. 
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 CONCLUSION 

This dissertation explored the spatial variability in impacts from manufacturing of two components 

that are vital to the technology sector: semiconductors (i.e. chips) that are used to control and 

process electrical signals and the rare earth (RE) magnet sub assembly within a hard disk drive 

(HDD), which enables read-write functionality for HDD storage devices, and is a prime candidate 

for circular economy initiatives.  Life cycle assessment was used to quantify the emissions or 

resource utilization from these components’ manufacturing processes, and water and chemical 

footprint methods were explored to understand impacts on local and regional receiving ecosystems.  

  

In Chapter 2 a modified water footprint approach was used to estimate global water use demand 

by the semiconductor manufacturing industry.  A withdrawals-based water scarcity approach was 

used as a conservative indicator of freshwater ecological impacts from water deprivation.  

Although the semiconductor industry is a smaller user of water when compared to primary metals, 

it is a growing sector and represents a major source of Scope 3 water use within technology 

companies.  Thus, Scope 3 water use impacts from semiconductor manufacturing should be 

considered as a primary area of concern as these companies work to meet aggressive goals of water 

positivity and ecosystem protection. 

 

Future work should include benchmarking and validation of the semiconductor water use model 

presented in Chapter 2 against actual direct and indirect water use from semiconductor fabs.  This 

would increase its usability as a predictive tool for future areas of growth within semiconductor 

manufacturing.  Companies currently publish highly aggregated data (i.e. total from all 

manufacturing locations), making it difficult to understand impacts of production on a specific 

watershed.  Publication of more granular, location-specific water use data by the semiconductor 

manufacturing industry would assist in model validation and a more comprehensive understanding 

of competing water use needs within a watershed.  Further, the age of the life cycle assessment 

data used to estimate water use indicates the possibility that water use impacts are underestimated 

for newer technology nodes, and where possible, newer fab process water and electricity use 

measurements should be implemented. 
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In Chapter 3, a life cycle assessment of an HDD rare earth magnet assembly was undertaken to 

assess the impact of reusing this component as part of a circular economy.  This project served as 

a real-world case study of a circular economic business model for electronics.  LCA was used as 

a tool to validate assumptions about environmental impact reduction and to assess various 

scenarios for process implementation.  Additionally, impact results across an array of impact 

indicators (global warming potential, aquatic ecotoxicity, carcinogenicity, etc.) were presented. 

 

In the future, other components of the HDD should be considered for circularity initiatives.  This 

is especially true because retrieving the magnet assembly requires full disassembly of the HDD, 

enabling separation and sorting of other parts such as the PCBA, motor spindle base, cover, etc.  

The systems level approach of LCA should continue to be used to assess the environmental impacts 

of electronics circular economy, to ensure that waste reduction goals advocated by CE are also 

aligned with other industry or company goals for carbon, water use, and ecosystem protection.   

 

The LCA inventory from Chapter 3 was used to conduct an advanced, regionalized chemical 

footprint to illuminate aquatic ecotoxicity concerns and potential impacts on regional watersheds 

within the HDD RE magnet supply chain. The chemical footprint method gives insights beyond 

typical LCA by placing emissions and impact within context of the local receiving body.  By 

factoring in the dilution capacity of a given receiving body, stakeholders can prioritize the most 

vulnerable ecosystems with respect to their products.  

 

The use of multi-disciplinary solutions, databases and tools is key to advancing the work of total 

sustainability.  Chapter 4, in particular, shows how standardized toxicology and hydrology datasets 

can be combined to create an operationalized solution to a complex, chemical footprint method.  

While there are still several areas to explore and improve, this work aims to brings the method a 

step closer to a meaningful assessment of a product’s, organizations, or sector’s impact on local, 

regional and planetary boundaries. 

The ICT sector has a role to play in quantifying and improving environmental impacts from its 

own supply chain, as well as using technology as an enabler to reduce environmental damage from 

other sectors.  Given the outsized influence and capital wielded by the technology sector, 

substantial investments in clean power, electricity grid and transport optimization, investments in 
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R&D for low-carbon materials, and investment in direct reduction technologies such as carbon 

capture (Varro & Kamiya, 2021) are some of the ways technology companies could contribute to 

maintaining a safe operating space for humanity. 

5.1 Reference 

Varro, L. and Kamiya, G. (2021, March 25).  5 ways Big Tech could have big impacts on clean 
energy transitions.   International Energy Agency. Available at 
https://www.iea.org/commentaries/5-ways-big-tech-could-have-big-impacts-on-clean-energy-
transitions (accessed 4 November 2021). 
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